-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
39 lines (31 loc) · 1.45 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from action_predict import action_prediction
from pie_data import PIE
from jaad_data import JAAD
import os
import sys
import yaml
def test_model(saved_files_path=None):
with open(os.path.join(saved_files_path, 'configs.yaml'), 'r') as yamlfile:
opts = yaml.safe_load(yamlfile)
print(opts)
model_opts = opts['model_opts']
data_opts = opts['data_opts']
net_opts = opts['net_opts']
tte = model_opts['time_to_event'] if isinstance(model_opts['time_to_event'], int) else \
model_opts['time_to_event'][1]
data_opts['min_track_size'] = model_opts['obs_length'] + tte
if model_opts['dataset'] == 'pie':
imdb = PIE(data_path=os.environ.copy()['PIE_PATH'])
imdb.get_data_stats()
elif model_opts['dataset'] == 'jaad':
imdb = JAAD(data_path=os.environ.copy()['JAAD_PATH'])
else:
raise ValueError("{} dataset is incorrect".format(model_opts['dataset']))
method_class = action_prediction(model_opts['model'])(**net_opts)
#beh_seq_train = imdb.generate_data_trajectory_sequence('train', **data_opts)
#saved_files_path = method_class.train(beh_seq_train, **train_opts, model_opts=model_opts)
beh_seq_test = imdb.generate_data_trajectory_sequence('test', **data_opts)
acc, auc, f1, precision, recall = method_class.test(beh_seq_test, saved_files_path)
if __name__ == '__main__':
saved_files_path = sys.argv[1]
test_model(saved_files_path=saved_files_path)