Date: 18 July, 2023
Model: gpt-4
Temperature: 0.2
Passing runs: 10
Total runs: 10
Success rate: 100%
Tokens: 121
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
The above is an incomplete Python code fragment. Return the complete and correct code with no additional text.
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""fact_i = 1
special_fact = 1
for i in range(1, n+1):
fact_i *= i
special_fact *= fact_i
return special_fact
def check(candidate):
# Check some simple cases
assert candidate(4) == 288, "Test 4"
assert candidate(5) == 34560, "Test 5"
assert candidate(7) == 125411328000, "Test 7"
# Check some edge cases that are easy to work out by hand.
assert candidate(1) == 1, "Test 1"
Start time: 2023-07-18 17:54:24
Duration: 13.24s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:54:12
Duration: 12.82s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:53:56
Duration: 15.54s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:53:41
Duration: 15.08s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:53:27
Duration: 13.75s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(n):
if n == 0 or n == 1:
return 1
else:
return n * factorial(n - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:53:14
Duration: 13.11s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:52:57
Duration: 16.91s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:52:46
Duration: 11.18s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:52:33
Duration: 12.83s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result
Start time: 2023-07-18 17:52:16
Duration: 16.25s
Completion tokens: 157
Result: Pass
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
def factorial(num):
if num == 0 or num == 1:
return 1
else:
return num * factorial(num - 1)
result = 1
for i in range(1, n + 1):
result *= factorial(i)
return result