-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcbre_train.py
554 lines (476 loc) · 26.3 KB
/
cbre_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import tensorflow as tf
import numpy as np
import os
import sys
import math
import getopt
import random
import datetime
import traceback
from cbre.cbre_net import CBRENet
from cbre.util import *
from sklearn import metrics
# Define parameter flags
flags = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('loss', 'l2', """Which loss function to use (l1/l2/log)""")
tf.app.flags.DEFINE_integer('layer_num_encoder', 2, """layer numbers of encoder network. """)
tf.app.flags.DEFINE_integer('layer_num_decoder', 2, """layer numbers of decoder network. """)
tf.app.flags.DEFINE_integer('layer_num_predictor', 2, """layer numbers of predictor network. """)
tf.app.flags.DEFINE_integer('layer_num_discriminator', 2, """layer numbers of discriminator network. """)
tf.app.flags.DEFINE_float('coef_recons', 1.0, """coefficient of reconstruct loss""")
tf.app.flags.DEFINE_float('coef_cycle', 1.0, """coefficient of cycle loss""")
tf.app.flags.DEFINE_float('coef_d', 1.0, """coefficient of discriminator loss""")
tf.app.flags.DEFINE_float('p_alpha', 0.0, """Weight of recons+cycle loss """)
tf.app.flags.DEFINE_float('p_lambda', 0.0, """Weight decay regularization parameter. """)
tf.app.flags.DEFINE_float('p_beta', 10.0, """Gradient penalty weight. """)
tf.app.flags.DEFINE_float('thres_d', 5, """threshold for training discriminator network""")
tf.app.flags.DEFINE_integer('rep_weight_decay', 1, """Whether to penalize representation layers with weight decay""")
tf.app.flags.DEFINE_float('dropout_in', 0.9, """Input layers dropout keep rate. """)
tf.app.flags.DEFINE_float('dropout_out', 0.9, """Output layers dropout keep rate. """)
tf.app.flags.DEFINE_string('nonlin', 'relu', """Kind of non-linearity. Default relu. """)
tf.app.flags.DEFINE_float('lrate', 0.05, """Learning rate. """)
tf.app.flags.DEFINE_float('decay', 0.5, """RMSProp decay. """)
tf.app.flags.DEFINE_integer('batch_size', 100, """Batch size. """)
tf.app.flags.DEFINE_integer('encoder_dim', 100, """Layer dimensions of Encoder network""")
tf.app.flags.DEFINE_integer('decoder_dim', 100, """Layer dimensions of Decoder network""")
tf.app.flags.DEFINE_integer('predictor_dim', 100, """Predictor layer dimensions. """)
tf.app.flags.DEFINE_integer('mi_estimator_dim', 100, """MI estimation layer dimensions. """)
tf.app.flags.DEFINE_integer('discriminator_dim', 100, """Discriminator layer dimensions. """)
tf.app.flags.DEFINE_integer('batch_norm', 0, """Whether to use batch normalization. """)
tf.app.flags.DEFINE_string('normalization', 'none',
"""How to normalize representation (after batch norm). none/bn_fixed/divide/project """)
tf.app.flags.DEFINE_integer('experiments', 1, """Number of experiments. """)
tf.app.flags.DEFINE_integer('iterations', 2000, """Number of iterations. """)
tf.app.flags.DEFINE_float('weight_init', 0.01, """Weight initialization scale. """)
tf.app.flags.DEFINE_float('lrate_decay', 0.95, """Decay of learning rate every 100 iterations """)
tf.app.flags.DEFINE_integer('varsel', 0, """Whether the first layer performs variable selection. """)
tf.app.flags.DEFINE_string('outdir', '../results/ihdp/', """Output directory. """)
tf.app.flags.DEFINE_string('datadir', '../data/topic/csv/', """Data directory. """)
tf.app.flags.DEFINE_string('dataform', 'topic_dmean_seed_%d.csv', """Training data filename form. """)
tf.app.flags.DEFINE_string('data_test', '', """Test data filename form. """)
tf.app.flags.DEFINE_integer('sparse', 0, """Whether data is stored in sparse format (.x, .y). """)
tf.app.flags.DEFINE_integer('seed', 1, """Seed. """)
tf.app.flags.DEFINE_integer('repetitions', 1, """Repetitions with different seed.""")
tf.app.flags.DEFINE_integer('use_p_correction', 1, """Whether to use population size p(t) in mmd/disc/wass.""")
tf.app.flags.DEFINE_string('optimizer', 'RMSProp', """Which optimizer to use. (RMSProp/Adagrad/GradientDescent/Adam)""")
tf.app.flags.DEFINE_integer('output_csv', 0, """Whether to save a CSV file with the results""")
tf.app.flags.DEFINE_integer('output_delay', 100, """Number of iterations between log/loss outputs. """)
tf.app.flags.DEFINE_integer('pred_output_delay', -1,
"""Number of iterations between prediction outputs. (-1 gives no intermediate output). """)
tf.app.flags.DEFINE_integer('debug', 0, """Debug mode. """)
tf.app.flags.DEFINE_integer('save_rep', 0, """Save representations after training. """)
tf.app.flags.DEFINE_float('val_part', 0, """Validation part. """)
tf.app.flags.DEFINE_boolean('split_output', 0, """Whether to split output layers between treated and control. """)
tf.app.flags.DEFINE_boolean('reweight_sample', 1,
"""Whether to reweight sample for prediction loss with average treatment probability. """)
if flags.sparse:
import scipy.sparse as sparse
NUM_ITERATIONS_PER_DECAY = 100
EARLY_STOP_DELTA = 0.05
IF_EARLY_STOP = False
def early_stop(valid_obj, min_valid_loss, patience_cnt):
if valid_obj - min_valid_loss > EARLY_STOP_DELTA:
patience_cnt += 1
else:
min_valid_loss = valid_obj
return patience_cnt, min_valid_loss
def train(rbnet, sess, train_step, train_discriminator_step, train_rec_step, train_encoder_step,
train_pred_step, data_exp,
valid_index,
test_data_exp,
logfile, i_exp):
""" Trains a rbnet model on supplied data """
''' Train/validation split '''
data_num = data_exp['x'].shape[0]
range_of_data_num = range(data_num)
train_index = list(set(range_of_data_num) - set(valid_index))
train_num = len(train_index)
valid_num = len(valid_index)
''' Compute treatment probability'''
p_treated = np.mean(data_exp['t'][train_index, :])
z_norm = np.random.normal(0., 1., (1, flags.encoder_dim))
''' Set up loss feed_dicts'''
# dict_factual means in train_data
dict_factual = {rbnet.x: data_exp['x'][train_index, :], rbnet.t: data_exp['t'][train_index, :],
rbnet.y_: data_exp['yf'][train_index, :],
rbnet.do_in: flags.dropout_in, rbnet.do_out: flags.dropout_out, rbnet.r_lambda: flags.p_lambda,
rbnet.r_beta: flags.p_beta,
rbnet.p_t: p_treated, rbnet.z_norm: z_norm}
if flags.val_part > 0:
dict_valid = {rbnet.x: data_exp['x'][valid_index, :],
rbnet.t: data_exp['t'][valid_index, :],
rbnet.y_: data_exp['yf'][valid_index, :],
rbnet.do_in: flags.dropout_in, rbnet.do_out: flags.dropout_out, rbnet.r_lambda: flags.p_lambda,
rbnet.r_beta: flags.p_beta,
rbnet.p_t: p_treated, rbnet.z_norm: z_norm}
else:
dict_valid = dict()
if data_exp['HAVE_TRUTH']:
dict_cfactual = {rbnet.x: data_exp['x'][train_index, :], rbnet.t: 1 - data_exp['t'][train_index, :],
rbnet.y_: data_exp['ycf'][train_index, :],
rbnet.do_in: flags.dropout_in, rbnet.do_out: flags.dropout_out, rbnet.z_norm: z_norm}
else:
dict_cfactual = dict()
''' Initialize TensorFlow variables '''
sess.run(tf.global_variables_initializer())
''' Set up for storing predictions '''
preds_train = []
preds_test = []
objnan = False
losses = []
reps = []
reps_test = []
log(logfile, 'train num: {}, valid num: {}'.format(train_num, valid_num))
# for early-stop in valid_loss
PATIENCE_THRES = 5
min_valid_loss = 50000
patience_cnt = 0
''' Train for multiple iterations '''
for i in range(flags.iterations):
''' Fetch sample '''
I = list(range(0, train_num))
np.random.shuffle(I)
for i_batch in range(train_num // flags.batch_size):
if i_batch < train_num // flags.batch_size - 1:
I_b = I[i_batch * flags.batch_size:(i_batch + 1) * flags.batch_size]
else:
I_b = I[i_batch * flags.batch_size:]
x_batch = data_exp['x'][train_index, :][I_b, :]
t_batch = data_exp['t'][train_index, :][I_b]
y_batch = data_exp['yf'][train_index, :][I_b]
z_norm_batch = np.random.normal(0., 1., (1, flags.encoder_dim))
''' Do one step of gradient descent '''
if not objnan:
# for sub_dc in range(0, 3):
''' train discriminator
'''
discriminator_loss = sess.run(rbnet.discriminator_loss, feed_dict=dict_factual)
if np.abs(discriminator_loss) < flags.thres_d:
sess.run(train_discriminator_step,
feed_dict={rbnet.x: x_batch, rbnet.t: t_batch, rbnet.r_beta: flags.p_beta,
rbnet.do_in: flags.dropout_in, rbnet.do_out: flags.dropout_out,
rbnet.z_norm: z_norm_batch})
# train tot
sess.run(train_step, feed_dict={rbnet.x: x_batch, rbnet.t: t_batch,
rbnet.y_: y_batch, rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out,
rbnet.r_lambda: flags.p_lambda, rbnet.p_t: p_treated,
rbnet.r_beta: flags.p_beta, rbnet.z_norm: z_norm_batch})
''' Compute predictions every M iterations '''
if (flags.pred_output_delay > 0 and i % flags.pred_output_delay == 0) or i == flags.iterations - 1:
y_pred_f = sess.run(rbnet.output, feed_dict={rbnet.x: data_exp['x'],
rbnet.t: data_exp['t'], rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out})
y_pred_cf = sess.run(rbnet.output, feed_dict={rbnet.x: data_exp['x'],
rbnet.t: 1 - data_exp['t'], rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out})
preds_train.append(np.concatenate((y_pred_f, y_pred_cf), axis=1))
# print(np.array(preds_train).shape)
if test_data_exp:
y_pred_f_test = sess.run(rbnet.output, feed_dict={rbnet.x: test_data_exp['x'],
rbnet.t: test_data_exp['t'],
rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out})
y_pred_cf_test = sess.run(rbnet.output, feed_dict={rbnet.x: test_data_exp['x'],
rbnet.t: 1 - test_data_exp['t'],
rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out})
preds_test.append(np.concatenate((y_pred_f_test, y_pred_cf_test), axis=1))
if flags.save_rep and i_exp == 1:
reps_i = sess.run([rbnet.h_rep], feed_dict={rbnet.x: data_exp['x'],
rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out})
reps.append(reps_i)
if test_data_exp:
reps_test_i = sess.run([rbnet.h_rep], feed_dict={rbnet.x: test_data_exp['x'],
rbnet.do_in: flags.dropout_in,
rbnet.do_out: flags.dropout_out})
reps_test.append(reps_test_i)
''' Compute loss every N iterations '''
if i % flags.output_delay == 0 or i == flags.iterations - 1:
obj_loss, f_error, recons_err, cycle_err, discriminator_loss, rep_loss, gradient_pen = \
sess.run(
[rbnet.tot_loss, rbnet.pred_loss, rbnet.rec_loss, rbnet.cycle_loss, rbnet.discriminator_loss,
rbnet.rep_loss,
rbnet.dp],
feed_dict=dict_factual)
cf_error = np.nan
if data_exp['HAVE_TRUTH']:
cf_error = sess.run(rbnet.pred_loss, feed_dict=dict_cfactual)
if flags.val_part > 0:
valid_obj, valid_f_error, valid_recons, valid_cycle, valid_dc, valid_rep_r, valid_dp = \
sess.run(
[rbnet.tot_loss, rbnet.pred_loss, rbnet.rec_loss, rbnet.cycle_loss,
rbnet.discriminator_loss,
rbnet.rep_loss,
rbnet.dp],
feed_dict=dict_valid)
else:
valid_obj = valid_f_error = valid_recons = valid_cycle = valid_dc = valid_rep_r = valid_dp = np.nan
losses.append(
[obj_loss, f_error, cf_error, recons_err, cycle_err, discriminator_loss, rep_loss, gradient_pen,
valid_f_error, valid_recons, valid_cycle, valid_dc, valid_rep_r, valid_dp, valid_obj])
train_loss_st = 'iter: {}. Train: tot_loss: {:.3f}, pred_loss: {:.3f}'.format(
i, obj_loss, f_error)
train_loss_st += ', recons: {:.3f}, cycle: {:.3f}, dc_loss: {:.3f}, rep_loss: {:.3f}, cf_error: {:.3f}'.format(
recons_err, cycle_err,
discriminator_loss,
rep_loss, cf_error)
log(logfile, train_loss_st)
valid_loss_st = 'iter: {}. Valid: tot_loss: {:.3f}, pred_loss: {:.3f}'.format(
i, valid_obj, valid_f_error)
valid_loss_st += ', recons: {:.3f}, cycle: {:.3f}, dc_loss: {:.3f}, rep_loss: {:.3f}'.format(valid_recons,
valid_cycle,
valid_dc,
valid_rep_r)
log(logfile, valid_loss_st)
if np.isnan(obj_loss):
log(logfile, 'Experiment %d: Objective is NaN. Skipping.' % i_exp)
objnan = True
# early-stop in valid_loss
if IF_EARLY_STOP:
patience_cnt, min_valid_loss = early_stop(valid_obj, min_valid_loss, patience_cnt)
# print(patience_cnt)
# print(min_valid_loss)
if patience_cnt > PATIENCE_THRES:
log(logfile, 'early stoping at iter {}'.format(i))
break
return losses, preds_train, preds_test, reps, reps_test
def run(outdir):
""" Runs an experiment and stores result in outdir """
''' Set up paths and start log '''
npzfile = os.path.join(outdir, 'result')
npzfile_test = os.path.join(outdir, 'result.test')
repfile = os.path.join(outdir, 'reps')
repfile_test = os.path.join(outdir, 'reps.test')
outform = os.path.join(outdir, 'y_pred')
outform_test = os.path.join(outdir, 'y_pred.test')
lossform = os.path.join(outdir, 'loss')
logfile = os.path.join(outdir, 'log.txt')
f = open(logfile, 'w')
f.close()
dataform = os.path.join(flags.datadir, flags.dataform)
dataform_test = os.path.join(flags.datadir, flags.data_test)
''' Set random seeds '''
random.seed(flags.seed)
tf.set_random_seed(flags.seed)
np.random.seed(flags.seed)
''' Save parameters '''
save_config(os.path.join(outdir, 'config.txt'))
log(logfile, 'Training with hyperparameters: beta={:.2g}, lambda={:.2g}'.format(flags.p_beta, flags.p_lambda))
''' Load Data '''
datapath = dataform
datapath_test = dataform_test
log(logfile, 'Train data:{}'.format(datapath))
log(logfile, 'Test data:{}'.format(datapath_test))
data = load_data(datapath)
test_data = load_data(datapath_test)
log(logfile, 'Loaded data with shape [{},{}]'.format(data['n'], data['dim']))
''' Start Session '''
sess = tf.Session()
''' Initialize input placeholders '''
x = tf.placeholder("float", shape=[None, data['dim']], name='x') # Features
t = tf.placeholder("float", shape=[None, 1], name='t') # Treatent
y_ = tf.placeholder("float", shape=[None, 1], name='y_') # Outcome
# todo what's role of znorm
znorm = tf.placeholder("float", shape=[None, flags.encoder_dim], name='z_norm')
''' Parameter placeholders '''
# r_alpha is coefficient of reconstruction and cycle loss
r_alpha = tf.placeholder('float', name='r_alpha')
# r_lambda is coefficient of regularization of prediction network.
r_lambda = tf.placeholder("float", name='r_lambda')
# r_beta is coefficient of gradient penalty in GAN
r_beta = tf.placeholder("float", name='r_beta')
do_in = tf.placeholder("float", name='dropout_in')
do_out = tf.placeholder("float", name='dropout_out')
# treatment probability in all observations
p = tf.placeholder("float", name='p_treated')
''' Define model graph '''
log(logfile, 'Defining graph...\n')
# dims = [data['dim'], flags.encoder_dim, flags.predictor_dim, flags.mi_estimator_dim, flags.discriminator_dim]
data_x_dim = data['dim']
rbnet = CBRENet(x, t, y_, p, znorm, flags, r_alpha, r_lambda, r_beta, do_in, do_out, data_x_dim)
''' Set up optimizer '''
global_step = tf.Variable(0, trainable=False)
lr = tf.train.exponential_decay(flags.lrate, global_step,
NUM_ITERATIONS_PER_DECAY, flags.lrate_decay, staircase=True)
counter_enc = tf.Variable(0, trainable=False)
lr_enc = tf.train.exponential_decay(flags.lrate, counter_enc,
NUM_ITERATIONS_PER_DECAY, flags.lrate_decay, staircase=True)
counter_dc = tf.Variable(0, trainable=False)
lr_dc = tf.train.exponential_decay(flags.lrate, counter_dc,
NUM_ITERATIONS_PER_DECAY, flags.lrate_decay, staircase=True)
counter_dec = tf.Variable(0, trainable=False)
lr_dec = tf.train.exponential_decay(flags.lrate, counter_dec,
NUM_ITERATIONS_PER_DECAY, flags.lrate_decay, staircase=True)
counter_rec = tf.Variable(0, trainable=False)
lr_rec = tf.train.exponential_decay(flags.lrate, counter_rec,
NUM_ITERATIONS_PER_DECAY, flags.lrate_decay, staircase=True)
counter_pred = tf.Variable(0, trainable=False)
lr_pred = tf.train.exponential_decay(flags.lrate, counter_pred,
NUM_ITERATIONS_PER_DECAY, flags.lrate_decay, staircase=True)
if flags.optimizer == 'Adam':
opt = tf.train.AdamOptimizer(lr)
opt_enc = tf.train.AdamOptimizer(
learning_rate=lr_enc,
beta1=0.5,
beta2=0.9)
opt_dc = tf.train.AdamOptimizer(
learning_rate=lr_dc,
beta1=0.5,
beta2=0.9)
opt_dec = tf.train.AdamOptimizer(
learning_rate=lr_dec,
beta1=0.5,
beta2=0.9
)
opt_rec = tf.train.AdamOptimizer(
learning_rate=lr_rec,
beta1=0.5,
beta2=0.9
)
opt_pred = tf.train.AdamOptimizer(
learning_rate=lr_pred,
beta1=0.5,
beta2=0.9
)
# opt_gmi = tf.train.AdamOptimizer(lr_gmi)
else:
lr_gan = 5e-5
opt = tf.train.RMSPropOptimizer(lr_gan)
opt_enc = tf.train.RMSPropOptimizer(lr_gan)
opt_dc = tf.train.RMSPropOptimizer(lr_gan)
opt_dec = tf.train.RMSPropOptimizer(lr_gan)
opt_rec = tf.train.RMSPropOptimizer(lr_gan)
opt_pred = tf.train.RMSPropOptimizer(lr_gan)
''' Unused gradient clipping '''
# gvs = opt.compute_gradients(rbnet.tot_loss)
# capped_gvs = [(tf.clip_by_value(grad, -1.0, 1.0), var) for grad, var in gvs]
# train_step = opt.apply_gradients(capped_gvs, global_step=global_step)
'''
# var_scope_get
var_enc = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder')
log(logfile, 'var_enc list: {}'.format([v.name for v in var_enc]))
var_de = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder')
log(logfile, 'var_de list: {}'.format([v.name for v in var_de]))
var_de.extend(var_enc)
var_dc = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
log(logfile, 'var_dc list: {}'.format([v.name for v in var_dc]))
# var_dc.extend(var_enc)
var_pred = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='pred')
log(logfile, 'var_pred list: {}'.format([v.name for v in var_pred]))
var_pred.extend(var_enc)
train_dec_step = opt_dec.minimize(rbnet.recons_cycle_loss, global_step=counter_dc, var_list=var_de)
train_discriminator_step = opt_dc.minimize(rbnet.discriminator_loss, global_step=counter_dc, var_list=var_dc)
train_encoder_step = opt_enc.minimize(rbnet.rep_loss, global_step=counter_enc, var_list=var_enc)
# todo why train_step using var_pred(pred and enc)?
train_step = opt.minimize(rbnet.tot_loss, global_step=global_step, var_list=var_pred)
'''
# var_scope_get
var_enc = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder')
log(logfile, 'var_enc list: {}'.format([v.name for v in var_enc]))
var_de = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder')
log(logfile, 'var_de list: {}'.format([v.name for v in var_de]))
# var_de.extend(var_enc)
var_dc = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
log(logfile, 'var_dc list: {}'.format([v.name for v in var_dc]))
# var_dc.extend(var_enc)
var_pred = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='pred')
log(logfile, 'var_pred list: {}'.format([v.name for v in var_pred]))
# var_pred.extend(var_enc)
train_discriminator_step = opt_dc.minimize(rbnet.discriminator_loss, global_step=counter_dc, var_list=var_dc)
train_rec_step = opt_rec.minimize(rbnet.rec_loss, global_step=counter_rec, var_list=var_de)
train_encoder_step = opt_enc.minimize(rbnet.pred_loss + rbnet.discriminator_loss + rbnet.cycle_loss,
global_step=counter_enc, var_list=var_enc)
# train_dec_step = opt_dec.minimize(rbnet.recons_cycle_loss, global_step=counter_dc, var_list=var_de)
train_pred_step = opt_pred.minimize(rbnet.pred_loss, global_step=counter_pred, var_list=var_pred)
var_pred.extend(var_enc)
train_step = opt.minimize(rbnet.tot_loss, global_step=global_step, var_list=var_pred)
''' Set up for saving variables '''
all_losses = []
all_preds_train = []
all_preds_test = []
all_valid = []
''' Handle repetitions '''
n_experiments = flags.experiments
if flags.repetitions > 1:
if flags.experiments > 1:
log(logfile, 'ERROR: Use of both repetitions and multiple experiments is currently not supported.')
sys.exit(1)
n_experiments = flags.repetitions
''' Run for all repeated experiments '''
data_exp = dict()
test_data_exp = dict()
for i_exp in range(1, n_experiments + 1):
log(logfile, 'Training on experiment {}/{}...'.format(i_exp, n_experiments))
''' Load Data (if multiple repetitions, reuse first set)'''
if i_exp == 1 or flags.experiments > 1:
data_exp['x'] = data['x'][:, :, i_exp - 1]
data_exp['x'] = preprocess(data_exp['x'], data_name=flags.dataform.split('_')[0])
data_exp['t'] = data['t'][:, i_exp - 1:i_exp]
data_exp['yf'] = data['yf'][:, i_exp - 1:i_exp]
if data['HAVE_TRUTH']:
data_exp['ycf'] = data['ycf'][:, i_exp - 1:i_exp]
else:
data_exp['ycf'] = None
test_data_exp['x'] = test_data['x'][:, :, i_exp - 1]
test_data_exp['t'] = test_data['t'][:, i_exp - 1:i_exp]
test_data_exp['yf'] = test_data['yf'][:, i_exp - 1:i_exp]
if test_data['HAVE_TRUTH']:
test_data_exp['ycf'] = test_data['ycf'][:, i_exp - 1:i_exp]
else:
test_data_exp['ycf'] = None
data_exp['HAVE_TRUTH'] = data['HAVE_TRUTH']
test_data_exp['HAVE_TRUTH'] = test_data['HAVE_TRUTH']
''' Split into training and validation sets '''
_, valid_index = validation_split(data_exp, flags.val_part)
''' Run training loop '''
losses, preds_train, preds_test, reps, reps_test = \
train(rbnet, sess, train_step, train_discriminator_step, train_rec_step, train_encoder_step,
train_pred_step, data_exp,
valid_index,
test_data_exp, logfile, i_exp)
''' Collect all reps '''
all_preds_train.append(preds_train)
all_preds_test.append(preds_test)
all_losses.append(losses)
''' Fix shape for output (n_units, dim, n_exp, n_outputs) '''
out_preds_train = np.swapaxes(np.swapaxes(all_preds_train, 1, 3), 0, 2)
# out_preds_train = all_preds_train
out_preds_test = np.swapaxes(np.swapaxes(all_preds_test, 1, 3), 0, 2)
# out_preds_test = all_preds_test
# print(all_losses)
out_losses = np.swapaxes(np.swapaxes(all_losses, 0, 2), 0, 1)
# out_losses = all_losses
''' Store predictions '''
log(logfile, 'Saving result to {}...\n'.format(outdir))
''' Save results and predictions '''
all_valid.append(valid_index)
np.savez(npzfile, pred=out_preds_train, loss=out_losses, val=np.array(all_valid))
np.savez(npzfile_test, pred=out_preds_test)
''' Save representations '''
if flags.save_rep and i_exp == 1:
np.savez(repfile, rep=reps)
np.savez(repfile_test, rep=reps_test)
log(logfile, '\ntrain run done\n')
def main(argv=None): # pylint: disable=unused-argument
""" Main entry point """
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S-%f")
outdir = os.path.join(flags.outdir, 'results_' + timestamp)
os.mkdir(outdir)
try:
run(outdir)
except Exception as e:
with open(outdir + 'error.txt', 'w') as errfile:
errfile.write(''.join(traceback.format_exception(*sys.exc_info())))
raise
if __name__ == '__main__':
tf.app.run()