Skip to content

Latest commit

 

History

History
352 lines (311 loc) · 8.12 KB

139.md

File metadata and controls

352 lines (311 loc) · 8.12 KB

Results of GPT-4 on HumanEval/139

Date: 18 July, 2023
Model: gpt-4
Temperature: 0.2
Passing runs: 10
Total runs: 10
Success rate: 100%

Prompt

Tokens: 121

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """

The above is an incomplete Python code fragment. Return the complete and correct code with no additional text.

Correct solution

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """fact_i = 1
    special_fact = 1
    for i in range(1, n+1):
        fact_i *= i
        special_fact *= fact_i
    return special_fact

Unit tests

def check(candidate):

    # Check some simple cases
    assert candidate(4) == 288, "Test 4"
    assert candidate(5) == 34560, "Test 5"
    assert candidate(7) == 125411328000, "Test 7"

    # Check some edge cases that are easy to work out by hand.
    assert candidate(1) == 1, "Test 1"

Runs

✅ Run 1

Start time: 2023-07-18 17:54:24
Duration: 13.24s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)

    return result

✅ Run 2

Start time: 2023-07-18 17:54:12
Duration: 12.82s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)
    return result

✅ Run 3

Start time: 2023-07-18 17:53:56
Duration: 15.54s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)

    return result

✅ Run 4

Start time: 2023-07-18 17:53:41
Duration: 15.08s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)
    return result

✅ Run 5

Start time: 2023-07-18 17:53:27
Duration: 13.75s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(n):
        if n == 0 or n == 1:
            return 1
        else:
            return n * factorial(n - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)

    return result

✅ Run 6

Start time: 2023-07-18 17:53:14
Duration: 13.11s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)

    return result

✅ Run 7

Start time: 2023-07-18 17:52:57
Duration: 16.91s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)
    return result

✅ Run 8

Start time: 2023-07-18 17:52:46
Duration: 11.18s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)
    return result

✅ Run 9

Start time: 2023-07-18 17:52:33
Duration: 12.83s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)
    return result

✅ Run 10

Start time: 2023-07-18 17:52:16
Duration: 16.25s
Completion tokens: 157
Result: Pass

def special_factorial(n):
    """The Brazilian factorial is defined as:
    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
    where n > 0

    For example:
    >>> special_factorial(4)
    288

    The function will receive an integer as input and should return the special
    factorial of this integer.
    """
    def factorial(num):
        if num == 0 or num == 1:
            return 1
        else:
            return num * factorial(num - 1)

    result = 1
    for i in range(1, n + 1):
        result *= factorial(i)

    return result