From 5cd7f2daf768f007e40c952dd90fea06121159a6 Mon Sep 17 00:00:00 2001 From: Michael Deistler Date: Wed, 8 Nov 2023 11:28:06 +0100 Subject: [PATCH] Write tests --- tests/neurax_identical/basic_modules.py | 113 ++++++++++++++- tests/neurax_identical/radius_and_length.py | 150 ++++++++++++++++++-- tests/neurax_identical/swc.py | 62 +++++++- 3 files changed, 311 insertions(+), 14 deletions(-) diff --git a/tests/neurax_identical/basic_modules.py b/tests/neurax_identical/basic_modules.py index 5c62220c..123c5efd 100644 --- a/tests/neurax_identical/basic_modules.py +++ b/tests/neurax_identical/basic_modules.py @@ -1,14 +1,119 @@ +from jax import config + +config.update("jax_enable_x64", True) +config.update("jax_platform_name", "cpu") + +import os + +os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" + +import numpy as np +import jax.numpy as jnp + +import neurax as nx +from neurax.channels import HHChannel +from neurax.synapses import GlutamateSynapse + + def test_compartment(): - pass + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + comp = nx.Compartment().initialize() + comp.insert(HHChannel()) + comp.record() + comp.stimulate(current) + + voltages = nx.integrate(comp, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" def test_branch(): - pass + nseg_per_branch = 2 + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + comp = nx.Compartment().initialize() + branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() + branch.insert(HHChannel()) + branch.comp(0.0).record() + branch.comp(0.0).stimulate(current) + + voltages = nx.integrate(branch, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" def test_cell(): - pass + nseg_per_branch = 2 + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + depth = 2 + parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] + + comp = nx.Compartment().initialize() + branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() + cell = nx.Cell([branch for _ in range(len(parents))], parents=parents) + cell.insert(HHChannel()) + cell.branch(1).comp(0.0).record() + cell.branch(1).comp(0.0).stimulate(current) + + voltages = nx.integrate(cell, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" def test_net(): - pass + nseg_per_branch = 2 + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + depth = 2 + parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] + + comp = nx.Compartment().initialize() + branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() + cell1 = nx.Cell([branch for _ in range(len(parents))], parents=parents) + cell2 = nx.Cell([branch for _ in range(len(parents))], parents=parents) + + connectivities = [ + nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)]) + ] + network = nx.Network([cell1, cell2], connectivities) + network.insert(HHChannel()) + + for cell_ind in range(2): + network.cell(cell_ind).branch(1).comp(0.0).record() + + for stim_ind in range(2): + network.cell(stim_ind).branch(1).comp(0.0).stimulate(current) + + voltages = nx.integrate(network, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" diff --git a/tests/neurax_identical/radius_and_length.py b/tests/neurax_identical/radius_and_length.py index d958c018..1de26c8d 100644 --- a/tests/neurax_identical/radius_and_length.py +++ b/tests/neurax_identical/radius_and_length.py @@ -1,14 +1,148 @@ -def test_radius_length_compartment(): - pass +from jax import config +config.update("jax_enable_x64", True) +config.update("jax_platform_name", "cpu") -def test_radius_length_branch(): - pass +import os +os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" -def test_radius_length_cell(): - pass +import numpy as np +import jax.numpy as jnp +import neurax as nx +from neurax.channels import HHChannel +from neurax.synapses import GlutamateSynapse -def test_radius_length_net(): - pass + +def test_radius_and_length_compartment(): + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + + comp = nx.Compartment().initialize() + + np.random.seed(1) + comp.set_params("length", 5 * np.random.rand(1)) + comp.set_params("radius", np.random.rand(1)) + + comp.insert(HHChannel()) + + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + comp.record() + comp.stimulate(current) + + voltages = nx.integrate(comp, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" + + +def test_radius_and_length_branch(): + nseg_per_branch = 2 + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + + comp = nx.Compartment().initialize() + branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() + + np.random.seed(1) + branch.set_params("length", 5 * np.random.rand(2)) + branch.set_params("radius", np.random.rand(2)) + + branch.insert(HHChannel()) + + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + branch.comp(0.0).record() + branch.comp(0.0).stimulate(current) + + voltages = nx.integrate(branch, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" + + +def test_radius_and_length_cell(): + nseg_per_branch = 2 + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + + depth = 2 + parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] + num_branches = len(parents) + + comp = nx.Compartment().initialize() + branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() + cell = nx.Cell([branch for _ in range(len(parents))], parents=parents) + + np.random.seed(1) + cell.set_params("length", 5 * np.random.rand(2 * num_branches)) + cell.set_params("radius", np.random.rand(2 * num_branches)) + + cell.insert(HHChannel()) + + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + cell.branch(1).comp(0.0).record() + cell.branch(1).comp(0.0).stimulate(current) + + voltage = nx.integrate(cell, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" + + +def test_radius_and_length_net(): + nseg_per_branch = 2 + dt = 0.025 # ms + t_max = 5.0 # ms + + time_vec = jnp.arange(0.0, t_max + dt, dt) + + depth = 2 + parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] + num_branches = len(parents) + + comp = nx.Compartment().initialize() + branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() + cell1 = nx.Cell([branch for _ in range(len(parents))], parents=parents) + cell2 = nx.Cell([branch for _ in range(len(parents))], parents=parents) + + np.random.seed(1) + cell1.set_params("length", 5 * np.random.rand(2 * num_branches)) + cell1.set_params("radius", np.random.rand(2 * num_branches)) + + np.random.seed(2) + cell2.set_params("length", 5 * np.random.rand(2 * num_branches)) + cell2.set_params("radius", np.random.rand(2 * num_branches)) + + connectivities = [ + nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)]) + ] + network = nx.Network([cell1, cell2], connectivities) + network.insert(HHChannel()) + + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + for cell_ind in range(2): + network.cell(cell_ind).branch(1).comp(0.0).record() + + for stim_ind in range(2): + network.cell(stim_ind).branch(1).comp(0.0).stimulate(current) + + voltages = nx.integrate(network, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" diff --git a/tests/neurax_identical/swc.py b/tests/neurax_identical/swc.py index 3c01fe91..1f32516d 100644 --- a/tests/neurax_identical/swc.py +++ b/tests/neurax_identical/swc.py @@ -1,6 +1,64 @@ +from jax import config + +config.update("jax_enable_x64", True) +config.update("jax_platform_name", "cpu") + +import os + +os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" + +import numpy as np +import jax.numpy as jnp + +import neurax as nx +from neurax.channels import HHChannel +from neurax.synapses import GlutamateSynapse + + def test_swc_cell(): - pass + dt = 0.025 # ms + t_max = 5.0 # ms + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + time_vec = jnp.arange(0.0, t_max + dt, dt) + + cell = nx.read_swc() + cell.insert(HHChannel()) + cell.branch(1).comp(0.0).record() + cell.branch(1).comp(0.0).stimulate(current) + + voltages = nx.integrate(cell, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" def test_swc_net(): - pass + dt = 0.025 # ms + t_max = 5.0 # ms + time_vec = jnp.arange(0.0, t_max + dt, dt) + current = nx.step_current(0.5, 1.0, 0.02, time_vec) + + cell1 = nx.read_swc() + cell2 = nx.read_swc() + + connectivities = [ + nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)]) + ] + network = nx.Network([cell1, cell2], connectivities) + network.insert(HHChannel()) + + for cell_ind in range(2): + network.cell(cell_ind).branch(1).comp(0.0).record() + + for stim_ind in range(2): + network.cell(stim_ind).branch(1).comp(0.0).stimulate(current) + + voltages = nx.integrate(network, delta_t=dt) + + voltages_081123 = None + max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) + tolerance = 0.0 + assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"