-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpie_data.py
1168 lines (1030 loc) · 54.4 KB
/
pie_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Interface for the PIE dataset:
A. Rasouli, I. Kotseruba, T. Kunic, and J. Tsotsos, "PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and
Trajectory Prediction", ICCV 2019.
MIT License
Copyright (c) 2019 Amir Rasouli, Iuliia Kotseruba
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import pickle
import cv2
import sys
import xml.etree.ElementTree as ET
import numpy as np
from os.path import join, abspath, isfile, isdir
from os import makedirs, listdir
from sklearn.model_selection import train_test_split, KFold
class PIE(object):
def __init__(self, regen_database=False, data_path=''):
"""
Class constructor
:param regen_database: Whether generate the database or not
:param data_path: The path to wh
"""
self._year = '2019'
self._name = 'pie'
self._image_ext = '.png'
self._regen_database = regen_database
# Paths
self._pie_path = data_path if data_path else self._get_default_path()
assert isdir(self._pie_path), \
'pie path does not exist: {}'.format(self._pie_path)
self._annotation_path = join(self._pie_path, 'annotations')
self._annotation_attributes_path = join(self._pie_path, 'annotations_attributes')
self._annotation_vehicle_path = join(self._pie_path, 'annotations_vehicle')
self._clips_path = join(self._pie_path, 'PIE_clips')
self._images_path = join(self._pie_path, 'images')
# Path generators
@property
def cache_path(self):
"""
Generates a path to save cache files
:return: Cache file folder path
"""
cache_path = abspath(join(self._pie_path, 'data_cache'))
if not isdir(cache_path):
makedirs(cache_path)
return cache_path
def _get_default_path(self):
"""
Returns the default path where pie is expected to be installed.
"""
return 'data/pie'
def _get_image_set_ids(self, image_set):
"""
Returns default image set ids
:param image_set: Image set split
:return: Set ids of the image set
"""
image_set_nums = {'train': ['set01', 'set02', 'set04'],
'val': ['set05', 'set06'],
'test': ['set03'],
'all': ['set01', 'set02', 'set03',
'set04', 'set05', 'set06']}
return image_set_nums[image_set]
def _get_image_path(self, sid, vid, fid):
"""
Generates and returns the image path given ids
:param sid: Set id
:param vid: Video id
:param fid: Frame id
:return: Return the path to the given image
"""
return join(self._images_path, sid, vid,
'{:05d}.png'.format(fid))
# Visual helpers
def update_progress(self, progress):
"""
Creates a progress bar
:param progress: The progress thus far
"""
barLength = 20 # Modify this to change the length of the progress bar
status = ""
if isinstance(progress, int):
progress = float(progress)
block = int(round(barLength * progress))
text = "\r[{}] {:0.2f}% {}".format("#" * block + "-" * (barLength - block), progress * 100, status)
sys.stdout.write(text)
sys.stdout.flush()
def _print_dict(self, dic):
"""
Prints a dictionary, one key-value pair per line
:param dic: Dictionary
"""
for k, v in dic.items():
print('%s: %s' % (str(k), str(v)))
# Data processing helpers
def _get_width(self):
"""
Returns image width
:return: Image width
"""
return 1920
def _get_height(self):
"""
Returns image height
:return: Image height
"""
return 1080
def _get_dim(self):
"""
Returns the image dimensions
:return: Image dimensions
"""
return 1920, 1080
# Image processing helpers
def get_annotated_frame_numbers(self, set_id):
"""
Generates and returns a dictionary of videos and annotated frames for each video in the give set
:param set_id: Set to generate annotated frames
:return: A dictionary of form
{<video_id>: [<number_of_frames>,<annotated_frame_id_0>,... <annotated_frame_id_n>]}
"""
print("Generating annotated frame numbers for", set_id)
annotated_frames_file = join(self._pie_path, "annotations", set_id, set_id + '_annotated_frames.csv')
# If the file exists, load from the file
if isfile(annotated_frames_file):
with open(annotated_frames_file, 'rt') as f:
annotated_frames = {x.split(',')[0]:
[int(fr) for fr in x.split(',')[1:]] for x in f.readlines()}
return annotated_frames
else:
# Generate annotated frame ids for each video
annotated_frames = {v.split('_annt.xml')[0]: [] for v in sorted(listdir(join(self._annotation_path,
set_id))) if
v.endswith("annt.xml")}
for vid, annot_frames in sorted(annotated_frames.items()):
_frames = []
path_to_file = join(self._annotation_path, set_id, vid + '_annt.xml')
tree = ET.parse(path_to_file)
tracks = tree.findall('./track')
for t in tracks:
if t.get('label') != 'pedestrian':
continue
boxes = t.findall('./box')
for b in boxes:
# Exclude the annotations that are outside of the frame
if int(b.get('outside')) == 1:
continue
_frames.append(int(b.get('frame')))
_frames = sorted(list(set(_frames)))
annot_frames.append(len(_frames))
annot_frames.extend(_frames)
with open(annotated_frames_file, 'wt') as fid:
for vid, annot_frames in sorted(annotated_frames.items()):
fid.write(vid)
for fr in annot_frames:
fid.write("," + str(fr))
fid.write('\n')
return annotated_frames
def get_frame_numbers(self, set_id):
"""
Generates and returns a dictionary of videos and frames for each video in the give set
:param set_id: Set to generate annotated frames
:return: A dictionary of form
{<video_id>: [<number_of_frames>,<frame_id_0>,... <frame_id_n>]}
"""
print("Generating frame numbers for", set_id)
frame_ids = {v.split('_annt.xml')[0]: [] for v in sorted(listdir(join(self._annotation_path,
set_id))) if
v.endswith("annt.xml")}
for vid, frames in sorted(frame_ids.items()):
path_to_file = join(self._annotation_path, set_id, vid + '_annt.xml')
tree = ET.parse(path_to_file)
num_frames = int(tree.find("./meta/task/size").text)
frames.extend([i for i in range(num_frames)])
frames.insert(0, num_frames)
return frame_ids
def extract_and_save_images(self, extract_frame_type='annotated'):
"""
Extracts images from clips and saves on hard drive
:param extract_frame_type: Whether to extract 'all' frames or only the ones that are 'annotated'
Note: extracting 'all' frames requires approx. 3TB space whereas
'annotated' requires approx. 1TB
"""
set_folders = [f for f in sorted(listdir(self._clips_path))]
for set_id in set_folders:
print('Extracting frames from', set_id)
set_folder_path = join(self._clips_path, set_id)
if extract_frame_type == 'annotated':
extract_frames = self.get_annotated_frame_numbers(set_id)
else:
extract_frames = self.get_frame_numbers(set_id)
set_images_path = join(self._pie_path, "images", set_id)
for vid, frames in sorted(extract_frames.items()):
print(vid)
video_images_path = join(set_images_path, vid)
num_frames = frames[0]
frames_list = frames[1:]
if not isdir(video_images_path):
makedirs(video_images_path)
vidcap = cv2.VideoCapture(join(set_folder_path, vid + '.mp4'))
success, image = vidcap.read()
frame_num = 0
img_count = 0
if not success:
print('Failed to open the video {}'.format(vid))
while success:
if frame_num in frames_list:
self.update_progress(img_count / num_frames)
img_count += 1
if not isfile(join(video_images_path, "%05.f.png") % frame_num):
cv2.imwrite(join(video_images_path, "%05.f.png") % frame_num, image)
success, image = vidcap.read()
frame_num += 1
if num_frames != img_count:
print('num images don\'t match {}/{}'.format(num_frames, img_count))
print('\n')
# Annotation processing helpers
def _map_text_to_scalar(self, label_type, value):
"""
Maps a text label in XML file to scalars
:param label_type: The label type
:param value: The text to be mapped
:return: The scalar value
"""
map_dic = {'occlusion': {'none': 0, 'part': 1, 'full': 2},
'action': {'standing': 0, 'walking': 1},
'look': {'not-looking': 0, 'looking': 1},
'gesture': {'__undefined__': 0, 'hand_ack': 1, 'hand_yield': 2,
'hand_rightofway': 3, 'nod': 4, 'other': 5},
'cross': {'not-crossing': 0, 'crossing': 1, 'crossing-irrelevant': -1},
'crossing': {'not-crossing': 0, 'crossing': 1, 'irrelevant': -1},
'age': {'child': 0, 'young': 1, 'adult': 2, 'senior': 3},
'designated': {'ND': 0, 'D': 1},
'gender': {'n/a': 0, 'female': 1, 'male': 2},
'intersection': {'midblock': 0, 'T': 1, 'T-left': 2, 'T-right': 3, 'four-way': 4},
'motion_direction': {'n/a': 0, 'LAT': 1, 'LONG': 2},
'traffic_direction': {'OW': 0, 'TW': 1},
'signalized': {'n/a': 0, 'C': 1, 'S': 2, 'CS': 3},
'vehicle': {'car': 0, 'truck': 1, 'bus': 2, 'train': 3, 'bicycle': 4, 'bike': 5},
'sign': {'ped_blue': 0, 'ped_yellow': 1, 'ped_white': 2, 'ped_text': 3, 'stop_sign': 4,
'bus_stop': 5, 'train_stop': 6, 'construction': 7, 'other': 8},
'traffic_light': {'regular': 0, 'transit': 1, 'pedestrian': 2},
'state': {'__undefined__': 0, 'red': 1, 'yellow': 2, 'green': 3}}
return map_dic[label_type][value]
def _map_scalar_to_text(self, label_type, value):
"""
Maps a scalar value to a text label
:param label_type: The label type
:param value: The scalar to be mapped
:return: The text label
"""
map_dic = {'occlusion': {0: 'none', 1: 'part', 2: 'full'},
'action': {0: 'standing', 1: 'walking'},
'look': {0: 'not-looking', 1: 'looking'},
'hand_gesture': {0: '__undefined__', 1: 'hand_ack',
2: 'hand_yield', 3: 'hand_rightofway',
4: 'nod', 5: 'other'},
'cross': {0: 'not-crossing', 1: 'crossing', -1: 'crossing-irrelevant'},
'crossing': {0: 'not-crossing', 1: 'crossing', -1: 'irrelevant'},
'age': {0: 'child', 1: 'young', 2: 'adult', 3: 'senior'},
'designated': {0: 'ND', 1: 'D'},
'gender': {0: 'n/a', 1: 'female', 2: 'male'},
'intersection': {0: 'midblock', 1: 'T', 2: 'T-left', 3: 'T-right', 4: 'four-way'},
'motion_direction': {0: 'n/a', 1: 'LAT', 2: 'LONG'},
'traffic_direction': {0: 'OW', 1: 'TW'},
'signalized': {0: 'n/a', 1: 'C', 2: 'S', 3: 'CS'},
'vehicle': {0: 'car', 1: 'truck', 2: 'bus', 3: 'train', 4: 'bicycle', 5: 'bike'},
'sign': {0: 'ped_blue', 1: 'ped_yellow', 2: 'ped_white', 3: 'ped_text', 4: 'stop_sign',
5: 'bus_stop', 6: 'train_stop', 7: 'construction', 8: 'other'},
'traffic_light': {0: 'regular', 1: 'transit', 2: 'pedestrian'},
'state': {0: '__undefined__', 1: 'red', 2: 'yellow', 3: 'green'}}
return map_dic[label_type][value]
def _get_annotations(self, setid, vid):
"""
Generates a dictionary of annotations by parsing the video XML file
:param setid: The set id
:param vid: The video id
:return: A dictionary of annotations
"""
path_to_file = join(self._annotation_path, setid, vid + '_annt.xml')
print(path_to_file)
tree = ET.parse(path_to_file)
ped_annt = 'ped_annotations'
traffic_annt = 'traffic_annotations'
annotations = {}
annotations['num_frames'] = int(tree.find("./meta/task/size").text)
annotations['width'] = int(tree.find("./meta/task/original_size/width").text)
annotations['height'] = int(tree.find("./meta/task/original_size/height").text)
annotations[ped_annt] = {}
annotations[traffic_annt] = {}
tracks = tree.findall('./track')
for t in tracks:
boxes = t.findall('./box')
obj_label = t.get('label')
obj_id = boxes[0].find('./attribute[@name=\"id\"]').text
if obj_label == 'pedestrian':
annotations[ped_annt][obj_id] = {'frames': [], 'bbox': [], 'occlusion': []}
annotations[ped_annt][obj_id]['behavior'] = {'gesture': [], 'look': [], 'action': [], 'cross': []}
for b in boxes:
# Exclude the annotations that are outside of the frame
if int(b.get('outside')) == 1:
continue
annotations[ped_annt][obj_id]['bbox'].append(
[float(b.get('xtl')), float(b.get('ytl')),
float(b.get('xbr')), float(b.get('ybr'))])
occ = self._map_text_to_scalar('occlusion', b.find('./attribute[@name=\"occlusion\"]').text)
annotations[ped_annt][obj_id]['occlusion'].append(occ)
annotations[ped_annt][obj_id]['frames'].append(int(b.get('frame')))
for beh in annotations['ped_annotations'][obj_id]['behavior']:
# Read behavior tags for each frame and add to the database
annotations[ped_annt][obj_id]['behavior'][beh].append(
self._map_text_to_scalar(beh, b.find('./attribute[@name=\"' + beh + '\"]').text))
else:
obj_type = boxes[0].find('./attribute[@name=\"type\"]')
if obj_type is not None:
obj_type = self._map_text_to_scalar(obj_label,
boxes[0].find('./attribute[@name=\"type\"]').text)
annotations[traffic_annt][obj_id] = {'frames': [], 'bbox': [], 'occlusion': [],
'obj_class': obj_label,
'obj_type': obj_type,
'state': []}
for b in boxes:
# Exclude the annotations that are outside of the frame
if int(b.get('outside')) == 1:
continue
annotations[traffic_annt][obj_id]['bbox'].append(
[float(b.get('xtl')), float(b.get('ytl')),
float(b.get('xbr')), float(b.get('ybr'))])
annotations[traffic_annt][obj_id]['occlusion'].append(int(b.get('occluded')))
annotations[traffic_annt][obj_id]['frames'].append(int(b.get('frame')))
if obj_label == 'traffic_light':
annotations[traffic_annt][obj_id]['state'].append(self._map_text_to_scalar('state',
b.find(
'./attribute[@name=\"state\"]').text))
return annotations
def _get_ped_attributes(self, setid, vid):
"""
Generates a dictionary of attributes by parsing the video XML file
:param setid: The set id
:param vid: The video id
:return: A dictionary of attributes
"""
path_to_file = join(self._annotation_attributes_path, setid, vid + '_attributes.xml')
tree = ET.parse(path_to_file)
attributes = {}
pedestrians = tree.findall("./pedestrian")
for p in pedestrians:
ped_id = p.get('id')
attributes[ped_id] = {}
for k, v in p.items():
if 'id' in k:
continue
try:
if k == 'intention_prob':
attributes[ped_id][k] = float(v)
else:
attributes[ped_id][k] = int(v)
except ValueError:
attributes[ped_id][k] = self._map_text_to_scalar(k, v)
return attributes
def _get_vehicle_attributes(self, setid, vid):
"""
Generates a dictionary of vehicle attributes by parsing the video XML file
:param setid: The set id
:param vid: The video id
:return: A dictionary of vehicle attributes (obd sensor recording)
"""
path_to_file = join(self._annotation_vehicle_path, setid, vid + '_obd.xml')
tree = ET.parse(path_to_file)
veh_attributes = {}
frames = tree.findall("./frame")
for f in frames:
dict_vals = {k: float(v) for k, v in f.attrib.items() if k != 'id'}
veh_attributes[int(f.get('id'))] = dict_vals
return veh_attributes
def generate_database(self):
"""
Generates and saves a database of the pie dataset by integrating all annotations
Dictionary structure:
'set_id'(str): {
'vid_id'(str): {
'num_frames': int
'width': int
'height': int
'traffic_annotations'(str): {
'obj_id'(str): {
'frames': list(int)
'occlusion': list(int)
'bbox': list([x1, y1, x2, y2]) (float)
'obj_class': str,
'obj_type': str, # only for traffic lights, vehicles, signs
'state': list(int) # only for traffic lights
'ped_annotations'(str): {
'ped_id'(str): {
'frames': list(int)
'occlusion': list(int)
'bbox': list([x1, y1, x2, y2]) (float)
'behavior'(str): {
'action': list(int)
'gesture': list(int)
'cross': list(int)
'look': list(int)
'attributes'(str): {
'age': int
'id': str
'num_lanes': int
'crossing': int
'gender': int
'crossing_point': int
'critical_point': int
'exp_start_point': int
'intersection': int
'designated': int
'signalized': int
'traffic_direction': int
'group_size': int
'motion_direction': int
'vehicle_annotations'(str){
'frame_id'(int){'longitude': float
'yaw': float
'pitch': float
'roll': float
'OBD_speed': float
'GPS_speed': float
'latitude': float
'longitude': float
'heading_angle': float
'accX': float
'accY': float
'accZ: float
'gyroX': float
'gyroY': float
'gyroZ': float
:return: A database dictionary
"""
print('---------------------------------------------------------')
print("Generating database for pie")
cache_file = join(self.cache_path, 'pie_database.pkl')
if isfile(cache_file) and not self._regen_database:
with open(cache_file, 'rb') as fid:
try:
database = pickle.load(fid)
except:
database = pickle.load(fid, encoding='bytes')
print('pie annotations loaded from {}'.format(cache_file))
return database
# Path to the folder annotations
set_ids = [f for f in sorted(listdir(self._annotation_path))]
# Read the content of set folders
database = {}
for setid in set_ids:
video_ids = [v.split('_annt.xml')[0] for v in sorted(listdir(join(self._annotation_path,
setid))) if v.endswith("annt.xml")]
database[setid] = {}
for vid in video_ids:
print('Getting annotations for %s, %s' % (setid, vid))
database[setid][vid] = self._get_annotations(setid, vid)
vid_attributes = self._get_ped_attributes(setid, vid)
database[setid][vid]['vehicle_annotations'] = self._get_vehicle_attributes(setid, vid)
for ped in database[setid][vid]['ped_annotations']:
database[setid][vid]['ped_annotations'][ped]['attributes'] = vid_attributes[ped]
with open(cache_file, 'wb') as fid:
pickle.dump(database, fid, pickle.HIGHEST_PROTOCOL)
print('The database is written to {}'.format(cache_file))
return database
def get_data_stats(self):
"""
Generates statistics for the dataset
"""
annotations = self.generate_database()
set_count = len(annotations.keys())
ped_count = 0
ped_box_count = 0
video_count = 0
total_frames = 0
age = {'child': 0, 'adult': 0, 'senior': 0}
gender = {'male': 0, 'female': 0}
signalized = {'n/a': 0, 'C': 0, 'S': 0, 'CS': 0}
traffic_direction = {'OW': 0, 'TW': 0}
intersection = {'midblock': 0, 'T': 0, 'T-right': 0, 'T-left': 0, 'four-way': 0}
crossing = {'crossing': 0, 'not-crossing': 0, 'irrelevant': 0}
traffic_obj_types = {'vehicle': {'car': 0, 'truck': 0, 'bus': 0, 'train': 0, 'bicycle': 0, 'bike': 0},
'sign': {'ped_blue': 0, 'ped_yellow': 0, 'ped_white': 0, 'ped_text': 0, 'stop_sign': 0,
'bus_stop': 0, 'train_stop': 0, 'construction': 0, 'other': 0},
'traffic_light': {'regular': 0, 'transit': 0, 'pedestrian': 0},
'crosswalk': 0,
'transit_station': 0}
traffic_box_count = {'vehicle': 0, 'traffic_light': 0, 'sign': 0, 'crosswalk': 0, 'transit_station': 0}
for sid, vids in annotations.items():
video_count += len(vids)
for vid, annots in vids.items():
total_frames += annots['num_frames']
for trf_ids, trf_annots in annots['traffic_annotations'].items():
obj_class = trf_annots['obj_class']
traffic_box_count[obj_class] += len(trf_annots['frames'])
if obj_class in ['traffic_light', 'vehicle', 'sign']:
obj_type = trf_annots['obj_type']
traffic_obj_types[obj_class][self._map_scalar_to_text(obj_class, obj_type)] += 1
else:
traffic_obj_types[obj_class] += 1
for ped_ids, ped_annots in annots['ped_annotations'].items():
ped_count += 1
ped_box_count += len(ped_annots['frames'])
age[self._map_scalar_to_text('age', ped_annots['attributes']['age'])] += 1
if self._map_scalar_to_text('crossing', ped_annots['attributes']['crossing']) == 'crossing':
crossing[self._map_scalar_to_text('crossing', ped_annots['attributes']['crossing'])] += 1
else:
if ped_annots['attributes']['intention_prob'] > 0.5:
crossing['not-crossing'] += 1
else:
crossing['irrelevant'] += 1
intersection[
self._map_scalar_to_text('intersection', ped_annots['attributes']['intersection'])] += 1
traffic_direction[self._map_scalar_to_text('traffic_direction',
ped_annots['attributes']['traffic_direction'])] += 1
signalized[self._map_scalar_to_text('signalized', ped_annots['attributes']['signalized'])] += 1
gender[self._map_scalar_to_text('gender', ped_annots['attributes']['gender'])] += 1
print('---------------------------------------------------------')
print("Number of sets: %d" % set_count)
print("Number of videos: %d" % video_count)
print("Number of annotated frames: %d" % total_frames)
print("Number of pedestrians %d" % ped_count)
print("age:\n", '\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(age.items())))
print("gender:\n", '\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(gender.items())))
print("signal:\n", '\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(signalized.items())))
print("traffic direction:\n",
'\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(traffic_direction.items())))
print("crossing:\n", '\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(crossing.items())))
print("intersection:\n", '\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(intersection.items())))
print("Number of pedestrian bounding boxes: %d" % ped_box_count)
print("Number of traffic objects")
for trf_obj, values in sorted(traffic_obj_types.items()):
if isinstance(values, dict):
print(trf_obj + ':\n', '\n '.join('{}: {}'.format(k, v) for k, v in sorted(values.items())),
'\n total: ', sum(values.values()))
else:
print(trf_obj + ': %d' % values)
print("Number of pedestrian bounding boxes:\n",
'\n '.join('{}: {}'.format(tag, cnt) for tag, cnt in sorted(traffic_box_count.items())),
'\n total: ', sum(traffic_box_count.values()))
def balance_samples_count(self, seq_data, label_type, random_seed=42):
"""
Balances the number of positive and negative samples by randomly sampling
from the more represented samples. Only works for binary classes.
:param seq_data: The sequence data to be balanced.
:param label_type: The lable type based on which the balancing takes place.
The label values must be binary, i.e. only 0, 1.
:param random_seed: The seed for random number generator.
:return: Balanced data sequence.
"""
for lbl in seq_data[label_type]:
for i in lbl:
if i[0] not in [0, 1]:
raise Exception("The label values used for balancing must be"
" either 0 or 1")
# balances the number of positive and negative samples
print('---------------------------------------------------------')
print("Balancing the number of positive and negative intention samples")
gt_labels = [gt[0] for gt in seq_data[label_type]]
num_pos_samples = np.count_nonzero(np.array(gt_labels))
num_neg_samples = len(gt_labels) - num_pos_samples
new_seq_data = {}
# finds the indices of the samples with larger quantity
if num_neg_samples == num_pos_samples:
print('Positive and negative samples are already balanced')
return seq_data
else:
print('Unbalanced: \t Positive: {} \t Negative: {}'.format(num_pos_samples, num_neg_samples))
if num_neg_samples > num_pos_samples:
rm_index = np.where(np.array(gt_labels) == 0)[0]
else:
rm_index = np.where(np.array(gt_labels) == 1)[0]
# Calculate the difference of sample counts
dif_samples = abs(num_neg_samples - num_pos_samples)
# shuffle the indices
np.random.seed(random_seed)
np.random.shuffle(rm_index)
# reduce the number of indices to the difference
rm_index = rm_index[0:dif_samples]
# update the data
for k in seq_data:
seq_data_k = seq_data[k]
if not isinstance(seq_data[k], list):
new_seq_data[k] = seq_data[k]
else:
new_seq_data[k] = [seq_data_k[i] for i in range(0, len(seq_data_k)) if i not in rm_index]
new_gt_labels = [gt[0] for gt in new_seq_data[label_type]]
num_pos_samples = np.count_nonzero(np.array(new_gt_labels))
print('Balanced:\t Positive: %d \t Negative: %d\n'
% (num_pos_samples, len(new_seq_data[label_type]) - num_pos_samples))
return new_seq_data
# Process pedestrian ids
def _get_pedestrian_ids(self):
"""
Returns all pedestrian ids
:return: A list of pedestrian ids
"""
annotations = self.generate_database()
pids = []
for sid in sorted(annotations):
for vid in sorted(annotations[sid]):
pids.extend(annotations[sid][vid]['ped_annotations'].keys())
return pids
def _get_random_pedestrian_ids(self, image_set, ratios=None, val_data=True, regen_data=False):
"""
Generates and saves a random pedestrian ids
:param image_set: The data split to return
:param ratios: The ratios to split the data. There should be 2 ratios (or 3 if val_data is true)
and they should sum to 1. e.g. [0.4, 0.6], [0.3, 0.5, 0.2]
:param val_data: Whether to generate validation data
:param regen_data: Whether to overwrite the existing data, i.e. regenerate splits
:return: The random sample split
"""
assert image_set in ['train', 'test', 'val']
# Generates a list of behavioral xml file names for videos
cache_file = join(self.cache_path, "random_samples.pkl")
if isfile(cache_file) and not regen_data:
print("Random sample currently exists.\n Loading from %s" % cache_file)
with open(cache_file, 'rb') as fid:
try:
rand_samples = pickle.load(fid)
except:
rand_samples = pickle.load(fid, encoding='bytes')
assert image_set in rand_samples, "%s does not exist in random samples\n" \
"Please try again by setting regen_data = True" % image_set
if val_data:
assert len(rand_samples['ratios']) == 3, "The existing random samples " \
"does not have validation data.\n" \
"Please try again by setting regen_data = True"
if ratios is not None:
assert ratios == rand_samples['ratios'], "Specified ratios {} does not match the ones in existing file {}.\n\
Perform one of the following options:\
1- Set ratios to None\
2- Set ratios to the same values \
3- Regenerate data".format(ratios, rand_samples['ratios'])
print('The ratios are {}'.format(rand_samples['ratios']))
print("Number of %s tracks %d" % (image_set, len(rand_samples[image_set])))
return rand_samples[image_set]
if ratios is None:
if val_data:
ratios = [0.5, 0.4, 0.1]
else:
ratios = [0.5, 0.5]
assert sum(ratios) > 0.999999, "Ratios {} do not sum to 1".format(ratios)
if val_data:
assert len(ratios) == 3, "To generate validation data three ratios should be selected"
else:
assert len(ratios) == 2, "With no validation only two ratios should be selected"
print("################ Generating Random training/testing data ################")
ped_ids = self._get_pedestrian_ids()
print("Toral number of tracks %d" % len(ped_ids))
print('The ratios are {}'.format(ratios))
sample_split = {'ratios': ratios}
train_samples, test_samples = train_test_split(ped_ids, train_size=ratios[0])
print("Number of train tracks %d" % len(train_samples))
if val_data:
test_samples, val_samples = train_test_split(test_samples, train_size=ratios[1] / sum(ratios[1:]))
print("Number of val tracks %d" % len(val_samples))
sample_split['val'] = val_samples
print("Number of test tracks %d" % len(test_samples))
sample_split['train'] = train_samples
sample_split['test'] = test_samples
cache_file = join(self.cache_path, "random_samples.pkl")
with open(cache_file, 'wb') as fid:
pickle.dump(sample_split, fid, pickle.HIGHEST_PROTOCOL)
print('pie {} samples written to {}'.format('random', cache_file))
return sample_split[image_set]
def _get_kfold_pedestrian_ids(self, image_set, num_folds=5, fold=1):
"""
Generates kfold pedestrian ids
:param image_set: Image set split
:param num_folds: Number of folds
:param fold: The given fold
:return: List of pedestrian ids for the given fold
"""
assert image_set in ['train', 'test'], "Image set should be either \"train\" or \"test\""
assert fold <= num_folds, "Fold number should be smaller than number of folds"
print("################ Generating %d fold data ################" % num_folds)
cache_file = join(self.cache_path, "%d_fold_samples.pkl" % num_folds)
if isfile(cache_file):
print("Loading %d-fold data from %s" % (num_folds, cache_file))
with open(cache_file, 'rb') as fid:
try:
fold_idx = pickle.load(fid)
except:
fold_idx = pickle.load(fid, encoding='bytes')
else:
ped_ids = self._get_pedestrian_ids()
kf = KFold(n_splits=num_folds, shuffle=True)
fold_idx = {'pid': ped_ids}
count = 1
for train_index, test_index in kf.split(ped_ids):
fold_idx[count] = {'train': train_index.tolist(), 'test': test_index.tolist()}
count += 1
with open(cache_file, 'wb') as fid:
pickle.dump(fold_idx, fid, pickle.HIGHEST_PROTOCOL)
print('pie {}-fold samples written to {}'.format(num_folds, cache_file))
print("Number of %s tracks %d" % (image_set, len(fold_idx[fold][image_set])))
kfold_ids = [fold_idx['pid'][i] for i in range(len(fold_idx['pid'])) if i in fold_idx[fold][image_set]]
return kfold_ids
# Trajectory data generation
def _get_data_ids(self, image_set, params):
"""
Generates set ids and ped ids (if needed) for processing
:param image_set: Image-set to generate data
:param params: Data generation params
:return: Set and pedestrian ids
"""
_pids = None
if params['data_split_type'] == 'default':
set_ids = self._get_image_set_ids(image_set)
else:
set_ids = self._get_image_set_ids('all')
if params['data_split_type'] == 'random':
_pids = self._get_random_pedestrian_ids(image_set, **params['random_params'])
elif params['data_split_type'] == 'kfold':
_pids = self._get_kfold_pedestrian_ids(image_set, **params['kfold_params'])
return set_ids, _pids
def _squarify(self, bbox, ratio, img_width):
"""
Changes the ratio of bounding boxes to a fixed ratio
:param bbox: Bounding box
:param ratio: Ratio to be changed to
:param img_width: Image width
:return: Squarified boduning box
"""
width = abs(bbox[0] - bbox[2])
height = abs(bbox[1] - bbox[3])
width_change = height * ratio - width
bbox[0] = bbox[0] - width_change / 2
bbox[2] = bbox[2] + width_change / 2
if bbox[0] < 0:
bbox[0] = 0
# check whether the new bounding box goes beyond image boarders
# If this is the case, the bounding box is shifted back
if bbox[2] > img_width:
bbox[0] = bbox[0] - bbox[2] + img_width
bbox[2] = img_width
return bbox
def _height_check(self, height_rng, frame_ids, boxes, images, occlusion):
"""
Checks whether the bounding boxes are within a given height limit. If not, it
will adjust the length of bounding boxes in data sequences accordingly
:param height_rng: Height limit [lower, higher]
:param frame_ids: List of frame ids
:param boxes: List of bounding boxes
:param images: List of images
:param occlusion: List of occlusions
:return: The adjusted data sequences
"""
imgs, box, frames, occ = [], [], [], []
for i, b in enumerate(boxes):
bbox_height = abs(b[1] - b[3])
if height_rng[0] <= bbox_height <= height_rng[1]:
box.append(b)
imgs.append(images[i])
frames.append(frame_ids[i])
occ.append(occlusion[i])
return imgs, box, frames, occ
def _get_center(self, box):
"""
Calculates the center coordinate of a bounding box
:param box: Bounding box coordinates
:return: The center coordinate
"""
return [(box[0] + box[2]) / 2, (box[1] + box[3]) / 2]
def generate_data_trajectory_sequence(self, image_set, **opts):
"""
Generates pedestrian tracks
:param image_set: the split set to produce for. Options are train, test, val.
:param opts:
'fstride': Frequency of sampling from the data.
'height_rng': The height range of pedestrians to use.
'squarify_ratio': The width/height ratio of bounding boxes. A value between (0,1]. 0 the original
ratio is used.
'data_split_type': How to split the data. Options: 'default', predefined sets, 'random', randomly split the data,
and 'kfold', k-fold data split (NOTE: only train/test splits).
'seq_type': Sequence type to generate. Options: 'trajectory', generates tracks, 'crossing', generates
tracks up to 'crossing_point', 'intention' generates tracks similar to human experiments
'min_track_size': Min track length allowable.
'random_params: Parameters for random data split generation. (see _get_random_pedestrian_ids)
'kfold_params: Parameters for kfold split generation. (see _get_kfold_pedestrian_ids)
:return: Sequence data
"""
params = {'fstride': 1,
'sample_type': 'all', # 'beh'
'height_rng': [0, float('inf')],
'squarify_ratio': 0,
'data_split_type': 'default', # kfold, random, default
'seq_type': 'intention',
'min_track_size': 15,
'random_params': {'ratios': None,
'val_data': True,
'regen_data': False},
'kfold_params': {'num_folds': 5, 'fold': 1}}
for i in opts.keys():
params[i] = opts[i]
print('---------------------------------------------------------')
print("Generating trajectory sequence data")
self._print_dict(params)
annot_database = self.generate_database()
if params['seq_type'] == 'trajectory':
sequence_data = self._get_trajectories(image_set, annot_database, **params)
elif params['seq_type'] == 'crossing':
sequence_data = self._get_crossing(image_set, annot_database, **params)
elif params['seq_type'] == 'intention':
sequence_data = self._get_intention(image_set, annot_database, **params)
return sequence_data
def _get_trajectories(self, image_set, annotations, **params):
"""
Generates trajectory data.
:param image_set: Data split to use
:param annotations: Annotations database
:param params: Parameters to generate data (see generade_database)
:return: A dictionary of trajectories
"""
print('---------------------------------------------------------')
print("Generating trajectory data")
num_pedestrians = 0
seq_stride = params['fstride']
sq_ratio = params['squarify_ratio']
height_rng = params['height_rng']
image_seq, pids_seq = [], []
box_seq, center_seq, occ_seq = [], [], []
intent_seq = []
obds_seq, gpss_seq, head_ang_seq, gpsc_seq, yrp_seq = [], [], [], [], []
set_ids, _pids = self._get_data_ids(image_set, params)
for sid in set_ids:
for vid in sorted(annotations[sid]):
img_width = annotations[sid][vid]['width']
pid_annots = annotations[sid][vid]['ped_annotations']
vid_annots = annotations[sid][vid]['vehicle_annotations']
for pid in sorted(pid_annots):
if params['data_split_type'] != 'default' and pid not in _pids:
continue
num_pedestrians += 1
frame_ids = pid_annots[pid]['frames']
boxes = pid_annots[pid]['bbox']
images = [self._get_image_path(sid, vid, f) for f in frame_ids]
occlusions = pid_annots[pid]['occlusion']
if height_rng[0] > 0 or height_rng[1] < float('inf'):
images, boxes, frame_ids, occlusions = self._height_check(height_rng,
frame_ids, boxes,
images, occlusions)
if len(boxes) / seq_stride < params['min_track_size']: # max_obs_size: #90 + 45
continue
if sq_ratio:
boxes = [self._squarify(b, sq_ratio, img_width) for b in boxes]
image_seq.append(images[::seq_stride])
box_seq.append(boxes[::seq_stride])
center_seq.append([self._get_center(b) for b in boxes][::seq_stride])
occ_seq.append(occlusions[::seq_stride])
ped_ids = [[pid]] * len(boxes)
pids_seq.append(ped_ids[::seq_stride])
intent = [[pid_annots[pid]['attributes']['intention_prob']]] * len(boxes)
intent_seq.append(intent[::seq_stride])
gpsc_seq.append([(vid_annots[i]['latitude'], vid_annots[i]['longitude'])
for i in frame_ids][::seq_stride])
obds_seq.append([[vid_annots[i]['OBD_speed']] for i in frame_ids][::seq_stride])
gpss_seq.append([[vid_annots[i]['GPS_speed']] for i in frame_ids][::seq_stride])
head_ang_seq.append([[vid_annots[i]['heading_angle']] for i in frame_ids][::seq_stride])
yrp_seq.append([(vid_annots[i]['yaw'], vid_annots[i]['roll'], vid_annots[i]['pitch'])
for i in frame_ids][::seq_stride])
print('Subset: %s' % image_set)
print('Number of pedestrians: %d ' % num_pedestrians)
print('Total number of samples: %d ' % len(image_seq))
return {'image': image_seq,
'pid': pids_seq,
'bbox': box_seq,
'center': center_seq,
'occlusion': occ_seq,
'obd_speed': obds_seq,
'gps_speed': gpss_seq,
'heading_angle': head_ang_seq,
'gps_coord': gpsc_seq,
'yrp': yrp_seq,
'intention_prob': intent_seq}
def _get_crossing(self, image_set, annotations, **params):