-
-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathvosk_asr_server.py
139 lines (110 loc) · 4.46 KB
/
vosk_asr_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# implementation of VOSK server voice recognition
# origin: https://github.com/alphacep/vosk-server/blob/master/websocket/asr_server.py
# license: Apache 2.0
# Запускать после первого запуска WEBAPI!! - т.к. использует для настроек файл runva_webapi.json
# для размещения использует порт webapi+1 и тот же хост
import json
import os
import sys
import asyncio
import pathlib
import websockets
import concurrent.futures
import logging
from vosk import Model, SpkModel, KaldiRecognizer
version = "1.1"
# main options
with open('runva_webapi.json', 'r', encoding="utf-8") as f:
s = f.read(10000000)
f.close()
webapi_options = json.loads(s)
def process_chunk(rec, message):
# with open('temp/asr_server_test.wav', 'wb') as the_file:
# the_file.write(message)
if message == '{"eof" : 1}':
return rec.FinalResult(), True
elif rec.AcceptWaveform(message):
res = rec.Result()
#print("Result:",res)
return res, False
else:
res = rec.PartialResult()
#print("Part Result:",res)
return rec.PartialResult(), False
async def recognize(websocket, path):
global model
global spk_model
global args
global pool
loop = asyncio.get_running_loop()
rec = None
phrase_list = None
sample_rate = args.sample_rate
show_words = args.show_words
max_alternatives = args.max_alternatives
logging.info('Connection from %s', websocket.remote_address)
while True:
message = await websocket.recv()
# Load configuration if provided
if isinstance(message, str) and 'config' in message:
jobj = json.loads(message)['config']
logging.info("Config %s", jobj)
if 'phrase_list' in jobj:
phrase_list = jobj['phrase_list']
if 'sample_rate' in jobj:
sample_rate = float(jobj['sample_rate'])
if 'words' in jobj:
show_words = bool(jobj['words'])
if 'max_alternatives' in jobj:
max_alternatives = int(jobj['max_alternatives'])
continue
# Create the recognizer, word list is temporary disabled since not every model supports it
if not rec:
if phrase_list:
rec = KaldiRecognizer(model, sample_rate, json.dumps(phrase_list, ensure_ascii=False))
else:
rec = KaldiRecognizer(model, sample_rate)
rec.SetWords(show_words)
rec.SetMaxAlternatives(max_alternatives)
if spk_model:
rec.SetSpkModel(spk_model)
response, stop = await loop.run_in_executor(pool, process_chunk, rec, message)
await websocket.send(response)
if stop: break
async def start():
global model
global spk_model
global args
global pool
# Enable loging if needed
#
# logger = logging.getLogger('websockets')
# logger.setLevel(logging.INFO)
# logger.addHandler(logging.StreamHandler())
logging.basicConfig(level=logging.INFO)
args = type('', (), {})()
# для размещения использует порт webapi+1 и тот же хост
args.interface = os.environ.get('VOSK_SERVER_INTERFACE', webapi_options["host"])
args.port = int(os.environ.get('VOSK_SERVER_PORT', int(webapi_options["port"])+1))
args.model_path = os.environ.get('VOSK_MODEL_PATH', 'model')
args.spk_model_path = os.environ.get('VOSK_SPK_MODEL_PATH')
args.sample_rate = float(os.environ.get('VOSK_SAMPLE_RATE', 16000))
args.max_alternatives = int(os.environ.get('VOSK_ALTERNATIVES', 0))
args.show_words = bool(os.environ.get('VOSK_SHOW_WORDS', True))
if len(sys.argv) > 1:
args.model_path = sys.argv[1]
# Gpu part, uncomment if vosk-api has gpu support
#
# from vosk import GpuInit, GpuInstantiate
# GpuInit()
# def thread_init():
# GpuInstantiate()
# pool = concurrent.futures.ThreadPoolExecutor(initializer=thread_init)
model = Model(args.model_path)
spk_model = SpkModel(args.spk_model_path) if args.spk_model_path else None
pool = concurrent.futures.ThreadPoolExecutor((os.cpu_count() or 1))
print("VOSK Speech Recognition server v{0} started! host={1}, port={2}".format(version,args.interface,args.port))
async with websockets.serve(recognize, args.interface, args.port):
await asyncio.Future()
if __name__ == '__main__':
asyncio.run(start())