"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [global_edge_index, global_pre_comp_index, global_post_comp_index, pre_locs, post_locs, type, type_ind]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "net.edges.head() # this is currently empty since we have not made any connections yet"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "43c42d43",
+ "metadata": {},
+ "source": [
+ "## Views"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "942ecf64",
+ "metadata": {},
+ "source": [
+ "Since these `Module`s can become very complex, Jaxley utilizes so called `View`s to make working with `Module`s easy and intuitive. \n",
+ "\n",
+ "The simplest way to navigate Modules is by navigating them via the hierachy that we introduced above. A `View` is what you get when you index into the module. For example, for a `Network`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "3885678c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "View with 0 different channels. Use `.nodes` for details."
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "net.cell(0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "82357af7",
+ "metadata": {},
+ "source": [
+ "Views behave very similarly to `Module`s, i.e. the `cell(0)` (the 0th cell of the network) behaves like the `cell` we instantiated earlier. As such, `cell(0)` also has a `nodes` attribute, which keeps track of it's part of the network:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "c272cecb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# We can use the vis function to visualize Modules.\n",
+ "fig, ax = plt.subplots(1, 1, figsize=(3,3))\n",
+ "net.vis(ax=ax)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "37fafc71",
+ "metadata": {},
+ "source": [
+ "...but we can also create a `View` to visualize only parts of the `net`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "14a4e51a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAASQAAAESCAYAAABU2qhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmwElEQVR4nO3de1yUVf4H8M9wG0FgEJQBBJTMwmsZKo6XrU3SNVo10LK84CVdDU2kn5u0Wu2rNfzVdjNLExXNa2qrrVo/ddHQVrxhmLdQk4LkYuYy4wUBmfP74ywDKCjoDM8zw+f9es0rOfMwc55yPp05z3m+RyOEECAiUgEnpTtARFSJgUREqsFAIiLVYCARkWowkIhINRhIRKQaDCQiUg0XpTtwr8xmM/Lz8+Hl5QWNRqN0d4ioGiEELl++jKCgIDg53Xn8Y/eBlJ+fj5CQEKW7QUS3kZeXh+Dg4DseZ/eB5OXlBUCesLe3t8K9IaLqTCYTQkJCLJ/TO7H7QKr8mubt7c1AIlKp+k6ncFKbiFSDgUREqsFAIiLVaLRAmjdvHjQaDRISEixt169fR3x8PPz8/ODp6YnY2FgUFRU1VpeISGUaJZAOHTqETz/9FF27dq3RPmPGDGzZsgUbNmxAeno68vPzERMT0xhdIiIVsnkgXblyBSNHjkRKSgpatGhhaTcajVi6dCnee+89PP7444iIiEBqair27duH/fv327pbRKRCNg+k+Ph4REdHIyoqqkZ7ZmYmysvLa7SHh4cjNDQUGRkZdb5eaWkpTCZTjQcRNa6sLGDLFuu/rk0Dad26dThy5AiSk5Nvea6wsBBubm7w8fGp0a7X61FYWFjnayYnJ0On01keXKVN1DguXwZSUoCePYFu3YA//QkoL7fue9gskPLy8jB9+nSsXr0azZo1s9rrJiUlwWg0Wh55eXlWe20iqkkI4NAhYNIkIChI/vPQIcDVFejbFygutu772WyldmZmJi5cuIBHHnnE0lZRUYE9e/ZgwYIF2L59O8rKylBcXFxjlFRUVISAgIA6X1er1UKr1dqq20QEwGgEVq+WI6KsrKr29u1lKI0ZA/j7W/99bRZI/fv3x7Fjx2q0jRs3DuHh4XjllVcQEhICV1dXpKWlITY2FgCQnZ2N3NxcGAwGW3WLiOogBLB/P7B4MfD550BJiWzXaoHYWBlEv/sdYMuiGjYLJC8vL3Tu3LlGW/PmzeHn52dpnzBhAhITE+Hr6wtvb29MmzYNBoMBvXr1slW3iOgmly4BK1fK0dCJE1XtHTsCEycCo0cDfn6N0xdFb659//334eTkhNjYWJSWlmLgwIH45JNPlOwSUZMgBLB3rxwNbdwIlJbKdnd34Jln5GjIYLDtaKg2GnvfKNJkMkGn08FoNPJuf6I7+PVX4LPP5GgoO7uq/aGHZAg9/zxw04Xve9LQz6fdlx8hotszm4Hdu+VoaNOmqkv1zZsDzz0ng6h798YfDdWGgUTkoAoLgeXL5Wjo3Lmq9u7d5dzQc88B9ayb1mgYSEQOpKIC2LlTjoa2bAFu3JDt3t7AyJEyiLp1U7aPt8NAInIA588Dy5YBS5YAublV7QaDDKFnnpFf0dSOgURkp27cAL7+Wn4l27ZNzhUBclJ6zBgZRDetvFE9BhKRnfn5Z2DpUjkiOn++qv13v5MhFBsrL9/bIwYSkR0oL5dzQikpwPbtch0RIBcsjh0LvPACEB6uaBetgoFEpGI//ijnhVJTgerFVPv3l6OhoUPlrR2OgoFEpDKlpcDmzXI0lJZW1a7XA+PGARMmAPffr1j3bIqBRKQS2dkyhFasAC5elG0aDTBggFy8+Mc/yrIfjoyBRKSgkhLgiy9kEO3ZU9UeFASMHy9HQ23bKta9RsdAIlLA8eMyhFauBP7zH9nm5AQ8+aQcDQ0aBLg0wU9nEzxlImVcuwasXy9XUVcvGx8aKq+SjRsHBAcr1z81YCAR2VhWlhwNrVoFVO5J4ewMDB4sR0NPPCF/JgYSkU1cvgysWyeD6NChqvb77pOjobFjgcBAxbqnWgwkIisRAjh8WIbQ2rXAlSuy3dUVePppuW7o8cflXBHVjoFEdI8qC+IvXgwcPVrV/sADMoTi4oBWrZTrnz1hIBHdBSHkxHRKyq0F8YcNk0Fk64L4joiBRNQAdRXE79SpqiC+r69y/bN3DCSiOxBCLlpMSbm1IP6zz8ogUqIgviNiIBHV4ddf5W0cS5Y0TkF8YiAR1XC7gvjPPy9HQ2opiO+IGEhEuH1B/EmTgBEj1FcQ3xExkKjJsveC+I6IgURNzi+/yPKvS5feWhB/0iRg+HD7KIjviBhI1CRUFsRfvBj46quqgvgtWsiC+C+8YH8F8R0RA4kcWmVB/KVLgfz8qvbf/U6OhmJi7LcgviNiIJHDqasgfsuW8jYORymI74gYSOQwmlpBfEfEQCK7dqeC+C+8ALRrp1j3qIEYSGSX6iqIP3CgHA01hYL4jsimlVkWLlyIrl27wtvbG97e3jAYDPj6668tz1+/fh3x8fHw8/ODp6cnYmNjUVR9rE1UTUmJrLr46KNyDujdd2UYtW4NzJkjFzR+/bWcqGYY2SebjpCCg4Mxb948tG/fHkIIrFixAkOGDMF3332HTp06YcaMGdi2bRs2bNgAnU6HqVOnIiYmBv/+979t2S2yM3UVxI+OlqOhploQ3xFphKi8BtE4fH198c4772DYsGFo1aoV1qxZg2HDhgEAfvjhB3To0AEZGRno1atXvV7PZDJBp9PBaDTC29u7zuPMZoGLxmtWOQeyvayjwMmTwOerPLA/o+rGMRbEty/1/XxWarT/r1RUVGDDhg24evUqDAYDMjMzUV5ejqioKMsx4eHhCA0NvW0glZaWorSy/gPkCdfHReM16Od73ttJUOM7fAUuLs0xeLAcDbEgvmOzeXXfY8eOwdPTE1qtFpMnT8amTZvQsWNHFBYWws3NDT431W/Q6/UoLCys8/WSk5Oh0+ksj5CQEBufASlNo5GX67Va1qN2dDYfIT344IPIysqC0WjExo0bERcXh/T09Lt+vaSkJCQmJlp+NplM9QqlljoPFL105a7flxrX/v3AyVPA+i4e+O6ILJq/dq3c037iRLlrh7+/0r0ka2v0OaSoqCi0a9cOzz77LPr374///Oc/NUZJbdq0QUJCAmbMmFGv12vod1SyP5mZclJ7zRq5vRAgJ7GHDpXhFBXFkZNaNfTz2ej/Gc1mM0pLSxEREQFXV1ekVVvNlp2djdzcXBgMhsbuFqlYRASwaJG8F23JEiAyUt4su3GjXHd0//3A3Lk171UjOyVsaNasWSI9PV3k5OSI77//XsyaNUtoNBqxY8cOIYQQkydPFqGhoWLXrl3i8OHDwmAwCIPB0KD3MBqNAoAwGo22OAVSqaNHhZg6VQidTgh5t5oQzs5CDBkixLZtQty4oXQPSYiGfz5tGkjjx48Xbdq0EW5ubqJVq1aif//+ljASQoiSkhLx4osvihYtWggPDw/x9NNPi4KCgga9BwOpabt6VYgVK4To27cqmAAhQkKEeP11IXJzle5h09bQz2ejzyFZG+eQqNLJk/Ir3YoVcrsiQM4t/eEPstRIdDQXUDY21c8hEdlKx47Ae+8B58/LCfDf/14WYvvqKzkBHhoKzJ4N5OQo3VOqCwOJHE6zZsBzzwG7dgGnTwN//rPcyrqgQE5+t2snJ8M3bgTKypTuLVXHQCKH1r498L//K+tob9ggV3oLAezYIWtnh4QAr7wCnDmjdE8JYCBRE+HmBgwbJoPoxx+BV18FAgOBCxeAt98GHnhAfsVbuxa4fl3p3jZdDCRqcu67T351y82Vxd2efFLenvLNN3IzyNatgcRE4NQppXva9DCQqMlycQGGDAG2bQN++gl4/XVZQeDSJeD99+Ukeb9+wGefyVpMZHsMJCLIK3BvvCGDads2GVTOzsC338qNAYKCgGnTgO+/V7qnjo2BRFSNs7P8Crd5s/xK97e/AW3bAsXFwIIFwEMPAb16yW2VrvBebatjIBHVISgI+Mtf5CT49u1yUtzFBThwQBaJCwoCJk8GjhxRuqeOg4FEdAdOTsCAAXLZwC+/yGUE998vKw98+qm8+TciQv65nvUCqQ4MJKIG0OvlQsvTp+XCy+eek0sKjhyRo6XAQGDCBDmKsu+bspTBQCK6CxqNXLe0Zo28VeW99+ROKNeuAcuWyXmmhx6S807FxUr31n4wkIjuUcuWwIwZ8ubevXuBMWPk7SvHjskrc4GB8krdt99y1HQnDCQiK9FogL59ZbWB/Hzgo4+ALl3kyu/PPpNrmjp1kmucfvtN6d6qEwOJyAZatACmTgWOHpX1wSdMADw85OrvxER5he7554Hduzlqqo6BRGRDGo0subtkiaw2sGgR8MgjssrA2rXA44/L++jeflveV9fUMZCIGom3N/CnP8lNCw4fln/28gLOnpUVB1q3lhUIduyQdZyaIgYSkQKqb1ywdCk3LqjEQCJSkKcnMH68nGc6elTOO+l0sqrl7NnyHruhQ2XVy4oKpXtrewwkIpXo2lVemcvPl1fq+vaVIfTll7IeeFiYvAE4L0/pntoOA4lIZTw85FqmvXuBEyfkGidfXxlEf/2rvNk3OloG1Y0bSvfWuhhIRCrW1DYuYCAR2YHaNi7w93e8jQsYSER2pnLjgrw8WYFgwADH2biAgURkpyo3Lti+HTh3TtZusveNCxhIRA4gLExWt6zcuCA6WtZxsreNCxhIRA6kcuOCrVtlffA33rCvjQsYSEQOKiRE7qRiTxsXMJCIHJw9bVzAQCJqQqpvXLBjh/o2LmAgETVBTk7AE0/IZQPnz8urcmrYuICBRNTE+fsDM2fKBZe7dyu7cYFNAyk5ORk9evSAl5cX/P39MXToUGRnZ9c45vr164iPj4efnx88PT0RGxuLoqIiW3aLiGqh0QCPPVZz44IOHRp34wKbBlJ6ejri4+Oxf/9+7Ny5E+Xl5RgwYACuXr1qOWbGjBnYsmULNmzYgPT0dOTn5yMmJsaW3SKiO6jcuODEibo3LhgzBrh40cpvLBrRhQsXBACRnp4uhBCiuLhYuLq6ig0bNliOOXXqlAAgMjIy6vWaRqNRABBGo9EmfSYi6dIlIT76SIguXYQAhNDrhSgru/3vNPTz2ahzSEajEQDg6+sLAMjMzER5eTmioqIsx4SHhyM0NBQZGRm1vkZpaSlMJlONBxHZ3s0bF3zyCeDqat33cLHuy9XNbDYjISEBffr0QefOnQEAhYWFcHNzg4+PT41j9Xo9CgsLa32d5ORk/PWvf7V1d4moDpUbF9hCo42Q4uPjcfz4caxbt+6eXicpKQlGo9HyyHPk8nlETUyjjJCmTp2KrVu3Ys+ePQgODra0BwQEoKysDMXFxTVGSUVFRQgICKj1tbRaLbRara27TEQKsOkISQiBqVOnYtOmTdi1axfCwsJqPB8REQFXV1ekpaVZ2rKzs5GbmwuDwWDLrhGRCtl0hBQfH481a9bgyy+/hJeXl2VeSKfTwd3dHTqdDhMmTEBiYiJ8fX3h7e2NadOmwWAwoFevXrbsGhGpkEYI26291Gg0tbanpqZi7NixAOTCyJdffhlr165FaWkpBg4ciE8++aTOr2w3M5lM0Ol0MBqN8Pb2tlbXicgKGvr5tGkgNQYGEpF6NfTzyXvZiEg1GEhEpBoMJCJSDQYSEakGA4mIVIOBRESqwUAiItVgIBGRajCQiEg1GEhEpBoMJCJSDQYSEakGA4mIVIOBRESqwUAiItVgIBGRajCQiEg1GEhEpBoMJCJSDQYSEakGA4mIVIOBRESqwUAiItVgIBGRajCQiEg1GEhEpBoMJCJSDQYSEakGA4mIVIOBRESqwUAiItWwaSDt2bMHf/zjHxEUFASNRoPNmzfXeF4Igddeew2BgYFwd3dHVFQUzpw5Y8suEZGK2TSQrl69ioceeggff/xxrc+//fbbmD9/PhYtWoQDBw6gefPmGDhwIK5fv27LbhGRSrnY8sUHDRqEQYMG1fqcEAIffPABZs+ejSFDhgAAPvvsM+j1emzevBkjRoywZdeISIUUm0PKyclBYWEhoqKiLG06nQ6RkZHIyMio8/dKS0thMplqPIhIAUJY/SUVC6TCwkIAgF6vr9Gu1+stz9UmOTkZOp3O8ggJCbFpP4moGrMZ+Ne/gGeeAWJirP7yNv3KZgtJSUlITEy0/GwymRhKRLZWUACkpgJLlwLnzsk2JyfZHhhotbdRLJACAgIAAEVFRQisdkJFRUV4+OGH6/w9rVYLrVZr6+4RUUUFsGMHsHgxsGWL/BkAvL2BUaOAiROtGkaAgoEUFhaGgIAApKWlWQLIZDLhwIEDmDJlilLdIqJffgGWLZOjodzcqvbevWUIDR8ONG9uk7e2aSBduXIFZ8+etfyck5ODrKws+Pr6IjQ0FAkJCfjb3/6G9u3bIywsDHPmzEFQUBCGDh1qy24R0c1u3AC++gpISZH/NJtle4sWwJgxMog6dbJ9P4QN7d69WwC45REXFyeEEMJsNos5c+YIvV4vtFqt6N+/v8jOzm7QexiNRgFAGI1GG5wBkYPLyRFi9mwhgoKEkNfN5OPRR4VYtUqIkpJ7evmGfj41Qtjg2l0jMplM0Ol0MBqN8Pb2Vro7ROpXXg78859yNLRjR9Xl+5YtgbFjgRdeAB580Cpv1dDPp91dZSOiu3T2LLBkCbB8OVBUVNUeFSW/kg0ZAih8wYiBROTISkuBTZvkaGjXrqp2vR4YPx6YMAFo1065/t2EgUTkiH74QYbQihXAb7/JNo0G+MMf5GjoqacAV1dl+1gLBhKRoygpATZulEG0d29Ve+vWciQ0fjzQpo1y/asHBhKRvTt2TIbQypVAcbFsc3ICoqOBSZPkqMjFPj7q9tFLIqrp6lVg/Xq5inr//qr2Nm3kaGjcOCA4WLn+3SUGEpE9+e47GUJr1gCVlS5cXIDBg+VoKCoKcHZWto/3gIFEpHaXLwNr18ogysysam/XTk5Qx8UB/7031N4xkIjUSAjg0CE5N7R2rfyKBsgrYzExcjT02GNyrsiBMJCI1KS4GFi9Wo6Gvv++qv3BB+VoaMwYoFUrxbpnawwkIqUJAezbJ0dD69fLy/eAXDU9fLgMon795DoiB8dAIlLKb7/JS/UpKcDJk1XtnTvLEBo1CvD1Va5/CmAgETUmIYD0dBlCX3whb+0AAHd3YMQIGUS9ejWJ0VBtGEhEjeHCBXkbx5IlwOnTVe0PPywnqJ9/HtDpFOueWjCQiGzFbAbS0uRoaPNmWfYDADw9ZQBNnAhERDTZ0VBtGEhE1lZZEH/JEiAnp6q9Z08ZQiNGyFCiWzCQiKzhdgXxR4+WQfTQQ8r20Q4wkIjuRV6eLIi/bNmtBfEnTZKX7T08lOufnWEgETVUZUH8xYuBr79WriC+A2IgEdXXTz/JeaHUVCA/v6r90UflaCgmBmjWTLHuOQIGEtHtVBbEX7wY2LmzZkH8ceNkQfwHHlC2jw6EgURUm8qC+Kmpcg1RpagoORoaMgRwc1Oufw6KgURUqa6C+AEBcjSksoL4joiBRGSnBfEdEQOJmiYHKIjviBhI1LTUVRD/qafkaMiOCuI7Iv6bJ8d39Srw+ecyiG4uiP/CC3J+qHVr5fpHFgwkclxHjsgQWr1a1qUG5OhnyBA5GnriCYcrAWvvGEjkWEwmWYM6JaX2gvhjx8ptpEmVGEhk/yoL4i9eDKxbV1UQ381Nrp6eONEhC+I7IgYS2a/bFcSfNEneV9aypWLdo4ZjIJF9uVNB/EmTgL59WfTMTqliDPvxxx+jbdu2aNasGSIjI3Hw4EGlu0Rq89tvwAcfyAL4ffvKRYwlJfLn+fNlUbSVK5vM7hyOSvER0ueff47ExEQsWrQIkZGR+OCDDzBw4EBkZ2fD399f6e6RkioL4i9eLAvil5XJdg+PqoL4kZEMIAeiEaLy9mVlREZGokePHliwYAEAwGw2IyQkBNOmTcOsWbPu+Psmkwk6nQ5GoxHe3t51HygEcO2atbpNtlRUBMTGAoWF8lGpWzf5ley551gQ307U+/P5X4qOkMrKypCZmYmkpCRLm5OTE6KiopCRkVHr75SWlqK0cusYyBOul2vXWMfYHmk0svTrG2/I9UPk0BSdQ7p48SIqKiqgv2ldiF6vR2H1/zNWk5ycDJ1OZ3mEhIQ0RldJKUIAWVnA0KFyIeP69VVf3cjhKD6H1FBJSUlITEy0/GwymeoXSh4ewJUrNuwZWV1ZmdxGaMkSWUD/X/+Sj1atgLg4OYfE4mgORdFAatmyJZydnVFUVFSjvaioCAEBAbX+jlarhVarbfibaTRA8+Z3001SSvPmwLBh8vHTT8DSpfJRUAD8/e/ywfKxDkXRr2xubm6IiIhAWlqapc1sNiMtLQ0Gg0HBnpHqtG0LvPmm3Nnjyy+B6Gi58jo9HRg5Ut4cO2MGcPKk0j2le6D4OqTExESkpKRgxYoVOHXqFKZMmYKrV69i3LhxSneN1MjFBRg8GNi6VY6a3ngDCAkBLl2S65Q6dQL69JHrlHhV1e4oftkfABYsWIB33nkHhYWFePjhhzF//nxERkbW63cbelmRHFBdmzTqdMCoUXVu0lhRUYG9e/eioKAAgYGB6NevH5ydnRu5846twZ9PYeeMRqMAIIxGo9JdITXIzxfirbeECAsTQl6jk48ePYRISRHi8mUhhBBffPGFCA4OFgAsj+DgYPHFF18ofAKOpaGfT1WMkO4FR0hUK7NZFupfvBjYvFluZwQAnp7IMRjwzM6dOHzTr2j+u+J748aNiImJadTuOqqGfj4ZSOT4LlyQc0opKcCZM5bmIwBSAKwBULm8VqPRIDg4GDk5Ofz6ZgUN/XwqPqlNZHP+/sDMmUB2NrLefx+rAVwH8AiAhQDyASwF0AuAEAJ5eXnYW73wPzUaBhI1HRoNTun1GAWgNYAEACcANAcwHkAGgO8BTANwsdpIihoPA4malMDAQADAJQAfAugMoA+A5QBKAHQBMB/A01OnAqNHA3v2VG2fTTbHQKImpV+/fggODrZMYAPAPgDjAAQCmArgpKsrnMvKgFWr5ErwDh2Ad98FLl5UqNdNBwOJmhRnZ2d8+OGHAFAjlADApNHgE40GP6xdCxw4ILdIat4cyM4G/ud/5GrwESPk/XVmsxLdd3gMJGpyYmJisHHjRrS+aS+24OBgeck/Nhbo2VNelSsoAD79FOjeXd7s+/nnQFSUvKl33rya9ZronvGyPzVZDV6p/d13MqRWraq5z9vgwfIG3zr2eWvKK8K5UpvI1q5cEWLZMiF69aq5GrxNGyHefFOIX36xHNrUV4RzpTZRYzp2TI6aVq6U2zIBcpQUHY19nTvj0eRk3LjpV5rSinCu1CZSQkkJsHGjDKdqiyp/gVx0uQxAbrXDm8qKcK7UJlKCu3vVuqWTJ5E3fDguAggG8DqAHABfARgKWRVRcEV4rRhIRNbWoQO+ffpptAYwAkAa5AdtEIBNkCOluQDCABQUFCjWTTViIBHZQGBgIMoAfA4gCsD9AOYBKIJcgPkqgHMABr77LjcuqIaBRGQDN68I/xFAEoAQALEA/g+AGYBvZibw7LNy0eXMmcDp04r1WQ0YSEQ2UNeK8HIAmzQaPKnRYMfChcDs2UBQkLwt5e9/Bx58EHjsMWD1auD6dWU6ryAGEpGN3GlF+B8mT5YbF/z8s9y44KmnqjYuGDVKjpoSEoATJ5Q5AQXwsj+RjTVopfYvvwDLlsm96PLyqtp795a1wZ95Ru4xaCe4DonIEdxu44KRI2U4Pfywol2sD65DInIEzs7AoEHApk1ypPTWW0BYGGA0Ap98AnTrVnUDcOV9dQ6AgUSkdoGBQFIScPYssHMnMHw44OoKHDokb+oNCpL/PHzY7ovJMZCI7IWTkyx9sn69nGt65x2gfXvgyhU5UurRA3jkEWDhQjmSskMMJCJ75O8vi8ZlZwPffAM8/zyg1QJZWcCLL8pR0/jxQEaGXY2aGEhE9kyjkWV2V68Gzp8H3n8f6NhRbiOemiqvznXpAsyfL7cbVzkGEpGj8POT65aOHwf+/W8gLk7e9HviBDB9uhw1jRql6o0LGEhEjkajkSOj5cuB/HxgwQKga1egtFSOpKpvXPDrr0r3tgYGEpEj8/EB4uPl3JIdbFzAQCJqCjSa2jcuKC9X1cYFDCSipsbLS65bOnQIOHIEmDJFtv34o1zvFBICxMYC//d/VSvEGwkDiagp69ZNrvwuKJD30BkMwI0bwD/+IVeKt2snbwA+f75RumOzQJo7dy569+4NDw8P+Pj41HpMbm4uoqOj4eHhAX9/f8ycORM3btxcEp2IbK55c2DcOGDfPrlxwUsvyfmnn38GXnsNCA2V2z1t2SIDy0ZsFkhlZWUYPnw4pkyZUuvzFRUViI6ORllZGfbt24cVK1Zg+fLleO2112zVJSKqj86dgQ8/lFfoVq4E+vWTE95btshQattWhtTPP1v/vW2zG1OV1NRUodPpbmn/6quvhJOTkygsLLS0LVy4UHh7e4vS0tJ6vz73ZSNqBKdOCfHyy0L4+VXtQ+fkJER+/m1/raGfT8XmkDIyMtClSxfo9XpL28CBA2EymXDiNgWpSktLYTKZajyIyMbCw2VFy/PngXXrgMcfB37/e3njrxUpFkiFhYU1wgiA5efC21x2TE5Ohk6nszxCQkJs2k8iqkarlTXA09KAbdus/vINCqRZs2ZBo9Hc9vHDDz9YvZPVJSUlwWg0Wh551avqEVHj0Wqt/pIuDTn45ZdfxtixY297zH333Vev1woICMDBgwdrtBUVFVmeq4tWq4XWBv8iiEh5DQqkVq1aoVWrVlZ5Y4PBgLlz5+LChQvw9/cHAOzcuRPe3t7o2LGjVd6DiOxLgwKpIXJzc3Hp0iXk5uaioqICWVlZAID7778fnp6eGDBgADp27IjRo0fj7bffRmFhIWbPno34+HiOgIiaKmtcEaxNXFycAHDLY/fu3ZZjfvrpJzFo0CDh7u4uWrZsKV5++WVRXl7eoPfhZX8i9Wro55O7jhCRzXDXESKyWzabQ2oslQM8LpAkUp/Kz2V9v4jZfSBd/u+eVFwgSaRely9fhk6nu+Nxdj+HZDabkZ+fDy8vL2g0mtseazKZEBISgry8PIeZb3LEcwIc87wc8ZyA25+XEAKXL19GUFAQnJzuPENk9yMkJycnBAcHN+h3vL29HeovBOCY5wQ45nk54jkBdZ9XfUZGlTipTUSqwUAiItVoUoGk1Wrx+uuvO9RKcEc8J8Axz8sRzwmw7nnZ/aQ2ETmOJjVCIiJ1YyARkWowkIhINRhIRKQaDCQiUo0mE0gff/wx2rZti2bNmiEyMvKW8rlqlpycjB49esDLywv+/v4YOnQosrOzaxxz/fp1xMfHw8/PD56enoiNjbWUBLYX8+bNg0ajQUJCgqXNXs/r/PnzGDVqFPz8/ODu7o4uXbrg8OHDlueFEHjttdcQGBgId3d3REVF4cyZMwr2+PYqKiowZ84chIWFwd3dHe3atcObb75Z46ZZq5yTDWoyqc66deuEm5ubWLZsmThx4oSYOHGi8PHxEUVFRUp3rV4GDhwoUlNTxfHjx0VWVpZ48sknRWhoqLhy5YrlmMmTJ4uQkBCRlpYmDh8+LHr16iV69+6tYK8b5uDBg6Jt27aia9euYvr06ZZ2ezyvS5cuiTZt2oixY8eKAwcOiHPnzont27eLs2fPWo6ZN2+e0Ol0YvPmzeLo0aNi8ODBIiwsTJSUlCjY87rNnTtX+Pn5ia1bt4qcnByxYcMG4enpKT788EPLMdY4pyYRSD179hTx8fGWnysqKkRQUJBITk5WsFd378KFCwKASE9PF0IIUVxcLFxdXcWGDRssx5w6dUoAEBkZGUp1s94uX74s2rdvL3bu3CkeffRRSyDZ63m98sorom/fvnU+bzabRUBAgHjnnXcsbcXFxUKr1Yq1a9c2RhcbLDo6WowfP75GW0xMjBg5cqQQwnrn5PBf2crKypCZmYmoqChLm5OTE6KiopCRkaFgz+6e0WgEAPj6+gIAMjMzUV5eXuMcw8PDERoaahfnGB8fj+jo6Br9B+z3vP75z3+ie/fuGD58OPz9/dGtWzekpKRYns/JyUFhYWGN89LpdIiMjFTtefXu3RtpaWk4ffo0AODo0aP49ttvMWjQIADWOye7v9v/Ti5evIiKiopaN6W09R5ytmA2m5GQkIA+ffqgc+fOAOTGmm5ubvDx8alxrF6vv+2mm2qwbt06HDlyBIcOHbrlOXs9r3PnzmHhwoVITEzEq6++ikOHDuGll16Cm5sb4uLiLH2v7e+kWs9r1qxZMJlMCA8Ph7OzMyoqKjB37lyMHDkSAKx2Tg4fSI4mPj4ex48fx7fffqt0V+5ZXl4epk+fjp07d6JZs2ZKd8dqzGYzunfvjrfeegsA0K1bNxw/fhyLFi1CXFycwr27O+vXr8fq1auxZs0adOrUCVlZWUhISEBQUJBVz8nhv7K1bNkSzs7Ot1yZKSoquu2GlGo0depUbN26Fbt3765RAyogIABlZWUoLi6ucbzazzEzMxMXLlzAI488AhcXF7i4uCA9PR3z58+Hi4sL9Hq9XZ5XYGDgLXsLdujQAbm5uQCqNkK1p7+TM2fOxKxZszBixAh06dIFo0ePxowZM5CcnAzAeufk8IHk5uaGiIgIpKWlWdrMZjPS0tJgMBgU7Fn9CSEwdepUbNq0Cbt27UJYWFiN5yMiIuDq6lrjHLOzs5Gbm6vqc+zfvz+OHTuGrKwsy6N79+4YOXKk5c/2eF59+vS5ZVnG6dOn0aZNGwBAWFgYAgICapyXyWTCgQMHVHte165du6Xio7OzM8xmMwArnpNVpuBVbt26dUKr1Yrly5eLkydPikmTJgkfHx9RWFiodNfqZcqUKUKn04lvvvlGFBQUWB7Xrl2zHDN58mQRGhoqdu3aJQ4fPiwMBoMwGAwK9vruVL/KJoR9ntfBgweFi4uLmDt3rjhz5oxYvXq18PDwEKtWrbIcM2/ePOHj4yO+/PJL8f3334shQ4ao+rJ/XFycaN26teWy/z/+8Q/RsmVL8ec//9lyjDXOqUkEkhBCfPTRRyI0NFS4ubmJnj17iv379yvdpXpDLRtuAhCpqamWY0pKSsSLL74oWrRoITw8PMTTTz8tCgoKlOv0Xbo5kOz1vLZs2SI6d+4stFqtCA8PF4sXL67xvNlsFnPmzBF6vV5otVrRv39/kZ2drVBv78xkMonp06eL0NBQ0axZM3HfffeJv/zlL6K0tNRyjDXOifWQiEg1HH4OiYjsBwOJiFSDgUREqsFAIiLVYCARkWowkIhINRhIRKQaDCQiUg0GEhGpBgOJiFSDgUREqvH/RAvL3LIhFdkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# ... and Views\n",
+ "fig, ax = plt.subplots(1,1, figsize=(3,3))\n",
+ "net.cell(0).vis(ax=ax, col=\"blue\") # View of the 0th cell of the network\n",
+ "net.cell(1).vis(ax=ax, col=\"red\") # View of the 1st cell of the network\n",
+ "\n",
+ "net.cell(0).branch(0).vis(ax=ax, col=\"green\") # View of the 1st branch of the 0th cell of the network\n",
+ "net.cell(1).branch(1).comp(1).vis(ax=ax, col=\"black\", type=\"scatter\") # View of the 0th comp of the 1st branch of the 0th cell of the network"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d20882d",
+ "metadata": {},
+ "source": [
+ "### How to create `View`s"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "857c2def",
+ "metadata": {},
+ "source": [
+ "Above, we used `net.cell(0)` to generate a `View` of the 0-eth cell. `Jaxley` supports many ways of performing such indexing:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "728f6eb0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "View with 0 different channels. Use `.nodes` for details."
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# several types of indices are supported (lists, ranges, ...)\n",
+ "net.cell([0,1]).branch(\"all\").comp(0) # View of all 0th comps of all branches of cell 0 and 1\n",
+ "\n",
+ "branch.loc(0.1) # Equivalent to `NEURON`s `loc`. Assumes branches are continous from 0-1.\n",
+ "\n",
+ "net[0,0,0] # Modules/Views can also be lazily indexed\n",
+ "\n",
+ "cell0 = net.cell(0) # Views can be assigned to variables and only track the parts of the Module they belong to\n",
+ "cell0.branch(1).comp(0) # Views can be continuely indexed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "fe4dda8e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " global_cell_index Na K Leak\n",
+ "0 0 True True True\n",
+ "12 1 False False True"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# inserting several channels into parts of the network\n",
+ "with net.cell(0) as cell0:\n",
+ " cell0.insert(Na())\n",
+ " cell0.insert(K())\n",
+ "\n",
+ "# # The above is equivalent to:\n",
+ "# net.cell(0).insert(Na())\n",
+ "# net.cell(0).insert(K())\n",
+ "\n",
+ "# K and Na channels were only insert into cell 0\n",
+ "net.cell(\"all\").branch(0).comp(0).nodes[[\"global_cell_index\", \"Na\", \"K\", \"Leak\"]]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "24ec120a",
+ "metadata": {},
+ "source": [
+ "## Synapses"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d947ba43",
+ "metadata": {},
+ "source": [
+ "To connect different cells together, Jaxley implements a `connect` method, that can be used to couple 2 compartments together using a `Synapse`. Synapses in Jaxley work only on the compartment level, that means to be able to connect two cells, you need to specify the exact compartments on a given cell to make the connections between. Below is an example of this:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "a1eed847",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
global_edge_index
\n",
+ "
global_pre_comp_index
\n",
+ "
global_post_comp_index
\n",
+ "
type
\n",
+ "
type_ind
\n",
+ "
pre_locs
\n",
+ "
post_locs
\n",
+ "
IonotropicSynapse_gS
\n",
+ "
IonotropicSynapse_e_syn
\n",
+ "
IonotropicSynapse_k_minus
\n",
+ "
IonotropicSynapse_s
\n",
+ "
controlled_by_param
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
0
\n",
+ "
4
\n",
+ "
12
\n",
+ "
IonotropicSynapse
\n",
+ "
0
\n",
+ "
0.125
\n",
+ "
0.125
\n",
+ "
0.0001
\n",
+ "
0.0
\n",
+ "
0.025
\n",
+ "
0.2
\n",
+ "
0
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " global_edge_index global_pre_comp_index global_post_comp_index \\\n",
+ "0 0 4 12 \n",
+ "\n",
+ " type type_ind pre_locs post_locs IonotropicSynapse_gS \\\n",
+ "0 IonotropicSynapse 0 0.125 0.125 0.0001 \n",
+ "\n",
+ " IonotropicSynapse_e_syn IonotropicSynapse_k_minus IonotropicSynapse_s \\\n",
+ "0 0.0 0.025 0.2 \n",
+ "\n",
+ " controlled_by_param \n",
+ "0 0 "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# connecting two cells using a Synapse\n",
+ "pre_comp = cell0.branch(1).comp(0)\n",
+ "post_comp = net.cell(1).branch(0).comp(0)\n",
+ "\n",
+ "connect(pre_comp, post_comp, IonotropicSynapse())\n",
+ "\n",
+ "net.edges"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c603a54",
+ "metadata": {},
+ "source": [
+ "As you can see above, now the `edges` dataframe is also updated with the information of the newly added synapse. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "749de44c",
+ "metadata": {},
+ "source": [
+ "Congrats! You should now have an intuitive understand of how to use Jaxley's API to construct, navigate and manipulate neuron models."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/tutorials/01_morph_neurons.ipynb b/docs/tutorials/01_morph_neurons.ipynb
index 347f52c2..e029e767 100644
--- a/docs/tutorials/01_morph_neurons.ipynb
+++ b/docs/tutorials/01_morph_neurons.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "cd8655a5",
+ "id": "9f7be2a4",
"metadata": {},
"source": [
"# Basics of Jaxley"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "b3aa8948",
+ "id": "2db89a9f",
"metadata": {},
"source": [
"In this tutorial, you will learn how to:\n",
@@ -30,7 +30,7 @@
"\n",
"# Build the cell.\n",
"comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=4)\n",
+ "branch = jx.Branch(comp, ncomp=2)\n",
"cell = jx.Cell(branch, parents=[-1, 0, 0, 1, 1])\n",
"\n",
"# Insert channels.\n",
@@ -38,6 +38,9 @@
"cell.branch(0).insert(Na())\n",
"cell.branch(0).insert(K())\n",
"\n",
+ "# Change parameters.\n",
+ "cell.set(\"axial_resistivity\", 200.0)\n",
+ "\n",
"# Visualize the morphology.\n",
"cell.compute_xyz()\n",
"fig, ax = plt.subplots(1, 1, figsize=(4, 4))\n",
@@ -51,14 +54,14 @@
"cell.branch(0).loc(0.0).record(\"v\")\n",
"\n",
"# Simulate and plot.\n",
- "v = jx.integrate(cell)\n",
+ "v = jx.integrate(cell, delta_t=0.025)\n",
"plt.plot(v.T)\n",
"```"
]
},
{
"cell_type": "markdown",
- "id": "a312b876",
+ "id": "6c8a0eb9",
"metadata": {},
"source": [
"First, we import the relevant libraries:"
@@ -66,8 +69,8 @@
},
{
"cell_type": "code",
- "execution_count": 69,
- "id": "61572ea9",
+ "execution_count": 1,
+ "id": "f8cb454b",
"metadata": {},
"outputs": [],
"source": [
@@ -88,15 +91,15 @@
},
{
"cell_type": "markdown",
- "id": "8b636c0e",
+ "id": "d717ef05",
"metadata": {},
"source": [
- "We will now build our first cell in `Jaxley`. You have two options to do this: you can either build a cell bottom-up by defining the morphology yourselve, or you can [load cells from SWC files]().\n"
+ "We will now build our first cell in `Jaxley`. You have two options to do this: you can either build a cell bottom-up by defining the morphology yourselve, or you can [load cells from SWC files](https://jaxley.readthedocs.io/en/latest/tutorials/08_importing_morphologies.html).\n"
]
},
{
"cell_type": "markdown",
- "id": "7f749b24",
+ "id": "3883d5aa",
"metadata": {},
"source": [
"### Define the cell from scratch\n",
@@ -106,18 +109,18 @@
},
{
"cell_type": "code",
- "execution_count": 70,
- "id": "dfd25b57",
+ "execution_count": 6,
+ "id": "1eba83a8",
"metadata": {},
"outputs": [],
"source": [
"comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=4)"
+ "branch = jx.Branch(comp, ncomp=2)"
]
},
{
"cell_type": "markdown",
- "id": "be5ba19f",
+ "id": "acfbf1ab",
"metadata": {},
"source": [
"Next, we can assemble branches into a cell. To do so, we have to define for each branch what its parent branch is. A `-1` entry means that this branch does not have a parent."
@@ -125,8 +128,8 @@
},
{
"cell_type": "code",
- "execution_count": 81,
- "id": "5cc4d4cf",
+ "execution_count": 7,
+ "id": "4c26d47d",
"metadata": {},
"outputs": [],
"source": [
@@ -136,19 +139,29 @@
},
{
"cell_type": "markdown",
- "id": "95ec99af",
+ "id": "efc170cc",
+ "metadata": {},
+ "source": [
+ "To learn more about `Compartment`s, `Branch`es, and `Cell`s, see [this tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/00_jaxley_api.html)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "60d62a97",
"metadata": {},
"source": [
"### Read the cell from an SWC file\n",
"\n",
"Alternatively, you could also load cells from SWC with \n",
"\n",
- "```cell = jx.read_swc(fname, nseg=4)```."
+ "```cell = jx.read_swc(fname, ncomp=4)```\n",
+ "\n",
+ "Details on handling SWC files can be found in [this tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/08_importing_morphologies.html)."
]
},
{
"cell_type": "markdown",
- "id": "1b6e6518",
+ "id": "c8afc7cf",
"metadata": {},
"source": [
"### Visualize the cells"
@@ -156,7 +169,7 @@
},
{
"cell_type": "markdown",
- "id": "2d03b9f7",
+ "id": "a3fbe809",
"metadata": {},
"source": [
"Cells can be visualized as follows:"
@@ -164,13 +177,13 @@
},
{
"cell_type": "code",
- "execution_count": 82,
- "id": "1a3105f7",
+ "execution_count": 9,
+ "id": "447c99bd",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjYklEQVR4nO3deVhU5eIH8O/AwIACg+wqoLjhlguuuJaaW93cqqsXC9MyuOB+b4reqz5Pj+Gjt1xza1Erla6llqWWYbkkCuJCuKC4QeKw6SxogMO8vz/8eW6Uy4wynDnw/TzPPE/vmTMz37er3zudec85KiGEABERKY6T3AGIiOjxsMCJiBSKBU5EpFAscCIihWKBExEpFAuciEihWOBERAqlljvAk7JYLMjLy4OnpydUKpXccYiInpgQAiaTCQ0aNICT04O/Zyu+wPPy8hASEiJ3DCKiKpebm4vg4OAHPq/4Avf09ARwd6JeXl4ypyEienJGoxEhISFSvz2I4gv83mETLy8vFjgR1SiPOizMHzGJiBSKBU5EpFAscCKFuXLlCkpLS+WOQQ6ABU6kIGlpaQgLC4O3tzfMZrPccUhmLHAihdizZw+6du0KACgrK8Pq1atlTkRyY4ETKcAnn3yCIUOGSOP4+HhMmjRJxkTkCFjgRA7u3XffRXR0tDSeP38+VqxYIWMichSKXwdOVJPNnDkTixYtksarV69GTEyMjInIkbDAiRzU+PHjsX79emm8detWvPjiizImIkfDAidyQCNGjMCOHTukcXJyMvr16ydfIHJILHAiB9OnTx8cPHgQwN1TqU+ePIl27drJnIocEQucyIG0a9cOv/zyCwDAyckJFy9eROPGjeUNRQ6LBU7kIMLCwnDlyhUAgLOzM3Q6Hfz8/OQNRQ6NBU7kAAICAlBYWAgA0Gg00Ov1cHNzkzkVOToWOJGMzGYz6tWrh5KSEgCAh4cHbt68CbWafzXp0XgiD5FMSktL4eHhIZW3r68vTCYTy5usxgInkoFer4enpyfKysoAAKGhoSgqKpI5FSkNC5yoml25cgW+vr7S1QTbtGmDq1evypyKlIgFTlSNMjIy0KRJE1gsFgBAr169kJmZKXMqUioWOFE1OXDgANq3bw8hBADg+eefl07YIXocLHCiarBt2zb07dtXGkdHR2Pnzp0yJqKagAVOZGdr1qzBqFGjpPE//vEPbNiwQb5AVGOwwIns6O2330ZsbKw0XrRoERYvXixjIqpJuOCUyE6mTJmC5cuXS+P169dj3Lhx8gWiGseu38ATExPRpUsXeHp6IiAgAMOHD0dWVlalfUpLSxEXFwdfX194eHhg1KhRyM/Pt2csIruLioqqVN47d+5keVOVs2uB79+/H3FxcThy5Aj27t2LO3fuYODAgbh165a0z7Rp07Bz505s3boV+/fvR15eHkaOHGnPWER2NXjwYGzevFkaHz58GM8//7yMiaimUol7a5qqQWFhIQICArB//3706dMHBoMB/v7+2Lx5s3SnkXPnzqFVq1ZISUlB9+7dH/meRqMRWq0WBoMBXl5e9p4C0UN169YNqampAO5ey/vs2bMIDw+XORUpjbW9Vq3HwA0GAwDAx8cHAJCeno47d+5gwIAB0j4tW7ZEaGjoAwu8rKxMOv0YuDtRIkcQHh6O8+fPA7h7Le9r164hKChI5lRUk1XbKhSLxYKpU6eiZ8+eaNu2LQBAp9PB1dUV3t7elfYNDAyETqe77/skJiZCq9VKj5CQEHtHJ3qkhg0bSuXt4uICg8HA8ia7q7YCj4uLQ2ZmJpKSkp7ofRISEmAwGKRHbm5uFSUksp3ZbIaPjw/y8vIAAO7u7jAajfDw8JA5GdUG1XIIJT4+Ht988w0OHDiA4OBgaXtQUBDKy8uh1+srfQvPz89/4LcXjUYDjUZj78hEj2Q2m6HVanH79m0AgLe3NwoLC3k5WKo2dv0GLoRAfHw8tm/fjn379iEsLKzS8506dYKLiwuSk5OlbVlZWcjJyUFkZKQ9oxE9kZKSEtSpU0cq76CgIN6IgaqdXf+0xcXFYfPmzfjqq6/g6ekpHdfWarVwd3eHVqvFhAkTMH36dPj4+MDLywuTJk1CZGSkVStQiOSg0+kQHByMiooKAECzZs1w4cIFmVNRbWTXZYQqleq+239/RlppaSlmzJiBLVu2oKysDIMGDcKqVaus/gGIywipOmVnZ6NFixbSFQUjIiKQnp4ucyqqaazttWpdB24PLHCqLmlpaejatas07t+/P3744QcZE1FNZW2v8WJWRFbYs2dPpfJ++eWXWd4kOxY40SN88sknGDJkiDSOjY3F559/LmMiortY4EQPsXTpUkRHR0vj+fPnY9WqVTImIvofrnkieoDZs2cjMTFRGq9cuRJxcXEyJiKqjAVOdB+vv/46PvroI2m8ZcsWjB49WsZERH/GAif6g5EjR2L79u3SODk5Gf369ZMxEdH9scCJfqdv3744cOAAgLvnMRw7dgwREREypyK6PxY40f/r0KEDTp06BeBueV+6dAmNGzeWNxTRQ7DAiQA0adIEly9fBgA4OztDp9PBz89P5lRED8cCp1ovICAAhYWFAABXV1cYDAa4ubnJnIro0VjgVGuZzWb4+vpKd3Xy8PDgFQVJUXgiD9VKpaWl8PT0lMrb19cXJpOJ5U2KwgKnWkev18PT0xOlpaUAgNDQUBQVFcmcish2LHCqVX799Vf4+vrCbDYDANq0aYOrV6/KnIro8bDAqdY4ffo0QkNDYbFYAAA9evRAZmamzKmIHh8LnGqFQ4cOoW3bttKNGIYOHYqff/5Z5lRET4YFTjXetm3b0Lt3b2kcHR2Nb7/9VsZERFWDBU412rp16zBq1ChpPH36dGzYsEG+QERViAVONdaCBQvw5ptvSuNFixbh3XfflTERUdXioleqkaZOnYply5ZJ4w8//BATJkyQMRFR1WOBU40TFRWFzZs3S+OdO3fi+eeflzERkX2wwKlGGTp0KHbv3i2NDx48iF69esmYiMh+WOBUY0RGRuLIkSMA7l4O9uzZswgPD5c5FZH9sMCpRmjdujXOnj0LAHBycsLVq1cRHBwscyoi+2KBk+KFhITg119/BQC4uLigoKAA3t7e8oYiqgYscFIss9mMwMBA3LhxAwDg5uaGmzdv8lreVGs4xDrw999/H40bN4abmxu6deuG1NRUuSORgzObzfD29pbKW6vVwmQysbypVpG9wD///HNMnz4d8+bNw/Hjx9G+fXsMGjQIBQUFckcjB1VSUoK6devi1q1bAICgoCDo9Xpey5tqHZW4d3UfmXTr1g1dunTBypUrAQAWiwUhISGYNGkSZs2a9cjXG41GaLVaGAwGeHl5WfWZZrMZWVlZT5Sb5JGRkYGxY8dKVxRs1qwZLly4IHMqoqplba/J+pWlvLwc6enpSEhIkLY5OTlhwIABSElJue9rysrKUFZWJo3v3VHFFllZWWjbtq3tgcmhREREID09Xe4YRLKR9RBKUVERKioqEBgYWGl7YGAgdDrdfV+TmJgIrVYrPUJCQqojKjmgcePGyR2BSFaKO2iYkJCA6dOnS2Oj0WhziYeHh/NC/goVExODQ4cOAQAmT54MnU6HBQsWyJyKSB6yFrifnx+cnZ2Rn59faXt+fj6CgoLu+xqNRgONRvNEn6tWq9GmTZsneg+Sx8GDB5GUlIQxY8YAAN555x0UFhZi3bp1Micjqn6yHkJxdXVFp06dkJycLG2zWCxITk5GZGSkjMnIkY0ePRrff/+9NP7ggw/w4osvypiISB6yLyOcPn06PvjgA2zcuBFnz55FbGwsbt26hddee03uaOTAnn32WaSnp0OlUgEAvvzySzz99NPyhiKqZrIfA//rX/+KwsJCzJ07FzqdDh06dMCePXv+9MMm0R9FRETg/PnzaNGiBYQQ2L9/Pzp06ICTJ0/KHY2oWsi+DvxJPc46cKpZioqKEBQUhIqKCgBAkyZNcPHiRZlTET0+a3tN9kMoRE/Kz88Per0erq6uAIBLly7xv+CoVmCBU43g4eGBW7duoW7dugCAgoICaLVamM1mmZMR2Q8LnGoMtVoNvV4PHx8fAHf/M9TT0xOlpaUyJyOyDxY41ShqtRrFxcXSzRxKS0vh6ekJvV4vbzAiO2CBU42Um5uLVq1aAbh78TJfX1/ppg9ENQULnGqsM2fOoHv37gDuniAWGhqK06dPy5yKqOqwwKlGS0lJwZAhQwAAQgi0bdtWupYKkdKxwKnG27VrF6KioqRx79698dVXX8mYiKhqsMCpVvjss88wZcoUaTx8+HB89NFHMiYienIscKo1li5disTERGn8+uuvY+HChTImInoyLHCqVWbNmoW1a9dK44SEBMyYMUPGRESPjwVOtc7EiROxY8cOafzee+/h1VdflS8Q0WNigVOtNGzYMBw8eFAaf/rppxg6dKiMiYhsxwKnWqtXr17IzMyUrim+e/du9OjRQ+ZURNZjgVOt1qZNG+Tk5MDJ6e5fhZSUFLRu3VrmVETWYYFTrRccHIzi4mKo1Xfvb3L27FmEhobKnIro0VjgRAC8vb1hMpng5uYG4O61VHx9fXk5WnJoLHCi/+fm5gaTySTdAeXGjRvw9vZmiZPDYoET/Y5arYbBYEBAQAAASDeJKCkpkTkZ0Z+xwInuIz8/H2FhYQCA8vJyeHt7o6ioSOZURJWxwIke4NKlS2jfvj0AoKKiAgEBAcjOzpY5FdH/sMCJHuLkyZPo27cvgLuXo23RogWOHz8ucyqiu1jgRI/w008/YcSIEQDulninTp2wd+9emVMRscCJrLJt2za88cYb0njgwIFISkqSMRERC5zIauvWrcPs2bOl8ZgxY7BixQoZE1FtxwInssGCBQuwZMkSaTx58mTMnTtXxkRUm7HAiWw0depUbNq0SRq//fbbiI2NlTER1VZ2KfArV65gwoQJCAsLg7u7O5o2bYp58+ahvLy80n4ZGRno3bs33NzcEBISgkWLFtkjDlGV+9vf/obvv/9eGq9ZswYvvfSSjImoNrJLgZ87dw4WiwVr167F6dOnsWTJEqxZs6bS8UOj0YiBAweiUaNGSE9Px+LFizF//nysW7fOHpGIqtyzzz6L1NRUafzFF1+gX79+Miai2kYlhBDV8UGLFy/G6tWrcenSJQDA6tWrMWfOHOh0Ori6ugK4e7urHTt24Ny5c1a/r9FohFarhcFgkK5hQVSdsrOz0aJFC9z7qxQREYH09HSZU5GSWdtr1XYM3GAwwMfHRxqnpKSgT58+UnkDwKBBg5CVlYWbN28+8H3KyspgNBorPYjk1KxZMxQUFMDZ2RkAcPz4cTRr1kzmVFQbVEuBZ2dnY8WKFXjzzTelbTqdDoGBgZX2uzfW6XQPfK/ExERotVrpERISYp/QRDbw8/ODXq+XvpBcvHgR9evXlzkV1XQ2FfisWbOgUqke+vjj4Y9r165h8ODBeOmllyqdCPG4EhISYDAYpEdubu4TvydRVfDw8JCuXgjc/SKi1Wp5OVqyG7UtO8+YMQPjxo176D5NmjSR/jkvLw/PPPMMevTo8acfJ4OCgpCfn19p271xUFDQA99fo9FAo9HYEpuo2qjVauj1egQGBuLGjRswGo3w9PTEzZs3pZtFEFUVmwrc398f/v7+Vu177do1PPPMM+jUqRPWr18v3XPwnsjISMyZMwd37tyBi4sLAGDv3r0IDw9HvXr1bIlF5FDUajWKi4sRHByMa9euobS0FJ6enigsLIS3t7fc8aia7NmzB+vWrYMQAtu3b7fLZ9hlFcq1a9fw9NNPo1GjRti4caP04w7wv2/XBoMB4eHhGDhwIGbOnInMzEyMHz8eS5YswcSJE63+LK5CIUfWsmVLZGVlAQCcnJxw9epVBAcHy5yKqlJaWhqWLVuGw4cP4/r16ygrK8Mfa9XWmrW614QdrF+/XgC47+P3Tp06JXr16iU0Go1o2LChWLhwoc2fZTAYBABhMBiqKj5Rleratav051+lUonMzEy5I9FjOHfunIiJiRHh4eGibt26QqVSPbDnfv9wdna2+bOs7bVqWwduL/wGTkowePBgfPfdd9L48OHDiIyMlDERPYhOp8OSJUuwZ88eXL58Gbdu3YLFYnnk61QqFdzd3dGwYUP06dMHkydPRrt27R4rg7W9xgInqiZRUVHYvHmzNN6xYweGDRsmY6LaraSkBMuWLcPXX3+N8+fPw2QyoaKi4pGvU6lU0Gg0CAwMRGRkJOLi4tCrV68qzWZtr9n0IyYRPb5NmzbB398fy5YtAwAMHz4c69evf+TKLnoyZrMZH374IbZs2YIzZ87g5s2bVhU1ALi6usLPzw8RERF4/fXXHe7/cFngRNVo6dKl8Pf3x7/+9S8AwGuvvQadTodZs2bJnEz5zGYzvvjiC2zYsAGnTp1CcXEx7ty5Y9Vr1Wo16tWrh3bt2mHs2LEYO3Ys1GrHr0fHT0hUw8yZMwf+/v7SmckJCQkoLi7G4sWLZU6mHHv37sXatWuRmpqKgoIClJWVWfU6Z2dnaLVatGzZEiNHjkRcXJyi1+ezwIlkMHHiRPj5+WHUqFEAgP/85z/Iz8/HJ598InMyx5KWloYVK1bg559/xvXr11FaWmrVkjwnJyd4eHigWbNmeO655zB58mT4+flVQ+LqxQInksnIkSOxf/9+6a73n376KW7evImdO3fKnKz6ZWdn47333sNPP/2EnJwc3L5926qiVqlUqFu3Lho1aoT+/ftj2rRpaNy4sf0DOwiuQiGSWUZGBjp06CAVVmRkJA4fPixzKvvQ6XRYvnw5du3ahcuXL6OkpMTqJXpubm5o2LAhevfujalTpz72Ej0l4CoUIoVo164dcnJy0KhRI1gsFqSkpKBt27bIzMyUO9pjKykpwcqVK7F9+3ZcuHABRqPR6pUf95bode/eHXFxcejTp4+d0yoXC5zIAQQHB6O4uBj+/v4wm804ffo0QkNDkZOTI3e0h7q3RC8pKQmnT5+GXq+3+uqLLi4u8PPzQ8eOHTFhwgS88MILilj54Uj4b4vIQXh7e8NkMqFevXooLS1Fbm4u/Pz8UFRUJHc0mM1m7NixAx9//DFOnDjxWEv02rZti9GjR2P8+PEs6irCf4tEDsTNzQ0mkwm+vr4wGo0oLi6Gh4cH9Hp9tZXevn37sGrVKqSlpSE/P9/mJXotWrTAyJEjERsbCw8PDzunrd1Y4EQORq1Ww2AwICAgAIWFhdJNIgwGQ5WuWT5+/DiWL1+OQ4cOIS8vz+Ylek2bNsWQIUMwbdq0GrlETwlY4EQOqqCgAGFhYbhy5QrKy8vh4eEBnU5nc1lmZ2dj2bJlSE5OtnmJXp06dRAaGor+/ftjypQpvNeng2GBEzmwy5cvo3379sjIyEBFRQUCAwNx8eLF+651LioqwpIlS7B7925cvHjR5iV6DRo0QK9evTB58mRERETYYTZU1VjgRA7u1KlT6Nu3Lw4cOACLxYKwsDDEx8fj2LFjyMrKeqwlel26dMGbb76JZ5991s7pyZ54Ig+RQowYMQI7duywal8XFxf4+vqiY8eOGD9+PIYPH86VHwpiba/ZdFd6IpLP9u3brbonrUqlgrOzM9zd3eHj44NGjRqxvGsofgMnUhCz2YyePXvCx8cHubm5uHr1Km7dumXTj5INGzZEv379MHXqVISHh1dDarIV78hDVMtkZGRg+fLlOHDgAH799VeblgXWrVsXYWFhGDhwIGbMmCHdfJzkwQInIgDAgQMH8P777+PIkSPStbOt+Wvv7OwMT09PNG/eHMOGDcOUKVN4Yk41YYET0QOZzWZ8/fXXWL9+PY4fP47CwkKrT413dnZGvXr10Lp1a7z88suYMGGCom+K4IhY4ERkM7PZjI0bN2LTpk3IzMzEzZs3bbo4la+vL9q3b49x48bhxRdf5I+nj4kFTkRVpqSkBGvXrsWXX36JrKwsGAwGm9aeBwQEoHPnzoiNjeXacyuwwInI7u6d/blnzx5kZ2fbdPanRqNBgwYN0LNnT0yaNAldunSphsTKwAInItlcuXIFS5YswQ8//ICcnByblzoGBwejX79+mD59eq28/goLnIgcTkZGBpYuXYqDBw/i2rVrNl8BMSwsDIMGDcK0adNq9FJHFjgRKca+ffuwevVqpKam2nwNck9PT7Ro0QIjRoxAfHx8jVjq6DCn0peVlaFDhw5QqVQ4efJkpecyMjLQu3dvuLm5ISQkBIsWLbJ3HCJyQP369cPWrVtx9epV6Vv5nTt38OWXX2Lo0KGoX78+XFxc/vS6iooK6PV6pKamIiEhAZ6enlCpVHBxcYG/vz/69u2LNWvWWL2SRmnsXuBvvfUWGjRo8KftRqMRAwcORKNGjZCeno7Fixdj/vz5WLdunb0jEZECqNVqjBw5Et9++y3y8vJQXl4uFfvatWvxzDPPwN/f/75LFc1mM4qKinDgwAHExsbCxcUFKpUKrq6uqF+/PoYOHYqkpCTlF7uwo127domWLVuK06dPCwDixIkT0nOrVq0S9erVE2VlZdK2mTNnivDw8Ie+Z2lpqTAYDNIjNzdXABAGg8Fe0yAiBTCZTGLRokWie/fuwsfHRzg7OwsAVj00Go0ICQkRo0aNEsnJyXJPRRgMBqt6zW4FrtPpRMOGDUVaWpq4fPnynwr8lVdeEcOGDav0mn379gkA4saNGw9833nz5t33fwAWOBHdT2FhoZg9e7bo2LGj8PLyEk5OTlaVukqlEu7u7qJp06YiOjpapKenV1tmawvcLodQhBAYN24cYmJi0Llz5/vuo9PpEBgYWGnbvbFOp3vgeyckJMBgMEiP3NzcqgtORDWOn58fFixYgOPHj0snIAkhcOHCBcTHx6NVq1aoW7cuVCpVpdcJIfDbb7/h4sWL2LhxIzp16gSVSiWtiGndujUmTZqE7OxsmWZm4zHwWbNmQaVSPfRx7tw5rFixAiaTCQkJCVUeWKPRwMvLq9KDiMhWzZo1w4oVK3DmzBnpBCQhBNLT0xEdHY2mTZvC3d39vsV+69YtnD17FitXrkTz5s2la7BrtVpERERg9uzZKCoqsvscbFpGWFhYiOLi4ofu06RJE7z88svYuXNnpYlXVFTA2dkZUVFR2LhxI1599VUYjcZKdxj58ccf0a9fP9y4cQP16tWzKhOXERJRdXjcpY4uLi4oLy+36bNkXQeek5MDo9EojfPy8jBo0CB88cUX6NatG4KDg7F69WrMmTMH+fn50vKg2bNnY9u2bTh37pzVn8UCJyK5mM1m7NixAx9//DFOnDiB4uLi+17V0daadagTea5cuYKwsDCcOHECHTp0AAAYDAaEh4dj4MCBmDlzJjIzMzF+/HgsWbIEEydOtPq9WeBE5GjMZjM+/PBDJCUlQa1W44cffrDp9db2mmzXetRqtfj+++8RFxeHTp06wc/PD3PnzrWpvImIHJFarUZMTAxiYmLs+jk8lZ6IyME4zKn0RERkHyxwIiKFUvz9ju4dAfr9qhciIiW712ePOsKt+AI3mUwAgJCQEJmTEBFVLZPJBK1W+8DnFf8jpsViQV5ennQZSWsZjUaEhIQgNze3xv34ybkpE+emTPaYmxACJpMJDRo0gJPTg490K/4buJOTE4KDgx/79TX5dHzOTZk4N2Wq6rk97Jv3PfwRk4hIoVjgREQKVWsLXKPRYN68edBoNHJHqXKcmzJxbsok59wU/yMmEVFtVWu/gRMRKR0LnIhIoVjgREQKxQInIlIoFjgRkULVygJ///330bhxY7i5uaFbt25ITU2VO5LNEhMT0aVLF3h6eiIgIADDhw9HVlZWpX1KS0sRFxcHX19feHh4YNSoUcjPz5cp8eNbuHAhVCoVpk6dKm1T8tyuXbuGsWPHwtfXF+7u7njqqadw7Ngx6XkhBObOnYv69evD3d0dAwYMwIULF2RMbJ2Kigr8+9//RlhYGNzd3dG0aVO8/fbblS7IpKS5HThwAH/5y1/QoEEDqFSqSvfvBayby40bNxAVFQUvLy94e3tjwoQJKCkpqbqQopZJSkoSrq6u4uOPPxanT58Wb7zxhvD29hb5+flyR7PJoEGDxPr160VmZqY4efKkGDp0qAgNDRUlJSXSPjExMSIkJEQkJyeLY8eOie7du4sePXrImNp2qamponHjxqJdu3ZiypQp0nalzu3GjRuiUaNGYty4ceLo0aPi0qVL4rvvvhPZ2dnSPgsXLhRarVbs2LFDnDp1SrzwwgsiLCxM/PbbbzImf7QFCxYIX19f8c0334jLly+LrVu3Cg8PD7Fs2TJpHyXNbdeuXWLOnDli27ZtAoDYvn17peetmcvgwYNF+/btxZEjR8TBgwdFs2bNxJgxY6osY60r8K5du4q4uDhpXFFRIRo0aCASExNlTPXkCgoKBACxf/9+IYQQer1euLi4iK1bt0r7nD17VgAQKSkpcsW0iclkEs2bNxd79+4Vffv2lQpcyXObOXOm6NWr1wOft1gsIigoSCxevFjaptfrhUajEVu2bKmOiI/tueeeE+PHj6+0beTIkSIqKkoIoey5/bHArZnLmTNnBACRlpYm7bN7926hUqnEtWvXqiRXrTqEUl5ejvT0dAwYMEDa5uTkhAEDBiAlJUXGZE/OYDAAAHx8fAAA6enpuHPnTqW5tmzZEqGhoYqZa1xcHJ577rlKcwCUPbevv/4anTt3xksvvYSAgAB07NgRH3zwgfT85cuXodPpKs1Nq9WiW7duDj+3Hj16IDk5GefPnwcAnDp1CocOHcKQIUMAKHtuf2TNXFJSUuDt7Y3OnTtL+wwYMABOTk44evRoleRQ/NUIbVFUVISKigoEBgZW2h4YGIhz587JlOrJWSwWTJ06FT179kTbtm0BADqdDq6urvD29q60b2BgIHQ6nQwpbZOUlITjx48jLS3tT88peW6XLl3C6tWrMX36dMyePRtpaWmYPHkyXF1dER0dLeW/359RR5/brFmzYDQa0bJlSzg7O6OiogILFixAVFQUACh6bn9kzVx0Oh0CAgIqPa9Wq+Hj41Nl861VBV5TxcXFITMzE4cOHZI7SpXIzc3FlClTsHfvXri5uckdp0pZLBZ07twZ77zzDgCgY8eOyMzMxJo1axAdHS1zuifz3//+F5s2bcLmzZvRpk0bnDx5ElOnTkWDBg0UPzdHVasOofj5+cHZ2flPqxXy8/MRFBQkU6onEx8fj2+++QY//vhjpeuiBwUFoby8HHq9vtL+Sphreno6CgoKEBERAbVaDbVajf3792P58uVQq9UIDAxU7Nzq16+P1q1bV9rWqlUr5OTkAICUX4l/Rv/5z39i1qxZGD16NJ566im88sormDZtGhITEwEoe25/ZM1cgoKCUFBQUOl5s9mMGzduVNl8a1WBu7q6olOnTkhOTpa2WSwWJCcnIzIyUsZkthNCID4+Htu3b8e+ffsQFhZW6flOnTrBxcWl0lyzsrKQk5Pj8HPt378/fvnlF5w8eVJ6dO7cGVFRUdI/K3VuPXv2/NNyz/Pnz6NRo0YAgLCwMAQFBVWam9FoxNGjRx1+brdv3/7T3WOcnZ1hsVgAKHtuf2TNXCIjI6HX65Geni7ts2/fPlgsFnTr1q1qglTJT6EKkpSUJDQajdiwYYM4c+aMmDhxovD29hY6nU7uaDaJjY0VWq1W/PTTT+L69evS4/bt29I+MTExIjQ0VOzbt08cO3ZMREZGisjISBlTP77fr0IRQrlzS01NFWq1WixYsEBcuHBBbNq0SdSpU0d89tln0j4LFy4U3t7e4quvvhIZGRli2LBhDrvU7veio6NFw4YNpWWE27ZtE35+fuKtt96S9lHS3Ewmkzhx4oQ4ceKEACDee+89ceLECXH16lUhhHVzGTx4sOjYsaM4evSoOHTokGjevDmXET6pFStWiNDQUOHq6iq6du0qjhw5InckmwG472P9+vXSPr/99pv4+9//LurVqyfq1KkjRowYIa5fvy5f6CfwxwJX8tx27twp2rZtKzQajWjZsqVYt25dpectFov497//LQIDA4VGoxH9+/cXWVlZMqW1ntFoFFOmTBGhoaHCzc1NNGnSRMyZM0eUlZVJ+yhpbj/++ON9/45FR0cLIaybS3FxsRgzZozw8PAQXl5e4rXXXhMmk6nKMvJ64EREClWrjoETEdUkLHAiIoVigRMRKRQLnIhIoVjgREQKxQInIlIoFjgRkUKxwImIFIoFTkSkUCxwIiKFYoETESnU/wEYi88ZsJWBaAAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh7ElEQVR4nO3de1RU5eI+8Ge4DdcZMJCLXMRQUFEyKuQkmoqgcvCSmpqpZdlRyaXZRcy8nfLgpXMq09TqHC950sQTmpomIiKUt1SWgkCgGCQMaOgMFwGB9/dHP+YrAgYJbPbwfNbaa8mePTPPu9DHvfZ+994KIYQAERHJjpHUAYiI6M9hgRMRyRQLnIhIpljgREQyxQInIpIpFjgRkUyxwImIZMpE6gAPq6amBnl5ebCxsYFCoZA6DhHRQxNCoLi4GC4uLjAyanw/W/YFnpeXBzc3N6ljEBG1uNzcXLi6ujb6uuwL3MbGBsDvA1WpVBKnISJ6eDqdDm5ubvp+a4zsC7z2sIlKpWKBE5FB+aPDwjyJSUQkUyxwIiKZYoETyUx1dTXKy8uljkHtAAucSEYqKysxefJkPPfcc7h7967UcUhisj+JSdRRlJWVYdy4cTh8+DBMTU1x7tw59O/fX+pYJCEWOJEMaLVahIeHIzExERYWFti7dy/Lm1jgRO3djRs3MHz4cJw/fx5qtRoHDx7E008/LXUsagdY4ETt2PXr1xEcHIz09HQ4ODjg+++/R79+/aSORe0EC5yoncrKysKwYcNw7do1uLq64ujRo/D29pY6FrUjnIVC1A6lpKQgKCgI165dg5eXF5KSkljeVA8LnKidOXPmDAYNGgSNRoO+ffsiMTERHh4eUseidogFTtSOxMfHY+jQoSgqKkL//v1x/PhxODk5SR2L2ikWOFE7sX//fowYMQIlJSUYOnQoYmNjYWdnJ3UsasdY4ETtwM6dO/Hss8+ioqICo0ePxoEDB2BtbS11LGrnWOBEEtu8eTOmTJmCqqoqvPDCC4iOjoa5ubnUsUgGWOBEElqzZg1mzZoFIQTmzJmDbdu2wdTUVOpYJBMscCIJCCHwzjvvYOHChQCARYsWYf369Q98/iHR/XghD1Ebq6mpwdy5c/Hpp58CAFatWqUvcqLmYIETtaGqqiq89NJL2LFjBxQKBT799FPMmjVL6lgkUyxwojZSXl6OSZMmYd++fTA2Nsb27dvx/PPPSx2LZIwFTtQGSkpKMGbMGMTFxUGpVCI6Ohrh4eFSxyKZY4ETtbKioiKEhYXh1KlTsLa2xrfffovBgwdLHYsMAAucqBVpNBqEhITg0qVLsLOzw+HDh/HUU09JHYsMBAucqJX88ssvCA4ORlZWFpycnBAbGwtfX1+pY5EBadVJpydOnEB4eDhcXFygUCiwd+/eOq8LIbB06VI4OzvDwsICwcHByMzMbM1IRG0iIyMDAwYMQFZWFrp27YqkpCSWN7W4Vi3w0tJS+Pn5YcOGDQ2+vmbNGqxbtw6bNm3C6dOnYWVlhdDQUJSXl7dmLKJWlZycjKCgIPz666/w8fFBYmIiHn30UaljkSESbQSAiImJ0f9cU1MjnJycxNq1a/Xrbt++LZRKpdi5c2eTP1er1QoAQqvVtmRcoj8lKSlJqNVqAUA8/vjjorCwUOpIJENN7TXJrtvNzs6GRqNBcHCwfp1arUZAQABOnjzZ6PsqKiqg0+nqLETtwZEjRxASEgKtVougoCAcO3YMDg4OUsciAyZZgWs0GgCAo6NjnfWOjo761xoSFRUFtVqtX9zc3Fo1J1FTfPPNNwgPD0dZWRmGDx+Ow4cPQ61WSx2LDJzs7pyzaNEiaLVa/ZKbmyt1JOrgtm3bhgkTJqCyshITJkzAvn37YGlpKXUs6gAkK/Dax0QVFBTUWV9QUPDAR0gplUqoVKo6C5FU1q1bhxdffBE1NTV4+eWXsXPnTpiZmUkdizoIyQrc09MTTk5OiIuL06/T6XQ4ffo0AgMDpYpF1CRCCLz33nuYN28eAOD111/H559/DmNjY4mTUUfSqhfylJSUICsrS/9zdnY2kpOT0alTJ7i7u2P+/Pl4//330b17d3h6emLJkiVwcXHBmDFjWjMW0UMRQuCtt97CP//5TwDAihUrsGTJEigUComTUYfTmlNh4uPjBYB6y/Tp04UQv08lXLJkiXB0dBRKpVIMHTpUZGRkNOs7OI2Q2lJVVZV45ZVX9H+XP/roI6kjkQFqaq8phBBCsv89WoBOp4NarYZWq+XxcGpVlZWVmDp1Knbv3g0jIyN88cUXeOmll6SORQaoqb3Ge6EQNUFZWRnGjx+PQ4cOwdTUFDt37sS4ceOkjkUdHAuc6A/odDqEh4fjxIkTsLCwQExMDEJDQ6WORcQCJ3qQmzdvYvjw4Th37hxUKhUOHjyIAQMGSB2LCAALnKhR169fx7Bhw5CWlgZ7e3scOXIE/fr1kzoWkR4LnKgBV69eRXBwMLKzs+Hq6orY2Fj4+PhIHYuoDtldSk/U2lJSUjBgwABkZ2fDy8sLSUlJLG9ql1jgRPc4e/YsBg0ahPz8fPTp0weJiYnw8PCQOhZRg1jgRP/f8ePHMWTIEBQVFSEgIADHjx9/4H15iKTGAicCcPDgQYwYMQIlJSUYMmQIjh49ik6dOkkdi+iBWODU4e3atQtjxoxBeXk5Ro0ahYMHD8La2lrqWER/iAVOHdpnn32G559/HlVVVZgyZQr27NkDc3NzqWMRNQkLnDqstWvX4m9/+xuEEJg9eza2b98OU1NTqWMRNRkLnDocIQTeffddvP322wB+f8rThg0bYGTEfw4kL7yQhzqUmpoazJs3D+vXrwcArFq1CgsXLpQ4FdGfwwKnDqOqqgozZszAl19+CYVCgQ0bNmD27NlSxyL601jg1CFUVFRg0qRJ2Lt3L4yNjbFt2zZMmTJF6lhED4UFTgavpKQEY8eOxdGjR6FUKhEdHY3w8HCpYxE9NBY4GbRbt24hLCwMJ0+ehJWVFb799lsMGTJE6lhELYIFTgaroKAAISEhuHjxIuzs7HDo0CEEBARIHYuoxbDAySDl5OQgODgYmZmZcHJywpEjR9CnTx+pYxG1KBY4GZyMjAwMGzYMubm58PDwwNGjR+Hl5SV1LKIWxysXyKAkJycjKCgIubm58PHxQVJSEsubDBYLnAzGjz/+iGeeeQY3btxAv379cOLECbi6ukodi6jVsMDJIMTGxmLYsGHQarUYMGAA4uPj4eDgIHUsolbFAifZi4mJwV//+leUlZVh+PDh+P7776FWq6WORdTqWOAka9u3b8eECRNQWVmJ8ePHY9++fbC0tJQ6FlGbaBcFvmHDBnTt2hXm5uYICAjAmTNnpI5EMrB+/XpMnz4d1dXVmDFjBnbt2gUzMzOpYxG1GckL/Ouvv8aCBQuwbNkynD9/Hn5+fggNDUVhYaHU0aidEkJg5cqVmDt3LgBg/vz5+Pzzz2FsbCxxMqK2pRBCCCkDBAQE4Mknn9Tf3rOmpgZubm6YO3cuIiMj//D9Op0OarUaWq0WKpWqSd8phEBZWdlD5SZpVFVV4c0338QXX3wBAFi+fDmWLl0KhUIhcTKiltPUXpP0Qp7KykqcO3cOixYt0q8zMjJCcHAwTp482eB7KioqUFFRof9Zp9M1+3vLysr4zEMD8OGHH2L+/PlSxyCSjKSHUG7evInq6mo4OjrWWe/o6AiNRtPge6KioqBWq/WLm5tbW0SldsbKygpBQUFSxyCSlOwupV+0aBEWLFig/1mn0zW7xC0tLVFSUtLS0agNpKen47nnnsPVq1cxePBgHDhwAAMHDpQ6FpEkJC1we3t7GBsbo6CgoM76goICODk5NfgepVIJpVL5UN+rUChgZWX1UJ9B0vD398eFCxcwatQoJCQkIDQ0FN988w1GjBghdTSiNifpIRQzMzP4+/sjLi5Ov66mpgZxcXEIDAyUMBm1ZyqVCocOHUJYWBjKy8sxatQo7N69W+pYRG1O8mmECxYswOeff45t27YhLS0Ns2fPRmlpKV566SWpo1E7ZmFhgZiYGEyaNAlVVVWYPHky/v3vf0sdi6hNSX4MfOLEibhx4waWLl0KjUaDxx57DIcPH653YpPofqamptixYwdUKhU+++wzvPLKK9BqtXXOkRAZMsnngT+sPzMPnAyLEAILFy7E2rVrAQBLly7F8uXLOTecZKupvSb5IRSih6VQKLB69WqsXLkSAPD3v/8d8+fPR01NjcTJiFoXC5wMgkKhwDvvvINPPvkEALBu3Tq8/PLLqKqqkjgZUethgZNBee2117Bt2zYYGxtj69atmDRpUp0rd4kMCQucDM60adMQHR0NMzMz/O9//8OoUaNQWloqdSyiFscCJ4M0duxYHDx4EJaWljhy5AhCQ0Nx+/ZtqWMRtSgWOBms4OBgHD16FLa2tvjhhx8wePBg3qaYDAoLnAxaYGAgjh8/js6dOyM5ORkDBw5Ebm6u1LGIWgQLnAyen58fEhMT4ebmhoyMDAwYMACZmZlSxyJ6aCxw6hB69OiBpKQk9OjRAzk5OQgKCsLFixeljkX0UFjg1GG4u7vjxIkT8PPzQ0FBAQYNGoRTp05JHYvoT2OBU4fi6OiI+Ph4BAYG4vbt2wgODq5zN0wiOWGBU4djZ2eH2NhYDBs2DKWlpRg5ciT27dsndSyiZmOBU4dkZWWF/fv3Y+zYsaisrMS4ceOwY8cOqWMRNQsLnDospVKJ3bt3Y9q0aaiursbUqVPx6aefSh2LqMlY4NShmZiYYMuWLZg7dy4AICIiAlFRURKnImoaFjh1eEZGRvj444/x7rvvAgDeeecdREZGQua3yqcOgAVOhN9vR/vee+/pHwqxevVqzJkzh/cUp3aNBU50jzfffBOfffYZFAoFNm3ahKlTp+Lu3btSxyJqEAuc6D4zZ87EV199BRMTE3z11VcYN24cysvLpY5FVA8LnKgBkyZNwt69e2Fubo79+/dj5MiRKC4uljoWUR0scKJGhIWF4fDhw7C2tkZ8fDyCg4NRVFQkdSwiPRY40QMMGjQIx44dQ6dOnXDmzBkMGjQI+fn5UsciAsACJ/pDTz75JE6cOAFnZ2ekpKQgKCgI165dkzoWEQucqCl69+6NpKQkeHp64sqVKxgwYADS0tKkjkUdHAucqIm6deuGxMRE9OrVC9evX8fAgQNx/vx5qWNRB8YCJ2qGLl26ICEhAU888QRu3ryJwYMHIzExUepY1EGxwImayd7eHnFxcRg4cCB0Oh1CQ0Nx+PBhqWNRB9RqBb5y5Ur85S9/gaWlJWxtbRvcJicnB2FhYbC0tETnzp3x1ltvoaqqqrUiEbUYlUqFw4cPY+TIkbhz5w5GjRqF6OhoqWNRB9NqBV5ZWYkJEyZg9uzZDb5eXV2NsLAwVFZW4scff8S2bduwdetWLF26tLUiEbUoCwsLxMTEYOLEibh79y4mTZqE//znP1LHoo5EtLItW7YItVpdb/13330njIyMhEaj0a/buHGjUKlUoqKiosmfr9VqBQCh1WpbIi5Rs1VVVYmZM2cKAAKA+PDDD6WORDLX1F6T7Bj4yZMn0adPHzg6OurXhYaGQqfTITU1tdH3VVRUQKfT1VmIpGRsbIzNmzfjzTffBAC8/vrrWL58OW9HS61OsgLXaDR1yhuA/meNRtPo+6KioqBWq/WLm5tbq+YkagqFQoE1a9bg/fffBwCsWLECCxYs4O1oqVU1q8AjIyOhUCgeuKSnp7dWVgDAokWLoNVq9Utubm6rfh9RUykUCixevBjr1q0DAHz00Ud45ZVXUF1dLXEyMlQmzdn4jTfewIsvvvjAbbp169akz3JycsKZM2fqrCsoKNC/1hilUgmlUtmk7yCSwty5c6FSqTBjxgxs2bIFxcXF2LFjB//eUotrVoE7ODjAwcGhRb44MDAQK1euRGFhITp37gwAiI2NhUqlQq9evVrkO4ikMn36dNjY2GDy5MnYs2cPiouL8c0338DS0lLqaNRGtFotUlNTcfv2bYwcObJVvqNZBd4cOTk5KCoqQk5ODqqrq5GcnAwA8PLygrW1NUJCQtCrVy9MnToVa9asgUajwbvvvouIiAjuqZBBePbZZ3HgwAGMGTMG33//PUJDQ3HgwAGo1Wqpo1ELKisrQ1paGlJSUvRLamqq/vBuly5d8Ouvv7bOl7fWNJjp06frp1Xdu8THx+u3uXbtmhgxYoSwsLAQ9vb24o033hB3795t1vdwGiG1dz/88INQq9UCgOjXr58oLCyUOhL9CRUVFeLixYviq6++EosXLxajR48Wjz76qFAoFA12HQDh6uoqhg8f3qyp0UI0vdcUQsh7rpNOp4NarYZWq4VKpZI6DlGDkpOTERISghs3bsDHxwexsbFwdXWVOhY1oKqqCleuXEFqamqdverMzMxGrxTv3LkzfH190bt3b/j6+sLX1xe9evVq9Cr0P9LUXmu1QyhE9H8ee+wxJCYmYtiwYUhPT8eAAQNw9OhReHl5SR2tw6qpqUFOTk6dwx4pKSlIS0tDRUVFg+9Rq9X6gq4t7N69e+vP47U1FjhRG/H29kZSUhKCg4ORmZmJoKAgHDlyBH369JE6mkETQiA/P79OSdf+ubS0tMH3WFpa6sv53sJ2cXGBQqFo4xE0jgVO1Ibc3d2RmJiIkJAQXLx4EYMGDcKhQ4cQEBAgdTSDcPPmzXolnZKSglu3bjW4vZmZGXx8fOrsUfv6+qJr164wMmr/N2vlMXAiCdy6dQsjR47EqVOnYGVlhf3792Pw4MFSx5KN2ltu3L9XXXstyf2MjY3RvXv3esepvby8YGLS/vZjm9prLHAiiZSUlGDMmDGIi4uDUqnE7t27MWrUKKljtSu1U/TuP6H4oCuwPT096x2n9vb2hrm5eRsmfzgscCIZKC8vx+TJk7F3714YGxtj+/bteP7556WO1eYqKyvx888/1zv0ceXKlUZvCtalS5d6e9Q9e/aEtbV1G6dveZyFQiQD5ubmiI6OxowZM/Dll1/ihRdegFarbfQ++nJXXV2NK1eu1Dv08fPPPzc6Rc/e3r7OHnXtFD07O7s2Tt/+sMCJJGZiYoKtW7dCpVJhw4YNmDNnDrRaLSIjI6WO9qfVTtG7/4RiWloaysvLG3yPSqWqdzLR19dXsil6csACJ2oHjIyM8Mknn8DW1hYrV67U33XzH//4R7uatnY/IQQ0Gk29Qx+pqakoKSlp8D0WFhbo1atXvePUrq6u7Xqs7RELnKidUCgUeP/996FWq/H2229j1apV0Gq1WL9+fbuY0vbbb7/VO5mYmpqKoqKiBrc3NTVtdIqesbFxG6c3TCxwonbmrbfeglqtxqxZs7Bx40bodDps2bIFpqambfL9Op0Oly9frrdX3diDVoyMjNC9e/d6F714eXm1WeaOigVO1A69+uqrsLGxwbRp0/Df//4XxcXF+Prrr1t0KtydO3f0d9G7d886Jyen0fd07dq13h61j4+PrKboGRIWOFE7NXnyZNjY2GD8+PH49ttvERYWhn379jV7mlxlZSUyMzPrHfq4cuVKo498c3FxqbdH3atXL4OYomdIOA+cqJ07fvw4wsPDUVJSgoCAAHz33Xfo1KlTve2qq6tx9erVenvUGRkZjU7Re+SRRxq8OVNDn09thxfyEBmQM2fOYMSIESgqKoK3tze2b9+Omzdv1tmrftAUPRsbm3rT82qn6HHmR/vDAicyMCkpKRgyZAhu3LjR6Dbm5uZ1pujVFrabmxuLWkaa2mvSz00ioibx9fXFnj17HriNubk5rKys6i0sb8PEPXAimUlISIBWq0VFRUWdQyhZWVmNnpR0cnJq8Ikx/DfTPvEQClEHU15ejvT09HonMa9du9boe9zd3esdbunZsycsLCzaLjjVwwInIgBAcXFxg09Nz8vLa3B7hUKBRx99tN7slB49esDMzKyN03dMLHAieqCioiKkpqbWuzz+t99+a3B7ExMTeHt71zsU061bN14a38JY4ETUbEIIFBYW1ttbT0lJQXFxcYPvMTc3R8+ePesdinF3d+fJ0z+JBU5ELUYIgdzc3Hp765cvX37g3POGHgzs6OjIYv8DLHAianXV1dXIzs6ut7eenp7e6NWfnTp1qnd83dfXl1d/3oMFTkSSqb3/yv0PdHjQVEdnZ+cG779iY2PTxumlxwInonbnzp07DU51/OWXXxp9j4eHR4N3QDTkqY4scCKSjeLi4gbvQZ6fn9/g9kZGRo1OdTSEe5BLXuDXrl3De++9h2PHjkGj0cDFxQUvvPACFi9eXGcu6cWLFxEREYGzZ8/CwcEBc+fOxdtvv93k72GBExmu2qcA3X/y9EFPAWpoqqOnp6espjpK/lT69PR01NTUYPPmzfDy8kJKSgpmzpyJ0tJSfPDBB/qQISEhCA4OxqZNm3Dp0iXMmDEDtra2ePXVV1srGhHJxCOPPIKBAwdi4MCB+nVCCBQUFNTbW09JSUFJSYn+z/cy1Jt8tekhlLVr12Ljxo24evUqAGDjxo1YvHgxNBqNfq88MjISe/fuRXp6eoOfUVFRgYqKCv3POp0Obm5u3AMn6uCEEMjJyal34rQpUx3vPxQj9VRHyffAG6LVautMFTp58iQGDhxY55BKaGgoVq9ejVu3bsHOzq7eZ0RFRWHFihVtkpeI5EOhUMDDwwMeHh4YOXKkfv2DHnRRXFyMU6dO4dSpU3U+694HXdQWfHt80EWb7YFnZWXB398fH3zwAWbOnAkACAkJgaenJzZv3qzf7vLly+jduzcuX76Mnj171vsc7oETUUto7FFzWVlZaKwW73/UXO/evVtlqmOr7YFHRkZi9erVD9wmLS0NPj4++p+vX7+O4cOHY8KECfry/rOUSiWUSuVDfQYRkZmZmf5K0YkTJ+rXl5WVIT09vd6J05ycHOTl5SEvLw+xsbF1Pqv2Yc/3lntbPOy52XvgN27caPRmN7W6deumPyySl5eHZ555Bv3798fWrVthZPR/z5CYNm0adDod9u7dq18XHx+PIUOGoKioqMFDKPfjLBQiags6nU4/1fHectdoNA1ub2RkBC8vL/j6+mLnzp3NupNjq+2BOzg4wMHBoUnbXr9+HYMHD4a/vz+2bNlSp7wBIDAwEIsXL8bdu3f1czdjY2Ph7e3dpPImImorKpUK/fv3R//+/eusr53qeO/eekpKCm7duoWff/4ZxcXFrXYb3lY7Bn79+nU888wz8PDwwLZt2+rMwXRycgLw+0lNb29vhISEYOHChUhJScGMGTPw4YcfNnkaIffAiai9EUJAo9EgJSUFWq0W48ePb9b7JZ+FEhsbi6ysLGRlZcHV1bXOa7X/Z6jVahw5cgQRERHw9/eHvb09li5dyjngRCRrCoUCzs7OcHZ2bt3v4aX0RETtC59KT0Rk4FjgREQy1aZXYraG2iNAOp1O4iRERC2jts/+6Ai37Au89jl9bm5uEichImpZxcXFUKvVjb4u+5OYNTU1yMvLg42NTbNuPlN7CX5ubq7Bnfzk2OSJY5On1hibEALFxcVwcXGpd/3MvWS/B25kZFRvmmJzqFQqg/sLVYtjkyeOTZ5aemwP2vOuxZOYREQyxQInIpKpDlvgSqUSy5YtM8g7G3Js8sSxyZOUY5P9SUwioo6qw+6BExHJHQuciEimWOBERDLFAicikikWOBGRTHXYAt+wYQO6du0Kc3NzBAQE4MyZM1JHarYTJ04gPDwcLi4uUCgUdZ4tCvx+Oe7SpUvh7OwMCwsLBAcHIzMzU5qwzRAVFYUnn3wSNjY26Ny5M8aMGYOMjIw625SXlyMiIgKPPPIIrK2tMW7cOBQUFEiUuHk2btyIvn376q/cCwwMxKFDh/Svy3ls91q1ahUUCgXmz5+vXyfnsS1fvhwKhaLOcu/D26UYW4cs8K+//hoLFizAsmXLcP78efj5+SE0NBSFhYVSR2uW0tJS+Pn5YcOGDQ2+vmbNGqxbtw6bNm3C6dOnYWVlhdDQUJSXl7dx0uZJSEhAREQETp06hdjYWNy9exchISEoLS3Vb/P6669j//79iI6ORkJCAvLy8vDss89KmLrpXF1dsWrVKpw7dw4//fQThgwZgtGjRyM1NRWAvMdW6+zZs9i8eTP69u1bZ73cx9a7d2/k5+frl6SkJP1rkoxNdEBPPfWUiIiI0P9cXV0tXFxcRFRUlISpHg4AERMTo/+5pqZGODk5ibVr1+rX3b59WyiVSrFz504JEv55hYWFAoBISEgQQvw+DlNTUxEdHa3fJi0tTQAQJ0+elCrmQ7GzsxNffPGFQYytuLhYdO/eXcTGxopBgwaJefPmCSHk/3tbtmyZ8PPza/A1qcbW4fbAKysrce7cOQQHB+vXGRkZITg4GCdPnpQwWcvKzs6GRqOpM061Wo2AgADZjVOr1QIAOnXqBAA4d+4c7t69W2dsPj4+cHd3l93YqqursWvXLpSWliIwMNAgxhYREYGwsLA6YwAM4/eWmZkJFxcXdOvWDVOmTEFOTg4A6cYm+7sRNtfNmzdRXV0NR0fHOusdHR2Rnp4uUaqWp9FoAKDBcda+Jgc1NTWYP38+nn76afj6+gL4fWxmZmawtbWts62cxnbp0iUEBgaivLwc1tbWiImJQa9evZCcnCzrse3atQvnz5/H2bNn670m999bQEAAtm7dCm9vb+Tn52PFihUICgpCSkqKZGPrcAVO8hIREYGUlJQ6xxoNgbe3N5KTk6HVarFnzx5Mnz4dCQkJUsd6KLm5uZg3bx5iY2Nhbm4udZwWN2LECP2f+/bti4CAAHh4eGD37t2wsLCQJFOHO4Rib28PY2PjemeHCwoK4OTkJFGqllc7FjmP87XXXsOBAwcQHx9f557vTk5OqKysxO3bt+tsL6exmZmZwcvLC/7+/oiKioKfnx8+/vhjWY/t3LlzKCwsxOOPPw4TExOYmJggISEB69atg4mJCRwdHWU7tobY2tqiR48eyMrKkuz31uEK3MzMDP7+/oiLi9Ovq6mpQVxcHAIDAyVM1rI8PT3h5ORUZ5w6nQ6nT59u9+MUQuC1115DTEwMjh07Bk9Pzzqv+/v7w9TUtM7YMjIykJOT0+7H1piamhpUVFTIemxDhw7FpUuXkJycrF+eeOIJTJkyRf9nuY6tISUlJbhy5QqcnZ2l+7212unRdmzXrl1CqVSKrVu3isuXL4tXX31V2NraCo1GI3W0ZikuLhYXLlwQFy5cEADEv/71L3HhwgXxyy+/CCGEWLVqlbC1tRX79u0TFy9eFKNHjxaenp7izp07Eid/sNmzZwu1Wi2OHz8u8vPz9UtZWZl+m1mzZgl3d3dx7Ngx8dNPP4nAwEARGBgoYeqmi4yMFAkJCSI7O1tcvHhRREZGCoVCIY4cOSKEkPfY7nfvLBQh5D22N954Qxw/flxkZ2eLH374QQQHBwt7e3tRWFgohJBmbB2ywIUQ4pNPPhHu7u7CzMxMPPXUU+LUqVNSR2q2+Ph4AaDeMn36dCHE71MJlyxZIhwdHYVSqRRDhw4VGRkZ0oZugobGBEBs2bJFv82dO3fEnDlzhJ2dnbC0tBRjx44V+fn50oVuhhkzZggPDw9hZmYmHBwcxNChQ/XlLYS8x3a/+wtczmObOHGicHZ2FmZmZqJLly5i4sSJIisrS/+6FGPj/cCJiGSqwx0DJyIyFCxwIiKZYoETEckUC5yISKZY4EREMsUCJyKSKRY4EZFMscCJiGSKBU5EJFMscCIimWKBExHJ1P8D6Jzl1+lHxSkAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -188,7 +201,7 @@
},
{
"cell_type": "markdown",
- "id": "fcc68336",
+ "id": "fe86583b",
"metadata": {},
"source": [
"### Insert mechanisms\n",
@@ -198,8 +211,8 @@
},
{
"cell_type": "code",
- "execution_count": 73,
- "id": "c854dd82",
+ "execution_count": 10,
+ "id": "bdddba0e",
"metadata": {},
"outputs": [],
"source": [
@@ -210,21 +223,529 @@
},
{
"cell_type": "markdown",
- "id": "0d37dd35",
+ "id": "dbc08017",
"metadata": {},
"source": [
- "The easiest way to know which branch is the zero-eth branch (or, e.g., the zero-eth compartment of the zero-eth branch) is to plot it in a different color:"
+ "Once the cell is created, we can inspect its `.nodes` attribute which lists all properties of the cell:"
]
},
{
"cell_type": "code",
- "execution_count": 74,
- "id": "62e23f1d",
+ "execution_count": 11,
+ "id": "eae355bd",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkFklEQVR4nO3deVhU9eI/8PfAwIACg+wqoLjhlvuGa6m51U3F6tFLhWmZXlxQ703Rb+Xz6zF89JZrbi1qpdK11LLUMiyXREHcwgXFDQKH1VnQAIf5/P7gem7kNoMMZw68X88zz+1z5szw/nTl7XTmc85RCSEEiIhIcZzkDkBERFXDAiciUigWOBGRQrHAiYgUigVORKRQLHAiIoVigRMRKZRa7gCPy2KxICcnB56enlCpVHLHISJ6bEIImEwmNGrUCE5OD/6crfgCz8nJQUhIiNwxiIiqXVZWFoKDgx/4vOIL3NPTE0DFRL28vGROQ0T0+IxGI0JCQqR+exDFF/jdwyZeXl4scCKqVR51WJhfYhIRKRQLnIhIoVjgRApz7do1lJSUyB2DHAALnEhBUlJSEBYWBm9vb5jNZrnjkMxY4EQKsXfvXvTo0QMAUFpaijVr1siciOTGAidSgM8++wzDhw+XxlOnTsW0adNkTESOgAVO5ODef/99REdHS+MFCxZg5cqVMiYiR6H4deBEtdmcOXOwePFiabxmzRpMnjxZxkTkSFjgRA5qwoQJ2LBhgzTetm0bnn/+eRkTkaNhgRM5oNGjR2Pnzp3SODExEQMHDpQvEDkkFjiRg+nfvz8OHToEoOJU6lOnTqFDhw4ypyJHxAInciAdOnTAb7/9BgBwcnLC5cuX0bRpU3lDkcNigRM5iLCwMFy7dg0A4OzsDJ1OBz8/P3lDkUNjgRM5gICAAOTn5wMANBoN9Ho93NzcZE5Fjo4FTiQjs9mMBg0aoLi4GADg4eGBmzdvQq3mryY9Gk/kIZJJSUkJPDw8pPL29fWFyWRieZPVWOBEMtDr9fD09ERpaSkAIDQ0FAUFBTKnIqVhgRPVsGvXrsHX11e6mmC7du1w/fp1mVORErHAiWrQmTNn0KxZM1gsFgBA3759kZaWJnMqUioWOFENOXjwIDp27AghBADg2WeflU7YIaoKFjhRDdi+fTsGDBggjaOjo7Fr1y4ZE1FtwAInsrO1a9dizJgx0vif//wnNm7cKF8gqjVY4ER29O6772LKlCnSePHixViyZImMiag24YJTIjuZMWMGVqxYIY03bNiA8ePHyxeIah27fgKPj49H9+7d4enpiYCAAIwaNQrp6emV9ikpKUFMTAx8fX3h4eGBMWPGIDc3156xiOwuKiqqUnnv2rWL5U3Vzq4FfuDAAcTExODo0aPYt28f7ty5gyFDhuDWrVvSPjNnzsSuXbuwbds2HDhwADk5OYiMjLRnLCK7GjZsGLZs2SKNjxw5gmeffVbGRFRbqcTdNU01ID8/HwEBAThw4AD69+8Pg8EAf39/bNmyRbrTyIULF9CmTRskJSWhV69ej3xPo9EIrVYLg8EALy8ve0+B6KF69uyJ5ORkABXX8j5//jzCw8NlTkVKY22v1egxcIPBAADw8fEBAKSmpuLOnTsYPHiwtE/r1q0RGhr6wAIvLS2VTj8GKiZK5AjCw8Nx8eJFABXX8s7OzkZQUJDMqag2q7FVKBaLBbGxsejTpw/at28PANDpdHB1dYW3t3elfQMDA6HT6e77PvHx8dBqtdIjJCTE3tGJHqlx48ZSebu4uMBgMLC8ye5qrMBjYmKQlpaGhISEx3qfuLg4GAwG6ZGVlVVNCYlsZzab4ePjg5ycHACAu7s7jEYjPDw8ZE5GdUGNHEKZOnUqvvvuOxw8eBDBwcHS9qCgIJSVlUGv11f6FJ6bm/vATy8ajQYajcbekYkeyWw2Q6vV4vbt2wAAb29v5Ofn83KwVGPs+glcCIGpU6dix44d2L9/P8LCwio937VrV7i4uCAxMVHalp6ejszMTERERNgzGtFjKS4uRr169aTyDgoK4o0YqMbZ9U9bTEwMtmzZgm+++Qaenp7ScW2tVgt3d3dotVpMnDgRs2bNgo+PD7y8vDBt2jRERERYtQKFSA46nQ7BwcEoLy8HALRo0QKXLl2SORXVRXZdRqhSqe67/c9npJWUlGD27NnYunUrSktLMXToUKxevdrqL4C4jJBqUkZGBlq1aiVdUbBLly5ITU2VORXVNtb2Wo2uA7cHFjjVlJSUFPTo0UMaDxo0CD/99JOMiai2srbXeDErIivs3bu3Unm/+OKLLG+SHQuc6BE+++wzDB8+XBpPmTIFX375pYyJiCqwwIkeYtmyZYiOjpbGCxYswOrVq2VMRPQ/XPNE9ADz5s1DfHy8NF61ahViYmJkTERUGQuc6D5ee+01fPLJJ9J469atGDt2rIyJiO7FAif6i8jISOzYsUMaJyYmYuDAgTImIro/FjjRnwwYMAAHDx4EUHEew/Hjx9GlSxeZUxHdHwuc6L86deqE06dPA6go7ytXrqBp06byhiJ6CBY4EYBmzZrh6tWrAABnZ2fodDr4+fnJnIro4VjgVOcFBAQgPz8fAODq6gqDwQA3NzeZUxE9Gguc6iyz2QxfX1/prk4eHh68oiApCk/koTqppKQEnp6eUnn7+vrCZDKxvElRWOBU5+j1enh6eqKkpAQAEBoaioKCAplTEdmOBU51yu+//w5fX1+YzWYAQLt27XD9+nWZUxFVDQuc6oyzZ88iNDQUFosFANC7d2+kpaXJnIqo6ljgVCccPnwY7du3l27EMGLECPz6668ypyJ6PCxwqvW2b9+Ofv36SePo6Gh8//33MiYiqh4scKrV1q9fjzFjxkjjWbNmYePGjfIFIqpGLHCqtRYuXIg33nhDGi9evBjvv/++jImIqhcXvVKtFBsbi+XLl0vjjz/+GBMnTpQxEVH1Y4FTrRMVFYUtW7ZI4127duHZZ5+VMRGRfbDAqVYZMWIE9uzZI40PHTqEvn37ypiIyH5Y4FRrRERE4OjRowAqLgd7/vx5hIeHy5yKyH5Y4FQrtG3bFufPnwcAODk54fr16wgODpY5FZF9scBJ8UJCQvD7778DAFxcXJCXlwdvb295QxHVABa4DcrLgUOHgBs3gIYNgX79AGdnuVPVXWazGYGBgSgqKgIAuLm54ebNm7yWN9UZDrEO/MMPP0TTpk3h5uaGnj17Ijk5We5I99i+HWjaFHjqKeDvf6/436ZNK7ZTzTObzfD29pbKW6vVwmQysbypTpG9wL/88kvMmjUL77zzDk6cOIGOHTti6NChyMvLkzuaZPt24Pnngf/+V7okO7tiO0u8ZhUXF6N+/fq4desWACAoKAh6vZ7X8qY6RyXuXt1HJj179kT37t2xatUqAIDFYkFISAimTZuGuXPnPvL1RqMRWq0WBoMBXl5eVv1Mc0kJLv/wg1X7WizAxIlA0c0H7+PrA3z8MeAk+1+Htd/F9HTMmTMH5/87btGiBS5duiRrJqLqZm2vyfqRpaysDKmpqYiLi5O2OTk5YfDgwUhKSrrva0pLS1FaWiqN795RxRaXf/gB4aNGWb3/kUftUAQg0uYYVAXhAP4GoDWA+l26IDU1VeZERPKR9TNjQUEBysvLERgYWGl7YGAgdDrdfV8THx8PrVYrPUJCQmoiKjmg8ePHyx2BSFaKO2gYFxeHWbNmSWOj0WhziTcfOhTpO3datW/ab8D8tx6938J3gfZP2BSDquD/LViA1FOnkA5g+vTp0Ol0WLhwodyxiGQha4H7+fnB2dkZubm5lbbn5uYiKCjovq/RaDTQaDSP9XPVbm4IHznSqn1bPAvErqv4wvJ+3xaoVEBwMDAqjksKa8LmkSORkJCAcePGAQDee+895OfnY/369TInI6p5sh5CcXV1RdeuXZGYmChts1gsSExMREREhIzJ/sfZGbh7UTuVqvJzd8fLlrG8a9LYsWPx448/SuOPPvoIzz//vIyJiOQh+7qJWbNm4aOPPsKmTZtw/vx5TJkyBbdu3cKrr74qdzRJZCTw1VdA48aVtwcHV2yP5BeYNe7pp59GamoqVP/9W/Trr7/Gk08+KW8oohom+zJCAFi1ahWWLFkCnU6HTp06YcWKFejZs6dVr63KMsKq4pmYjicjIwOtWrWS7nXZsWNHnDp1St5QRI/J2l5ziAJ/HDVZ4OSYCgoKEBQUhPLycgBAs2bNcPnyZZlTEVWdtb0m+yEUosfl5+cHvV4PV1dXAMCVK1fuWZpKVBuxwKlW8PDwwK1bt1C/fn0AQF5eHrRaLcxms8zJiOyHBU61hlqthl6vh4+PD4CK/wz19PRESUmJzMmI7IMFTrWKWq1GYWGhdDOHkpISeHp6Qq/XyxuMyA5Y4FQrZWVloU2bNgAqLj3r6+sr3fSBqLZggVOtde7cOfTq1QtAxQlioaGhOHv2rMypiKoPC5xqtaSkJAwfPhwAIIRA+/btcfjwYZlTEVUPFjjVert370ZUVJQ07tevH7755hsZExFVDxY41QlffPEFZsyYIY1HjRqFTz75RMZERI+PBU51xrJlyxAfHy+NX3vtNSxatEjGRESPhwVOdcrcuXOxbt06aRwXF4fZs2fLmIio6ljgVOdMmjQJO/90Q48PPvgAr7zyinyBiKqIBU510siRI3Ho0CFp/Pnnn2PEiBEyJiKyHQuc6qy+ffsiLS1Nuqb4nj170Lt3b5lTEVmPBU51Wrt27ZCZmQknp4pfhaSkJLRt21bmVETWYYFTnRccHIzCwkKo1RW3iD1//jxCQ0NlTkX0aCxwIgDe3t4wmUxwc3MDUHEtFV9fX16OlhwaC5zov9zc3GAymaQ7oBQVFcHb25slTg6LBU70J2q1GgaDAQEBAQAg3SSiuLhY5mRE92KBE91Hbm4uwsLCAABlZWXw9vZGQUGBzKmIKmOBEz3AlStX0LFjRwBAeXk5AgICkJGRIXMqov9hgRM9xKlTpzBgwAAAFZejbdWqFU6cOCFzKqIKLHCiR/jll18wevRoABUl3rVrV+zbt0/mVEQscCKrbN++Ha+//ro0HjJkCBISEmRMRMQCJ7La+vXrMW/ePGk8btw4rFy5UsZEVNexwIlssHDhQixdulQaT58+HW+//baMiaguY4ET2Sg2NhabN2+Wxu+++y6mTJkiYyKqq+xS4NeuXcPEiRMRFhYGd3d3NG/eHO+88w7Kysoq7XfmzBn069cPbm5uCAkJweLFi+0Rh6ja/f3vf8ePP/4ojdeuXYsXXnhBxkRUF9mlwC9cuACLxYJ169bh7NmzWLp0KdauXVvp+KHRaMSQIUPQpEkTpKamYsmSJViwYAHWr19vj0hE1e7pp59GcnKyNP7qq68wcOBAGRNRXaMSQoia+EFLlizBmjVrcOXKFQDAmjVrMH/+fOh0Ori6ugKouN3Vzp07ceHCBavf12g0QqvVwmAwSNewIKpJGRkZaNWqFe7+KnXp0gWpqakypyIls7bXauwYuMFggI+PjzROSkpC//79pfIGgKFDhyI9PR03b9584PuUlpbCaDRWehDJqUWLFsjLy4OzszMA4MSJE2jRooXMqaguqJECz8jIwMqVK/HGG29I23Q6HQIDAyvtd3es0+ke+F7x8fHQarXSIyQkxD6hiWzg5+cHvV4vfSC5fPkyGjZsKHMqqu1sKvC5c+dCpVI99PHXwx/Z2dkYNmwYXnjhhUonQlRVXFwcDAaD9MjKynrs9ySqDh4eHtLVC4GKDyJarZaXoyW7Uduy8+zZszF+/PiH7tOsWTPpn3NycvDUU0+hd+/e93w5GRQUhNzc3Erb7o6DgoIe+P4ajQYajcaW2EQ1Rq1WQ6/XIzAwEEVFRTAajfD09MTNmzelm0UQVRebCtzf3x/+/v5W7ZudnY2nnnoKXbt2xYYNG6R7Dt4VERGB+fPn486dO3BxcQEA7Nu3D+Hh4WjQoIEtsYgcilqtRmFhIYKDg5GdnY2SkhJ4enoiPz8f3t7ecsejGrJ3716sX78eQgjs2LHDLj/DLqtQsrOz8eSTT6JJkybYtGmT9OUO8L9P1waDAeHh4RgyZAjmzJmDtLQ0TJgwAUuXLsWkSZOs/llchUKOrHXr1khPTwcAODk54fr16wgODpY5FVWnlJQULF++HEeOHMGNGzdQWlqKv9aqrTVrda8JO9iwYYMAcN/Hn50+fVr07dtXaDQa0bhxY7Fo0SKbf5bBYBAAhMFgqK74RNWqR48e0p9/lUol0tLS5I5EVXDhwgUxefJkER4eLurXry9UKtUDe+7PD2dnZ5t/lrW9VmPrwO2Fn8BJCYYNG4YffvhBGh85cgQREREyJqIH0el0WLp0Kfbu3YurV6/i1q1bsFgsj3ydSqWCu7s7GjdujP79+2P69Ono0KFDlTJY22sscKIaEhUVhS1btkjjnTt3YuTIkTImqtuKi4uxfPlyfPvtt7h48SJMJhPKy8sf+TqVSgWNRoPAwEBEREQgJiYGffv2rdZs1vaaTV9iElHVbd68Gf7+/li+fDkAYNSoUdiwYcMjV3bR4zGbzfj444+xdetWnDt3Djdv3rSqqAHA1dUVfn5+6NKlC1577TWH+wuXBU5Ug5YtWwZ/f3/83//9HwDg1VdfhU6nw9y5c2VOpnxmsxlfffUVNm7ciNOnT6OwsBB37tyx6rVqtRoNGjRAhw4d8NJLL+Gll16CWu349ej4CYlqmfnz58Pf3186MzkuLg6FhYVYsmSJzMmUY9++fVi3bh2Sk5ORl5eH0tJSq17n7OwMrVaL1q1bIzIyEjExMYpen88CJ5LBpEmT4OfnhzFjxgAA/v3vfyM3NxefffaZzMkcS0pKClauXIlff/0VN27cQElJiVVL8pycnODh4YEWLVrgmWeewfTp0+Hn51cDiWsWC5xIJpGRkThw4IB01/vPP/8cN2/exK5du2ROVvMyMjLwwQcf4JdffkFmZiZu375tVVGrVCrUr18fTZo0waBBgzBz5kw0bdrU/oEdBFehEMnszJkz6NSpk1RYEREROHLkiMyp7EOn02HFihXYvXs3rl69iuLiYquX6Lm5uaFx48bo168fYmNjq7xETwm4CoVIITp06IDMzEw0adIEFosFSUlJaN++PdLS0uSOVmXFxcVYtWoVduzYgUuXLsFoNFq98uPuEr1evXohJiYG/fv3t3Na5WKBEzmA4OBgFBYWwt/fH2azGWfPnkVoaCgyMzPljvZQd5foJSQk4OzZs9Dr9VZffdHFxQV+fn7o3LkzJk6ciOeee04RKz8cCf9tETkIb29vmEwmNGjQACUlJcjKyoKfnx8KCgrkjgaz2YydO3fi008/xcmTJ6u0RK99+/YYO3YsJkyYwKKuJvy3SORA3NzcYDKZ4OvrC6PRiMLCQnh4eECv19dY6e3fvx+rV69GSkoKcnNzbV6i16pVK0RGRmLKlCnw8PCwc9q6jQVO5GDUajUMBgMCAgKQn58v3STCYDBU65rlEydOYMWKFTh8+DBycnJsXqLXvHlzDB8+HDNnzqyVS/SUgAVO5KDy8vIQFhaGa9euoaysDB4eHtDpdDaXZUZGBpYvX47ExESbl+jVq1cPoaGhGDRoEGbMmMF7fToYFjiRA7t69So6duyIM2fOoLy8HIGBgbh8+fJ91zoXFBRg6dKl2LNnDy5fvmzzEr1GjRqhb9++mD59Orp06WKH2VB1Y4ETObjTp09jwIABOHjwICwWC8LCwjB16lQcP34c6enpVVqi1717d7zxxht4+umn7Zye7Ikn8hApxOjRo7Fz506r9nVxcYGvry86d+6MCRMmYNSoUVz5oSDW9ppNd6UnIvns2LHDqnvSqlQqODs7w93dHT4+PmjSpAnLu5biJ3AiBTGbzejTpw98fHyQlZWF69ev49atWzZ9Kdm4cWMMHDgQsbGxCA8Pr4HUZCvekYeojjlz5gxWrFiBgwcP4vfff7dpWWD9+vURFhaGIUOGYPbs2dLNx0keLHAiAgAcPHgQH374IY4ePSpdO9uaX3tnZ2d4enqiZcuWGDlyJGbMmMETc2oIC5yIHshsNuPbb7/Fhg0bcOLECeTn51t9aryzszMaNGiAtm3b4sUXX8TEiRMVfVMER8QCJyKbmc1mbNq0CZs3b0ZaWhpu3rxp08WpfH190bFjR4wfPx7PP/88vzytIhY4EVWb4uJirFu3Dl9//TXS09NhMBhsWnseEBCAbt26YcqUKVx7bgUWOBHZ3d2zP/fu3YuMjAybzv7UaDRo1KgR+vTpg2nTpqF79+41kFgZWOBEJJtr165h6dKl+Omnn5CZmWnzUsfg4GAMHDgQs2bNqpPXX2GBE5HDOXPmDJYtW4ZDhw4hOzvb5isghoWFYejQoZg5c2atXurIAicixdi/fz/WrFmD5ORkm69B7unpiVatWmH06NGYOnVqrVjq6DCn0peWlqJTp05QqVQ4depUpefOnDmDfv36wc3NDSEhIVi8eLG94xCRAxo4cCC2bduG69evS5/K79y5g6+//hojRoxAw4YN4eLics/rysvLodfrkZycjLi4OHh6ekKlUsHFxQX+/v4YMGAA1q5da/VKGqWxe4G/+eabaNSo0T3bjUYjhgwZgiZNmiA1NRVLlizBggULsH79entHIiIFUKvViIyMxPfff4+cnByUlZVJxb5u3To89dRT8Pf3v+9SRbPZjIKCAhw8eBBTpkyBi4sLVCoVXF1d0bBhQ4wYMQIJCQnKL3ZhR7t37xatW7cWZ8+eFQDEyZMnpedWr14tGjRoIEpLS6Vtc+bMEeHh4Q99z5KSEmEwGKRHVlaWACAMBoO9pkFECmAymcTixYtFr169hI+Pj3B2dhYArHpoNBoREhIixowZIxITE+WeijAYDFb1mt0KXKfTicaNG4uUlBRx9erVewr85ZdfFiNHjqz0mv379wsAoqio6IHv+84779z3/wAWOBHdT35+vpg3b57o3Lmz8PLyEk5OTlaVukqlEu7u7qJ58+YiOjpapKam1lhmawvcLodQhBAYP348Jk+ejG7dut13H51Oh8DAwErb7o51Ot0D3zsuLg4Gg0F6ZGVlVV9wIqp1/Pz8sHDhQpw4cUI6AUkIgUuXLmHq1Klo06YN6tevD5VKVel1Qgj88ccfuHz5MjZt2oSuXbtCpVJJK2Latm2LadOmISMjQ6aZ2XgMfO7cuVCpVA99XLhwAStXroTJZEJcXFy1B9ZoNPDy8qr0ICKyVYsWLbBy5UqcO3dOOgFJCIHU1FRER0ejefPmcHd3v2+x37p1C+fPn8eqVavQsmVL6RrsWq0WXbp0wbx581BQUGD3Odi0jDA/Px+FhYUP3adZs2Z48cUXsWvXrkoTLy8vh7OzM6KiorBp0ya88sorMBqNle4w8vPPP2PgwIEoKipCgwYNrMrEZYREVBOqutTRxcUFZWVlNv0sWdeBZ2Zmwmg0SuOcnBwMHToUX331FXr27Ing4GCsWbMG8+fPR25urrQ8aN68edi+fTsuXLhg9c9igRORXMxmM3bu3IlPP/0UJ0+eRGFh4X2v6mhrzTrUiTzXrl1DWFgYTp48iU6dOgEADAYDwsPDMWTIEMyZMwdpaWmYMGECli5dikmTJln93ixwInI0ZrMZH3/8MRISEqBWq/HTTz/Z9Hpre022az1qtVr8+OOPiImJQdeuXeHn54e3337bpvImInJEarUakydPxuTJk+36c3gqPRGRg3GYU+mJiMg+WOBERAql+Psd3T0C9OdVL0RESna3zx51hFvxBW4ymQAAISEhMichIqpeJpMJWq32gc8r/ktMi8WCnJwc6TKS1jIajQgJCUFWVlat+/KTc1Mmzk2Z7DE3IQRMJhMaNWoEJ6cHH+lW/CdwJycnBAcHV/n1tfl0fM5NmTg3ZaruuT3sk/dd/BKTiEihWOBERApVZwtco9HgnXfegUajkTtKtePclIlzUyY556b4LzGJiOqqOvsJnIhI6VjgREQKxQInIlIoFjgRkUKxwImIFKpOFviHH36Ipk2bws3NDT179kRycrLckWwWHx+P7t27w9PTEwEBARg1ahTS09Mr7VNSUoKYmBj4+vrCw8MDY8aMQW5urkyJq27RokVQqVSIjY2Vtil5btnZ2XjppZfg6+sLd3d3PPHEEzh+/Lj0vBACb7/9Nho2bAh3d3cMHjwYly5dkjGxdcrLy/HWW28hLCwM7u7uaN68Od59991KF2RS0twOHjyIv/3tb2jUqBFUKlWl+/cC1s2lqKgIUVFR8PLygre3NyZOnIji4uLqCynqmISEBOHq6io+/fRTcfbsWfH6668Lb29vkZubK3c0mwwdOlRs2LBBpKWliVOnTokRI0aI0NBQUVxcLO0zefJkERISIhITE8Xx48dFr169RO/evWVMbbvk5GTRtGlT0aFDBzFjxgxpu1LnVlRUJJo0aSLGjx8vjh07Jq5cuSJ++OEHkZGRIe2zaNEiodVqxc6dO8Xp06fFc889J8LCwsQff/whY/JHW7hwofD19RXfffeduHr1qti2bZvw8PAQy5cvl/ZR0tx2794t5s+fL7Zv3y4AiB07dlR63pq5DBs2THTs2FEcPXpUHDp0SLRo0UKMGzeu2jLWuQLv0aOHiImJkcbl5eWiUaNGIj4+XsZUjy8vL08AEAcOHBBCCKHX64WLi4vYtm2btM/58+cFAJGUlCRXTJuYTCbRsmVLsW/fPjFgwACpwJU8tzlz5oi+ffs+8HmLxSKCgoLEkiVLpG16vV5oNBqxdevWmohYZc8884yYMGFCpW2RkZEiKipKCKHsuf21wK2Zy7lz5wQAkZKSIu2zZ88eoVKpRHZ2drXkqlOHUMrKypCamorBgwdL25ycnDB48GAkJSXJmOzxGQwGAICPjw8AIDU1FXfu3Kk019atWyM0NFQxc42JicEzzzxTaQ6Asuf27bffolu3bnjhhRcQEBCAzp0746OPPpKev3r1KnQ6XaW5abVa9OzZ0+Hn1rt3byQmJuLixYsAgNOnT+Pw4cMYPnw4AGXP7a+smUtSUhK8vb3RrVs3aZ/BgwfDyckJx44dq5Ycir8aoS0KCgpQXl6OwMDAStsDAwNx4cIFmVI9PovFgtjYWPTp0wft27cHAOh0Ori6usLb27vSvoGBgdDpdDKktE1CQgJOnDiBlJSUe55T8tyuXLmCNWvWYNasWZg3bx5SUlIwffp0uLq6Ijo6Wsp/vz+jjj63uXPnwmg0onXr1nB2dkZ5eTkWLlyIqKgoAFD03P7KmrnodDoEBARUel6tVsPHx6fa5lunCry2iomJQVpaGg4fPix3lGqRlZWFGTNmYN++fXBzc5M7TrWyWCzo1q0b3nvvPQBA586dkZaWhrVr1yI6OlrmdI/nP//5DzZv3owtW7agXbt2OHXqFGJjY9GoUSPFz81R1alDKH5+fnB2dr5ntUJubi6CgoJkSvV4pk6diu+++w4///xzpeuiBwUFoaysDHq9vtL+Sphramoq8vLy0KVLF6jVaqjVahw4cAArVqyAWq1GYGCgYufWsGFDtG3bttK2Nm3aIDMzEwCk/Er8M/qvf/0Lc+fOxdixY/HEE0/g5ZdfxsyZMxEfHw9A2XP7K2vmEhQUhLy8vErPm81mFBUVVdt861SBu7q6omvXrkhMTJS2WSwWJCYmIiIiQsZkthNCYOrUqdixYwf279+PsLCwSs937doVLi4uleaanp6OzMxMh5/roEGD8Ntvv+HUqVPSo1u3boiKipL+Walz69Onzz3LPS9evIgmTZoAAMLCwhAUFFRpbkajEceOHXP4ud2+ffueu8c4OzvDYrEAUPbc/sqauURERECv1yM1NVXaZ//+/bBYLOjZs2f1BKmWr0IVJCEhQWg0GrFx40Zx7tw5MWnSJOHt7S10Op3c0WwyZcoUodVqxS+//CJu3LghPW7fvi3tM3nyZBEaGir2798vjh8/LiIiIkRERISMqavuz6tQhFDu3JKTk4VarRYLFy4Uly5dEps3bxb16tUTX3zxhbTPokWLhLe3t/jmm2/EmTNnxMiRIx12qd2fRUdHi8aNG0vLCLdv3y78/PzEm2++Ke2jpLmZTCZx8uRJcfLkSQFAfPDBB+LkyZPi+vXrQgjr5jJs2DDRuXNncezYMXH48GHRsmVLLiN8XCtXrhShoaHC1dVV9OjRQxw9elTuSDYDcN/Hhg0bpH3++OMP8Y9//EM0aNBA1KtXT4wePVrcuHFDvtCP4a8FruS57dq1S7Rv315oNBrRunVrsX79+krPWywW8dZbb4nAwECh0WjEoEGDRHp6ukxprWc0GsWMGTNEaGiocHNzE82aNRPz588XpaWl0j5KmtvPP/9839+x6OhoIYR1cyksLBTjxo0THh4ewsvLS7z66qvCZDJVW0ZeD5yISKHq1DFwIqLahAVORKRQLHAiIoVigRMRKRQLnIhIoVjgREQKxQInIlIoFjgRkUKxwImIFIoFTkSkUCxwIiKF+v9xlgrnZQkbxQAAAABJRU5ErkJggg==",
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
local_cell_index
\n",
+ "
local_branch_index
\n",
+ "
local_comp_index
\n",
+ "
length
\n",
+ "
radius
\n",
+ "
axial_resistivity
\n",
+ "
capacitance
\n",
+ "
v
\n",
+ "
global_cell_index
\n",
+ "
global_branch_index
\n",
+ "
...
\n",
+ "
Na
\n",
+ "
Na_gNa
\n",
+ "
eNa
\n",
+ "
vt
\n",
+ "
Na_m
\n",
+ "
Na_h
\n",
+ "
K
\n",
+ "
K_gK
\n",
+ "
eK
\n",
+ "
K_n
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
...
\n",
+ "
True
\n",
+ "
0.05
\n",
+ "
50.0
\n",
+ "
-60.0
\n",
+ "
0.2
\n",
+ "
0.2
\n",
+ "
True
\n",
+ "
0.005
\n",
+ "
-90.0
\n",
+ "
0.2
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
0
\n",
+ "
0
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
...
\n",
+ "
True
\n",
+ "
0.05
\n",
+ "
50.0
\n",
+ "
-60.0
\n",
+ "
0.2
\n",
+ "
0.2
\n",
+ "
True
\n",
+ "
0.005
\n",
+ "
-90.0
\n",
+ "
0.2
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
0
\n",
+ "
1
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
1
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
0
\n",
+ "
1
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
1
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
0
\n",
+ "
2
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
2
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
0
\n",
+ "
2
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
2
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
0
\n",
+ "
3
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
3
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
0
\n",
+ "
3
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
3
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
0
\n",
+ "
4
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
4
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
0
\n",
+ "
4
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
0
\n",
+ "
4
\n",
+ "
...
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
10 rows × 25 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " local_cell_index local_branch_index local_comp_index length radius \\\n",
+ "0 0 0 0 10.0 1.0 \n",
+ "1 0 0 1 10.0 1.0 \n",
+ "2 0 1 0 10.0 1.0 \n",
+ "3 0 1 1 10.0 1.0 \n",
+ "4 0 2 0 10.0 1.0 \n",
+ "5 0 2 1 10.0 1.0 \n",
+ "6 0 3 0 10.0 1.0 \n",
+ "7 0 3 1 10.0 1.0 \n",
+ "8 0 4 0 10.0 1.0 \n",
+ "9 0 4 1 10.0 1.0 \n",
+ "\n",
+ " axial_resistivity capacitance v global_cell_index \\\n",
+ "0 5000.0 1.0 -70.0 0 \n",
+ "1 5000.0 1.0 -70.0 0 \n",
+ "2 5000.0 1.0 -70.0 0 \n",
+ "3 5000.0 1.0 -70.0 0 \n",
+ "4 5000.0 1.0 -70.0 0 \n",
+ "5 5000.0 1.0 -70.0 0 \n",
+ "6 5000.0 1.0 -70.0 0 \n",
+ "7 5000.0 1.0 -70.0 0 \n",
+ "8 5000.0 1.0 -70.0 0 \n",
+ "9 5000.0 1.0 -70.0 0 \n",
+ "\n",
+ " global_branch_index ... Na Na_gNa eNa vt Na_m Na_h K \\\n",
+ "0 0 ... True 0.05 50.0 -60.0 0.2 0.2 True \n",
+ "1 0 ... True 0.05 50.0 -60.0 0.2 0.2 True \n",
+ "2 1 ... False NaN NaN NaN NaN NaN False \n",
+ "3 1 ... False NaN NaN NaN NaN NaN False \n",
+ "4 2 ... False NaN NaN NaN NaN NaN False \n",
+ "5 2 ... False NaN NaN NaN NaN NaN False \n",
+ "6 3 ... False NaN NaN NaN NaN NaN False \n",
+ "7 3 ... False NaN NaN NaN NaN NaN False \n",
+ "8 4 ... False NaN NaN NaN NaN NaN False \n",
+ "9 4 ... False NaN NaN NaN NaN NaN False \n",
+ "\n",
+ " K_gK eK K_n \n",
+ "0 0.005 -90.0 0.2 \n",
+ "1 0.005 -90.0 0.2 \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ "5 NaN NaN NaN \n",
+ "6 NaN NaN NaN \n",
+ "7 NaN NaN NaN \n",
+ "8 NaN NaN NaN \n",
+ "9 NaN NaN NaN \n",
+ "\n",
+ "[10 rows x 25 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cell.nodes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a9506866",
+ "metadata": {},
+ "source": [
+ "_Note that `Jaxley` uses the same units as the `NEURON` simulator, which are listed [here](https://www.neuron.yale.edu/neuron/static/docs/units/unitchart.html)._\n",
+ "\n",
+ "You can also inspect just parts of the `cell`, for example its 1st branch:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "6312e227",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
local_cell_index
\n",
+ "
local_branch_index
\n",
+ "
local_comp_index
\n",
+ "
length
\n",
+ "
radius
\n",
+ "
axial_resistivity
\n",
+ "
capacitance
\n",
+ "
v
\n",
+ "
Leak
\n",
+ "
Leak_gLeak
\n",
+ "
...
\n",
+ "
Na_m
\n",
+ "
Na_h
\n",
+ "
K
\n",
+ "
K_gK
\n",
+ "
eK
\n",
+ "
K_n
\n",
+ "
global_cell_index
\n",
+ "
global_branch_index
\n",
+ "
global_comp_index
\n",
+ "
controlled_by_param
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
True
\n",
+ "
0.0001
\n",
+ "
...
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0
\n",
+ "
1
\n",
+ "
2
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
0
\n",
+ "
0
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
5000.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
True
\n",
+ "
0.0001
\n",
+ "
...
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0
\n",
+ "
1
\n",
+ "
3
\n",
+ "
1
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2 rows × 25 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " local_cell_index local_branch_index local_comp_index length radius \\\n",
+ "2 0 0 0 10.0 1.0 \n",
+ "3 0 0 1 10.0 1.0 \n",
+ "\n",
+ " axial_resistivity capacitance v Leak Leak_gLeak ... Na_m Na_h \\\n",
+ "2 5000.0 1.0 -70.0 True 0.0001 ... NaN NaN \n",
+ "3 5000.0 1.0 -70.0 True 0.0001 ... NaN NaN \n",
+ "\n",
+ " K K_gK eK K_n global_cell_index global_branch_index \\\n",
+ "2 False NaN NaN NaN 0 1 \n",
+ "3 False NaN NaN NaN 0 1 \n",
+ "\n",
+ " global_comp_index controlled_by_param \n",
+ "2 2 1 \n",
+ "3 3 1 \n",
+ "\n",
+ "[2 rows x 25 columns]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cell.branch(1).nodes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e9425ae3",
+ "metadata": {},
+ "source": [
+ "The easiest way to know which branch is the 1st branch (or, e.g., the zero-eth compartment of the 1st branch) is to plot it in a different color:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "9eefce4d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh+ElEQVR4nO3dfVRUdcIH8O8MLwOIDCDIi7wIYiCipKhAvkCKYLluVppt1pq29mTko9nJdEutp+3BtN1aVzPXzknb9tHSs2plmfgCioEaSsprICgkDKjgDC/CCPN7/miZFQcMlOFyh+/nnHuO3Lkz8/0d7Ovt3t+9VyGEECAiItlRSh2AiIjuDguciEimWOBERDLFAicikikWOBGRTLHAiYhkigVORCRT1lIHuFcGgwHl5eXo378/FAqF1HGIiO6ZEAK1tbXw9vaGUtnxfrbsC7y8vBy+vr5SxyAi6nZlZWXw8fHp8HXZF3j//v0B/DJQJycnidMQEd07nU4HX19fY791RPYF3nrYxMnJiQVORBbl1w4L8yQmEZFMscCJiGSKBU4kMy0tLWhsbJQ6BvUCLHAiGdHr9fjd736HJ554Ajdv3pQ6DklM9icxifqKhoYGPP744zhw4ABsbGyQmZmJqKgoqWORhFjgRDKg1WoxY8YMHD9+HPb29ti7dy/Lm1jgRL3dlStXMG3aNJw5cwZqtRr79+/H+PHjpY5FvQALnKgXu3z5MuLi4pCfnw93d3d89913GDVqlNSxqJdggRP1UkVFRZg6dSouXrwIHx8fHDp0CMHBwVLHol6Es1CIeqHs7GxMnDgRFy9eRFBQENLS0ljeZIIFTtTLnDp1CjExMdBoNBg5ciSOHz8Of39/qWNRL8QCJ+pFjh49iilTpqC6uhpRUVFISUmBp6en1LGol2KBE/USX331FR566CHU1dVhypQpSE5OhouLi9SxqBdjgRP1Ajt27MBjjz2GpqYmPPLII/j666/h6OgodSzq5VjgRBLbsmUL5s6di+bmZjz99NPYtWsX7OzspI5FMsACJ5LQunXr8MILL0AIgRdffBHbt2+HjY2N1LFIJljgRBIQQuCPf/wjXnvtNQDAypUrsXHjxjs+/5DodryQh6iHGQwGLF68GB9++CEAYO3atcYiJ+oKFjhRD2pubsb8+fPx2WefQaFQ4MMPP8QLL7wgdSySKRY4UQ9pbGzEk08+iX379sHKygqffvopnnrqKaljkYyxwIl6QF1dHWbOnInDhw9DpVJh165dmDFjhtSxSOZY4ERmVl1djenTpyMjIwOOjo748ssv8eCDD0odiywAC5zIjDQaDeLj43H+/Hm4uLjgwIEDGDdunNSxyEKwwInM5NKlS4iLi0NRURE8PT2RnJyMsLAwqWORBTHrpNNjx45hxowZ8Pb2hkKhwN69e9u8LoTA6tWr4eXlBXt7e8TFxaGwsNCckYh6REFBASZMmICioiIMHjwYaWlpLG/qdmYt8Pr6eoSHh2PTpk3tvr5u3Tps2LABH330EU6ePIl+/fohISEBjY2N5oxFZFZZWVmYOHEifv75Z4SEhOD48eMYMmSI1LHIEokeAkDs2bPH+LPBYBCenp5i/fr1xnXXr18XKpVK7Nixo9Ofq9VqBQCh1Wq7My7RXUlLSxNqtVoAEKNHjxZVVVVSRyIZ6myvSXbdbklJCTQaDeLi4ozr1Go1IiMjkZ6e3uH7mpqaoNPp2ixEvcHBgwcRHx8PrVaLiRMn4siRI3B3d5c6FlkwyQpco9EAADw8PNqs9/DwML7WnqSkJKjVauPi6+tr1pxEnfGvf/0LM2bMQENDA6ZNm4YDBw5ArVZLHYssnOzunLNy5UpotVrjUlZWJnUk6uO2b9+O2bNnQ6/XY/bs2di3bx8cHBykjkV9gGQF3vqYqMrKyjbrKysr7/gIKZVKBScnpzYLkVQ2bNiAZ599FgaDAc899xx27NgBW1tbqWNRHyFZgQcEBMDT0xOHDx82rtPpdDh58iSio6OlikXUKUIIvP3221iyZAkA4OWXX8bWrVthZWUlcTLqS8x6IU9dXR2KioqMP5eUlCArKwuurq7w8/PD0qVL8ac//QlDhw5FQEAAVq1aBW9vb8ycOdOcsYjuiRACr776Kv785z8DAN566y2sWrUKCoVC4mTU55hzKszRo0cFAJNl3rx5QohfphKuWrVKeHh4CJVKJaZMmSIKCgq69B2cRkg9qbm5WfzhD38w/l3+4IMPpI5EFqizvaYQQgjJ/vXoBjqdDmq1GlqtlsfDyaz0ej2eeeYZfPHFF1Aqlfj4448xf/58qWORBepsr/FeKESd0NDQgFmzZuHbb7+FjY0NduzYgccff1zqWNTHscCJfoVOp8OMGTNw7Ngx2NvbY8+ePUhISJA6FhELnOhOrl69imnTpiEzMxNOTk7Yv38/JkyYIHUsIgAscKIOXb58GVOnTkVeXh7c3Nxw8OBBjBo1SupYREYscKJ2FBcXIy4uDiUlJfDx8UFycjJCQkKkjkXUhuwupScyt+zsbEyYMAElJSUICgpCWloay5t6JRY40S1Onz6NmJgYVFRUYMSIETh+/Dj8/f2ljkXULhY40b+lpKRg8uTJqK6uRmRkJFJSUu54Xx4iqbHAiQDs378fDz30EOrq6jB58mQcOnQIrq6uUsciuiMWOPV5O3fuxMyZM9HY2Ijf/va32L9/PxwdHaWORfSrWODUp/3973/HU089hebmZsydOxe7d++GnZ2d1LGIOoUFTn3W+vXr8V//9V8QQmDRokX49NNPYWNjI3Usok5jgVOfI4TAG2+8geXLlwP45SlPmzZtglLJ/xxIXnghD/UpBoMBS5YswcaNGwEAa9euxWuvvSZxKqK7wwKnPqO5uRkLFizAP/7xDygUCmzatAmLFi2SOhbRXWOBU5/Q1NSEJ598Env37oWVlRW2b9+OuXPnSh2L6J6wwMni1dXV4dFHH8WhQ4egUqmwa9cuzJgxQ+pYRPeMBU4WraamBtOnT0d6ejr69euHL7/8EpMnT5Y6FlG3YIGTxaqsrER8fDzOnTsHFxcXfPvtt4iMjJQ6FlG3YYGTRSotLUVcXBwKCwvh6emJgwcPYsSIEVLHIupWLHCyOAUFBZg6dSrKysrg7++PQ4cOISgoSOpYRN2OVy6QRcnKysLEiRNRVlaGkJAQpKWlsbzJYrHAyWJ8//33iI2NxZUrVzBq1CgcO3YMPj4+UsciMhsWOFmE5ORkTJ06FVqtFhMmTMDRo0fh7u4udSwis2KBk+zt2bMHv/nNb9DQ0IBp06bhu+++g1qtljoWkdmxwEnWPv30U8yePRt6vR6zZs3Cvn374ODgIHUsoh7RKwp806ZNGDx4MOzs7BAZGYlTp05JHYlkYOPGjZg3bx5aWlqwYMEC7Ny5E7a2tlLHIuoxkhf4559/jmXLlmHNmjU4c+YMwsPDkZCQgKqqKqmjUS8lhMA777yDxYsXAwCWLl2KrVu3wsrKSuJkRD1LIYQQUgaIjIzE2LFjjbf3NBgM8PX1xeLFi7FixYpffb9Op4NarYZWq4WTk1OnvlMIgYaGhnvKTdJobmrC24sX48//938AgDfffBOrV6+GQqGQOBlR9+lsr0l6IY9er0dmZiZWrlxpXKdUKhEXF4f09PR239PU1ISmpibjzzqdrsvf29DQwGceytQWAC8D+AbA8++/j6VLl0obiEhCkh5CuXr1KlpaWuDh4dFmvYeHBzQaTbvvSUpKglqtNi6+vr49EZV6ATWABwAMAnAcQIKbm7SBiCQmu0vpV65ciWXLlhl/1ul0XS5xBwcH1NXVdXc06gGFGRk4N306RjY1weaZZ/BjTQ3C/30snKivkbTA3dzcYGVlhcrKyjbrKysr4enp2e57VCoVVCrVPX2vQqFAv3797ukzSBr3T5kCXVERssLCcL9Wi/v++79xuqYGY1evljoaUY+T9BCKra0tIiIicPjwYeM6g8GAw4cPIzo6WsJk1Js5+fgguLgYpwYOhD2A+9eswfcvvyx1LKIeJ/k0wmXLlmHr1q3Yvn078vLysGjRItTX12P+/PlSR6NezN7VFaNKSvC9nx9sAER+8AGOP/us1LGIepTkx8DnzJmDK1euYPXq1dBoNLj//vtx4MABkxObRLezcXBAZGEhjoWHY1J+PiZu346UmhrE7tsndTSiHiH5PPB7dTfzwMmyCIMBqVFRiD19GgCQMmkSYo4ehUIp+f9gEt2VzvYa/4aT7CmUSsRkZCBl6lQAQOyxYzg2ejQMzc0SJyMyLxY4WQSFUonYgweROmsWACDmxx9xYtgwNDc2SpyMyHxY4GRRYnbtQtrChWgGMLGoCKeDgtB0F1frEskBC5wszoS//x0/LF+OJgDRly/jfGAg6nlzNLJALHCySFHvvoucd99FPYAx167hQlAQtJcuSR2LqFuxwMlijV6+HMVbtuC6QoGRtbWoGDYMV3JypI5F1G1Y4GTRRjz/PCp37sQVhQIhN26gdvRolJ88KXUsom7BAieLF/zEE6j79ltctrJCoF4Pw/jxuJicLHUsonvGAqc+ISAhATh+HCU2NvBpaYHDtGn4afduqWMR3RMWOPUZg6Kj4XjmDArs7DDQYMDAJ55A9scfSx2L6K6xwKlPcQ8Lg0duLs47OsJZCAxeuBBn1q+XOhbRXWGBU5/jHBCAwAsXkOnqCkcAw5cvx8k//lHqWERdxgKnPqnfwIEIKylBhpcXVAAikpJwYtEiqWMRdQkLnPoslZMTxhQXIy0wENYAxn/0EVKffFLqWESdxgKnPs3azg4PFBQgdeRIAEDM558jJSFB4lREncMCpz5PaW2NSWfPImXCBABA7MGDSImKgjAYJE5GdGcscCL8+3a0x48jZfp0AEDsyZM4PmIE7ylOvRoLnOgWsV9/jWPPPAMDgEm5uUgPCsLNhgapYxG1iwVOdJtJn36KjMWLcRPA+EuXcCYwEI3Xr0sdi8gEC5yoHQ9s2ICsNWtwA0BkZSXyAgJQW14udSyiNljgRB0Y++abKPjgA9QCGHX9Oi7ddx9qLlyQOhaREQuc6A7uX7IEZdu2oVqhQFh9Pa4OH47KrCypYxEBYIET/arQefNQvWcPNEolhjY1oXHsWPycliZ1LCIWOFFnBD3yCPSHD6PU2hr+zc2wionBha+/ljoW9XEscKJO8ouNhU16OopUKngZDFD/9rfI++c/pY5FfRgLnKgLvMaMgcuPPyLXwQFuQsD76afx48aNUseiPooFTtRFA4KD4VNQgCy1GmoAQxcvxg9/+pPUsagPMluBv/POO3jggQfg4OAAZ2fndrcpLS3F9OnT4eDggIEDB+LVV19FMy9dJhlw8vFBcHExTru7wwHAyFWrkL5smdSxqI8xW4Hr9XrMnj0bizq4x3JLSwumT58OvV6P77//Htu3b8e2bduwevVqc0Ui6lb2rq4ILy7G976+sAUw7v33cXz+fKljUV8izOyTTz4RarXaZP0333wjlEql0Gg0xnWbN28WTk5OoqmpqdOfr9VqBQCh1Wq7Iy5RlzU3NYnUkBAhACEAkTJzptSRSOY622uSHQNPT0/HiBEj4OHhYVyXkJAAnU6HnJycDt/X1NQEnU7XZiGSkpWtLSbm5CBlzBgAQMzevUiJjeXtaMnsJCtwjUbTprwBGH/WaDQdvi8pKQlqtdq4+Pr6mjUnUWcolErEnDyJlLg4AEBsaiqOjRnD29GSWXWpwFesWAGFQnHHJT8/31xZAQArV66EVqs1LmVlZWb9PqLOUiiViE1ORurjjwMAYs6exYnQULTo9RInI0tl3ZWNX3nlFTz77LN33CYwMLBTn+Xp6YlTp061WVdZWWl8rSMqlQoqlapT30EkhZjdu5G2cCGiP/4YEwsLkR4YiNG5uVA5OUkdjSxMlwrc3d0d7u7u3fLF0dHReOedd1BVVYWBAwcCAJKTk+Hk5ITQ0NBu+Q4iqUzYuhUZLi4YtX49oi9fxg+BgQjNz4eDm5vU0aiHaLVa5OTk4Pr163j44YfN8h1dKvCuKC0tRXV1NUpLS9HS0oKsf9/BLSgoCI6OjoiPj0doaCieeeYZrFu3DhqNBm+88QYSExO5h00WIWrdOmS6uiJk5UqMuXYNPw4ZgsHnz0Pt5yd1NOpGDQ0NyMvLQ3Z2tnHJyckxHt4dNGgQfv75Z7N8t0IIIczxwc8++yy2b99usv7o0aOIjY0FAFy6dAmLFi1CSkoK+vXrh3nz5mHt2rWwtu78vys6nQ5qtRparRZO/F9U6oXOb9kCvxdegBpAnr093DMz4TZsmNSxqIv0ej0KCgqMBd1a1sXFxeioRn18fBAWFoZ9+/bB1ta209/V2V4zW4H3FBY4yUHB55/D9Xe/g7sQuGBrC4e0NHiNHSt1LGpHc3MzLly40Kaks7OzUVhY2OGV4gMHDkRYWBiGDx+OsLAwhIWFITQ0tMOr0H9NZ3vNbIdQiOg/gufMQbGTE/QzZmCIXo+fo6Nx6bvv4D9litTR+iyDwYDS0tI2hz2ys7ORl5eHpqamdt+jVquNBd1a2MOHDzeex+tp3AMn6kGX09Ohj4lBwM2bqFQqof3iC9z372mHZB5CCFRUVJgc+sjJyUF9fX2773FwcDCW862F7e3tDYVCYfbM3AMn6oUGRUfjypkzKBg7FsGNjbCdPRvZW7ci7LnnpI5mEa5evWpS0tnZ2aipqWl3e1tbW4SEhLTZow4LC8PgwYOhVPb+m7WywIl6mHtYGGxyc3F+5EiMqKuDzR/+gLNaLUbxboad1nrLjdv3qluvJbmdlZUVhg4danKcOigoqEuTJnob+SYnkjHngABYFxbiTGgoRtfUYNgrr+DktWuIfOcdqaP1Kq1T9G4/oXinK7ADAgJMjlMHBwfDzs6uB5P3DBY4kUQcPT0RWlyMjNBQRFVUIOJ//xcnrl/H+E2bpI7W4/R6PX766SeTQx8XLlzocIreoEGDTPaohw0bBkdHxx5OLx0WOJGE7JydMaa4GGnDh2NCcTGiP/wQx6qrMWnHDqmjmUVLSwsuXLhgcujjp59+6nCKnpubW5s96tYpei4uLj2cvvdhgRNJzNrODg8UFCB19GjEnD+PSTt3IqWmBrEHDkgd7a61TtG7/YRiXl4eGhsb232Pk5OTycnEsLAwyaboyQGnERL1EsJgQOqkSYg9cQIAkBIVhZgTJ6DoxbMhhBDQaDQmhz5ycnJQV1fX7nvs7e0RGhpqcpzax8enR6boyQGvxCSSqZTp0xH7zTcAgGPDh2NCVhaUvWCmxLVr10xOJubk5KC6urrd7W1sbDqcomdlZdXD6eWFBU4kY8eefhoT/vlPKAGcGDwY43JyYOPg0CPfrdPpkJuba7JX3dGDVpRKJYYOHWpy0UtQUBBsbGx6JLOl4YU8RDI26bPP8L2LC8Zu3IjxFy/i5JAhCM/Lg91d3lujPTdu3DDeRe/WPevS0tIO3zN48GCTPeqQkBCLnKInByxwol7qgb/9DadcXDDy7bcRqdHgTGAg7svNheMdHnjSHr1ej8LCQpNDHxcuXIChg+d2ent7m+xRh4aG9qkpenLAAifqxcb9z/8gy9UVQ15+GaNrapAdFIRBP/4IlyFDTLZtaWlBcXGxyR51QUFBh1P0BgwY0O7NmVxdXc09NOoGLHCiXu7+pUuRo1bD67nnEFZfj4LQUFzcuxcVQrTZq77TFL3+/fubTM9rnaLHmR/yxQInkoHh8+ej0NkZ+lmzEKzXo/Dhh/EigEu3bWdnZ9dmil5rYfv6+rKoLVDvnWBKRG0MffRRlH72GUoA2AJoaWcbOzs79OvXz2RheVsmTiMkkpn03bvRcPUqqgcMaHMIpaioqMOTkp6enu0+MYb/zfROnAdO1Mc0NjYiPz/f5CTmxYsXO3yPn5+fyeGWYcOGwd7evueCkwkWOBEBAGpra9t9anp5eXm72ysUCgwZMsRkdsp9993XpQfz0t1jgRPRHVVXVyMnJ8fk8vhr1661u721tTWCg4NNDsUEBgby0vhuxgInoi4TQqCqqspkbz07Oxu1tbXtvsfOzg7Dhg0zORTj5+fHk6d3iQVORN1GCIGysjKTvfXc3Nw7zj1v78HAHh4eLPZfwQInIrNraWlBSUmJyd56fn5+h1d/urq6mhxfDwsL49Wft2CBE5FkWu+/cvsDHe401dHLy6vd+6/079+/h9NLjwVORL3OjRs32p3qeOnS7deU/oe/v3+7d0C05KmOLHAiko3a2tp270FeUVHR7vZKpbLDqY6WcA9yyQv84sWLePvtt3HkyBFoNBp4e3vj6aefxuuvv95mLum5c+eQmJiI06dPw93dHYsXL8by5cs7/T0scCLL1foUoNtPnt7pKUDtTXUMCAiQ1VRHyR/okJ+fD4PBgC1btiAoKAjZ2dlYuHAh6uvr8d577xlDxsfHIy4uDh999BHOnz+PBQsWwNnZGc8//7y5ohGRTAwYMACTJk3CpEmTjOuEEKisrDTZW8/OzkZdXZ3xz7ey1Jt89eghlPXr12Pz5s0oLi4GAGzevBmvv/46NBqNca98xYoV2Lt3L/Lz89v9jKamJjQ1NRl/1ul08PX15R44UR8nhEBpaanJidPOTHW8/VCM1FMdJd8Db49Wq20zVSg9PR2TJk1qc0glISEB7777LmpqauDi4mLyGUlJSXjrrbd6JC8RyYdCoYC/vz/8/f3x8MMPG9ff6UEXtbW1yMjIQEZGRpvPuvVBF60F3xsfdNFje+BFRUWIiIjAe++9h4ULFwIA4uPjERAQgC1bthi3y83NxfDhw5Gbm4thw4aZfA73wImoO3T0qLmioiJ0VIu3P2pu+PDhZpnqaLY98BUrVuDdd9+94zZ5eXkICQkx/nz58mVMmzYNs2fPNpb33VKpVFCpVPf0GUREtra2xitF58yZY1zf0NCA/Px8kxOnpaWlKC8vR3l5OZKTk9t8VuvDnm8t95542HOX98CvXLnS4c1uWgUGBhoPi5SXlyM2NhZRUVHYtm0blMr/PEPi97//PXQ6Hfbu3Wtcd/ToUUyePBnV1dXtHkK5HWehEFFP0Ol0xqmOt5a7RqNpd3ulUomgoCCEhYVhx44dXbqTo9n2wN3d3eHu7t6pbS9fvowHH3wQERER+OSTT9qUNwBER0fj9ddfx82bN41zN5OTkxEcHNyp8iYi6ilOTk6IiopCVFRUm/WtUx1v3VvPzs5GTU0NfvrpJ9TW1prtNrxmOwZ++fJlxMbGwt/fH9u3b28zB9PT0xPALyc1g4ODER8fj9deew3Z2dlYsGAB3n///U5PI+QeOBH1NkIIaDQaZGdnQ6vVYtasWV16v+SzUJKTk1FUVISioiL4+Pi0ea313wy1Wo2DBw8iMTERERERcHNzw+rVqzkHnIhkTaFQwMvLC15eXub9Hl5KT0TUu3S21/hUeiIimWKBExHJVI9eiWkOrUeAdDqdxEmIiLpHa5/92hFu2Rd463P6fH19JU5CRNS9amtroVarO3xd9icxDQYDysvL0b9//y7dfKb1EvyysjKLO/nJsckTxyZP5hibEAK1tbXw9vY2uX7mVrLfA1cqlSbTFLvCycnJ4v5CteLY5Iljk6fuHtud9rxb8SQmEZFMscCJiGSqzxa4SqXCmjVrLPLOhhybPHFs8iTl2GR/EpOIqK/qs3vgRERyxwInIpIpFjgRkUyxwImIZIoFTkQkU322wDdt2oTBgwfDzs4OkZGROHXqlNSRuuzYsWOYMWMGvL29oVAo2jxbFPjlctzVq1fDy8sL9vb2iIuLQ2FhoTRhuyApKQljx45F//79MXDgQMycORMFBQVttmlsbERiYiIGDBgAR0dHPP7446isrJQocdds3rwZI0eONF65Fx0djW+//db4upzHdqu1a9dCoVBg6dKlxnVyHtubb74JhULRZrn14e1SjK1PFvjnn3+OZcuWYc2aNThz5gzCw8ORkJCAqqoqqaN1SX19PcLDw7Fp06Z2X1+3bh02bNiAjz76CCdPnkS/fv2QkJCAxsbGHk7aNampqUhMTERGRgaSk5Nx8+ZNxMfHo76+3rjNyy+/jK+++gq7du1CamoqysvL8dhjj0mYuvN8fHywdu1aZGZm4ocffsDkyZPxyCOPICcnB4C8x9bq9OnT2LJlC0aOHNlmvdzHNnz4cFRUVBiXtLQ042uSjE30QePGjROJiYnGn1taWoS3t7dISkqSMNW9ASD27Nlj/NlgMAhPT0+xfv1647rr168LlUolduzYIUHCu1dVVSUAiNTUVCHEL+OwsbERu3btMm6Tl5cnAIj09HSpYt4TFxcX8fHHH1vE2Gpra8XQoUNFcnKyiImJEUuWLBFCyP/3tmbNGhEeHt7ua1KNrc/tgev1emRmZiIuLs64TqlUIi4uDunp6RIm614lJSXQaDRtxqlWqxEZGSm7cWq1WgCAq6srACAzMxM3b95sM7aQkBD4+fnJbmwtLS3YuXMn6uvrER0dbRFjS0xMxPTp09uMAbCM31thYSG8vb0RGBiIuXPnorS0FIB0Y5P93Qi76urVq2hpaYGHh0eb9R4eHsjPz5coVffTaDQA0O44W1+TA4PBgKVLl2L8+PEICwsD8MvYbG1t4ezs3GZbOY3t/PnziI6ORmNjIxwdHbFnzx6EhoYiKytL1mPbuXMnzpw5g9OnT5u8JvffW2RkJLZt24bg4GBUVFTgrbfewsSJE5GdnS3Z2PpcgZO8JCYmIjs7u82xRksQHByMrKwsaLVa7N69G/PmzUNqaqrUse5JWVkZlixZguTkZNjZ2Ukdp9s99NBDxj+PHDkSkZGR8Pf3xxdffAF7e3tJMvW5Qyhubm6wsrIyOTtcWVkJT09PiVJ1v9axyHmcL730Er7++mscPXq0zT3fPT09odfrcf369Tbby2lstra2CAoKQkREBJKSkhAeHo6//vWvsh5bZmYmqqqqMHr0aFhbW8Pa2hqpqanYsGEDrK2t4eHhIduxtcfZ2Rn33XcfioqKJPu99bkCt7W1RUREBA4fPmxcZzAYcPjwYURHR0uYrHsFBATA09OzzTh1Oh1OnjzZ68cphMBLL72EPXv24MiRIwgICGjzekREBGxsbNqMraCgAKWlpb1+bB0xGAxoamqS9dimTJmC8+fPIysry7iMGTMGc+fONf5ZrmNrT11dHS5cuAAvLy/pfm9mOz3ai+3cuVOoVCqxbds2kZubK55//nnh7OwsNBqN1NG6pLa2Vpw9e1acPXtWABB/+ctfxNmzZ8WlS5eEEEKsXbtWODs7i3379olz586JRx55RAQEBIgbN25InPzOFi1aJNRqtUhJSREVFRXGpaGhwbjNCy+8IPz8/MSRI0fEDz/8IKKjo0V0dLSEqTtvxYoVIjU1VZSUlIhz586JFStWCIVCIQ4ePCiEkPfYbnfrLBQh5D22V155RaSkpIiSkhJx4sQJERcXJ9zc3ERVVZUQQpqx9ckCF0KIv/3tb8LPz0/Y2tqKcePGiYyMDKkjddnRo0cFAJNl3rx5QohfphKuWrVKeHh4CJVKJaZMmSIKCgqkDd0J7Y0JgPjkk0+M29y4cUO8+OKLwsXFRTg4OIhHH31UVFRUSBe6CxYsWCD8/f2Fra2tcHd3F1OmTDGWtxDyHtvtbi9wOY9tzpw5wsvLS9ja2opBgwaJOXPmiKKiIuPrUoyN9wMnIpKpPncMnIjIUrDAiYhkigVORCRTLHAiIpligRMRyRQLnIhIpljgREQyxQInIpIpFjgRkUyxwImIZIoFTkQkU/8PPwmNBt4zGKsAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -236,29 +757,217 @@
"source": [
"fig, ax = plt.subplots(1, 1, figsize=(4, 2))\n",
"_ = cell.vis(ax=ax, col=\"k\")\n",
- "_ = cell.branch(0).vis(ax=ax, col=\"r\")\n",
- "_ = cell.branch(0).loc(0.0).vis(ax=ax, col=\"b\")"
+ "_ = cell.branch(1).vis(ax=ax, col=\"r\")\n",
+ "_ = cell.branch(1).comp(1).vis(ax=ax, col=\"b\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8b0459c4",
+ "metadata": {},
+ "source": [
+ "More background and features on indexing as `cell.branch(0)` is in [this tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/00_jaxley_api.html)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "611aa6fb",
+ "metadata": {},
+ "source": [
+ "### Change parameters of the cell\n",
+ "\n",
+ "You can change properties of the cell with the `.set()` method:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "d8b8e544",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cell.branch(1).set(\"axial_resistivity\", 200.0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "08892ab8",
+ "metadata": {},
+ "source": [
+ "And we can again inspect the `.nodes` to make sure that the axial resistivity indeed changed:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6d3f14aa",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
local_cell_index
\n",
+ "
local_branch_index
\n",
+ "
local_comp_index
\n",
+ "
length
\n",
+ "
radius
\n",
+ "
axial_resistivity
\n",
+ "
capacitance
\n",
+ "
v
\n",
+ "
Leak
\n",
+ "
Leak_gLeak
\n",
+ "
...
\n",
+ "
Na_m
\n",
+ "
Na_h
\n",
+ "
K
\n",
+ "
K_gK
\n",
+ "
eK
\n",
+ "
K_n
\n",
+ "
global_cell_index
\n",
+ "
global_branch_index
\n",
+ "
global_comp_index
\n",
+ "
controlled_by_param
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
200.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
True
\n",
+ "
0.0001
\n",
+ "
...
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0
\n",
+ "
1
\n",
+ "
2
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
0
\n",
+ "
0
\n",
+ "
1
\n",
+ "
10.0
\n",
+ "
1.0
\n",
+ "
200.0
\n",
+ "
1.0
\n",
+ "
-70.0
\n",
+ "
True
\n",
+ "
0.0001
\n",
+ "
...
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
False
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0
\n",
+ "
1
\n",
+ "
3
\n",
+ "
1
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2 rows × 25 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " local_cell_index local_branch_index local_comp_index length radius \\\n",
+ "2 0 0 0 10.0 1.0 \n",
+ "3 0 0 1 10.0 1.0 \n",
+ "\n",
+ " axial_resistivity capacitance v Leak Leak_gLeak ... Na_m Na_h \\\n",
+ "2 200.0 1.0 -70.0 True 0.0001 ... NaN NaN \n",
+ "3 200.0 1.0 -70.0 True 0.0001 ... NaN NaN \n",
+ "\n",
+ " K K_gK eK K_n global_cell_index global_branch_index \\\n",
+ "2 False NaN NaN NaN 0 1 \n",
+ "3 False NaN NaN NaN 0 1 \n",
+ "\n",
+ " global_comp_index controlled_by_param \n",
+ "2 2 1 \n",
+ "3 3 1 \n",
+ "\n",
+ "[2 rows x 25 columns]"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cell.branch(1).nodes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "005f1e20",
+ "metadata": {},
+ "source": [
+ "In a similar way, you can modify channel properties or initial states (units are again [here](https://www.neuron.yale.edu/neuron/static/docs/units/unitchart.html)):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "a098f360",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cell.branch(0).set(\"K_gK\", 0.01) # modify potassium conductance.\n",
+ "cell.set(\"v\", -65.0) # modify initial voltage."
]
},
{
"cell_type": "markdown",
- "id": "f858cdc8",
+ "id": "a08da8da",
"metadata": {},
"source": [
"### Stimulate the cell\n",
"\n",
- "We next stimulate one of the compartments with a step current. For this, we first define the step current (all units are the same as for the `NEURON` simulator, which are listed [here](https://www.neuron.yale.edu/neuron/static/docs/units/unitchart.html)):"
+ "We next stimulate one of the compartments with a step current. For this, we first define the step current (units are again [here](https://www.neuron.yale.edu/neuron/static/docs/units/unitchart.html)):"
]
},
{
"cell_type": "code",
- "execution_count": 75,
- "id": "48dbfec8",
+ "execution_count": 18,
+ "id": "90d876b4",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAADFCAYAAAC1iVK6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgTklEQVR4nO3dfVQU59038O8uhMUXWETKrhgMmHgXrQgKusHkHOtxnyypp5VqWuVgtJZqbo8adVsTsQomPikkRmoMVJq0NumpBuvTxCTGct90fWviCgrYxBeMPY1Bg7tojKxiBGHn+cPswIZVWVxmxtnv55w9yOy187vGmC/DNddcoxEEQQAREamaVu4OEBFR32PYExEFAYY9EVEQYNgTEQUBhj0RURBg2BMRBQGGPRFREAiVuwNScbvdaGxsREREBDQajdzdISK6a4Ig4MqVK4iLi4NWe/tz96AJ+8bGRsTHx8vdDSKigDt79izuv//+27YJmrCPiIgAcPMvJTIyUubeEBHdPZfLhfj4eDHfbidowt4zdBMZGcmwJyJV6cnQNC/QEhEFgV6FfWlpKRISEhAeHg6TyYTq6upbtj1+/DhmzJiBhIQEaDQabNy4sVf7vH79OhYtWoTBgwdj4MCBmDFjBpxOZ2+6T0QUdPwO++3bt8NqtaKgoAC1tbVISUmBxWJBU1OTz/bXrl3D8OHDUVRUBKPR2Ot9Ll++HO+//z527NiB/fv3o7GxEdOnT/e3+0REQUnj7xLHJpMJ48ePR0lJCYCbUxrj4+OxZMkSrFy58rafTUhIwLJly7Bs2TK/9tnc3IzvfOc72LZtG5544gkAQH19PUaOHAm73Y6HH364W63W1la0traK33suZDQ3Nyt6zP5T5xX83w9O4lpru2Q1JyfFYtHkhySrR0SB4XK5oNfre5Rrfl2gbWtrQ01NDfLy8sRtWq0WZrMZdru9V53tyT5rampw48YNmM1msU1SUhKGDRt2y7AvLCzEc88916s+yelvtedw4NMLktasbfgK/z3pQYRoef8BkVr5FfYXL15ER0cHDAaD13aDwYD6+vpedaAn+3Q4HAgLC0NUVFS3Ng6Hw+d+8/LyYLVaxe89Z/ZK195x8xetx0YZMH3c0D6tda2tA9a//gtuAXALAkLAsCdSK9VOvdTpdNDpdHJ3w2/ub0bVHoodiMzRQ/q0luv6jW51iUid/LpAGxMTg5CQkG6zYJxO5y0vvgZin0ajEW1tbbh8+XLA6iqVJ3OlWNGhawlmPZG6+RX2YWFhSEtLg81mE7e53W7YbDZkZGT0qgM92WdaWhruu+8+rzanTp1CQ0NDr+sqnUaCIRWuEUQUPPwexrFarZg7dy7S09MxYcIEbNy4ES0tLZg3bx4AYM6cORg6dCgKCwsB3LwAe+LECfHPX3zxBY4ePYqBAwfioYce6tE+9Xo9cnNzYbVaER0djcjISCxZsgQZGRk+L87eyzzDKVJcK+1ag8M4ROrmd9jPnDkTFy5cQH5+PhwOB1JTU1FRUSFeYG1oaPBafa2xsRFjx44Vv3/55Zfx8ssvY9KkSdi3b1+P9gkAv/3tb6HVajFjxgy0trbCYrHgd7/7XW+PW7HEzJXgrLvrbw/MeiJ183ue/b3Kn/moclq98xP85VADlk4ZgeX/57/6tNb1Gx1IWlMBADj2nAUDdaq9Xk+kSv7kGtfGURgpL9B61w2Kn/lEQYthrzDubzJXK0Had63hZtYTqRrDXnFupq4UJ/ZeP08Y9kSqxrBXGNnm2TPtiVSNYa8wnimQUsyB5zAOUfBg2CuMpGf2XWrwAi2RujHsFUacZi/xHbSMeiJ1Y9grjHxTL6WtR0TSYtgrjCDhcgld63AYh0jdGPYKI+UwDtA5lMOoJ1I3hr3CCOJsHGnqecrwxJ5I3Rj2CuMWx+ylSXvP9Euuekmkbgx7hekcxpGIZ8xeqnpEJAuGvcLIN4zDuCdSM4a9wkh9Zq8RZ+NIVJCIZMGwVxhx6qVEcy89Y/YMeyJ1Y9grjHhTlUT1xGEcjtoTqRrDXmGkfCzhzTI8sycKBgx7hZHygeNA588UTr0kUjeGvcJIfgftt+oSkTox7BVG6oXQOIxDFBwY9gojzrOXqJ6GC6ERBQWGvcJ4IleKB453rcOoJ1I3hr3CCBLPveRCaETBoVdhX1paioSEBISHh8NkMqG6uvq27Xfs2IGkpCSEh4cjOTkZu3fv9npfo9H4fK1fv15sk5CQ0O39oqKi3nRf0WS7g5bn9kSq5nfYb9++HVarFQUFBaitrUVKSgosFguampp8tj948CCys7ORm5uLuro6ZGVlISsrC8eOHRPbnD9/3uu1ZcsWaDQazJgxw2tfzz//vFe7JUuW+Nt9xfOseinVMI7nAq3bLUk5IpKJ32FfXFyM+fPnY968eRg1ahTKysrQv39/bNmyxWf7V155BZmZmVixYgVGjhyJdevWYdy4cSgpKRHbGI1Gr9e7776LyZMnY/jw4V77ioiI8Go3YMCAW/aztbUVLpfL63UvkG0hNJ7ZE6maX2Hf1taGmpoamM3mzh1otTCbzbDb7T4/Y7fbvdoDgMViuWV7p9OJDz74ALm5ud3eKyoqwuDBgzF27FisX78e7e3tt+xrYWEh9Hq9+IqPj+/JISqGdFMvb37lmD2RuoX60/jixYvo6OiAwWDw2m4wGFBfX+/zMw6Hw2d7h8Phs/2bb76JiIgITJ8+3Wv7008/jXHjxiE6OhoHDx5EXl4ezp8/j+LiYp/7ycvLg9VqFb93uVz3ROC7xamXUt1UxXn2RMHAr7CXwpYtW5CTk4Pw8HCv7V2De8yYMQgLC8NTTz2FwsJC6HS6bvvR6XQ+tyud1DdVaXmBligo+DWMExMTg5CQEDidTq/tTqcTRqPR52eMRmOP2//zn//EqVOn8Itf/OKOfTGZTGhvb8eZM2d6fgD3gM6w50JoRBQ4foV9WFgY0tLSYLPZxG1utxs2mw0ZGRk+P5ORkeHVHgAqKyt9tv/jH/+ItLQ0pKSk3LEvR48ehVarRWxsrD+HoHieM2zJHkso1iUiNfN7GMdqtWLu3LlIT0/HhAkTsHHjRrS0tGDevHkAgDlz5mDo0KEoLCwEACxduhSTJk3Chg0bMHXqVJSXl+PIkSN47bXXvPbrcrmwY8cObNiwoVtNu92OqqoqTJ48GREREbDb7Vi+fDlmz56NQYMG9ea4FUvqqZdaracu455IzfwO+5kzZ+LChQvIz8+Hw+FAamoqKioqxIuwDQ0N0Go7f2GYOHEitm3bhtWrV2PVqlUYMWIEdu7cidGjR3vtt7y8HIIgIDs7u1tNnU6H8vJyrF27Fq2trUhMTMTy5cu9xvFVQ+qF0HiBligoaIQgWQHL5XJBr9ejubkZkZGRcnfnln5SdhCHz3yFzTnj8HjykD6vN2n9Xnz+5TX8bWEG0h6I7vN6RBQ4/uQa18ZRGLfkZ/bedYlInRj2CtN5By0fOE5EgcOwVxipF0ID17MnCgoMe4WRfJ69p64k1YhILgx7hREkfuC4ZxiHUy+J1I1hrzDiMI7EC6Hx1J5I3Rj2CtP5oCqJF0KTpBoRyYVhrzBuqR9LqPlWXSJSJYa9wggSL5fAhdCIggPDXmEkfwbtt+oSkTox7BVG8scScp49UVBg2CuM1MM4vIOWKDgw7BVG6vXsxTN7DuQQqRrDXmEEiQftxTF7Zj2RqjHsFcYt3kEr7WwcrnpJpG4Me4WRfDYOL9ASBQWGvdJwITQi6gMMe4WRfm0czsYhCgYMe4VxS77q5c2vHMYhUjeGvcJ0Zi4XQiOiwGHYK4w4z17i9RJ4Yk+kbgx7hXG7b36V7g7ab+oy7YlUjWGvUNKd2HMYhygYMOwVhguhEVFf6FXYl5aWIiEhAeHh4TCZTKiurr5t+x07diApKQnh4eFITk7G7t27vd7/2c9+Bo1G4/XKzMz0anPp0iXk5OQgMjISUVFRyM3NxdWrV3vTfUXrvKlKqjtoJSlDRDLzO+y3b98Oq9WKgoIC1NbWIiUlBRaLBU1NTT7bHzx4ENnZ2cjNzUVdXR2ysrKQlZWFY8eOebXLzMzE+fPnxddbb73l9X5OTg6OHz+OyspK7Nq1CwcOHMCCBQv87b7iuSU+s+cDx4mCg99hX1xcjPnz52PevHkYNWoUysrK0L9/f2zZssVn+1deeQWZmZlYsWIFRo4ciXXr1mHcuHEoKSnxaqfT6WA0GsXXoEGDxPdOnjyJiooK/OEPf4DJZMKjjz6KV199FeXl5WhsbPRZt7W1FS6Xy+t1LxCfSijxGTeznkjd/Ar7trY21NTUwGw2d+5Aq4XZbIbdbvf5Gbvd7tUeACwWS7f2+/btQ2xsLL773e9i4cKF+PLLL732ERUVhfT0dHGb2WyGVqtFVVWVz7qFhYXQ6/XiKz4+3p9DlY30wzi8g5YoGPgV9hcvXkRHRwcMBoPXdoPBAIfD4fMzDofjju0zMzPx5z//GTabDS+++CL279+Pxx9/HB0dHeI+YmNjvfYRGhqK6OjoW9bNy8tDc3Oz+Dp79qw/hyobz4VSrUSXzjn1kig4hMrdAQCYNWuW+Ofk5GSMGTMGDz74IPbt24cpU6b0ap86nQ46nS5QXZSMOIwj2R2039SVpBoRycWv88eYmBiEhITA6XR6bXc6nTAajT4/YzQa/WoPAMOHD0dMTAz+/e9/i/v49gXg9vZ2XLp06bb7uRfJtRAa055I3fwK+7CwMKSlpcFms4nb3G43bDYbMjIyfH4mIyPDqz0AVFZW3rI9AJw7dw5ffvklhgwZIu7j8uXLqKmpEdvs2bMHbrcbJpPJn0NQPHGevUT1Os/smfZEaub3yLDVasXrr7+ON998EydPnsTChQvR0tKCefPmAQDmzJmDvLw8sf3SpUtRUVGBDRs2oL6+HmvXrsWRI0ewePFiAMDVq1exYsUKHDp0CGfOnIHNZsO0adPw0EMPwWKxAABGjhyJzMxMzJ8/H9XV1fjoo4+wePFizJo1C3FxcYH4e1AMt9Tr2fNJVURBwe8x+5kzZ+LChQvIz8+Hw+FAamoqKioqxIuwDQ0N0Ha5ujhx4kRs27YNq1evxqpVqzBixAjs3LkTo0ePBgCEhITg448/xptvvonLly8jLi4Ojz32GNatW+c15r5161YsXrwYU6ZMgVarxYwZM7Bp06a7PX7Fke8OWmnqEZE8NEKQ3Cfvcrmg1+vR3NyMyMhIubtzS8lr/wdXrrdjzy8nYfh3BvZ5vQV/PoL/PeHECz8ejRzTA31ej4gCx59c49o4CuP50SvdqpccxiEKBgx7hZFrGIfjOETqxrBXGLkWQmPUE6kbw15hpF4bR1zPnmlPpGoMe4WRetVLDZdLIAoKDHuF6byDlguhEVHgMOyVRlwbRxpcG4coODDsFcYznCL1A8eD5HYLoqDFsFcYuRZCY9YTqRvDXmG4EBoR9QWGvcK4OyfaS0OcjSNRPSKSBcNeoaReLoHDOETqxrBXkK4XSTmMQ0SBxLBXkK5n19LNs+9em4jUh2GvIF3vYtVKdGrfOYzDtCdSM4a9gnSNW8kXQmPWE6kaw15BBO+0l8g3Z/ZSlSMiWTDsFaTrMA4XQiOiQGLYK5T0yyVIUo6IZMKwVxCv2TgS1dRwGIcoKDDsFaTrXHc+lpCIAolhryBdlyzgA8eJKJAY9goi51x33kFLpG4MewXxmnkp8TAOR3GI1K1XYV9aWoqEhASEh4fDZDKhurr6tu137NiBpKQkhIeHIzk5Gbt37xbfu3HjBp599lkkJydjwIABiIuLw5w5c9DY2Oi1j4SEBGg0Gq9XUVFRb7qvWIK788+S3VQFDuMQBQO/w3779u2wWq0oKChAbW0tUlJSYLFY0NTU5LP9wYMHkZ2djdzcXNTV1SErKwtZWVk4duwYAODatWuora3FmjVrUFtbi7fffhunTp3Cj370o277ev7553H+/HnxtWTJEn+7r2hdh1KkWy6he20iUp9Qfz9QXFyM+fPnY968eQCAsrIyfPDBB9iyZQtWrlzZrf0rr7yCzMxMrFixAgCwbt06VFZWoqSkBGVlZdDr9aisrPT6TElJCSZMmICGhgYMGzZM3B4REQGj0dijfra2tqK1tVX83uVy+XuokpNzITRmPZG6+XVm39bWhpqaGpjN5s4daLUwm82w2+0+P2O3273aA4DFYrllewBobm6GRqNBVFSU1/aioiIMHjwYY8eOxfr169He3n7LfRQWFkKv14uv+Pj4HhyhvORYLUF8LKFE9YhIHn6d2V+8eBEdHR0wGAxe2w0GA+rr631+xuFw+GzvcDh8tr9+/TqeffZZZGdnIzIyUtz+9NNPY9y4cYiOjsbBgweRl5eH8+fPo7i42Od+8vLyYLVaxe9dLpfiA1/W5RI4aE+kan4P4/SlGzdu4Kc//SkEQcDmzZu93usa3GPGjEFYWBieeuopFBYWQqfTdduXTqfzuV3JZBnG4R20REHBr2GcmJgYhISEwOl0em13Op23HEs3Go09au8J+s8//xyVlZVeZ/W+mEwmtLe348yZM/4cgqJ5LpJKdVbftRanXhKpm19hHxYWhrS0NNhsNnGb2+2GzWZDRkaGz89kZGR4tQeAyspKr/aeoD99+jT+8Y9/YPDgwXfsy9GjR6HVahEbG+vPISiaJ3AlzHqxFle9JFI3v4dxrFYr5s6di/T0dEyYMAEbN25ES0uLODtnzpw5GDp0KAoLCwEAS5cuxaRJk7BhwwZMnToV5eXlOHLkCF577TUAN4P+iSeeQG1tLXbt2oWOjg5xPD86OhphYWGw2+2oqqrC5MmTERERAbvdjuXLl2P27NkYNGhQoP4uZOfJW6mWSpC6FhHJx++wnzlzJi5cuID8/Hw4HA6kpqaioqJCvAjb0NAArbbzF4aJEydi27ZtWL16NVatWoURI0Zg586dGD16NADgiy++wHvvvQcASE1N9aq1d+9efP/734dOp0N5eTnWrl2L1tZWJCYmYvny5V7j+Gog7zAOz+yJ1EwjBMn/5S6XC3q9Hs3NzXe8HiCXxstfY2LRHoSFaPHpC49LUrP4f09h055/Y07GA3h+2mhJahJRYPiTa1wbR0E84+bSntl7lksIip/5REGLYa8g4gVazsYhogBj2CuQVIugda3FrCdSN4a9gniGUqRaBK1rrSC5dEMUtBj2CtI5jCPhmT2HcYiCAsNeQTx5K+lNVZ6F0Bj2RKrGsFcQQY5baD21OWpPpGoMewVxy3gHLRe9JFI3hr2icCE0IuobDHsFkXMhNA7jEKkbw15B5BzG4Zk9kbox7BWEC6ERUV9h2CtIZ95KPx2HUU+kbgx7BZFnbRwO4xAFA4a9gsi5XAJXvSRSN4a9Akm7ENpNjHoidWPYK4icwzhMeyJ1Y9grSOcwjpRTL71rE5E6MewVRJa45QVaoqDAsFcQQY7HEnpqcxyHSNUY9goiLnHMtXGIKMAY9goiyDJmz1UviYIBw15B5FwIjdNxiNSNYa8gncM4fCwhEQVWr8K+tLQUCQkJCA8Ph8lkQnV19W3b79ixA0lJSQgPD0dycjJ2797t9b4gCMjPz8eQIUPQr18/mM1mnD592qvNpUuXkJOTg8jISERFRSE3NxdXr17tTfcVy+2WYyE0zzAO055IzfwO++3bt8NqtaKgoAC1tbVISUmBxWJBU1OTz/YHDx5EdnY2cnNzUVdXh6ysLGRlZeHYsWNim5deegmbNm1CWVkZqqqqMGDAAFgsFly/fl1sk5OTg+PHj6OyshK7du3CgQMHsGDBgl4csnLJ8gzab9UmInXSCH6ubWsymTB+/HiUlJQAANxuN+Lj47FkyRKsXLmyW/uZM2eipaUFu3btErc9/PDDSE1NRVlZGQRBQFxcHH75y1/iV7/6FQCgubkZBoMBb7zxBmbNmoWTJ09i1KhROHz4MNLT0wEAFRUV+MEPfoBz584hLi6uW93W1la0traK37tcLsTHx6O5uRmRkZE9Pt7n3j+OT84197j93bhyvR2nnFfwUOxA/MM6SZKa/6/mHH6141+IDA/FfxkiJKlJRL4V/zQVwwb373F7l8sFvV7fo1wL9acjbW1tqKmpQV5enrhNq9XCbDbDbrf7/IzdbofVavXaZrFYsHPnTgDAZ599BofDAbPZLL6v1+thMplgt9sxa9Ys2O12REVFiUEPAGazGVqtFlVVVfjxj3/crW5hYSGee+45fw7Pp9POqzjy+Vd3vR9/DNGHS1Yr7ptaruvtkh8nEXn7+kZHn+3br7C/ePEiOjo6YDAYvLYbDAbU19f7/IzD4fDZ3uFwiO97tt2uTWxsrHfHQ0MRHR0ttvm2vLw8rx8ynjN7fy01j8Dsh4f5/bne0mg0eDhxsGT1Mh4cjL8tzMCFK613bkxEfWpIVN+d6PkV9vcSnU4HnU531/sZnxAdgN4ol0ajQdoD6j5GIvLzAm1MTAxCQkLgdDq9tjudThiNRp+fMRqNt23v+XqnNt++ANze3o5Lly7dsi4REXXyK+zDwsKQlpYGm80mbnO73bDZbMjIyPD5mYyMDK/2AFBZWSm2T0xMhNFo9GrjcrlQVVUltsnIyMDly5dRU1MjttmzZw/cbjdMJpM/h0BEFJwEP5WXlws6nU544403hBMnTggLFiwQoqKiBIfDIQiCIDz55JPCypUrxfYfffSREBoaKrz88svCyZMnhYKCAuG+++4TPvnkE7FNUVGREBUVJbz77rvCxx9/LEybNk1ITEwUvv76a7FNZmamMHbsWKGqqkr48MMPhREjRgjZ2dk97ndzc7MAQGhubvb3kImIFMmfXPN7zH7mzJm4cOEC8vPz4XA4kJqaioqKCvECa0NDA7Tazl8YJk6ciG3btmH16tVYtWoVRowYgZ07d2L06NFim2eeeQYtLS1YsGABLl++jEcffRQVFRUID++8WLF161YsXrwYU6ZMgVarxYwZM7Bp0yZ/fqgBuPlbAxGRGnjyTOjBDHq/59nfq86dO9er2ThEREp39uxZ3H///bdtEzRh73a70djYiIiICL/WnvFM2Tx79qxfN2PdS9R+jDy+e5/aj7G3xycIAq5cuYK4uDivERVfVDv18tu0Wu0df/LdTmRkpCr/kXWl9mPk8d371H6MvTk+vV7fo3Zc9ZKIKAgw7ImIggDD/g50Oh0KCgoCcjeuUqn9GHl89z61H6MUxxc0F2iJiIIZz+yJiIIAw56IKAgw7ImIggDDnogoCDDsiYiCAMP+DkpLS5GQkIDw8HCYTCZUV1fL3aWAKCwsxPjx4xEREYHY2FhkZWXh1KlTcnerzxQVFUGj0WDZsmVydyWgvvjiC8yePRuDBw9Gv379kJycjCNHjsjdrYDo6OjAmjVrkJiYiH79+uHBBx/EunXrerTol1IdOHAAP/zhDxEXFweNRiM+ntVDEATk5+djyJAh6NevH8xmM06fPh2Q2gz729i+fTusVisKCgpQW1uLlJQUWCyWbg9SuRft378fixYtwqFDh1BZWYkbN27gscceQ0tLi9xdC7jDhw/j97//PcaMGSN3VwLqq6++wiOPPIL77rsPf//733HixAls2LABgwYNkrtrAfHiiy9i8+bNKCkpwcmTJ/Hiiy/ipZdewquvvip313qtpaUFKSkpKC0t9fn+Sy+9hE2bNqGsrAxVVVUYMGAALBYLrl+/fvfF+2qdZTWYMGGCsGjRIvH7jo4OIS4uTigsLJSxV32jqalJACDs379f7q4E1JUrV4QRI0YIlZWVwqRJk4SlS5fK3aWAefbZZ4VHH31U7m70malTpwo///nPvbZNnz5dyMnJkalHgQVAeOedd8Tv3W63YDQahfXr14vbLl++LOh0OuGtt96663o8s7+FtrY21NTUwGw2i9u0Wi3MZjPsdruMPesbzc3NAIDoaHU9j3bRokWYOnWq139HtXjvvfeQnp6On/zkJ4iNjcXYsWPx+uuvy92tgJk4cSJsNhs+/fRTAMC//vUvfPjhh3j88cdl7lnf+Oyzz+BwOLz+rer1ephMpoBkTtCseumvixcvoqOjQ3woi4fBYEB9fb1Mveobbrcby5YtwyOPPOL1UJl7XXl5OWpra3H48GG5u9In/vOf/2Dz5s2wWq1YtWoVDh8+jKeffhphYWGYO3eu3N27aytXroTL5UJSUhJCQkLQ0dGBF154ATk5OXJ3rU84HA4A8Jk5nvfuBsOesGjRIhw7dgwffvih3F0JmLNnz2Lp0qWorKz0euKZmrjdbqSnp+M3v/kNAGDs2LE4duwYysrKVBH2f/3rX7F161Zs27YN3/ve93D06FEsW7YMcXFxqjg+qXEY5xZiYmIQEhICp9Pptd3pdMJoNMrUq8BbvHgxdu3ahb17997Vev9KU1NTg6amJowbNw6hoaEIDQ3F/v37sWnTJoSGhqKjo0PuLt61IUOGYNSoUV7bRo4ciYaGBpl6FFgrVqzAypUrMWvWLCQnJ+PJJ5/E8uXLUVhYKHfX+oQnV/oqcxj2txAWFoa0tDTYbDZxm9vths1mQ0ZGhow9CwxBELB48WK888472LNnDxITE+XuUkBNmTIFn3zyCY4ePSq+0tPTkZOTg6NHjyIkJETuLt61Rx55pNt02U8//RQPPPCATD0KrGvXrnV7+lJISAjcbrdMPepbiYmJMBqNXpnjcrlQVVUVmMy560u8KlZeXi7odDrhjTfeEE6cOCEsWLBAiIqKEhwOh9xdu2sLFy4U9Hq9sG/fPuH8+fPi69q1a3J3rc+obTZOdXW1EBoaKrzwwgvC6dOnha1btwr9+/cX/vKXv8jdtYCYO3euMHToUGHXrl3CZ599Jrz99ttCTEyM8Mwzz8jdtV67cuWKUFdXJ9TV1QkAhOLiYqGurk74/PPPBUEQhKKiIiEqKkp49913hY8//liYNm2akJiYKHz99dd3XZthfwevvvqqMGzYMCEsLEyYMGGCcOjQIbm7FBAAfL7+9Kc/yd21PqO2sBcEQXj//feF0aNHCzqdTkhKShJee+01ubsUMC6XS1i6dKkwbNgwITw8XBg+fLjw61//WmhtbZW7a722d+9en//fzZ07VxCEm9Mv16xZIxgMBkGn0wlTpkwRTp06FZDaXM+eiCgIcMyeiCgIMOyJiIIAw56IKAgw7ImIggDDnogoCDDsiYiCAMOeiCgIMOyJiIIAw56IKAgw7ImIggDDnogoCPx//BByUyyBDL4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAADFCAYAAABJnHlwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAeAElEQVR4nO3dcVBU190+8IdlZRetYiPjrigKTW3QQCAB2YBOaCc7XVOmkWRKiWOVQd846YjBbEoUojD5pekaG62JMqFmJsl0osX6NhJjLS3dBNNUFAWsYTTqtFaodhedNGDQgGXP7w/di/u6sSws5+7efT4zO8S75y7fk6bPHs8999woIYQAERGFLZ3aBRAR0egwyImIwhyDnIgozDHIiYjCHIOciCjMMciJiMIcg5yIKMzp1S4gGDweDy5evIiJEyciKipK7XKIiEZNCIErV64gISEBOt2dx9yaCPKLFy8iMTFR7TKIiIKuq6sLM2bMuGMbTQT5xIkTAdzo8KRJk1Suhoho9Hp7e5GYmKjk251oIsi90ymTJk1ikBORpgxnupgXO4mIwtyIgrympgZJSUkwGo2wWCxoaWm5Y/s9e/YgJSUFRqMRaWlpOHDggM/7X3zxBUpLSzFjxgzExsZi7ty5qK2tHUlpREQRJ+Ag3717N+x2O6qrq9HW1ob09HTYbDZ0d3f7bX/o0CEsXrwYK1asQHt7OwoKClBQUICOjg6ljd1uR0NDA9555x2cOnUKa9asQWlpKfbt2zfynhERRYioQLextVgsmDdvHrZv3w7gxtK/xMRErF69GuvWrbutfVFREfr6+rB//37l2IMPPoiMjAxl1J2amoqioiJs2LBBaZOZmYlHHnkEP/3pT2/7zP7+fvT39yt/9l4U6OnpCek58qsD/8Ha336Cf31+Te1Sxszk8ePw/xalImFyrNqlEIW13t5exMXFDSvXArrYOTAwgNbWVlRUVCjHdDodrFYrmpub/Z7T3NwMu93uc8xms6G+vl75c25uLvbt24fly5cjISEBTU1NOHPmDH7xi1/4/UyHw4EXXnghkNJDwpFzn+H9v15Uu4wxN/+bLpTMT1a7DKKIEVCQX758GYODgzCZTD7HTSYTPv30U7/nuFwuv+1dLpfy523btmHlypWYMWMG9Ho9dDod3njjDTz00EN+P7OiosLny8E7Ig91/xm88Zef5PgJWLvwHpWrCb43//IPtJz7TOknEckREssPt23bhsOHD2Pfvn2YNWsWPvroI6xatQoJCQmwWq23tTcYDDAYDCpUOjqem7NYXx8/DgtTp6lcTfD98aQbLeeG+klEcgQU5PHx8YiOjobb7fY57na7YTab/Z5jNpvv2P7atWuorKzE3r17kZ+fDwC47777cPz4cbzyyit+gzxcefNNq9sIROFGvxjjRHIFtGolJiYGmZmZcDqdyjGPxwOn04mcnBy/5+Tk5Pi0B4DGxkal/fXr13H9+vXb9hKIjo6Gx+MJpLwwcCPitBnjgPf7iQNyIrkCnlqx2+0oLi5GVlYWsrOzsXXrVvT19aGkpAQAsGzZMkyfPh0OhwMAUFZWhry8PGzevBn5+fmoq6vDsWPHsGPHDgA37sbMy8tDeXk5YmNjMWvWLBw8eBC/+tWvsGXLliB2VX2emwGn0+iIXHezW5xaIZIr4CAvKirCpUuXUFVVBZfLhYyMDDQ0NCgXNDs7O31G17m5udi1axfWr1+PyspKzJ49G/X19UhNTVXa1NXVoaKiAkuWLMFnn32GWbNm4aWXXsJTTz0VhC6GDiXftJnjytQKEck1ooudpaWlKC0t9fteU1PTbccKCwtRWFj4lZ9nNpvx1ltvjaSUsCIiZmqFI3IimbjXikRDFzvVrWOscI6cSB0Mcom8c8danSP3rsbxMMiJpGKQq0CjOa5MGQkuQCSSikEukTK1otFZck6tEKmDQS6Rd2pFqyNy75QRL3YSycUgl0j7d3bewBgnkotBLpHGl5ErX1AckBPJxSCXSGh8asWLFzuJ5GKQSyQ0f4s+lx8SqYFBLlHk3Nmpbh1EkYZBLpHm7+y8+ZNTK0RyMcgl8mh81YpOx4udRGpgkEuk+amVmz+5jpxILga5RFqfWgHnyIlUwSCXaGgduTaTnI96I1IHg1wi75SDTqP/1vmEICJ1aDRSQhM3zSKiscAgl0gMJbkmafULiijUMcgl4sOXiWgsMMgl0vqmWeCmWUSqYJBLpPVNs3hnJ5E6GOQSaXyKXPmC4qZZRHIxyCXyjlS1O0fOqRUiNTDIJRIanyQf6haTnEimEQV5TU0NkpKSYDQaYbFY0NLScsf2e/bsQUpKCoxGI9LS0nDgwIHb2pw6dQqPPvoo4uLiMGHCBMybNw+dnZ0jKS9kaf7OTq4jJ1JFwEG+e/du2O12VFdXo62tDenp6bDZbOju7vbb/tChQ1i8eDFWrFiB9vZ2FBQUoKCgAB0dHUqbv/3tb1iwYAFSUlLQ1NSEEydOYMOGDTAajSPvWQjyLsvTaTPHlV0dufyQSK6Ag3zLli148sknUVJSgrlz56K2thbjx4/Hm2++6bf9q6++ioULF6K8vBxz5szBiy++iAceeADbt29X2jz//PP43ve+h02bNuH+++/H3XffjUcffRRTp071+5n9/f3o7e31eYUDrW+axRE5kToCCvKBgQG0trbCarUOfYBOB6vViubmZr/nNDc3+7QHAJvNprT3eDz43e9+h29961uw2WyYOnUqLBYL6uvrv7IOh8OBuLg45ZWYmBhIN1Sn2akVbppFpIqAgvzy5csYHByEyWTyOW4ymeByufye43K57ti+u7sbX3zxBTZu3IiFCxfij3/8Ix577DE8/vjjOHjwoN/PrKioQE9Pj/Lq6uoKpBuq8Xg0vo6cd3YSqUKvdgEejwcAsGjRIjzzzDMAgIyMDBw6dAi1tbXIy8u77RyDwQCDwSC1zmBQLnZqNMl1Q3cEEZFEAY3I4+PjER0dDbfb7XPc7XbDbDb7PcdsNt+xfXx8PPR6PebOnevTZs6cOdpbtaL1OXJOrRCpIqAgj4mJQWZmJpxOp3LM4/HA6XQiJyfH7zk5OTk+7QGgsbFRaR8TE4N58+bh9OnTPm3OnDmDWbNmBVJeyNP8o96Ui52MciKZAp5asdvtKC4uRlZWFrKzs7F161b09fWhpKQEALBs2TJMnz4dDocDAFBWVoa8vDxs3rwZ+fn5qKurw7Fjx7Bjxw7lM8vLy1FUVISHHnoI3/nOd9DQ0ID3338fTU1NwelliND67odDyw9VLoQowgQc5EVFRbh06RKqqqrgcrmQkZGBhoYG5YJmZ2cndLc8Aic3Nxe7du3C+vXrUVlZidmzZ6O+vh6pqalKm8ceewy1tbVwOBx4+umncc899+C3v/0tFixYEIQuhpCI2TSLiGQa0cXO0tJSlJaW+n3P3yi6sLAQhYWFd/zM5cuXY/ny5SMpJ2xo/A59Tq0QqYR7rUjkUUbk2oxyZUTOHCeSikEukdZXreh03lUrTHIimRjkEml+06ybPzkiJ5KLQS6R1kfkfNQbkToY5BIJje9+yIcvE6mDQS6R1m/R552dROpgkEukPHxZ5TrGCrexJVIHg1wij8YXkg9d7GSSE8nEIJdIaPwWfeXhyyrXQRRpGOQSaX3TLPDOTiJVMMgl0vryQ+61QqQOBrlEQ8sPtZnkOu5+SKQKBrlEGr/WyU2ziFTCIJdIDC0kV7WOsaLRbhGFPAa5RB7N39npnVrhiJxIJga5RFrfNMuLOU4kF4NcIs2vWuGmWUSqYJBLpe115EPLD5nkRDIxyCXyeG781Gl0kpzLD4nUwSCXSOsj1SjeEUSkCga5RJqfI7/5U+tfWEShhkEukUfjm2ZFcWqFSBUMcom0vmkW7+wkUgeDXKaImVohIplGFOQ1NTVISkqC0WiExWJBS0vLHdvv2bMHKSkpMBqNSEtLw4EDB76y7VNPPYWoqChs3bp1JKWFNK3fEMR15ETqCDjId+/eDbvdjurqarS1tSE9PR02mw3d3d1+2x86dAiLFy/GihUr0N7ejoKCAhQUFKCjo+O2tnv37sXhw4eRkJAQeE/CgPfWda2OyHWcWiFSRcBBvmXLFjz55JMoKSnB3LlzUVtbi/Hjx+PNN9/02/7VV1/FwoULUV5ejjlz5uDFF1/EAw88gO3bt/u0u3DhAlavXo2dO3di3Lhxd6yhv78fvb29Pq9wMLRqRZtJrsyRq1sGUcQJKMgHBgbQ2toKq9U69AE6HaxWK5qbm/2e09zc7NMeAGw2m097j8eDpUuXory8HPfee+9/rcPhcCAuLk55JSYmBtIN1Wh+G1twaoVIDQEF+eXLlzE4OAiTyeRz3GQyweVy+T3H5XL91/Yvv/wy9Ho9nn766WHVUVFRgZ6eHuXV1dUVSDdUo/XdD70jcu5+SCSXXu0CWltb8eqrr6KtrW3YUw4GgwEGg2GMKxsDmp9a4YicSA0Bjcjj4+MRHR0Nt9vtc9ztdsNsNvs9x2w237H9n//8Z3R3d2PmzJnQ6/XQ6/U4f/48nn32WSQlJQVSXshT1pFrM8e5/JBIJQEFeUxMDDIzM+F0OpVjHo8HTqcTOTk5fs/JycnxaQ8AjY2NSvulS5fixIkTOH78uPJKSEhAeXk5/vCHPwTan5CmXOxUt4wxwxuCiNQR8NSK3W5HcXExsrKykJ2dja1bt6Kvrw8lJSUAgGXLlmH69OlwOBwAgLKyMuTl5WHz5s3Iz89HXV0djh07hh07dgAApkyZgilTpvj8jnHjxsFsNuOee+4Zbf9CytDyQ21GuY5TK0SqCDjIi4qKcOnSJVRVVcHlciEjIwMNDQ3KBc3Ozk7odEMD/dzcXOzatQvr169HZWUlZs+ejfr6eqSmpgavF2GCm2YR0VgY0cXO0tJSlJaW+n2vqanptmOFhYUoLCwc9uf/4x//GElZIU/rd3ZCmVpRtwyiSMO9ViQSGl9+yIcvE6mDQS5R5EytEJFMDHKJtD61EsV79IlUwSCXSGh8/SFznEgdDHKJtP6EIB1v0SdSBYNcIq1vmgVumkWkCga5RELj+5EPTa0wyYlkYpBLJDQ/tXJz+aFH5UKIIgyDXKJI2TSLiORikEuk9bljbppFpA4GuURa3zTLuz7ewxwnkopBLtHQHLm6dYwVXuwkUgeDXCLt39l54ydnVojkYpDLpPm9Vm6uI1e5DqJIwyCXSOsPX/ZuQ8+LnURyMcglGoo3bSZ5FO/sJFIFg1yiyLmzk4hkYpBL5NH25odKv7hpFpFcDHKJvPGm1Vv0o/jwZSJVMMhlipSpFSY5kVQMcomUdeRaDfKbPxnjRHIxyCXS+i36Ok6tEKmCQS6Rxp/0xqkVIpUwyCVSglyjI3Le2UmkjhEFeU1NDZKSkmA0GmGxWNDS0nLH9nv27EFKSgqMRiPS0tJw4MAB5b3r169j7dq1SEtLw4QJE5CQkIBly5bh4sWLIyktpClTKyrXMVa8309cfkgkV8BBvnv3btjtdlRXV6OtrQ3p6emw2Wzo7u722/7QoUNYvHgxVqxYgfb2dhQUFKCgoAAdHR0AgKtXr6KtrQ0bNmxAW1sb3n33XZw+fRqPPvro6HoWwrS7/PDGT+Y4kVxRIsAJTYvFgnnz5mH79u0AAI/Hg8TERKxevRrr1q27rX1RURH6+vqwf/9+5diDDz6IjIwM1NbW+v0dR48eRXZ2Ns6fP4+ZM2fe9n5/fz/6+/uVP/f29iIxMRE9PT2YNGlSIN2RyvaLj3DafQU7/8eC+d+MV7ucoLvw+TXM3/gBYvQ6nPnpI2qXQxTWent7ERcXN6xcC2hEPjAwgNbWVlit1qEP0OlgtVrR3Nzs95zm5maf9gBgs9m+sj0A9PT0ICoqCpMnT/b7vsPhQFxcnPJKTEwMpBuqUR71pnIdY0XpF0fkRFIFFOSXL1/G4OAgTCaTz3GTyQSXy+X3HJfLFVD7L7/8EmvXrsXixYu/8luooqICPT09yqurqyuQbqjGo/GLncrDlzm3QiSVXu0CbnX9+nX88Ic/hBACr7/++le2MxgMMBgMEisLDm6aRURjIaAgj4+PR3R0NNxut89xt9sNs9ns9xyz2Tys9t4QP3/+PD744IOQnuseqaEnBGmTcmcnR+REUgU0tRITE4PMzEw4nU7lmMfjgdPpRE5Ojt9zcnJyfNoDQGNjo097b4ifPXsWf/rTnzBlypRAygobWl9HDmX5obplEEWagKdW7HY7iouLkZWVhezsbGzduhV9fX0oKSkBACxbtgzTp0+Hw+EAAJSVlSEvLw+bN29Gfn4+6urqcOzYMezYsQPAjRD/wQ9+gLa2Nuzfvx+Dg4PK/Pldd92FmJiYYPVVdULrTwjS6hcUUYgLOMiLiopw6dIlVFVVweVyISMjAw0NDcoFzc7OTuh0QwP93Nxc7Nq1C+vXr0dlZSVmz56N+vp6pKamAgAuXLiAffv2AQAyMjJ8fteHH36Ib3/72yPsWuiJlE2zgBtfWpr9mwdRiBnRxc7S0lKUlpb6fa+pqem2Y4WFhSgsLPTbPikpKWLmVIe6qc2AuzW4hdDuFxZRqOFeKxJp/uHLt/SLSxCJ5GGQS6T1i51Rt/xNgzFOJA+DXAXajHH4dIwDciJ5GOQSDU2taDPKObVCpA4GuURDUyvq1jFWtDplRBTqGOQSCY3PHPsuP1StDKKIwyCXSPsj8qF/1vqXFlEoYZBL5L11Xbtz5EP94m36RPIwyKXS9u6Ht4qUm7yIQgGDXCJlakWjCxB9p1aISBYGuUTav7PzlhuCPCoWQhRhGOQSRdSmWRyTE0nDIJco0jbNIiI5GOQSaf5Rb7f8M3OcSB4GuURC48sPo3iLPpEqGOQSaf6ZnZxaIVIFg1wirU+tAEN948VOInkY5BJp/c5OYKhvHJETycMglygSRqnerygGOZE8DHKJtL5pFsCpFSI1MMglGrohSLtJ7t1+gCNyInkY5BIJjd+iDwyNyLn8kEgeBrlEWt80C7hlaoU5TiQNg1wire+1Amj7S4ooVI0oyGtqapCUlASj0QiLxYKWlpY7tt+zZw9SUlJgNBqRlpaGAwcO+LwvhEBVVRWmTZuG2NhYWK1WnD17diSlhTRPBKwj13FqhUi6gIN89+7dsNvtqK6uRltbG9LT02Gz2dDd3e23/aFDh7B48WKsWLEC7e3tKCgoQEFBATo6OpQ2mzZtwmuvvYba2locOXIEEyZMgM1mw5dffjnynoWgyJha4cVOItmiRICPcrFYLJg3bx62b98OAPB4PEhMTMTq1auxbt2629oXFRWhr68P+/fvV449+OCDyMjIQG1tLYQQSEhIwLPPPouf/OQnAICenh6YTCa8/fbbeOKJJ277zP7+fvT39yt/7u3tRWJiInp6ejBp0qRh9+V/W/+JupbOYbcfrWPn/33j53or4r9mkPZ7ZUqr/gOu9P8HqdMnwaiPVrscopCxYkEyHkmbNuz2vb29iIuLG1au6QMpZGBgAK2traioqFCO6XQ6WK1WNDc3+z2nubkZdrvd55jNZkN9fT0A4Ny5c3C5XLBarcr7cXFxsFgsaG5u9hvkDocDL7zwQiCl++XquaaEqywTDXp8zRDQv/awMm2yEVfcX6DjQq/apRCFlO+nJ4zZZweUKJcvX8bg4CBMJpPPcZPJhE8//dTvOS6Xy297l8ulvO899lVt/q+KigqfLwfviDxQC1On4ZtTvxbweaMxZ9okGMdpd6T6zv9Y0Cb5y5EoHMyZNvzZgkCF5dDQYDDAYBj91MQ3p35NepBr3dSJRixMHf5fH4lo9AK62BkfH4/o6Gi43W6f4263G2az2e85ZrP5ju29PwP5TCIiGhJQkMfExCAzMxNOp1M55vF44HQ6kZOT4/ecnJwcn/YA0NjYqLRPTk6G2Wz2adPb24sjR4585WcSEdEtRIDq6uqEwWAQb7/9tjh58qRYuXKlmDx5snC5XEIIIZYuXSrWrVuntP/LX/4i9Hq9eOWVV8SpU6dEdXW1GDdunPjkk0+UNhs3bhSTJ08W7733njhx4oRYtGiRSE5OFteuXRtWTT09PQKA6OnpCbQ7REQhKZBcC3iOvKioCJcuXUJVVRVcLhcyMjLQ0NCgXKzs7OyETjc00M/NzcWuXbuwfv16VFZWYvbs2aivr0dqaqrS5rnnnkNfXx9WrlyJzz//HAsWLEBDQwOMRuNwv4wA3BjJExFpgTfPxDBWiAe8jjwU/fOf/xzRqhUiolDX1dWFGTNm3LGNJoLc4/Hg4sWLmDhxYsBbxHqXLnZ1dQV0M1G4YP/Cn9b7yP75J4TAlStXkJCQ4DPL4U9YLj/8v3Q63X/9xvpvJk2apMn/iLzYv/Cn9T6yf7eLi4sbVjvufkhEFOYY5EREYS7ig9xgMKC6ujood4qGIvYv/Gm9j+zf6GniYicRUSSL+BE5EVG4Y5ATEYU5BjkRUZhjkBMRhTkGORFRmIvoIK+pqUFSUhKMRiMsFgtaWlrULiloHA4H5s2bh4kTJ2Lq1KkoKCjA6dOn1S5rzGzcuBFRUVFYs2aN2qUEzYULF/CjH/0IU6ZMQWxsLNLS0nDs2DG1ywqawcFBbNiwAcnJyYiNjcXdd9+NF198cVibRIWijz76CN///veRkJCAqKgo5XGWXkIIVFVVYdq0aYiNjYXVasXZs2eD8rsjNsh3794Nu92O6upqtLW1IT09HTabDd3d3WqXFhQHDx7EqlWrcPjwYTQ2NuL69ev47ne/i76+PrVLC7qjR4/il7/8Je677z61Swmaf//735g/fz7GjRuH3//+9zh58iQ2b96Mr3/962qXFjQvv/wyXn/9dWzfvh2nTp3Cyy+/jE2bNmHbtm1qlzYifX19SE9PR01Njd/3N23ahNdeew21tbU4cuQIJkyYAJvNhi+//HL0v3ys9tINddnZ2WLVqlXKnwcHB0VCQoJwOBwqVjV2uru7BQBx8OBBtUsJqitXrojZs2eLxsZGkZeXJ8rKytQuKSjWrl0rFixYoHYZYyo/P18sX77c59jjjz8ulixZolJFwQNA7N27V/mzx+MRZrNZ/PznP1eOff7558JgMIhf//rXo/59ETkiHxgYQGtrK6xWq3JMp9PBarWiublZxcrGTk9PDwDgrrvuUrmS4Fq1ahXy8/N9/rfUgn379iErKwuFhYWYOnUq7r//frzxxhtqlxVUubm5cDqdOHPmDADgr3/9Kz7++GM88sgjKlcWfOfOnYPL5fL57zQuLg4WiyUomaOJ3Q8DdfnyZQwODioPw/AymUz49NNPVapq7Hg8HqxZswbz58/3eaBHuKurq0NbWxuOHj2qdilB9/e//x2vv/467HY7KisrcfToUTz99NOIiYlBcXGx2uUFxbp169Db24uUlBRER0djcHAQL730EpYsWaJ2aUHncrkAwG/meN8bjYgM8kizatUqdHR04OOPP1a7lKDp6upCWVkZGhsbh/0kqXDi8XiQlZWFn/3sZwCA+++/Hx0dHaitrdVMkP/mN7/Bzp07sWvXLtx77704fvw41qxZg4SEBM30UZaInFqJj49HdHQ03G63z3G32w2z2axSVWOjtLQU+/fvx4cffjjqPdtDSWtrK7q7u/HAAw9Ar9dDr9fj4MGDeO2116DX6zE4OKh2iaMybdo0zJ071+fYnDlz0NnZqVJFwVdeXo5169bhiSeeQFpaGpYuXYpnnnkGDodD7dKCzpsrY5U5ERnkMTExyMzMhNPpVI55PB44nU7k5OSoWFnwCCFQWlqKvXv34oMPPkBycrLaJQXVww8/jE8++QTHjx9XXllZWViyZAmOHz+O6OhotUsclfnz59+2XPTMmTOYNWuWShUF39WrV2978k10dDQ8Ho9KFY2d5ORkmM1mn8zp7e3FkSNHgpM5o75cGqbq6uqEwWAQb7/9tjh58qRYuXKlmDx5snC5XGqXFhQ//vGPRVxcnGhqahL/+te/lNfVq1fVLm3MaGnVSktLi9Dr9eKll14SZ8+eFTt37hTjx48X77zzjtqlBU1xcbGYPn262L9/vzh37px49913RXx8vHjuuefULm1Erly5Itrb20V7e7sAILZs2SLa29vF+fPnhRBCbNy4UUyePFm899574sSJE2LRokUiOTlZXLt2bdS/O2KDXAghtm3bJmbOnCliYmJEdna2OHz4sNolBQ0Av6+33npL7dLGjJaCXAgh3n//fZGamioMBoNISUkRO3bsULukoOrt7RVlZWVi5syZwmg0im984xvi+eefF/39/WqXNiIffvih3//PFRcXCyFuLEHcsGGDMJlMwmAwiIcfflicPn06KL+b+5ETEYW5iJwjJyLSEgY5EVGYY5ATEYU5BjkRUZhjkBMRhTkGORFRmGOQExGFOQY5EVGYY5ATEYU5BjkRUZhjkBMRhbn/DxPfku5W/5z2AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
@@ -271,7 +980,7 @@
"dt = 0.025\n",
"t_max = 10.0\n",
"time_vec = np.arange(0, t_max+dt, dt)\n",
- "current = jx.step_current(i_delay=1.0, i_dur=1.0, i_amp=0.1, delta_t=dt, t_max=t_max)\n",
+ "current = jx.step_current(i_delay=1.0, i_dur=2.0, i_amp=0.08, delta_t=dt, t_max=t_max)\n",
"\n",
"fig, ax = plt.subplots(1, 1, figsize=(4, 2))\n",
"_ = plt.plot(time_vec, current)"
@@ -279,7 +988,7 @@
},
{
"cell_type": "markdown",
- "id": "6a796301",
+ "id": "76534f64",
"metadata": {},
"source": [
"We then stimulate one of the compartments of the cell with this step current:"
@@ -287,8 +996,8 @@
},
{
"cell_type": "code",
- "execution_count": 76,
- "id": "d923b695",
+ "execution_count": 19,
+ "id": "472309b3",
"metadata": {},
"outputs": [
{
@@ -306,7 +1015,7 @@
},
{
"cell_type": "markdown",
- "id": "71439b57",
+ "id": "bdbd193f",
"metadata": {},
"source": [
"### Define recordings"
@@ -314,7 +1023,7 @@
},
{
"cell_type": "markdown",
- "id": "a349c83e",
+ "id": "16881662",
"metadata": {},
"source": [
"Next, you have to define where to record the voltage. In this case, we will record the voltage at two locations:"
@@ -322,8 +1031,8 @@
},
{
"cell_type": "code",
- "execution_count": 77,
- "id": "7694925f",
+ "execution_count": 20,
+ "id": "46107eb1",
"metadata": {},
"outputs": [
{
@@ -343,7 +1052,7 @@
},
{
"cell_type": "markdown",
- "id": "ba999e08",
+ "id": "1cd6625b",
"metadata": {},
"source": [
"We can again visualize these locations to understand where we inserted recordings:"
@@ -351,13 +1060,13 @@
},
{
"cell_type": "code",
- "execution_count": 78,
- "id": "6b615f27",
+ "execution_count": 21,
+ "id": "74cb63b9",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkpElEQVR4nO3deVRTZ/4G8CckEFBCIltQIYIbLtQFVERFK1q3dqqi7dHiFKut1YKKODMF/U3rnI7Fo9MqaovaBW3rNirS0lFbi3WrKIgLxQVFUSgYNs2CliXk/f1BvW3qliDh5sL3c8499b25Cc/bo4/x5s29IsYYAyGEEMGx4zsAIYSQxqECJ4QQgaICJ4QQgaICJ4QQgaICJ4QQgaICJ4QQgaICJ4QQgZLwHeBpGY1GlJSUQCaTQSQS8R2HEEKeGmMMer0eHTp0gJ3do99nC77AS0pK4OPjw3cMQghpckVFRfD29n7k44IvcJlMBqBhoi4uLjynIYSQp6fT6eDj48P126MIvsDvnzZxcXGhAieEtChPOi1MH2ISQohAUYETQohAUYETIjA3btxAdXU13zGIDaACJ0RAsrKy4OfnB4VCAYPBwHccwjMqcEIE4sCBAxg0aBAAoKamBklJSTwnInyjAidEAL744guMHz+eG0dHR2P+/Pk8JiK2gAqcEBv3wQcfIDIykhsvW7YM69at4zERsRWCXwdOSEv29ttvY+XKldw4KSkJc+fO5TERsSVU4ITYqFmzZiE5OZkb79q1C1OnTuUxEbE1VOCE2KDJkycjNTWVG6enpyMsLIy/QMQmUYETYmOGDx+OY8eOAWj4KvW5c+fQp08fnlMRW0QFTogN6dOnD37++WcAgJ2dHa5duwZfX19+QxGbRQVOiI3w8/PDjRs3AABisRhqtRru7u78hiI2jQqcEBvg6emJ8vJyAIBUKoVGo4GjoyPPqYitowInhEcGgwHt2rVDVVUVAMDZ2Rl37tyBREJ/NMmT0Rd5COFJdXU1nJ2dufJ2c3ODXq+n8iZmowInhAcajQYymQw1NTUAAJVKhYqKCp5TEaGhAiekmd24cQNubm7c1QR79+6Nmzdv8pyKCBEVOCHNKCcnB507d4bRaAQADBs2DLm5uTynIkJFBU5IMzl69Cj69u0LxhgA4IUXXuC+sENIY1CBE9IMUlJSMGLECG4cGRmJtLQ0HhORloAKnBAr27BhA6ZMmcKN//a3v2Hz5s38BSItBhU4IVb03nvvYd68edx45cqVWLVqFY+JSEtCC04JsZKFCxdi7dq13Dg5ORkzZ87kLxBpcaz6DjwhIQEDBw6ETCaDp6cnJk2ahLy8PJNjqqurERUVBTc3Nzg7O2PKlCkoLS21ZixCrC4iIsKkvNPS0qi8SZOzaoEfOXIEUVFROHnyJA4ePIi6ujqMGTMGd+/e5Y5ZtGgR0tLSsGvXLhw5cgQlJSUIDw+3ZixCrGrcuHHYtm0bNz5x4gReeOEFHhORlkrE7q9pagbl5eXw9PTEkSNHMHz4cGi1Wnh4eGDbtm3cnUYuX76Mnj17IiMjA4MHD37ia+p0Osjlcmi1Wri4uFh7CoQ8VnBwMDIzMwE0XMv70qVL8Pf35zkVERpze61Zz4FrtVoAgKurKwAgOzsbdXV1GD16NHdMjx49oFKpHlngNTU13NePgYaJEmIL/P39ceXKFQAN1/IuLi6Gl5cXz6lIS9Zsq1CMRiNiYmIwdOhQBAQEAADUajUcHBygUChMjlUqlVCr1Q99nYSEBMjlcm7z8fGxdnRCnqhjx45cedvb20Or1VJ5E6trtgKPiopCbm4uduzY8VSvEx8fD61Wy21FRUVNlJAQyxkMBri6uqKkpAQA4OTkBJ1OB2dnZ56TkdagWU6hREdH49tvv8XRo0fh7e3N7ffy8kJtbS00Go3Ju/DS0tJHvnuRSqWQSqXWjkzIExkMBsjlcty7dw8AoFAoUF5eTpeDJc3Gqu/AGWOIjo7G3r17cejQIfj5+Zk8HhQUBHt7e6Snp3P78vLyUFhYiJCQEGtGI+SpVFVVoU2bNlx5e3l50Y0YSLOz6u+2qKgobNu2DV9//TVkMhl3Xlsul8PJyQlyuRyzZ89GbGwsXF1d4eLigvnz5yMkJMSsFSiE8EGtVsPb2xv19fUAgK5du+Lq1as8pyKtkVWXEYpEoofu/+M30qqrq7F48WJs374dNTU1GDt2LD7++GOzPwCiZYSkOeXn56N79+7cFQUDAwORnZ3NcyrS0pjba826DtwaqMBJc8nKysKgQYO48ahRo/DDDz/wmIi0VOb2Gl3MihAzHDhwwKS8X375ZSpvwjsqcEKe4IsvvsD48eO58bx587Bz504eExHSgAqckMdYs2YNIiMjufGyZcvw8ccf85iIkN/RmidCHmHJkiVISEjgxuvXr0dUVBSPiQgxRQVOyEO8/vrr+Oyzz7jx9u3bMW3aNB4TEfIgKnBC/iQ8PBx79+7lxunp6QgLC+MxESEPRwVOyB+MGDECR48eBdDwPYbTp08jMDCQ51SEPBwVOCG/6devH86fPw+gobyvX78OX19ffkMR8hhU4IQA6Ny5MwoKCgAAYrEYarUa7u7uPKci5PGowEmr5+npifLycgCAg4MDtFotHB0deU5FyJNRgZNWy2AwwM3Njburk7OzM11RkAgKfZGHtErV1dWQyWRcebu5uUGv11N5E0GhAietjkajgUwmQ3V1NQBApVKhoqKC51SEWI4KnLQqv/zyC9zc3GAwGAAAvXv3xs2bN3lORUjjUIGTVuPChQtQqVQwGo0AgCFDhiA3N5fnVIQ0HhU4aRWOHz+OgIAA7kYMEyZMwE8//cRzKkKeDhU4afFSUlIQGhrKjSMjI/G///2Px0SENA0qcNKibdq0CVOmTOHGsbGx2Lx5M3+BCGlCVOCkxVq+fDnefPNNbrxy5Up88MEHPCYipGnRolfSIsXExCAxMZEbf/rpp5g9ezaPiQhpelTgpMWJiIjAtm3buHFaWhpeeOEFHhMRYh1U4KRFmTBhAvbv38+Njx07hmHDhvGYiBDroQInLUZISAhOnjwJoOFysJcuXYK/vz/PqQixHipw0iL06tULly5dAgDY2dnh5s2b8Pb25jkVIdZFBU4Ez8fHB7/88gsAwN7eHmVlZVAoFPyGIqQZUIFboL4eOHYMuHULaN8eCA0FxGK+U7VeBoMBSqUSt2/fBgA4Ojrizp07dC1v0mrYxDrwjz76CL6+vnB0dERwcDAyMzP5jvSAlBTA1xcYORJ45ZWG//r6Nuwnzc9gMEChUHDlLZfLodfrqbxJq8J7ge/cuROxsbF49913cebMGfTt2xdjx45FWVkZ39E4KSnA1KnAb/9K5xQXN+ynEm9eVVVVaNu2Le7evQsA8PLygkajoWt5k1ZHxO5f3YcnwcHBGDhwINavXw8AMBqN8PHxwfz58xEXF/fE5+t0Osjlcmi1Wri4uJj1Mw0GA/Ly8sw61mgERo0Cfrvj1kN5egI//ADY8f7XYcuXk5ODGTNmcFcU7Nq1K65evcpzKkKalrm9xutbltraWmRnZyM+Pp7bZ2dnh9GjRyMjI+Ohz6mpqUFNTQ03vn9HFUvk5eUhICDA8sCPUFYG9OnTZC9HzBQYGIjs7Gy+YxDCG17fM1ZUVKC+vh5KpdJkv1KphFqtfuhzEhISIJfLuc3Hx6c5ohIbNHPmTL4jEMIrwZ00jI+PR2xsLDfW6XQWl7i/v7/ZF/LPzARmzXrycZ9/DgwaZFEM0ghz587F8ePHAQALFiyAWq3G8uXLeU5FCD94LXB3d3eIxWKUlpaa7C8tLYWXl9dDnyOVSiGVSp/q50okEvTu3dusY3v0AN55p+EDy4d9WiASAd7ewKuv0pLC5nDs2DHs2LED06dPBwC8//77KC8vx6ZNm3hORkjz4/UUioODA4KCgpCens7tMxqNSE9PR0hICI/JficWA/cvaicSmT52f7xmDZV3c5o2bRq+//57bvzJJ59g6tSpPCYihB+8r5uIjY3FJ598gi1btuDSpUuYN28e7t69i9dee43vaJzwcGD3bqBjR9P93t4N+8PD+cnVmj333HPIzs6G6Le/Rffs2YNnn32W31CENDPelxECwPr167Fq1Sqo1Wr069cPa9euRXBwsFnPbcwywsaib2Lanvz8fHTv3p2712Xfvn1x7tw5fkMR8pTM7TWbKPCn0ZwFTmxTRUUFvLy8UF9fDwDo3Lkzrl27xnMqQhrP3F7j/RQKIU/L3d0dGo0GDg4OAIDr168/sDSVkJaICpy0CM7Ozrh79y7atm0LACgrK4NcLofBYOA5GSHWQwVOWgyJRAKNRgNXV1cADf8MlclkqK6u5jkZIdZBBU5aFIlEgsrKSu5mDtXV1ZDJZNBoNPwGI8QKqMBJi1RUVISePXsCaLh4mZubG3fTB0JaCipw0mJdvHgRgwcPBtDwBTGVSoULFy7wnIqQpkMFTlq0jIwMjB8/HgDAGENAQAB3LRVChI4KnLR4+/btQ0REBDcODQ3F119/zWMiQpoGFThpFb766issXLiQG0+aNAmfffYZj4kIeXpU4KTVWLNmDRISErjx66+/jhUrVvCYiJCnQwVOWpW4uDhs3LiRG8fHx2Px4sU8JiKk8ajASaszZ84cpKamcuMPP/wQr776Kn+BCGkkKnDSKk2cOBHHjh3jxl9++SUmTJjAYyJCLEcFTlqtYcOGITc3l7um+P79+zFkyBCeUxFiPipw0qr17t0bhYWFsLNr+KOQkZGBXr168ZyKEPNQgZNWz9vbG5WVlZBIGm4Re+nSJahUKp5TEfJkVOCEAFAoFNDr9XB0dATQcC0VNzc3uhwtsWlU4IT8xtHREXq9nrsDyu3bt6FQKKjEic2iAifkDyQSCbRaLTw9PQGAu0lEVVUVz8kIeRAVOCEPUVpaCj8/PwBAbW0tFAoFKioqeE5FiCkqcEIe4fr16+jbty8AoL6+Hp6ensjPz+c5FSG/owIn5DHOnTuHESNGAGi4HG337t1x5swZnlMR0oAKnJAnOHz4MCZPngygocSDgoJw8OBBnlMRQgVOiFlSUlLwxhtvcOMxY8Zgx44dPCYihAqcELNt2rQJS5Ys4cbTp0/HunXreExEWjsqcEIssHz5cqxevZobL1iwAO+88w6PiUhrRgVOiIViYmKwdetWbvzee+9h3rx5PCYirZVVCvzGjRuYPXs2/Pz84OTkhC5duuDdd99FbW2tyXE5OTkIDQ2Fo6MjfHx8sHLlSmvEIaTJvfLKK/j++++58YYNG/DSSy/xmIi0RlYp8MuXL8NoNGLjxo24cOECVq9ejQ0bNpicP9TpdBgzZgw6deqE7OxsrFq1CsuWLcOmTZusEYmQJvfcc88hMzOTG+/evRthYWE8JiKtjYgxxprjB61atQpJSUm4fv06ACApKQlLly6FWq2Gg4MDgIbbXaWmpuLy5ctmv65Op4NcLodWq+WuYUFIc8rPz0f37t1x/49SYGAgsrOzeU5FhMzcXmu2c+BarRaurq7cOCMjA8OHD+fKGwDGjh2LvLw83Llz55GvU1NTA51OZ7IRwqeuXbuirKwMYrEYAHDmzBl07dqV51SkNWiWAs/Pz8e6devw5ptvcvvUajWUSqXJcffHarX6ka+VkJAAuVzObT4+PtYJTYgF3N3dodFouDck165dQ/v27XlORVo6iwo8Li4OIpHosdufT38UFxdj3LhxeOmll0y+CNFY8fHx0Gq13FZUVPTUr0lIU3B2duauXgg0vBGRy+V0OVpiNRJLDl68eDFmzpz52GM6d+7M/bqkpAQjR47EkCFDHvhw0svLC6WlpSb77o+9vLwe+fpSqRRSqdSS2IQ0G4lEAo1GA6VSidu3b0On00Emk+HOnTvczSIIaSoWFbiHhwc8PDzMOra4uBgjR45EUFAQkpOTuXsO3hcSEoKlS5eirq4O9vb2AICDBw/C398f7dq1syQWITZFIpGgsrIS3t7eKC4uRnV1NWQyGcrLy6FQKPiOR5rJgQMHsGnTJjDGsHfvXqv8DKusQikuLsazzz6LTp06YcuWLdyHO8Dv7661Wi38/f0xZswYvP3228jNzcWsWbOwevVqzJkzx+yfRatQiC3r0aMH8vLyAAB2dna4efMmvL29eU5FmlJWVhYSExNx4sQJ3Lp1CzU1NfhzrVpas2b3GrOC5ORkBuCh2x+dP3+eDRs2jEmlUtaxY0e2YsUKi3+WVqtlAJhWq22q+IQ0qUGDBnG//0UiEcvNzeU7EmmEy5cvs7lz5zJ/f3/Wtm1bJhKJHtlzf9zEYrHFP8vcXmu2deDWQu/AiRCMGzcO3333HTc+ceIEQkJCeExEHkWtVmP16tU4cOAACgoKcPfuXRiNxic+TyQSwcnJCR07dsTw4cOxYMEC9OnTp1EZzO01KnBCmklERAS2bdvGjVNTUzFx4kQeE7VuVVVVSExMxDfffIMrV65Ar9ejvr7+ic8TiUSQSqVQKpUICQlBVFQUhg0b1qTZzO01iz7EJIQ03tatW+Hh4YHExEQAwKRJk5CcnPzElV3k6RgMBnz66afYvn07Ll68iDt37phV1ADg4OAAd3d3BAYG4vXXX7e5v3CpwAlpRmvWrIGHhwf+7//+DwDw2muvQa1WIy4ujudkwmcwGLB7925s3rwZ58+fR2VlJerq6sx6rkQiQbt27dCnTx/MmDEDM2bMgERi+/Vo+wkJaWGWLl0KDw8P7pvJ8fHxqKysxKpVq3hOJhwHDx7Exo0bkZmZibKyMtTU1Jj1PLFYDLlcjh49eiA8PBxRUVGCXp9PBU4ID+bMmQN3d3dMmTIFAPCf//wHpaWl+OKLL3hOZluysrKwbt06/PTTT7h16xaqq6vNWpJnZ2cHZ2dndO3aFc8//zwWLFgAd3f3ZkjcvKjACeFJeHg4jhw5wt31/ssvv8SdO3eQlpbGc7Lml5+fjw8//BCHDx9GYWEh7t27Z1ZRi0QitG3bFp06dcKoUaOwaNEi+Pr6Wj+wjaBVKITwLCcnB/369eMKKyQkBCdOnOA5lXWo1WqsXbsW+/btQ0FBAaqqqsxeoufo6IiOHTsiNDQUMTExjV6iJwS0CoUQgejTpw8KCwvRqVMnGI1GZGRkICAgALm5uXxHa7SqqiqsX78ee/fuxdWrV6HT6cxe+XF/id7gwYMRFRWF4cOHWzmtcFGBE2IDvL29UVlZCQ8PDxgMBly4cAEqlQqFhYV8R3us+0v0duzYgQsXLkCj0Zh99UV7e3u4u7ujf//+mD17Nl588UVBrPywJfR/ixAboVAooNfr0a5dO1RXV6OoqAju7u6oqKjgOxoMBgNSU1Px+eef4+zZs41aohcQEIBp06Zh1qxZVNRNhP4vEmJDHB0dodfr4ebmBp1Oh8rKSjg7O0Oj0TRb6R06dAgff/wxsrKyUFpaavESve7duyM8PBzz5s2Ds7OzldO2blTghNgYiUQCrVYLT09PlJeXczeJ0Gq1Tbpm+cyZM1i7di2OHz+OkpISi5fodenSBePHj8eiRYta5BI9IaACJ8RGlZWVwc/PDzdu3EBtbS2cnZ2hVqstLsv8/HwkJiYiPT3d4iV6bdq0gUqlwqhRo7Bw4UK616eNoQInxIYVFBSgb9++yMnJQX19PZRKJa5du/bQtc4VFRVYvXo19u/fj2vXrlm8RK9Dhw4YNmwYFixYgMDAQCvMhjQ1KnBCbNz58+cxYsQIHD16FEajEX5+foiOjsbp06eRl5fXqCV6AwcOxJtvvonnnnvOyumJNdEXeQgRiMmTJyM1NdWsY+3t7eHm5ob+/ftj1qxZmDRpEq38EBBze82iu9ITQvizd+9es+5JKxKJIBaL4eTkBFdXV3Tq1InKu4Wid+CECIjBYMDQoUPh6uqKoqIi3Lx5E3fv3rXoQ8mOHTsiLCwMMTEx8Pf3b4bUxFJ0Rx5CWpmcnBysXbsWR48exS+//GLRssC2bdvCz88PY8aMweLFi7mbjxN+UIETQgAAR48exUcffYSTJ09y184254+9WCyGTCZDt27dMHHiRCxcuJC+mNNMqMAJIY9kMBjwzTffIDk5GWfOnEF5ebnZX40Xi8Vo164devXqhZdffhmzZ88W9E0RbBEVOCHEYgaDAVu2bMHWrVuRm5uLO3fuWHRxKjc3N/Tt2xczZ87E1KlT6cPTRqICJ4Q0maqqKmzcuBF79uxBXl4etFqtRWvPPT09MWDAAMybN4/WnpuBCpwQYnX3v/154MAB5OfnW/TtT6lUig4dOmDo0KGYP38+Bg4c2AyJhYEKnBDCmxs3bmD16tX44YcfUFhYaPFSR29vb4SFhSE2NrZVXn+FCpwQYnNycnKwZs0aHDt2DMXFxRZfAdHPzw9jx47FokWLWvRSRypwQohgHDp0CElJScjMzLT4GuQymQzdu3fH5MmTER0d3SKWOtrMV+lramrQr18/iEQinDt3zuSxnJwchIaGwtHRET4+Pli5cqW14xBCbFBYWBh27dqFmzdvcu/K6+rqsGfPHkyYMAHt27eHvb39A8+rr6+HRqNBZmYm4uPjIZPJIBKJYG9vDw8PD4wYMQIbNmwweyXNw9Qb63H4xmFs/3k7Dt84jHqjeR/eNgtmZQsWLGDjx49nANjZs2e5/VqtlimVShYREcFyc3PZ9u3bmZOTE9u4caNFr6/VahkAptVqmzg5IcQW1dXVsY0bN7KRI0cyDw8PJpFIGACzNnt7e+bl5cXGjx/Ptm/fzurq6h77s/Zc3MO8P/RmWAZu8/7Qm+25uMeqczS316x6CmX//v2IjY3Fnj170Lt3b5w9exb9+vUDACQlJWHp0qVQq9VwcHAAAMTFxSE1NRWXL19+5GvW1NSY/PNKp9PBx8eHTqEQ0spVVVUhKSkJKSkpuHLlSqOWOg4aNAhvvfUWwsLCkHIpBVP/OxUMphUpgggAsPvl3QjvGd7k8wBs4Bx4aWkpgoKCkJqaCnd3d/j5+ZkU+KuvvgqdTmdyecwff/wRYWFhuH37Ntq1a/fQ1122bBn+9a9/PbCfCpwQ8jCNvdEFgIY7JsgAqAAEA+jQsFsEEbxdvFGwsABiO3GTZ+b1HDhjDDNnzsTcuXMxYMCAhx6jVquhVCpN9t0fq9XqR752fHw8tFottxUVFTVdcEJIi+Pu7o7ly5fjzJkz3LtyxhiuXr2K6Oho9OzZE23btoVIJHrwyQYAdwCcB7AJwLKGjS1nKHq/CFNfm4r8/PxmnI0piwo8Li4OIpHosdvly5exbt066PV6xMfHN3lgqVQKFxcXk40QQizVtWtXrFu3DhcvXuTelTPGkJ2djdAXQ4F2ePQ9y+oAVACpX6SiW7du3DXY5XI5AgMDsWTJElRUVFh9DhadQikvL0dlZeVjj+ncuTNefvllpKWlmfyNVl9fD7FYjIiICGzZsqXRp1D+jJYREkKa2uEbhzFyy0jTndcAnAZQDOAuADMXo9jb26O2ttain29ur1l0pRkPDw+z7giydu1a/Pvf/+bGJSUlGDt2LHbu3Ing4GAAQEhICJYuXYq6ujpuedDBgwfh7+9vdnkTQog1hKpC4e3ijWJd8e8fYnb5bcPv58CvRl1F2jdp+Pzzz3H27FlUVlY+cFVHc6/y2BhWOQeuUqkQEBDAbd27dwcAdOnSBd7e3gCAV155BQ4ODpg9ezYuXLiAnTt3IjExEbGxsdaIRAghZhPbiZE4LhHA76tO7rs/XjNuDaQOUkydOhX79u3DrVu3UFtby61hT0pKwogRIzBq1Cir5eTtnphyuRzff/89CgoKEBQUhMWLF+Odd97BnDlz+IpECCGc8J7h2P3ybnR06Wiy39vF+4lLCCUSCebOnYvDhw/jhx9+sFpG+io9IYQ8Rr2xHscKj+GW/hbay9ojVBVqlaWDf2SVc+CEENLaiO3EeNb3Wb5jPBRvp1AIIYQ8HcG/A79/Bkin0/GchBBCmsb9PnvSGW7BF7herwcA+Pj48JyEEEKall6vh1wuf+Tjgv8Q02g0oqSkhLuMpLnuXwSrqKioxX34SXMTJpqbMFljbowx6PV6dOjQAXZ2jz7TLfh34HZ2dtza8sZoyV/Hp7kJE81NmJp6bo97530ffYhJCCECRQVOCCEC1WoLXCqV4t1334VUKuU7SpOjuQkTzU2Y+Jyb4D/EJISQ1qrVvgMnhBChowInhBCBogInhBCBogInhBCBogInhBCBapUF/tFHH8HX1xeOjo4IDg5GZmYm35EslpCQgIEDB0Imk8HT0xOTJk1CXl6eyTHV1dWIioqCm5sbnJ2dMWXKFJSWlvKUuPFWrFgBkUiEmJgYbp+Q51ZcXIwZM2bAzc0NTk5OeOaZZ3D69GnuccYY3nnnHbRv3x5OTk4YPXo0rl69ymNi89TX1+Of//wn/Pz84OTkhC5duuC9994zuSCTkOZ29OhR/OUvf0GHDh0gEolM7t8LmDeX27dvIyIiAi4uLlAoFJg9ezaqqqqaLiRrZXbs2MEcHBzY559/zi5cuMDeeOMNplAoWGlpKd/RLDJ27FiWnJzMcnNz2blz59iECROYSqViVVVV3DFz585lPj4+LD09nZ0+fZoNHjyYDRkyhMfUlsvMzGS+vr6sT58+bOHChdx+oc7t9u3brFOnTmzmzJns1KlT7Pr16+y7775j+fn53DErVqxgcrmcpaamsvPnz7MXX3yR+fn5sV9//ZXH5E+2fPly5ubmxr799ltWUFDAdu3axZydnVliYiJ3jJDmtm/fPrZ06VKWkpLCALC9e/eaPG7OXMaNG8f69u3LTp48yY4dO8a6du3Kpk+f3mQZW12BDxo0iEVFRXHj+vp61qFDB5aQkMBjqqdXVlbGALAjR44wxhjTaDTM3t6e7dq1izvm0qVLDADLyMjgK6ZF9Ho969atGzt48CAbMWIEV+BCntvbb7/Nhg0b9sjHjUYj8/LyYqtWreL2aTQaJpVK2fbt25sjYqM9//zzbNasWSb7wsPDWUREBGNM2HP7c4GbM5eLFy8yACwrK4s7Zv/+/UwkErHi4uImydWqTqHU1tYiOzsbo0eP5vbZ2dlh9OjRyMjI4DHZ09NqtQAAV1dXAEB2djbq6upM5tqjRw+oVCrBzDUqKgrPP/+8yRwAYc/tm2++wYABA/DSSy/B09MT/fv3xyeffMI9XlBQALVabTI3uVyO4OBgm5/bkCFDkJ6ejitXrgAAzp8/j+PHj2P8+PEAhD23PzNnLhkZGVAoFBgwYAB3zOjRo2FnZ4dTp041SQ7BX43QEhUVFaivr4dSqTTZr1QqcfnyZZ5SPT2j0YiYmBgMHToUAQEBAAC1Wg0HBwcoFAqTY5VKJdRqNQ8pLbNjxw6cOXMGWVlZDzwm5Lldv34dSUlJiI2NxZIlS5CVlYUFCxbAwcEBkZGRXP6H/R619bnFxcVBp9OhR48eEIvFqK+vx/LlyxEREQEAgp7bn5kzF7VaDU9PT5PHJRIJXF1dm2y+rarAW6qoqCjk5ubi+PHjfEdpEkVFRVi4cCEOHjwIR0dHvuM0KaPRiAEDBuD9998HAPTv3x+5ubnYsGEDIiMjeU73dP773/9i69at2LZtG3r37o1z584hJiYGHTp0EPzcbFWrOoXi7u4OsVj8wGqF0tJSeHl58ZTq6URHR+Pbb7/Fjz/+aHJddC8vL9TW1kKj0ZgcL4S5Zmdno6ysDIGBgZBIJJBIJDhy5AjWrl0LiUQCpVIp2Lm1b98evXr1MtnXs2dPFBYWAgCXX4i/R//+978jLi4O06ZNwzPPPIO//vWvWLRoERISEgAIe25/Zs5cvLy8UFZWZvK4wWDA7du3m2y+rarAHRwcEBQUhPT0dG6f0WhEeno6QkJCeExmOcYYoqOjsXfvXhw6dAh+fn4mjwcFBcHe3t5krnl5eSgsLLT5uY4aNQo///wzzp07x20DBgxAREQE92uhzm3o0KEPLPe8cuUKOnXqBADw8/ODl5eXydx0Oh1OnTpl83O7d+/eA3ePEYvFMBqNAIQ9tz8zZy4hISHQaDTIzs7mjjl06BCMRiOCg4ObJkiTfBQqIDt27GBSqZRt3ryZXbx4kc2ZM4cpFAqmVqv5jmaRefPmMblczg4fPsxu3brFbffu3eOOmTt3LlOpVOzQoUPs9OnTLCQkhIWEhPCYuvH+uAqFMeHOLTMzk0kkErZ8+XJ29epVtnXrVtamTRv21VdfccesWLGCKRQK9vXXX7OcnBw2ceJEm11q90eRkZGsY8eO3DLClJQU5u7uzv7xj39wxwhpbnq9np09e5adPXuWAWAffvghO3v2LLt58yZjzLy5jBs3jvXv35+dOnWKHT9+nHXr1o2WET6tdevWMZVKxRwcHNigQYPYyZMn+Y5kMQAP3ZKTk7ljfv31V/bWW2+xdu3asTZt2rDJkyezW7du8Rf6Kfy5wIU8t7S0NBYQEMCkUinr0aMH27Rpk8njRqOR/fOf/2RKpZJJpVI2atQolpeXx1Na8+l0OrZw4UKmUqmYo6Mj69y5M1u6dCmrqanhjhHS3H788ceH/hmLjIxkjJk3l8rKSjZ9+nTm7OzMXFxc2Guvvcb0en2TZaTrgRNCiEC1qnPghBDSklCBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQFGBE0KIQP0/ZB/dRgfS7pAAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh7ElEQVR4nO3de1RU5eI+8Ge4DdcZMJCLXMRQUFEyKuQkmoqgcvCSmpqpZdlRyaXZRcy8nfLgpXMq09TqHC950sQTmpomIiKUt1SWgkCgGCQMaOgMFwGB9/dHP+YrAgYJbPbwfNbaa8mePTPPu9DHvfZ+994KIYQAERHJjpHUAYiI6M9hgRMRyRQLnIhIpljgREQyxQInIpIpFjgRkUyxwImIZMpE6gAPq6amBnl5ebCxsYFCoZA6DhHRQxNCoLi4GC4uLjAyanw/W/YFnpeXBzc3N6ljEBG1uNzcXLi6ujb6uuwL3MbGBsDvA1WpVBKnISJ6eDqdDm5ubvp+a4zsC7z2sIlKpWKBE5FB+aPDwjyJSUQkUyxwIiKZYoETyUx1dTXKy8uljkHtAAucSEYqKysxefJkPPfcc7h7967UcUhisj+JSdRRlJWVYdy4cTh8+DBMTU1x7tw59O/fX+pYJCEWOJEMaLVahIeHIzExERYWFti7dy/Lm1jgRO3djRs3MHz4cJw/fx5qtRoHDx7E008/LXUsagdY4ETt2PXr1xEcHIz09HQ4ODjg+++/R79+/aSORe0EC5yoncrKysKwYcNw7do1uLq64ujRo/D29pY6FrUjnIVC1A6lpKQgKCgI165dg5eXF5KSkljeVA8LnKidOXPmDAYNGgSNRoO+ffsiMTERHh4eUseidogFTtSOxMfHY+jQoSgqKkL//v1x/PhxODk5SR2L2ikWOFE7sX//fowYMQIlJSUYOnQoYmNjYWdnJ3UsasdY4ETtwM6dO/Hss8+ioqICo0ePxoEDB2BtbS11LGrnWOBEEtu8eTOmTJmCqqoqvPDCC4iOjoa5ubnUsUgGWOBEElqzZg1mzZoFIQTmzJmDbdu2wdTUVOpYJBMscCIJCCHwzjvvYOHChQCARYsWYf369Q98/iHR/XghD1Ebq6mpwdy5c/Hpp58CAFatWqUvcqLmYIETtaGqqiq89NJL2LFjBxQKBT799FPMmjVL6lgkUyxwojZSXl6OSZMmYd++fTA2Nsb27dvx/PPPSx2LZIwFTtQGSkpKMGbMGMTFxUGpVCI6Ohrh4eFSxyKZY4ETtbKioiKEhYXh1KlTsLa2xrfffovBgwdLHYsMAAucqBVpNBqEhITg0qVLsLOzw+HDh/HUU09JHYsMBAucqJX88ssvCA4ORlZWFpycnBAbGwtfX1+pY5EBadVJpydOnEB4eDhcXFygUCiwd+/eOq8LIbB06VI4OzvDwsICwcHByMzMbM1IRG0iIyMDAwYMQFZWFrp27YqkpCSWN7W4Vi3w0tJS+Pn5YcOGDQ2+vmbNGqxbtw6bNm3C6dOnYWVlhdDQUJSXl7dmLKJWlZycjKCgIPz666/w8fFBYmIiHn30UaljkSESbQSAiImJ0f9cU1MjnJycxNq1a/Xrbt++LZRKpdi5c2eTP1er1QoAQqvVtmRcoj8lKSlJqNVqAUA8/vjjorCwUOpIJENN7TXJrtvNzs6GRqNBcHCwfp1arUZAQABOnjzZ6PsqKiqg0+nqLETtwZEjRxASEgKtVougoCAcO3YMDg4OUsciAyZZgWs0GgCAo6NjnfWOjo761xoSFRUFtVqtX9zc3Fo1J1FTfPPNNwgPD0dZWRmGDx+Ow4cPQ61WSx2LDJzs7pyzaNEiaLVa/ZKbmyt1JOrgtm3bhgkTJqCyshITJkzAvn37YGlpKXUs6gAkK/Dax0QVFBTUWV9QUPDAR0gplUqoVKo6C5FU1q1bhxdffBE1NTV4+eWXsXPnTpiZmUkdizoIyQrc09MTTk5OiIuL06/T6XQ4ffo0AgMDpYpF1CRCCLz33nuYN28eAOD111/H559/DmNjY4mTUUfSqhfylJSUICsrS/9zdnY2kpOT0alTJ7i7u2P+/Pl4//330b17d3h6emLJkiVwcXHBmDFjWjMW0UMRQuCtt97CP//5TwDAihUrsGTJEigUComTUYfTmlNh4uPjBYB6y/Tp04UQv08lXLJkiXB0dBRKpVIMHTpUZGRkNOs7OI2Q2lJVVZV45ZVX9H+XP/roI6kjkQFqaq8phBBCsv89WoBOp4NarYZWq+XxcGpVlZWVmDp1Knbv3g0jIyN88cUXeOmll6SORQaoqb3Ge6EQNUFZWRnGjx+PQ4cOwdTUFDt37sS4ceOkjkUdHAuc6A/odDqEh4fjxIkTsLCwQExMDEJDQ6WORcQCJ3qQmzdvYvjw4Th37hxUKhUOHjyIAQMGSB2LCAALnKhR169fx7Bhw5CWlgZ7e3scOXIE/fr1kzoWkR4LnKgBV69eRXBwMLKzs+Hq6orY2Fj4+PhIHYuoDtldSk/U2lJSUjBgwABkZ2fDy8sLSUlJLG9ql1jgRPc4e/YsBg0ahPz8fPTp0weJiYnw8PCQOhZRg1jgRP/f8ePHMWTIEBQVFSEgIADHjx9/4H15iKTGAicCcPDgQYwYMQIlJSUYMmQIjh49ik6dOkkdi+iBWODU4e3atQtjxoxBeXk5Ro0ahYMHD8La2lrqWER/iAVOHdpnn32G559/HlVVVZgyZQr27NkDc3NzqWMRNQkLnDqstWvX4m9/+xuEEJg9eza2b98OU1NTqWMRNRkLnDocIQTeffddvP322wB+f8rThg0bYGTEfw4kL7yQhzqUmpoazJs3D+vXrwcArFq1CgsXLpQ4FdGfwwKnDqOqqgozZszAl19+CYVCgQ0bNmD27NlSxyL601jg1CFUVFRg0qRJ2Lt3L4yNjbFt2zZMmTJF6lhED4UFTgavpKQEY8eOxdGjR6FUKhEdHY3w8HCpYxE9NBY4GbRbt24hLCwMJ0+ehJWVFb799lsMGTJE6lhELYIFTgaroKAAISEhuHjxIuzs7HDo0CEEBARIHYuoxbDAySDl5OQgODgYmZmZcHJywpEjR9CnTx+pYxG1KBY4GZyMjAwMGzYMubm58PDwwNGjR+Hl5SV1LKIWxysXyKAkJycjKCgIubm58PHxQVJSEsubDBYLnAzGjz/+iGeeeQY3btxAv379cOLECbi6ukodi6jVsMDJIMTGxmLYsGHQarUYMGAA4uPj4eDgIHUsolbFAifZi4mJwV//+leUlZVh+PDh+P7776FWq6WORdTqWOAka9u3b8eECRNQWVmJ8ePHY9++fbC0tJQ6FlGbaBcFvmHDBnTt2hXm5uYICAjAmTNnpI5EMrB+/XpMnz4d1dXVmDFjBnbt2gUzMzOpYxG1GckL/Ouvv8aCBQuwbNkynD9/Hn5+fggNDUVhYaHU0aidEkJg5cqVmDt3LgBg/vz5+Pzzz2FsbCxxMqK2pRBCCCkDBAQE4Mknn9Tf3rOmpgZubm6YO3cuIiMj//D9Op0OarUaWq0WKpWqSd8phEBZWdlD5SZpVFVV4c0338QXX3wBAFi+fDmWLl0KhUIhcTKiltPUXpP0Qp7KykqcO3cOixYt0q8zMjJCcHAwTp482eB7KioqUFFRof9Zp9M1+3vLysr4zEMD8OGHH2L+/PlSxyCSjKSHUG7evInq6mo4OjrWWe/o6AiNRtPge6KioqBWq/WLm5tbW0SldsbKygpBQUFSxyCSlOwupV+0aBEWLFig/1mn0zW7xC0tLVFSUtLS0agNpKen47nnnsPVq1cxePBgHDhwAAMHDpQ6FpEkJC1we3t7GBsbo6CgoM76goICODk5NfgepVIJpVL5UN+rUChgZWX1UJ9B0vD398eFCxcwatQoJCQkIDQ0FN988w1GjBghdTSiNifpIRQzMzP4+/sjLi5Ov66mpgZxcXEIDAyUMBm1ZyqVCocOHUJYWBjKy8sxatQo7N69W+pYRG1O8mmECxYswOeff45t27YhLS0Ns2fPRmlpKV566SWpo1E7ZmFhgZiYGEyaNAlVVVWYPHky/v3vf0sdi6hNSX4MfOLEibhx4waWLl0KjUaDxx57DIcPH653YpPofqamptixYwdUKhU+++wzvPLKK9BqtXXOkRAZMsnngT+sPzMPnAyLEAILFy7E2rVrAQBLly7F8uXLOTecZKupvSb5IRSih6VQKLB69WqsXLkSAPD3v/8d8+fPR01NjcTJiFoXC5wMgkKhwDvvvINPPvkEALBu3Tq8/PLLqKqqkjgZUethgZNBee2117Bt2zYYGxtj69atmDRpUp0rd4kMCQucDM60adMQHR0NMzMz/O9//8OoUaNQWloqdSyiFscCJ4M0duxYHDx4EJaWljhy5AhCQ0Nx+/ZtqWMRtSgWOBms4OBgHD16FLa2tvjhhx8wePBg3qaYDAoLnAxaYGAgjh8/js6dOyM5ORkDBw5Ebm6u1LGIWgQLnAyen58fEhMT4ebmhoyMDAwYMACZmZlSxyJ6aCxw6hB69OiBpKQk9OjRAzk5OQgKCsLFixeljkX0UFjg1GG4u7vjxIkT8PPzQ0FBAQYNGoRTp05JHYvoT2OBU4fi6OiI+Ph4BAYG4vbt2wgODq5zN0wiOWGBU4djZ2eH2NhYDBs2DKWlpRg5ciT27dsndSyiZmOBU4dkZWWF/fv3Y+zYsaisrMS4ceOwY8cOqWMRNQsLnDospVKJ3bt3Y9q0aaiursbUqVPx6aefSh2LqMlY4NShmZiYYMuWLZg7dy4AICIiAlFRURKnImoaFjh1eEZGRvj444/x7rvvAgDeeecdREZGQua3yqcOgAVOhN9vR/vee+/pHwqxevVqzJkzh/cUp3aNBU50jzfffBOfffYZFAoFNm3ahKlTp+Lu3btSxyJqEAuc6D4zZ87EV199BRMTE3z11VcYN24cysvLpY5FVA8LnKgBkyZNwt69e2Fubo79+/dj5MiRKC4uljoWUR0scKJGhIWF4fDhw7C2tkZ8fDyCg4NRVFQkdSwiPRY40QMMGjQIx44dQ6dOnXDmzBkMGjQI+fn5UsciAsACJ/pDTz75JE6cOAFnZ2ekpKQgKCgI165dkzoWEQucqCl69+6NpKQkeHp64sqVKxgwYADS0tKkjkUdHAucqIm6deuGxMRE9OrVC9evX8fAgQNx/vx5qWNRB8YCJ2qGLl26ICEhAU888QRu3ryJwYMHIzExUepY1EGxwImayd7eHnFxcRg4cCB0Oh1CQ0Nx+PBhqWNRB9RqBb5y5Ur85S9/gaWlJWxtbRvcJicnB2FhYbC0tETnzp3x1ltvoaqqqrUiEbUYlUqFw4cPY+TIkbhz5w5GjRqF6OhoqWNRB9NqBV5ZWYkJEyZg9uzZDb5eXV2NsLAwVFZW4scff8S2bduwdetWLF26tLUiEbUoCwsLxMTEYOLEibh79y4mTZqE//znP1LHoo5EtLItW7YItVpdb/13330njIyMhEaj0a/buHGjUKlUoqKiosmfr9VqBQCh1WpbIi5Rs1VVVYmZM2cKAAKA+PDDD6WORDLX1F6T7Bj4yZMn0adPHzg6OurXhYaGQqfTITU1tdH3VVRUQKfT1VmIpGRsbIzNmzfjzTffBAC8/vrrWL58OW9HS61OsgLXaDR1yhuA/meNRtPo+6KioqBWq/WLm5tbq+YkagqFQoE1a9bg/fffBwCsWLECCxYs4O1oqVU1q8AjIyOhUCgeuKSnp7dWVgDAokWLoNVq9Utubm6rfh9RUykUCixevBjr1q0DAHz00Ud45ZVXUF1dLXEyMlQmzdn4jTfewIsvvvjAbbp169akz3JycsKZM2fqrCsoKNC/1hilUgmlUtmk7yCSwty5c6FSqTBjxgxs2bIFxcXF2LFjB//eUotrVoE7ODjAwcGhRb44MDAQK1euRGFhITp37gwAiI2NhUqlQq9evVrkO4ikMn36dNjY2GDy5MnYs2cPiouL8c0338DS0lLqaNRGtFotUlNTcfv2bYwcObJVvqNZBd4cOTk5KCoqQk5ODqqrq5GcnAwA8PLygrW1NUJCQtCrVy9MnToVa9asgUajwbvvvouIiAjuqZBBePbZZ3HgwAGMGTMG33//PUJDQ3HgwAGo1Wqpo1ELKisrQ1paGlJSUvRLamqq/vBuly5d8Ouvv7bOl7fWNJjp06frp1Xdu8THx+u3uXbtmhgxYoSwsLAQ9vb24o033hB3795t1vdwGiG1dz/88INQq9UCgOjXr58oLCyUOhL9CRUVFeLixYviq6++EosXLxajR48Wjz76qFAoFA12HQDh6uoqhg8f3qyp0UI0vdcUQsh7rpNOp4NarYZWq4VKpZI6DlGDkpOTERISghs3bsDHxwexsbFwdXWVOhY1oKqqCleuXEFqamqdverMzMxGrxTv3LkzfH190bt3b/j6+sLX1xe9evVq9Cr0P9LUXmu1QyhE9H8ee+wxJCYmYtiwYUhPT8eAAQNw9OhReHl5SR2tw6qpqUFOTk6dwx4pKSlIS0tDRUVFg+9Rq9X6gq4t7N69e+vP47U1FjhRG/H29kZSUhKCg4ORmZmJoKAgHDlyBH369JE6mkETQiA/P79OSdf+ubS0tMH3WFpa6sv53sJ2cXGBQqFo4xE0jgVO1Ibc3d2RmJiIkJAQXLx4EYMGDcKhQ4cQEBAgdTSDcPPmzXolnZKSglu3bjW4vZmZGXx8fOrsUfv6+qJr164wMmr/N2vlMXAiCdy6dQsjR47EqVOnYGVlhf3792Pw4MFSx5KN2ltu3L9XXXstyf2MjY3RvXv3esepvby8YGLS/vZjm9prLHAiiZSUlGDMmDGIi4uDUqnE7t27MWrUKKljtSu1U/TuP6H4oCuwPT096x2n9vb2hrm5eRsmfzgscCIZKC8vx+TJk7F3714YGxtj+/bteP7556WO1eYqKyvx888/1zv0ceXKlUZvCtalS5d6e9Q9e/aEtbV1G6dveZyFQiQD5ubmiI6OxowZM/Dll1/ihRdegFarbfQ++nJXXV2NK1eu1Dv08fPPPzc6Rc/e3r7OHnXtFD07O7s2Tt/+sMCJJGZiYoKtW7dCpVJhw4YNmDNnDrRaLSIjI6WO9qfVTtG7/4RiWloaysvLG3yPSqWqdzLR19dXsil6csACJ2oHjIyM8Mknn8DW1hYrV67U33XzH//4R7uatnY/IQQ0Gk29Qx+pqakoKSlp8D0WFhbo1atXvePUrq6u7Xqs7RELnKidUCgUeP/996FWq/H2229j1apV0Gq1WL9+fbuY0vbbb7/VO5mYmpqKoqKiBrc3NTVtdIqesbFxG6c3TCxwonbmrbfeglqtxqxZs7Bx40bodDps2bIFpqambfL9Op0Oly9frrdX3diDVoyMjNC9e/d6F714eXm1WeaOigVO1A69+uqrsLGxwbRp0/Df//4XxcXF+Prrr1t0KtydO3f0d9G7d886Jyen0fd07dq13h61j4+PrKboGRIWOFE7NXnyZNjY2GD8+PH49ttvERYWhn379jV7mlxlZSUyMzPrHfq4cuVKo498c3FxqbdH3atXL4OYomdIOA+cqJ07fvw4wsPDUVJSgoCAAHz33Xfo1KlTve2qq6tx9erVenvUGRkZjU7Re+SRRxq8OVNDn09thxfyEBmQM2fOYMSIESgqKoK3tze2b9+Omzdv1tmrftAUPRsbm3rT82qn6HHmR/vDAicyMCkpKRgyZAhu3LjR6Dbm5uZ1pujVFrabmxuLWkaa2mvSz00ioibx9fXFnj17HriNubk5rKys6i0sb8PEPXAimUlISIBWq0VFRUWdQyhZWVmNnpR0cnJq8Ikx/DfTPvEQClEHU15ejvT09HonMa9du9boe9zd3esdbunZsycsLCzaLjjVwwInIgBAcXFxg09Nz8vLa3B7hUKBRx99tN7slB49esDMzKyN03dMLHAieqCioiKkpqbWuzz+t99+a3B7ExMTeHt71zsU061bN14a38JY4ETUbEIIFBYW1ttbT0lJQXFxcYPvMTc3R8+ePesdinF3d+fJ0z+JBU5ELUYIgdzc3Hp765cvX37g3POGHgzs6OjIYv8DLHAianXV1dXIzs6ut7eenp7e6NWfnTp1qnd83dfXl1d/3oMFTkSSqb3/yv0PdHjQVEdnZ+cG779iY2PTxumlxwInonbnzp07DU51/OWXXxp9j4eHR4N3QDTkqY4scCKSjeLi4gbvQZ6fn9/g9kZGRo1OdTSEe5BLXuDXrl3De++9h2PHjkGj0cDFxQUvvPACFi9eXGcu6cWLFxEREYGzZ8/CwcEBc+fOxdtvv93k72GBExmu2qcA3X/y9EFPAWpoqqOnp6espjpK/lT69PR01NTUYPPmzfDy8kJKSgpmzpyJ0tJSfPDBB/qQISEhCA4OxqZNm3Dp0iXMmDEDtra2ePXVV1srGhHJxCOPPIKBAwdi4MCB+nVCCBQUFNTbW09JSUFJSYn+z/cy1Jt8tekhlLVr12Ljxo24evUqAGDjxo1YvHgxNBqNfq88MjISe/fuRXp6eoOfUVFRgYqKCv3POp0Obm5u3AMn6uCEEMjJyal34rQpUx3vPxQj9VRHyffAG6LVautMFTp58iQGDhxY55BKaGgoVq9ejVu3bsHOzq7eZ0RFRWHFihVtkpeI5EOhUMDDwwMeHh4YOXKkfv2DHnRRXFyMU6dO4dSpU3U+694HXdQWfHt80EWb7YFnZWXB398fH3zwAWbOnAkACAkJgaenJzZv3qzf7vLly+jduzcuX76Mnj171vsc7oETUUto7FFzWVlZaKwW73/UXO/evVtlqmOr7YFHRkZi9erVD9wmLS0NPj4++p+vX7+O4cOHY8KECfry/rOUSiWUSuVDfQYRkZmZmf5K0YkTJ+rXl5WVIT09vd6J05ycHOTl5SEvLw+xsbF1Pqv2Yc/3lntbPOy52XvgN27caPRmN7W6deumPyySl5eHZ555Bv3798fWrVthZPR/z5CYNm0adDod9u7dq18XHx+PIUOGoKioqMFDKPfjLBQiags6nU4/1fHectdoNA1ub2RkBC8vL/j6+mLnzp3NupNjq+2BOzg4wMHBoUnbXr9+HYMHD4a/vz+2bNlSp7wBIDAwEIsXL8bdu3f1czdjY2Ph7e3dpPImImorKpUK/fv3R//+/eusr53qeO/eekpKCm7duoWff/4ZxcXFrXYb3lY7Bn79+nU888wz8PDwwLZt2+rMwXRycgLw+0lNb29vhISEYOHChUhJScGMGTPw4YcfNnkaIffAiai9EUJAo9EgJSUFWq0W48ePb9b7JZ+FEhsbi6ysLGRlZcHV1bXOa7X/Z6jVahw5cgQRERHw9/eHvb09li5dyjngRCRrCoUCzs7OcHZ2bt3v4aX0RETtC59KT0Rk4FjgREQy1aZXYraG2iNAOp1O4iRERC2jts/+6Ai37Au89jl9bm5uEichImpZxcXFUKvVjb4u+5OYNTU1yMvLg42NTbNuPlN7CX5ubq7Bnfzk2OSJY5On1hibEALFxcVwcXGpd/3MvWS/B25kZFRvmmJzqFQqg/sLVYtjkyeOTZ5aemwP2vOuxZOYREQyxQInIpKpDlvgSqUSy5YtM8g7G3Js8sSxyZOUY5P9SUwioo6qw+6BExHJHQuciEimWOBERDLFAicikikWOBGRTHXYAt+wYQO6du0Kc3NzBAQE4MyZM1JHarYTJ04gPDwcLi4uUCgUdZ4tCvx+Oe7SpUvh7OwMCwsLBAcHIzMzU5qwzRAVFYUnn3wSNjY26Ny5M8aMGYOMjIw625SXlyMiIgKPPPIIrK2tMW7cOBQUFEiUuHk2btyIvn376q/cCwwMxKFDh/Svy3ls91q1ahUUCgXmz5+vXyfnsS1fvhwKhaLOcu/D26UYW4cs8K+//hoLFizAsmXLcP78efj5+SE0NBSFhYVSR2uW0tJS+Pn5YcOGDQ2+vmbNGqxbtw6bNm3C6dOnYWVlhdDQUJSXl7dx0uZJSEhAREQETp06hdjYWNy9exchISEoLS3Vb/P6669j//79iI6ORkJCAvLy8vDss89KmLrpXF1dsWrVKpw7dw4//fQThgwZgtGjRyM1NRWAvMdW6+zZs9i8eTP69u1bZ73cx9a7d2/k5+frl6SkJP1rkoxNdEBPPfWUiIiI0P9cXV0tXFxcRFRUlISpHg4AERMTo/+5pqZGODk5ibVr1+rX3b59WyiVSrFz504JEv55hYWFAoBISEgQQvw+DlNTUxEdHa3fJi0tTQAQJ0+elCrmQ7GzsxNffPGFQYytuLhYdO/eXcTGxopBgwaJefPmCSHk/3tbtmyZ8PPza/A1qcbW4fbAKysrce7cOQQHB+vXGRkZITg4GCdPnpQwWcvKzs6GRqOpM061Wo2AgADZjVOr1QIAOnXqBAA4d+4c7t69W2dsPj4+cHd3l93YqqursWvXLpSWliIwMNAgxhYREYGwsLA6YwAM4/eWmZkJFxcXdOvWDVOmTEFOTg4A6cYm+7sRNtfNmzdRXV0NR0fHOusdHR2Rnp4uUaqWp9FoAKDBcda+Jgc1NTWYP38+nn76afj6+gL4fWxmZmawtbWts62cxnbp0iUEBgaivLwc1tbWiImJQa9evZCcnCzrse3atQvnz5/H2bNn670m999bQEAAtm7dCm9vb+Tn52PFihUICgpCSkqKZGPrcAVO8hIREYGUlJQ6xxoNgbe3N5KTk6HVarFnzx5Mnz4dCQkJUsd6KLm5uZg3bx5iY2Nhbm4udZwWN2LECP2f+/bti4CAAHh4eGD37t2wsLCQJFOHO4Rib28PY2PjemeHCwoK4OTkJFGqllc7FjmP87XXXsOBAwcQHx9f557vTk5OqKysxO3bt+tsL6exmZmZwcvLC/7+/oiKioKfnx8+/vhjWY/t3LlzKCwsxOOPPw4TExOYmJggISEB69atg4mJCRwdHWU7tobY2tqiR48eyMrKkuz31uEK3MzMDP7+/oiLi9Ovq6mpQVxcHAIDAyVM1rI8PT3h5ORUZ5w6nQ6nT59u9+MUQuC1115DTEwMjh07Bk9Pzzqv+/v7w9TUtM7YMjIykJOT0+7H1piamhpUVFTIemxDhw7FpUuXkJycrF+eeOIJTJkyRf9nuY6tISUlJbhy5QqcnZ2l+7212unRdmzXrl1CqVSKrVu3isuXL4tXX31V2NraCo1GI3W0ZikuLhYXLlwQFy5cEADEv/71L3HhwgXxyy+/CCGEWLVqlbC1tRX79u0TFy9eFKNHjxaenp7izp07Eid/sNmzZwu1Wi2OHz8u8vPz9UtZWZl+m1mzZgl3d3dx7Ngx8dNPP4nAwEARGBgoYeqmi4yMFAkJCSI7O1tcvHhRREZGCoVCIY4cOSKEkPfY7nfvLBQh5D22N954Qxw/flxkZ2eLH374QQQHBwt7e3tRWFgohJBmbB2ywIUQ4pNPPhHu7u7CzMxMPPXUU+LUqVNSR2q2+Ph4AaDeMn36dCHE71MJlyxZIhwdHYVSqRRDhw4VGRkZ0oZugobGBEBs2bJFv82dO3fEnDlzhJ2dnbC0tBRjx44V+fn50oVuhhkzZggPDw9hZmYmHBwcxNChQ/XlLYS8x3a/+wtczmObOHGicHZ2FmZmZqJLly5i4sSJIisrS/+6FGPj/cCJiGSqwx0DJyIyFCxwIiKZYoETEckUC5yISKZY4EREMsUCJyKSKRY4EZFMscCJiGSKBU5EJFMscCIimWKBExHJ1P8D6Jzl1+lHxSkAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -375,7 +1084,7 @@
},
{
"cell_type": "markdown",
- "id": "853c3037",
+ "id": "38f1cf41",
"metadata": {},
"source": [
"### Simulate the cell response\n",
@@ -385,8 +1094,8 @@
},
{
"cell_type": "code",
- "execution_count": 79,
- "id": "89ff0bf9",
+ "execution_count": 22,
+ "id": "19e7805b",
"metadata": {},
"outputs": [
{
@@ -398,29 +1107,29 @@
}
],
"source": [
- "voltages = jx.integrate(cell)\n",
+ "voltages = jx.integrate(cell, delta_t=dt)\n",
"print(\"voltages.shape\", voltages.shape)"
]
},
{
"cell_type": "markdown",
- "id": "4af3ec42",
+ "id": "bb99315b",
"metadata": {},
"source": [
- "The `jx.integrate` function returns an array of shape `(num_recordings, num_timepoints). In our case, we inserted `2` recordings and we simulated for 10ms at a 0.025 time step, which leads to 402 time steps.\n",
+ "The `jx.integrate` function returns an array of shape `(num_recordings, num_timepoints)`. In our case, we inserted `2` recordings and we simulated for 10ms at a 0.025 time step, which leads to 402 time steps.\n",
"\n",
"We can now visualize the voltage response:"
]
},
{
"cell_type": "code",
- "execution_count": 80,
- "id": "e57436c7",
+ "execution_count": 23,
+ "id": "721ad2ef",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAk9klEQVR4nO3deXQUVdo/8G93ektn6eybJCQsssMgSAgiokQWGRDFOTPuMAqiwQUYBcajzBnPO0ER3nF4fRkdBPnN4MDoC4IgjCFgBElYAjGAECcKIUIWtnSSTtLr/f1x6e509pCuqq7u53NOnaquru5+uoBvF7du3VIwxhgIIYTIjlLqAgghhNwaCnBCCJEpCnBCCJEpCnBCCJEpCnBCCJEpCnBCCJEpCnBCCJEpldQF9JTD4cDly5cRFhYGhUIhdTmEENJjjDHU1dUhKSkJSmX7x9myD/DLly8jOTlZ6jIIIcTrysvL0atXr3afl32Ah4WFAeBfNDw8XOJqCCGk52pra5GcnOzKt/bIPsCdzSbh4eEU4IQQv9JZszCdxCSEEJmiACeEEJmiACeEEJmiAPdTa9cC8+cDNpvUlRBChCL7k5ikta1bgZde4suzZwNTpkhbDyFEGHQE7mdMJmDxYvfj/HzpaiGECIsC3M/8/e/A5cvux4cPS1cLIURYFOB+5oMP+HzuXD4/fBgwm6WrhxAiHApwP/LDD0BREaBWA6tWAQkJvEnl0CGpKyOECIEC3I/s3MnnEycC0dHA1Kn88ZdfSlYSIURAFOB+ZO9ePp8xg8+nTePzPXukqYcQIiwKcD9hsbhPWN53H5/ffz8QFAScPQtcuCBZaYQQgVCA+4kTJ4DGRt50MmgQXxcZCWRk8OXdu6WrjRAiDApwP3HkCJ+PGwc0H//9l7/kcwpwQvwPBbifKC7m85EjPdc728P37+c9Uggh/oMC3E84A3z4cM/1gwYBaWm8L/i+feLXRQgRDgW4H7DbgdOn+XLLAFco3EfhX3whbl2EEGFRgPuB0lKgqQnQ64E+fVo/37wd3OEQtzZCiHAowP2As/lkyBDebbCle+4BQkOBykreW4UQ4h8owP1Ae+3fThqNe0hZakYhxH9QgPuBzgIccLeD79olfD2EEHEIGuDZ2dm48847ERYWhri4OMyaNQslJSUe20ycOBEKhcJjWrBggZBl+Z1z5/h8yJD2t5k2jZ/QPHHCc7hZQoh8CRrgeXl5yMrKQkFBAXJycmC1WjF58mSYWnRInjdvHioqKlzTO++8I2RZfsXhcF8m39YJTKe4OGDUKL68f7/gZRFCRCDoLdX2OkdXuunjjz9GXFwcCgsLMWHCBNd6vV6PhISELr2n2WyGudkA17W1td4pVqYqKvg4KEFBQHJyx9tOmgQcP877gz/xhDj1EUKEI2obuNFoBABERUV5rN+8eTNiYmIwdOhQLF++HA0NDe2+R3Z2NgwGg2tK7iy1/Jzz6LtXL0DVyc9xZiaf5+YCjAlaFiFEBArGxPmn7HA4MHPmTNTU1OBQszsMfPjhh+jduzeSkpJQXFyMpUuXYsyYMdi2bVub79PWEXhycjKMRiPCw8MF/x6+5h//AJ58ko8BfuBAx9s2NvIBrsxm3m4+YIAoJRJCuqm2thYGg6HTXBPtrvRZWVk4ffq0R3gDwPz5813Lw4YNQ2JiIiZNmoQff/wRffv2bfU+Wq0WWq1W8Hrl4vx5Pk9L63zb4GDgrrt4G3huLgU4IXInShPKwoULsWvXLhw4cAC9evXqcNv09HQAQGlpqRilyV53Ahzg7eAAjYtCiD8QNMAZY1i4cCG2b9+O/fv3I60LKVNUVAQASExMFLI0v+FsA+9ugB84wMdQIYTIl6BNKFlZWfjkk0+wY8cOhIWFobKyEgBgMBgQHByMH3/8EZ988gkeeOABREdHo7i4GIsWLcKECRMwvKOrUohLd4/AR40CDAagpgY4eRIYPVqw0gghAhP0CHzdunUwGo2YOHEiEhMTXdPWrVsBABqNBvv27cPkyZMxcOBALFmyBLNnz8YXdL13l9hsQHk5X05N7dprVCrg7rv58jffCFIWIUQkgh6Bd9bBJTk5GXl5eUKW4NfKy3kziFYLdKfF6e67+SX1Bw8CixcLVx8hRFg0FoqMOY++k5M9b6PWGec1VAcP0vCyhMgZBbiMOcc0SUrq3uvuuIN3Kbx2zT2OCiFEfijAZayigs+722FHowHGjuXLBw96tyZCiHgowGXsVgMcoBOZhPgDCnAZcwZ4F8cB89C8HZwQIk8U4DLWkyPwsWN5l8LycqCszLt1EULEQQEuYz0J8JAQfjIToGYUQuSKAlzGqqr4/FaaUAB3Ozg1oxAiTxTgMmW3A9ev8+W4uFt7D2oHJ0TeKMBl6sYN900ZWtwfo8vGj+fzc+eA6mrv1EUIEQ8FuExdvcrnBgOgVt/ae0RFAYMH8+XDh71TFyFEPBTgMuUM8JiYnr3PXXfx+bff9ux9CCHiowCXKQpwQggFuEx5O8ALC4Gmpp69FyFEXBTgMuWtAO/bF4iPBywW4PjxntdFCBEPBbhMXbvG5z0NcIXCfRTe4n7ThBAfRwEuU946AgeoHZwQuaIAlykhAvzwYbrBAyFyQgEuU84Aj47u+XuNHMlv8HD9OlBS0vP3I4SIgwJcprx5BK7RAGPG8GVqBydEPnwiwN9//32kpqZCp9MhPT0dR48elbokn+fNAAeoHZwQOZI8wLdu3YrFixdjxYoVOHHiBEaMGIEpU6agmgbnaJfNBtTU8GUKcEICl+QBvmbNGsybNw9z587F4MGD8de//hV6vR4bNmyQujSf5RyFUKEAIiO9854ZGfz9Skvdw9QSQnybpAFusVhQWFiIzMxM1zqlUonMzEzk5+e3+Rqz2Yza2lqPKdA4m08iI/lddbwhMhIYMoQv01E4IfIgaYBfvXoVdrsd8fHxHuvj4+NRWVnZ5muys7NhMBhcU3Jyshil+hRvt387UTMKIfIieRNKdy1fvhxGo9E1lZeXS12S6LzZhbA55/jgFOCEyIOX/gN+a2JiYhAUFISqFo2uVVVVSGjnPmFarRZarVaM8nyW0EfgJ04ADQ2AXu/d9yeEeJekR+AajQajRo1Cbm6ua53D4UBubi4yMjIkrMy3OcdB8fYReGoqv0Gy1QocO+bd9yaEeJ/kTSiLFy/G3/72N2zatAlnz57F888/D5PJhLlz50pdms/y1kBWLTUf2IqaUQjxfZI2oQDAr3/9a1y5cgVvvvkmKisr8Ytf/AJ79+5tdWKTuAnVBg7wdvDPPqMAJ0QOJA9wAFi4cCEWLlwodRmyIdQRONB6YCul5P9HI4S0h/55ypCQR+AjRvCTlzU1wPffe//9CSHeQwEuQ0IegavVQHo6X6ZmFEJ8GwW4DAnVC8WJ+oMTIg8U4DJjtwM3bvBlIY7AAeqJQohcUIDLzI0bAGN8OSpKmM8YO5Z3KfzpJ6CiQpjPIIT0HAW4zDhPYBoM3hvIqiWDARg2jC/TUTghvosCXGaEPIHZHLWDE+L7KMBlRsguhM1ROzghvo8CXGbEOgJ3BvjJk4DJJOxnEUJuDQW4zAjdhdApJQW47TZ++za6RSkhvokCXGaEGkq2JYWC2sEJ8XUU4DIj1hE4QO3ghPg6CnCZEesIHHAHeH4+v4CIEOJbKMBlprqaz2Njhf+s4cOB0FDAaATOnBH+8wgh3UMBLjPOKyMTE4X/LJWKX5UJAIcOCf95hJDuoQCXEcbcAd7OLUO97p57+HzfPnE+jxDSdRTgMmI0AmYzXxYrwKdM4fPcXH6vTEKI76AAlxHn0bfBAAQHi/OZd9zBe7zU1gJHjojzmYSQrqEAlxEx27+dgoKA++/ny//+t3ifSwjpHAW4jEgR4IC7GYUCnBDfQgEuI5cu8bnYAT55Mp8fP+7uh04IkZ4gAX7hwgU888wzSEtLQ3BwMPr27YsVK1bAYrF4bKNQKFpNBQUFQpTkF8rK+Lx3b3E/NymJjw/OGPVGIcSXCHJLgHPnzsHhcOCDDz5Av379cPr0acybNw8mkwnvvvuux7b79u3DkCFDXI+jxbhGXKacAZ6aKv5nT5kCnDoF7N4N/OY34n8+IaQ1QQJ86tSpmDp1qutxnz59UFJSgnXr1rUK8OjoaCR0o0+c2WyG2dmXDkBtbW3PC5aJCxf4XOwjcAB48EHg3XeBXbsAiwXQaMSvgRDiSbQ2cKPRiKg2buI4c+ZMxMXFYfz48di5c2en75OdnQ2DweCakpOThSjX5zAm7RF4RgYQHw/U1AAHDoj/+YSQ1kQJ8NLSUqxduxbPPfeca11oaChWr16NTz/9FLt378b48eMxa9asTkN8+fLlMBqNrqm8vFzo8n3CjRtAfT1fTkkR//ODgoCHHuLL27aJ//mEkNYUjDnvcd65ZcuW4e233+5wm7Nnz2LgwIGux5cuXcI999yDiRMnYv369R2+9qmnnsL58+dx8ODBrpaE2tpaGAwGGI1GhIeHd/l1clNQwI+Ck5LcvVHElpPDe6TExQGXL/NQJ4R4X1dzrVtt4EuWLMGcOXM63KZPnz6u5cuXL+Pee+/FuHHj8OGHH3b6/unp6cjJyelOSQHj7Fk+HzRIuhomTgQiI/mIiN9+C0yYIF0thJBuBnhsbCxiuziO6aVLl3Dvvfdi1KhR2LhxI5TKzltrioqKkCh2J2eZ8IUAV6uBmTOBTZuA//s/CnBCpCZIL5RLly5h4sSJ6N27N959911cuXLF9Zyzx8mmTZug0WgwcuRIAMC2bduwYcOGTptZApUvBDgA/OpXPMC3bOG9UtRqaeshJJAJEuA5OTkoLS1FaWkpevXq5fFc8yb3t956C2VlZVCpVBg4cCC2bt2KRx55RIiSZO/0aT6XOsAnT+a9UaqqgL17gRkzpK2HkEDWrZOYvigQTmJeveq+A8+NG0BEhKTl4He/A1avBh5+mDelEEK8q6u5RmOhyEBhIZ/37y99eAPA00/z+Rdf0NgohEiJAlwGjh3j89Gjpa3DadgwPk641Qr8859SV0NI4KIAl4G8PD7PyJC2juacvUnXr+dXiRJCxEcB7uMsFt7nGgDuvVfaWpp7/HF+V6DiYqAb110RQryIAtzH5ecDjY38JGazQRslFxUFPPkkX/7LX6SthZBARQHu4774gs+nTgUUCmlraenFF/l8+3bg4kVpayEkEFGA+zDGgB07+PLMmdLW0pahQ4H77gMcDuB//1fqaggJPBTgPuzoUaC0lLc1O+9L6WucR+EffADU1UlbCyGBhgLch338MZ/Png2EhUlaSrtmzABuv52PE75undTVEBJYKMB9VFMTH28EcF8444uCgoDf/54vr14NNDRIWw8hgYQC3Edt28aPapOTfav7YFsee4zfJai6mvcLJ4SIgwLcBzEGrFnDl5991vdvnKBWA8uW8eV33uHdHgkhwqMA90HffMPHP9HpgOefl7qarpkzh/9v4dIlYO1aqashJDBQgPug1av5/Omn3aMQ+jqtFnjrLb6cnQ1cvy5tPYQEAgpwH1NS4r54Z9EiaWvpriee4ANd1dQAf/qT1NUQ4v8owH2Ms+17xgxgwABpa+muoCDeBg7wZpTSUmnrIcTfUYD7kOpqfrsygN80QY6mTOF37bFYgKwsGqmQECFRgPuQ//kfwGwGxowB7r5b6mpujULBv4dWC3z1FbB1q9QVEeK/KMB9hMkEvP8+X371Vd8buKo7+vd3X9zzyiv8NnCEEO+jAPcRGzfynht9+gAPPSR1NT23dClvw6+qAubPp6YUQoQgWICnpqZCoVB4TCtXrvTYpri4GHfffTd0Oh2Sk5PxjvMMWICx290nLxcv9v0Ld7pCqwX+/ndApQI++wz46COpKyLE/wh6BP7HP/4RFRUVrulF59B14Hddnjx5Mnr37o3CwkKsWrUKf/jDH/Dhhx8KWZJP+uIL4Px5IDoamDtX6mq85847gf/6L7780kvAqVPS1kOIv1EJ+eZhYWFISEho87nNmzfDYrFgw4YN0Gg0GDJkCIqKirBmzRrMnz9fyLJ8jvM369lnAb1e2lq87Xe/A/btA3JygOnTgYICIClJ6qoI8Q+CHoGvXLkS0dHRGDlyJFatWgWbzeZ6Lj8/HxMmTIBGo3GtmzJlCkpKSnCjg7NeZrMZtbW1HpOclZUBe/fy5WeflbYWISiVfFTFAQOA8nIe4jRuOCHeIViAv/TSS9iyZQsOHDiA5557Dn/605/w2muvuZ6vrKxEfHy8x2ucjysrK9t93+zsbBgMBteUnJwszBcQyUcf8RN8kyYB/fpJXY0woqKAPXuAuDigqIh/12vXpK6KEPnrVoAvW7as1YnJltO5c+cAAIsXL8bEiRMxfPhwLFiwAKtXr8batWthNpt7VPDy5cthNBpdU3l5eY/eT0o2m/vknr+3GqWl8RCPjgaOHeP93MvKpK6KEHnrVhv4kiVLMGfOnA636dOnT5vr09PTYbPZcOHCBQwYMAAJCQmoqqry2Mb5uL12cwDQarXQarXdKdtn7dkDXL7MB6yaNUvqaoR3xx3AwYPA/fcDZ88CI0fyHzB/6DZJiBS6FeCxsbGIvcXh8YqKiqBUKhEXFwcAyMjIwOuvvw6r1Qq1Wg0AyMnJwYABAxAZGXlLnyE3n3zC5088ATQ7FeDXBg0CDh8GHnmEH4k//DDw+ON8BEOZt4YRIjpB2sDz8/Px5z//Gd999x1++uknbN68GYsWLcITTzzhCufHHnsMGo0GzzzzDM6cOYOtW7fivffew+LFi4UoyeeYTMDOnXz50UelrUVsKSnAoUOA85TI5s38vpqLFtEAWIR0h4Ix718jd+LECbzwwgs4d+4czGYz0tLS8OSTT2Lx4sUezR/FxcXIysrCsWPHEBMTgxdffBFLly7t1mfV1tbCYDDAaDQiPDzc219FMFu3Ar/5Db/ysrRU3pfO98Tx4/zipYMH3esmTAAefJAPijVokPAXNtlsvGdMfT2fO5ctFsBqbX/ucPA/N4WC97Zpa1ml4hc1OSedrv3lkBA+qQTt3EvkoKu5JkiAi0muAf7ww8D27XzMEOfFLoGKMeDf/+ZD0O7Z43nZfVgYH2M8LY3fdzMuDggN5ev1eh6iDge/mtVm4zdVbh7CzecNJhsaTVaY6hnqTYCpnqGuDrBYGBQK94fa7CpY7WrYHUEAxP9l1Wr5d3ROISGej5uvDwsDDAbPKTzcvRwaGrgHB3JGAe7Dmpp4b4yGBuDECX4yj3BlZcCOHfzq1Px83tTUnDrIguTocqTEXERK9EUkGCoRFXqdTyHXER16DZEhN6DXNiBY0widusk1qYLs3a7HalfD5lDD7lDDxtSwMzUcDjXs4OusDh0sdh0s9mBY7DpY7TqYby6bbcEw23RoMAej0aJDQ5MOpqZg1DfpUN8YjPpGHeobdaitD4bRFIy6xhA0mPVosNyczHrYHT07HFcq3YHePNg7Cv2W68PD/WN4BzmhAPdhe/cC06YBt93GL26hI6Q2WG7Afq0YlSVn0FhxGtqmMwjDfxCuqYRSIeu/st3igAY26GFDCKwOPcx2PjVZQ1xBX98YgtoGPWpNetyoC8GNOj2uG/Wob9LDZHb/KDRfbjDzx42WYDhY5+kcGtq1sO9oXaCcqPeGruYatbZJYPduPp8+ncLbpe5H4Moh4Mq3wNVvAeP3CAJwm/P55j1Hg3RASG9AnwIEJwKaaEAbBWiiAG00oIkEVCFAUDDfNkjnXlaoACia7fhmc4WCt98wG+Cw8olZ3cttPbY3AY4mPrc3tjPv6LlG97LNBNgbAFsDAP4jpYQFGligQQ3vcqAEoAag896ut9q1aLKFoNGqR6NFj3pzCOob9ahr1KOuIcQj/E1m92PTlRCYftaj2tzONk18brFpACig03U97NtbFxxM/2aaowAXGWPArl18+Ze/lLYWSdmbgKqvgct7gMtfAvVtdD/RpwARw4CIoYBhKBA+kAe3Nsa//xUzdjPcb4a5vYGHe3vLzu1sDYC9ve1abGtvcH2cOsgMdZAZYVph7kRtswd5BHrLgDeZQ9Bg0sN0nT8ua+PHwvnYYtdDoQmBUhMCjU4PdXAIgkN1CAlVIiwMrSbn+ZK21un18v9rRAEuspIS4MIFfqLqvvukrkZkDjtQfQC48AlQvg2wGt3PKdVA9BggZhwQexcQkwHo4qSrVUoKBaAK5pM2WpjPYI6bR/0tQ7950JvafmxvZ73N5Pkc42MfqYLsCA+uQ3iwcIPgmJr0nj8O9SFouO5+fLWp9Y9Bo1UPO0LAgvRgQSFQqPRQqEMQpNVDpQuBSqeHJjgE2hA9QsNU7f4oOE8q6/X8nIOYKMBFlpfH5+PG8V4EAcF0EfhhLXD+H0BTs3FugpOApOlA0gNAwiRAHSZdjYFGoQRUej4hRpjPcFjb/hHo6Mehne2YzQSHtQHMyh8rHCYEsSbXR4XoGhCia0AsrgryVcxWDf8BuBICU7n7x+BKi/9JWB16WFkI7Ao97IoQMKUeITGJWJg9Q5C6KMBF9s03fD5hgrR1iOLGd8DZd4GyLa6jMWiigJRfAamPAbHjeZAQ/6RUA5oIPvWQAkCrU63M0aK5qCv/Q+A/AjZzA2xNJtgtDWAWE9jN1ykdDVA6TFChAWqFydW9VKu2QKu2IDKkptu1n6seCYACXPYYcwe4XG9a3CnGgKpc4PtVQOVX7vXx9wIDXgESpwJB1B2BeIFCCahD+dSdl4GfB1Z3tiFjgMPcaVOSw2qCtakB1gYTrE0m2M0NsJv5/xhgNSE4pe3xobyBAlxEZWXAzz/zK+3GjpW6Gi9z2ICL/wLOrgJuFPF1CiWQ/Ctg8KtA1ChJyyOk2xQKdy+mDs5FKME7SUkxxB4FuIicR9+jR/tR+7e1HvhxPXDuv4GGi3xdkB7o+wwwcBEQmiZtfYT4MQpwER0+zOfjx0tbh1c0VvITk/9ZB1hu3kFJFwfc/iLQ/3nhek8QQlwowEVUVMTno0dLWkbPGM8B51YD5/8f4LDwdWH9gUG/A1Kf5F3fCCGioAAXid3uviv7iBHS1tJtzhOT594DLu9yr4/JAAa9Ctw2E1DSYBmEiI0CXCQ//cQHr9LpZHTvS4uRdwH8YS1gPONe3+tBHtyxd0lXGyGEAlws333H50OH+vh4zzYTUJnLr5a8tINfrQfwsUX6zOVt3OG3S1sjIQQABbhonAHuc80n1lrgeiFw7ShQuR+o/trdtg0AhsFA32eBPr8FNAbJyiSEtEYBLhLRAtw5xoVzpDtLDWC+Cliu8bn5KlB/gQ8eVfcj0FAO58h3LiGpvJkk7Ukg8g75j/hDiJ8KyPHAf/7xCmp2PgSrhcFqAxQ3A0yh4HdmUdxcRou5AoyPOorW27TaHuxm7vHnLBYAjCE1FQjRO3d5szlrsc7jcVvrmr3OYXEPSeowd2kfeAjpfXMgqQwgcRoQPoBCmxAJ0XjgHdCqLBga/600H24DUCvSZymCbo5FEc2HYNVG80mfAoT2BcL68S6AuliRCiKEeFNABnh0YhQO2LYhKhoID1fcHMefH4czprh5gMuPsxmDe874USlj7vWux1DcPCBu/RrnMXlyMhAXp4DHTQSA9m8u0HJde9sGaZrdvCDYPSkD8o+XkIARkP/ClZpg3PvUQ1KXQQghPSLIWJ5ff/01FApFm9OxY8cAABcuXGjz+YKCAiFKIoQQvyPIEfi4ceNQUVHhse6NN95Abm4uRre4jnzfvn0YMmSI63F0NI2hQQghXSFIgGs0GiQkJLgeW61W7NixAy+++CIULXo3REdHe2xLCCGka0RpA9+5cyeuXbuGuXPntnpu5syZaGpqwu23347XXnsNM2fO7PC9zGYzzGZ3Vzmjkd9XsbZWrK4dhBAiLGeeddrLm4lg2rRpbNq0aR7rrly5wlavXs0KCgrY0aNH2dKlS5lCoWA7duzo8L1WrFjh7BhNE0000eTXU3l5eYd52K0LeZYtW4a33367w23Onj2LgQMHuh7//PPP6N27N/71r39h9uzZHb72qaeewvnz53Hw4MF2t2l5BO5wOHD9+nVER0e3ap7pSG1tLZKTk1FeXt7lC4ACAe2XttF+aR/tm7b1ZL8wxlBXV4ekpCQoO7jVfbeaUJYsWYI5c+Z0uE2fPp73f9u4cSOio6M7bRoBgPT0dOTk5HS4jVarhVbrefOiiIiITt+7PeHh4fSXrg20X9pG+6V9tG/adqv7xWAwdLpNtwI8NjYWsbFdv2qPMYaNGzfiqaeeglrd6S1EUVRUhMTExO6URAghAUvQk5j79+/H+fPn8eyzz7Z6btOmTdBoNBg5ciQAYNu2bdiwYQPWr18vZEmEEOI3BA3wjz76COPGjfNoE2/urbfeQllZGVQqFQYOHIitW7fikUceEbIkF61WixUrVrRqjgl0tF/aRvulfbRv2ibGfpH9aISEEBKoBLmUnhBCiPAowAkhRKYowAkhRKYowAkhRKYowAkhRKYCMsDff/99pKamQqfTIT09HUePHpW6JMF98803mDFjBpKSkqBQKPD55597PM8Yw5tvvonExEQEBwcjMzMT//nPfzy2uX79Oh5//HGEh4cjIiICzzzzDOrr60X8Ft6VnZ2NO++8E2FhYYiLi8OsWbNQUlLisU1TUxOysrIQHR2N0NBQzJ49G1VVVR7bXLx4EdOnT4der0dcXBxeffVV2Gw2Mb+K161btw7Dhw93XUWYkZGBPXv2uJ4P1P3S0sqVK6FQKPDKK6+41om6b259iCp52rJlC9NoNGzDhg3szJkzbN68eSwiIoJVVVVJXZqgvvzyS/b666+zbdu2MQBs+/btHs+vXLmSGQwG9vnnn7PvvvuOzZw5k6WlpbHGxkbXNlOnTmUjRoxgBQUF7ODBg6xfv37s0UcfFfmbeM+UKVPYxo0b2enTp1lRURF74IEHWEpKCquvr3dts2DBApacnMxyc3PZ8ePH2dixY9m4ceNcz9tsNjZ06FCWmZnJTp48yb788ksWExPDli9fLsVX8pqdO3ey3bt3sx9++IGVlJSw3//+90ytVrPTp08zxgJ3vzR39OhRlpqayoYPH85efvll13ox903ABfiYMWNYVlaW67HdbmdJSUksOztbwqrE1TLAHQ4HS0hIYKtWrXKtq6mpYVqtlv3zn/9kjDH2/fffMwDs2LFjrm327NnDFAoFu3Tpkmi1C6m6upoBYHl5eYwxvg/UajX79NNPXducPXuWAWD5+fmMMf7DqFQqWWVlpWubdevWsfDwcGY2m8X9AgKLjIxk69evp/3CGKurq2P9+/dnOTk57J577nEFuNj7JqCaUCwWCwoLC5GZmelap1QqkZmZifz8fAkrk9b58+dRWVnpsV8MBgPS09Nd+yU/Px8REREed1TKzMyEUqnEkSNHRK9ZCM6x5aOiogAAhYWFsFqtHvtl4MCBSElJ8dgvw4YNQ3x8vGubKVOmoLa2FmfOnBGxeuHY7XZs2bIFJpMJGRkZtF8AZGVlYfr06R77ABD/70xA3dT46tWrsNvtHjsOAOLj43Hu3DmJqpJeZWUlALS5X5zPVVZWIi4uzuN5lUqFqKgo1zZy5nA48Morr+Cuu+7C0KFDAfDvrNFoWo122XK/tLXfnM/J2alTp5CRkYGmpiaEhoZi+/btGDx4MIqKigJ6v2zZsgUnTpxw3d+3ObH/zgRUgBPSnqysLJw+fRqHDh2SuhSfMWDAABQVFcFoNOKzzz7D008/jby8PKnLklR5eTlefvll5OTkQKfTSV1OYPVCiYmJQVBQUKszwlVVVQF9X07nd+9ovyQkJKC6utrjeZvNhuvXr8t+3y1cuBC7du3CgQMH0KtXL9f6hIQEWCwW1NTUeGzfcr+0td+cz8mZRqNBv379MGrUKGRnZ2PEiBF47733Anq/FBYWorq6GnfccQdUKhVUKhXy8vLwl7/8BSqVCvHx8aLum4AKcI1Gg1GjRiE3N9e1zuFwIDc3FxkZGRJWJq20tDQkJCR47Jfa2locOXLEtV8yMjJQU1ODwsJC1zb79++Hw+FAenq66DV7A2MMCxcuxPbt27F//36kpaV5PD9q1Cio1WqP/VJSUoKLFy967JdTp055/Ljl5OQgPDwcgwcPFueLiMThcMBsNgf0fpk0aRJOnTqFoqIi1zR69Gg8/vjjrmVR902PT8fKzJYtW5hWq2Uff/wx+/7779n8+fNZRESExxlhf1RXV8dOnjzJTp48yQCwNWvWsJMnT7KysjLGGO9GGBERwXbs2MGKi4vZgw8+2GY3wpEjR7IjR46wQ4cOsf79+8u6G+Hzzz/PDAYD+/rrr1lFRYVramhocG2zYMEClpKSwvbv38+OHz/OMjIyWEZGhut5Z5ewyZMns6KiIrZ3714WGxsr++5yy5YtY3l5eez8+fOsuLiYLVu2jCkUCvbVV18xxgJ3v7SleS8UxsTdNwEX4IwxtnbtWpaSksI0Gg0bM2YMKygokLokwR04cKDNm6Y+/fTTjDHelfCNN95g8fHxTKvVskmTJrGSkhKP97h27Rp79NFHWWhoKAsPD2dz585ldXV1Enwb72hrfwBgGzdudG3T2NjIXnjhBRYZGcn0ej176KGHWEVFhcf7XLhwgU2bNo0FBwezmJgYtmTJEma1WkX+Nt7129/+lvXu3ZtpNBoWGxvLJk2a5ApvxgJ3v7SlZYCLuW9oPHBCCJGpgGoDJ4QQf0IBTgghMkUBTgghMkUBTgghMkUBTgghMkUBTgghMkUBTgghMkUBTgghMkUBTgghMkUBTgghMkUBTgghMvX/AVROs64DiyGlAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADFCAYAAABNaalNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtcElEQVR4nO3deXxU1f3/8ddMkpmsM0lIMglJCCC4BGQxYIwLIlBQcavUWvXnLlaMVr/w86uoVb9tLf7U2odVi7bW5dtq8euCK/iFAqLWsMgiexRlTTJJyDITQjKTzJzfH4cZiCSQZSaTmXyej8d93JuZO2dObu07h3PPPceglFIIIYQIO8ZQV0AIIUT3SIALIUSYkgAXQogwJQEuhBBhSgJcCCHClAS4EEKEKQlwIYQIU9GhrkBPeb1eysvLSUpKwmAwhLo6QgjRY0opGhoaGDhwIEZjx+3ssA/w8vJycnNzQ10NIYQIuH379pGTk9Ph+2Ef4ElJSYD+RS0WS4hrI4QQPed0OsnNzfXnW0fCPsB93SYWi0UCXAgRUU7ULSw3MYUQIkxJgAshRJiSABdCiDAlAd4PlZdDcTFcfz18802oayOE6K6wv4kpusbphEmToLRU/7xoEaxfD3l5oa2XEKLrpAXez/z2tzq809Nh0CCorYVf/zrUtRJCdEdQA3zevHmMHz+epKQkMjIyuOKKKyj1Nf0Oa25upri4mAEDBpCYmMiMGTOorKwMZrX6rcpKeP55ffzaa/Duu/r4zTdh//6QVUsI0U1BDfCVK1dSXFzMqlWrWLp0KS0tLUydOpXGxkb/Of/xH//BRx99xNtvv83KlSspLy/nyiuvDGa1+q2//Q2am+HMM+Gii2DcODjvPPB44K23Ql07IUSXqV5UVVWlALVy5UqllFL19fUqJiZGvf322/5ztm/frgBVUlLSqTIdDocClMPhCEqdI4XXq9SQIUqBUq+/fuT1P/9ZvzZ+fOjqJoRoq7O51qt94A6HA4DU1FQA1q1bR0tLC1OmTPGfc+qppzJo0CBKSkraLcPlcuF0Otts4sTWroVduyAhAX72syOvX3GF3n/9NdTUhKRqQohu6rUA93q93HvvvZxzzjmMHDkSALvdjslkIjk5uc25NpsNu93ebjnz5s3DarX6N5nIqnN8/d2XXgrx8Udez8qC/HxQClauDE3dhBDd02sBXlxczJYtW1iwYEGPypk7dy4Oh8O/7du3L0A1jGxLluj9pZce+96kSXq/bFnv1UcI0XO9EuB33XUXH3/8MStWrGgzNWJmZiZut5v6+vo251dWVpKZmdluWWaz2T9xlUxg1TlVVbBxoz6ePPnY930Bvnx5r1VJCBEAQQ1wpRR33XUXCxcuZPny5QwZMqTN+wUFBcTExLDsqKZfaWkpe/fupaioKJhV61e++krvR4wAm+3Y9ydOBIMBduyAsrJerZoQogeC+iRmcXExb775Jh988AFJSUn+fm2r1UpcXBxWq5Vbb72V2bNnk5qaisVi4e6776aoqIizzjormFXrV77+Wu8LC9t/PyUFxoyBDRvgyy/h6qt7rWpCiB4Iagt8/vz5OBwOJk6cSFZWln9766hBx3/84x+55JJLmDFjBhMmTCAzM5P33nsvmNXqd3wBPm5cx+f4/l6uXRv8+gghAsOglFKhrkRPOJ1OrFYrDodD+sM7kJ4OBw7A6tX6IZ72vPoq3HILTJggo1GECLXO5prMhRLhamp0eIPuA++IL9jXrdNPZgoh+j4J8Aj33Xd6n5OjH+LpyKmn6vcbG2H79t6pmxCiZyTAI9y33+r9yScf/7yoqCN95NIPLkR4kACPcJ0NcIDx4/VeAlyI8CABHuF27tT7YcNOfK6vBb5+ffDqI4QIHAnwCOebaaAzK+6MHq33mzfLjUwhwoEEeITzLdRw1AwGHRo+HOLi4NAh+P774NZLCNFzEuARzOPRCxgDdGbSxqgoOP10feybO0UI0XdJgEewykpobdXB3MHcYMcYM0bvZbV6Ifo+CfAI5us+GThQh3hn+PrBpQUuRN8nAR7BfAGend35z0gLXIjwIQEewXyLGg0c2PnP+PrAy8qOPIIvhOibJMAjWFWV3mdkdP4zSUlw0kn6WFrhQvRtEuARrLJS77sS4HCkG0X6wYXo2yTAI5ivBd7eKjzH47uRKS1wIfo2CfAI1p0uFJAWuBDhQgI8gnW3C8XXAt++HVyuwNZJCBE4EuARrLst8NxcvU5ma6vMDS5EXyYBHqFcLnA49HFXA9xgkAd6hAgHEuARqqZG76OidGu6q+SBHiH6vj4R4C+88AKDBw8mNjaWwsJC1qxZE+oqhT1fgKek6BZ1V0kLXIi+L+QB/tZbbzF79mweffRR1q9fz+jRo5k2bRpVvg5c0S21tXqfmtq9zx89lFCpwNRJCBFYIQ/wZ555hpkzZ3LzzTeTn5/Piy++SHx8PK+88kqoqxbWfAE+YED3Pp+fD9HRUFd3ZFEIIUTfEtIAd7vdrFu3jilTpvhfMxqNTJkyhZKSknY/43K5cDqdbTZxLF8XSndb4GazDnGADRsCUychRGCFNMAPHDiAx+PB9qNHBW02G3bfTEw/Mm/ePKxWq3/L7cxKBf1QT1vgAGecofcS4EL0TSHvQumquXPn4nA4/Ns++fd9u3raAgcYO1bvZZFjIfqm6FB+eVpaGlFRUVT6Hhk8rLKykswOlpAxm82YzebeqF5Ykxa4EJEvpC1wk8lEQUEBy5Yt87/m9XpZtmwZRUVFIaxZ+AtEC3z0aD0Ecf/+I091CiH6jpB3ocyePZu//vWvvP7662zfvp1Zs2bR2NjIzTffHOqqhbVAtMCTkvRK9SCtcCH6opB2oQBcffXVVFdX88gjj2C32xkzZgyffvrpMTc2Rdf0dBy4zxlnwLff6gCfNq3n9RJCBE7IW+AAd911F3v27MHlcrF69WoKCwtDXaWwF4guFJAbmUL0ZX0iwEXgBaILBeRGphB9mQR4BDp0CJqb9XGgWuA7dx6Z3VAI0TdIgEcgX+s7OlrfiOyJAQNg0CB9LK1wIfoWCfAIdHT/d3dmIvyx8eP1fu3anpclhAgcCfAIFKj+b5+zztL7DqanEUKEiAR4BArUEEKfowNcppYVou+QAI9Avi6UQLXAzzhD96fb7TK1rBB9iQR4BArUGHCf+PgjCzysWhWYMoUQPScBHoF8AZ6WFrgyfd0oEuBC9B0S4BHowAG9lwAXIrJJgEegYAb4+vXgcgWuXCFE90mAR6BgBPhJJ+nyXC690LEQIvQkwCNQMALcYDjSCv/yy8CVK4ToPgnwCBSMAAeYMEHvP/sssOUKIbpHAjzCtLQcmXQq0AF+wQV6v3IltLYGtmwhRNdJgEcY3xBCoxGSkwNb9tixYLWC0ykTWwnRF0iARxhf90lqKkRFBbbsqKgj3SgrVgS2bCFE10mAR5hg9X/7+LpRli8PTvlCiM6TAI8wwQ7wKVP0fuVKvXCEECJ0JMAjTLADfORIyM3VK/5IN4oQoSUBHmGCHeAGA0yfro8/+SQ43yGE6JygBfju3bu59dZbGTJkCHFxcZx00kk8+uijuN3uNudt2rSJ8847j9jYWHJzc3nyySeDVaV+IdgBDm0DXOYHFyJ0ooNV8I4dO/B6vbz00ksMGzaMLVu2MHPmTBobG3n66acBcDqdTJ06lSlTpvDiiy+yefNmbrnlFpKTk7n99tuDVbWI1hsBPmkSxMbC3r2weWMzo073QFQcGOQfdEL0pqAF+IUXXsiFF17o/3no0KGUlpYyf/58f4C/8cYbuN1uXnnlFUwmEyNGjGDjxo0888wzEuDd1BsBHh9dx2uz/8hI67uM2L4NtgPRiTBgPAy6CvKuBZM1eBUQQgC93AfucDhIPWqVgZKSEiZMmIDJZPK/Nm3aNEpLS6mrq2u3DJfLhdPpbLOJI4Ie4OWfwocncfWI3zIiZ9uR11sPQuUKWHsnfDgEtj8N3pYgVUIIAb0Y4Dt37uS5557jl7/8pf81u92OzWZrc57vZ7vd3m458+bNw2q1+rfc3NzgVToMVVXpfVAC/PtXYeV0cNfhtYzk5pffwDbLzprBDXDxZhj7B7CcCu462HAfLDkHnN8FoSJCCOhGgD/wwAMYDIbjbjt27GjzmbKyMi688EKuuuoqZs6c2aMKz507F4fD4d/2ySKNfl4vVFTo4+zsABduXw5rZoLywtCbMV60jpaB11LltPH6G4mQPBJOmw0Xb4HClyEmGWrXwpJC3TIXQgScQamujSOorq6mxjfhRgeGDh3q7xYpLy9n4sSJnHXWWbz22msYjUf+Ztxwww04nU7ef/99/2srVqxg0qRJ1NbWkpKScsL6OJ1OrFYrDocDi8XSlV8l4lRVgc2mh/q5XBATE6CCmyrhk3xw18Lg66Do72AwsHQpTJ0KSUlQVqb3fof2wxdXQc0qMERD4d9g6A0BqpAQka2zudblm5jp6emkp6d36tyysjIuuOACCgoKePXVV9uEN0BRUREPPfQQLS0txBxOm6VLl3LKKad0KrxFW2Vlem+zBTC8AdbP1uGdMla3rg0GACZPhpNPhm+/hX/8A2bNOuoz8TkweTmsuhn2vgWrbgK8MPSmAFZMiP4taH3gZWVlTJw4kUGDBvH0009TXV2N3W5v07d97bXXYjKZuPXWW9m6dStvvfUWzz77LLNnzw5WtSJaebneDxwYwELty2DPm3qIYOFfISrW/5bRCMXF+vj559sZEx4dB+f8E4YXAwpW3QI/vBbAygnRvwUtwJcuXcrOnTtZtmwZOTk5ZGVl+Tcfq9XKkiVL2LVrFwUFBcyZM4dHHnlEhhB2k68FHrD+b6Xgm4f08fBiSC045pQbb9RdJ9u2wcKF7ZRhMMC452D4nfhDfNc/AlRBIfq3oAX4TTfdhFKq3e1oo0aN4osvvqC5uZn9+/dz//33B6tKES/gLXD7v6BmtX5IZ8RD7Z5itcK99+rjRx4Bj6edkwwGGPc8DJ+FDvGb9XBEIUSPyKNzEcQ3ICcnJ0AFbv2d3g/7JcTZOjxt9my9eMTWrfDhhx2c5AvxvGtBtcIXM+DA6gBVVIj+SQI8gvzwg94PGRKAwuo3Q9XnegTJaf/3uKcmJ8M11+jj1cfLZIMRznoVMqeC55AeU+4sDUBlheifJMAjiC/Ahw4NQGHfvaT3OZdD/Ik71U85Re937jzBiVEmOO9dSB0PrhpYPhUOlfWsrkL0UxLgEcLthv379XGPW+CtjbD77/p4+B2d+siwYXp/wgAHiEmEiZ9A0nA4tBdWXAju+m5VVYj+TAI8Quzdq5/EjIvT48B7ZN970OKExJPANqlTHzk6wDv1aFhsOlzwvxCbCY4tsPISaJUlfoToCgnwCPH993o/ZIj/OZvu27PgcGHXd3qK2CFD9LjwxkboYBqbYyUO0SEeY4Xqf8OXV8kEWEJ0gQR4hNh2eGLA007rYUGuWqhYoo8HXd3pj5lMR/ret27twveljNLdKVFxUL4ISm7S860IIU5IAjxC+AJ8xIgeFrTvPT3ML2UMWE/t0kdPP13vN2/u4nemn6NvbBqi9VOf6+6RpX6E6AQJ8Ajha/Xm5/ewoL1v630XWt8+3Q5wgIEXQdF/Awb49nnY8ptuFCJE/yIBHgGUClCAtzih6vDUr7lXdvnjvgDftKmb3z/4Gv3YPcDmx/SiEEKIDkmAR4CdO8Hp1OtUntq1Xo+2Kpbom4hJJ4Pl5C5/vODwVCmbNkFTUzfrcHIxjPqtPt5wH2yTRa6F6IgEeARYs0bvx47t4TSyZR/pffal3fr44MGQmQktLbB2bQ/qMfJhOP2/9PHG+2HrvB4UJkTkkgCPAL4AHz++B4V4PVD+iT7uZoAbDHDOOfr43//uQV0ATn/kSEv8mwdh82/lxqYQPyIBHgG++ELvzzqrB4XUfq0fbY9J1qNCuskX4F991YO6+Ix8GEY/ro83PwJf363/0AghAAnwsFdTAxs36uMLLuhBQfZ/6X3mJDB2eaEmv6MD3BuI4dwjHoSCZwEDfPcC/Pvn4GkOQMFChD8J8DC3YoXuWcjP1/3P3eYP8Ck9qs/Ysfpx/tpa+NHa1t13yq/gnAVgNOlx6sun6n8tCNHPSYCHOd/829Om9aCQ1kY4cLjPw9azAI+JgXPP1ceLFvWoqLbyfn7UY/dfwKfjoe6bAH6BEOFHAjyMtbTAxx/r4yuu6EFBVV+C1w3xgyBpWI/rdfnlev/++z0uqi3bRPjJl5A4FBp3wZIi2P1mgL9EiPAhAR7GPvoI6ur07INnn92DgiqP6j7p8UxYRwL8q6+gsrLHxbWVPBKmrYWsaeBpgq+ug3X3gscV4C8Sou+TAA9jf/mL3t98M0R3/75jwPq/fXJy9JBGpY6zxFpPmFPh/E8gf67+ufRZ+N/xehUhIfqRXglwl8vFmDFjMBgMbPQNmThs06ZNnHfeecTGxpKbm8uTT8qTd52xezcsOTxp4G239aCg5mqo26iPOzn3d2f4unTeDFYPhzEKxvweJnwI5nQd3p+Ogx1/lNkMRb/RKwH+n//5nwxsZ6l0p9PJ1KlTycvLY926dTz11FM89thj/MXXtBQdev553cKdPBlOOqkHBVUu1/vkUcdduLirrr9ezw/+2WewfXvAij1WzqVw8WYYOF3346+fDUvPhbruTsgiRPgIeoAvXryYJUuW8PTTx05M9MYbb+B2u3nllVcYMWIEv/jFL/jVr37FM888E+xqhbWKCnjhBX08e3YPCwtw94lPbi5ccok+fvHFgBZ9rDgbnP8RjJ8P0YlwoAQ+PUPPpdJyMMhfLkToBDXAKysrmTlzJn//+9+Jj48/5v2SkhImTJiAyWTyvzZt2jRKS0upq6trt0yXy4XT6Wyz9TePPw7NzfrG5UUX9aAgpcC+VB8HOMABZs3S+9dfB4cj4MW3ZTDo9Tsv2Q65M0B59GyGH58C3/9NnuAUESloAa6U4qabbuKOO+5g3Lhx7Z5jt9ux/WgBR9/P9g7W5Zo3bx5Wq9W/5ebmBrbifdw33xxp0f7udz0cNHLwB2jcA8YYSD8vIPU72tSpeoUghwP+8IeAF9+++Bw47x04/2NIGAxN5bD6Nlg8CvZ/JPOpiIjS5QB/4IEHMBgMx9127NjBc889R0NDA3Pnzg1ohefOnYvD4fBv+/btC2j5fZnHA7ffrvc/+1kPH52HI90naUV6pfgAMxrht4fno3rmmSAMKTye7Om6NT72D2BKAcc2+Pwy+N8zYd9CudEpIkKXB5/NmTOHm2666bjnDB06lOXLl1NSUoLZbG7z3rhx47juuut4/fXXyczMpPJH/6/2/ZzZwXPhZrP5mDL7i6ee0jMPWizw7LMBKNDXfdLDpy+P58orYdw4+PpruO8++O//DtpXHSsqFk6bDSfdAtuegNI/6Um7vrgSrPlw2n2Q9wt9nhBhyKBUcP5NuXfv3jb90+Xl5UybNo133nmHwsJCcnJymD9/Pg899BCVlZXEHJ7I+sEHH+S9995jRycn0nA6nVitVhwOBxaLJRi/Sp+wapV+RN3jgb/9DW65pYcFej3wbhq01MPUVZBWGIhqtmvVKj3Jldern870PejT65qr9Zjxb5+HlsOd8uYBMPRW3X+eOCREFROirU7nmuolu3btUoDasGGD/7X6+npls9nU9ddfr7Zs2aIWLFig4uPj1UsvvdTpch0OhwKUw+EIQq37hooKpXJylAKlfvELpbzeABRavUqpN1Dqf5KV8rQGoMDju/9+Xf+UFKW2bw/61x2fq16prU8otXCQvgZvoNQbBqVWXKzU7reUajkU4gqK/q6zuRbSJzGtVitLlixh165dFBQUMGfOHB555BFuv/32UFarT3G5YMYM2L8fTjlF38AMwNPuevk0gMzJ+qGYIPuv/9LzldfV6ZEze/YE/Ss7ZrJC/v1w2Q8w4QPInAooKF8E/74a3rPBqlvAvgy8rSGsqBDHF7QulN4SyV0oSsHMmbrLxGrV/d8nd32pyvYtPQ+qv4QzX4JhvfMHs7paD33cuVNPfbtwYQ8XoQgk53ew63XY/Q89MsfHPAAGXgI5l0PWVIhOCF0dRb/R2VyTAO/Dnn8e7r5bj+b45BO48MIAFdzihHcGgGrVrdBe7Pvdvx+mT9cLHxuNcM89MHcupKf3WhWOT3mh+ivY/XfY+w64a4+8FxWrb/hmTdXj5i2nBuifQ0K0JQEe5pYv1+OoPR548kk9giNg9n8In18OicPgsu8CWHDnOJ1w553wxhv65/h4PXfKz38O558Pycm9XqX2eVuh+t+w/33Y/4GewvZocVk60DOn6Klu43Ml0EVASICHsR9+0LP51dbC//k/euhdQHNh7V16ebLhd8L4FwJYcNcsXgy//jWsW9f29eHD9ZabC9nZethkYiIkJOgtNhbM5uNvJpPeAnbdlALHFij7BCqX6e6nHy/tFjcQ0s7W4+rTiiD1DIjqn0NeRc9IgIepgwehqAi2bNHjpz//XC9RFjBKwYdDdD/vhPd1324IKaWHGb79Nnzwgf7jFUgm0/GD3mKBlBTd6j96f/RxWpru4klIOOoPgqdZd7XY/6UDvXadfnz/aEYTpJyhgzxlLKSOBetICXVxQhLgYeq22/RNS5tNP/ySkxPgL6jbCIvHQlQczDgA0cfOURNKNTWwYYOeLnffPigv13/UDh6Exka9b27Wo3NcLnC7jxy7XNAaxEEjcXGQkaHD/Oh9RgZkph9iWMrX5MR+xQBVQmzDVxjcB44txBAN1tN0oKeMAesI/VBRXLZ0vwi/zuZaT5YBEAH27rs6vA0GWLAgCOEN+jFy0Cva9LHwBhgwAKb04MFQj+fYUO8o7JubdX98XR3U1+v90ce+fXW1PrepSQ9/bH8IZDww4fAGBoNi/GnfM2nUGs4YupH8zA0Mtm4gIbpGz11evxl2HfVYanSSDnZrPljyjxzH5/XKME8RniTA+4iyMj1kEOD++2HixCB90f739T7niiB9QWhFRemWciC7nZTSrf+qKh3mVVVtj49+rapKz/ni8RhYs20Ya7YNA671lURO6n7GDt7A2MEbGJW7idOytzM88ztiaICaNXo7ihcTrbFDiLIOIyp5mL7xnDQMEk+CxMF6IjLRb0kXSh9x1VXwzjtQUKDXkjxqht3AcX6rp1c1RMGVlXqMswg4rxcOHNDdPxUVbbcfv+Z2Q0yUm2GZO8nP3sZpA7eTn72N/OxtnJJVSqyp47U+PSqKBm8ezdHDUAknYUrJIykzD1NyHiTkQVwmGGTVxHAkXShhZMkSHd5RUfDKK0EKb9APqoB+8lDCO2iMxiN942PGdHyeUrqLpqLCRHl5PhUV+VRUwOoKeH8j2Bd7UI37SVDfk5u8k2GZOxlm09tJGd+TEHuI5KgfQP0AB9HbUZNzuj0m6ppzafDm4YrOQyXocE/IyCM1N4+4AbnSgg9zEuAh5vHAvffq47vvhlGjgvRFXg/8cDjAT7o5SF8iusJggNRUvY0Y0d4ZUUAeSuXhdE7yt943lcOn5YrGA3Zo2Els606SDD+QYtpDTsoeBqfvJjulDFOUG1vC99j4XhfnBWoPbzvA6zVwoDGTuuZsGjw5uKOz8cbmEGPJJj4tG2tmDmmDsom3yNOnfZV0oYTYm2/Cddfp4Wq7dulH5oOiYgmsmKbnxv5puUyhGoGU0jdly8vBXt5KfUUZzTV78DbsIdq1h3j2kBKzB1vibnJT9x63e+Zo9YeSqT6YjcOdTaPKoSUmG+JzMCdnk5CeTWp2Fhm56cQnSHdNoEgXShjweOA3v9HHc+YEMbxBT6EKkHethHeEMhj0f0NWK5x2WjSQd3hrSylwOrzs3VuFo6KMxuoyWpz74VAZptb9JBjLSDHvJyOpjKTYgyTH15McXw9sbVuQF6jUW+vaKMobbNQeyuJgayZNhiw8MVkYE7IwWzNJSMsiZWAWaTmZJFhkHHygSAs8hN59V6+sk5qqW99Bq379Flh0OmCAS3aAJVAzYolIphQ4a5zU7NuPw15GU81+PAfLiGrej9lbRlJUGQPi9jMgsbpL5dY2pnCgMQuHK4tGbxYtUZl4TVkYE7MwW7NISs8kOSuL9IEWEpP659h4aYGHgT//We/vuCOI4Q2w/Sm9z71Swlt0msEA1jQL1rR8IL/D85SnhYYDVdTur8BRWUFTrZ3WgxUYmisweSqIN9pJNleQlmDHHOMmNaGO1IQ6YNuxhbUA5XprLjGzryGDuiYbB1szaFI2WqIyINZGdGIGZquNxLQMkjNtpOekkZjU/8bLSws8RLZvh/x8PWJh1y4YNChIX1S/GRaP0bPsTV0NaWcG6YuEOD7lVRysq6OurAJnVQVNtRW0NNihqYKY1griqCApxk5qXAVJsc4TF3gUr9dAzcE0ag/ZaGjJ4JBXh70y2zDEZWCy2IhLySAp3UZypo0BGbFE9+Hmq7TA+7i//EXvL700iOGtFKy7R4d37gwJbxFSBqOBpAGpJA1IBdodduOnWg7RWFtNXUUlDdWVNNVV0dJQiWqqIrq1ErOqIiG6kuTYSlLiajAaFemWatItHXTneIGaw9sOcDYlcaDBRr0rg8bWdFyGNFqj0sGUTlR8GiZLOvGp6SSlpZOSmcYAW0KfDPw+WKXI5/XC//yPPr7ttiB+0e43oXIFGM0w9qkgfpEQgWWIiSfRlkei7dibsMfwttJYe4Ca8iqcVTrs3c5KVFMlRncVsVQSb6zCaq4kNb4Kc4wbS1wDlrgGYGf7ZSqOBH4pHHLFUdGYjrM5jYOt6TSpdFqj0lGmNIxx6cQkpROfkkZSWjpWWzqptmRM5uCPypEAD4GSEj3Uy2KBn/wkSF9y8AdYO0sfj3hIFuwVkcsYTUJaJglpmSc+VylamxzU2ytxVlfRWFOFy1FNa+MBcFUT1VKNSVUTH3WAJFM1KfHVmKPdxJubiDfvBfZ2XHbd4e07aPVEUdU4gPqmdBzuLMb/55KgTFYmAR4Cb7+t95dfrqc0DbgWJ3wxA1obIP0cGDE3CF8iRBgyGIiOTyZtaDJpQ0858flK4XEdpM5ejbOqmoO1B2iur6b1YDXe5gNEtVQT460mzniApJhqkuOqscQ5iY7ykGGpIsNSRZXzQNBmmpQA72Verx4+CHoIYcC1HoLPr9TTxsZmwNlvgFH+ZxaiWwwGomKTSBucRNrgoZ36iMftxlF9QAd+zQFak11kBKl68v/sXrZ1q14XMj5eL5kWUK4a+OwSqFkF0YkwcZGe1EgI0WuiTCZSsweSmj0w6N8V1F72Tz75hMLCQuLi4khJSeGKK65o8/7evXuZPn068fHxZGRkcN9999EazBn5+4AVK/T+nHP00mAB4yyFpefq8I5JhomLIbUggF8ghOhrgtYCf/fdd5k5cya///3vmTRpEq2trWzZssX/vsfjYfr06WRmZvLVV19RUVHBDTfcQExMDL///e+DVa2Q8wX4pEkBLHTPW7D6Nmg9CPE5MPFTSD7+MC0hRARQQdDS0qKys7PVyy+/3OE5ixYtUkajUdntdv9r8+fPVxaLRblcrk5/l8PhUIByOBw9qnNv8HiUSklRCpRatSoABbrqlPrqRqXeQG9Lz1fqUHkAChZChFJncy0oXSjr16+nrKwMo9HI2LFjycrK4qKLLmrTAi8pKeH000/HZrP5X5s2bRpOp5OtW7e2VywALpcLp9PZZgsX33yj539OStILN/RI+WL4ZMThOb4NeqjgpH9BXFYgqiqECANBCfAfDi8t/thjj/Hwww/z8ccfk5KSwsSJE6mtrQXAbre3CW/A/7Pdbu+w7Hnz5mG1Wv1bbm5uMH6FoPj8c70/7zy6/1RXcxWU3ASfXQxN5ZA0HH7yJYz+nYw2EaKf6VKAP/DAAxgMhuNuO3bswOv1AvDQQw8xY8YMCgoKePXVVzEYDLztGwTdTXPnzsXhcPi3ffv2nfhDfcT69XpfWNiND3s98N18+OiUI63uU+6FizZC+tmBq6QQImx0qck2Z84cbrrppuOeM3ToUCoqKgDIzz8yg5nZbGbo0KHs3aufZMrMzGTNmrYLuFZWVvrf64jZbMYclKdfgm/jRr0/3jJb7TqwGtbeCXWH/wKkjIFxf4b0osBVTggRdroU4Onp6aSnp5/wvIKCAsxmM6WlpZx77rkAtLS0sHv3bvLy9LjkoqIiHn/8caqqqsjI0MPcly5disViaRP8kcLt1jMQAowe3ckPOUvhm4dh3zv65xgrjPodDJ8Fxv43daYQoq2gdJpaLBbuuOMOHn30UXJzc8nLy+Opp/RkSldddRUAU6dOJT8/n+uvv54nn3wSu93Oww8/THFxcdi2sI9n2zZoaYHk5E7MPti4B7Y8Dj+8AsoDGGDIDTDm/0Gc7QQfFkL0F0G76/XUU08RHR3N9ddfT1NTE4WFhSxfvpyUlBQAoqKi+Pjjj5k1axZFRUUkJCRw44038hvfGmMR5ptv9H706A6mRVAKalbDjj/qFrfS9xHIvhRGPw7Jp/daXYUQ4SFoAR4TE8PTTz/N008/3eE5eXl5LFq0KFhV6JDbDWtffpiDjQYaGs0Yok1ExZiIMZmIMpuJMR8+NpmINpmJNpmINpkwxZqIiTVjMpswxZkwx5kwx5kxxerPG6JMYIxpN6Hb7f9ubYSatVC5XD+M0/Dtkfdsk+H0xyDj3CBeCSFEOOuXK/J4veD5Rwwx0cF5bN/VaqLF49vMtHpNHGo20ew2kZltJi3VA64qaK480tIGPW933i/g1NmQMioodRNC9H2yIs9xGA2KldW/whzjJj7WjcHrwutxg8eN8uqfjcqN0eAmyuAm2uAi2ugm2uAmJspFTJSbmCg3pmg35mgXRmPbv4HmaDfmaHfbLz16xfn6o47jcyDtbMi+DHIug5ikYP3aQogI0y8DHIOBC+b8ocfFeDzQ1KRwNXtwu9y4m920uly0NLtpcevjVrebVrcbj9uNLd3FsKGHgz02E+IGyk1JIUS39c8AD5CoKEhINJCQGI2+lPGhrpIQoh8J/qJtQgghgkICXAghwpQEuBBChKmw7wP3jYIMp2llhRDieHx5dqJR3mEf4A0NDQBhNa2sEEJ0RkNDA1artcP3w/5BHq/XS3l5OUlJSRjafUa9fU6nk9zcXPbt29fpB4D6A7kuHZNr0z65Lu3ryXVRStHQ0MDAgQMxGjvu6Q77FrjRaCQnJ6fbn7dYLPIfXTvkunRMrk375Lq0r7vX5Xgtbx+5iSmEEGFKAlwIIcJUvw1ws9nMo48+GpFzj/eEXJeOybVpn1yX9vXGdQn7m5hCCNFf9dsWuBBChDsJcCGECFMS4EIIEaYkwIUQIkxJgAshRJjqtwH+wgsvMHjwYGJjYyksLGTNmjWhrlJQff7551x66aUMHDgQg8HA+++/3+Z9pRSPPPIIWVlZxMXFMWXKFL777rs259TW1nLddddhsVhITk7m1ltv5eDBg734WwTWvHnzGD9+PElJSWRkZHDFFVdQWlra5pzm5maKi4sZMGAAiYmJzJgxg8rKyjbn7N27l+nTpxMfH09GRgb33Xcfra3BWW+1t8yfP59Ro0b5nyIsKipi8eLF/vf763X5sSeeeAKDwcC9997rf61Xr43qhxYsWKBMJpN65ZVX1NatW9XMmTNVcnKyqqysDHXVgmbRokXqoYceUu+9954C1MKFC9u8/8QTTyir1aref/999c0336jLLrtMDRkyRDU1NfnPufDCC9Xo0aPVqlWr1BdffKGGDRumrrnmml7+TQJn2rRp6tVXX1VbtmxRGzduVBdffLEaNGiQOnjwoP+cO+64Q+Xm5qply5apr7/+Wp111lnq7LPP9r/f2tqqRo4cqaZMmaI2bNigFi1apNLS0tTcuXND8SsFzIcffqg++eQT9e2336rS0lL14IMPqpiYGLVlyxalVP+9Lkdbs2aNGjx4sBo1apS65557/K/35rXplwF+5plnquLiYv/PHo9HDRw4UM2bNy+Eteo9Pw5wr9erMjMz1VNPPeV/rb6+XpnNZvXPf/5TKaXUtm3bFKDWrl3rP2fx4sXKYDCosrKyXqt7MFVVVSlArVy5Uimlr0FMTIx6++23/eds375dAaqkpEQppf8wGo1GZbfb/efMnz9fWSwW5XK5evcXCLKUlBT18ssvy3VRSjU0NKjhw4erpUuXqvPPP98f4L19bfpdF4rb7WbdunVMmTLF/5rRaGTKlCmUlJSEsGahs2vXLux2e5trYrVaKSws9F+TkpISkpOTGTdunP+cKVOmYDQaWb16da/XORgcDgcAqampAKxbt46WlpY21+XUU09l0KBBba7L6aefjs12ZHHqadOm4XQ62bp1ay/WPng8Hg8LFiygsbGRoqIiuS5AcXEx06dPb3MNoPf/mwn72Qi76sCBA3g8njYXD8Bms7Fjx44Q1Sq07HY7QLvXxPee3W4nIyOjzfvR0dGkpqb6zwlnXq+Xe++9l3POOYeRI0cC+nc2mUwkJye3OffH16W96+Z7L5xt3ryZoqIimpubSUxMZOHCheTn57Nx48Z+fV0WLFjA+vXrWbt27THv9fZ/M/0uwIVoT3FxMVu2bOHLL78MdVX6jFNOOYWNGzficDh45513uPHGG1m5cmWoqxVS+/bt45577mHp0qXExsaGujr9bxRKWloaUVFRx9wVrqysJDMzM0S1Ci3f7328a5KZmUlVVVWb91tbW6mtrQ3763bXXXfx8ccfs2LFijZzy2dmZuJ2u6mvr29z/o+vS3vXzfdeODOZTAwbNoyCggLmzZvH6NGjefbZZ/v1dVm3bh1VVVWcccYZREdHEx0dzcqVK/nTn/5EdHQ0NputV69Nvwtwk8lEQUEBy5Yt87/m9XpZtmwZRUVFIaxZ6AwZMoTMzMw218TpdLJ69Wr/NSkqKqK+vp5169b5z1m+fDler5fCwsJer3MgKKW46667WLhwIcuXL2fIkCFt3i8oKCAmJqbNdSktLWXv3r1trsvmzZvb/HFbunQpFouF/Pz83vlFeonX68XlcvXr6zJ58mQ2b97Mxo0b/du4ceO47rrr/Me9em16fDs2DC1YsECZzWb12muvqW3btqnbb79dJScnt7krHGkaGhrUhg0b1IYNGxSgnnnmGbVhwwa1Z88epZQeRpicnKw++OADtWnTJnX55Ze3O4xw7NixavXq1erLL79Uw4cPD+thhLNmzVJWq1V99tlnqqKiwr8dOnTIf84dd9yhBg0apJYvX66+/vprVVRUpIqKivzv+4aETZ06VW3cuFF9+umnKj09PeyHyz3wwANq5cqVateuXWrTpk3qgQceUAaDQS1ZskQp1X+vS3uOHoWiVO9em34Z4Eop9dxzz6lBgwYpk8mkzjzzTLVq1apQVymoVqxYoYBjthtvvFEppYcS/vrXv1Y2m02ZzWY1efJkVVpa2qaMmpoadc0116jExERlsVjUzTffrBoaGkLw2wRGe9cDUK+++qr/nKamJnXnnXeqlJQUFR8fr37605+qioqKNuXs3r1bXXTRRSouLk6lpaWpOXPmqJaWll7+bQLrlltuUXl5ecpkMqn09HQ1efJkf3gr1X+vS3t+HOC9eW1kPnAhhAhT/a4PXAghIoUEuBBChCkJcCGECFMS4EIIEaYkwIUQIkxJgAshRJiSABdCiDAlAS6EEGFKAlwIIcKUBLgQQoQpCXAhhAhT/x9tLa55+NiomgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
@@ -437,7 +1146,7 @@
},
{
"cell_type": "markdown",
- "id": "a1e45233",
+ "id": "e8997a9b",
"metadata": {},
"source": [
"At the location of the first recording (in blue) the cell spiked, whereas at the second recording, it did not. This makes sense because we only inserted sodium and potassium channels into the first branch, but not in the entire cell."
@@ -445,10 +1154,10 @@
},
{
"cell_type": "markdown",
- "id": "3de28918",
+ "id": "dfed7c10",
"metadata": {},
"source": [
- "Congrats! You have just run your first morphologically detailed neuron simulation in `Jaxley`. We suggest to continue by learning how to [build networks](https://jaxleyverse.github.io/jaxley/latest/tutorial/02_small_network/). If you are only interested in single cell simulations, you can directly jump to learning how to [modify parameters of your simulation](https://jaxleyverse.github.io/jaxley/latest/tutorial/03_setting_parameters/). If you want to simulate detailed morphologies from SWC files, checkout our tutorial on [working with detailed morphologies](https://jaxleyverse.github.io/jaxley/latest/tutorial/08_importing_morphologies/)."
+ "Congrats! You have just run your first morphologically detailed neuron simulation in `Jaxley`. We suggest to continue by learning how to [build networks](https://jaxley.readthedocs.io/en/latest/tutorials/02_small_network.html). If you are only interested in single cell simulations, you can directly jump to learning how to [speed up simulations](https://jaxley.readthedocs.io/en/latest/tutorials/04_jit_and_vmap.html). If you want to simulate detailed morphologies from SWC files, checkout our tutorial on [working with detailed morphologies](https://jaxley.readthedocs.io/en/latest/tutorials/08_importing_morphologies.html)."
]
}
],
diff --git a/docs/tutorials/02_small_network.ipynb b/docs/tutorials/02_small_network.ipynb
index 402a2fec..84b3807e 100644
--- a/docs/tutorials/02_small_network.ipynb
+++ b/docs/tutorials/02_small_network.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "597dfe2a-d5fe-4e3d-8fb5-bb415126b81a",
+ "id": "10cb8b05",
"metadata": {},
"source": [
"# Network simulations in Jaxley"
@@ -10,13 +10,14 @@
},
{
"cell_type": "markdown",
- "id": "c9db67ff-6334-4435-9092-e7c71ec71a93",
+ "id": "3149c330",
"metadata": {},
"source": [
"In this tutorial, you will learn how to:\n",
"\n",
"- connect neurons into a network \n",
"- visualize networks \n",
+ "- use the `.edges` attribute to inspect and change synaptic parameters\n",
"\n",
"Here is a code snippet which you will learn to understand in this tutorial:\n",
"```python\n",
@@ -35,6 +36,9 @@
" IonotropicSynapse(),\n",
")\n",
"\n",
+ "# Change synaptic parameters.\n",
+ "net.select(edges=[0, 1]).set(\"IonotropicSynapse_gS\", 0.1) # nS\n",
+ "\n",
"# Visualize the network.\n",
"net.compute_xyz()\n",
"fig, ax = plt.subplots(1, 1, figsize=(4, 4))\n",
@@ -44,7 +48,7 @@
},
{
"cell_type": "markdown",
- "id": "7177950f-d702-4d8d-b69e-bfb06677037f",
+ "id": "7dd2ee98",
"metadata": {},
"source": [
"In the previous tutorial, you learned how to build single cells with morphological detail, how to insert stimuli and recordings, and how to run a first simulation. In this tutorial, we will define networks of multiple cells and connect them with synapses. Let's get started:"
@@ -52,8 +56,8 @@
},
{
"cell_type": "code",
- "execution_count": 132,
- "id": "deb594f4",
+ "execution_count": 1,
+ "id": "c08d10cb",
"metadata": {},
"outputs": [],
"source": [
@@ -74,29 +78,29 @@
},
{
"cell_type": "markdown",
- "id": "f5cda6ff",
+ "id": "9c39dfef",
"metadata": {},
"source": [
"### Define the network\n",
"\n",
- "First, we define a cell as you saw in the [previous tutorial](https://jaxleyverse.github.io/jaxley/latest/tutorial/01_morph_neurons/)."
+ "First, we define a cell as you saw in the [previous tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/01_morph_neurons.html)."
]
},
{
"cell_type": "code",
- "execution_count": 133,
- "id": "e8be24c8-a582-4458-a286-5db94d225dd4",
+ "execution_count": 2,
+ "id": "3858f198",
"metadata": {},
"outputs": [],
"source": [
"comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=4)\n",
+ "branch = jx.Branch(comp, ncomp=4)\n",
"cell = jx.Cell(branch, parents=[-1, 0, 0, 1, 1, 2, 2])"
]
},
{
"cell_type": "markdown",
- "id": "27e8dc14-4a71-40a5-b8d2-f54f6800e8d5",
+ "id": "9d3e84bc",
"metadata": {},
"source": [
"We can assemble multiple cells into a network by using `jx.Network`, which takes a list of `jx.Cell`s. Here, we assemble 11 cells into a network:"
@@ -104,8 +108,8 @@
},
{
"cell_type": "code",
- "execution_count": 134,
- "id": "3d114f50-01a5-43ca-85e9-b00a02b20ed3",
+ "execution_count": 3,
+ "id": "a214b164",
"metadata": {},
"outputs": [],
"source": [
@@ -115,7 +119,7 @@
},
{
"cell_type": "markdown",
- "id": "bb4c09d2-c660-4ea0-b149-0c61810e03b3",
+ "id": "d8e091d5",
"metadata": {},
"source": [
"At this point, we can already visualize this network:"
@@ -123,13 +127,13 @@
},
{
"cell_type": "code",
- "execution_count": 135,
- "id": "207e9dbf-311d-4cde-b270-dfa2085d0d95",
+ "execution_count": 4,
+ "id": "d184c739",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAH5CAYAAAA/e9PUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOrElEQVR4nO3deVhTZ94+8DsJSVjDIktEEFAUK4iCCuK+UFFBxNrdqbVj69haR6f+arXtaDvT1r7ame7L2M5UpzOtHbvoaF2K+4Yb4IIL1SpF1GApssqSwPP7oy/nTdQoS0I4cH+uK9c7PDk555vzmrvnPOec51EIIQSIiGRE6egCiIiaisFFRLLD4CIi2WFwEZHsMLiISHYYXEQkOwwuIpIdJ0cX0Brq6+tx+fJleHh4QKFQOLocIjIjhEB5eTkCAwOhVDbuWKpDBNfly5cRHBzs6DKI6DYuXryIoKCgRi3bIYLLw8MDwK87RqfTObgaIjJXVlaG4OBg6XfaGB0iuBpOD3U6HYOLqI1qSjcOO+eJSHYYXEQkOwwuIpIdBhcRyQ6Di4hkh8FFRLLD4CIi2WFwEZHsMLiISHYYXEQkOwwuIpIdBhcRyQ6Di4hkh8FFRLLD4CIi2WFwEZHsMLiISHY6xAiojeXi4oLq6mqoVCpotVrodDoEBgaiV69eGDx4MKZMmQK9Xu/oMok6PIUQQji6CHsrKyuDp6cnSktLbzt0c1OGjlUoFFCr1XB1dYWPjw9CQkIQExODcePGYdSoUXBy4n8TiBqjsb9PcwwuM9OnT0dWVhYMBgMqKipQW1uLurq6Fm1bpVJBo9FAp9MhICAAPXv2xJAhQzB8+HCcP38eaWlpDDnq0BhcVjRnx9zIZDJh8+bN2Lp1K44ePYr8/HwUFxfj+vXrMJlMaMlubMq0TETtDYPLClsEVwOTyYTDhw9j06ZNOHLkCH788UcUFRWhsrISRqMR9fX1zVrvoEGDsGfPHh59UYfTnN8nfyVmioqKsG7dOuzatQunT5/G5cuXUVpaiurqatTX17foqEqpVEKtVsPNzQ1+fn7Q6XQ4fvw4ampqAAAHDhyARqPB/PnzsXz5clt9JaJ2iUdcZprSOW/+GZVKBWdnZ3h7eyMoKAhRUVEYOXIkUlNT4e7uftvPHz9+HEOGDEFFRYXUptVqsXbtWowbN67J9RDJDU8VrWjsjlEqlRZHVUqlEhqNBu7u7ggICED37t0RFxeHtLQ0REZG2rTGd999F/PmzbM41QwMDMSxY8fg6+tr020RtSUMLisau2OOHz+Onj17wtnZuRWrszR58mSsXbvWom3MmDHYunWrYwoisrPmBBfvnDcTHR3t0NACgG+//Rbl5eUIDQ2V2rZt2walUolXX33VcYURtSEMrjbI3d0dFy5cwJ49e+Di4gIAEELgxRdfhKurK/bu3evgCokci8HVhg0dOhTXr1/Hn/70J+nCQVVVFYYNG4awsDCLDn2ijoR9XDKSmJiIbdu2WbQ5OzvjyJEjrVpHREQE7zcjm2HnvBXtJbiAX+81CwoKku7/coScnBybX1Wljoud8+3cu+++i4CAAIeGFlFbwON9GbB2k+pbb72FhISEVj9ti4iIaNXtEd2IwdWGVVdXo2/fvvjhhx+kNoVCwceCqMNjcLVRv/nNb/Dvf//boi0hIQG7d+9mxzh1ePwFtDErV67E448/bjEOmK+vL7Kzszn0DdH/YnCZ0Wg0MBqNFqOb+vr6IjQ0FLGxsUhKSsLw4cPtcsSTm5uLQYMGoaSkRGpTq9X4/PPPce+999p8e0RyxtshzDR1dAjzsek7d+6MiIgIDB06FJMmTWr00ZHJZMKAAQNw7Ngxi/ZZs2bhww8/bFI9RHLE+7isaOyOef7557Fv3z5pdNOqqqoWj26qUCjg5OQENzc3eHt7o2vXrujXrx/GjRuHzz//HJ999pnF8n379sWRI0fYj0UdBoPLClvdgJqXl4e1a9di3759OHv2LAwGA8rKymwyNr2XlxcOHDjAWw2ow+ENqHYWGhqK6dOnIzk5GbGxsQgJCYGPjw9cXFzg5OTUrIEIAeCTTz7BtWvXGFpEjcTzETMZGRnYsGEDMjMzceHCBZuMJQ9YjpLq6emJLl26wNPTE2fPnsXbb7+N1NRUG34LovaPwWVm8ODBTf5Mwyipbm5u8Pf3R/fu3TFgwABMnDgRsbGxdqiSiBhcZhQKhdQR33CU5OLiIo0lHxkZidGjRyMlJeWOY8kTkf0wuMwUFxfDy8vL0WUQ0R2wc94MQ4tIHhhcRCQ7DC4ikh0GFxHJjt2D69KlS/jNb36DTp06wcXFBX369LEYI10IgcWLF6Nz585wcXFBYmIizp49a7GO4uJiTJ06FTqdDl5eXpgxYwYniiDqwOwaXNeuXcOQIUOgVquxadMmnDp1Cn/5y1/g7e0tLbNs2TK88847+Oijj3Dw4EG4ubkhKSkJ1dXV0jJTp07FyZMnkZ6ejg0bNmD37t2YOXOmPUsnorZM2NFzzz0nhg4davX9+vp6odfrxfLly6W2kpISodVqxRdffCGEEOLUqVMCgDh8+LC0zKZNm4RCoRCXLl1qVB2lpaUCgCgtLW3mNyEie2nO79OuR1z//e9/MWDAANx3333w9/dHTEwMPv74Y+n9CxcuwGAwIDExUWrz9PREfHw8MjIyAPz6GI6XlxcGDBggLZOYmAilUomDBw/ecrs1NTUoKyuzeBFR+2HX4Dp//jw+/PBD9OjRA1u2bMGTTz6J3//+91i1ahUAwGAwAAACAgIsPhcQECC9ZzAY4O/vb/G+k5MTfHx8pGVutHTpUnh6ekqv4OBgW381InIguwZXfX09YmNj8dprryEmJgYzZ87EE088gY8++siem8WiRYtQWloqvS5evGjX7RFR67JrcHXu3Bm9e/e2aLvrrruQn58PANDr9QCAwsJCi2UKCwul9/R6Pa5evWrxvslkQnFxsbTMjRpGJTV/EVH7YdfgGjJkCHJzcy3afvjhB4SEhAAAwsLCoNfrLaaVLysrw8GDB5GQkADg15ltSkpKkJmZKS2zfft21NfXIz4+3p7lE1FbZceLBeLQoUPCyclJvPrqq+Ls2bPi3//+t3B1dRX/+te/pGVef/114eXlJdatWyeOHz8uJk2aJMLCwkRVVZW0zLhx40RMTIw4ePCg2Lt3r+jRo4d46KGHGl0HryoStV3N+X3aNbiEEGL9+vUiKipKaLVa0atXL7FixQqL9+vr68Uf//hHERAQILRarRgzZozIzc21WOaXX34RDz30kHB3dxc6nU489thjory8vNE1MLiI2q7m/D455jwRORTHnCeiDoEDCZpRq9UwmUzSlGINo5927doVUVFRSExMxIQJE+Ds7OzoUok6NJ4qmmnqLD0N4827u7sjICAAPXr0QHx8PCZOnIjIyMiWlk3UIXBeRSsau2Nefvll7N27F3l5eSgqKsL169dhNBpbPCFsw9j1Xl5eCAoKQlRUFKKjo3Hp0iXMnj270bNeE7VHDC4rbNU5X1RUhG+++Qa7d+9Gbm4uLl++jNLSUlRXV6O+vr7ZAXfo0CEMHDiw2XURyVlzfp/s42oCX19fTJgwAUajEXV1dairq5MCq6amptmzWcfFxSE8PBwnTpxg/xlRIzC4zKSnp+O7777D0aNHkZ+fj+LiYly/fh0mk6nFp4s3dvb36NEDGzdulB4UP3fuHFxcXHD//ffjyy+/tNVXImqXeKpopqmd8wCgUqmg0Wjg4eEBvV6Pnj17YsiQIUhJSUF4ePgdP28wGBAdHY2ff/7ZYp0ffPABB0ukDoF9XFY0dseoVCrU19cD+L+jJDc3N/j4+CAkJATR0dEYN24cEhMT4eRk24PVb775Bg8++CCMRqPUptPpsH//fl6hpHaNwWVFY3dMdXW1w/uY5syZg/fee8+irU+fPsjKyrJ5WBK1BbxzvoUcHVoA8O6778JoNCI2NlZqO3HiBNRqNU8dif4Xg6sNcnJyQmZmJs6ePWsxscjHH38MtVqN1atXO7A6IsdjcLVh4eHhKC4uxqpVq6TTRJPJhIceegi+vr7Iy8tzbIFEDsI+LhmZNm0aPvvsM4s2lUqFzMzMVu3/ioiIYH8b2Qw7561oL8EFABUVFfDz87OYd7K15eTk8Eon2Qw759u5+fPnQ6fTOTS0iNoCHu/LwIYNGzBlyhTU1tZKbR4eHli5ciUiIiJavR5HbJPIHIOrDTMYDIiJibGYP1KlUuHtt9/G7NmzHVgZkWMxuNqokSNHYteuXRZtU6ZMwVdffeWgiojaDvZxtTEvv/wylEqlRWh169YN5eXlDC2i/8UjLjNOTk7S0DQND0+7u7tDr9cjPDwcCQkJmDx5cqMenm6q3bt3IykpyaLj3dXVFVu3bpXmmCSiX/F2CDNNHR3CfLgaLy8vdO3aFX369MHo0aORkpLSqEeISkpK0LdvX2l274b1vvbaa1i4cGGT6iGSI97HZUVjd8zKlSuxdetWnD59GleuXEFZWVmLRzcFLMem9/f3R3h4OGJjY/HNN9/g+PHjFsuOHTsWW7Zsafa2iOSGwWWFrW5ANZlMOHDgADZu3IisrCxcuHABRUVFqKyshNFolIbEaY4uXbogJycHXl5ezV4HkRzxBtRWUFVVhZqaGphMJouhm1uS/99//z0KCgoYWkSNxM55MytWrMC2bduQm5sLg8GAsrIy1NbWNnss+QbmHf0N05h169YNP/74I1555RU+PkPURAwuM7/73e+atLx557yPjw+6du2Kfv364e6770ZiYmKbGN+LqD1icJlRqVQ33Q6h0+mg1+sRERGBhIQEpKWlITQ01LGFEnVwDC4zJpPJ0SUQUSOwc56IZIfBRUSyw+AiItlhcBGR7DC4iEh2GFxEJDsMLiKSHQYXEckOg4uIZIfBRUSyw+AiItlhcBGR7DC4iEh2GFxEJDsMLiKSHQaXGY7HRSQPHEjQjFarlWbqUSqVUKvVcHNzg5+fH7p164YBAwZg4sSJGDhwoIMrJerYOD2ZmeZMCKtUKuHs7AxPT0906dIFvXv3xsiRI5GWlsZZe4gaoU1PT/b6669DoVBg3rx5Ult1dTVmz56NTp06wd3dHVOmTEFhYaHF5/Lz85GcnAxXV1f4+/vj2Weftdsp3Zo1azBjxgwMGjQIQUFBcHd3h5OTk9VAE0Kgrq4OlZWVuHz5Mg4fPoxVq1bhscceg7e3NxQKBRQKBVQqFZydneHj44OePXsiKSkJjz32GIYMGYKMjAy7fBeidk20gkOHDonQ0FARHR0t5s6dK7XPmjVLBAcHi23btokjR46IQYMGicGDB0vvm0wmERUVJRITE0V2drbYuHGj8PX1FYsWLWrS9ktLSwUAUVpa2uLvcuzYMfGnP/1JpKamit69ewtfX1/h7OwslEqlANCs19dff93iuojkqjm/T7sHV3l5uejRo4dIT08XI0aMkIKrpKREqNVqsWbNGmnZ06dPCwAiIyNDCCHExo0bhVKpFAaDQVrmww8/FDqdTtTU1DS6BlsFV1VVlfj666/Fk08+KYYNGyZCQkKETqcTarVaKBSKZgcXAOHn5yeuXLnSovqI5Kg5v0+7d87Pnj0bycnJSExMxCuvvCK1Z2Zmwmg0IjExUWrr1asXunbtioyMDAwaNAgZGRno06cPAgICpGWSkpLw5JNP4uTJk4iJibnlNmtqalBTUyP9XVZW1qha3333XWzfvh1nz55FYWEhKioqUFtbK3XYN1fDqaKHhwcCAwPRq1cvDBs2DKtXr8auXbsAAD///DM6d+6MoUOHYseOHXBy4nUTImvs+utYvXo1srKycPjw4ZveMxgM0Gg0N3VgBwQEwGAwSMuYh1bD+w3vWbN06VK8/PLLTa7397//fZOWVyqVcHJygpubG3x9fREWFob+/ftjwoQJGDRo0B3DZ9asWaiurkafPn1w7tw5AMDevXuh0WiwcOFCvPbaa03+DkQdgd2C6+LFi5g7dy7S09NbfUbnRYsW4ZlnnpH+LisrQ3Bw8B0/1zAh7K2uFvbq1QsjRozApEmT4Ovra7NanZ2dcfbsWRw+fBijRo1CZWUlhBBYunQp3nzzTXz33XcYPXq0zbZH1B7YLbgyMzNx9epVxMbGSm11dXXYvXs33nvvPWzZsgW1tbUoKSmxOOoqLCyEXq8HAOj1ehw6dMhivQ1XHRuWuRWtVgutVtvkmh15A+rAgQNRUVGBv/zlL1iwYAHq6+tRXV2NMWPGICgoCCdOnODtFUT/y263Q4wZMwYnTpzA0aNHpdeAAQMwdepU6X+r1Wps27ZN+kxubi7y8/ORkJAAAEhISMCJEydw9epVaZn09HTodDr07t3bXqU71Pz581FXV4cJEyZIbQUFBfD29rZoI+rQ7Het4GbmVxWF+PV2iK5du4rt27eLI0eOiISEBJGQkCC933A7xNixY8XRo0fF5s2bhZ+fn0Nvh2hN165dE8HBwRZXH5VKpVi2bJmjSyOymTZ5VfF23nzzTSiVSkyZMgU1NTVISkrCBx98IL2vUqmwYcMGPPnkk0hISICbmxseffRR/OlPf3Jg1a3Hy8sL+fn52L17N5KSklBdXY36+nosWLAAL730Ev7xj38gKiqq1euKiIjgVU9yKD7yIyOLFy/GK6+8Akf/vywnJweRkZEOrYHajzb9yA+13J/+9CcUFxc368IDUXvC430Zue+++/DVV19ZtDk5OeHo0aOtWkdERESrbo/oRgwuGfjoo4/w9NNPo66uTmrT6/XIzs6+7W0hRO0Vg6sNO3nyJAYPHmzxyJJGo8HXX3+NlJQUB1ZG5Fjs42qDqqurERkZiaioKCm0FAoF5s6di5qaGoYWdXgMLjNFRUWOLgG//e1v4eLiglOnTkltAwcORG1tLd566y3HFUbUhvBU0Yy/v790q4H5AIBeXl4IDAxEZGQkRo4cidTUVJs/fvP555/j0UcftXjsyMfHB5mZmQgNDbXptojkjvdxmWnq0M2A5dj0vr6+6N69O2JiYpCSkoKBAwfe8UbNc+fOIT4+HsXFxVKbk5MTVq1ahYcffrjJ9RDJTXPu42JwmTl+/DjWrVuHQ4cO4ccff8TVq1dRWVnZ4jG5bhxtIjAwEEFBQdixYwdKS0stlp0xYwY++eSTZm+LSG4YXFbY8s75iooKbNiwAbt27cLx48dRUFCAa9euoaqqCnV1dc2+qz0qKgrZ2dl8lIY6nOb8PvkraYLc3Fx8++23OHjwIM6dO4fCwkKUl5e3+IiMj9AQNQ2Dy8yzzz6L/fv32+woCvj1NFGtVsPV1RWdOnVCaGgoYmJiEB8fj/z8fEybNs2mAxMSdQQMLjNvvPFGo5c177fS6XTo3Lkz7rrrLgwfPhypqam8o53IjhhcZtRqNYxG401XChvGkh8/fnyjxpInIvviL9BMbW2to0sgokbgnfNEJDsMLiKSHQYXEckOg4uIZIfBRUSyw+AiItlhcBGR7DC4iEh2GFxEJDsMLiKSHQYXEckOg4uIZIfBRUSyw+AiItlhcBGR7DC4zOTl5VnMa0hEbRMHEjTTrVs3i/HlVSoVtFotdDodAgMD0bNnTwwdOhRTpkzh0MxEDsTpycw0Z0JYhUIBJycnuLm5wcfHByEhIYiJicHdd9+NxMREDvNMdAecV9GKxu6Yc+fOYd26dcjIyMAPP/wAg8GAiooK1NbWoq6urkU1qFQqaDQaeHh4QK/XQ6PRID8/H//zP/+D6dOnt2jdRHLG4LLClhPCmkwmbN68GVu3bsXRo0eRn5+P4uJiXL9+HSaTqVlTmb355puYN29ei+oikisGlxW2Cq7Dhw9j/fr1OHLkCM6fP4+ff/4ZlZWVMBqNLZoQFgDc3d2xa9cuxMbGtmg9RHLDmaxbaO7cucjIyMClS5dQWlqK6upq1NfXt2hCWKVSCY1GI0111r17d8TFxWHixIn47LPP8NZbbwEAKioq0L9/f/Ts2RPHjh2Ds7Ozjb4VUfvDIy4zTemcVygUUKlUcHZ2hre3N4KCghAVFYXRo0cjJSUF7u7ujVqPyWTCsGHDcODAAYv2qVOn4l//+lej6yGSK54qWtHYHaPValFbWysdJbm7uyMgIAA9evTAgAEDkJaWhsjISLvUWFBQgJiYGBQVFUltKpUKn3zyCTvvqV1jcFlhy855e/vqq6/w8MMPw2g0Sm1eXl44fPgwwsPDHVgZkX005/fJO+fbmHvvvRe1tbWYNWuW1FZSUoIePXqgX79+vLOfCAyuNuvDDz+E0WhE3759pbZjx45BrVbjqaeecmBlRI7HU0UZyM3NxaBBg1BSUiK1qdVqLFu2DKNGjWr1u/MjIiL4RADZDPu4rJB7cDX4+9//jt/97nctvou/pXJycux2kYI6HvZxtXMzZsxAXl4eNBqNo0shcige78uEyWTC8OHDkZGRYdHu6uqKQ4cOtWotERERrbo9ohsxuGTgueeew/Llyy3u4Ocd9tSRMbjasPT0dEycOBE1NTVSG59pJLJzH9fSpUsxcOBAeHh4wN/fH2lpacjNzbVYprq6GrNnz0anTp3g7u6OKVOmoLCw0GKZ/Px8JCcnw9XVFf7+/nj22Wfb9f1MRUVF6NKlC8aOHSuFllKpxJtvvony8nKGFnV4dg2uXbt2Yfbs2Thw4ADS09NhNBoxduxYVFZWSsv84Q9/wPr167FmzRrs2rULly9fxj333CO9X1dXh+TkZNTW1mL//v1YtWoVVq5cicWLF9u83r1791o8cuMId999N/z8/HD58mWpLTU1FXV1dRz6hqiBaEVXr14VAMSuXbuEEEKUlJQItVot1qxZIy1z+vRpAUBkZGQIIYTYuHGjUCqVwmAwSMt8+OGHQqfTiZqamkZtt7S0VAAQpaWlt11OoVAIANJLoVAIjUYjvLy8RHh4uBgzZoz4f//v/4lt27YJo9HY1K9/W6+88spN2w8JCRHl5eU23Q5RW9PY36e5Vg2us2fPCgDixIkTQgghtm3bJgCIa9euWSzXtWtX8de//lUIIcQf//hH0bdvX4v3z58/LwCIrKysW26nurpalJaWSq+LFy82aseYh0ZTXiqVSri6ugq9Xi9iYmLEgw8+KN555x1x8eLFO+6TPXv2CBcXF4v1ubi4SOFO1N41J7harXO+vr4e8+bNw5AhQxAVFQUAMBgM0Gg08PLyslg2ICAABoNBWiYgIOCm9xveu5WlS5fi5ZdfbnKNVVVV2Lp1K9LT0y1GN62qqrrt6KZ1dXW4fv06rl+/DoPBgOzsbKxevRq///3vpWUaxqZ3dXWFTqeDq6srzp07Z3EzqUKhwJIlS7BkyZIm107UkbRacM2ePRs5OTnYu3ev3be1aNEiPPPMM9LfZWVlCA4OvuPnnJ2dkZKSgpSUlNsul5eXh/Xr12Pv3r3Izc2FwWBAWVnZbcemF0LAaDSitLQUpaWlN70/YsQI7Ny58441ElErBdfTTz+NDRs2YPfu3QgKCpLa9Xo9amtrUVJSYnHUVVhYKE3/pdfrb7rBsuGqo7UpwrRaLbRarU2/Q0lJCdauXYudO3fi1KlTuHz5sjRKal1dXYtGSf3555/h6+trw2qJ2je7BpcQAnPmzMG3336LnTt3IiwszOL9/v37Q61WY9u2bZgyZQqAXx8ozs/PR0JCAgAgISEBr776Kq5evQp/f38Av97fpNPp0Lt3b5vW+8ADD+Do0aMoKiqyyVjy5qOkenl5ITAwEJGRkRg5ciSGDx+OM2fOYNy4cTb8BkQdg10fsn7qqafw+eefY926dRaPiXh6esLFxQUA8OSTT2Ljxo1YuXIldDod5syZAwDYv38/gF/7j/r164fAwEAsW7YMBoMBjzzyCB5//HG89tprjarDHkM3m48l7+/vL40ln5yczPusiJqgWYMg2OUywf+Clatwn376qbRMVVWVeOqpp4S3t7dwdXUVkydPFleuXLFYT15enhg/frxwcXERvr6+Yv78+U26HaGxVy1cXFyEQqEQTk5OwsPDQ3Tt2lUMHjxYzJo1S3zxxRe8NYHIDppzVZHD2hCRQ3FYGyLqEBhcRCQ7DC4ikh0GFxHJDoOLiGSHwUVEssPgIiLZYXARkewwuIhIdhhcRCQ7DC4ikh0GFxHJDoOLiGSHwUVEssPgIiLZYXCZ2bx5M86dO+foMojoDlptlh85mDBhgsWkFw1Tirm4uMDb2xvBwcHo06cPEhMTMWHCBDg7OzuwWqKOiyOgmmnKmPPmGsafd3d3R0BAAHr06IEBAwYgLS0NkZGRzS2bqENozgioDC4zJpMJ+/fvx3fffYesrCzk5eWhqKgI169fh9FobNEUZOYz/nh4eKC+vh7Xrl3D3LlzsWzZsmavl0juGFxW2HrM+aKiIqxbtw67du3C6dOnpTkWKysrm7W+Z555Bn/5y19aXBeRHDG4rLBFcBkMBnz99dfS7NVXrlxBWVkZampqrM5e3RQajQZff/31HWfRJmpvmvP7ZOe8mXvuuQfHjh1DcXExKisrYTKZWnx62NC57+Pjg+DgYPTt2xeJiYlISkrC3//+d8ydOxd1dXWora3FxIkTodfrceLECc5sTXQbPOIy05TOeZVKBY1GAw8PD+j1evTs2RNDhgxBWloaQkNDm1Tfvffei6+//tqibdSoUdi+fXuT1kMkRzxVtKKxO8bNzQ1VVVVwcnKCm5sbfHx8EBISgpiYGNx9991ITEyEk5N9DlIrKioQHR2NCxcuSG0KhQJLlizBkiVL7LJNoraAwWWFnCaEzcjIQGJiIq5fvy61ubi4YPPmzRg+fLgDKyOyD04I2w4kJCSgsrISS5culU5dq6qqMGLECISEhKCiosLBFRI5HoOrjVq4cCHq6+sxduxYqS0/Px8eHh6YOHGiAysjcjyeKspAUVER+vbti8uXL0ttSqUS8+fPx6RJk+Dl5dWq9URERNitr486HvZxWSH34GqQnp6O1NRUVFdXO7SOnJwcPspENsM+rnbu7rvvxr59+6BWqx1dCpFD8XhfJqqrqxEdHY2zZ89atHfq1Am7du1q1VoiIiJadXtEN2JwycBDDz2E1atXW7QNHToUO3bsYF8TdUg8VWzDVqxYAScnJ4vQ8vPzw8WLF7Fnzx6GFnVY/JffBuXm5iI+Ph6lpaVSm1qtxurVq3HPPfc4sDKitoFHXGZWrlyJDRs2OOyqnclkQnR0NHr16mURWk8//TRqa2sZWkT/i0dcZn7729/eNBpEw8PU5qObJiQkYPLkyQgPD7fZtmfOnImPP/7Yoi0mJgaHDh3iKSHRDXgflxmlUtmsYWzMh6/x8vJC165dERUVhTFjxiAlJeW2Y9OvXr0ajzzyCEwmk9Tm7e2NQ4cO2TQYidoq3oBqRVN2jMFgwNq1a7Fnzx6cOXNGGjCwurq6xQMGKpVKKJVKuLi4QKlUWpwOAr8e3X3yySeYPn16i7ZDreOjjz5CXFwcYmNjHV2KrDG4rLD1nfMmkwkHDhzAxo0bkZmZKY1NX1pa2uxwmzp1Kv71r3+1uDZqPTeO32Y+r4Cnpye6dOmCyMhIjBw5Eqmpqa3+aJZcMLisaGlwmUwm7NixA5s3b0Z2djZ++uknFBcX22QSDeDX0R841Zm8VFdXw8XFpVmfVSqVUKvVcHNzg6+vL8LCwtC/f3+kpKRg4MCBHa5Pk8FlRWN3zIgRI5Cbm4uysjLU1ta2+NTQvGNfr9cjPDwcCQkJSE1NRUhICH744QdER0e3aBvkWFlZWVi/fj0OHTqECxcu4OrVq6isrERtbS3q6+ubvV6FQgGlUikNallVVYW6ujq8/fbbmDVrlg2/geMxuKyw9dDNDZ3xrq6u8Pb2RteuXdGvXz9plFQePZG5iooKbNiwAdu3b0dOTg4KCgpQUlKC8vLyZq3vnXfewZw5c2xcpeMwuKxo7I7x9PREZWUlNBoNdDod9Ho9IiIiMHToUEycOLHJY8lTx3Rj10J+fj5++eUXm3UtAIC7uzt27drVLi4McJafFrrxKh+RNdXV1Rg0aBAMBoPNuxY8PDwQEBCAnj17IiEhAZMmTUJ4eDiee+45LF++HEIIVFRUoH///ujZsyeOHTvW4Y7yecRF1Awmk6nRwwuZdy34+PhIXQvjxo1r8gQsJpMJw4cPR0ZGhkW7nK9K81TRCgYX2UND4Gi1Wuh0OnTu3FnqWpg0aRKCgoLstu2CggLExsbi559/ltrkeh8gg8sKBhe1V1999RUefvhhGI1Gqc3LywsHDhyQzbhp7XoE1Pfffx+hoaFwdnZGfHw8Dh065OiSiBzu3nvvRW1tLZ588kmpraSkBL169UK/fv0sHiVrT2QRXF9++SWeeeYZLFmyBFlZWejbty+SkpJw9epVR5dG1CZ88MEHMBqN6Nu3r9R27NgxqNVqi1BrL2RxqhgfH4+BAwfivffeAwDU19cjODgYc+bMwcKFC+/4eZ4qUkdy7tw5DBw4ECUlJVKbWq3GSy+9hBEjRrS5WaHa5e0QtbW1yMzMxKJFi6Q2pVKJxMTEm66sNKipqUFNTY30d1lZmd3rJGorwsPDce3aNaxcuRKPP/446urqYDQa8cILLzikHnvMCtXmTxWLiopQV1eHgIAAi/aAgAAYDIZbfmbp0qXw9PSUXsHBwa1RKlGbMn36dLz99tuOLsMu2vwRV3MsWrQIzzzzjPR3WVkZw4s6lOPHj2Po0KE3PVY0YsQIvP/++61aiz2ubrb54PL19YVKpUJhYaFFe2FhIfR6/S0/o9VqodVqW6M8ojaluroasbGxOH36tNSmUCjwhz/8AX/5y18cWJlttflTRY1Gg/79+2Pbtm1SW319PbZt24aEhAQHVkbUtkybNg0uLi4WoRUXF4fa2tp2FVqADI64AOCZZ57Bo48+igEDBiAuLg5vvfUWKisr8dhjjzm6NCKH++c//4nf/va3Fs9KdurUCUeOHGm3AwPIIrgeeOAB/Pzzz1i8eDEMBgP69euHzZs339RhT9SaXnjhBURGRiI1NRXu7u6tvv1z584hLi4O165dk9qcnJzw2Wef4cEHH2z1elqTLO7jainex0X2cKvx25RKJTQaDVxdXeHn54fu3bsjLi4OEydOtNkQNCaTCfHx8cjKyrJonzFjBj755BObbKM18VlFKxhcZGstGbrZfGx6nU6HLl26oHfv3hg5ciTS0tJue4PonDlzpBuxG/Tp0wdZWVmyHfKZwWVFY3fMRx99BJ1O57BDf5KfkpIS/Pe//8XOnTtx+vRpaXTThlmhWvLzUiqVUCgU0Gg0EELcNFGxp6cn9u3bZ/ObO1sbg8uKlsyreOPEBt27d8eAAQMwceJEDBw40N6lUztx/PhxrFu3DkeOHMG5c+dw+fJlVFRUNOshaJVKhQ8++AAzZ860Q6Wtj8FlRWtMCKtUKqVpqQIDA3HXXXdhxIgRmDRpEnx9fVtSPslMQUEBvv32W+zduxe5ubkoLCxEWVkZampqWjxKqqurKyorK21UadvA4LKiKTumoqIC//3vf7F9+3acPHnSpof+CoUCCoUCzs7O0qH/lClTsGbNmmavkxyjuroavXv3lqapM5lMLf630TAbesMELH379kViYiKSkpJgMBig1+vb5RDNDC4r7NE5f/z4cWlaqnPnzuHq1asoKSlp1qH/vffey/CSocbOCmU+lrxer0fPnj0xZMgQpKWltdv7rJqiXY4O0RZUV1dj48aN2Lp1K06cOIH8/HyUlJSgqqqqxf+lBX4dxdLJyQnvvfdeu5szrz1r6DR3c3ODj48PQkJCEBMTI01TJ9erfHLAIy4zQ4YMwQ8//ICKiooWT+gJwOKSd+fOndGrVy8MGzYMaWlp0Ov12LBhA6ZMmYLa2lrpMzqdDvv375f9lSKixuKpohW2nhDW/Epjp06dpCnUJ0yYgEGDBjX5v7Tz5s3DO++8Y3HkFhkZiaNHj/K/2tTuMbisaOyO8fb2RkVFBbRaLTw9PZt0Y2BLmUwmJCQk4MiRIxbtjz32GP7xj3/YbbtEjsbgskJOd87n5eWhf//+KC4ultqcnJywatUqPPzwww6sjMg+2vUsPx1FaGgofvnlF/z73/+WThNNJhOmTp2KTp06IS8vz7EFErUBDK42qmGuPPOhe4qLixEWFoaBAwe222mniBqDp4oyYDKZEBMTg5ycHIv2+++/H4888gjCwsJatZ47zdpC1BTs47JC7sHV4OTJkxg8eLDDZy2yx6wt1HGxj6udi4yMxD//+U+oVCpHl0LkUDzelwmDwYC+ffveNHt3WFgY1q9f36q12GPWFqKmYHC1cSaTCaNHj8aePXss2u+//358+eWXDqqKyLF4qtiGLV68GBqNxiK0wsPDUVVVxdCiDo1HXG3Q9u3bkZycbDHipZubG3bs2MHBC4nA4LLw8ssvQ6lUIjk52WYTGzRFSUkJoqOjcfHiRalNqVTi9ddfx7PPPtvq9RC1VbwdwsytRkA1n9ig4fnFyMhIjBw5EqmpqTZ7fjE5ORkbN260aBs/fvxNbUTtDe/jssLeQzc3fNZ8bPqGESNSUlIwcOBAqzdsLl++HAsXLrQYQic4OBjHjx+360PdRG0Fg8uKpu6YrKwsaXTTCxcu4OrVq6isrGzxGF0KhQJCCKjVaigUCotxuADA2dkZ3333HUaPHt3sbRDJDUdAtZHY2Ng79nFVVFRgw4YN0tj0eXl5KC4uvmkKKXMN/40wGo0W7QqFAosWLcKrr77a8uKJOgAGVyPk5ubi22+/xcGDB3Hu3DkUFhaivLzcJqOkNhx58dk/osbjr8VMnz598NNPP6GqqsomM/qo1Wq4urrC19cXoaGh6NevH8aPH4/hw4cDAIqKiqDX621VPlGHweAyc+PoC7dy4xyKer0ed911F4YPH4577rmnSXMoMrSImofBZcbPzw9lZWVNvjJIRK2Lv0QzNz7ATERtE59VJCLZYXARkewwuIhIdhhcRCQ7DC4ikh0GFxHJDoOLiGSHwUVEssPgIiLZYXARkewwuIhIdhhcRCQ7DC4ikh0GFxHJDoOLiGSH43GZef755wEA48aNw+DBgzlwIFEbxenJzFibV1GlUkGr1UKn0yEwMBC9evXC4MGDMWXKFA6/TNRCnFfRisbuGJVK1exZexQKBZycnODm5gYfHx+EhIQgOjoa48aNQ2JiIo/eiKxoTnDZrY8rLy8PM2bMQFhYGFxcXNC9e3csWbLkpklQjx8/jmHDhsHZ2RnBwcFYtmzZTetas2YNevXqBWdnZ/Tp08du09I3zOxz9uxZvPHGG5gyZQr69OkDf39/uLi4QKVSWf2sEAJGoxElJSU4f/48duzYgbfffhvjx4+XJoBteDk5OUGlUkGhUGDw4MF2+S5E7Zqwk02bNonp06eLLVu2iB9//FGsW7dO+Pv7i/nz50vLlJaWioCAADF16lSRk5MjvvjiC+Hi4iL+9re/Scvs27dPqFQqsWzZMnHq1Cnx4osvCrVaLU6cONHoWkpLSwUAUVpaarPvZzQaxaZNm8TcuXPFiBEjRHBwsHB2dhYAmvxKSEgQRqPRZrURyUlzfp92C65bWbZsmQgLC5P+/uCDD4S3t7eoqamR2p577jkREREh/X3//feL5ORki/XEx8eL3/3ud43ebkuD69ChQ+KPf/yjGD9+vOjZs6fw8fERWq1WKJXKZgXVrV4KhUIsWLCgWfURyVlzfp+tejtEaWkpfHx8pL8zMjIwfPhwaDQaqS0pKQm5ubm4du2atExiYqLFepKSkpCRkWF1OzU1NSgrK7N4NUbv3r3h7u4OJycnKJVK6dQuLi4Of/7zn7Fp0yb88MMPKC4uRk1NzW37wxrmXuzUqRPuuusupKSk4KWXXkJmZibEr//BQGZmJtzd3QH8eqq5bNkyODs7Iz09vVH1EnVUrdZjfO7cObz77rt44403pDaDwYCwsDCL5QICAqT3vL29YTAYpDbzZQwGg9VtLV26FC+//HKTazx9+vQdl1EoFFCpVHBxcYG3tze6dOmCqKgojB49GikpKVIQNUZsbCzKy8vx1ltvYf78+aivr0dNTQ3Gjh2LwMBAHDt2rEkTzBJ1FE0+4lq4cKFFR/OtXmfOnLH4zKVLlzBu3Djcd999eOKJJ2xWvDWLFi1CaWmp9Lp48WKjPqfX6+Hs7AxfX19ERkYiLS0NS5cuRU5OjnSUVF9fD6PRiLKyMvz000/Yv38/VqxYgQcffLBJoWVu3rx5qKurQ2pqqtR2+fJl+Pn54e67727WOonasyYfcc2fPx/Tp0+/7TLdunWT/vfly5cxatQoDB48GCtWrLBYTq/Xo7Cw0KKt4e+G+6OsLXO7+6e0Wi20Wu0dv8uNrly50uTP2NK6detQUVGBqKgo/PTTTwCArVu3QqlU4s9//jNeeOEFh9ZH1GbYp7vtVwUFBaJHjx7iwQcfFCaT6ab3Gzrna2trpbZFixbd1DmfkpJi8bmEhIRW7Zx3hD179ggXFxeLDnxXV1exf/9+R5dGZFNt6qpiQUGBCA8PF2PGjBEFBQXiypUr0qtBSUmJCAgIEI888ojIyckRq1evFq6urjfdDuHk5CTeeOMNcfr0abFkyZI2cTtEa3nppZeEQqGwCLCwsDBRXl7u6NKIbKI5v0+73Tm/cuVKPPbYY9aO8qT/ffz4ccyePRuHDx+Gr68v5syZg+eee85i+TVr1uDFF19EXl4eevTogWXLlmHChAmNrqU5d+a2NaNHj8aOHTss2kaMGIEZM2YgNja2VWuJiIjgkwBkM3zkx4r2EFwAUFRUhOjoaIf3xeXk5CAyMtKhNVD70aYe+SHb8/X1xQsvvACFQuHoUogcisf7MnH8+HEMGTIEFRUVUptSqUTfvn3x2WeftWotERERrbo9ohsxuNq46upq9OvXD7m5uVKbQqHA/PnzsXz5cgdWRuQ4DK42bNq0aTcdTQ0aNAh79uxh5zh1aPzX3wb985//xG9/+1vU1dVJbb6+vsjOzkZQUJADKyNqGxhcZmbOnInr169j6NChSEtLa/XRTc+dO4e4uDjpAXMAUKvV+Pzzz3Hvvfe2ai1EbRlvhzBjbehmhUIBtVoNV1dXdOrUCaGhoYiJicH48eMxfPjwFp+2mUwmxMfHIysry6L9iSeeuOkxKaL2hvdxWdHYHePk5GRxetZUDWPTe3h4QK/XIyIiAkOHDsXkyZOtnuLNmTMH7733nkVbdHQ0MjMz2Y9FHQKDy4qm7pjq6mps2bIFW7duxbFjx3Dx4kUUFxejqqoKJpPplkdlTaVQKG5aj6enJw4ePMjbDahDYXBZYa875/Py8rB27Vrs27cP2dnZuHLlCqqqqpocbCqVCn/7298wY8YMm9VGJBfN+X3yXOQOSkpKsHbtWuzcuROnTp3C5cuXUVpaiurqamlyjZZQqVQwmUw2qpaoY2BwmQkJCUFhYSGMRmOzpykD/m+UVGdnZ3h5eSEoKAiRkZEYPnw4UlNT4eXlBZPJBJPJBGdnZxt+A6KOgcFlJj8//47LKJVKaDQauLu7w9/fH926dUNcXBwmTZqE6OjoRm/LycmJne9EzcRfjpmuXbuipKREOkqKjo7GmDFjMG7cuGYPy0xEtsfgMtMwXDIRtW0c1oaIZIfBRUSyw+AiItlhcBGR7DC4iEh2GFxEJDsMLiKSHQYXEckOg4uIZIfBRUSyw+AiItlhcBGR7DC4iEh2GFxEJDsMLiKSHY7HZWb69OmorKzEoEGDMGXKFISGhjq6JCK6Bc7yY+Z2E8I6OTnBxcUF3t7e6Nq1K6KiopCYmIgJEyZw3HiiFuD0ZFY0dseo1eoWzbhjPh59QEAAevTogQEDBiAtLQ2RkZHNXi9Re8bgsqKpO8ZkMmH//v347rvvkJWVhZ9++glFRUWorKyE0Wi0yYSwDXr27Inc3FybrY9IbhhcVthrQtiioiKsW7cO27Ztw5EjR3D58mVUVVU1eWqznj174tixYzzlpA6JE8LaQUFBAdatW4e9e/ciNzcXV65cQVlZGWpqalBXV2eTbfzwww9wcXHBgw8+iC+++MIm6yRqz3jEZSYoKAhXr16FyWRq0emgeWe+j48Punbtin79+mH06NFISkqSjqwKCgoQGxuLn3/+WfqsSqXC3/72N8yYMaPZ2yeSE54qWtHYHaNQKO64LpVKBY1GA51OB71ejx49emDIkCFIS0tr9u0T33zzDR588EEYjUapzcvLCwcOHEBERESz1kkkFwwuKxq7Y7p3747i4mL4+PggJCQEMTExGDduHEaNGtUqs07PmTMH7733nkVbdHQ0MjMzOes1tVsMLivs1TlvDyaTCXFxccjOzrZof+KJJ7BixQoHVUVkP835ffKRnzbGyckJWVlZOHv2LLy9vaX2jz/+GBqNBl999ZUDqyNqGxhcbVR4eDiKi4uxatUqqFQqAIDRaMR9990HPz8/FBQUOLhCIsfhqaJMTJs2DZ999plFW8+ePfHEE09g/PjxrVpLREQE+9zIZtjHZUV7CC4AqK6uRmxsLE6fPu3QOnJycvgIE9kM+7jaOWdn51Y/uiJqi3i8LxObN2/GpEmTUFtbK7VpNBqMHDkSf/3rX1u1Ft5bRo7G4GrjioqKEB0djStXrkhtKpUKb7/9NmbPnu3Ayogch8HVho0ePRo7duywaJs8eTK++eYbB1VE1Da0Sh9XTU0N+vXrB4VCgaNHj1q8d/z4cQwbNgzOzs4IDg7GsmXLbvr8mjVr0KtXLzg7O6NPnz7YuHFja5TtMH/+85+hVCotQissLAzl5eUMLSK0UnAtWLAAgYGBN7WXlZVh7NixCAkJQWZmJpYvX46XXnrJ4g7x/fv346GHHsKMGTOQnZ2NtLQ0pKWlIScnx+Z1Tp48GSNGjMCcOXOwbt06VFdX23wbt7N37164urpi8eLF0kPerq6u2L9/P86fPw93d/dWrYeozRJ2tnHjRtGrVy9x8uRJAUBkZ2dL733wwQfC29tb1NTUSG3PPfeciIiIkP6+//77RXJyssU64+Pjxe9+9zur26yurhalpaXS6+LFiwKAKC0tvW2tCoVCALjlS6VSCWdnZ+Hn5yeioqLE5MmTxbJly8SZM2eauEduVl5eLkJCQiy2p1AoxCuvvNLidRO1daWlpY36fZqza3AZDAbRpUsXcfjwYXHhwoWbguuRRx4RkyZNsvjM9u3bBQBRXFwshBAiODhYvPnmmxbLLF68WERHR1vd7pIlS24ZPnfaMVqt1mpwNealUCiEWq0WHh4eomvXrmLw4MFi1qxZYs2aNaKqquqW20xNTb1pPYmJibetk6g9aU5w2a1zXgiB6dOnY9asWRgwYADy8vJuWsZgMCAsLMyiLSAgQHrP29sbBoNBajNfxmAwWN32okWL8Mwzz0h/l5WVITg4+I41m58aGgwGrF27Fnv27MGZM2ekAQSrq6utDiAohIDRaITRaER5eTny8/Oxf/9+fPTRR3fcNgAEBgbi2LFj8PX1bdTyRB1Vk4Nr4cKF+J//+Z/bLnP69Gl8//33KC8vx6JFi5pdXHNptVpotdoWrUOv12PWrFmYNWuW1WVMJhMOHDiA//znP0hPT8elS5dw/fr1Jo+MqtVqsX79etx9990tqpmoo2hycM2fPx/Tp0+/7TLdunXD9u3bkZGRcVOADBgwAFOnTsWqVaug1+tRWFho8X7D33q9Xvq/t1qm4X17MplM2LFjB77//ntkZ2cjLy8Pv/zyC65fv26zSTO0Wm2rXwQgkrsmB5efnx/8/PzuuNw777yDV155Rfr78uXLSEpKwpdffon4+HgAQEJCAl544QUYjUao1WoAQHp6OiIiIqQhXRISErBt2zbMmzdPWld6ejoSEhKaWvod+fn54dq1ay0eS75hlFR3d3fo9Xr07NkTCQkJSElJ4V3nRLZgrw63G92qc76kpEQEBASIRx55ROTk5IjVq1cLV1dX8be//U1aZt++fcLJyUm88cYb4vTp02LJkiVCrVaLEydONHrbje38QyM73z09PUVYWJgYMWKE+P3vfy/Wr18vjEZjk/cJEbWxzvnG8PT0xPfff4/Zs2ejf//+8PX1xeLFizFz5kxpmcGDB+Pzzz/Hiy++iOeffx49evTA2rVrERUVZfN6IiMj8csvvyAgIAAREREYOnQoJk+ejKCgIJtvi4iaj8PaEJFDcVgbIuoQGFxEJDsMLiKSHQYXEckOg4uIZIfBRUSyw+AiItlhcBGR7DC4iEh2GFxEJDsMLiKSHQYXEckOg4uIZIfBRUSyw+AiItlx6ECCbU1ycjKuXbuG3r17Y/To0UhNTeUkrERtEAcSNKNUKq1OgKFUKqFWq+Hm5gY/Pz90794dcXFxmDBhAgYOHGiv0onaveYMJMjgMuPi4tKiGXcUCgVUKhW0Wi08PT3RpUsX9O7dGyNHjkRaWhq8vLyavW6i9orBZUVzdkxFRQX++9//Yvv27Th16hQKCgpw7do1aUJYW+22O01uS9TeMbissOeY8ydPnsQnn3yCLVu2oKCgoFkTwvr7++PYsWOtMlckUVvTnN8nO+dvo7q6Ghs2bMD27dtx4sQJ5Ofno6SkBFVVVTCZTDY76rp69So6d+6MYcOGYfv27XBy4v9biG6HvxAznTp1QklJCerr65u9DoVCAaVSCWdnZ+h0OnTu3Bl33XUXhg8fjtTUVIujqoqKCsTExODcuXMAgD179kCj0WDRokV49dVXW/x9iNorniqaUSgUt12P+ZVFX19fhIWFITY2FhMmTMCgQYOafaR0+PBhjBo1CpWVlVKbs7MzvvvuO4wePbpZ6ySSC/ZxWdHYHdOvXz8UFRUhMDDQIVcDly9fjoULF1oc8QUHB+P48eO8IkntFoPLCrlNCDthwgRs2rTJom38+PHYuHGjgyoish9OCNtObNy4EdeuXUNQUJDUtmnTJqhUKixfvtyBlRG1DQyuNsrLywsXL17Etm3b4OzsDACor6/HggUL4O7ujsOHDzu4QiLH4amiTLzwwgtYunSpxS0Y/v7+mD59OqZNm9aqtURERPCWDbIZ9nFZ0R6CCwBMJhNGjx6NPXv2OLSOnJwcREZGOrQGaj/Yx9XOOTk5ISAgwNFlEDkcj/dlYsWKFXjqqacsHify8PDA5MmTsWDBglatJSIiolW3R3QjBlcbd/LkSQwePBhlZWVSm0ajwddff42UlBQHVkbkODxVbKNMJhOioqIQFRUlhZZCocDcuXNRU1PD0KIOjUdcbdDjjz+Ov//97xZtAwYMQEZGBq/mEYHBZWHYsGH45ZdfEBYWhri4OEycOBGxsbGttv3PP/8cjz76KEwmk9Tm4+ODzMxMhIaGtlodRG0db4cwc7uhmxtGN3V2dpZGN42MjMTw4cNb/DxjXl4e+vfvj+LiYqnNyckJq1atwsMPP9zs9RLJAe/jsqKxO8bDwwOVlZUtGmfrViNI9O/fHykpKRg4cKDFqZ7JZEJCQgKOHDlisY7HHnsM//jHP5pdA5GcMLisaO4NqFlZWVi/fj2OHDmCH3/8EVevXkVlZSVqa2tbNGaXNZGRkThy5Ij0iA9RR8ARUG0sNjb2jn1cRUVFeP3117Fp0yZcvHixWUM363Q67NmzB9HR0S0pl6jDYHDdRm5uLr799lscOnQIZ8+eRWFhIcrLy216xKXT6VBaWmqTdRF1FAwuM7bo41IoFFCr1XB1dYWvry9CQ0MRGxuL5ORkDB48mLczENkAf0Vmbhda5mPJe3p6IjAwEHfddReGDh2Ke+65B76+vq1cLVHHxeAyk5CQgKKiotteCSQix+Mv0sy+ffscXQIRNQKfVSQi2WFwEZHsMLiISHbsGlzfffcd4uPj4eLiAm9vb6SlpVm8n5+fj+TkZLi6usLf3x/PPvusxQPGALBz507ExsZCq9UiPDwcK1eutGfJRCQDduuc//rrr/HEE0/gtddew+jRo2EymZCTkyO9X1dXh+TkZOj1euzfvx9XrlzBtGnToFar8dprrwEALly4gOTkZMyaNQv//ve/sW3bNjz++OPo3LkzkpKS7FU6EbV1wg6MRqPo0qWL+OSTT6wus3HjRqFUKoXBYJDaPvzwQ6HT6URNTY0QQogFCxaIyMhIi8898MADIikpqUn1lJaWCgCitLS0SZ8jIvtrzu/TLqeKWVlZuHTpEpRKJWJiYtC5c2eMHz/e4ogrIyMDffr0sZj8ISkpCWVlZTh58qS0TGJiosW6k5KSkJGRcdvt19TUoKyszOJFRO2HXYLr/PnzAICXXnoJL774IjZs2ABvb2+MHDlSGnPKYDDcNGNNw98Gg+G2y5SVlaGqqsrq9pcuXQpPT0/pFRwcbLPvRkSO16TgWrhwIRQKxW1fZ86ckR5AfuGFFzBlyhT0798fn376KRQKBdasWWOXL2Ju0aJFKC0tlV4XL160+zaJqPU0qXN+/vz5mD59+m2X6datG65cuQIA6N27t9Su1WrRrVs35OfnAwD0ej0OHTpk8dnCwkLpvYb/29BmvoxOp4OLi4vVGrRaLbRabeO+FBHJTpOCy8/PD35+fndcrn///tBqtcjNzcXQoUMBAEajEXl5eQgJCQHw63OBr776Kq5evQp/f38AQHp6OnQ6nRR4CQkJ2Lhxo8W609PTkZCQ0JSyiai9sdeVgrlz54ouXbqILVu2iDNnzogZM2YIf39/UVxcLIQQwmQyiaioKDF27Fhx9OhRsXnzZuHn5ycWLVokreP8+fPC1dVVPPvss+L06dPi/fffFyqVSmzevLlJtfCqIlHb1Zzfp92Cq7a2VsyfP1/4+/sLDw8PkZiYKHJyciyWycvLE+PHjxcuLi7C19dXzJ8/XxiNRotlduzYIfr16yc0Go3o1q2b+PTTT5tcC4OLqO1qzu+TY84TkUM15/fJZxWJSHY4HpeZwYMHo6ioCCEhIRxumagN46mimdtNCAsAKpUKWq0WOp0OgYGB6NWrFwYPHowpU6ZIt3AQUdNwXkUrGrtjPD09UV5e3uLJMpycnODm5gYfHx+EhIQgJiYG48aNw6hRo3j0RnQDBpcVze2cP3fuHNatW4cDBw7ghx9+gMFgkKYna+rcidZ4eHjwWUrq0BhcVtjzqmLDhLAbN27ExYsXUVVV1eRQc3d3x759+zghLHVInMnahkwmEw4fPowNGzYgOzsbP/74I4qKilBZWQmj0WizCWEBoKKiAn379kVERASOHj0KZ2dnm62bqD1icJlxd3fH9evXW9THpVQqodFo4ObmBn9/f3Tv3h1xcXFITk5GbGysxbImkwnDhg3DgQMHAPw6c7aLiwseeeQR/POf/2zRdyFqz3iqaOZ2VxUVCgVUKpU0DHVQUBCio6MxYsQIpKSkwN3dvdn1FRQUICYmBkVFRVKbSqXCP/7xD0ybNq3Z6yWSA/ZxWdHYHTNixAgUFxcjPDwc8fHxmDhxIiIjI1utztWrV2PatGkwGo1Sm5eXFw4fPozw8PBWq4OoNTG4rJDbIz8zZ87Exx9/bNEWGxuLgwcP8nYKanf4yE87sWLFChiNRourjFlZWVCr1ZgzZ44DKyNqGxhcbZSTkxOOHTuGM2fOwNPTU2p/7733oNFo8M033ziwOiLH4qmiTKxYsQJPPfWUxT1irq6uuPfee7FgwYJWrSUiIoKnrGQz7OOyoj0EV4MHHngA//nPfxxaQ05OTqtetKD2jX1c7ZzJZEJBQYGjyyByOB7vy8Tzzz+P119/3eI+s86dO2P69OmYOnVqq9YSERHRqtsjuhGDq41LT0/HxIkTUVNTI7W5u7tj165dN92JT9RR8FSxjSoqKkKXLl0wduxYKbSUSiXefPNNlJeXM7SoQ+MRVxuUlJSE77//3qItNTUV69atc1BFRG0Lg8tMdHQ0ioqK0LlzZ/Tq1QvDhg1DWlpaq41u+vrrr+P555+36Mfq2rUrjh07Bi8vr1apgUgOeDuEGYVCcdv1KBQKqNVquLq6olOnTggNDUXfvn1bPLppRkYGEhMTcf36danNxcUFmzdvxvDhw5u1TiK54H1cVjR2x3Tq1AmlpaUtHt1UpVJBo9FAp9NBr9cjIiICQ4cOxcSJExEaGiot1zAO1/nz56U2hUKBJUuWYMmSJS2qgUguGFxWNPcG1OrqamzZsgXbt2/H0aNHkZ+fj+LiYlRVVcFkMrVo3K5bGTFiBHbu3GnTdRK1dQwuK+x553xWVhY+++wzbNmyBQUFBbh+/XqTj9j0ej2ys7M5UxB1SBy62YZKSkqwdu1a7Ny5E6dPn8alS5dQWlqK6upq1NXV2exoS6/X48qVKzZZF1FHweAy4+Ligurq6mZ/vmGUVGdnZ3h5eSEoKAiRkZEYPXo0UlNTWzRKKhH9HwaXGfO702/UMJa8u7s7/P39ER4ejri4OEycOJGz8xC1MgaXmeTkZJSUlCAqKgpjxoxBSkoKZ9whaoMYXGbWr1/v6BKIqBH4rCIRyQ6Di4hkh8FFRLLD4CIi2WFwEZHsMLiISHYYXEQkOwwuIpIdBhcRyQ6Di4hkh8FFRLLD4CIi2WFwEZHsMLiISHYYXEQkOwwuIpIdBhcRyU6HGAG1YUaesrIyB1dCRDdq+F02ZeasDhFc5eXlAIDg4GAHV0JE1pSXl8PT07NRy3aICWHr6+tx+fJleHh4QKFQ3HH5srIyBAcH4+LFizafQFbOuF9ujfvl1hq7X4QQKC8vR2BgIJTKxvVedYgjLqVSiaCgoCZ/TqfT8R/iLXC/3Br3y601Zr809kirATvniUh2GFxEJDsMrlvQarVYsmQJtFqto0tpU7hfbo375dbsuV86ROc8EbUvPOIiItlhcBGR7DC4iEh2GFxEJDsMLiKSnQ4dXK+++ioGDx4MV1dXeHl53XKZ/Px8JCcnw9XVFf7+/nj22WdhMpksltm5cydiY2Oh1WoRHh6OlStX2r/4Vvb+++8jNDQUzs7OiI+Px6FDhxxdkl3t3r0bEydORGBgIBQKBdauXWvxvhACixcvRufOneHi4oLExEScPXvWYpni4mJMnToVOp0OXl5emDFjBioqKlrxW9je0qVLMXDgQHh4eMDf3x9paWnIzc21WKa6uhqzZ89Gp06d4O7ujilTpqCwsNBimcb8rm6nQwdXbW0t7rvvPjz55JO3fL+urg7Jycmora3F/v37sWrVKqxcuRKLFy+Wlrlw4QKSk5MxatQoHD16FPPmzcPjjz+OLVu2tNbXsLsvv/wSzzzzDJYsWYKsrCz07dsXSUlJuHr1qqNLs5vKykr07dsX77///i3fX7ZsGd555x189NFHOHjwINzc3JCUlITq6mppmalTp+LkyZNIT0/Hhg0bsHv3bsycObO1voJd7Nq1C7Nnz8aBAweQnp4Oo9GIsWPHorKyUlrmD3/4A9avX481a9Zg165duHz5Mu655x7p/cb8ru5IkPj000+Fp6fnTe0bN24USqVSGAwGqe3DDz8UOp1O1NTUCCGEWLBggYiMjLT43AMPPCCSkpLsWnNriouLE7Nnz5b+rqurE4GBgWLp0qUOrKr1ABDffvut9Hd9fb3Q6/Vi+fLlUltJSYnQarXiiy++EEIIcerUKQFAHD58WFpm06ZNQqFQiEuXLrVa7fZ29epVAUDs2rVLCPHrflCr1WLNmjXSMqdPnxYAREZGhhCicb+rO+nQR1x3kpGRgT59+iAgIEBqS0pKQllZGU6ePCktk5iYaPG5pKQkZGRktGqt9lJbW4vMzEyL76hUKpGYmNhuvmNTXbhwAQaDwWKfeHp6Ij4+XtonGRkZ8PLywoABA6RlEhMToVQqcfDgwVav2V5KS0sBAD4+PgCAzMxMGI1Gi33Tq1cvdO3a1WLf3Ol3dScMrtswGAwWOxeA9LfBYLjtMmVlZaiqqmqdQu2oqKgIdXV1t/yODfugo2n43rfbJwaDAf7+/hbvOzk5wcfHp93st/r6esybNw9DhgxBVFQUgF+/t0ajuanP+MZ9c6ff1Z20u+BauHAhFArFbV9nzpxxdJlEsjd79mzk5ORg9erVrb7tdjce1/z58zF9+vTbLtOtW7dGrUuv19909azh6oher5f+741XTAoLC6HT6eDi4tLIqtsuX19fqFSqW37Hhn3Q0TR878LCQnTu3FlqLywsRL9+/aRlbrx4YTKZUFxc3C7229NPPy1dcDAf606v16O2thYlJSUWR13m/14a87u6k3Z3xOXn54devXrd9qXRaBq1roSEBJw4ccLiH2B6ejp0Oh169+4tLbNt2zaLz6WnpyMhIcF2X8qBNBoN+vfvb/Ed6+vrsW3btnbzHZsqLCwMer3eYp+UlZXh4MGD0j5JSEhASUkJMjMzpWW2b9+O+vp6xMfHt3rNtiKEwNNPP41vv/0W27dvR1hYmMX7/fv3h1qtttg3ubm5yM/Pt9g3d/pdNaaQDuunn34S2dnZ4uWXXxbu7u4iOztbZGdni/LyciGEECaTSURFRYmxY8eKo0ePis2bNws/Pz+xaNEiaR3nz58Xrq6u4tlnnxWnT58W77//vlCpVGLz5s2O+lo2t3r1aqHVasXKlSvFqVOnxMyZM4WXl5fFVaH2pry8XPr3AED89a9/FdnZ2eKnn34SQgjx+uuvCy8vL7Fu3Tpx/PhxMWnSJBEWFiaqqqqkdYwbN07ExMSIgwcPir1794oePXqIhx56yFFfySaefPJJ4enpKXbu3CmuXLkiva5fvy4tM2vWLNG1a1exfft2ceTIEZGQkCASEhKk9xvzu7qTDh1cjz76qABw02vHjh3SMnl5eWL8+PHCxcVF+Pr6ivnz5wuj0Wixnh07doh+/foJjUYjunXrJj799NPW/SKt4N133xVdu3YVGo1GxMXFiQMHDji6JLvasWPHLf9tPProo0KIX2+J+OMf/ygCAgKEVqsVY8aMEbm5uRbr+OWXX8RDDz0k3N3dhU6nE4899pj0H0W5utU+AWDxb76qqko89dRTwtvbW7i6uorJkyeLK1euWKynMb+r2+F4XEQkO+2uj4uI2j8GFxHJDoOLiGSHwUVEssPgIiLZYXARkewwuIhIdhhcRCQ7DC4ikh0GFxHJDoOLiGTn/wMUX3WkldkT/AAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAH5CAYAAAA/e9PUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO7ElEQVR4nO3deVxUZf8//tcMy8Cw78MgmqZpLqlpGWo7t2RYWWZpVtqiaeiNgiCkaWqKuCGVS1a39rnL7PZusdQsc63EHW9XSAVlHVDZEWFgrt8ffpnfjDIwKMNw4PV8POaRc+bMOdc5OS/Pcp33JRNCCBARSYjc2g0gImosBhcRSQ6Di4gkh8FFRJLD4CIiyWFwEZHkMLiISHJsrd2A5qDT6ZCTkwMXFxfIZDJrN4eIDAghUFpaCrVaDbncvGOpNhFcOTk5CAwMtHYziKgemZmZaNeunVnztongcnFxAXBjx7i6ulq5NURkqKSkBIGBgfrfqTnaRHDVnh66uroyuIhaqMZcxuHFeSKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSnDZRAdVcU6ZMwcmTJ6FWqxEQEGD0UqvVUKvVsLe3t3Yzido8BpeBQ4cO4dChQ/XO4+Pjc0ug3Rxynp6eHE2IyIJkQghh7UZYWklJCdzc3FBcXFxvzfmDBw8iLS0N2dnZ+ldOTo7+v1VVVWatT6FQmDxqq/2zj48PysvL4efnx5CjNs3c36chBpeZhBC4cuWKPsjqCrfs7GxcuXKlUcvt2bMnjhw5AoVCcVvtIpK62/l98lTRTDKZDD4+PvD29sZdd91VZ4DVvjIzM3H58mXodLoGl3vq1Cn06NEDS5cuxXPPPcejLyIzMLgMaLVaaDSaeo+osrOzUV5ebtbybGxsoFKpbjlVVKvVcHV1xb59+/D111/jwoULeP755/Hkk08iISEBvXr1svCWEkkbTxUN3H///UhOTjZrmW5ubiYvztdO9/Pzg42NTb3LKSsrQ1xcHJYtW4bKykrI5XJMnDgRc+fOhbe3d6O2k0iKeI3LBHN3zLBhw/Drr7/C39/fZBjV/tnJyalJ25ieno6oqCh89913AAB3d3fMnTsXkyZNgp2dXZOui6glYXCZYO6OKSsrg1KphFxuvX65e/bsQXh4OE6cOAEAuPfee7F8+XI89dRTVmsTkSXdTnCx57wBZ2dnq4YWADz22GM4duwYPv30U3h7e+Ps2bMYOnQohg0bhr///tuqbSNqKRhcLZCNjQ0mTJiAc+fOISIiAra2tti6dSt69OiByMhIFBUVWbuJRFbF4GrB3N3dsWzZMpw6dQqhoaGorq7G8uXLcc8992Dt2rWoqamxdhOJrILXuCRk+/btmDZtGlJSUgAAarUaI0eOxIIFC5q1HUqlkv3NqMnw4rwJrSW4gBt9zSIiIrBq1SqzOrhaQllZWZPfVaW2ixfnW7n09HSMHj0an3zyidVCi6glYM95Cairk+o777yDGTNmwMvLq9lP25RKZbOuj+hmDK4WTKfT4d///jdiY2ORm5sLAHwsiAgMrhYrKSkJ4eHhOHz4MADg7rvvxrJly/Dss8/ywji1ebzG1cJkZWXh1VdfxcCBA3H48GE4OzsjPj4ep0+fZvUIov+HR1wG3n77bSQnJ9f74LSHh4dFwuPatWtYunQp4uPjce3aNchkMrzxxhtYsGABVCpVk6+PSMoYXAZOnDiBY8eO4dixYybncXR0NAq2ukLO39/f7MKAQgj85z//QXR0NDIyMgAAgwYNQmJiIvr169ck20XU2rAfl4HTp0/j4sWLJutxXb161ex1ent711tdIiAgAGlpaZg2bRr2798PAAgMDMSSJUvw0ksv8ZSQ2gx2QDWhqTqgXr9+3agGvamAq6ysbNRyHR0dERMTg+nTp7OrAbU5LN1sYQ4ODmjfvj3s7e2hUChgb29f5ysrKwtlZWVmLVOlUuHQoUMIDAy0cOuJWg8Gl4Hi4uI6a8gbHl3l5eWZ3WvdxcWl3kKEly5dwnPPPQdfX18LbxlR68LgMvD444+bVbrZxsZGXyW1vmHIXFxcmqHVRG0Pg8tAQEAA0tPT6+0OERAQAF9f3wZryROR5TC4DPzwww+wteUuIWrp2HPeAEOLSBoYXEQkOQwuIpIcBhcRSY7Fgys7OxuvvvoqvLy84OjoiF69euHIkSP6z4UQmD17Nvz9/eHo6Ijg4GCcO3fOaBkFBQUYM2YMXF1d4e7ujrfeesvsDp5E1PpYNLgKCwsxaNAg2NnZ4ZdffsGZM2ewbNkyeHh46OdZvHgxPvroI6xZswYHDx6Ek5MTQkJCcP36df08Y8aMwenTp7Fjxw5s2bIF+/btw4QJEyzZdCJqyYQFzZgxQwwePNjk5zqdTqhUKrFkyRL9tKKiIqFQKMQ333wjhBDizJkzAoA4fPiwfp5ffvlFyGQykZ2dbVY7iouLBQBRXFx8m1tCRJZyO79Pix5x/fTTT+jfvz9GjhwJX19f9O3bF5999pn+8/T0dGg0GgQHB+unubm5YcCAAUhKSgJwoxKou7s7+vfvr58nODgYcrkcBw8erHO9lZWVKCkpMXoRUeth0eBKS0vD6tWr0aVLF/z666+YNGkS/vnPf+LLL78EAGg0GgCAn5+f0ff8/Pz0n2k0mlue5bO1tYWnp6d+npvFxcXBzc1N/+IDzESti0WDS6fT4f7778fChQvRt29fTJgwAePHj8eaNWssuVrExsaiuLhY/8rMzLTo+oioeVk0uPz9/dG9e3ejaffee6++0mdtSeK8vDyjefLy8vSfqVQq5OfnG31eXV2NgoICkyWNFQoFXF1djV5E1HpYNLgGDRqE1NRUo2l///03OnToAADo2LEjVCoVdu7cqf+8pKQEBw8eRFBQEAAgKCgIRUVFOHr0qH6eXbt2QafTYcCAAZZsPhG1VBa8WSAOHTokbG1txYIFC8S5c+fE119/LZRKpfjqq6/08yxatEi4u7uLzZs3ixMnTojnnntOdOzYUVRUVOjneeqpp0Tfvn3FwYMHxZ9//im6dOkiRo8ebXY7eFeRqOW6nd+nRYNLCCF+/vln0bNnT6FQKES3bt3E2rVrjT7X6XTi/fffF35+fkKhUIgnn3xSpKamGs1z9epVMXr0aOHs7CxcXV3FG2+8IUpLS81uA4OLqOW6nd8na84TkVXdzu+TzyoSkeSwAJWBcePG4dixY/WWY/bx8YFczrwnsiYGl4HTp0/j5MmTOHnypMl57Ozs9PXm66s57+Tk1IwtJ2pbGFwG/v3vf+PSpUsmR/nJz8+HVqtFRkaGvi+aKW5ubvUOCOvl5YVr166hc+fOZo96TUQ38OJ8I2i1WuTm5jY4IGx5ebnZy+zcuTOOHj3KmwbUZnFAWAuzs7ODn58fdDoddDodampqUFNTo39fOy0nJwcVFRVmLfP8+fO45557sHDhQowbN47Xz4jMwCMuA1evXkVWVpbJwWCzs7Nx5coVs9fr6elp8lTR19cXBw4cQEJCAi5evAgAuP/++5GYmIjBgwff6SYTScbtHHExuAz069cPx44da3B59vb29V6cDwgI0Fd0bUhVVRU++ugjzJ8/X19+Z9SoUYiPj0f79u3N30giiWJwmWDujnnuueeQlJTU4ICwXl5ekMlkTdrGvLw8zJo1C1988QWEEHB0dERUVBSio6N5h5JaNQaXCebuGJ1OZ/VrTMnJyZg6dSr27dsHAGjXrh0WL16MUaNGNXlYErUE7Dl/h6wdWgDQt29f7NmzB5s2bUKHDh2QlZWFV155BYMHDzYaZISoLbP+L5VuIZPJ8OKLL+Ls2bOYP38+lEol9u/fjwceeABvvPEGcnNzrd1EIqticLVgjo6OmDVrFv7++2+89tprAID169fjnnvuwaJFi4xGQiJqS3iNS0IOHDiAqVOn6gcJ8fDwQGhoKFavXt2s17+USiWvt1GT4cV5E1pLcAFATU0NIiIisHLlStTU1FilDWVlZbzTSU2GPedbuRMnTmDq1KnYvXu3tZtCZFUMLgm4fPky3n//fXz22WfQ6XRwcHBAZGQkpkyZAmdn52Zvj1KpbPZ1EhlicLVgVVVVWLlyJebOnYvi4mIAwMiRI7F48WLcdddd1m0ckRUxuFqobdu2ISIiQj9KUt++fbFixQo88sgjVm4ZkfWxO0QLk5KSgqeffhqhoaFITU2Fj48PPvvsMxw+fJihRfT/8IjLwEsvvYTDhw/XW7o5ICDArIenG6uwsBBz587FypUrUV1dDTs7O4SHh2PWrFlwc3Nr8vURSRmDy0BaWhouXryoLzNjioeHR4Olm319fc16hKi6uhqff/45Zs2ahatXrwIAnnnmGSxbtgxdunRpis0ianXYj8tAVlYWMjMzTVY2zc7OxrVr18xap62trVFt+ptDTq1W4/jx45g3bx7OnDkDAOjevTsSEhIwZMiQJtluIilgB1QTmqoDqhACxcXFDZZubuyzhB4eHpg3bx4mTpwIW1seBFPbwg6ozaC2XHNdr+rq6kb3Zu/QoQOOHj0KLy8vC7WYqPVhcBmoHb3H1JFUTk6O2Q8229nZ3XL9y/C9p6cnCgsL0a9fPz4+Q9RIDC4DL7zwAo4ePdrgfF5eXg2Wbvby8moR9b2IWiMGl4G7774bhYWF9ZZuVqvVcHBwsHZTido0BpeBb7/91tpNICIz8FyGiCSHwUVEksPgIiLJYXARkeQwuIhIchhcRCQ5DC4ikhwGFxFJDoOLiCSHwUVEksPgIiLJYXARkeQwuIhIchhcRCQ5DC4ikhwGl4E2MG4IUavAQoIGRowYgUOHDjU4IOydjBRERHeOwWXg0qVL+gEyDh8+bHI+Z2fnBmvOq1QqDjVGZCHNNq7iokWLEBsbi/DwcKxYsQIAcP36dURGRmLjxo2orKxESEgIVq1aBT8/P/33MjIyMGnSJOzevRvOzs4YO3Ys4uLiGhUK5o7bptFoGhwQtqSkxKx1ymQy+Pn5mTxqc3d3R15eHh555BG4ubmZvS1ErU2LHVfx8OHD+PTTT3HfffcZTZ82bRq2bt2KTZs2wc3NDZMnT8YLL7yAv/76C8CNMQxDQ0OhUqmwf/9+5Obm4vXXX4ednR0WLlzY5O1UqVRQqVR44IEHTM5TVlbW4ICwOTk5qKmpgUajgUajqXfkoHbt2uHIkSNGYU1E9bP4xfmysjKMGTMGn332GTw8PPTTi4uL8cUXX2D58uV44okn0K9fP6xbtw779+/HgQMHAAC//fYbzpw5g6+++gp9+vTB0KFDMX/+fKxcuRJVVVWWbvotdDodysvLTb7KyspQXl7eqEFhs7Ky0KVLFyxdutQq20QkRRY/4goLC0NoaCiCg4Px4Ycf6qcfPXoUWq0WwcHB+mndunVD+/btkZSUhIceeghJSUno1auX0dFISEgIJk2ahNOnT6Nv3751rrOyshKVlZX69+ae3qWnpxtd57r5SCo3NxdardasZTk6OtZ7gT8gIABnzpzBe++9h+PHjyMqKgpr167FsmXLMGzYMMhkMrPWQ9QWWTS4Nm7ciGPHjtV5oVuj0cDe3h7u7u5G0/38/KDRaPTz3HwKVfu+dp66xMXFYe7cuY1u78iRIxscEPbma1emLs67ubk1GD4dOnRASEgI1q9fj/feew/nzp3Ds88+i3/84x9ISEhAjx49Gr0NRG2BxYIrMzMT4eHh2LFjR7MPoBobG4uIiAj9+5KSEgQGBjb4va5du6KsrKze7hAqlQp2dnZN1la5XI4333wTL774IhYuXIiEhATs2LEDvXv3xqRJkzB37lx4eno22fqIWgVhIT/88IMAIGxsbPQvAEImkwkbGxvx+++/CwCisLDQ6Hvt27cXy5cvF0II8f7774vevXsbfZ6WliYAiGPHjpndluLiYgFAFBcX3+lmWdz58+fF8OHDBQABQHh6eopPPvlEaLVaazeNyCJu5/dpsYvzTz75JE6ePInjx4/rX/3798eYMWP0f7azs8POnTv130lNTUVGRgaCgoIAAEFBQTh58iTy8/P18+zYsQOurq7o3r27pZpuVXfffTd++OEH/P777+jZsycKCgowefJk9OnTB7///ru1m0fUMlgwSG/x6KOPivDwcP37iRMnivbt24tdu3aJI0eOiKCgIBEUFKT/vLq6WvTs2VMMGTJEHD9+XGzfvl34+PiI2NjYRq1XSkdchrRarVi5cqXw8vLSH4E9++yz4ty5c9ZuGlGTuZ3fp1W7dickJEAul2PEiBFGHVBr2djYYMuWLZg0aRKCgoLg5OSEsWPHYt68eVZsdfOxtbXFu+++i9GjR2Pu3Ln45JNP8NNPP+GXX35BeHg4IiIirPL4kVKp5F1Psqpm6zlvTbfTM7clOnv2LKZNm4Zff/3Vqu0oKyuDk5OTVdtArcft/D5ZHUJC7r33XmzZsgVTpkyBjY2NtZtDZDV8ClhC/vjjD4SHhyM5ORkA4OPjg2effRaJiYnN2g6lUtms6yO6GYNLAi5duoTo6Gj85z//AQC4ublhzpw5CAsLg729vZVbR9T8GFwtWHl5OeLj47FkyRJcv34dcrkc48ePx/z58+Hj42Pt5hFZDYOrBdLpdNiwYQNiYmKQnZ0NAHjsscewYsUK9O7d28qtI7I+BpcBrVbbpI/z3I5Dhw4hPDxcXyGjY8eOWLp0KZ5//nl2QSD6fxhcBl544QXs27evwdLNfn5+TV7dNCcnB7Gxsfi///s/AICTkxNmzpyJadOmNfuznkQtHYPLQG2F05KSEqSkpJicTy6XQ6VSmawOUTvN1dW1waOkiooKLF++HHFxcSgvLwcAjB07FgsXLoRarW7S7SNqLRhcBvbt23dLLa6bq53m5uaipqYGOTk5yMnJqXd5Tk5OJo/avLy88Mcff2Dt2rXIysoCcOPZzMTExHorsBIRe843Wk1NDfLz8+ss3Vz7ysrKMrt4IXCjfHN8fDxGjx7N61jU5rTYmvOtxbVr1+o8CjOclpOTY3aVVOBGDbCjR4/yERqiRmBwGTh58iTS09NNnioWFRWZvSxfX996L/D7+PigoqIC7dq1s/qdTCKpYXAZeOutt+odTxG48bhLfXXka6ukskc7keUwuAz07t0bQgiTdeTVarVZteSJyLIYXAY+++wzazeBiMzAsjZEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4DFy/fh1tYOwQIsljIUEDL774Inbt2lVvBdTa/7I0M5H1MLgMZGdno6KiAhcuXMCFCxfqndfHx8dkzfna6V5eXizzTGQBHFfRQEVFhclhxwz/XFVVZdZ6FQqFUbAZ/tne3h7p6el4+eWX0a5du6baVCLJuZ1xFRlcjSSEwJUrV0wGXFZWFjIzM1FYWGjW8vz8/LB//3506tTpjtpFJFUcENbCSkpK6h0QNjs7GxqNBjqdzuxl5uXloXv37oiIiEBsbCxcXFwsuAVErQOPuAwcP34caWlpJk8Vy8rKzFqfjY0NVCpVvQPCBgQEID09HeHh4dizZw8AwN/fH3FxcXjttdcgl/OGL7UNPFU0wdwd8+CDDzY4IKybm1uDA8L6+vrCxsbGrLYJIbB582ZERkYiLS0NAPDAAw8gMTERQUFB5m8kkUQxuEwwd8dMnDgRJ06cqDOMaqc5OTlZpI2VlZVITEzE/Pnz9Ud2Y8aMwaJFi3jxnlo1BpcJTXlx3tI0Gg1mzpyJdevWQQgBpVKJmJgYTJ8+HY6OjtZuHlGTu53fJy+ktDAqlQpffPEFDh8+jEGDBuHatWuYPXs2unXrhm+//ZY9+4nA4Gqx+vXrhz/++AMbN25EYGAgMjIyMGrUKDzyyCM4duyYtZtHZFU8VZSAa9euYenSpVi0aBEqKiogk8nwxhtvYObMmfD19W323vlKpZJPBFCT4TUuE6QeXLUyMzMRExODDRs2WLUdZWVlFrtJQW0Pr3G1coGBgfjXv/6Fd999l/28qE1jz3mJEELgp59+QmRkpP4B8LvuugsvvfQSZs+e3axtUSqVzbo+opsxuCTg1KlTmDp1Knbu3Angxp3HRYsWsYc9tVn8W9+CXb16FWFhYejduzd27twJhUKB2NhY/P333xg7dixDi9osi/7Nj4uLwwMPPAAXFxf4+vpi+PDhSE1NNZrn+vXrCAsLg5eXF5ydnTFixAjk5eUZzZORkYHQ0FAolUr4+voiKioK1dXVlmy6VWm1Wnz00Ufo0qULVq1aBZ1OhxdeeAFnzpzBwoUL+SA2tXkWDa69e/ciLCwMBw4cwI4dO6DVajFkyBCUl5fr55k2bRp+/vlnbNq0CXv37kVOTg5eeOEF/ec1NTUIDQ1FVVUV9u/fjy+//BLr16+3yHWdoqIiaLXaJl9uY/z666/o3bs3wsPDUVhYiPvuuw+7du3Cd999x9I3RLVEM8rPzxcAxN69e4UQQhQVFQk7OzuxadMm/Txnz54VAERSUpIQQoht27YJuVwuNBqNfp7Vq1cLV1dXUVlZadZ6i4uLBQBRXFxc73xPP/20kMlkwtfXV/Tt21cMGzZMvPPOO2LevHniiy++EL/88os4ceKEuHr1qtDpdI3d/HqlpqaKYcOGCQACgPDy8hJr1qwR1dXVTboeopbG3N+noWa9OF9cXAwA8PT0BAAcPXoUWq0WwcHB+nm6deuG9u3bIykpCQ899BCSkpLQq1cv+Pn56ecJCQnBpEmTcPr0afTt2/eW9VRWVqKyslL/vqSkxKz25eXlQQiB/Px85OfnIzk52eS8Dg4ODZZuVqvVUCgU9a6zqKgI8+fPx8cffwytVgtbW1tMnjwZs2fPhoeHh1ntJmprmi24dDodpk6dikGDBqFnz54AbjxQbG9vD3d3d6N5/fz8oNFo9PMYhlbt57Wf1SUuLg5z585tdBsPHTqEq1ev1lu6OTs7G1evXsX169fNqk3v7e19S4UJf39/ODg4YN++ffjhhx/01VKffvppLFu2DN26dWt024nakmYLrrCwMJw6dQp//vmnxdcVGxuLiIgI/fuSkhIEBgY2+D25XA4fHx/4+PigT58+Jue7fv06cnNz66yAmpGRgczMTOTl5UGr1eLKlSu4cuUK/ve//5lcXteuXbF8+XI8/fTTjdpOoraqWYJr8uTJ2LJlC/bt22dUW0qlUqGqqgpFRUVGR115eXlQqVT6eQ4dOmS0vNq7jrXz3EyhUDR4itZY1dXV0Gg09ZZuzsnJQWlpaaOW26dPHxw6dAh2dnZN2l6i1syiwSWEwJQpU/DDDz9gz5496Nixo9Hn/fr1g52dHXbu3IkRI0YAAFJTU5GRkaGv/hkUFIQFCxYgPz8fvr6+AIAdO3bA1dUV3bt3b9L2/vnnnzh//nydgZSXl2d2LXkXF5d6x2UMCAiAl5cXysrK4O3t3aTbQNQWWPQh63fffRcbNmzA5s2b0bVrV/10Nzc3fVG8SZMmYdu2bVi/fj1cXV0xZcoUAMD+/fsB3OgO0adPH6jVaixevBgajQavvfYa3n77bSxcuNCsdpj7EOdDDz2EgwcPmvzcxsYG/v7+9ZZuVqvV7GdF1AgtbpSf1atXAwAee+wxo+nr1q3DuHHjAAAJCQmQy+UYMWIEKisrERISglWrVunntbGxwZYtWzBp0iQEBQXByckJY8eOxbx585q8vQMHDoSbm5vJ0s2NqSVPRJbDsjZEZFUsa0NEbQKDi4gkh8FFRJLD4CIiyWFwEZHkMLiISHIYXEQkOQwuIpIcBhcRSQ6Di4gkh8FFRJLD4CIiyWFwEZHkMLiISHIYXEQkOQwuA1euXEFFRYW1m0FEDWjWcRVbutdffx2//PILPDw8GqwZ7+PjA7mcuU9kDQwuA1euXAEAFBYWorCwEKdOnTI5r52dHfz9/esdEDYgIABOTk7N1XyiNoOlmw0IIVBUVNTggLD5+fkwd7e5ubndEmYqlQo1NTU4f/48Jk6cqB8gl6gtup3SzQyu26DVao3GWKx9ZWVl6QeE1Wg0qKysbHBZnp6e2L17N+677747bheRFLW4UX5ak6qqKqMjL1MDwjb24n5BQQH69u2LCRMmYN68efDx8bHQFhC1HjziMrB3716cO3euzkC6fPmy2evz9PRs8OK+t7c3MjIyEB0djU2bNgG4cVr5wQcfICwsjCNbU5vBU0UTmmpAWIVCUecAsDe/d3BwaFT79u3bh/DwcBw/fhwA0LVrVyQkJGDo0KGNWg6RFDG4TDB3x0RFReHs2bMmB4T18vKCTCazSBtramrwr3/9CzNnztQf3Q0dOhTLly9Ht27dLLJOopaAwWWClAaELS4uxocffojExERotVrY2tpi8uTJmD17Njw8PKzdPKImxwFhWwE3NzcsWbIEp0+fxjPPPIPq6mqsWLECXbp0wZo1a1BTU2PtJhJZHYOrherSpQt++ukn/Prrr+jevTuuXr2KSZMmoW/fvti1a5e1m0dkVTxVlACtVos1a9Zgzpw5KCwsBAA8//zzmDdvHgIDA2Fr27y9WpRKpcWu9VHbw2tcJkg9uGpdvXoVH3zwAVavXm3VU8aysjI+ykRNhte4WjkvLy8sXLgQ48aN4xEPtWnsOS8ROp0OX375Jd577z1oNBoAwH333YdXXnkFkydPbta2KJXKZl0f0c0YXBLw119/ITw8HEePHgUAdO7cGcuXL8ewYcN45EVtEk8VW7CMjAyMHj0agwcPxtGjR+Hq6oolS5bg1KlTeOaZZxha1GbxiKsFunbtGhYvXozFixejoqICMpkMb731Fj788EP4+flZu3lEVsfgMpCVlQWFQgEvLy+rVDcVQmDjxo2YMWMGMjMzAQAPP/wwEhMT0bdv32ZvD1FLxeAyMH78eGzfvh329vbw9/evt7pDQEAAHB0dm2zdR44cQXh4OPbv3w8AaN++PZYsWYKRI0fylJDoJgwuA9evXwdwo/bWpUuXcOnSpXrn9/DwaLB0s6+vb71Hb7m5uXjvvfewfv16ADfu2MXGxiIyMrJJg5GoNWEH1JtUVVUhNzfXZMHA2vfXrl0za922trb6oze1Wg21Wg1PT0/Y2dnhr7/+wp49e/SB+eqrryIuLg7t2rW7420my7t06RI8PT3h4uJi7aZIGnvOm9DUPeeFECguLr4lzDIyMpCWloasrCxoNBoUFRWZtbwHHngAiYmJCAoKuuO2UfNp164dsrOz4eLiUu8lhYCAAPj5+TX7o1lSwdLNFiKEQEFBQb0DaGRnZzeqSqpcLodOp8PDDz+MPXv2cKgzidHpdPqj7tLSUqSkpCAlJcXk/HK5HH5+fg1eN3V1deU1TTPwiMvA1q1bkZqaWmfpZnMGvgBuDFvW0HWv2iqp165dg7Ozc1NtJllBaWlpvf+YZWdnQ6PRmP1sqZOTk9Hfn9pLC7WDFUdHR6NDhw4W3qrmxVNFE8zdMQMHDkRSUpLJz728vBr8F9NaXSmo5aqpqUF+fv4t/xhmZGQgPT0dWVlZyM/PN+u6abdu3bBt2zZ07NixGVrePHiqeIf+8Y9/oEOHDnUeMfn7+ze6ljy1TTdfWjA1IlR+fr7Zy5TJZBBCICUlBffeey8iIiIQGxvbZm8M8IiL6DbodDps2rSpzuueOTk5+jvFDbG3tzc5xoHhnx0dHXHq1ClMnToVO3fuBAD4+/sjLi4Or732mqSP8nmqaAKDi5qaEAIuLi4oLy83OY+3t3eDdxsbOwCLEAI//fQTIiMjceHCBQDSvyvN4DKBwUWWMGbMGOh0ujpvxPj7+0OhUFhs3ZWVlfjoo48wf/58lJaWAgBeeeUVxMfHS64fIIPLBAYXtVYajQazZs3Cv/71LwghoFQqMWPGDEyfPl0yddNadQXUlStX4q677oKDgwMGDBiAQ4cOWbtJRFanUqnw+eef48iRIxg8eDCuXbuGOXPm4N5778W3336L1npcIong+vbbbxEREYE5c+bg2LFj6N27N0JCQhp1V4aoNbv//vuxb98+bNy4Ee3bt0dGRgZGjRqFRx55RF+AsjWRxKnigAED8MADD+CTTz4BcOOOTmBgIKZMmYKYmJgGv89TRWpLKioqsHTpUixatAjXrl2DTCbDuHHjEBsbC19f3xY3KlSrvMZVVVUFpVKJ//73vxg+fLh++tixY1FUVITNmzff8p3Kykqjnu4lJSUIDAxkcFGbkpWVhZiYGHz99ddWbUdDo0K1ymtcV65cQU1NzS2VP/38/PSDRtwsLi4Obm5u+ldgYGBzNJWoRWnXrh0+/PBDPP7449ZuSpNrlT3nY2NjERERoX9fe8RF1FaUlZVh0aJFWLp0KSorKyGXy/Hwww8jOjoajz76aLO2xRJ3N1t8cHl7e8PGxgZ5eXlG0/Py8qBSqer8jkKhsGgfGqKWSqfT4euvv0ZMTAxycnIAAI8//jhWrFiB++67z8qtazot/lTR3t4e/fr10z/mANz4n7Nz507J9hQmsoQDBw5g4MCBeP3115GTk4NOnTrh+++/x86dO1tVaAESOOICgIiICIwdOxb9+/fHgw8+iBUrVqC8vBxvvPGGtZtGZHXZ2dmIiYnBV199BQBwdnbGzJkzMXXq1FZbGEASwfXyyy/j8uXLmD17NjQaDfr06YPt27dzqC6yqjNnzsDd3R1+fn6wsbFp9vVXVFRg2bJliIuL05fEGTduHBYuXAh/f/9mb09zavHdIZoC+3GRJQQEBCAnJwc2NjZQqVQNPlDdVCVohBD473//i6ioKP2ALgMHDsSKFSvwwAMPNMk6mhPrcRE1E51OB1tbW8jlctTU1OhL29TH2dm5wUKUKpWq3g6iycnJmDp1Kvbt2wfgRpeHxYsXY9SoUW2q5DOPuAxcunQJdnZ2Vjv0J+mprq5GXl5evSNCZWdno6SkxKzlyWQyo9r0KpUKrq6uqK6uxp49e3D8+HEAgKOjI6KjoxEVFVVv504paJU955uCuTtm6NCh2L59O+Ry+S2H/qYGNiAyR1lZmVGYZWVlIS0tTV+6OS8vD8XFxdDpdA0ua9SoUYiPj0f79u2boeWWx1PFO1RdXa0ffScnJwc5OTk4fPiwyfmdnZ0brF6pUqlgZ2fXjFtB1lZZWWl0tGWqdLO5VVLlcrn+lDQqKgrx8fEW3oKWj0dcN6mpqdEf+tf3F+92Dv1rB4T18PCAVqvFhQsXEBERgYcffrgpNpOakU6nwxdffFHn35MrV66YvRxPT88Gj+y9vb1RVVUFe3t7SZdoNoWniiZY4q5iWVnZLYF26dIlpKWlITMzUz8gbEOH/i4uLti6dSvDS4JcXFxQVlZW52cKheKWAKrrfWvtZ9UYPFW0EJ1Oh8uXLzd4FFZYWGj2Mm1sbFBTU4PS0lI88sgjeOmll7B48eJWN2Zea/bKK69ACFHnEVNja8lT4/CIy8BPP/2ElJSUWwIpNzcX1dXVZq3L0dGxzhrkhv/i+vv7w97eHpcvX8b777+Pzz77DDqdDg4ODoiKisKMGTMkf6eIyFw8VTShKQaEvfk2tanDfzc3t0b/S/u///0PU6dOxZ49ewDc6NgYHx+PV155hf9qU6vH4DLB3B0zb948nD9/vs47hQ11DLxTQgh8//33mD59Oi5evAgAeOihh5CYmIgHH3zQYuslsjYGlwlSeuTn+vXrSEhIwIIFC/Rj9r3++uuIi4uDWq22cuuIml6rrIDa1jg4OCA2NhZ///03xo4dCwD4v//7P9xzzz1YuHCh2X1/iFozBlcLpVarsX79ehw8eBBBQUEoLy/HzJkzce+99+K7775rtcNOEZmDp4oSIITAN998g+joaP2DvI8++igWLlyILl26NPvAnw2N2kLUGLzGZYLUg6tWeXk5Fi9ejMWLF1v1lLGhUVuIGoPXuFo5JycnhIWF4fnnn7d2U4isij3nJaKqqgoff/wx5s2bp39O8rHHHsOYMWMwevToZm1Lc5+aEt2MwdXCCSGwdetWRERE4Ny5cwBuDLeemJiIwYMHW7l1RNbBU8UW7OzZsxg6dCieeeYZnDt3Dn5+fvjiiy9w+PBhhha1aQyuFqigoADh4eHo1asXfv31V9jZ2SE6Ohp///033nzzzVZZ2oSoMXiqaCAlJQUymQxqtbrJBjZojOrqaqxduxbvv/8+CgoKAADPPfccli5dis6dOzd7e4haKgaXgfDwcPz2228AbtRaauiBaj8/vyZ7fnHnzp2YOnUqTp06BQDo0aMHVqxYgeDg4CZZPlFrwuAyoFAo4OLigtLSUpSWliIlJQUpKSkm55fL5XVWjLg55FxdXU122Dx//jymT5+OzZs3A7hREXP+/PmYMGGCRR/qJpIydkCtQ2lpqcmCgbXvc3NzUVNTY9b6nZyc9GFWO2qLXC7HkSNHcPz4cVRXV8PGxgbvvvsuPvjgA3h6et7pJhNJBnvOm2CJnvM1NTXIz8/Xh1lmZibOnz+PCxcuICsrCxqNBgUFBaisrGxwWUOGDEFCQgK6d+/eJG0jkhKWbraQa9euNThiS05ODrRarVnLs7Gxga2tLaqqqhAaGoqffvqJz/4RNQKDy8CGDRtw5syZW0KpqKjIrO/LZDL4+vrWWYjQ8LqXh4cHAECr1cLe3t6CW0TUOjG4DKxatQp//fVXnZ8plcoGL8L7+/s3agxFhhbR7WFwGRg+fDh69+5d5xFTfXcGiah5MbgMTJ8+3dpNICIz8NkRIpIcBhcRSQ6Di4gkh8FFRJLD4CIiyWFwEZHkMLiISHIYXEQkOQwuIpIcBhcRSQ6Di4gkh8FFRJLD4CIiyWFwEZHkMLiISHJYj8vA6dOnAQBqtRru7u4sHEjUQjG4DEREROgHhHV0dKx3MFi1Wg21Ws3yy0RWwOAy4OTkBE9PTxQUFKCiogLnz5/H+fPn6/2Oj49PveEWEBAALy8vHr0RNSGLjat48eJFzJ8/H7t27YJGo4Farcarr76KmTNnGh2lnDhxAmFhYTh8+DB8fHwwZcoUREdHGy1r06ZNeP/993Hx4kV06dIF8fHxePrpp81uS2PHbauoqDAahszUkGRVVVVmrV+hUOhDzMfHB66urtBqtUhPT0dMTAyeffZZs7eFqLVpUeMqpqSkQKfT4dNPP0Xnzp1x6tQpjB8/HuXl5Vi6dKm+wUOGDEFwcDDWrFmDkydP4s0334S7uzsmTJgAANi/fz9Gjx6NuLg4DBs2DBs2bMDw4cNx7Ngx9OzZ0yJtd3R0xN133427777b5DxCCFy9elUfZJmZmfj777+RlpaGjIwM5OXl6Y/cKisrkZ6ejvT09FuWM2rUKHzzzTd49tlneVRGZKZmHcl6yZIlWL16NdLS0gAAq1evxsyZM6HRaPRHYTExMfjxxx+RkpICAHj55ZdRXl6OLVu26Jfz0EMPoU+fPlizZo1Z673TkaxLSkrqPOIyfK/RaKDT6cxanr29PeRyOSorK1G7+4ODg5GQkGCxMCZqqVrUEVddiouL4enpqX+flJSERx55xOjUMSQkBPHx8SgsLISHhweSkpIQERFhtJyQkBD8+OOPJtdTWVmJyspK/fuSkhKz2vfvf/8bp0+fviWgysrKzPq+jY0N/P3967zeZTjNxcUFAFBaWoq4uDgsW7YMv//+O3r37o1JkyZh7ty58PLyMmudRG1RswXX+fPn8fHHH+tPEwFAo9GgY8eORvP5+fnpP/Pw8IBGo9FPM5xHo9GYXFdcXBzmzp3b6DZ++umnJgeEdXd3rzeMAgIC4OvrCxsbG7PX5+LigoULF+Ltt99GVFQUvv/+e6xcuRIbNmzABx98gEmTJjVqgFmitqLRwRUTE4P4+Ph65zl79iy6deumf5+dnY2nnnoKI0eOxPjx4xvfykaKjY01OkorKSlBYGBgg98bMWIE+vfvX+fdQScnJ4u1t1OnTvjuu++we/duTJ06FSdOnEB4eDjWrFmDhIQEhISEWGzdRFLU6OCKjIzEuHHj6p2nU6dO+j/n5OTg8ccfx8CBA7F27Vqj+VQqFfLy8oym1b5XqVT1zlP7eV0UCgUUCkWD23KzadOmNfo7Tenxxx/HsWPH8Pnnn2PWrFk4e/YsnnrqKQwbNgzLli3DPffcY9X2EbUYwoKysrJEly5dxKhRo0R1dfUtn69atUp4eHiIqqoq/bTY2FjRtWtX/fuXXnpJDBs2zOh7QUFB4p133jG7HcXFxQKAKC4uvo2tsI7CwkIxbdo0YWtrKwAIOzs7ERkZKYqKiqzdNKImdTu/T4sFV1ZWlujcubN48sknRVZWlsjNzdW/ahUVFQk/Pz/x2muviVOnTomNGzcKpVIpPv30U/08f/31l7C1tRVLly4VZ8+eFXPmzBF2dnbi5MmTZrdFisFV6+zZs+Lpp58WAAQA4ePjI9auXVvnPwREUtSigmvdunX6H9vNL0P/+9//xODBg4VCoRABAQFi0aJFtyzrP//5j7jnnnuEvb296NGjh9i6dWuj2iLl4Kq1bds20bVrV/0+7NOnj9iyZYvIysoSZWVlzfrS6XTW3h3UitzO77NZ+3FZy53242optFotVq1ahQ8++ABFRUVWa0dZWZlFb1ZQ23I7v0+WtZEQOzs7PPfcc3j44Yet3RQiq+JD1hJRVlam76xaWVkJuVyO559/HqNGjcLQoUObtS1KpbJZ10d0MwZXC6fT6fDVV18hJiYGubm5AIAnnngCK1asQK9evazcOiLrYHC1YAcOHEB4eDgOHToE4Eb/uGXLluG5557jA9nUpvEaVwuUnZ2N1157DUFBQTh06BCcnZ2xaNEinDlzBsOHD2doUZvHIy4DR44cgVarhVqthr+/f7NXN62oqMCyZcsQFxeHa9euQSaTYdy4cVi4cGG9TwoQtTUMLgOxsbH4/fff9e99fX3rLd8cEBAADw+POz4CEkLgv//9L6KionDp0iUAwMCBA5GYmIj+/fvf0bKJWiMGlwE/Pz906NABOTk50Gq1yM/PR35+PpKTk01+x8HBwWTJZsP3pp6dTE5ORnh4OP744w8AQLt27bBkyRK8/PLLPCUkMoEdUOug0+lw5cqVBks3X7161ew2eHt7w9/fH97e3nB1dYVMJsPJkydx4cIFADeqrkZHRyM6OprdDahNuZ0OqAyuO3D9+nV9qJ0/fx4pKSlIS0tDZmYmNBoNCgsLUVZW1mBl1NGjRyM+Pt6s0jtErU2Lr4AqRdXV1dBoNA0efZWWlpq1PJlMBmdnZ8jlcpSXl+Pll1/GV199ZeGtIGpdGFwGVq9ejZMnTxqFUl5eHsw9KHV1dTV5Eb92up+fH2xtbSFuPOAOuZw9Uogai8FlYMOGDfjzzz9vmW5rawt/f/8GSzc7OzubvS6ZTMaL70S3icFlYMyYMXjsscduCSgfH59G1ZInIsticBmYOHGitZtARGbgBRYikhwGFxFJDoOLiCSHwUVEksPgIiLJYXARkeQwuIhIchhcRCQ5DC4ikhwGFxFJDoOLiCSHwUVEksPgIiLJYXARkeQwuIhIcliPy8DBgwdRVVWlLyTo4OBg7SYRUR0YXAZmzZplNCCsp6dnvWMl1lZHZd14oubF4DIQEBCAzp07Izs7GxUVFSgoKEBBQQFOnjxp8jt2dnbw9/c3OUhG7TQnJ6dm3BKi1o3jKtZBCIGioqIGhyRrzAhAbm5uUKvV8PLygouLC6qrq5GRkYGYmBiMGzfuDreQSLo4rmITkclk8PDwgIeHB3r27GlyPq1WC41Gg6ysLKSmpiI1NRUXLlxAZmYm8vLyUFBQgLKyMtTU1KC4uBjFxcW3LOOdd94BALz++us85SQyE4+4GlBZWYnc3Nw6j7gM/1xRUWHW8mxsbODi4gKZTIaSkhLU1NQAAPr3748VK1Zg0KBBjd4+IinjEdcd+uSTT3DixAmjgLpy5YrZ3/fy8jJ5Mb92mre3t/7IqrKyEh9//DHmzZuHI0eOYPDgwRg9ejTi4+MRGBhoqc0kkjwecRl45JFH8Mcff9wyXaFQNHjxXa1W33b3iby8PMyaNQtffPEFhBBwdHTEjBkzEBUVBaVSeVvLJJKK2zniYnAZ+Pzzz5GTk3NLQHl6ejbLqNPJyckIDw/Xh2dgYCAWL16Ml19+maNeU6vF4DLhTq5xNTchBDZt2oSoqChkZGQAAAYNGoQVK1agf//+Vm4dUdO7nd8nb2O1MDKZDC+99BJSUlIwf/58KJVK/PXXX3jwwQfx5ptvQqPRWLuJRFbH4GqhHB0dMWvWLPz999949dVXIYTAunXr0KVLF8THx6OystLaTSSyGp4qSsSBAwcQHh6OQ4cOAQA6deqEOXPmYNCgQVCpVM3aFqVSyWtu1GR4jcuE1hBcAKDT6fD1118jOjraqqeMZWVlfISJmgyvcbVycrkcvXv3xj333GPtphBZFTugSsSVK1fw/vvvY+3atdDpdFAoFBg3bhxGjBiBgQMHNmtb2LeMrI3B1cJptVqsWrUKH3zwAYqKigAAI0eOxOLFi3HXXXdZtW1E1sLgasF++eUXREREICUlBQDQu3dvJCYm4tFHH7Vyy4isq1mucVVWVqJPnz6QyWQ4fvy40WcnTpzAww8/DAcHB31P8Ztt2rQJ3bp1g4ODA3r16oVt27Y1R7OtJjU1FaGhoXj66aeRkpICHx8frF27FkePHmVoEaGZgis6OhpqtfqW6SUlJRgyZAg6dOiAo0ePYsmSJfjggw+wdu1a/Tz79+/H6NGj8dZbbyE5ORnDhw/H8OHDcerUqSZv5549e7B161YkJycjPz8fOp2uyddRn6KiIkRERKBnz57Ytm0b7OzsEBkZiXPnzmH8+PGwsbFp1vYQtVjCwrZt2ya6desmTp8+LQCI5ORk/WerVq0SHh4eorKyUj9txowZomvXrvr3L730kggNDTVa5oABA8Q777xjcp3Xr18XxcXF+ldmZqYAIIqLi+tt6xNPPCEA6F92dnaiQ4cOYuDAgWLkyJEiPDxcLF68WHz99ddiz5494ty5c6K8vLyRe+RW1dXVYs2aNcLb21u/7mHDhonU1NQ7XjZRS1dcXGzW79OQRa9x5eXlYfz48fjxxx/rvBOVlJSERx55BPb29vppISEhiI+PR2FhITw8PJCUlISIiAij74WEhODHH380ud64uDjMnTu30e3t2rUrCgsLkZ2djfz8fGi1Wly6dAmXLl2q93vu7u51VowwfPn6+tZZKHD37t2YOnUqTpw4AQC49957kZCQgJCQkEa3n6itsFhwCSEwbtw4TJw4Ef3798fFixdvmUej0aBjx45G0/z8/PSfeXh4QKPR6KcZzlNfB8zY2FijsCspKTGrvtWqVav0f66qqtIXEDRVujk7OxvXrl1DUVERioqKcPr0aZPLtrGxgZ+fH7y8vODq6gohBM6fP4/8/HwAN8Jv3rx5mDhxIuzs7BpsK1Fb1ujgiomJQXx8fL3znD17Fr/99htKS0sRGxt72427XQqFAgqF4o6WYW9vjw4dOqBDhw4m5xFCoLi4GBcvXsTJkyeNSjdrNBoUFhaitLQUWq0WNTU1yMnJQU5Ozi3LCQsLw9y5c+Hl5XVHbSZqKxodXJGRkQ0O7tCpUyfs2rULSUlJtwRI//79MWbMGHz55ZdQqVTIy8sz+rz2fe3zd6bmaY7n84QQKCgoqPeIq/a00lzOzs5wcXHRh96bb76JTz75xIJbQdT6NDq4fHx84OPj0+B8H330ET788EP9+5ycHISEhODbb7/FgAEDAABBQUGYOXMmtFqt/vRox44d6Nq1Kzw8PPTz7Ny5E1OnTtUva8eOHQgKCmps0xu0ePFiJCcnG4XT9evXzfquvb290bWtuq5z+fv7s9c5UROw2DWu9u3bG713dnYGANx9991o164dAOCVV17B3Llz8dZbb2HGjBk4deoUEhMTkZCQoP9eeHg4Hn30USxbtgyhoaHYuHEjjhw5YtRloqls3boV+/btu2W6t7d3g6Wbvb29WTGBqJlYtee8m5sbfvvtN4SFhaFfv37w9vbG7NmzMWHCBP08AwcOxIYNGzBr1iy899576NKlC3788cd6hw27XRMmTMDw4cNvOXK60+tlRNS0WNaGiKyKZW2IqE1gcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJMeqhQRbmp07d6KsrExfSNDPz4+DsBK1QAwuAwsXLsSuXbv0721sbKBSqeqtI69Wq1mckKiZMbgM9OjRA2VlZcjOzoZGo0FNTY1+4Iz6ODs7NzggrEqlgq0tdzdRU2DpZhNqamqQl5fX4ICwxcXFZrfD19dXPyBsdXU1cnJyMH369FtG6iZqS27n98lDABNsbGygVquhVqvrna+8vBwXLlzAiRMnbhkQtqCgAGVlZaiqqgIA5Ofn3zIGY3R0NIQQmDJlCuzt7S22PUStCY+46qHT6ZCfn9/ggLCFhYVmL9PNzQ2urq4QQuDy5cuorKwEAHTp0gXLly9HaGgohzmjNoVHXHdo4cKFOHbsmD6QcnNzUV1dbdZ3lUqlWde5DI+qampq8OWXXyI2Nhbnzp3DM888g5CQECxfvhzdu3e31GYSSR6PuAw89thj2Lt3r9E0mUymv7NY34Cwbm5ut32kVFJSggULFiAhIQFarRY2NjYICwvDnDlz4OnpeVvLJJKK2zniYnAZ+Pbbb3H58mWjgGrOu4Hnz5/H9OnTsXnzZgCAp6cn5s+fjwkTJvCOJLVaDC4TpDYg7O+//46pU6fi9OnTAICePXsiISEBwcHBVm4ZUdPjgLCtRHBwMI4fP45PPvkEnp6eOHXqFP7xj39g+PDhOH/+vLWbR2R1DK4WytbWFmFhYTh37hymTJkCGxsbbN68GT169MCMGTNQUlJi7SYSWQ1PFSXizJkzmDZtGn777TcAgJ+fH6KjozFkyBB07NixWduiVCrZZYOaDK9xmdAaggsAhBDYunUrpk2bZtVTxrKyMjg5OVlt/dS68BpXKyeTyeDm5gYXFxdrN4XIqniPXSIyMjIQHR2Nb7/9FsCNHviTJ0/GM888g549ezZrW5RKZbOuj+hmDK4Wrry8HPHx8ViyZAmuX78OmUyGCRMmYP78+fDx8bF284isgsHVQgkhsGHDBsyYMUNfVuexxx7DihUr0Lt3byu3jsi6GFwt0OHDhxEeHo6kpCQAwF133YWlS5fihRde4N08IjC4jPz8888oKioyeuSnOS+E5+Tk4L333sOXX34JAHBycsJ7772HiIgIODg4NFs7iFo6BpeBhIQE7N6922iai4uLyQesa6ff6fOM169fR0JCAhYsWIDy8nIAwOuvv464uLgG64ERtUUMLgMDBgyAXC7Xl7UpLS1FaWkpUlJSkJKSYvJ7crkcfn5+9Za0CQgIgKurq9GpnhAC33//PaKiopCeng4AeOihh5CYmIgHH3zQ4ttLJFXsgFqP0tLSBks35+bmoqamxqzlOTg4wNvbGy4uLhBCICsrC2VlZQAAtVqNxYsXY/To0ZDL2b2O2g72nDfBkj3ntVotUlJSjEo3Z2RkIC8vz6h0s6ndLJfL8d5772HGjBlwdnZu0rYRSQEroDaxa9euNXjElZOTA61Wa9byFAqFfrCMmpoaXL58GVOmTMG8efMsvCVErQuDy8DMmTNx5MgRfTgVFRWZ9T2ZTAZfX98GSze7u7uzOwNRE2BwGdi/fz/27NljNM3JyanBAWH9/f1hZ2dnnUYTtUEMLgPTpk3DuHHjjALq5juBRGR9DC4Dzz77rLWbQERm4H13IpIcBhcRSQ6Di4gkx6LBtXXrVgwYMACOjo7w8PDA8OHDjT7PyMhAaGgolEolfH19ERUVdcvI0Xv27MH9998PhUKBzp07Y/369ZZsMhFJgMUuzn/33XcYP348Fi5ciCeeeALV1dU4deqU/vOamhqEhoZCpVJh//79yM3Nxeuvvw47OzssXLgQAJCeno7Q0FBMnDgRX3/9NXbu3Im3334b/v7+CAkJsVTTiailExag1WpFQECA+Pzzz03Os23bNiGXy4VGo9FPW716tXB1dRWVlZVCCCGio6NFjx49jL738ssvi5CQkEa1p7i4WAAQxcXFjfoeEVne7fw+LXKqeOzYMWRnZ0Mul6Nv377w9/fH0KFDjY64kpKS0KtXL/j5+emnhYSEoKSkRD+Cc1JS0i2jN4eEhOgL7JlSWVmJkpISoxcRtR4WCa60tDQAwAcffIBZs2Zhy5Yt8PDwwGOPPYaCggIAgEajMQotAPr3Go2m3nlKSkpQUVFhcv1xcXFwc3PTvwIDA5ts24jI+hoVXDExMZDJZPW+UlJSoNPpANx49m/EiBHo168f1q1bB5lMhk2bNllkQwzFxsaiuLhY/8rMzLT4Oomo+TTq4nxkZCTGjRtX7zydOnVCbm4uAKB79+766QqFAp06dUJGRgYAQKVS4dChQ0bfzcvL039W+9/aaYbzuLq6wtHR0WQbFAoFFAqFeRtFRJLTqODy8fExa0isfv36QaFQIDU1FYMHDwZwo27VxYsX0aFDBwBAUFAQFixYgPz8fPj6+gIAduzYAVdXV33gBQUFYdu2bUbL3rFjB4KCghrTbCJqbSx1pyA8PFwEBASIX3/9VaSkpIi33npL+Pr6ioKCAiGEENXV1aJnz55iyJAh4vjx42L79u3Cx8dHxMbG6peRlpYmlEqliIqKEmfPnhUrV64UNjY2Yvv27Y1qC+8qErVct/P7tFhwVVVVicjISOHr6ytcXFxEcHCwOHXqlNE8Fy9eFEOHDhWOjo7C29tbREZGCq1WazTP7t27RZ8+fYS9vb3o1KmTWLduXaPbwuAiarlu5/fJ0s1EZFW38/vks4pEJDmsx2Vg8+bNKCgoMCokyHLLRC0Pg8vAihUrbind7Ojo2GDpZrVaDXt7e+s0mqgNYnAZGDx4MBwcHPSDZRQUFKCiogLnz5/H+fPn6/2uj49PgwPCenp68uiNqAnw4nw9KioqkJOTU+/wZNnZ2aiqqjJreXZ2dvrhyXQ6HS5fvox//vOfHJ6M2jQOCGtCcwwI+7///Q8pKSlIT09v1ICwMpkMsbGxiI2N5YCw1CYxuEy4nR0jhEBJSUmDA8JqNBr9s5kNcXZ2hpeXF1xcXCCEQGZmpr5yhb+/PxYtWoRXX30Vcjlv9lLbweAywdwdExMTg0OHDunDqby83Kzl29jYwN/fv8GL+C4uLkbfE0Jg8+bNiIyM1FfUePDBB5GYmIiHHnro9jeYSEIYXCaYu2OeeOIJ7N6922iau7t7vRfc1Wo1fH19YWNjc9vtq6ysxIoVK/Dhhx+irKwMAPDqq69i0aJFCAgIuO3lEkkBg8sEc3fM1q1bUVxcrA8ptVoNJyenZmtnbm4uZs6ciXXr1gEAlEolYmJiMH369HqrYRBJGYPLBKk98nPkyBGEh4dj//79AIAOHTpgyZIlePHFF9mdglodPvLTSvTv3x9//vknvvnmG7Rr1w6XLl3CSy+9hEcffRTJycnWbh6R1TG4WiiZTIZRo0YhNTUVc+bMgaOjI/744w/069cP48ePv6XAIlFbwlNFicjIyMCMGTOwceNGAICLiwsmT56MZ599Fr169WrWtiiVSp6yUpPhNS4TWkNw1frzzz/xz3/+06qnjGVlZc1604JaN17jauWEECgoKOBwa9Tm8SFriTh9+jSmTZuGHTt2ALgxkEhMTAyCg4Nx1113NWtblEpls66P6GYMrhbu6tWrmDNnDtasWYOamhrY29sjMjISsbGxt/TEJ2orGFwtlFarxZo1azBnzhwUFhYCAF544QUsWbIEnTp1snLriKyLwdUC/fbbb5g2bRrOnDkDAOjVqxcSExPx+OOPW7llRC0Dg8vAN998g/z8fKPnEv39/Zutuum5c+cQGRmJn3/+GQDg5eWFDz/8EG+//TZsbfm/iqgWfw0GPv30U+zdu/eW6b6+vvU+ZH2n1U2Li4vx4YcfIjExEVqtFra2tpg8eTJmz54NDw+PO90solaHwWUgJCQEvr6+RjW3tFot8vPzkZ+fj+PHj5v8roODg9HD2XWFnL+/PxwcHPTfqampwbp16zBz5kzk5+cDAIYOHYrly5ejW7dult5cIsliB9R66HQ6XLlypcHSzVevXjV7mS4uLvq7gVeuXNGXfe7atSuWL1+Op59+unEbRyRx7DlvgiV7zpeWliItLQ0nTpxAamoq0tLS6izdbIqtrS0WL16MsLAwjhREbdLt/D55qmhCdXU1NBpNg6WbS0tLzVqeXC6Hr6+vfrCM6upq5OTkYPr06Zg6daplN4aolWFwGZgyZQoOHDiA7Oxs5OXlmV1L3tXV1eRF+9qXn5/fHVVJJaL/H4PLwJkzZ3DkyBH9e1tbW30t+fruKnJ0HqLmxWtcBnbt2oXy8nJ9SPn6+nLEHSIL4zWuO/TEE09YuwlEZAYeThCR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5LSJCqi11alLSkqs3BIiulnt77IxVeTbRHDVDiEWGBho5ZYQkSmlpaVwc3Mza942MViGTqdDTk4OXFxcIJPJGpy/pKQEgYGByMzMbPIBZKWM+6Vu3C91M3e/CCFQWloKtVpt9uA0beKISy6Xo127do3+nqurK/8i1oH7pW7cL3UzZ7+Ye6RVixfniUhyGFxEJDkMrjooFArMmTMHCoXC2k1pUbhf6sb9UjdL7pc2cXGeiFoXHnERkeQwuIhIchhcRCQ5DC4ikhwGFxFJTpsOrgULFmDgwIFQKpVwd3evc56MjAyEhoZCqVTC19cXUVFRqK6uNppnz549uP/++6FQKNC5c2esX7/e8o1vZitXrsRdd90FBwcHDBgwAIcOHbJ2kyxq3759eOaZZ6BWqyGTyfDjjz8afS6EwOzZs+Hv7w9HR0cEBwfj3LlzRvMUFBRgzJgxcHV1hbu7O9566y2UlZU141Y0vbi4ODzwwANwcXGBr68vhg8fjtTUVKN5rl+/jrCwMHh5ecHZ2RkjRoxAXl6e0Tzm/K7q06aDq6qqCiNHjsSkSZPq/LympgahoaGoqqrC/v378eWXX2L9+vWYPXu2fp709HSEhobi8ccfx/HjxzF16lS8/fbb+PXXX5trMyzu22+/RUREBObMmYNjx46hd+/eCAkJQX5+vrWbZjHl5eXo3bs3Vq5cWefnixcvxkcffYQ1a9bg4MGDcHJyQkhICK5fv66fZ8yYMTh9+jR27NiBLVu2YN++fZgwYUJzbYJF7N27F2FhYThw4AB27NgBrVaLIUOGoLy8XD/PtGnT8PPPP2PTpk3Yu3cvcnJy8MILL+g/N+d31SBBYt26dcLNze2W6du2bRNyuVxoNBr9tNWrVwtXV1dRWVkphBAiOjpa9OjRw+h7L7/8sggJCbFom5vTgw8+KMLCwvTva2pqhFqtFnFxcVZsVfMBIH744Qf9e51OJ1QqlViyZIl+WlFRkVAoFOKbb74RQghx5swZAUAcPnxYP88vv/wiZDKZyM7Obra2W1p+fr4AIPbu3SuEuLEf7OzsxKZNm/TznD17VgAQSUlJQgjzflcNadNHXA1JSkpCr1694Ofnp58WEhKCkpISnD59Wj9PcHCw0fdCQkKQlJTUrG21lKqqKhw9etRoG+VyOYKDg1vNNjZWeno6NBqN0T5xc3PDgAED9PskKSkJ7u7u6N+/v36e4OBgyOVyHDx4sNnbbCnFxcUAAE9PTwDA0aNHodVqjfZNt27d0L59e6N909DvqiEMrnpoNBqjnQtA/16j0dQ7T0lJCSoqKpqnoRZ05coV1NTU1LmNtfugrand7vr2iUajga+vr9Hntra28PT0bDX7TafTYerUqRg0aBB69uwJ4MZ229vb33LN+OZ909DvqiGtLrhiYmIgk8nqfaWkpFi7mUSSFxYWhlOnTmHjxo3Nvu5WV48rMjIS48aNq3eeTp06mbUslUp1y92z2rsjKpVK/9+b75jk5eXB1dUVjo6OZra65fL29oaNjU2d21i7D9qa2u3Oy8uDv7+/fnpeXh769Omjn+fmmxfV1dUoKChoFftt8uTJ+hsOhrXuVCoVqqqqUFRUZHTUZfj3xZzfVUNa3RGXj48PunXrVu/L3t7erGUFBQXh5MmTRn8Bd+zYAVdXV3Tv3l0/z86dO42+t2PHDgQFBTXdRlmRvb09+vXrZ7SNOp0OO3fubDXb2FgdO3aESqUy2iclJSU4ePCgfp8EBQWhqKgIR48e1c+za9cu6HQ6DBgwoNnb3FSEEJg8eTJ++OEH7Nq1Cx07djT6vF+/frCzszPaN6mpqcjIyDDaNw39rsxpSJt16dIlkZycLObOnSucnZ1FcnKySE5OFqWlpUIIIaqrq0XPnj3FkCFDxPHjx8X27duFj4+PiI2N1S8jLS1NKJVKERUVJc6ePStWrlwpbGxsxPbt2621WU1u48aNQqFQiPXr14szZ86ICRMmCHd3d6O7Qq1NaWmp/u8DALF8+XKRnJwsLl26JIQQYtGiRcLd3V1s3rxZnDhxQjz33HOiY8eOoqKiQr+Mp556SvTt21ccPHhQ/Pnnn6JLly5i9OjR1tqkJjFp0iTh5uYm9uzZI3Jzc/Wva9eu6eeZOHGiaN++vdi1a5c4cuSICAoKEkFBQfrPzfldNaRNB9fYsWMFgFteu3fv1s9z8eJFMXToUOHo6Ci8vb1FZGSk0Gq1RsvZvXu36NOnj7C3txedOnUS69ata94NaQYff/yxaN++vbC3txcPPvigOHDggLWbZFG7d++u8+/G2LFjhRA3ukS8//77ws/PTygUCvHkk0+K1NRUo2VcvXpVjB49Wjg7OwtXV1fxxhtv6P9RlKq69gkAo7/zFRUV4t133xUeHh5CqVSK559/XuTm5hotx5zfVX1Yj4uIJKfVXeMiotaPwUVEksPgIiLJYXARkeQwuIhIchhcRCQ5DC4ikhwGFxFJDoOLiCSHwUVEksPgIiLJ+f8AE/IWUx7fexAAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -147,15 +151,15 @@
},
{
"cell_type": "markdown",
- "id": "d07c4c17-da0b-4bf8-a224-3ed5db81dca3",
+ "id": "c7b39541",
"metadata": {},
"source": [
- "Note: you can use `move_to` to have more control over the location of cells, e.g.: `network.cell(i).move_to(x=0, y=200)`"
+ "_Note: you can use `move_to` to have more control over the location of cells, e.g.: `network.cell(i).move_to(x=0, y=200)`._"
]
},
{
"cell_type": "markdown",
- "id": "50de4193-8888-4e82-94e4-a723c4a23684",
+ "id": "1e1e5d74",
"metadata": {},
"source": [
"As you can see, the neurons are not connected yet. Let's fix this by connecting neurons with synapses. We will build a network consisting of two layers: 10 neurons in the input layer and 1 neuron in the output layer.\n",
@@ -165,19 +169,10 @@
},
{
"cell_type": "code",
- "execution_count": 136,
- "id": "90c60887-fa39-4716-b664-6efb7abdb7fd",
+ "execution_count": 5,
+ "id": "e4b94afc",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/michaeldeistler/Documents/phd/jaxley/jaxley/modules/base.py:1533: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
- " self.pointer.edges = pd.concat(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"pre = net.cell(range(10))\n",
"post = net.cell(10)\n",
@@ -186,7 +181,7 @@
},
{
"cell_type": "markdown",
- "id": "8d867fda-80e1-4a1b-b6e3-33c0855cde7b",
+ "id": "1d629fbe",
"metadata": {},
"source": [
"Let's visualize this again:"
@@ -194,13 +189,13 @@
},
{
"cell_type": "code",
- "execution_count": 137,
- "id": "a69c0ca3-eeec-48a3-b7ac-1bf0896fd5ed",
+ "execution_count": 6,
+ "id": "39d172dc",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAH5CAYAAAA/e9PUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEoElEQVR4nO2dd3xT1fvHP0mapOlIB93QUmaBlhbKLHtU9kb5qnxBhiBLUJG9FQRB5StThgI/RVBEQJQhG5S9KbPIaoECpXRAZ5rn98exGbQpadZN2vN+vfJqenPuOU8uvR/OOfcZIiIicDgcjgMhFtoADofDKSlcuDgcjsPBhYvD4TgcXLg4HI7DwYWLw+E4HFy4OByOw8GFi8PhOBxOQhtgC9RqNR48eAB3d3eIRCKhzeFwODoQETIyMhAUFASx2Li5VJkQrgcPHiA4OFhoMzgcTjEkJCSgQoUKRrUtE8Ll7u4OgF0YpVIpsDUcDkeX9PR0BAcHa+5TYygTwlWwPFQqlVy4OBw7pSTbOHxznsPhOBxcuDgcjsPBhYvD4TgcXLg4HI7DwYWLw+E4HFy4OByOw8GFi8PhOBxcuDgcjsPBhYvD4TgcXLg4HI7DwYWLw+E4HFy4OByOw8GFi8PhOBxcuDgcjsPBhYvD4TgcXLg4HI7DwYWLw+E4HGUiA6qxKBQKZGdnQyKRQC6XQ6lUIigoCDVq1ECTJk3Qu3dvBAQECG0mh1PmERERCW2EtUlPT4eHhwfS0tKKTd1cktSxIpEIUqkULi4u8Pb2RsWKFVG3bl106NABrVu3hpMT/z+BwzEGY+9PXbhw6TBgwACcPXsWSUlJeP78OXJzc5Gfn2/W2BKJBDKZDEqlEv7+/qhevTqaNm2KFi1a4NatW+jRowcXOU6ZhguXAUy5MC+jUqmwa9cu7N27F+fPn8e9e/eQkpKCzMxMqFQqmHMZS1KWicMpbXDhMoAlhKsAlUqFU6dOYefOnTh9+jT++ecfJCcn48WLF8jLy4NarTap38aNG+PIkSN89sUpc5hyf/K7RIfk5GRs27YNhw4dwtWrV/HgwQOkpaUhOzsbarXarFmVWCyGVCqFq6srfH19oVQqcfHiReTk5AAAjh8/DplMhrFjx2LBggWW+kocTqmEz7h0KMnmvO45EokEzs7O8PLyQoUKFRAREYFWrVqhW7ducHNzK/b8ixcvomnTpnj+/LnmmFwux9atW9GhQ4cS28PhOBp8qWgAYy+MWCzWm1WJxWLIZDK4ubnB398fVapUQcOGDdGjRw+Eh4db1MbFixfjgw8+0FtqBgUF4cKFC/Dx8bHoWByOPcGFywDGXpiLFy+ievXqcHZ2tqF1+vTs2RNbt27VO9a2bVvs3btXGIM4HCtjinBxz3kdIiMjBRUtANiyZQsyMjIQGhqqObZv3z6IxWLMmTNHOMM4HDuCC5cd4ubmhtu3b+PIkSNQKBQAACLC1KlT4eLigr/++ktgCzkcYeHCZcc0a9YMmZmZ+OSTTzQPDrKystC8eXNUqlRJb0OfwylL8D0uByI2Nhb79u3TO+bs7IzTp09bZby7d2VYtcoH06Y9hFyu/TMJCwvj/mYci8E35w1QWoQLYL5mFSpU0Ph/WQ8JgBsAKgOYC2Cy5pO4uDiLP1XllF345nwpZ/HixfD397eBaAFAPoCx/74fD6ChDcbkcIyDz/cdAENOqv/73/8QExNj1WXbhAmp+OMPT1SqdBibNv0DZ2dCWFiY1cbjcIyBC5cdk52djaioKNy4cUNzTCQS2TQs6P/+DwgPB27flmPjxlrg0Ugce4AvFe2U//73v1AoFHqiFRMTg9zcXJvGMnp7AytXsvdffgkcPWqzoTkcg3DhsjPWrl0LJycnrF+/XnPMx8cHCQkJOHr0qCBP87p2Bd55ByACBgwAMjNtbgKHowcXLh1kMhlEIhHEYjHkcjm8vLxQrVo1vPbaa5gwYQL2798PlUpllbGvX78OLy8vDBw4UJO8UCqVYtOmTXjy5Ing+br+9z+gfHkgPh6YMkVQUzgc7g6hS0mzQ+jmpg8MDERYWBiaNWuG7t27Gy00KpUK9evXx4ULF/SODxs2DMuXLy+RPdZm1y6gY0dAJAIOHgRatBDaIk5pgPtxGcDYCzN58mT8/fffmuymWVlZZmc3FYlEcHJygqurK7y8vBASEoI6deqgQ4cO+PHHH/H999/rtY+KisLp06ft1sFzyBBg9WqgcmXg4kXA1VVoiziODhcuA1jKAfXOnTvYunUr/v77b8THxyMpKQnp6ekWyU3v6emJ48eP272rQXo6EBEBJCQAo0YBixcLbRHH0eEOqFYmNDQUAwYMQOfOnREdHY2KFSvC29sbCoUCTk5OJiUiBIDVq1fj2bNndi9aAKBUAt99x94vWQIcOCCsPZyyiX2uRwTi2LFj+P3333HmzBncvn3bIrnkAf0sqR4eHihfvjw8PDwQHx+Pr7/+Gt26dbPgt7A+sbHAsGHAN98AgwaxJaO7u9BWccoSfKmogykzpoIsqa6urvDz80OVKlVQv359dO3aFdHR0eaYbddkZACRkcCdO0zE7Ow5AseB4MUyzEQkEmk24gtmSQqFQpNLPjw8HG3atEGXLl1emUu+tOPuzpaMbdqwmVevXsBrrwltFaeswIVLh5SUFHh6egpthsPQujXboF+yBBg8GIiLY3tgHI614ZvzOnDRKjnz5jHXiIQEYOzYV7fncCwBFy6OWbi6AmvXMqfU1auZkyqHY224cHHMpnlzYMwY9v7dd4HUVEHN4ZQBuHBxLMKcOUC1asD9+8CHHwptDae0Y3Xhun//Pv773/+iXLlyUCgUqF27tl6OdCLC9OnTERgYCIVCgdjYWMTHx+v1kZKSgr59+0KpVMLT0xODBw/mhSLsDBcX7ZJx7Vrg99+FtohTmrGqcD179gxNmzaFVCrFzp07ceXKFXz55Zfw8vLStJk/fz4WLVqEb775BidOnICrqyvat2+P7OxsTZu+ffvi8uXL2LNnD37//XccPnwYQ4cOtabpHBNo0kS7QT90KJCSIqw9nFIMWZEJEyZQs2bNDH6uVqspICCAFixYoDmWmppKcrmcNmzYQEREV65cIQB06tQpTZudO3eSSCSi+/fvG2VHWloaAaC0tDQTvwnHWDIziWrUIAKI/vtfoa3hOAKm3J9WnXH99ttvqF+/Pt544w34+fmhbt26WLVqlebz27dvIykpCbGxsZpjHh4eaNSoEY4dOwaAheF4enqifv36mjaxsbEQi8U4ceJEkePm5OQgPT1d78WxDQoFWyqKxcAPPwBbtwptEac0YlXhunXrFpYvX45q1aph9+7dGD58OEaPHo1169YBAJKSkgAA/v7+euf5+/trPktKSoKfn5/e505OTvD29ta0eZm5c+fCw8ND8woODrb0V+MUQ6NGwPjx7P177wHJycLawyl9WFW41Go1oqOj8dlnn6Fu3boYOnQohgwZgm+++caaw2LSpElIS0vTvBISEqw6HqcwM2eyIhuPHwPvvy+0NZzShlWFKzAwELVq1dI7VrNmTdy7dw8AEBAQAAB49OiRXptHjx5pPgsICMDjx4/1PlepVEhJSdG0eZmCrKS6L45tkcvZklEiATZuBH75RWiLOKUJqwpX06ZNcf36db1jN27cQMWKFQEAlSpVQkBAgF5Z+fT0dJw4cQIxMTEAWGWb1NRUnDlzRtNm//79UKvVaNSokTXN55hJ/frApEns/fDhbPbF4VgEKz4soJMnT5KTkxPNmTOH4uPjaf369eTi4kI//PCDps28efPI09OTtm3bRhcvXqTu3btTpUqVKCsrS9OmQ4cOVLduXTpx4gT99ddfVK1aNXrrrbeMtoM/VRSOnByiyEj2lLF3byK1WmiLOPaGKfenVYWLiGj79u0UERFBcrmcatSoQStXrtT7XK1W07Rp08jf35/kcjm1bduWrl+/rtfm6dOn9NZbb5GbmxsplUoaOHAgZWRkGG0DFy5hOXuWyMmJidfGjUJbw7E3TLk/eSJBjk2YNYtt2Ht7A5cvAwa2JzllEJ5znmO3TJ4M1KnDvOmHDWPFZTkcU+HCpYNUKtUUhJXJZPDw8EBoaChatGiBESNG4Ndff9ULReIYj1QKrFvHfm7bBvz4o9AWcRwZvlTUoaQ55wsEzs3NDf7+/qhWrRoaNWqErl27Ijw83FyzSyVz5gBTpwJeXixjalCQ0BZxhIbXVTSAsRdm1qxZ+Ouvv3Dnzh0kJycjMzMTeXl5ZheELchd7+npiQoVKiAiIgKRkZG4f/8+Ro4caXTV69KASgU0bgycOQN06QL89hvLKMEpu3DhMoClNueTk5Px66+/4vDhw7h+/ToePHiAtLQ0ZGdnQ61WmyxwJ0+eRIMGDUy2y9G4fBmIjgZyc5mT6jvvCG0RR0j45ryV8fHxQadOnRATE4OqVavC398f7u7ukMvlEItNv5QNGzZEtWrVysz+WXg48Mkn7P2YMUBiorD2cBwPPuPSYc+ePfjjjz9w/vx53Lt3DykpKcjMzIRKpTJ7uejk5KQpdRYSEoJq1aphx44dhQLF+/Tpg59++snksRwFlQpo1gw4cQLo0AHYsYMvGcsqfKloAGsWhJVIJJDJZHB3d0dAQACqV6+Opk2bokuXLqhateorz09KSkJkZCSePHmi1+eyZctKfbLEa9eYi0RODrBqFctXzyl7cOEygLEXRiKRQK1WA9DOklxdXeHt7Y2KFSsiMjISHTp0QGxsLJycLFuS8tdff8Wbb76JvLw8zTGlUomjR4+W6ieUX34JfPwxKzB76RLwbxgrpwzBhcsAxl6Y7OxsODs729Cywrz//vtYsmSJ3rHatWvj7NmzFhdLeyA/H2jRAjh6FGjbFtizhy8Zyxp8c95MhBYtAFi8eDHy8vIQHR2tOXbp0iVIpdJSuXSUSIA1a1jm1H37gBUrhLaI4whw4bJDnJyccObMGcTHx+sVFlm1ahWkUik2btwooHWWp3p1YO5c9v7jj4Hbt4W1h2P/cOGyY6pWrYqUlBSsW7dOs0xUqVR466234OPjgzt37ghroAV5/31WWPbFC2DQIODfrUYOp0j4HpcD0b9/f3z//fd6xyQSCc6cOWOV/a/z5xVYs8YHs2ffh7u7VknCwsKsMt4//wCRkUBmJrB4MTBqlMWH4NghfHPeAKVFuADg+fPn8PX1tYGzqgjAZQA1AcwA8Inmk7i4OKs96Vy6lAmWiwtw4QJghEcJx8Hhm/OlnLFjx0KpVNrIw57ABAsAPgLgVUxbyzF8ONC6NZt1DRzIl4ycoil9z9dLIb///jt69+6N3NxczTF3d3esXbsWYWFhVhtXrQZefz0bN254YMiQ6xgzhiWNt+aYYjHw3XdA7drAX38BixYBH3xgteE4joolUq/aO46auvnhw4cUEBBAYNMfAkASiYSWLFliMxu2bGEpl11diR4/ttmw9M03bFxnZ6KXMnlzShl2V8maYzqtWrVCYGCgXixj7969oVKpMHLkSJvZ0b07UK8ee9o3f77NhsXQoUBsLJCdDQwYwBxVOZwCuHDZGbNmzYJYLMahQ4c0xypXroyMjAz8IkBxQpFIm8lh6VLAQPFwq4z77bcsFOjYMWDhQtuMy3EMuHDp4OTkBJFIpIlTdHFxgZ+fHyIjI9GrVy8sWLAAN2/etMrYhw8fhkKhwMyZMzWZKFxcXHD06FH8888/cHNzs8q4xtCxI0v+l5WldRS1BSEhWsGaOhW4etV2Y3PsG+4OoUNJs0Popqvx9PRESEgIateujTZt2qBLly5GhRClpqYiKipKU927oN/PPvsMEydOLJE91mTvXuC11wCZDLh5EwgOts24RECnTsCuXUDDhsDffwOlMGSzTMP9uAxg7IVZu3Yt9u7di6tXr+Lhw4dIT083O7spoJ+b3s/PD1WrVkV0dDR+/fVXXLx4Ua9tu3btsHv3bpPHshZEQKtWwOHDwHvvAd98Y7uxExOBiAggLY3N+OxIzzkWgAuXASzlgKpSqXD8+HHs2LEDZ8+exe3bt5GcnIwXL14gLy9PkxLHFMqXL4+4uDh4enqa3Ie1OXwYaNmSzXhu3AAqVbLd2OvWsU16mYzlq4+IsN3YHOvCHVBtQFZWFnJycqBSqZCfn6+ZjZmj/3/++ScSExPtWrQAln7mtddY9tJPP7Xt2P37s+IaublMwHTSlnHKIHzGpcPKlSuxb98+XL9+HUlJSUhPT0dubi7yzXwWX5AlVbeMWeXKlfHPP/9g9uzZDpUo8MQJtlEvkbDN8mrVbDf2gwdspvXsGRPOqVNtNzbHevClogFssTnv7e2NkJAQ1KlTB6+99hpiY2PtIr+XNejSBfjjD6BvX+CHH2w79vr1wH//ywrLnjoFREXZdnyO5eHCZQBjL4yTk5NmdlUwS1IqlQgICEBYWBhiYmLQo0cPhIaG2shy++TsWeaUKhKxoq61atlubCKgVy9g61aWr/7ECbbvxXFcuHAZoDRlh7AXevUCtmwB3ngD+Pln24796BErcfb0KTBjBjBzpm3H51gWvjnPsRmzZrEZ16ZNLP2MLfH3Z178ADBnDpsBcsoWXLg4JlG7NtCnD3s/fbrtx+/TB3j9dfaEc8AAVuKMU3bgwsUxmZkzWRqa335jG+W2RCQCli0DfH1ZWTNbu2dwhIULF8dkatRgTxYBYWZdvr7A8uXs/bx5thdPjnBw4eKYxYwZzKdr1y5WG9HW9O4NvPkmS3szYABLg8Mp/XDh4phFlSosxTIATJsmjA1LlrAN+ytX+BPGsgIXLo7ZTJ3KHEL37wcOHrT9+OXKaQvJLlgAHD9uexs4toULF8dsKlYEhgxh76dNY06itqZ7d+ZRr1azJWNWlu1t4NgOLlwcizB5MiCXswIXe/YIY8PXXwOBgcD168ItWzm2gQsXxyKUL89KiwHCzbq8vYGVK9n7r75iSQc5pRMuXByLMXEiK+R68iTw++/C2NClC1sqErGfmZnC2MGxLly4OBbD359VoQaYX5dQxVwXLmQzwJs32RKWU/rgwsWxKOPGAW5uwPnzLAhbCDw9gdWr2fuvvwZ0CiZxSglcuDgWxccH+PBD9n7GDOHqIXboALz7Lns/aBDw/LkwdnCsAxcujsX56CM267l82fYpb3T58ktWjejWLV5go7TBhUsHlUoltAmlAk9PYOxY9n7mTJbBQQiUSuC779j7pUuZgyyndMCFSwe5XK4pCCuRSODs7Ixy5cqhRo0a6NSpE6ZPn45TPJLXKMaMYR7tN26wdMtCERsLDBvG3g8aBGRkCGcLx3LwDKg6mJJzXiwWw9nZGR4eHihfvjxq1aqFVq1aoUePHnZftcfazJ8PTJgAVK4MXLvGwoKEICMDiIwE7tyxfU1IzqsxKUMx2Yi5c+cSABozZozmWFZWFo0YMYK8vb3J1dWVevXqRUlJSXrn3b17lzp16kQKhYJ8fX3p448/pry8vBKNnZaWRgAoLS2t2HabNm2iwYMHU+PGjalChQrk5uZGTk5OJBKJCIDJL7FYTHK5nLy8vKhatWrUrl07GjBgADVp0oSOHj1aou/iSDx/TuTnRwQQrVwprC379zM7AKLdu4W1haOPsfenLjYRrpMnT1JoaChFRkbqCdewYcMoODiY9u3bR6dPn6bGjRtTkyZNNJ+rVCqKiIig2NhYOnfuHO3YsYN8fHxo0qRJJRrflAtjiAsXLtAnn3xC3bp1o1q1apGPjw85OzuTWCw2Wdg2b95stl32ysKFTCyCg4mys4W15f33tbakpgprC0eLXQpXRkYGVatWjfbs2UMtW7bUCFdqaipJpVLatGmTpu3Vq1cJAB07doyIiHbs2EFisVhvFrZ8+XJSKpWUk5NjtA2WEq6srCzavHkzDR8+nJo3b04VK1YkpVJJUqnU7FmZr68vPXz40Cz77JGsLKKgICYYixcLa8vz50RVqjBbBg8W1haOFrsUrv79+9MHH3xARKQnXPv27SMA9OzZM732ISEh9NVXXxER0bRp0ygqKkrv81u3bhEAOnv2rMExs7OzKS0tTfNKSEgw6sIsWrSIevToQeHh4RaZSRW8JBIJubq6UkBAAEVHR9Pbb79Ny5cvp5YtWxZq26xZsxIvhe2dpUuZWAQGEmVmCmvL4cNEIhGzZ8cOYW3hMOxOuDZs2EARERGUlZVFRPrCtX79epLJZIXOadCgAY0fP56IiIYMGULt2rXT+/zFixcEgHYU81c3Y8aMIgXkVRfGlL0rmUymt3c1adIkOnLkiNHik5WVRVWrVtXrVyQSlXg5bM9kZxNVrMjE4ssvhbaG6MMPmS1BQUQpKUJbwzFFuKzmDpGQkIAxY8Zg/fr1Nq/oPGnSJKSlpWleCQkJRp0nkUgAQOMO4erqiqCgIDRo0AD9+vXD6tWr8eTJExATfOTn5yMnJwcpKSm4ceMGdu/ejc8++wzNmjWDk5OTUWM6OzsjPj4eJ0+ehKurKwCAiDB37lwoFArsLwXOR3K5Ns3MvHnCe7HPng1Urw48eKD18uc4GNZS0S1btmiWSQUv/DubkEgktHfvXqstFV/Gkpvz1uaLL74otDytUKFCoevkaOTmaveX5s4V2hqio0eJxGJmz2+/CW1N2caulorp6el06dIlvVf9+vXpv//9L126dEmzOf/LL79ozrl27VqRm/OPHj3StFmxYgUplUrKLsEjKkcSrgI6depUaGnasWNHoc0yi//7PyYU3t5E9vBPMW4csycggOjpU6GtKbvYlXAVhe4eFxFzhwgJCaH9+/fT6dOnKSYmhmJiYjSfF7hDtGvXjs6fP0+7du0iX19fQd0hbMmzZ88oODi40L7a/PnzhTbNJFQqoho1mFjMmiW0NeyJZ4E9ffsKbU3ZxZT706ae861atUKdOnXwv//9DwCQnZ2NsWPHYsOGDcjJyUH79u2xbNkyBAQEaM65e/cuhg8fjoMHD8LV1RXvvPMO5s2bZ/QeEmCiZ64dcfjwYbRv3x7ZOrW3XFxc8N133yEiIsKqYxOx4qu6hIWFlej66/LTT6ycmFIJ3L7NspYKycmTQEwMyx32669Az57C2lMWsWvPeSFx1BnXy0ybNs1sf7GSvVoTsIOAcnrH4+LiTP4O+flEtWuzWc7kyRa8OGYwaRKzx8+P6MkToa0pe9jVU0WO5fnkk0+QkpICuVxug9GcAKwG0BHAGQD1LNKrWAzMmsXef/018OSJRbo1ixkzgPBw4PFjbQZXjn3Dg6wdiDfeeAO//PKL3jEnJyecP3/eKuPdvCnHmDHBuHtXDplMjSlTHqJ371SzlooAW37Wrw+cPQt8/DGrhSg0Z84AjRqxxIc//wy88YbQFpUd+FLRAI6+VFy+fLnGnaTgFRAQYJMQodRUou7dtQHKQ4ZYJubwjz9YfwoFkb1EOk2bxmzy8SHSeZDNsTJ2/1RRKBxVuOLi4kipVOoJlkwmo+3bt9vUjvx8ojlztKEyDRoQ3btnXp9qNVHjxqy/0aMtY6e55OQQRUYym3r3ZjZyrA8XLgM4mnBlZWVRrVq1CoUB6bqSCMGuXcwHq2BWsm+fef3t2cP6ksmIEhIsY6O5nDtH5OTE7NqwQWhrygZ8c95MkpOThTYBgwYNgkKhwJUrVzTHGjRogNzcXI0biVC0b8/2gurWBZKTgddeY8kCTd0lbdsWaNECyM0F5syxrK2mUqeONjxp5EggKUlQcziGsKKQ2g3GKrquq4FIJCInJydyc3OjChUqUMOGDWngwIG0bt06q4TfrF+/npycnPRmWd7e3nT79m2Lj2UumZlEAwZo97169yZKTzetr0OHWB9SKZG9fNXcXKK6dZld3bvzJaO14UtFAxh7YXRFw9hXQXZTb29vql69OnXs2JEmT55MR48eNSpDRHx8PHl7e+v16eTkROvXr7fU17cKajXR8uVMcACimjWJrl41ra/YWNbHoEGWtdEcLl7UfrfvvxfamtINFy4DGHthCrKbdunShWrWrEnlypWzSE6ugsByV1dXCgoKovr161OPHj3Iw8OjUNvBDpbh7tgxovLl2Q3u7k5kSjLXY8fY+RIJ0Y0blrfRVObMYXZ5ehLdvy+0NaUXLlwGsOTmfEZGBm3YsIGGDRtGTZo0oZCQEHJ3dzc7N31ERITDJhBMSiJq1Uq7dJwwgaikX6VTJ/uLGczLI6pfn9nVuTNfMloLu49VFApLOaBev34dW7ZswYkTJ3Dz5k08evQIGRkZyM3NhVqtNrnfuLg4hIeHm3y+PaBSsaKrX37Jfm/bFtiwAfD1Ne78M2eYU6pIBMTFAbVqWc/WknDlCnsYkZsLrFkDDBggtEWlD1PuTy5cOowbNw5Hjx5FYmIinj17hqysLOTn58OcSyQSiSCVSuHi4oJy5cohNDQUdevWRaNGjXDv3j30798fPj4+Jvdvb/z8M6tf+OIFqyK9eTPQoIFx5/bqBWzZwrzWhayA/TIFZdaUSladu0IFoS0qXXDhMoA16irq1lRUKpUIDAxEzZo10aJFC3Tr1k0vw0VZ4/JlJkI3bgAyGasi/e67rz7v0iUgKootOM+fZ+/tgfx8oFkz4Phx5hKyc2fhjBkc0+HCZQBjL4xMJkNeXh7EYjGkUilcXV3h4+ODSpUqoV69eujYsSMaN25sVpxeWSEtDXjnHWDbNvb7u+8CixcDr8ri/eabLPVN9+7A1q1WN9Norl9nPl7Z2cCqVcYJMcc4uHAZoLQEWTsaajXLMT91qjawevNmICTE8DnXrrFMDWo1cOoUO8de+OorYOxYwN2dzQ4rVhTaotKBKfcn95znWA2xGJg8Gdi1iyUMPH0aqFcP2LfP8Dk1agB9+7L306fbxk5jGTMGaNoUyMgABg82PWKAYz5cuDhWp1079tQwOpqFCrVrB3z+ueEbf/p0QCJhe0lHj9rW1uKQSNiTRYWCie+KFUJbVHbhwsWxCaGhwF9/AQMHsmXgxInA668D6emF21atqnU7KIgbtBeqVWPLX4DlErt9W1h7yipcuDg2Q6EAvv0W+OYbQCplOd4bNQKuXi3cdto01mb/fuDgQZubWiyjRrHg8BcvmOuHGS58HBPhwsWxKSIR8N57wJEjQPnybDO+YUO2aa9LxYraJ3fTptnXfpJYzJaMrq5MVJctE9qisgcXLo4gNGrEUje3asUqW7/+OjB+PPPAL2DKFFYF+6+/gD17BDO1SCpXZo6pAHNOvXlTWHvKGly4OILh58cE6eOP2e8LFjAHz4ICGuXLA8OHs/f2NusCgGHDgDZtgMxMtieXny+0RWUHLlwcQXFyYoL1889s6bV/P3OZOHWKfT5xIuDiwuof/vGHsLa+jFjM9uzc3IC//wYWLRLaorIDFy6OXfDGG0ycqlcHEhJYiM2qVYC/v7Zk2PTp9jfrCg3VBpZPnsw87DnWhwsXx26oVYvNtHr2ZNkYhg5lG/Tvv89mNefOsSBse2PIEJbGOjubLxltBRcujl2hVLInjHPnapdiPXsy/y+AzbrsTRhEImanUskCsb/6SmiLSj9cuDh2h0jE9rZ27QLKlWOhQj/8wPbALl+2r5Q3BQQHAwsXsvfTprE8XhzrwYWLY7e89hoLFapXD3j2jD29A4CZM/XdJuyFgQOBjh2BnBy2ZLRHG0sLXLg4dk3FisyPa9Ag7cb8jRvA6tXC2lUUIhF7oODhwfbqFiwQ2qLSCxcujt3j7MyEasUKFugMAKNHAxcvCmtXUZQvr3WLmDGDpb/hWB4uXDrcuXMHKj6/t0tEIvaUcd8+tmmfl8dChX75RWjLCtOvH9C1K7NxwAD2k2NZuHDpULlyZUilUohEIohEIjg5OcHV1RWBgYGoV68e3nrrLSxduhRJvLyxYLRsyfa4ALaX9MYbhUOFhEYkYrNDLy8W1lSQTYJjOXgGVB1KknNe95wCgfP29kbFihVRt25dvPbaa4iNjeVpnq1AdjZQpQrw4IH2WOvWwMaNLIzIXvjxR5YU0cmJ7XnVqSO0RfYJT91sAGMvzM2bN7Ft2zYcO3YMN27cQFJSEp4/f47c3Fzkm+k8JJFIIJPJ4O7ujoCAAMhkMty7dw+ff/45BvCaVyVm2TJg5Eg2q8nNZSlmKlRgPmANGwptHYMI6N2bOc1GRbHIAJlMaKvsD5NSq1uysKO9YsmCsHl5ebR9+3YaM2YMtWzZkipVqkQeHh4klUpNLgi7cOFC879kGSM7mygkRFuANiyMvZfJiFassJ/irUlJROXKMdumTxfaGvuEV7I2gKWE6+TJkzRt2jTq2LEjhYWFkbe3N8nlchKLxSZXsC54ubm50ZkzZyz0jcsGq1YxQfD1Jbp/n6hnT2017UGDiLKyhLaQ8dNPzCaJhIj/ExeGC5cBjL0wo0ePpgYNGlBQUBC5urqSRCIxeRZV8BKLxeTs7EzlypWjsLAw6tSpE82cOZPOnDlDH3zwQaH21atXpyx7uePsnNxcosqVmSjMnctmWfPmEYnF7Fj9+kR37ghtJeONN5hNERFstsjRwoXLAMZemJIIkkgkIicnJ3Jzc6Pg4GCKiYmhIUOG0IYNGygjI8No2/Ly8qhx48aF+u/bt6+5X7tMsG4dEwRvb6KCf949e7TLs3Ll2O9C8/gxmxkCRJMnC22NfcGFywDGXhiZTKY3S/Lx8aHw8HDq0aMHzZ49m+Li4qxmY0JCAvn4+OiJl0QioTVr1lhtzNKASkVUowYThFmztMfv3CGqV48dF4u1MzIh+eUXrT0nTwpriz3BhcsAltyctzabNm0iqVSqJ2Cenp4UHx8vtGl2y8aNTBA8PIhSUrTHs7KIBg/W7nv17KmdlQnFW28xW2rWtJ89OKEx5f7kDqh2xuuvv47c3FwMGzZMcyw1NRXVqlVDnTp1uGd/EbzxBlC7NpCWpk3qB2hDhVauZG4IW7YwVwkhMzcsXsySI169ykKCOCZiRSG1GxxpxqVLXl4eRUVFFdr/Gj58uNCm2R2//spmMm5uRE+eFP78xAmiChVYG1dXop9/tr2NBWzdql0yHj0qnB32gin3J3dAdQCuX7+Oxo0bIzU1VXNMKpVi/vz5aN26tVW98/PztYHNBYSFhdldRAARUL8+C7EZN05bgUeXJ0+AN99kee0BVqRj7lzm2W5r+vcHvv+epao+f57VnCyrcAdUAzjqjOtlVq9eTRKJxGyfMeNfHQk4S4Cf3nFrPqQwh99/ZzMZhYLo4cOi2+TlEY0fr933at2a6NEj29pJxPbiAgOZDR99ZPvx7Qm+x1XKGTx4MO7cuQOZTeJGnAB8DaAugL0AytlgTPPo1InVa8zKYjOponByAj7/nGWVcHMDDhxgiQpPnLCtrV5eLHcXwDKn/vWXbcd3dPhS0UFQqVRo0aIFjh07pnfcxcUFJ0+etMqY9+7J8M47oXjyRIqaNbPw7bd3oFSq7XKpWMCePUC7dmwz/p9/WPyiIa5eZfnsr19n7RctYqlzTIi1N5lBg1hV7KpV2ZLR1dV2Y9sLfKloAEdfKo4fP76QB7+tPOyvXNE6TjZuTJSebvUhzUKtJmrenNk7bNir26elEfXqpV06DhxIlJlpfTsLePZM+9Bg9GjbjWtPcD8uAziqcP35558kl8v1BEuImMYLF5hnOkDUogXRixc2Hb7EHDrEbJVKiW7ffnX7l0OFoqONO89S7NqlFc6DB203rr1gd8L12WefUf369cnNzY18fX2pe/fudO3aNb02WVlZNGLECPL29iZXV1fq1asXJSUl6bW5e/cuderUiRQKBfn6+tLHH39MeXl5RtvhaML15MkTCgoKKhTzKGQWidOniZRKdnPFxtq/82RsrDbY2lj27iXy8dGGEO3ebT37XmbIEDZupUpEJYgYKxXYnXC1b9+e1qxZQ3FxcXT+/Hnq1KkThYSE0PPnzzVthg0bRsHBwbRv3z46ffo0NW7cmJo0aaL5XKVSUUREBMXGxtK5c+dox44d5OPjQ5MmTTLaDmMvzJEjR+hJUU5ANiQ2NrbQ071u3boJalMBR48yHyiAqHNnopwcoS0yzLFj2owMJQk6uHuXBWcDRCIR0Zw5RPn51rOzgLQ0bZqeESOsP549YXfC9TKPHz8mAHTo0CEiIkpNTSWpVEqbNm3StLl69SoBoGPHjhER0Y4dO0gsFuvNwpYvX05KpZJyjLxzjL0wL+8jiUQikslk5OnpSVWrVqW2bdvSxx9/TPv27SvRjM8YZs+eXWj8ihUrlihg2xYcPMjcDQC2N2Thy2BROnVidv73vyU7LyuL6N13tcu3Hj1sEyq0Z492zL17rT+evWD3whUfH08A6NKlS0REtG/fPgJAz54902sXEhJCX331FRERTZs2jaKiovQ+v3XrFgGgs2fPFjlOdnY2paWlaV4JCQlGXZiXZzrGviQSCbm4uFBAQADVrVuX3nzzTVq0aBElJCS88pocOXKEFAqFXn8KhUIj7vbI7t0sYR/AYu9UKqEtKprTp7UzpytXSn7+ypXa71m9OtHly5a38WWGD2fjhYQIH1dpK+xauPLz86lz587UtGlTzbH169eTTCYr1LZBgwY0fvx4IiIaMmQItWvXTu/zFy9eEADasWNHkWPNmDGjSIF51YXJysqi7du30+jRo6lFixYUGhpKSqXSrOymurM3qVRKHh4eFBwcTGFhYYWcSUUiEc2cObOkl1YQfvuNyMlJ+yTOFsspU+jRg9nYp49p5584QRQcbLtQoYwMotBQNt7QodYdy16wa+EaNmwYVaxYUW8WYi3hMnXGZSy3b9+mRYsWUZ8+fSgqKor8/f1JoVCY5dXesmVLi9hmSzZt0j6JGz5c+LQxRXHhgnb5df68aX08fkzUpo22n7FjrbtEPnBAO5YtHxAIhd0K18iRI6lChQp069YtvePWWiq+jCWeKj579ozWrFlD77zzDjVo0IDKly9Pbm5u5OTkZPZsTOgHAubwww9sKQYQffihfYpXnz7Mvu7dTe/j5VChVq2sGyr0/vtsnAoViFJTrTeOPWB3wqVWq2nkyJEUFBREN27cKPR5web8L7/8ojl27dq1IjfnH+n8laxYsYKUSiVlG5kD19gL06dPH6pevbrFcsnrZkmtUKECNWzYkAYOHEjr1q2j27dv086dO42y395ZvVp7Q9tjds8rV7Qzw1OnzOvrl19YBgqAqHx59vTSGjx/TlSlSsldOhwRuxOu4cOHk4eHBx08eJAePnyoeWXquCYPGzaMQkJCaP/+/XT69GmKiYmhmJgYzecF7hDt2rWj8+fP065du8jX19cq7hAlESXdXPI1a9akLl260CeffFJmC14sWaIVr08/FdqawvTrx2zr2NH8vq5c0WZdlUqJli+3zkzz8GHtbPaPPyzfv71gd8Jl6KbXTUdc4IDq5eVFLi4u1LNnT3r4Umj/nTt3qGPHjqRQKMjHx4fGjh1rFQdUhUKhmSW5u7tTSEgINWnShIYNG1biXPJlkS++0IrXF18IbY0+8fHMpwuwTA6s9HSi3r2133fAAOuECn34Ies/KEg/u2tpwu6Ey15wNM95R+bTT7U385IlQlujT0Ea57ZtLdOfWk30+efWDRV68YK5YgBE/ftbtm97gQuXAbhw2ZbJk7XitXq10NZouXOHLe1g4ZhAa4cKHT2qFcdt2yzbtz3A83Fx7ILZs4EPP2TvhwwB1q8X1p4CKlYE3n2XvZ82jUmrJWjbFjhzBmjQAEhJATp0AObMAdRqy/QfEwOMHcvev/ce8PSpZfp1aKwopHYDn3HZHrVa6wUukTCfL3sgMZFILmd2/fmnZfvOytIGSxe4X1jKlSEri1UGAojeftsyfdoLfMbFsRtEImDJEmDgQJa3/q23gO3bhbYKKF8eKCigNHWq5WZdAKsqtHIly2wqkwHbtrFZWFycZfpet47l///xR+DXX83v05HhwsWxGmIxu4nffhtQqYDXXwf+/FNoq4CJE1lxipMngT/+sHz/777LUjEHBwPx8Syd9E8/md9vgwbAhAns/bBhrPhHWYULF8eqSCRsptCrF5CbC/ToARw6JKxNAQHAqFHs/fTplp11FdCgAdv3atsWyMxk1YXGjmUCbg7TpwMREUy0Cr5DWYQLF8fqODkBGzYAnTuzQhadOwMvpc63OePHs2IZ586xQrHWwNcX2LVLO0v66isgNhZ49Mj0PuVy7ZLx55/ZqyzChYtjE2QyVlknNhZ48YI9eTtzRjh7fHyADz5g72fMsNwTwJdxcgLmzQM2b2ZCeegQqyp0/LjpfUZHA1OmsPcjRpgnhI4KFy6OzXB2BrZuBZo3B9LTWTWeixeFs+ejjwAPD7Z5bu2ZS69ewKlTQI0awP37QIsWwPLlpi9Tp0wBoqKYa8Tw4dZZ7tozXLg4NsXVlW2IN2rEfJ5iY1mZMCHw8tL6R82caf7+06uoUYM9EOjdG8jLY7OlgQPZ8rmkyGRsyejkxJa6Gzda3l57hgsXx+a4u7O9n+hotsncti1w86YwtowZA3h7s9qKP/5o/fHc3YFNm4D589lT13XrgKZNgdu3S95XVBTbrAeAkSOBhw8ta6s9w4WLIwiensw1IiKC3XBt2wJ379reDqWSbdQDwKxZbCZkbUQiYNw4VrzWx4c9IKhfH9i9u+R9TZzI/gN49ox51ZeVJSMXLo5glCsH7N0LhIUB9+4Bbdqw/R9bM2oU4OcH3LoFrF1ru3HbtAHOngUaNmTL5o4dSx4qJJWyWZtUyhx8f/jBevbaE1y4OILi7w/s2wdUrsyEo21b2z8lc3VlMxcA+PRTICfHdmMHBwOHDwNDh7LZ0tSpQM+eQFqa8X1ERLDZIgCMHi2M+NsaLlwcwSlfHti/n93E168Dr71m+0DiYcOAoCAgIQFYvdq2Y8vlwIoVwLffsve//VbyUKFx49g5qalaESzNcOHSYdeuXbgp1C5xGadiRSZegYHApUvMVSI11XbjKxRa36g5c0x70mcugwaxUKGQkJKHCjk5sWWuXA7s2GHbJa8gWDHo224wpyCsVColpVJJFStWpGbNmtHw4cNp8+bNlGXvNegdlCtXiHx9WRaExo1ZplFbkZ2trSb9b60WQXjyhCg2Vptl4sMPiXJzjTt3/nx2jlJJdO+ede20FDyRoAGskXNe91WQf97Hx4fCw8OpR48eNHv2bIqLi7PRNyxdXLjAEvIBRC1asCygtmLVKjaunx8rWCEUKhXRxIla8WrRgkinmHux5zVuzM5p184+qy69DBcuAxh7YfLy8ujQoUM0fvx4io2NpapVq5KnpyfJZDKLFIQtqPgTGBhI/v7+JJPJaNy4cTa6Co7F6dNs1gCw2YetJri5uUSVK7Nx582zzZjF8euvRO7u2rzzxuTLv3aNyNmZnbNypfVtNBcuXAawdCLBJ0+e0OrVq6lfv35Uv359CgoKIldXV5NF7aOPPrKIXaWNv/9m1aMBos6diXJybDPuunXaNMz2kHvy6lVtEkGplGjp0lfPpL76irV3c2Mpq+0ZLlwGsIRwPXz4kJYsWUJvvvkm1a1blwICAsjFxcWs6tW6L5lMRtu3b7fgty4dHDignT307m3dCtIFqFREYWFszFmzrD+eMaSnE73+unbp2L9/8VWFVCqiZs1Y2zZtiPLzbWdrSeHCZQBjL0zPnj2pcuXK5OnpSVKp1CLLw4LN/dDQUGrevDmNGjWKtm7dSllZWbRkyZJCwhcQEODQla2twe7dRDKZNm2xSmX9MTdsYON5eNhPWTC1mmjBAm3hjLp1iV4qDq9HfDyRQsHaLltmOztLChcuA1hjc14ikZBCoSA/Pz+KjIyk119/nRYuXEi3TahP1bt370L9t27d2sRvWzr57TciJyd2Ew4caP0ZRH4+UUQEG2/KFOuOVVL279c+efXyItq1y3DbRYtYO1dXon/+sZ2NJYELlwGMvTAuLi6aWZKnpydVrlyZWrduTR999BHt3LmzREVoS0pGRgZVqlSp0Ixt5syZVhvT0di0STvbGD7c+k/MNm/W7hPZ2yT43j2ihg2ZfSIRq2dZlJjn5xO1bMnatWxpn0tGLlwGcKQqP0ePHiUXFxc9AVMoFHTo0CGhTbMLfvhBW5b+o4+sK15qNVuOAUT2+PA3O5vovfe0+15duxI9e1a43T//aB9yLFpkczNfCRcuAziScBUwd+7cQntsISEhlJGRIbRpgrN6tfZmtfYy7vff2TgKBdHDh9Ydy1S++05bcq1qVaJLlwq3WbZM+z3i421vY3Fw4TKAIwpXAe3atSu0/9WlSxehzRKcJUu04jV7tvXGUauJGjVi44wZY71xzOX0aaKKFZmdLi7s4YIu+flEbduyz5s2tc0DDmMx5f4UEZX2cEwgPT0dHh4eSEtLg1KpFNqcEpOcnIyoqCg8ePBAc0wsFmPs2LHo3r07PD09bWpPWFgYnJycbDpmUXzxBQsuBoAvv2SpmK3Bnj0sdlIuZwkPK1SwzjjmkpzMSsHt2cN+/+ADlrBQKmW/373LMkk8f84KdxRUGxcak+5Pq8moHeHIMy5d/vzzT3J2draI35hxr1kE7CRgGQHjCHidgHr0119X7SaU5JNPtDOvJUusM4ZaTdS8ufahgD2jUhFNmqQfKqS7xF25kh13dmYe9vYAXyoaoLQIFxHRmTNnSCqV2ki49mpugJdf7u5EkZGszPwHHxB9/TVzWbh0iciW23BqNdHkyVq7Vq+2zjgHD2o9103weLE5L4cK/f03O65WsxhG/BvEbg9LRr5UNICjLxUBIDs7G5GRkYiPj9c7Xq5cORyyUoXVCxcUuHlTjvv3Zbh/X4rERPYzOVn6ynN9fYFKlYDQUPZT91WxIiv2YCmIWNGLhQtZWuTvvwf69rVc/wXExrKkh4MGsdxZ9s7166y60JUrbLm4cCEr0JGYyJaM6elsKVmw3BYKU+5PLlwOwFtvvYWNL5VxadasGQ4cOCDIXlNWFnDnDivwcPu2/vvbt1n+8+IQiVjywJcFreAVFMQKnpYEIlYwYvlydu5PP7FqOpbk2DGgSRPW/7VrQNWqlu3fGjx/zoR20yb2e79+wDffsOszaBDbtzt7FqhVSzgbuXAZwFGFa+XKlRgxYgTy8/M1x3x9fXH27FlUsNcdYrC0w7pC9vLrVUn6pFI2KzMkbD4+TPxeRq0G3n0XWLNGW7arSxfLfrfOnVmivv/+l83sHAEithk/YQKQn8+qA23ezNI879jBMqcePcqumRBw4TKAownX9evX0ahRI6TpJB6XSqXYuHEjevXqJaBl5kMEPH5sWNTu3Xt1fUNXV8OiFhLClkMbNrDl6O+/s1TQluLMGVaRRyQCLl8Gata0XN/W5sAB4D//YSXhvLyAr79m4pWayrK+Tp4sjF1cuAxg7IVZu3YtfHx8EBsbC2dnZxtayFCpVIiOjsalS5f0jo8aNQqLFy+2uT1CoFKxYg+GhE3HI8QgXl5MIFNT2Sxi1CigfXvt/pq5/7Q9e7KK3H36GJ9a2V5ITGRL6JMnmfj27An8+iub5Z45A9SubXubuHAZwNgLIxaL8fLlkEgkkMlkcHNzg7+/P6pVq4aYmBj07NkTVS24yTF06FCsWrVK71jdunVx8uRJu/CZsheys9mszJCwGVNkIyjI8IytQoVX769dvMiWWwBw4QIQGWn+97IlOTmsEO6KFex3f39WWaluXeDECa3fl63gwmUAc4TLGEQiEZycnKBQKODp6YmQkBBERESgbdu26NKlS7Gzt40bN6Jfv35Q6ayPvLy8cPLkSYsKY1khPV37sODGDWDxYla5RyxmS8fs7OLPd3Jiy01Dwubnx2Yq//kP8PPPQI8ebC/NFHJzgWXLgH/+AapUYUtcSz5tfRVr1gDDhzMhE4vZHuGsWdrq2LaCC5cBSnJhkpKSsHXrVhw5cgTXrl3Dw4cPkZ6ejuzsbL1NclMQi8UQi8VQKBQQi8V6e1gAm92tXr0aAwYMMGscjpYXL1ih1SNHAG9vtint4lL0bO3u3VdXsnZxYS4ePj7A4cMEQIT585mrRKVKrEK3MYwfzzbMdf+kJBLm/T9/volf1gTOnGFLx4Iq4hIJcPo0UKeO7WzgwmUAS2/Oq1QqHD9+HDt27MCZM2dw584dJCcnIy0tzWRx69u3L34oK2WIbUxGBtugP3GC+ZcdPgzUqFG4XX4+20PTFTNdV4/ERBhRr/AZxOK7kMkewNPzGUJDCU2aBKJPnwaIjFRCoWCitWCB4R7GjbOteD19Crz5JqsqDjBRvnOHPQSxBVy4DGCucKlUKhw4cAC7du3CuXPncPfuXaSkpCAzMxN5eXkmLS91ycrKEuRhQFkiNZWVvD93ju1xHT7MlmclITdXu79240YeRo36FsBQsPKkKQC8jejlIYDbAO4BuA/AB0D2v8fbA2gAicQJmZm2XTbm5zMn3q+/Zr8HB7MN/IAA64/NYxUNYGxIQYsWLcjf358UCoVFcskXZEn19fWl2rVrU8+ePWn+/Pl07do1ysrKogsXLtjoCnCIWDLAgqymISGWKSLRvfsTAohEonME1COgKQG9CBhNwFcEbCHgPAFpBsOn2Oudl/5+RCSRSEgul5O3tzcpFAqSyWS0fPly840uhnHjtDb5+GhDhawJj1U0gKVTNxdkSfXw8KDQ0FBq0aIFjR49mrZv384Lxdo5SUlE1auzG7NKFaLERPP6W768aCESidhr82aW3fbHHzdQv34fULlyAwkYRsB0Ah7+2z6TABej//4WWTkbYMeO2u8hkRAtXmzdhI08VtEAxk5FPTw88OLFC8hkMiiVSgQEBCAsLAzNmjVD165dERoaajujOVbj/n2gRQvg1i0gLAw4dIi5BJSU/Hy2UZ+Y+PInKgAHAOyCTHYOFSrcQ0rKU2RmZiI3Nw9Mfz4DMAlAKoA6AO6WaGw3NzccOnQI0dHRJTf8FSQnsxCgJ0+0x/77X+Y+4eJi8eH4UtEQpSk7BMcy3LlDFBzMZhW1axMlJ5fs/KysLKpSJYoAfwKqEJD17ywl1ohZ02s6szPdQikSAhQE+FFERG3q3bs3ffHFFxT/b8rS8ePHF8qKW716db1ZvkrFSrr9+CP7aWr2h19/1c4cC/L8R0VZp+AGXyoagAsXpyji44kCA9lNGR1ddL52Q+Tl5b0kRgv/FaLfit1aCA5uQGLx03/b3iUgr9Ays7j89nl5eRQTE1NojL59+9LmzUQVKuj3VaECW66awttva/cDfXzYe09Poj/+MK0/Q3DhMgAXLo4hrlzRlvpq3JgVXjUWsVjy7yzJhYDaBPzv3032JQQkaMTjwAHWXjd9sq+vdiaju59kbFGOhIQE8vX1fUnAJASsMbjXVlKSk4kCAlg/w4ZpU1iLREQzZ1quYhAXLgNw4eIUx/nzrD4h/s0Y+uKFceepVGxGU1B1qKgN+uBg7XJtzhxtTvgrV4hycogWLiQaNYr9zMkpue2bNm16KbGkjFjm2hsG7XjVd9Jdam7Zou1j3z6ibt20369TJ22xXHOWqKVauJYsWUIVK1YkuVxODRs2pBMnThh9Lhcuzqs4dYpIqWQ35GuvERn7cHjzZu2spriZzl9/sRkVwKryWJIDB4iA4QQ0I+DKvzasJiBKbylaMPMr7rsUtdRs1Yq9LyjIq/sKCCD68kvzlqilVrg2btxIMpmMvvvuO7p8+TINGTKEPD096dGjR0adz4WLYwx//62tP9i5s/EzoKJu+OBg7Y379Kn2QUDfvpZ3LVi16mVBeUjAGzqzsGEEsNlQcd+hqJmjodnkq14lWaKWWneIRo0aoUGDBliyZAkAQK1WIzg4GO+//z4mTpz4yvMdLR8XRzgOHmSxjdnZLIZv40bjEuzl57N4yIcPgcBAoHlzFvdHxFLHbNsGVKvGYgPd3S1jKxFLSfPeey9nxbgFoB6Yq0UBUgwcOBODB7csVBVKrQbattV1fxCBaZ4ubgAq/nv8DoBMABIAFf79DACeAkjSO8vPD7h3LwxyueGLWCrdIXJyckgikdCWLVv0jvfv35+6detW5DnZ2dmUlpameSUkJPAZF8dodu8mksnYzOHtt80rKLFoEetHJiM6c8ZyNiYmskIlBTOcopZxbKPelAiQrwk4QEC1l46v/rffeNI6zIoJ+FRnzMMEBOid9913ccV+F1NmXGLj5E04kpOTkZ+fD/+XPAT9/f2RlJRU5Dlz586Fh4eH5hUcHGwLUzmlhHbtgF9+YTOtH38Ehg5ls5KScvYs8PHH7P2CBYAlfEXVapYKp2ZNNotzcgKmTGFppEWil1NaDwDwdQlHaARgFIBWYDMsXT4CkACgKoCCTLxqANMAdAeQBqA5gAZ6Z+k6slqKUpmhbtKkSfhIpzpoeno6Fy9OiejalYnWm28C333HsqYuWVJ0rvuiyMhgObtyc4Hu3YH33zffpsuXgSFDWNEOAGjUCFi1Spu1VCZjCQKZJ/9FAM0AZOj10bJlSyxdulTv2MmTrHAGowpY0HgqgP8VYUU+WID4xH9fujwGW0LO/ffFiI4OM/5LGouZM1arY8pS8WX45jzHVL7/XrtBPXascRvrajXbhC/YpH/61DwbsrKIpk1jNR0BIjc3Fj9Y1BL2+fMsCgmpqbdUE4lE9NFHHxnsv8Ctw5RN+Fdt0BvjhlFqnyo2bNiQRo0apfk9Pz+fypcvT3PnzjXqfC5cHHPQfWo3deqr269Zo3UoPXTIvBCcw4eJwsK043ftSnTvXtFt+/XrV2i/qmHDhpSXl/fKcRYvNiw+hp4wvuozaz5VdAjh2rhxI8nlclq7di1duXKFhg4dSp6enpSUlGTU+Vy4OOaie2PPnm243ZUrzMEUIHrrLdP9m549Ixo6VHuevz/Rzz8XPeNbt25doTRM5cqVo9tGltxWq7W+WnJ50W4dxbl8vMod5FWUWuEiIlq8eDGFhISQTCajhg0b0vHjx40+lwsXxxIsWKC9Mb/8kmjy5Mm0fv16ysjIICKizEyiyEj2ee3apvk3qdVEv/yijaEEiIYM0Xqo6xIfH09eXl56guXk5EQbNmwo0fdavZqN4+LC4jcNzRCL847nnvNWgAsXx1J88omuEA1/aWm29N/jSQTUICCMgE4EzCTg0iv3fhIS9ENqqlcnOniwsA15eXkUHR1daFk4ePDgEn+fhw9Z4DRA9MUXJl4UM+HCZQAuXBxLoVYTTZqkK14D/xWOXjrHxhEwioAVBPxN2uynbf5tKyLAiZyd3SgoKIjq129IjRr9Hzk75xD+9cmaOrXosKNRo0YVEqzatWsbtY9VFH36MJvr1SMysQuz4cJlAGMvzPLly/Wm/hxOUajVRCNHFsye1OTl9ZAA1SuesuUQUHjzHKj1r7gVtDtKQDgBILFYrEn/7ezsXOhcDw8Piosr3rmzOLZv1z5EOHvWgheohJgiXKXSj8tURowYAXopAkosFkMqlcLV1RU+Pj6oUqUK6tevj65du6JBgwYGeuKUFvLygPh4IC4OuHSJveLiWC1EACAS4dkzYypKXAdQDUA3ADfBwmNGARgPQAYgHSwj6jdgTp0stA1gxVR0kUgkWLZsGYYOHWry98rIYDUVAVYSrW5dk7sSBIeIVTQXWxSEFYvFcHZ2hoeHB4KCglCzZk20bNkS3bt3h4+Pjznmc2wAEavgUyBQBT+vXWNOpEXh62vIKzwRwBYAf4EJ1iMwYcoBc+BsDmAlgIIaadsAjASr+lM8Li4uePHiRUm+WpGMHs2K5VauzL6nNVIyGwsvT2aAklyY58+f47fffsP+/ftx+fJlJCYmIjU1VVMQ1pzLJRKJIBKJ4OzsDCJCdnY2evfujU2bNpncJ6fkPH2qL05xceyVnl50e1dXICKCeagX/KxaNRvh4cPw/PlanZYEYCGAsQZG9gAwH6ykGcBKkr0PYLNeNXQvLy+EhIQgKioKsbGxaN++PZKSkhAQEGCRMnbHjwNNmjCx/vNPVnNSSLhwGcAa2SEuXryI7du34+TJk7h58yYeP36M1NRUqFSqEvf1+uuvc/GyApmZwJUrhUXq4cOi2zs5sUKxL4tUxYqsRL0uDx8CQUGPAfiBLe/eBOAJ4BqAmi/1LAHQB0zUWMxt48aX8M03HoiKCrHU1zWK3FygXj12Hfr3B9ats+nwRWLK/cn3uIwgOzsbO3bswN69e3Hp0iXcu3cPqampyMrKgkqlMmsWBgC//PILnJycsGTJEgwbNsxCVpcdVCrD+1CG/mlCQ/XFKSKCVfwxpghrfj6resNE6yKA8wCGgS0FNwLYCSAWBbdXaCirDA0A1auz+MIWLWqb/H3NYcECdm18fIAvvxTEBIvAZ1w6NG3aFDdu3MDz58+Rm5ur2Rw1FYlEAmdnZyiVSgQGBqJGjRpo3rw5evTogYCAAPz+++/o3bs3cnU2UZRKJY4ePYrw8HCzxi6NELEAYl1xunQJuHrV8D6Ujw8TJl2RCg83LyfW7NnAtGlsXygry7A46iKVAhMnApMns4BtIbhxA4iMBHJygB9+APr2FcaOl+FLRQMYe2FERob+6z5pLFeuHCpVqoR69eqhU6dOaNy4MZyMyTynwwcffIBFixbpzdzCw8Nx/vz5EvdVWkhJKXofKi2t6PYuLkyYCsSpQKhMqZdYHEeOAK1asfQya9cyAdi7t/hzYmLYLEvI/4vUaqBNG1ZDsn17YOdO4zNdWBsuXAYw9sJ4eXnh+fPnkMvl8PDwQPny5VGrVi20atUKPXr0KJQ50pKoVCrExMTg9OnTescHDhyI7777zmrjCk1mJpsxvSxSDx4U3V4iYUu6l2dRoaGF96EszdOnQJ06bNbXrx/wzTdAlSpAUhITgZfvJJkM+Oor5nZgbdtexerVLCWOiwtLj2NPtY1LZQZUS+BInvO3b98mb2/vQvFn69evF9o0s8jLI7p6lWjTJqLp04l69SKqVq34nOYVKxJ16UI0cSLR+vVEFy4QZWcLY79arQ3HqVaNKCODaO5c9nulSkQ7d2rLnOHfLA4JCcLY+jK6YT1ffim0NYUptTnnzcURc87/+OOPeOedd/SeUnp7e+PMmTMItaf/Ll+CiJW4f3kGdeUK21spinLlit6Hsqd/qq+/Bj74gM2iTpxgTxorVwZSU9nS8eBB1i4ggCUc7NXLfpZiffoAmzaxp4nHjxuXQ9+W8BmXARxpxvUyAwcO1Jt9AaD69eubHJtmSVJSWL6opUtZwdBmzbT/sxf1cnEhatCAaOBAoq++IvrzTzYbsHTVG0tz+rQ2id/ixezYhAmkiSss+H5Dh5asGrYt+O03bVjPuXNCW1M0fMZlAEeccemiUqlQt25dxMXF6R3v06cP+vXrh0qVKll1/OxsEW7dkiM+Xo74eGc8eOCNy5fFuG/A0VsiYY/9X55FVaok/F5PScnIYLnib94EevRgVXVOnwYaN9bmoQ8LA1auBFq0ENTUQqSns5lrYiIwfjzw+edCW1Q0fMZlAEeecekSFxdHSqWyiEBda70WEnCt2ADikBBWg3DCBKIffmBVoYXah7I0ajWr8lPwPR8/ZlV7CmZfIhFLqWyv33fUKGZn5crGV+cWAp4dwgClRbiIiLZu3Voo26X1Xpt1RCqZWMmqRTR9+n36+2+i1FShr4Z1+fZb7TLr//6PqHFjfdFet05oCw1z9Kj2wceePUJbUzw8O0QpJikpCVFRUXj8+LHe8UqVKmH79u1WGfPcOQUyM++gevUc+PioIBL5AmiDsDA/u9vgtTRXrwKjRrH3zZuzKjgqFdvYVqmADh1YyIw9kpvLXB+IgHfeAWJjhbbI8pTyPz/HR6VSoU2bNjhy5Ije8T59+uCnn36y6thl1Xk/K4s9icvKYn5PBU8MdZ8ezp1r4GQ7YP585qvl4wN88YXQ1lgHB9sqLVtMnz4dMplMT7SqVq2KrKwsq4tWWWbECObCATAH2cBAYPNmQKFgx956izmi2iPXrwOffsre/+9/TLxKI1y47JD9+/dDoVDg008/1YQBubq64uTJk4iPj7dIahNOYYiADz9koTwFvPce80Hz8WFhMk5OwCefCGZisajVrOp2bi4L63n7baEtsh58qajDrFmzIBaL0blzZ0Rbol56CUlNTUVkZCQSEhI0x8RiMebNm4dx48bZ3J6yREICMGAAsH8/+71cOWDLFra/RQRMmsSOv/suULWqYGYWy3ffAYcPs+XtN9/YjwOsVbDeswL7wdinFiKRqNCTNZFIRE5OTuTm5kbly5enhg0b0sCBA2ndunX0zILehp06dSo0dseOHS3WP6doVCrm4uDmpl/7ULfsQIETp0JBdP++cLYWh72H9RQHd4cwgDnCZexLLBaTXC4nb29vql69OrVv354mT55MR48eLdbLff78+SQWi/X6Cg4Otqgocorm4kWiRo30XRzc3Ynu3NG2UamIIiLYZxMnCmfrq3jjDeGr9ZgKFy4DlPTCnDlzhmbOnEmdOnWimjVrUrly5cjZ2bmQwJT0VSCMUqmUZDJZoc+dnZ1p3759Vr4anKwsosmTteE6BZWnAaItW/Tbfv89O+7pWXRRVnvAEcJ6ioMLlwGs4YCakZFBGzZsoCFDhlCTJk0oKCioyBJSxgra5MmTLWYbxzAHDrDsDgVC1bEjkZcXez9qlH7bnByi0FD22dy5gpj7StLS2NIWIBo/XmhrTIM7oFqJ69evY8uWLThx4gRu3ryJR48eISMjwyJZUkUiEXJzc8tswkBbkZLC4vW+/Zb9HhjIqtwsXQo8e8bcGxYs0D9n5UqWcjkwkFXFsUemTGGxiJUrAzNmCG2N7eB3iw61a9fG3bt3kZWVZZGKPlKpFC4uLvDx8UFoaCjq1KmDjh07osW/0bjJyckICDCmJh/HVIiAn39mwlMQdDBsGDBvHktVc+AAq+Lz00/6KZWfP2cpmgFtmmZ749gxJrwAsGKFfdpoLbhw6fBy9oWieLmGYkBAAGrWrIkWLVqgV69eJaqhyEXLuty7x5xJ//iD/V6zJptFNWvG3AZmzWLHly9n2Sx0+fpr4NEjluH03Xdta7cxlIWwnuLgwqWDr68v0tPTNVWrC3LJd+nSBQ0aNODLOQchP58l85syBXjxghWqmDKFFauQy4HkZOacqVazeMN+/fTPf/qUhc0AzAtdKrX9d3gVBWE9vr6OXa3HVPidqMPLAcwcx+PiRTYTOXmS/d60KStUUfPfUodEwMCBLEtrWJh2qaXL55+zXFZRUcB//mM7243l5bCecuUENUcQeMgPp1SQlcVKf9Wrx0RLqWRLwMOHtaIFsCXg77+zmddPPwFubvr9JCayTXsA+Owz+0t8qBvW06EDi5ssi/AZF8fhOXCA3cw3b7Lfe/UCFi0CypfXb3f6NHuyCLDqO1FRhfv65BMgO5uF+nTsaF27TeHbb7VhPcuXl/KwnuKwnneG/VCaEglytDx9SjRokNYnKyiosANpAWlpRFWqsHY9exad5/76debECRD99ZdVTTeJBw+IPDyYfV99JbQ1lsOU+9POJsIczqshAjZuZEvAgpKTw4ezLA49ehTd/r33gH/+YdV5vv226JnKtGlsY79LF7Y3Zm+MHs0K4tavb79+ZbaCLxU5DkVRLg6rVhUvNN99x4ROIgE2bAC8vAq3OXOG+XuJRMCcOdax3Rx++w345Rf2HVavZj/LMnzGxXEI8vPZxnqtWky0ZDLmh3XuXPGidfky8P777P2cOUBMTNHtJk9mP/v2BSIjLWu7uaSnM7EGgI8/LnpvrsxhxaWr3cD3uBybCxeIGjbU7mU1a0Z05cqrz3vxgig8nJ3Trh1Rfn7R7fbvZ22kUqJ//rGs7ZZg5EhmX5UqRJmZQltjefgeF6dUkZXFEvjpujh88w1w6JC+i4MhPvyQzbgCAoD/+7+iXRt0kwQOHcpi/uyJY8eAZcvY+xUrtOmjyzp8j4tjl+zfzzbUdV0cFi8GgoKMO//nn1l4j0gEfP894O9fdLtt24ATJ5h7wdSplrHdUuiG9QwYALRtK7RF9gOfcXHsipQUVgqsbVsmWuXLsxTKmzcbL1q3brEbHmCzKUNxfPn5LBQIYLMzewsd/fxzbVhPaa3WYzJWXLraDXyPy/5Rq4k2bCDy89NWiR4xgvlflYScHKL69VkfTZsWnw107VrWzsuLyN4Szl69SiSTMfvWrxfaGuvC83FxHJK7d5kf1s6d7PdatZiLQ5MmJe9r8mTmIe/lBfz4IwwWrs3JAaZPZ+8nTQI8PU0y3SrwsJ5Xw5eKHMHIz2dBwuHhTLQKXBzOnjVNtP74Q5spYc0aICTEcNtvvmE+YUFB2orV9sLq1cCRIzyspzj4jIsjCBcusH2oU6fY782bs830GjVM6+/+fZaXCmB+W927G26bkaF1Mp0xw76e1D18qI2nnD0bCA0V1By7hc+4ODZF18Xh1CnAw4M95j940HTRys9njqNPnwJ16xZOwfwyCxcCT54A1aqxFDf2BA/rMQ4+49Jh8r/u0x06dECTJk144kALs2+fNmYQAHr3Zi4OgYHm9Tt7NvPtcnNjqWrkcsNtk5O1T+hmz7avJIE8rKcEWPFhgd1gbl1FiURCLi4uFBAQQNHR0fT222/TkiVL6OHDhzb6Bo5NcjLRgAFaz/fy5Ym2brVM3wcPEonFrN/vv391+48+Ym2jow170gtBWhq7LgDRhAlCW2NbeHkyAxh7YcypmygSiUgqlZKnpydVrlyZWrduTWPGjKGdO3cWWxC2NKNWs0f5vr5aF4eRI0vu4mCIx49ZKhuACeOruHuXSC5n7XftsowNlqK0h/UUh10J1+3bt2nQoEEUGhpKzs7OVLlyZZo+fTrl5OTotbtw4QI1a9aM5HI5VahQgT7//PNCff38888UFhZGcrmcIiIi6I8//iiRLSW9MPHx8fTFF19Q7969qXbt2uTn50cKhYIkEolZBWF1Z3AFIhkTE1Oi7+Io3L7NahYWzLLCw4n+/tty/avVRJ06sb5r1CB6/vzV5xTk7mrVquh8XEJx9CgTdYBo716hrbE9diVcO3fupAEDBtDu3bvpn3/+oW3btpGfnx+NHTtW0yYtLY38/f2pb9++FBcXRxs2bCCFQkErVqzQtPn7779JIpHQ/Pnz6cqVKzR16lSSSqV06dIlo22xhgNqXl4e7dy5k8aMGUMtW7ak4OBgkwvCxsTElJpZmUrFktwVVIeWyYg++YQ5hlqSL79k/cvlLAj7VVy9ql1SHjtmWVvMISdHGwhuzKyxNGJXwlUU8+fPp0qVKml+X7ZsGXl5eenNwiZMmEBhYWGa3/v06UOdO3fW66dRo0b03nvvGT2uucJ18uRJmjZtGnXs2JGqV69O3t7eJJfLzVpaFrXUHO+opYj/5fx5rdc6QNS8ORMMS3PyJMvkABAtW2bcOb17s/bdu1veHnP45BNml68v2wssi9i9cE2ZMoXq1aun+b1fv37U/aW/pP379xMASklJISKi4OBgWrhwoV6b6dOnU2RkpMFxsrOzKS0tTfNKSEgw6sLUrFmTXF1dSSKRGNyoN/YlFovJ2dmZypUrRzVr1qQuXbrQzJkz6cyZM5rxzpw5Q25ubnrnyeVy+vPPP428ovZBZibbUC5Ie+zhQbRypXU2v1NTiSpVYuP07m3cku/kSe0eW1yc5W0yFd2wnh9/FNoa4bBr4YqPjyelUkkrV67UHHvttddo6NCheu0uX75MAOjKvwmXpFIp/fjSv+rSpUvJz8/P4FgzZswoUkxedWGMnRk5OTmRu7s7hYSEUExMDA0ZMoQ2bNhAGRkZJb0sRES0cOHCQrO3oKAgevLkiUn92ZK9e7W53AGi119nudGtgVpN1KcPG6diRePjC9u2Zee884517DKF/Hw2IwXYXqA97bnZGpsI14QJE155c199aX2QmJhIVapUocGDB+sdt5ZwmTrjCggIIGdnZ/Lx8aHw8HDq0aMHzZ07l+Js9N90t27dCl3L2NhYm4xdUpKTmRAUCFb58kTbtll3zJUr2VhOTsbvU+3Zo00SePu2Vc0rEStWMLtcXYnu3BHaGmGxSZD12LFjMWDAgGLbVNbJxvbgwQO0bt0aTZo0wcqVK/XaBQQE4NGjR3rHCn4vKE9vqE1x5evlcjnkxXkhGuDhw4clPseSbNu2Dc+fP0dERATu3r0LANi7dy/EYjE+/fRTTCnIwSIgRCxv+wcfMO9zkQgYOZKF0CiV1hs3Lk7rST5nDtC4sXG2FiQJHD7cfsJnXg7rqVhRWHscEisKKSUmJlK1atXozTffJJVKVejzgs353NxczbFJkyYV2pzv0qWL3nkxMTE23ZwXgiNHjpBCodCbfbm4uNDRo0cFs+n2baIOHfRdHGxhzosXRLVqsTHbtzd+7+yXX7SzmkePrGtjSSh4UNCgAXsKW9axqz2uxMREqlq1KrVt25YSExPp4cOHmlcBqamp5O/vT/369aO4uDjauHEjubi4FHKHcHJyoi+++IKuXr1KM2bMsAt3CFsxc+bMQg8KKlWqZPJ+mink5TH3A10Xh08/tbyLgyHefZeNGxBgvADl5TH/LoBo+nTr2lcStm5lNkkk7Cksx7T7U0REZI2Z3Nq1azHQQASr7pAXL17EyJEjcerUKfj4+OD999/HhAkT9Npv2rQJU6dOxZ07d1CtWjXMnz8fnTp1MtqW9PR0eHh4IC0tDUprrmesSJs2bXDgwAG9Yy1btsTgwYMRHR1ttXGvXXPG9OlBuHKFpVCoX/8F1q6VIzzcNnGcGzeyfFQiEbBnj/Hpi7/7Dhg8GChXjmVEtYd/9vR0lmvs/n1g4kRg7lyhLbIPTLo/raWi9oQjz7h0efLkCQUGBlrMd6z4l5iAeQTk/bs0TCFgMAEimz2siI8ncndnM5SpU40/LyuLqEIFdt6XX1rPvpIyYgSzqWrVshfWUxy8yk8px8fHB1OmTIHIJpnl1ABqgCUQ+RlATQDfguma9cnNBd58k+XOataM5c0ylmXLgMREoEIFbT1CoTl6lCUFBHi1HkvA87Y4CBcvXkTTpk3x/PlzzTGxWIyoqCh8//33VhkzKckJV6/eQ+vW4QD2aY6HhYVZZTxdJk5k1aW9vYtPwfwy6enAZ5+x9zNnAs7OVjPRaHJytNV6Bg4E2rQR2qJSgBVngHaDIy8Vs7KyKCwsrJAT7Mcffyy0aVZj+3btk8uS+oZNn87OCwsrvlCGLZk1i9nk50f09KnQ1tgfdvVU0Z5wVOHq169fob2nxo0bl5qA7KJISCAqV47d6GPGlOzcR4+Y6wPAXCHsgStXtGE9GzYIbY19wqv8lBL+7//+D4MGDUJ+fr7mmI+PD86dO4cKFSoIaJl1Uam0KZijo1ldwZLw2WfAixcs7XGvXtaxsSToVuvp2BH4z3+Etqj0wIVLh6FDhyIzMxPNmjVDjx49ivXOtwY3b95Ew4YN8ezZM80xqVSKH3/8Ea+//rpNbRGCTz8FDh9mKZg3biw+BfPL3Lmj3fyeO9c+KuOsWgX89Rfg6sqr9VgcK84A7QZzUzeLRCKSyWTk6elJVapUobZt29LHH39M+/bts8iyLS8vj6KjowuNO2TIELP7dhT279cm0zOlAGpB3GTbthY3zSTu3ydSKplNLyU34bwE3+MygLEXxtwMpwW56f39/SkqKor69OlDixYtooSEBINjjho1qlA/kZGRpXof62UePyYKDGQ3+aBBJT8/Lk6bJPDkScvbZwq9evGwHmOxK895e6KknrnZ2dnYvXs39u7diwsXLiAhIQEpKSnIysqCSqWCJS6ZSCQq1I+HhwdOnDhhE3cDe0GtBrp0YQVha9ZkJctcXUvWR8+ewNatbF9r82armFkitm5lNkkkzKUjKkpoi+wb7jlvAGs9Vbx9+zYtXLiQXn/9dapSpQq5uLiYlIBQIpHQ6tWrLWqbo7BgAZuZODsTXbxY8vOPHWPni8XsCZ7QpKZqC3hMnCi0NY4Bf6poBVJTU7F161YcPHgQV65cwYMHD5CWlobs7Gzk5+ebPfuSSCRQqVQWstaxOHFCm3bmf/8Datcu2fm6aWsGDGAzNqGZPBl48ACoWhWYPl1oa0ovXLh0qFixIh49eoS8vDyo1WqT+xGJRJBIJHB2doanpycqVKiA8PBwtGjRAt26dYOnpydUKhVUKhWc7cG1WwBSU1lIj0oFvPEGcxsoKXv2sArYMlnJQoKsBQ/rsR1cuHS4d+/eK9uIxWLIZDK4ubnBz88PlStXRsOGDdG9e3dERkYaPZaTk1OZrZRNxITqzh2W3G/lypK7CqjV2tnWyJFASIilrSwZPKzHtpTNO8cAISEhSE1N1cySIiMj0bZtW3To0AFubm5Cm1dqWLkS2LSJxR/+9BPg6VnyPn75BTh7FnB31wqYkHz+OXDlCuDnB3zxhdDWlH64cOlQkC6ZYz0uXWJpnwHmKNqwYcn7yMsDpk5l7z/+GPD1tZh5JnH1KksnDQBff80CwznWhae14diMFy9Y2Et2NguB+egj0/pZuxaIj2eC9eGHFjWxxOiG9XTqxMN6bAUXLo7NGD2azU4CA4F16wCxCX99WVksXQ0ATJnClopCwsN6hIELF8cm/PgjS6csEgHr15u+vFu6lLkbhIQAw4ZZ1saS8uCBtlrPnDnCPyAoS3Dh4lidmzeB995j76dNA1q3Nq2f1FRtksBZs0oWhG0N3n+fJS5s2BAYNUpYW8oaXLg4ViUnh+37PH8ONG/OhMtUvvgCePaMFZzo189yNprC1q3Ar7+yJ6OrVrHwHo7t4MLFsSoTJjC3hXLlSpaC+WWSkoCFC9n7OXOEFYq0NOY7BgDjxgElcN/jWAguXByr8dtvzD0AYE8CzcmBOGcOkJkJNGoEdO9uEfNMZtIkbViPOTNIjulw4eJYhYQE5kEOMJeFLl1M7+vWLRZCAwifJPDvv7VhPStX8rAeoeDCxbE4KhXw9ttASgpQr575hU9nzGBOp+3amb6xbwkKwnoAYNAgYW0p63Dh4licWbOYb5O7OwvpMefp36VLzH0C0D5RFIp585gfmp8fsGCBsLaUdbhwcSzK/v3a8JeVK4EqVczrb8oUFrj8xhts9iYUV69qhXPRIh7WIzRcuDgW4/FjVqWHCBg8mKWtMYe//wa2b2dPED/91DI2moJazZaIublA585Anz7C2cJhcOHiWAS1Gujfn7kt1KrFZiXmoJskcNAgQMhs1itXMhF1dQWWLeNhPfYAFy6ORfjiC2D3blby/qefABcX8/rbtQs4coTtjwmZSfT+feaLBvCwHnuCCxfHbI4fZ3tRAJtpRUSY159uksD33zfP/8tceFiPfcLzcekwYMAAvHjxAo0bN0bv3r0RGhoqtEl2T2oq8NZbzAWiTx/g3XfN7/Onn4ALFwClEpg40fz+TGXLFvbiYT32By9PpoNYLC6y+IVIJIKTkxMUCgW8vLwQEhKCiIgIxMbGolOnTmU2b3zB077Nm4HKlVloj4eHeX3m5bGiF//8A8yerZ3J2Zq0NGbHw4ds9ie0K0ZpxpTyZFy4dJBKpWZV3NHNR+/v749q1aqhfv366NGjB8LDw03u11755htg+HA2Izl6FGjQwHJ9+vkx8RIqY/bw4cyWqlWBixe5h7w14cJlgJJeGJVKhaNHj+KPP/7A2bNncffuXSQnJ+PFixfIy8uzSEHYAqpXr47r169brD9bcfEi2/fJyWEb82PHmt9nZiYTiocPgcWLhdtT+usvlskCYH5p3EPeuvCCsAawVkHYJ0+e0OrVq+mtt96iatWqkaurK4nF4hIXhK1evTplZWVZ1DZr8vw5UY0arOhpp05E+fmW6XfePNZnaChRTo5l+iwp2dna7zZokDA2lDV4QVgrkJiYiG3btuGvv/7C9evX8fDhQ6SnpyMnJwf5+fkWGePGjRtQKBR48803sWHDBov0aU1GjQKuXQOCgkxPwfwyz56xkBoA+OQTVitRCObNY9+Nh/XYOVYUUrvBWEUvX748SaVSEolEJZ416b5EIhFJpVJSKpUUGhpKLVq0oNGjR9PWrVv1ZlYJCQnk6+urd65EIqHVq1db+5KYzPffa0veHzxouX4nTmT9RkQQqVSW67ckXLlCJJMxOzZuFMaGsogpMy4uXDoYI0oSiYQUCgX5+/tTVFQUvf7667Rw4UK6ffu2yfZt3ryZpFKp3jienp507do1k/u0BjduELm5sRt7xgzL9fvgAZFCwfr97TfL9VsS8vOJmjZlNnTuTKRWC2NHWYQLlwGMvTCVK1cmT09Pqly5MrVu3Zo++ugj+vPPPykvL88mdo4aNaqQUEZGRtps/OLIziaqW5fd2C1bWnZWNHw46zcmRjjBWL6c2eDmRnT3rjA2lFW4cBnAWpvz1iAvL4/q1q1bSMCGDBkiqF2jR7Mbu1w5osREy/UbH0/k5MT6PnTIcv2WhMREIqWS2fD118LYUJYx5f7kIT92hpOTE86ePYv4+Hh4eXlpjq9atQoymQy//PKLzW3atk0bNL1uHVC+vOX6nj6ded137Ai0aGG5fktCQVhPo0baXPIcO8eKQmo3ONKM62XWrVtHEolEb/bl4+NDCQkJNhn/7l0iLy82G/noI8v2fe4c6xdg74Xg11/Z+E5ORBcvCmNDWceU+5M7oDoI/fv3x/fff693rHr16hgyZAg6duxolTFVKmDgwFCcO+eKiIhMfP/9HUilhLCwMDiZWq5Hh86dgR07WN4uIbxAdMN6Jk/WJkDk2BbugGoAR55x6ZKVlUU1a9Y0y1WjZK9P/50RpRJQSXM8Li7O7O9y+LB2phMfb4GLYwLDhjEbqlUjciD/31IH3+Mq5Tg7O1ttdlUYCYCCTaehAG5brGfdJIHvvsvCfGzNX3+xWESAJQoso3HyDgv3nHcQdu3ahe7duyM3N1dzTCaToVWrVvjqq6+sMqZKBRw6dA9t204HoM3mF2ZmOtI//mAZRRUKYeoS6lbrGTwYaNXK9jZwzIMLl52TnJyMyMhIPHz4UHNMIpHg66+/xkgbPAKLirJsf/n52tnW6NEsbMjWzJ3Lwnr8/XlYj6PChcuOadOmDQ4cOKB3rGfPnvj1118Fssh8NmwA4uIAT09tSmRbcuWKfrUeHY8TjgNhkz2unJwc1KlTByKRCOfPn9f77OLFi2jevDmcnZ0RHByM+fPnFzp/06ZNqFGjBpydnVG7dm3s2LHDFmYLxqeffgqxWKwnWpUqVUJGRoZDi1ZurjZ//PjxtheNgmo9eXmssvYbb9h2fI4FseLDAg2jR4+mjh07EgA6p+Owk5aWRv7+/tS3b1+Ki4ujDRs2kEKhoBUrVmja/P333ySRSGj+/Pl05coVmjp1KkmlUrp06ZLR4xv71KJHjx7UokULGjVqVKGAaFtw5MgRUigUek/2XFxc6OjRoza1w1osWcKe4gUEsNQ4tmbZMm1Yz717th+fUzR2GfKzY8cOqlGjBl2+fLmQcC1btoy8vLwoRyf50oQJEygsLEzze58+fahz5856fTZq1Ijee+89g2NmZ2dTWlqa5pWQkGDUhSkuK4REIiFnZ2fy9fWliIgI6tmzJ82fP98igdAZGRlUsWLFQhkmZs+ebXbf9sLz50T+/kw4li2z/fiJiUTu7mz8RYtsPz7HMHYnXElJSVS+fHk6deoU3b59u5Bw9evXj7p37653zv79+wkApaSkEBFRcHAwLVy4UK/N9OnTKTIy0uC4M2bMKFJ8XnVh5HK5WX5PBels3N3dKSQkhJo0aULDhg2jTZs2GZy9devWrVA/sbGxxdrpiMyZw0SjShWi3Fzbj9+jBxu/USPh0uZwisauEgkSEQYMGIBhw4ahfv36uHPnTqE2SUlJqFSpkt4xf39/zWdeXl5ISkrSHNNtk5SUZHDsSZMm4aOPPtL8np6ejuDg4FfanJ2drWfb1q1bceTIEVy7dk2TQDA7O9tgAkEiQl5eHvLy8pCRkYF79+7h6NGj+KbAYegVBAUF4cKFC/Dx8TGqvaPw9Cnw+efs/SefAFKpbcf/9Vdg61Zerac0UWLhmjhxIj4v+Cs0wNWrV/Hnn38iIyMDkwqefdsQuVwOuVxuVh8BAQEYNmwYhg0bZrCNSqXC8ePH8fPPP2PPnj24f/8+MjMzS5wZVS6XY/v27XjttdfMstle+fxzFsQcGcnCe2xJaqo2d/348UDt2rYdn2MdSixcY8eOxYABA4ptU7lyZezfvx/Hjh0rJCD169dH3759sW7dOgQEBODRo0d6nxf8HhAQoPlZVJuCz62JSqXCgQMH8Oeff+LcuXO4c+cOnj59iszMTIsVzZDL5XozvdLG/fus8AXA/Kcskea5JEycyGIRq1UTxtmVYx1KLFy+vr7w9fV9ZbtFixZh9uzZmt8fPHiA9u3b46effkKjRo0AADExMZgyZQry8vIg/Xf9sGfPHoSFhWlSusTExGDfvn344IMPNH3t2bMHMTExJTX9lfj6+uLZs2dm55KXSCSaMmUBAQGoXr06YmJi0KVLF7O9zh2NTz4BsrOBZs1Y6hpbcuQIsGIFe8/DekoZ1tpwe5miNudTU1PJ39+f+vXrR3FxcbRx40ZycXEp5A7h5OREX3zxBV29epVmzJhhNXcIGLn57uHhQZUqVaKWLVvS6NGjafv27XaRpdTeuH6dSCJhm+JHjth2bN1qPYMH23ZsTsmwu6eKuhQlXEREFy5coGbNmpFcLqfy5cvTvHnzCp37888/U/Xq1Ukmk1F4eDj98ccfJRrb2AsTHh5OAQEBFBUVRX369KFFixbZLO9VaaRPHyYcXbrYfuzp09nY/v5E/z6g5tgpPB+XAUpDPi5H4+xZoF49QCQCzp9nG/O24vJloG5d5iH/009Anz62G5tTcky5P3laG45VmDyZ/Xz7bduKlloNDB3Kw3pKO1y4OBbn4EFg927mN/XJJ7Yde8UK4OhRwM0NWLaMzfg4pQ8uXByLopsk8L33gMqVbTf2/fvajBOffQYY4XPMcVC4cHEsym+/AcePAy4uwNSpth171CggI4NV6xkxwrZjc2wLFy6OxcjP1+5tffABYAMfYQ08rKdswYWLYzF++IEl6vPyAsaNs924umE9EybwsJ6yABcujkXIyQFmzGDvJ05kGU5tRUFYT/Xqtl+ecoSBCxfHIqxYAdy9y3LIF8x+bAEP6ymbcOHimE1GBlAQljpjBtuYtwU5OcxnC2Blzlq2tM24HOHhwsUxm//9D3jyhGVgGDjQduN+9pm2Wk8RpQo4pRguXByzSE7Wlvj69FPbJQm8fJmlyQFY2hxeradswYWLYxZz57KlYt26tguv0Q3r6doVeP1124zLsR+4cHFMJiEBWLqUvbdlksBvvtGG9SxdysN6yiJcuDgmM2sW2yBv2RJo1842YyYmMvcHgIklD+spm3Dh4pjEtWvAmjXs/dy5tpn1EGnDeho3BoYPt/6YHPvEalV+HJHOnTvj2bNnqFWrFtq0aYNu3brBzc1NaLPskqlT2V5T9+6AFbJoF8mvvwLbtrGwnpUreVhPWYYnEtRBLBYbLIAhFoshlUrh6uoKX19fVKlSBQ0bNkSnTp3QoEEDa5lul5w6BTRsyGZZFy8CERHWHzM1FahZE0hKAqZM0fqNcRwfUxIJcuHSQaFQmFVxRyQSQSKRQC6Xw8PDA+XLl0etWrXQqlUr9OjRA562jIOxIq+9BuzdC/TvD6xbZ5sx33uPzbKqVwcuXOAe8qUJLlwGMOXCPH/+HL/99hv279+PK1euIDExEc+ePdMUhLXUZXtVcVt7Y98+IDaW+WvduAGEhlp/zMOHtV7xBw9yD/nSBhcuA1gz5/zly5exevVq7N69G4mJiSYVhPXz88OFCxdsUivSHIhYrqtTp4DRo4Gvv7b+mNnZQJ06wPXrLKxn1Srrj8mxLabcn3xzvhiys7Px+++/Y//+/bh06RLu3buH1NRUZGVlQaVSWWzW9fjxYwQGBqJ58+bYv38/nJzs859lyxYmWq6ubJ/JFnz2GRMtHtbD0cU+7xCBKFeuHFJTU6FWq03uQyQSQSwWw9nZGUqlEoGBgahZsyZatGiBbt266c2qnj9/jrp16+LmzZsAgCNHjkAmk2HSpEmYM2eO2d/HkqhUWrH66CPAz8/6Y16+DMybx97zsB6OLnypqIPoFc5Iuk8WfXx8UKlSJURHR6NTp05o3LixyTOlU6dOoXXr1njx4oXmmLOzM/744w+0adPGpD4tzZo1wKBBQLlywD//AB4e1h1PrWbVr48dY2E927ZxD/nSCl8qmklUVBSSk5MRFBRk06eBDRo0wPPnz7FgwQJMnDgRarUa2dnZaNu2LYKDg3Hx4kVBn0hmZ2uTBE6aZH3RAoDly5lo8bAeTpFYsiKtvWJKpVwh6dixIwHQe3Xs2FEwe776ilWFrlCBKDPT+uMlJBC5u7MxFy+2/ngcYTHl/uQhP3bIjh078OzZM1SoUEFzbOfOnZBIJFhQkEPGRqSnAwXbbTNnAgqFdccjAkaO5GE9nOLhwmWneHp6IiEhAfv27YPzv96WarUa48ePh5ubG06dOmUTO776Cnj6FAgLA955x/rjbd7MSpxJpbxaD8cwfI/LzmnTpg2ysrIwZcoUzJ07F0SEFy9eoGHDhvDz88OAAQPQv39/q4z99KkECxZUAyDBe+8l4Pr1dABAWFiYVVw2UlOB999n7ydMsE0oEccx4U8VHQiVSoU2bdrgyJEjNhpxIYAPAJwGoI3HjIuLQ3h4uMVHKwjrCQsDzp/nYT1lBVPuT75UdCCcnJzg7+9vo9FEAAoKFE60+miHDzPRAni1Hs6r4UtFB2HlypUYMWKEXjiRu7s7evbsifHjx1tlTCLg3LnbiI7Wj+0JCwuz6DjZ2dpqPUOGAC1aWLR7TimEC5edc/nyZTRp0gTp6emaYzKZDJs3b0aXLl2sPr4t9pkKwnoCAnhYD8c4+FLRTlGpVIiIiEBERIRGtEQiEcaMGYOcnBybiJYteDmsp5Rk/uFYGT7jskPeffddfPvtt3rH6tevj2PHjtltALYpqNVsaZiXB3TrBvTuLbRFHEeh9NwFFqB58+Z4+vQpKlWqhIYNG6Jr166Ijo622fg//vgj3nnnHahUKs0xb29vnDlzBqG2SHxlYwrCetzdeVgPp2RwdwgdikvdXJDd1NnZWZPdNDw8HC1atDA7nvHOnTuoV68eUlJSNMecnJywbt06vP322yb3a88kJgK1ajEP+SVLmLc8p2zCEwkawNgL4+7ujhcvXpiVZ6uoDBL16tVDly5d0KBBA72lnkqlQkxMDE6fPq3Xx8CBA/Hdd9+ZbIO9QwT06ME85GNigL/+sl1NRo79wYXLAKY6oJ49exbbt2/H6dOn8c8//+Dx48d48eIFcnNzzcrZZYjw8HCcPn1aE+JTWvnlF1b1WioFzp0DrODLynEgeFobCxMdHf3KPa7k5GTMmzcPO3fuREJCgkmpm5VKJY4cOYLIyEhzzHUInj3TD+vhosUxBS5cxXD9+nVs2bIFJ0+eRHx8PB49eoSMjAyLzriUSiXS0tIs0pcjMGECKzEWFma79M+c0gcXLh0sscclEokglUrh4uICHx8fhIaGIjo6Gp07d0aTJk1KlTtDSTl0SFvsgof1cMyh7N5FRVCcaOnmkvfw8EBQUBBq1qyJZs2aoVevXvDx8bGxtY4FD+vhWBIuXDrExMQgOTm52CeBHNOYM4fVYeRhPRxLwO9IHf7++2+hTSiVxMXxsB6OZeHeMxyrkp/PloYqFQ/r4VgOLlwcq7J8OXD8OA/r4VgWLlwcq5GQwMqZAcDcuYBO7Q8OxyysKlx//PEHGjVqBIVCAS8vL/To0UPv83v37qFz585wcXGBn58fxo0bpxdgDAAHDx5EdHQ05HI5qlatirVr11rTZI6FKKjW8/w5C+vh1Xo4lsRqm/ObN2/GkCFD8Nlnn6FNmzZQqVSIi4vTfJ6fn4/OnTsjICAAR48excOHD9G/f39IpVJ89tlnAIDbt2+jc+fOGDZsGNavX499+/bh3XffRWBgINq3b28t0zkW4JdfgO3btdV6eCwix6JYtrQjIy8vj8qXL0+rV6822GbHjh0kFospKSlJc2z58uWkVCopJyeHiIjGjx9P4eHheuf95z//ofbt25fIHkcrCOvopKQQ+fuzgq7TpgltDcfesZuCsGfPnsX9+/chFotRt25dBAYGomPHjnozrmPHjqF27dp6xR/at2+P9PR0XL58WdMmNjZWr+/27dvj2LFjxY6fk5OD9PR0vRfHdowfDzx6xMJ6Jk8W2hpOacQqwnXr1i0AwMyZMzF16lT8/vvv8PLyQqtWrTQ5p5KSkgpVrCn4PSkpqdg26enpyMrKMjj+3Llz4eHhoXkFBwdb7LtxiufQIWD1avZ+1Soe1sOxDiUSrokTJ0IkEhX7unbtmiYAecqUKejduzfq1auHNWvWQCQSYdOmTVb5IrpMmjQJaWlpmldCQoLVx+Toh/UMHQo0by6sPZzSS4k258eOHYsBAwYU26Zy5cp4+PAhAKBWrVqa43K5HJUrV8a9e/cAAAEBATh58qTeuY8ePdJ8VvCz4JhuG6VSCYVCYdAGuVwOuVxu3JfiWIyCsJ7AQODzz4W2hlOaKZFw+fr6wtfX95Xt6tWrB7lcjuvXr6NZs2YAgLy8PNy5cwcVK1YEwOIC58yZg8ePH8PPzw8AsGfPHiiVSo3gxcTEYMeOHXp979mzBzExMSUxm2MDeFgPx6ZY60nBmDFjqHz58rR79266du0aDR48mPz8/CglJYWIiFQqFUVERFC7du3o/PnztGvXLvL19aVJkyZp+rh16xa5uLjQuHHj6OrVq7R06VKSSCS0a9euEtnCnypaF5WKqHFj9hSxe3citVpoiziOhCn3p9WEKzc3l8aOHUt+fn7k7u5OsbGxFBcXp9fmzp071LFjR1IoFOTj40Njx46lvLw8vTYHDhygOnXqkEwmo8qVK9OaNWtKbAsXLuuyeDETLXd3osREoa3hOBqm3J885zzHLBISWLWe589ZLOKIEUJbxHE0TLk/uT8zx2R0w3qaNAGGDRPaIk5Zgefj0qFJkyZITk5GxYoVebplI+BhPRyh4EtFHYorCAsAEokEcrkcSqUSQUFBqFGjBpo0aYLevXtrXDjKCs+eATVrMg/56dOBWbOEtojjqPC6igYw9sJ4eHggIyPD7GIZTk5OcHV1hbe3NypWrIi6deuiQ4cOaN26damZvQ0Zwjzkw8KA8+e5hzzHdLhwGcDUzfmbN29i27ZtOH78OG7cuIGkpCRNebKS1k40hLu7u8PFUh46BLRqxd4fPsw95DnmwYXLANZ8qlhQEHbHjh1ISEhAVlZWiUXNzc0Nf//9t0MUhM3OBqKimIf80KHAihVCW8RxdHglawuiUqlw6tQp/P777zh37hz++ecfJCcn48WLF8jLy7NYQVgAeP78OaKiohAWFobz58/D2Y7XXbNn87AejvBw4dLBzc0NmZmZZu1xicViyGQyuLq6ws/PD1WqVEHDhg3RuXNnREdH67VVqVRo3rw5jh8/DoBVzlYoFOjXrx/+7//+z6zvYg0uXdKKFQ/r4QgJXyrqUNxTRZFIBIlEoklDXaFCBURGRqJly5bo0qUL3NzcTLYvMTERdevWRXJysuaYRCLBd999h/79+5vcryXJzweaNgVOnAC6dwe2bOGFLziWge9xGcDYC9OyZUukpKSgatWqaNSoEbp27Yrw8HCb2blx40b0798feXl5mmOenp44deoUqlatajM7imLxYmD0aFat5+pVoHx5Qc3hlCK4cBnA0UJ+hg4dilWrVukdi46OxokTJwRxp+BhPRxrwkN+SgkrV65EXl6e3lPGs2fPQiqV4v3337epLURMqHhYD8ee4MJlpzg5OeHChQu4du0aPDw8NMeXLFkCmUyGX3/91SZ2bNoE/P47D+vh2Bf8qaKdExYWhtTUVKxcuRIjRoxAfn4+8vLy0Lt3b7i4uOD111/H+PHjrTJ2WpoYI0ZUBSDF4MGPQfQEly8zm0pLBADHMeF7XA7Gf/7zH/z88882Gm0VgHcBXAVQB0AuACAuLs6mDy04pRu+x1XKUalUSExMtNFoYgDu/74fggLR4nDsAT7fdxAmT56MefPm6fmZBQYGYsCAAejbt6/Vxr1+/SbCwvTjesLCwqw2HodjDFy47Jw9e/aga9euyMnJ0Rxzc3PDoUOHCnniWwO+IuTYI3ypaKckJyejfPnyaNeunUa0xGIxFi5ciIyMDJuIFodjr/AZlx3Svn17/Pnnn3rHunXrhm3btglkEYdjX3Dh0iEyMhLJyckIDAxEjRo10Lx5c/To0cNm2U3nzZuHyZMn6+1jhYSE4MKFC/DkEc0cjgbuDqGD6BVRwyKRCFKpFC4uLihXrhxCQ0MRFRVldnbTY8eOITY2FpmZmZpjCoUCu3btQosWLUzqk8NxFHisogGMvTDlypVDWlqa2dlNJRIJZDIZlEolAgICEBYWhmbNmqFr164IDQ3VtCvIw3Xr1i3NMZFIhBkzZmDGjBlm2cDhOApcuAxgqgNqdnY2du/ejf379+P8+fO4d+8eUlJSkJWVBZVKZVberqJo2bIlDh48aNE+ORx7hwuXAazpOX/27Fl8//332L17NxITE5GZmVniGVtAQADOnTtX5ioFcTgAT91sUVJTU7F161YcPHgQV69exf3795GWlobs7Gzk5+dbbLYVEBCAhw8fWqQvDqeswIVLB4VCgezsbJPPL8iS6uzsDE9PT1SoUAHh4eFo06YNunXrZlaWVA6Ho4ULlw663ukvU5BL3s3NDX5+fqhatSoaNmyIrl27OkR1Hg6nNMGFS4fOnTsjNTUVERERaNu2Lbp06WLXFXc4nLIKFy4dtm/fLrQJHA7HCHisIofDcTi4cHE4HIeDCxeHw3E4uHBxOByHgwsXh8NxOLhwcTgch4MLF4fDcTi4cHE4HIeDCxeHw3E4uHBxOByHgwsXh8NxOLhwcTgch4MLF4fDcTi4cHE4HIeDCxeHw3E4uHBxOByHgwsXh8NxOMpEBtSCijzp6ekCW8LhcF6m4L4sSeWsMiFcGRkZAIDg4GCBLeFwOIbIyMiAh4eHUW3LREFYtVqNBw8ewN3dHSKR6JXt09PTERwcjISEBIsXkHVk+HUpGn5disbY60JEyMjIQFBQEMRi43avysSMSywWo0KFCiU+T6lU8j/EIuDXpWj4dSkaY66LsTOtAvjmPIfDcTi4cHE4HIeDC1cRyOVyzJgxA3K5XGhT7Ap+XYqGX5eiseZ1KROb8xwOp3TBZ1wcDsfh4MLF4XAcDi5cHA7H4eDCxeFwHA4uXBwOx+Eo08I1Z84cNGnSBC4uLvD09Cyyzb1799C5c2e4uLjAz88P48aNg0ql0mtz8OBBREdHQy6Xo2rVqli7dq31jbcxS5cuRWhoKJydndGoUSOcPHlSaJOsyuHDh9G1a1cEBQVBJBJh69atep8TEaZPn47AwEAoFArExsYiPj5er01KSgr69u0LpVIJT09PDB48GM+fP7fht7A8c+fORYMGDeDu7g4/Pz/06NED169f12uTnZ2NkSNHoly5cnBzc0Pv3r3x6NEjvTbG3FfFUaaFKzc3F2+88QaGDx9e5Of5+fno3LkzcnNzcfToUaxbtw5r167F9OnTNW1u376Nzp07o3Xr1jh//jw++OADvPvuu9i9e7etvobV+emnn/DRRx9hxowZOHv2LKKiotC+fXs8fvxYaNOsxosXLxAVFYWlS5cW+fn8+fOxaNEifPPNNzhx4gRcXV3Rvn17ZGdna9r07dsXly9fxp49e/D777/j8OHDGDp0qK2+glU4dOgQRo4ciePHj2PPnj3Iy8tDu3bt8OLFC02bDz/8ENu3b8emTZtw6NAhPHjwAL169dJ8bsx99UqIQ2vWrCEPD49Cx3fs2EFisZiSkpI0x5YvX05KpZJycnKIiGj8+PEUHh6ud95//vMfat++vVVttiUNGzakkSNHan7Pz8+noKAgmjt3roBW2Q4AtGXLFs3varWaAgICaMGCBZpjqampJJfLacOGDUREdOXKFQJAp06d0rTZuXMniUQiun//vs1stzaPHz8mAHTo0CEiYtdBKpXSpk2bNG2uXr1KAOjYsWNEZNx99SrK9IzrVRw7dgy1a9eGv7+/5lj79u2Rnp6Oy5cva9rExsbqnde+fXscO3bMprZai9zcXJw5c0bvO4rFYsTGxpaa71hSbt++jaSkJL1r4uHhgUaNGmmuybFjx+Dp6Yn69etr2sTGxkIsFuPEiRM2t9lapKWlAQC8vb0BAGfOnEFeXp7etalRowZCQkL0rs2r7qtXwYWrGJKSkvQuLgDN70lJScW2SU9PR1ZWlm0MtSLJycnIz88v8jsWXIOyRsH3Lu6aJCUlwc/PT+9zJycneHt7l5rrplar8cEHH6Bp06aIiIgAwL63TCYrtGf88rV51X31KkqdcE2cOBEikajY17Vr14Q2k8NxeEaOHIm4uDhs3LjR5mOXunxcY8eOxYABA4ptU7lyZaP6CggIKPT0rODpSEBAgObny09MHj16BKVSCYVCYaTV9ouPjw8kEkmR37HgGpQ1Cr73o0ePEBgYqDn+6NEj1KlTR9Pm5YcXKpUKKSkppeK6jRo1SvPAQTfXXUBAAHJzc5Gamqo369L9ezHmvnoVpW7G5evrixo1ahT7kslkRvUVExODS5cu6f0B7tmzB0qlErVq1dK02bdvn955e/bsQUxMjOW+lIDIZDLUq1dP7zuq1Wrs27ev1HzHklKpUiUEBAToXZP09HScOHFCc01iYmKQmpqKM2fOaNrs378farUajRo1srnNloKIMGrUKGzZsgX79+9HpUqV9D6vV68epFKp3rW5fv067t27p3dtXnVfGWNImeXu3bt07tw5mjVrFrm5udG5c+fo3LlzlJGRQUREKpWKIiIiqF27dnT+/HnatWsX+fr60qRJkzR93Lp1i1xcXGjcuHF09epVWrp0KUkkEtq1a5dQX8vibNy4keRyOa1du5auXLlCQ4cOJU9PT72nQqWNjIwMzd8DAPrqq6/o3LlzdPfuXSIimjdvHnl6etK2bdvo4sWL1L17d6pUqRJlZWVp+ujQoQPVrVuXTpw4QX/99RdVq1aN3nrrLaG+kkUYPnw4eXh40MGDB+nhw4eaV2ZmpqbNsGHDKCQkhPbv30+nT5+mmJgYiomJ0XxuzH31Ksq0cL3zzjsEoNDrwIEDmjZ37tyhjh07kkKhIB8fHxo7dizl5eXp9XPgwAGqU6cOyWQyqly5Mq1Zs8a2X8QGLF68mEJCQkgmk1HDhg3p+PHjQptkVQ4cOFDk38Y777xDRMwlYtq0aeTv709yuZzatm1L169f1+vj6dOn9NZbb5GbmxsplUoaOHCg5j9FR6WoawJA728+KyuLRowYQV5eXuTi4kI9e/akhw8f6vVjzH1VHDwfF4fDcThK3R4Xh8Mp/XDh4nA4DgcXLg6H43Bw4eJwOA4HFy4Oh+NwcOHicDgOBxcuDofjcHDh4nA4DgcXLg6H43Bw4eJwOA4HFy4Oh+Nw/D+38juxQiHx5wAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAH5CAYAAAA/e9PUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHL0lEQVR4nO2dd3gUVRfG39303jtdmhTpJYBKk0hRBD86CiogCBggtNCLEGroRSyggiKIFAVBpCO9REoIBBIgPUB6T3bP98dld7Mkm2ySmS3J/T3PPpmdvXPvmZF5veXccyREROBwOBwjQqpvAzgcDqescOHicDhGBxcuDodjdHDh4nA4RgcXLg6HY3Rw4eJwOEYHFy4Oh2N0mOrbAF0gl8sRGxsLOzs7SCQSfZvD4XAKQURIT0+Ht7c3pFLt+lJVQrhiY2NRvXp1fZvB4XBKICoqCtWqVdOqbJUQLjs7OwDswdjb2+vZGg6HU5i0tDRUr15d+Z5qQ5UQLsXw0N7engsXh2OglGUah0/Oczgco4MLF4fDMTq4cHE4HKODCxeHwzE6uHBxOByjgwsXh8MxOrhwcTgco4MLF4fDMTq4cHE4HKODCxeHwzE6uHBxOByjgwsXh8MxOrhwcTgco4MLF4fDMTq4cHE4HKODCxeHwzE6uHBxOByjo0pEQNWWiRMn4vbt2/D29oaPj4/ax9vbG97e3jA3N9e3mRxOlYcLVyGuXLmCK1eulFjGzc2tiKC9KnLOzs48mxCHIyISIiJ9GyE2aWlpcHBwQGpqaokx5y9fvoyIiAjExMQoP7Gxscq/eXl5WrVnYWGhsdemOHZzc0NmZiY8PDy4yHGqNNq+n4XhwqUlRITnz58rhaw4cYuJicHz58/LVG+TJk1w7do1WFhYlMsuDsfYKc/7yYeKWiKRSODm5gZXV1fUqlWrWAFTfKKiovDs2TPI5fJS671z5w4aN26MVatWoW/fvrz3xeFoAReuQuTn5yM+Pr7EHlVMTAwyMzO1qs/ExASenp5Fhore3t6wt7fH2bNnsWvXLjx69Aj9+vVDt27dsGbNGjRt2lTkO+VwjBs+VCxEy5YtcfPmTa3qdHBw0Dg5rzjv4eEBExOTEuvJyMhAUFAQVq9ejdzcXEilUowdOxYLFy6Eq6trme6TwzFG+ByXBrR9MH369MGxY8fg5eWlUYwUxzY2NoLaGBkZiWnTpmHfvn0AAEdHRyxcuBDjxo2DmZmZoG1xOIYEFy4NaPtgMjIyYG1tDalUf365p0+fhr+/P27dugUAeP311xEcHIx3331XbzZxOGJSHuHinvOFsLW11atoAUDnzp1x48YNfP3113B1dcW9e/fQs2dP9OnTBw8ePNCrbRyOocCFywAxMTHBmDFjEB4ejilTpsDU1BSHDx9G48aNERAQgJSUFH2byOHoFS5cBoyjoyNWr16NO3fuoHfv3igoKEBwcDDq16+Pbdu2QSaT6dtEDkcv8DkuI+Lo0aOYPHkywsLCAADe3t4YMGAAlixZIkp7Dx5IsHatGVavzoOVleq8tbU19zfjCAafnNdAZREugPmaTZkyBZs3b9bKwbX8SAE8APAagDkAVOKYkZEh+Koqp+rCJ+crOZGRkRgyZAg2btwosmgBgBzA7JfHgQC8RW6Pw9Ee7jlvBBTnpPr5559jxowZcHFxEW3YRgT06CHDxYs2GDz4Cb79NhcAGypyOPqEDxUNGLlcjp9++gmBgYGIi4sDAJ1vC7p+HWjThonYxYtA+/Y6aZZTheBDxUrExYsX0b59e4wcORJxcXF47bXXcODAARw/flynexlbtQJGjmTH/v6A6CNUDkcLuHAZGNHR0Rg+fDg6dOiAq1evwtbWFsuXL8fdu3f1Fj1i6VLA1ha4cgXYuVPnzXM4ReBzXIUYNWoUbt68WeLGaScnJ1HEIysrC6tWrcLy5cuRlZUFiUSCTz75BEuWLIGnp6fg7ZUFT09g7lxgxgxg5kygf38mZByOvuBzXIVo27Ytrl69WmJdVlZWasJWnMh5eXlpHRiQiLBnzx5Mnz4dT58+BQB07NgR69atQ6tWrbS/SZHJzQUaNwYePQJmzQJEch3jVEG4H5cGtH0wd+/exePHjzXG43rx4oXWbbq6upYYXcLHxwcRERGYPHkyLly4AACoXr06Vq5ciYEDBxqkg+fBg8AHHwAWFsC9e0Dt2vq2iFMZ4MKlAaFWFXNyctRi0GsSuNzc3DLVa2VlhZkzZ2Lq1KkG7WpABLzzDnDiBPDhh8Bvv+nbIk5lgIduFhlLS0vUqFED5ubmsLCwgLm5ebGf6OhoZGRkaFWnp6cnrly5gurVq4tsfcWRSIC1a4FmzYB9+4DTp4HOnfVsFKdKwoWrEKmpqcXGkC/cu0pISNDaa93Ozq7EQIRPnjxB37594e7uLvKdCUeTJsC4ccCmTcw94sYNoJQgrxyO4PChYiG0Dd1sYmKijJJaUhoyOzs7IW/DYHjxAqhXD0hOBrZuBT7/XN8WcYwZPlSsID4+PoiMjCzRHcLHxwfu7u6lxpKvzLi4AAsXAl9+CcyZAwwaBDg66tsqTlWC97gKUVBQAFNTruXakJ/P5rru3QMmTwaCg/VtEcdY4Vt+KggXLe0xMwPWrGHHGzYAL0OEcTg6gQsXp9z4+QHvvQcUFAABAfq2hlOV4MLFqRCrV7Pe15Ej7MPh6AIuXJwKUa8ec4sAgClT2NwXhyM2ogtXTEwMhg8fDhcXF1hZWaFp06a4du2a8nciwrx58+Dl5QUrKyt0794d4eHhanUkJSVh2LBhsLe3h6OjIz777DOtHTw54jNnDuDmBty/z/y7OByxEVW4kpOT0bFjR5iZmeGvv/5CaGgoVq9eDScnJ2WZFStWYP369di6dSsuX74MGxsb+Pn5IScnR1lm2LBhuHv3Lo4fP44///wTZ8+exZgxY8Q0nVMGHBxY6BsAWLAAePZMr+ZwqgIkIjNmzKBOnTpp/F0ul5OnpyetXLlSeS4lJYUsLCzol19+ISKi0NBQAkBXr15Vlvnrr79IIpFQTEyMVnakpqYSAEpNTS3nnXBKo6CAqEULIoBo7Fh9W8MxJsrzfora4zp06BBat26NAQMGwN3dHS1atMA333yj/D0yMhLx8fHo3r278pyDgwPatWuHixcvAmCRQB0dHdG6dWtlme7du0MqleLy5cvFtpubm4u0tDS1D0dcTEyAdevY8bZtwH//6dceTuVGVOGKiIjAli1bUK9ePRw7dgzjxo3Dl19+iR9++AEAEB8fDwDw8PBQu87Dw0P5W3x8fJG9fKampnB2dlaWeZWgoCA4ODgoP8awgbky8OabwMCBLLzzpEksmgSHIwaiCpdcLkfLli2xdOlStGjRAmPGjMHo0aOxdetWMZtFYGAgUlNTlZ+oqChR2+OoWLECsLRkkSP279e3NZzKiqjC5eXlhUaNGqmde/3115WRPhUhiRMSEtTKJCQkKH/z9PREYmKi2u8FBQVISkrSGNLYwsIC9vb2ah+ObqhZE5g2jR0HBACF1lg4HMEQVbg6duyI+/fvq5178OABatasCQCoXbs2PD09ceLECeXvaWlpuHz5Mnx9fQEAvr6+SElJwfXr15VlTp48Cblcjnbt2olpPqeczJgB+PgAjx+rtgVxOIIi4mIBXblyhUxNTWnJkiUUHh5Ou3btImtra9q5c6eyzLJly8jR0ZEOHjxIt27dor59+1Lt2rUpOztbWebdd9+lFi1a0OXLl+n8+fNUr149GjJkiNZ28FVF3bNzJ1thtLEh0nLxl1NFKc/7KapwERH98ccf1KRJE7KwsKCGDRvStm3b1H6Xy+U0d+5c8vDwIAsLC+rWrRvdv39frcyLFy9oyJAhZGtrS/b29vTJJ59Qenq61jZw4dI9cjmRry8Tr48/1rc1HEOmPO8nD2vDEY2rV4G2bdnx5cuqYw6nMDysDcegaNMGGDGCHfv7c/cIjnDwHlchRo4ciRs3bpQYjtnNzQ1SKdd7bYmLA+rXBzIyWBbsYcP0bRHH0ODpyTSg7YNp06aN2gbw4jAzM1PGmy8p5ryNjY3Qt2G0BAWxJLLe3mwjNs+CzSkMFy4NaPtgwsLC8OTJE41ZfhITE6Ht43JwcCgxIayLiwuysrJQt25drbNeGys5OUCjRkBkJIsksXixvi3iGBJcuDQg1OR8fn4+4uLiSk0Im5mZqXWddevWxfXr1yv9osHvv7MkspaWLE59rVr6tohjKPDJeZExMzODh4cHvLy84Onpqfx4eXmpnbOystK6zocPH6J+/fr4/vvvtc7XaIz06wd06cJ6X9On69sajrHDe1yFePHiBaKjozUmg42JicHz58+1btfZ2VnjUNHd3R2XLl3CmjVr8PjxYwAsr+O6devQqVOnit6yQXLrFtCiBduEfeYM8NZb+raIYwjwoaIGtH0wrVq1wo0bN0qtz9zcvMTJeR8fH2VE19LIy8vD+vXrsXjxYmX4ncGDB2P58uWoUaOG9jdpJIwbx5LINm8OXLvGs2BzuHBpRNsH07dvX1y8eLHUhLAuLi6QSCSC2piQkIA5c+bgu+++AxHBysoK06ZNw/Tp0yvVCuWzZ8w9IiWFxe0aPVrfFnH0DRcuDWj7YORyud59tG7evIlJkybh7NmzAIBq1aphxYoVGDx4sOBiqS/WrmVJZN3cgPBwFvqZU3Xhk/MVRN+iBQAtWrTA6dOnsXfvXtSsWRPR0dEYOnQoOnXqVKqPmbEwfjzQsCHrfXHXCE550P+byimCRCLB//73P9y7dw+LFy+GtbU1Lly4gDZt2uCTTz5BXFycvk2sEIWzYK9fDzx4oF97OMYHFy4DxsrKCnPmzMGDBw/w0UcfAQB27NiB+vXrY9myZWqZkIyNd98FevVieRh5FmxOWeFzXEbEpUuXMGnSJGWSECcnJ/Tu3RtbtmwRZf7r8mUp1q41w9atuWrzUNbW1oK0d/8+0KQJUFAAHD0K+PlVuEqOEcIn5zVQWYQLAGQyGaZMmYJNmzZBJpOJ2JIEwF0ArwOYD2CR8peMjAzBVjqnTGHDxtdfZ5mBzMwEqZZjRPDJ+UrOrVu38M4772D9+vUiixYAEJhgAcAUAE4llC0/8+YBrq5sG9CWLaI0wamE8B6XEfDs2TPMnTsX33zzDeRyOSwtLREQEICJEyfCVsRQC3I50KGDJe7cMcHUqXlYsCAfgHBDRQXbtgGffw44OjL3CFdXwarmGAHlej8rHHfVCDDW0M25ubkUHBxMDg4OBNYFogEDBlBkZKTObNi/XxU7PjFRnDYKCoiaNWPtfPGFOG1wDBeDy2TNKT9HjhzBG2+8gSlTpiA1NRUtWrTAmTNnsGfPHtTSYWiFvn2BVq2AzEyWM1EMTEyYUyrAtgPdvi1OO5zKAxcuAyMsLAy9evVC7969cf/+fbi5ueGbb77B1atX8ZYediVLJMCil/PymzYBGpKHV5jOnVnYG54Fm6MNfI6rEAMHDsTVq1dLDN3s4+NTprA12pKcnIyFCxdi06ZNKCgogJmZGfz9/TFnzhw46HlPDBHQoQNw6RLw5ZfAunXitBMZyVYXc3NZFuwPPhCnHY5hwd0hNKDtg2ndurVa4llNODk5lRq62d3dXastRAUFBfj2228xZ84cvHjxAgDw3nvvYfXq1ahXr572Nyky//wDvPMOYG4OPHwIVK8uTjtz5gBLlgB16gChoUAlDw7LARcujWj7YKKjoxEVFaUxsmlMTAyysrK0atPU1FQtNv2rIuft7Y2QkBAsWrQIoaGhAIBGjRphzZo16NGjhyD3LSREbDh39ixbAdy6VZx2MjJY9Ii4OGDZMpYVm1O54cKlAaHcIYgIqamppYZuLuteQicnJyxatAhjx46Fqalpue0Tm7NngbffBkxN2f7C2rXFaeenn4CPP2ZJNR48ALy8xGmHYxhwB1QdIJPJNH4KCgrK7Bhas2ZNhIeHY8KECQYtWgCLWPrOO2yLjphRHYYNY8ljMzKA2bPFa4djvPAeVyGePn2Kp0+fauxJxcbGar2x2czMrMj8V+Hvzs7OSE5ORqtWrYwqUODly0D79syF4d49QKxpuEuXAF9fdnz1KtC6tTjtcPQPHypqQOjJeRcXl1JDN7u4uBhEfC8x6NMHOHyY9Yx27hSvnY8/ZsPGDh2A8+eZawan8sGFSwPaPphBgwbh2rVrJYZu9vb2hqWlpQ6tNzxu3GBOqRIJcOcOy5koBjExbKI+Kwv4+WdgyBBx2uHoFy5cGjD2vYqGSP/+zNdqwABgzx7x2lmyhLlIVKsGhIUBRjSq5mgJn5zn6IyFC1mPa+9eFo5GLKZMAWrWBKKjgZUrxWuHY1xw4eKUi6ZNgYED2fG8eeK1Y2UFrFrFjpcvB54+Fa8tjvHAhYtTbhYsAKRS4NAhtvInFh9+yPzHcnK4QyqHwYWLU24aNmQri4C4vS6JhEWPkEiA3buBc+fEa4tjHHDh4lSI+fOZT9fRo8CFC+K107y5KnnspEksigSn6sKFi1MhXnsN+OQTdjx3rrhtLV4M2Nszd4wdO8Rti2PYcOHiVJg5c1iSi5MngdOnxWvH3Z318AAgMBBISxOvLY5hw4WLU2Fq1lQN4+bOFTcI4IQJzCk1MZH5eHGqJly4OIIwaxaLnXX+PHD8uHjtmJsDwcHseM0allyDU/XgwsURBB8fYNw4dix2r6tXL5YJOz8fmDpVvHY4hgsXLo5gzJwJWFsDV64Af/4pXjsSCet1mZgwHzIxe3gcw4QLF0cwPDzYHBTA/LrEdFl4/XVVW5MnsxhhnKoDFy6OoEybxiKXhoSwTdhiMn8+4OIC3L0LfP21uG1xDAsuXBxBcXVlPSCACUsZA8KWCScnVSTWuXOBl7lGOFUALlwcwZkyBXB0ZD0hMUPeAMwNo2lTIDmZ7Z3kVA24cBWiCoQm0wmOjkBAADtesEDc+SdTU1UW7C1bmFhyKj88kGAh+vfvjytXrpSaEJYHIyyd9HSWBejFC7Y9Z8QIcdtTBDZ85x3g2DEe5tmY4BFQNaDtg2nVqhVu3LhRan22tralxpz39PQ0+Kw9YrNiBQtDU6cOi15qZiZeWxERbKUxL4+5SLz3nnhtcYTFoIVr2bJlCAwMhL+/P9a+7Nvn5OQgICAAu3fvRm5uLvz8/LB582Z4eHgor3v69CnGjRuHU6dOwdbWFiNGjEBQUFCZREHbBxMfH19qQtg0LTfISSQSeHh4aOy1OTo6IiEhAW+99RYcHBy0vhdjIjOTiVZiIrBtm2pbkFgEBrIksnXrslj4PAu2cWCwwnX16lUMHDgQ9vb26NKli1K4xo0bh8OHD2PHjh1wcHDAhAkTIJVK8e+//wJgOQybN28OT09PrFy5EnFxcfj4448xevRoLF26VOv2hYw5n5GRUWpC2NjYWK3zK1arVg3Xrl1TE+vKxNq1bJWxenW2PUdMMUlPZ/sY4+NZb2/aNPHa4giHQcacz8jIwLBhw/DNN9/AyclJeT41NRXfffcdgoOD0bVrV7Rq1Qrbt2/HhQsXcOnSJQDA33//jdDQUOzcuRPNmzdHz549sXjxYmzatAl5eXlim14EuVyOzMxMjZ+MjAxkZmaWKSlsdHQ06tWrh1WrVunlnsRm7FjA2xuIigK++UbctuzsgKAgdrx4MZCQIG57HP0heo9rxIgRcHZ2xpo1a9C5c2c0b94ca9euxcmTJ9GtWzckJyfD0dFRWb5mzZqYNGkSJk+ejHnz5uHQoUMICQlR/h4ZGYk6dergxo0baNGiRbFt5ubmIjc3V/k9LS0N1atXL1XRIyMj8eTJE409qbi4OOTn52t131ZWViVO8Pv4+CA0NBSzZs1S3l+9evWwevVq9OnTB5JKNLu8eTMwfjzg5QU8esTiyIuFXA60awdcuwZ89hnw7bfitcURhvL0uESdPd69ezdu3LiBq8UEJI+Pj4e5ubmaaAGAh4cH4uPjlWVeHUIpvivKFEdQUBAWLlxYZnsHDBhQakLYV+euNE3OOzg4lCo+NWvWhJ+fH3bs2IFZs2YhPDwc77//Pt555x2sWbMGjRs3LvM9GCKffcaGbk+eMJeFKVPEa0sqBdavZ0lkv/8e+OILoGVL8drj6AfRhCsqKgr+/v44fvy4zhOoBgYGYkqht0PR4yqNBg0aICMjo0R3CE9PT5gJuDwmlUrx6aef4n//+x+WLl2KNWvW4Pjx42jWrBnGjRuHhQsXwtnZWbD29IGFBfNsHzWKTZ6PGcO2BYmFry8wdChLIuvvD5w9y90jKh0kEvv37ycAZGJiovwAIIlEQiYmJvTPP/8QAEpOTla7rkaNGhQcHExERHPnzqVmzZqp/R4REUEA6MaNG1rbkpqaSgAoNTW1orclOg8fPqQPPviAABAAcnZ2po0bN1J+fr6+TasQeXlEr71GBBAFBYnfXlQUkbU1a2/3bvHb45Sf8ryfoglXWloa3b59W+3TunVrGj58ON2+fZtSUlLIzMyMfvvtN+U1YWFhBIAuXrxIRERHjhwhqVRKCQkJyjJff/012dvbU05Ojta2GJNwKfjnn3+oSZMmSgFr3LgxHT9+XN9mVYgff2RC4uxMpIv/FAsXsvZq1CDKzBS/PU75MCjhKo63336b/P39ld/Hjh1LNWrUoJMnT9K1a9fI19eXfH19lb8XFBRQkyZNqEePHhQSEkJHjx4lNzc3CgwMLFO7xihcRET5+fm0adMmcnFxUQrY+++/T+Hh4fo2rVwUFBA1bMjEZOFC8dvLzGSipav2OOXD6IQrOzubvvjiC3JyciJra2vq168fxcXFqV3z+PFj6tmzJ1lZWZGrqysFBASUedhkrMKlICkpifz9/ZXDbTMzM5o6dSrFxsZSRkaGqJ/09KLn5HJ5ue9l924mJPb2RC9eCPiQNPDrr6w9Kyuip0/Fb49TdgxeuPSFsQuXgtDQUPLz81P2vsT/vEnAGQIc1M5nZGSU+x5kMqKmTZmYzJol4MPRgFxO9OabrL2hQ8Vvj1N2yvN+8ugQRsTrr7+OP//8ExMnToSJiYnIrZkA+A7AWwCE8xyVSgGFp8q6dcCzZ4JVXSyFs2D//LO4SWs5uoMLlxFx7tw5tG3bFhs2bIBMJoObmxs+++wzZGRkiPBJxenT1WBqSgAGYN26HOVv1tbWFbqPDz5gvlWZmcy/S2xatgQ+/ZQd+/vzLNiVAhF7gAaDsQ8VHz9+TAMHDlQO1RwcHCg4OJhyc3NFb3vlSjbMsrQkunVLuHoPH1bNPb0yrSkK8fFEdnasze3bxW+Poz18jksDxipcGRkZNHfuXLK0tCQAJJVK6fPPP6fExESd2SCTEfXsyV74hg2JKjC9pYZcTtS+Pav3yy+FqbM0FCLs6UmUlqabNjmlw4VLA8YmXDKZjH766Sfy8fFR9rI6d+5MISEherEnMZHIy4u99J98Ily9x4+zOs3NmcOo2OTmEtWty9qcOVP89jjawYVLA9o+mLy8PB1ZpJnLly9T+/btlYJVu3Zt2rdvX4VcEITg5EkiiYS99Dt3ClOnXE701luszrFjhamzNA4dUonlw4e6aZNTMuURLh4BtRDvvfcezp49W2roZg8PD8Gjm8bGxiIwMBA//vgjAMDGxgazZ8/G5MmTdb7XUxPz5wOLFrF9hjduAPXqVbzOs2eBt99m0VEfPABq1ap4nSVBBPj5sSSy/foBv/8ubnuc0jHYQIL6RtsH07JlS9y8ebPU+qRSKTw9PTVGh1Ccs7e3LzVCRHZ2NoKDgxEUFITMzEwALBTQ0qVL4e3tXbYbFZmCAqBrV+DcObZSd+GCMIEB33kH+OcftvL33XcVr6807t4FmjVjqdNOnGD3xNEfXLg0oO2DUUQ3LSl0c1xcnNaBAm1sbDT22lxcXHDu3Dls27YN0dHRAABfX1+sW7cObdq0EeS+xSA6GmjenCXB8PdXZdipCJcusYgOJibAvXvC9ORK48svgQ0bWGqzGzdYtiCOfuDCpQEhQzfLZDIkJiYWG7pZ8YmOjtY6Nj3AwjcvX74cQ4YMMYoAgn/+qUpGcfAg8P77Fa+zd2/gyBFg2DBg586K11caSUlMIJOSWKDDcePEb5NTPFy4NCCUcGVlZRXbCyt8LjY2VusoqQCLAXb9+nXY2NiU2y59MGUKsGYN4OwMhISwmPIV4fp1oHVr5uF+5w7QqJEgZpbIpk3AhAmAiwuLh18osjhHh3Dh0oC2D+b27duIjIzUOFRMSUnRuk13d/cSJ/jd3NyQnZ2NatWqCRqYUFfk5gIdOzLB6dQJOHWq4sMtRW7EAQPEz4ANsDm75s3ZnJdQw15O2eHCpQFtH0zbtm2LDTNdGGtr6xLjyCuipJqbmwt9GwbHo0dAixYsu86cOSxBRUW4fZtNmhOxXlyzZoKYWSL//MMWB0xMWPuvvy5+mxx1uHBpQNsHM3r0aISEhGiMI+/t7a1VLPmqxO7dwJAhbIh3/DjQrVvF6hs8GPj1V6BvX+DAAUFMLJUPPmBzdX5+wF9/8TDPuoYLlwaEnJznFGXUKObG4OnJekoVSREZFgY0bsw2Ql+9yua9xObhQzanlp/PFh569xa/TY4Kg8yryKn8rF/PXvz4eGDEiIpFX2jYkK0sAsC8ecLYVxp167KktQD7WwnTW1Y6uHBxKoy1NRveWVoCx44Bq1ZVrL5589ic019/6S5+1uzZrKcYHg5s3KibNjnlhwsXRxCaNGE9L4CJwMtk5OWibl1g5Eh2PHduhU3TCnt7YOlSdrxwIZCYqJt2OeWDCxdHMEaNAgYOZG4GgwcDZfAeKcLcuWz/4smTwOnTQllYMiNHAq1aAWlpuhNMTvngwsURDIkE2LYNqFOHZa0eNYq5NpSHmjXZ9QATEV0sIUmlKl+ub75hCw0cw4QLF0dQHByYi4SZGbBvH7B1a/nrmj2bbeI+f565WuiCTp1Yb5GIOaVW/jV344QLF0dw2rQBli1jx5MnA//9V756fHxUewh11esCgOXLASsrFnJn3z7dtMkpG1y4OKIwaRLQqxfbGjRoEEuMUR5mzmSrlleuAIcPC2qiRmrUAKZPZ8dTpwLZ2bppl6M9XLg4oiCVAj/8AHh7A/fvs83M5cHDQ3XtvHm663VNnw5Uq8bm6oKDddMmR3u4cHFEw9WV5TKUSoEdO8ofrmbaNBZ19eZNtglbF1hbq1KnLV0KxMTopl2OdnDh4ojK22+rXAvGjmXhmcuKqysbegKs16VlHMcKM3gwi4CRlcWGrBzDgQsXR3TmzmUClpnJxCA3t+x1TJnCVizv3tVNyBtAlQUbYL3FijjVcoSFCxdHdExMgF27WM/p5k029CsrTk5AQAA7XrCAObnqgtatgU8+Ycc8C7bhwIWLoxN8fNg8F8BivZcnZI2/P4u4+uABE0JdsXQpm2O7ckW37XI0w4WLozN692ZDPoBl9Hn6tGzX29sDM2aw40WLWBgaXeDpyQIlAqz9jAzdtMvRDBeuQuTk5KAKhCfTK0FBzEE1ORkYOrTsQ77x4wF3dyAiQtWD0wWTJgGvvQbExbF74OgXHkiwEH369MHJkydLjICq+FsVQjOLRUQEC/mclgbMmgUsWVK269euZR751auzMDRC5HbUhoMHWbRUCwuWRq12bd20W9nhEVA1oO2DadGiBUK03Fnr5uamMea84ryLiwsP86yBX39lK4wSCfD330D37tpfm5PDej+xsSx21vjx4tlZGCIWn/7ECeDDD4HfftNNu5UdLlwa0PbBZGdna0w7Vvg4T8sQmRYWFmrCVvjY3NwckZGRGDRoEKpVqybUrRoVY8awKAweHmw/Y1lCPm/ezATLy4sl7bCyEs/Owty5w5J4yOUss1HnzrpptzLDhUsDQsacJyI8f/5co8BFR0cjKioKycnJWtXn4eGBCxcuoE6dOhWyyxjJygLatmW+WT16sIinUi1nXXNzgfr12QR/cLAq9LIuGD+eCecbb7As2CYmumu7MsJjzotMWloawsLC8N9//xX7CQkJwZ07d7QWLQBISEhAo0aNMGvWLKSnp4toveGhCPlsZcWGi4otNtpgYaHyyA8K0u1K36JFzK/s1i3g22911y5HBe9xFSIkJAQREREah4oZWr4dJiYm8PT0LDEhrI+PDyIjI+Hv74/TL0N8enl5ISgoCB999BGk2nY9KgHffguMHs16LufOAb6+2l2Xn8+Sa0REMPHS5bacDRuAL79kTrXh4YCjo+7armzwoaIGhEwI6+DgUGpCWHd3d5hoOX4gIhw8eBABAQGIiIgAALRp0wbr1q2Dr7ZvsJFDxFwjdu9mIWVCQliPRht+/JFlFnJ2BiIjma+XLsjPZ3Nd9+6xYSqPIFF+uHBpQNsHM3bsWNy6datYMVKcs7GxEcXG3NxcrFu3DosXL1b27IYNG4Zly5ZVicn7tDSgZUs20d6vHwvgp82CrEzGEnWEhbEkF7pKaQawjEbvvguYmrJJ+wYNdNd2ZaJcc9BUBUhNTSUAlJqaqm9TSiUuLo4+/fRTkkgkBICsra1p0aJFlJWVpW/TROfqVSIzMyKAaNMm7a/bvZtd4+BAlJQkmnnF0qcPa7tXL922W5koz/vJhctAuXbtGnXs2JEAEACqUaMG7d69m+Ryub5NE5XgYCYEFhZEN29qd41MRtS0Kbtu9mxRzSvC/fsqsT1yRLdtVxa4cGnAGIWLiEgul9Pu3bupevXqSgHr1KkTXb9+Xd+miYZcrurF1K9PlJ6u3XW//86usbUlevZMXBtfZepU1naDBkR5ebptuzJQnveTz3EZAVlZWVi1ahWWLVuG7OxsSCQSfPLJJ5g9ezbc3d1F885X/Mt4tXpra2tRdwQ8fw40b86ijn78MQsBXRpELATNjRssbE5ZXCsqSmoqUK8e8OwZsGaNKughRzv4HJcGjLXH9SpPnz6loUOHKntf4n+GE3CMgMZq5zMyMkS/1zNniKRS1pP54QftrvnzT1beyoooLk5c+17lm29U82yJibpt29jhQ0UNVBbhIiLKycmhL774gqRSqciiJSXgIbG+TAEBmwhw0ZlwEREtXMjEwMaGKCys9PJyOVG7duyaL78U377CFBQQNW/O2h47VrdtGztcuDRQGYRLLpfTgQMH6LXXXlOKS61atWj69OmUkZEhyuf27Uzq2zf/pXgROTjIadmyHMrJ0c0CQUEBUZcurO1mzYiys0u/5u+/WXlzc6KoKNFNVOPMGda2VEr033+6bduY4cKlAWMXrtu3b1O3bt2UguXp6Uk7duwgmUymk/ZPnVL1JgCievWIDh1iPRyxiYkhcnVl7U6YUHp5uZzozTf11/MZOJC13aWLbp5PZYALlwaMVbieP3+uNiy0sLCgwMBASktL07ktBQVE335L5OGhErDu3Ylu3RK/7SNHVG3+/nvp5RU9HzMzoshI0c1T4/FjIktL1v6+fbpt21gxOOFaunQptW7dmmxtbcnNzY369u1LYa9MVmRnZ9MXX3xBzs7OZGNjQ/3796f4+Hi1Mk+ePKFevXqRlZUVubm50dSpUyk/P19rO4xNuPLy8mjdunXk5OSk7GX179+fHj16pG/TKDWVaOZMNhRTDIvGjhV/QlrhcuDoyMShNLp3Z+U//VRcu4pj7lzWdu3a2g1vqzoGJ1x+fn60fft2unPnDoWEhFCvXr2oRo0aapO7Y8eOperVq9OJEyfo2rVr1L59e+rQoYPy94KCAmrSpAl1796dbt68SUeOHCFXV1cKDAzU2g5tH0xycjLl6dkR5+jRo/T6668rBeuNN96gkydP6tWm4oiIIPrf/1Q9IXt7olWriHJzxWkvN5eobVvWlq9v6f5SFy+ysiYmROHh4tikiYwMIh8f1v7Spbpt2xgxOOF6lcTERAJAZ86cISKilJQUMjMzo7179yrL3Lt3jwDQxYsXiYjoyJEjJJVK1XphW7ZsIXt7e8rV8i3R9sH06tWLJBIJubu7U4sWLahPnz70+eef06JFi+i7776jv/76i27dukUvXrwQ3IP9/v371KdPH6Vgubi40NatW6mgoEDQdoTmzBmiFi1UAla3LtGBA+LM70REMIEEiLT5/1avXqzs8OHC21IaO3eqVkRjYnTfvjFh8MIVHh5OAOj27dtERHTixAkCQMnJyWrlatSoQcHBwURENHfuXGrWrJna7xEREQSAbty4UWw7OTk5lJqaqvxERUVp9WBatWqltbuApaUlvfbaa/Tmm2/S4MGDKSAggIKDg+nXX3+l8+fPU0REBOXk5JT6TJKTk2nKlClkZmZGAMjU1JQmTZpESbredFcBCgqIvv+eyNNTJWBdu4qzsrZnD6tfImEriCVx7ZqqbGio8LaUhFzOeoYA0YgRum3b2CiPcJmW5qAqFHK5HJMmTULHjh3RpEkTAEB8fDzMzc3h+EowIw8PD8THxyvLeLwS01fxXVHmVYKCgrBw4cIy23jlyhW8ePGixNDNMTExePHiBXJycvDo0SM8evSoxDpdXV2LRJjw8vKCpaUlzp49i/379ysDD/bq1QurV69Gw4YNy2y7PjExYUlT//c/YNkyYPVq4ORJlhBj1Chg8WKWmUcIBgwAPv8c+PprYPhwFvLZ07P4sq1aseQWBw6wJLK//iqMDdogkQDr1rEIrz/8AHzxBTvmCISIQqrG2LFjqWbNmhRVyLlm165dZG5uXqRsmzZtaPr06URENHr0aOrRo4fa75mZmQSAjmjY1VreHpe2ZGdnU0REBJ07d452795Nq1evpilTptCgQYPI19eXqlWrpuxBafNp0KABHT58WBDbDIHISJVbgGL+a8UKIi06oFqRlUXUpIlqZbMkr5D//lPZERIiTPtlYcQI1nb79tw9QhMGO1QcP348VatWjSIiItTOizVUfBUhVhXz8/MpKiqKLl26RPv27aMNGzbQzJkz6aOPPqKuXbtSgwYNyM7Orswe6s2bN9f7goBYnD1L1KqVSjhee41o/35hXuC7d9nWHm0mwBUi2rdvxdstKzExbJ4LYPNenKIYnHDJ5XIaP348eXt704MHD4r8rpic/+2335TnwsLCip2cT0hIUJb5+uuvyd7eXqs5JCLtH8y5c+do+/bt9NVXX9G4cePo/fffp1atWpGXl1eZttjY2dlRw4YNqVu3bvTxxx9TYGAgbdy4kX7//Xe6fPkyRUdHU3Z2Nj3TdRgDPSCTEW3frj7/1aWLML2f775TrRyeP6+5XGioat/j1asVb7esLF3K2vbxYSuOHHUMTrjGjRtHDg4OdPr0aYqLi1N+CgfFGzt2LNWoUYNOnjxJ165dI19fX/L19VX+rnCH6NGjB4WEhNDRo0fJzc1NFHeIdu3alShIJiYmVK1aNWrXrh3179+fJk6cSEFBQfTjjz/SiRMnKCwsTC/OocZAejqLlWVhoZowHz2a6BWXvTIhlxMNHcrqq16d6MULzWU/+oiV69mz/O2Vl+xs5tMFMB8vjjoGJ1yaBGD79u3KMgoHVCcnJ7K2tqZ+/fpR3Ctb+x8/fkw9e/YkKysrcnV1pYCAAFEcUCdPnkw9evSgkSNH0uzZs2nz5s108OBBunbtGsXGxhq8a4Ix8Pgx0aBBqt6XnR3R8uXln/9KS2MuGADRBx9oHoaGh7OeGUB04UL57S8v+/axti0tde/Nb+gYnHAZCsbmOV8VOH+eqHVrlYDVqcNe7vLMf127popCumGD5nKffcbKdOtWfrvLi1yu2jA+YIDu2zdkuHBpgAuXYSKTsVhbXl4qAXv7bSIt11zUWLtWFRVC0/WPH6sE7vTpCpleLv77TzXX9tIHm0Plez+rTvI+jsEhlbIIpw8esOSulpbAmTPM/2rUKECDm16xfPkl8P77QF4eMGgQUFxu3Zo1Wb0Aa0/XsX/feAMYM4Yd+/uzDEWcciKikBoMvMdlHDx5QjR4sKr3ZWtLFBSk/Ubl58+JqlVj1370UfFloqNVCwSled6LQWIi2ygOsKipHN7j4hg5NWoAv/wC/Psv0KYNkJEBBAYCr78O/PZb6T0kFxfg559ZT+6nn4qPVe/jA4wdy47nzNF9r8vNDZg/nx3PmsXi1XPKgYhCajDwHpfxIZMR/fSTKsoCQPTWW0TaJDhavJiVt7Ymunev6O9xcSrn1T/+EN720sjLI2rYkLUfEKD79g0N3uPiVBqkUrYX8f59lp3a0hI4e5Zl8vnsMyAuTvO1gYFA165AVhab78rJUf/d0xOYMIEdz5un+16XmRkQHMyO169nc3ycssGFi2PQ2NgACxcyARs6lInM998D9esDQUFFRQlgm7537mTDslu3gICAomWmTwdsbYGbN4H9+8W/j1fp2RPo1QvIzy/ePk7JcOHiGAU1agC7dgEXLgDt2rH5r1mzgIYNgb17i/aavLyAH39kx5s3A/v2qf/u6qrKfzh/PiCXi34LRQgOBkxNgT//BI4d0337xgwXLo5R4evLxGvnTjbR/uQJMHAg8NZbwPXr6mXffZf1rAA2vHz8WP33KVMABwfgzh1gzx6dmK9GgwbAxInsePJk1vviaAcXLo7RIZUCw4ax4eOCBYCVFXD+PFuJ/OQTIDZWVfarr1gPLTUVGDJEXRycnFTDtAULgIICXd4FY9481vu7dw/YskX37RstIi4WGAx8VbFyExXFwjMrVh9tbIi++orF7SJiewMdHNhvM2aoX5uaSuTsXLaM2UKzdasqEUgVCBhSBL6qyKmSVKvG/LYuXQLatwcyM5mPVsOGLOppzZrAd9+xssuXq88n2durhpMLF+pnuDZqFPOqT0lR+XhxSoYLF6fS0K4dm//atYuJ2dOnwODBwJtvssn9ceNYuY8+UnenmDCBhZaOiAB27NC93SYmLMwzAGzdCty+rXsbjA0uXJxKhUTC3Cbu32c9KGtr5onfti2Qlsa88J89Y+Kl2CtoYwPMnMmOFy8GcnN1b3fnzsCHH7LVzUmTdO9bZmxw4eJUSqyt2cT3/ftMpADWE4uMZA6gJ06wxB4Kxo4FvL2BqCjg22/1Y/PKlYCFBUs0cvCgfmwwFrhwFeL58+fIzs7WtxkcAalWjflzXb7MXClyclTzWPPmAefOsWMrK2D2bHa8ZAmgj38GtWurVjkDAvTT8zMWJESVv1OalpYGBwcHpKamwt7eXmO5Xr164a+//oKTk5MypVjhjyK9mI+PD9zc3CCVct03JojYZP20aUB0NDtnbs4cQN95hwlF/fpsbiw4mPlW6ZqMDGZDXBzrEc6YoXsbdI2272dhuHAVom3btrh69apWdZqZmcHLy0tNzIoTORsbG6FugyMQ2dnA0qWsZ6X41z98OBOKv/4CRo9WTdbr4z/fTz+xOGW2tkB4uOa8kZUFLlwa0PbBEBFSUlJKTQibmJgIbR+bg4NDETHz9PSETCbDw4cPMXbsWGWCXI5uOXaM7RdUbPextgamTmXCERmpvx6PXM6GtVeuMIfa77/XvQ26hAuXBsrzYEoiPz8f8fHxRQQuOjoaT58+RVRUFOLj45GrxSSFs7MzTp06hTfeeKPCdnHKzoYNLHqqRKLqfTk5AcnJgLMzEzAB/smUmUuXmHgBwNWrLCpGZYULlwaEEK68vDy1ntervTDFufJM7kulUowZMwaLFi2Cm5tbuezjlA8ioF8/torn6ck2PSvmvwA2bNy2TT+2ffQR25PZoQPb0iSR6McOseHCpQFtH8yZM2cQHh5erCA9e/ZM6/acnZ1Lndx3dXXF06dPMX36dOzduxcAG1YuWLAA48ePh5mZWYXvm6MdSUlA8+bMFWLwYKBxY7bHUdFh/t//2GR99eq6tSsmhk3UZ2WxyK5Dhui2fV3BhUsD2j6Y9u3b4/Llyxp/t7CwKDIZX9x3S0vLMtl39uxZ+Pv7IyQkBADQoEEDrFmzBj179ixTPZzy8++/wNtvM6fU7duB7t2Bpk3ZNhyAuUvMmMFWJK2tdWfXkiVs+1K1aswnTZdt6wouXBrQ9sFMmzYN9+7dK3al0NvbGy4uLpCI1F+XyWT4/vvvMXv2bGXvrmfPnggODkbDhg1FaZOjztKlzJfL2hq4do1FbPjwQ7YlR+FlX60am7QfMoRFqRCb7Gzm7f/kCdvHuGCB+G3qmnJN5Qi2xduAMaboECkpKTR16lQyMzMjAGRqakqTJk2ipKQkfZtW6ZHJiLp3Z5EamjYlyswkatGCfX//faKaNVURKNq1I7p4UTd27d2ryoL95Ilu2tQlPCGsBoxJuBQ8ePCA3nvvPQJAAMjFxYW2bNlCBQUF+jatUhMXR+TuzoRi3DiiP/9kx1ZWLDzO0qUsbZpCwIYOJXr6VFyb5HKWKARg6dsqG1y4NGCMwqXg2LFj1KhRI6WANW3alE6cOKFvsyo1x46phGnvXta7Aoj8/dnvsbFEn35KJJGoRG3ePKKMDPFsunlT1d65c+K1ow+4cGnAmIWLiCgvL4/Wr19PTk5OSgHr168f3b59m1JSUigjI0OnH7lcru9HIjozZzKRcHBgAQYBlkg2KkpV5vp1ojffVImctzfRjz+yIacYjBnD2mnZUrw29AEXLg0Yu3ApeP78OU2YMIFMTEyUAibuZwEBRwlYTEBfAnwIAGWI2bUwEPLyiHx9mVC0bUvUqZNq+FgYuZzot9+IatVSCVibNkT//iu8TQkJRPb2rI3vvhO+fn3BhUsDlUW4iIjS0tLos88+I4lEogPhOqd8GVWfWOrZM58WLCA6fJi9TJWVx49ZOGXF3BJAZGbG5rpeJTubKChIff5r8GDhJ9NXr2Z1u7uzsNOVgfK8n9wdwkiQy+X44YcfMGvWLMTHxwMA3njjDQwdOhQTFNlNBea//6S4elWKGzfY5949KWSyou4g1auzRBWtW7NPq1Zsu0xl4PffmUsEwJxUQ0KATz9VhYJ+lfh45nf1/fdMviwt2f7HGTPYpumKkpfH/MsePGAhp5cvr3id+oa7Q2jA2Htc58+fp1atWil7QnXr1qVDhw7pfK4pM5MNgdatI/roI5ZGXjFh/OrntdeIBg0iWrmS6PRporQ0nZoqKOPHq5JZAEQmJkTh4SVfc+OGaiUQIPLyItqxQ5i5KcVKp5lZ6XYYA3yoqAFjFa4nT57Q4MGDlYJlb29PK1eupJycHH2bpiQ1lQnTqlVMqF57rXghk0iY0H30ERO+f/9lQmgMZGcTNWvG7sPFhf0dPrz06+Ryon37iGrXVj2H1q2Jzp+vmD1yOdG777L6+vatWF2GABcuDRibcGVmZtL8+fPJysqKAJBEIqFRo0ZRfHy8vk3TihcviP7+m/k89e9PVL168WJmYkL0xhvMtWDLFqKrV4kMSJPVCAtjac8KC3FoqHbXZmcTLV9OZGenun7QIDaHVl5CQ9nzA9izNma4cGlA2wcTFRVFiYmJJNPTWrNcLqeff/6Zqlevruxlvfnmm3Tjxg292CMk8fFsMn/BAqI+fYg8PIoXMzMzolatiMaOJfr2W6KQEKL8fH1bz1C4RSg+AweqfisoIDp1iujnn9nf4vyE4+OJRo1SDa8tLIhmzyZKTy+fPf7+rJ7GjQ3nGZUHPjmvAW0n/3r27ImjR4/C3NwcXl5eJUZ38PHxgZWVlWA2Xrt2Df7+/rhw4QIAoEaNGli5ciUGDBgg2v5IfULEoh9cu8Y+V6+yv0lJRctaWgItWrCJf8UiQP36bA+hrhkxgsWwV/Dff8DDh4C/v3o4nGrVWMqx/v2L1hESwsJCnz7Nvnt6AkFBLOppWfY/JicD9eoBL14AGzcC48eX5470D99krQFtH0yXLl1wWvGvSQucnJxKDd3s7u5eYmz6uLg4zJo1CzteJvSztrZGYGAgAgICBBVGY4AIePxYXciuX2dpxV7F1patXipWMlu3Bl57TfyYVRkZrN0HD9j3tm2Zra++RQo7fvutePEiYjHApk4FHj1i51q1AtasYXkgtWXLFuCLL9gqbni4ca7mcuHSQFkeTF5eHuLi4jQGDFR8z8rK0qptU1NTZe/N29sb3t7ecHZ2hpmZGf7991+cPn0aOTk5AIDhw4cjKCgI1apVq/A9VxbkcvZCFu6Z3bzJYlS9iqOjSsQUPbPq1YUXs5AQJlilZb2WSFjPKzJSc+8wNxdYv57lc0xPZ+cGDGBuDrVrl25LQQHQsiVLIjtxIqvL2ODCpQGh/biICKmpqUXE7OnTp4iIiEB0dDTi4+ORogjmVApt2rTBunXr4KuI1cspkYICICxMvWcWEsJ8nF7FzU3dx6x1a8DLq+I2bNrEMmAzLgFYA2ADgK0AsgH4KD979vigXz8PmJqaaqwvIYGlS/v2WybWFhbAlClAYCBgZ8fKyGQsnVpcHLuHN99kgnjyJNCtGzv+7z8WCNGY4MKlgYoKFxEhKSmpxAQaMTExZYqSKpVKIZfL8eabb+L06dM81VkFycsD7txR75nducNE7lV8fNR7Zq1aAa6uZWtPJpPD3PwU5PJuL8+kAbAHcBDAB0XKSyRSODt7oHbtkudNIyPtMWWKBKdOses8PVmcMDs7Ni+maR6tf39g/36WZu3YMeMK88yFSwPaPpjDhw/j/v37xYZu1ibxBcDSlpU276WIkpqVlQVbIdypOcWSnQ3cuqXqlV27BoSGFp2PAoBatYp6/zs4lFz/H38A779PABQqkQjgJwCPAcQU+sQDkGlls42NDby8vGFpORCPH09ERobHy1+iAewF0B9ATQCqBB89e7Lh4sqVTMAPHQLee0+r5gwCLlwa0PbBdOjQARcvXtT4u4uLS6krjS4uLrz3ZMBkZLA5ssI9s/Dw4svWr6/eM2vRQj3PYmiotsMyGZioqcTsww9jYW39FJGRkYiOjkZiYmIx86bmACYAmAdAoaJHATQGUDQAvkLI6tZlvU0LC21s0z9cuDSg7YOZP38+Hjx4UGyPycvLq8yx5DnGQUoKcOOGes/s8eOi5aRSFka5TRvWQ9u0CSh+doAAJEElVKYATAAcABABIAZSaSzk8kQtLXQDsAjA6Jf15AI4DOAdAHbFXrFyJVuxNAa4cGmgMmyy5uiWZ8+YK0bhBYDY2OJKEoAEAB5gQ8Z4AE0BPH/5uxTAbQCNAMwCEKR2tbm5ucYcBz4+PrhxwweTJ3sDsAIQDiAdQEsAbcGGj0EAPnrZjgo7O9aT9PCAwVOe91PzMgeHU4VxcwPefZd9FMTGAn//zVb7kpMBNgQ0AeBZ6EpPAHEArgO4AzZh3whAJljvaBsUq41bt/pgzJiSE7Aosmwz6oEJ5WmwHl0cgEcA8gBEvfydkZ7OEn98+23Z790Y4D0uDkdLEhOBzp1Z9p9atQBv74lgGx1aA3gDQAOwnpF2S3onTgBdu5ZcRiZjbcXEvLqokAtgN4DhYOJ5A8BqAMsBMD9AiQS4fBnIzCzqQmFI8KGiBrhwcSpKUhLQpQtbpfTxYf5UNWpoEhXtcHAo6v1fq1ZRV4bff2dJaQFN7cjAenEJAKwBzEDz5rMQEmIKc3N1/7aStiLpi0odj2vjxo1Us2ZNsrCwoLZt29Lly5e1vtbYokNwDIuUFLbxG2Cbw+/fV/22bx/bNK0pLpmmj7l58eddXIj8/Njm6wMHiKKjVeFxqlUrqc7rBHRSbs53cmpLQH6x4YUkElafoVBpo0Ps3r2bzM3N6fvvv6e7d+/S6NGjydHRkRK0jBvMhYtTXtLTiTp0YC+9qyvRnTtFyxQnKpqErHp1Vj4vj0W++OYbos8/Z8JoZlb8NZ6eRO+9RzR/PvsUDo+j/pETsJvs7Gq8FLC5L8/nFGuHoWS6q7TRIdq1a4c2bdpg48aNAFgY4+rVq2PixImYOXNmqdfzoSKnPGRlAb17sygOjo7AqVMsfHNxFN6O4+oKDBumcpVYtowNK0ubY8rNZUPRwj5md+++OkGvGRMTtnDQrVs23n13FYB1YIsENQHsB9AEgDsUa3JHjgBvvaVd3RXB2tq6xAWISjlUzM3NJRMTE9q/f7/a+Y8//pjef//9Yq/Jycmh1NRU5ScqKor3uDhlIieHqEcP1juxsyMqw8wEff01u87KStVTi4kpnx2KcNnBweqZtIv71KnDEnQMHao4F03A+pfHp5TDSF1/SssKVZ4el8G7eD9//hwymQwerzikeHh4KJNGvEpQUBAcHByUn+rVi3oZcziayM8HBg5krg/W1qxn0ratdtfm5gJffcWOFy1iPbTnz4Hhw1mvrKxYWwO+viz0zZMngJkZ6/0BQL9+zM46ddj3iAhg927g558VV/sA+BzATQA7yt64AVMp/bgCAwMxZcoU5fe0tDQuXhytKChgw7xDh9iWmUOHgE6dtL/+u++AqCjA25sF9nv/fbaP8NQpYMkSFgGirCxdyrz0JRImVLt2ATVrMpEyN2dlkpJUQ8z9+4Fr1+RgTqnmAFoA6Ae2h3I6gLcBMB+vwYPLbk9Zsba2Fr7S8nVgdUd5hoqvwifnOdpQUMCSYChCSB85Urbrs7OJfHzY9Rs3qs7/9BM7J5USnTlTtjq3bVMNBVesUCXr+P774svLZDIKDPyRAG8CPAjoRcB2Ah4XGVqeOlU2W8SiUg4Vzc3N0apVK5w4cUJ5Ti6X48SJEzx+FUcw5HJg7Fhg5042yb1nD4u6UBa++Yb5dFWrBowaxc7JZOz7W2+xNoYOZUNHbThwgNkEMC/43FwWprlePeCjj4qWv3TpEjp06ICgoI8BxAKwATAKwAgoIkooqF69bJFWDQ4RhVQwdu/eTRYWFrRjxw4KDQ2lMWPGkKOjo9ZZb3iPi1MScjnRhAmqXtHu3WWvIyuLuS0ARFu3snOafK9atWJtlsSZMyyZBsASbLx4QeTgwL7//LN62ejoaBo+fLhyMtzW1paGDQsiILvYSXzux6VDNmzYQDVq1CBzc3Nq27YtXbp0SetruXBxNCGXE02bpnqpd+zQ/tq7d+9STEwMFRQUUHAwu75mTaLcXJVjqqYVwJEjNdf7338qkerbl2XwmT2bfW/SRJVUNisrixYvXkzW1tZK0Ro5ciTFxsYSUfHCqfAjMyQqtXBVBC5cHE3Mm6d6qRU9JW3x9vYmACSV2pFUmkgAUYsWG2n8+Alkb7+UgB8I+IeAewSkFxGvCxeKpjSLiGBZrwGiTp1YTy4xUZXTcf9+lsZuz549VLNmTaVgdejQga5cuVLERm3SpukbLlwa4MLFKY6gIJWIrF1btmtlMhnVqFGDpFIpAVNf1vPw5YR4ZwImEPA1Af8SkPry994ENCDgzMsh23MCthCwj4BL5O4eQ15ecmXPKimJtRUQoBpiXr9+g9566y2lYFWrVo1+/vlnkpc29jRguHBpQNsH8/jxY2XXn1O5WbNGJVrLlpX9+owMoitXiNavLyALCxkBRNbWeRqHhkAuAR+9FBwHAiJfnv/55TkbAq68FLSn1LSpH73//vs0bNg0MjVl9dap84VSsKysrGj+/PmlOncaA5V2y09FKWtCWKlUCk9Pz1LDNPPtQ8bJ1q3AuHHseP58YMECzWXz81lAvjt3WAqw27fZcUQEk53i8PJiW3/UyQCLhhr78q8cwDCwkDTzAXQG0AXAMwCdALxM3IiNAMYDOA+ALQMOHjwYy5cvR40aNcpw14YLDyRYQQoKCpTZd2JjYxEbG4urV69qLG9ra1ti9EofHx94enrCzMxMh3fBKYkdO1SiNX06Ey6AidDTpyqBUvwNCys+7RnAgg0mJzOn1VGj2KdxY0AqzcVrr8UiPl4RulkhVoU/sQDugsXPmgv2KmYA6A2VaNUEC9cMSKXzQSTBtGnTsHz5cmEfihHCe1yvIJPJkJCQUGoqsrTi0isXg0QigYeHh1pCWCcnJ+Tn5+PRo0eYMmUK3jRqhxrjYfdu5hUvl7N4VJ07M4FSfDT9J7WxAZo0AZo2Vf1t1EiOzz+/gUOHWsPBIQ6+vqMRFxeNmJgYPNfWUQsSMG/2GgAKwPIypgDwxtSpPggP98XBgy7o1o3w55+5MDc3r5SJWHggQQ2IER0iIyOjiKA9efIEERERiIqKUiaElZeytd/Ozg6HDx/m4iUCWVksE8/t22wbzB9/lFze1BRo2LCoSNWsyRJlFCYlBXBySgHgCGAQgD1qv1tYWMDBwRspKT7Iy1Mkh/WGnZ0P0tMV36sDKL43/uOPwCefMAfWCxfYfsXKCh8qioRcLsezZ89K7YUls0DkWmFiYgKZTIb09HS89dZbGDhwIFasWIGaNWuWfjFHjYKC4uehHj3SPA9Vq5a6ODVpAjRooNr7Vxpr1gCAI5ycYjBxYiNUr/6N2lSBiwuLJf9q9ukOHYDXXlNP7FoYiYR52v/1FxOt3r0rt2iVF97jKsShQ4cQFhZWRJDi4uJQUFxK5GKwsrIqNhls4bkvLy8vmJub49mzZ5g7dy6++eYbyOVyWFpaYtq0aZgxYwZsCifw4wB4GaglWl2cbt9mMeA1zUM5OLAhIBELk7x2LdCsmSqtfXlISmLCl54O7N2rCqusLYGBLEbXqyhCVgUHs7haRCxtWosW5bfVGOBDRQ0IkRC28FxVSSuNDg4OJQZNK47//vsPkyZNwunTpwEAPj4+WL58OYYOHVrmuioLSUnq4qSYh0pNLb68tTXrNSl6UE2bsuSvQ4eyIWPfvkxkhFgnmT2bRWx44w2WXLYs007//gt07w7k5DCbC+eArV6dCeuuXao483v3VtxeQ4cLlwa0fTCLFi3Cw4cPi10p9PT0hKmpeCNrIsLvv/+OqVOn4vHLbKTt27fHunXr0FbbYFBGSFYW6zG9KlLF5zBkG6AbNFCJk0KoatVSF5DLl5lAZGSwFGMHDgiT2fn5c9ZWZiabN/vgA+2vvXOHbWxOSQH69AF++w24eFE9A09ICEuaIZGw8o0aVdxmQ6dSRkAVAmPynM/OzqalS5eSjY2N0tnw448/ppjyhtA0EPLzie7dI9q7l22z6d+fqF69kvfz1axJ1KcP0cyZRLt2sT18OTmlt3XjBpGjI6ujSxe2bUYopk+nl1t7St8oXZjHj4m8vdm1HTqwyKbF0asXKzN8uDD2GgPcc14DxiRcCmJiYmjEiBFK8bKxsaElS5ZQdna2vk0rEbmcKCqKxbJasYLoo4/YS66IdFDcx8WFqHNnookTWdjjCxeIyvuf6vZtVcyqjh1ZsguhSEggsrZmdf/xh/bXPXtG1KABu65RIxbpoTj+/ZeVMTEhCg8XxmZjgAuXBoxRuBRcvnyZfH19lQJWq1Yt+u233wxib1pSEtHZs0SbNhGNHcs2BSt6OsV9rK2J2rQh+uQTFkP977+J4uLK1nMpifv3WfowgKh1a5ZWTEgUewbbtNHe5owMonbtVJEZoqI0l+3SRRXGpirBt/xowNiz/BARfvnlF0yfPh0xMTEAgLfffhtLly5FvXr1xAmNW4jsbOD+fSlCQ6W4e1eCsDAz3LkjwUtTimBiAtSvX3Qeqnbtsk1kl4WICBasLyaGrRqePAk4OwtXf1wci+2ek8NcFd59t/Rr8vNZ6OajR5kt588Dr79efNmTJ4Fu3Zg7Rng4ywpUVeBzXBow5h5XYTIyMmjevHlkaWmp7IGJ+1lDQBgBBRp7UTVqEPXuTTRjBtHOnSxXoDbzUELy9ClRrVqqoVhiovBt+Puz+n19tettyWSqMNBWVkQXL2ouK5ezegEW0LCqwYeKGqgswkVElJCQQEOGDNGRcO0rJFLPiaW4Wk/r1uXQv/8KPxQrD7GxRHXrMhvr1mXfhSY6WjVHd/y4dtcohpUmJkSHD5dc9vBhlcCJYb+hU573k3vOGwl5eXnYsGEDFi1apNwn2blzZwwbNgxDhgwRpc1Ll6TIzMxB48ZyeHhYQiJpA6ANrK3NYQjuZYmJbHj18CFzUTh5krkVCE1QEIv3/uabrL3SWLUKWL2aHX//PdCrl+ayRMCcOex4wgRx7K+UiCikBoMx97jkcjn98ccfVK9ePWVPqGXLlnTu3Dl9m6ZXXrwgeuMN1lPx8WGRQ8XgyRMic3Pts+L88INqGL1yZenl9+1jZW1t2epjVYQPFTVgrMIVGhpKfn5+SsHy8PCg7777jmSKoONVlJQUtmoIsFXE+/fFa+vzz1X+YKXx559saAgQTZ1aevmCAqLGjVn5uXMrbquxwoVLA8YmXC9evKAvv/ySTExMCACZmZnR9OnTjcZ+MUlPZw6cAEttf+eOeG1FRhKZmrK2zp4tueyFC2yOCmC+a9r8v2XXLlbe0ZEoOVkIi40TLlwa0PbB3Lt3j8LCwigtLU1HlqmTn59PmzZtImdnZ2Uvq2/fvhRelbwRSyArS+Xr5OhIdPOmuO199hlr6513Si539y6RkxMr27MnUV5e6XXn5akWFZYsEcZeY4VPzlcQf39//P333wBYnKzSNlR7eHgItn/xxIkTmDRpEu7cuQMAaNy4MdauXYvu3bsLUr+xk5sL9OvHUtnb2QHHjgHNm4vX3qNHLFoqACxcqLlcVBTg58ciobZrp/1G7h9/ZIsKrq7Al18KYnKVggtXISwsLGBnZ4f09HSkp6cjLCwMYWFhGstLpdJiI0a8KnL29vYaozw8fPgQU6dOxcGDBwEAzs7OWLx4McaMGSPqpm5jIj8fGDiQiZW1NXDkCCD2vvPFi1k8rJ49NcfDSkpiohUdzQIQHj7MoqWWRm4usGgROw4MBGxthbO7qsA954shPT1dY8BAxfe4uDjIZDKt2rexsVGKmaenJ+zt7SGVSnHt2jWEhISgoKAAJiYm+OKLL7BgwQI4C+nybeQUFLDQNHv3sugOhw9r55JQER48YB7ucjmLMlGcSGZlsegTFy8CPj4sSqm23u6bNqlcHx49AqyshLXf2OARUAXCzs4ODRs2RMOGDTWWkclkSExMVIpZVFQUHj58iEePHiE6Ohrx8fFISkpCbm4uMjMz8eDBAzx48KDYunr06IE1a9agUVWIYVIG5HLg009Vw6/9+8UXLYD1huRyFnqmONFS9AAvXgQcHVlPUFvRysoCvvqKHc+Zw0WrvHDh0oKsrKwSQzYrMgLl5+drVZ+JiQlMTU2Rl5eH3r1749ChQ1U2YKAmiICxY4GffmJ7H/fsYcM2sbl3D/j5Z3Zc3NwWETB6NOv5WVoCf/7JMvtoy5YtQHw8i2M/apQwNldFuHAV4ueff0ZoaGgRUUpJSdHqeolEAnd392IDERae93JycgIA5Ofnw1zbIOdVCCLA3x/45hu2KXvXrrIF7KsICxey9j/4AGjZsujvM2cCP/ygEtOOHbWvOz1dFbJ5/nzt49tzisKFqxCbN2/Gv//+W+xv1tbWpU7Ce3l5lSmHIhetohAxcdiwgX3//ntg0CDdtH3nDhMjoPgkscHBwIoV7Pibb4D33itb/evXswiq9eoBH31UIVOrPFy4CvHBBx+gWbNmxfaYSloZ5AjHwoUqcdi6FRgxQrdtE7FY782aqf+2axcQEMCOly1jqcPKQnIysHKlqh2+YFxBRPMqMyCMzXO+qhIUpNrnt3atbtsOCWHtSiQsimph/vpL5UE/aVL5Ah/Ons2ub9JEO6/6qkR53s/KlxaXY5SsXct8mgAWjcHfX7ftK4aGgwaxwIcKLl8GPvxQ5ZaxejXKHBnj2TN2fwBbsayEyah1Dn+EHL3z9dfA5MnseP58NselS65fZ1mApFLWvoKwMJaQNSsL6NED2L69fKKzfDnLCtSype4WGSo7XLg4euWHH5jbAwBMn64uHLpC0dsaOpR5wAMsBLSfH/DiBdCmDbBvX/lWAWNjmcMpwPy3+DSpMHDh4uiNX39lDqYA26+3bJnuX+wrV5gvlokJMG8eO5eczGLKP33KYucfPlz+bTlLl7I49R06aBennqMdXLg4emH/fmDYMOahPno0mwPSR29E0cP76CPmppCdzRJc3LnDtuQcOwa4uZWv7idPgG3b2PGSJby3JSRcuDg658gRNgkukzHB2LpVPy/1hQssA4+JCTB3LpuAHzyYZeNxcGC/1apV/voXL2bbg7p1Azp3FspqDsD9uDg65sQJoH9/9kIPGMAcTPW1yqbobX3yCUudNmoUcOgQ28z9xx/AG2+Uv+7wcFVYnMWLK2wq5xV4j4ujM86dY8Ow3Fygb1/m1KkvR8yzZ4F//mGbt2fPZhueFSL6668sMUZFWLiQ9Sh799YcFodTfrhwcXTClSsq14J332XiUIbdUYKj6G199hnrZS1dyr5//TUT1Ypw545qo7Yi7hZHWPhQkSM6N28y14L0dKBLF+D339lwTF+cOgWcPs3cG5o0ASZOZOe/+kqYiA3z5zP//w8/LH6jNqfi8B4XR1Tu3gXeeQdISWGRFA4d0m8MKiKV28O77zLHVyIW2G/WrIrXf/06E2aJpOSQz5yKwYWLIxoPHrAVtRcvgNatK+YPJRT//MNWDc3M2LEiKOC6dcKsbCpEcejQssXp4pQNLlwcUYiIALp2BRISWKSFY8eYi4E+KdzbMjVl823durHEFUKsbF64wFw9TEyKD4vDEQ4uXBzBiYpighATAzRqBBw/DhhCGP1jx4BLl1jPKjsbaNWKOcIKNd82dy77+8knQN26wtTJKR4uXBxBiYtjPa3Hj9nL+88/5fc8FxIi1RwWEbPtyBGW6kwITp5kH3NzlYBxxIOvKhbi7t27AABvb284OjrywIFl5Nkzlvnm4UPmcX7yJNs2Ywjs389WNwHA3Z31vtzdhambSCVWY8ZonziDU364cBViypQpyoSwVlZWJSaD9fb2hre3Nw+//JKkJLZ6GBrK0nWdPAlUr65vqxgFBarN3ObmTLTq1BGu/qNH2fyWpaUwK5Oc0uHCVQgbGxs4OzsjKSkJ2dnZePjwIR4+fFjiNW5ubiWKm4+PD1xcXCp17y01lbkW/Pcf4OHBRKt2bX1bxSBijq+pqez7nj3CZsAmYl73gCpXIkcHiBWONTIykj799FOqVasWWVpaUp06dWjevHmUm5urVu6///6jTp06kYWFBVWrVo2WL19epK49e/ZQgwYNyMLCgpo0aUKHDx8uky1lDQ2blZVFDx8+pDNnztDPP/9Mq1atosmTJ9PAgQOpY8eOVKtWLTI3NycAWn0sLCyodu3a1KlTJ+rXrx+NGDGChg4dSr6+vnTw4MEy3YuhkZ5O1KEDC0vs4lI07LG+mTNHFQ76ww+Fr3/fPla3rS1RYqLw9VcFyhO6WTTh+uuvv2jkyJF07NgxevToER08eJDc3d0pICBAWSY1NZU8PDxo2LBhdOfOHfrll1/IysqKvv76a2WZf//9l0xMTGjFihUUGhpKc+bMITMzM7pdhjdEjJjzcrmcnj17RiEhIXT48GHaunUrTZkyhT744ANq2bIl+fj4kJWVVamiZmVlRQcOHCB5eQKZ65msLKIuXdiL6+hIdOOGvi1SZ+NGlWhZWhK9eCFs/QUFRI0bs/rnzBG27qqEQQlXcaxYsYJq166t/L5582ZycnJS64XNmDGDGjRooPw+cOBA6t27t1o97dq1o88//1zrdisqXKmpqRQaGkrHjx+nHTt20JIlS2j8+PH0wQcfUJs2bcjb25ukUqnWPTBzc3OytLQkiUSiPNe9e/cyibG+yckh8vNjL62dHdHly/q2SJ09e1jiC4VwzZ8vfBu7dqlEOzlZ+PqrCuV5P3U6x5WamgrnQg49Fy9exFtvvaU2we3n54fly5cjOTkZTk5OuHjxIqZMmaJWj5+fHw4cOKCxndzcXOTm5iq/p6WlaWXfTz/9hLt37xZJCJuRkaHV9SYmJvDy8ip2vqvwObuXa/Dp6ekICgrC6tWr8c8//6BZs2YYN24cFi5cCBcXF63a1Af5+Sye1rFjgLU1cysoLlW9vjh5Ehg+nEkWwBxfJ00Sto2CAtVG7alTAUdHYevnlIKIQqpGeHg42dvb07Zt25Tn3nnnHRozZoxaubt37xIACg0NJSIiMzMz+vnnn9XKbNq0idzd3TW2NX/+/GJ7OqUpeseOHTX2khwdHalRo0b0zjvv0MiRI2n27Nm0efNmOnDgAF29epViY2OpoKCgrI+FiIgePXpE/fv3V7bl5ORE69ato7y8vHLVJyb5+UQDB7KehoUF0T//6Nsida5fZz1AxbwTQLR4sfDtfPcdq9vVlc3zccqPToaKM2bMKHUodO/ePbVroqOj6bXXXqPPPvtM7bxYwpWTk0OpqanKT1RUlFYPJjg4mPz9/Wn58uW0c+dOOnXqFD148IAyMjJKfS5CcPLkSXrjjTeUz/H111+no0eP6qRtbZDJiD76iL2wZmZER47o2yJ1wsOJ3N2Zfa+/zv46OxMJnU4zJ4eoRg1W/+rVwtZdFdHJUDEgIAAjR44ssUydQk4ysbGx6NKlCzp06IBtigDcL/H09ERCQoLaOcV3T0/PEssofi8OCwsLWJRjH8dkRY4sPdGlSxfcuHED3377LebMmYN79+7h3XffRZ8+fbB69WrUr19fb7YRsWw8P/3E9uL9+ivQs6fezClCfDwLnZOYyPZGKmYHpk0D7O2Fbeu771giDS8vYNw4YevmaImIQkrR0dFUr149Gjx4cLHDKMXkfOEhUWBgYJHJ+T59+qhd5+vrq9PJeX2QnJxMkydPJlNTUwJAZmZmFBAQQCkpKTq3RS4nmjiR9TCkUqLdu3VuQomkphI1b87sq1OHZcEWaxiXlUXk5cXq37RJ2LqrKga1qhgdHU1169albt26UXR0NMXFxSk/ClJSUsjDw4M++ugjunPnDu3evZusra2LuEOYmprSqlWr6N69ezR//nyDcIfQFffu3aNevXoph49ubm60bdu2cs+nlRW5nGj6dNXq3I4dOmlWa7KzVS4Z7u5EoaFEtWuz7ytXCt/eqlWs7po12ZCRU3EMSri2b9+ucQ6sMIUdUH18fGjZsmVF6tqzZw/Vr1+fzM3NqXHjxqI7oBoiR44coQYNGiifYfPmzenPP/+k6OhoysjIEO0TGJirFK1163IoIyPDYHzOCgqI/vc/lUvG9etE33yjEjGhpybT0lgvDmCT8xxhMCjhMiQqg3AREeXl5dHatWvJ0dFRa5+xin2mK0UL+FJ5XleLFSUhlxONG8dsMzcnOnGCKDdXNWkeHCx8m199xequW5etrnKEoTzvJw9rY0SYmZmhb9++eLOiKWi0whTA+y+PZwJYr4M2tWfxYmDLFhZb66efWCid779nk+aenmwhQUiSk4GVK9nxwoX6y07EYfDHbyRkZGQonVVzc3MhlUrRr18/DB48GD1FWt7LyAAOHszFsGFzAaiCTFlbW4vSnrZ8/bXK+XPDBhZ6OTeXZYsGWIQGoePaBwezjdqNGzPnW46eEbEHaDAY81BRJpPRDz/8QF5eXsqhWteuXenWrVv6Nk0v7NvHVjYBorlzVecV+xJ9fNiEvZAkJqqcWX//Xdi6OXyOSyPGKlwXL16ktm3bKgWrTp06tH//foOZHNc1p06x+SyAaMwYNs9FxFwUvL3Z+c2bhW936lRWd8uWqjY5wsGFSwPGJlzR0dE0fPhwpWDZ2trSsmXLKKcKr7/fvElkb88EpF8/tqKoQOG3VaOG8C4KsbEssgRgeDsFKgsGv8na0Ll27Rry8/Ph7e0NLy8vnUc3zc7OxurVqxEUFISsrCxIJBKMHDkSS5cuLXGnQGUnIoJ56aelAW+9xbJEm5iw37KygKAgdjxnjvCJZpcuBXJygA4dWLBEjmHAhasQgYGB+Oeff5Tf3d3dSwzf7OPjAycnpwpHNyUi/Pbbb5g2bRqePHkCAOjQoQPWrVuH1q1bV6huYycxkW3liY8H3ngDOHiQhUhWsGULS4FWuzZQyk60MvPkCVsIAFiW60ocxNbo4MJVCA8PD9SsWROxsbHIz89HYmIiEhMTcVORZaEYLC0tNYZsLvxd097Jmzdvwt/fH+fOnQMAVKtWDStXrsSgQYMqdbhnbUhPB3r1UiXf+Osv9fAxGRnA8uXseO5cluRVSBYvZiF8unYFunQRtm5OxZAQKaIWVV7S0tLg4OCA1NRU2Gux41Yul+P58+dqMbkKx+hSnHvx4oXWNri6usLLywuurq6wt7eHRCLB7du38ejRIwAsOcf06dMxffp0vbsbGAK5uSxW/IkTgKsr8O+/wKt7zJcvB2bOBF57DQgLE9a3KjwceP11QCZjbXfoIFzdHHXK+n4CvMdVLFKpFO7u7nB3d0eLFi00lsvJyVGK2sOHDxEWFoaIiAhERUUhPj4eycnJyMjIUArh8+fPi61nyJAhWL58OaobSlocPSOXAyNGMNGysWE9rVdFKy0NWLGCHc+fL7xD6MKFTLR69eKiZYhw4SqFgoICxMfHl9r7Sk9P16o+iUQCW1tbSKVSZGZmYtCgQdi5c6fId2E8EAH+/ixsjpkZy4dY3DTfhg0sJVqDBsCQIcLacPcuWwAA2HCRY3hw4SrEli1bcPv2bTVRSkhIgLajaXt7e42T+IrzHh4eMDU1BTFXFEilfNdVYZYuBTZuZMc//MByNb5KaiqwahU7FqO3NX8+E9APPwRathS2bo4wcOEqxM8//4zz588XOW9qagovL68S48j7+PjA1tZW67YkEkmVn3x/lW+/VeUoXLdOc09q7VogJQVo1Iht9xGSGzeAffvYCuLChcLWzREOLlyFGDZsGDp37lxEoNzc3GCicBziiMLBg8Dnn7PjwEDgyy+LL5eczPYNAsCCBSp/LqGYN4/9HTqU7UvkGCZcuAoxVuiQAhytOHcOGDyYTcp/+qlqs3RxBAezifmmTdlQTkguXgQOH2ZiqNjEzTFM+AQLR6/cvg289x7zTn/vPebwqWkE/eIFGyYCrLcl9PSgYpg6ciRQr56wdXOEhQsXR288fsy84lNTgY4dgd27S55oX7WKOZ02bw588IGwtpw8yT5mZsyZlWPYcOHi6IVnz5hoxcWxuaQ//mDJZUsqv2EDO164UNjeFpFKrMaMAWrWFK5ujjhw4eLonIwM5hX/4AFQowbLiO3kVPI1K1cCmZlAq1ZsSCkkR48CFy6wPZCzZglbN0ccuHBxdEpeHptUv3oVcHFhouXjU/I1CQkq365Fi4Td7EykmtsaPx7w9haubo54cOHi6Ay5HPjkE+Dvv9mw8PBhoGHD0q9bvhzIzgbatRM+Ce2BA8x3y9YWmDFD2Lo54sGFi6MTiICAALaVxtSUOXm2a1f6dbGxLHQNIHxvSyZTzW1NmgS4uQlXN0dcuHBxdMKKFSpXhu3btQ/Kt2wZc5Xo2LH47T8VYc8eti/R0ZGJKsd44MLFEZ3t21n4GQBYvRoYPly766KjVYH8hO5tFRSonEynTlWP88UxfLhwcUTljz+A0aPZ8fTpwJQp2l+7dCmbzH/7beED+f34I4u55eqqeXsRx3DhwsURjQsX2CZomYzF11q2TPtrnzxhm64B5rclZG8rN1e1gXrmTMDOTri6ObqBCxdHFO7eBfr0YfNTvXsD33xTNvFZsoSFTe7WjfW4hOS771jGay8vYNw4Yevm6AYuXBzBefqUecUnJwPt27NJ8LLEg4+IYPNigPChZbKzWeILAJg9u2RvfY7hwoWLIygvXjDRiolhMdv//LPs4vDVV2zy3M+PrSYKyZYtbJtRjRrAqFHC1s3RHVy4OIKRmcmGhWFhQLVqzCvexaVsdYSHs4lzQPjeVkaGKgfj/PnC52Dk6A4ej6sQly9fRl5enjKQoGXhBH6cEsnPBwYMAC5fZvsOjx0DypP7Y/FiNpnfu7d2DqplYf164PlzoG5d4OOPha2bo1u4cBVizpw5aglhnZ2dS8yVqIiOWtXjxsvlwGefsWw8VlZsK0+jRmWvJywM2LWLHQvd20pJYRu1FXULHaeeo1v4f75C+Pj4oG7duoiJiUF2djaSkpKQlJSE27dva7zGzMwMXl5eGpNkKM7Z2Njo8E50y4wZwE8/scihe/cCvr7lq2fRIiaC77/PokAISXAwE6/GjYFBg4Stm6N7eELYYiAipKSklJqSrCwZgBwcHODt7Q0XFxfY2dmhoKAAT58+xcyZMzFS6NzxOmTVKmDaNHa8Ywfz1yoPoaFAkyZsT+ONG0AJ6SzLzPPnQO3abI5r3z6gf3/h6uZUHJ4QViAkEgmcnJzg5OSEJk2aaCyXn5+P+Ph4REdH4/79+7h//z4ePXqEqKgoJCQkICkpCRkZGZDJZEhNTUVqamqROj5/mSHi448/Nroh548/qkRrxYryixbAhm9ETFSEFC2ARZfIyGD19usnbN0c/cB7XKWQm5uLuLi4YntchY+zs7O1qs/ExAR2dnaQSCRIS0uDTCYDALRu3Rpr165FR6HX/0XiyBE2pJPJ2DaeVavK791++zbwxhvs+NYtlghDKOLigDp1mCPs4cMsMzXHsOA9rgqyceNG3Lp1S02gnj9/rvX1Li4uGifzFedcXV2VPavc3Fxs2LABixYtwrVr19CpUycMGTIEy5cvR/XyLMnpiEuX2AqiTMY2TK9cWbEtOQsWsL8DBworWgDb75iTw+bdhI7lxdEfvMdViLfeegvnzp0rct7CwqLUyXdvb+9yu08kJCRgzpw5+O6770BEsLKywowZMzBt2jRYG5hr9717QKdOQFISC01z6FDZvOJf5eZNli1aIgHu3CnfaqQmnjxh2Xry84ETJ4CuXYWrmyMc5elxceEqxLfffovY2NgiAuXs7KyTrNM3b96Ev7+/UjyrV6+OFStWYNCgQQaR9ToqinmyR0UBbdsyMShD8u5i6duXid/QoSpXCKEYPZpt1O7aldnKMUzKNZVDVYDU1FQCQKmpqfo2pVTkcjn9+uuvVKNGDQJAAKhjx4509epVvdr14gVRo0ZEAFGDBkTPnlW8zqtXWX1SKVFYWMXrK0x4OJGJCav/33+FrZsjLOV5P41rGasKIJFIMHDgQISFhWHx4sWwtrbGv//+i7Zt2+LTTz9FfHy8zm3KymKZdUJDWTKJY8dYHKuKogjkN3w40KBBxesrzMKFbA6uVy+gQwdh6+YYACIKqcFgTD2uV4mOjqbhw4cre1+2tra0bNkyysnJ0Un7eXlEffqwnoujI9Ht28LUe/Eiq9PEhPWOhOTuXSKJhNV/7ZqwdXOEpzzvJ5/jMhIuXboEf39/XLlyBQBQp04dzJ8/Hx07doSnp6cobRIB48aZY+dOM1haEg4dykGHDnJYW1tXeM7Nz49l+/n0UxYfS0gGDAB++435hO3bJ2zdHOHhc1waMOYeV2FkMhn9+OOP5OnpqeyBifsJIiZf+QS8pzyfkZFRofs4d471hkxNiSIiBHo4L7lxg9UtkQjXO+SIC5/jquRIpVI0a9YM9evX10FrpgBavjweA+APwWpWzG19+inbiiMkinRjQ4awLUScygkfKhoJz58/x9y5c7Ft2zbI5XJYWFhg5MiR+PDDD9FBpNnnvDzg779N0KePTO18RYaKp0+zxBdmZsDDhyygn1BcvMgm4k1M2EKCTvSdU2G453wlJD8/H5s3b8aCBQuQkpICABgwYABWrFiBWrVqidq2jY2wkRSIVL2t0aOFFS1A1dsaMYKLVmWHC5cB89dff2HKlCkICwsDADRr1gzr1q3D20Jnj9ARJ08CZ8+yyKOBgcLWfeoUczI1MwPmzRO2bo7hoZM5rtzcXDRv3hwSiQQhISFqv926dQtvvvkmLC0tlZ7ir7J37140bNgQlpaWaNq0KY4cOaILs/XG/fv30bt3b/Tq1QthYWFwc3PDtm3bcP36daMVLSKVoHz+OQvtLGTdit7WmDFAzZrC1c0xUERbKijEl19+ST179iQAdPPmTeX51NRU8vDwoGHDhtGdO3fol19+ISsrK/r666+VZf79918yMTGhFStWUGhoKM2ZM4fMzMzodhmWjLRdtTh16hT9+eefdOPGDUpISCCZTFbme60IycnJNHnyZDI1NSUAZGZmRgEBAZSSkqJTO8Tg2DG22mdpSRQbK2zdf/2lqjsmRti6OeJTnlVF0YXryJEj1LBhQ7p7924R4dq8eTM5OTlRbm6u8tyMGTOoQYMGyu8DBw6k3r17q9XZrl07+vzzzzW2mZOTQ6mpqcpPVFSUVg+ma9euau4AZmZmVLNmTerQoQMNGDCA/P39acWKFbRr1y46ffo0hYeHU2ZmZhmfSFEKCgpo69at5Orqqmy7T58+dP/+/QrXbQjI5UTt2jFxmTxZ+LpbtWJ1BwQIWzdHN5RHuESd40pISMDo0aNx4MCBYqMcXLx4EW+99RbMzc2V5/z8/LB8+XIkJyfDyckJFy9exJRX8rb7+fnhwIEDGtsNCgrCwnIELW/QoAGSk5MRExODxMRE5Ofn48mTJ3jy5EmJ1zk6OhYbMaLwx93dvdhAgadOncKkSZNw69YtAMDrr7+ONWvWwM/Pr8z2Gyp//cWSaFhZsTDPQnLwIHD9OltIELpujuEimnAREUaOHImxY8eidevWePz4cZEy8fHxqP2KI4+Hh4fyNycnJ8THxyvPFS5T0p69wMBANbFLS0vTKr7V5s2blcd5eXnKAIKaQjfHxMQgKysLKSkpSElJwd27dzXWbWJiAg8PD7i4uMDe3h5EhIcPHyIxMREAE79FixZh7NixMKtInBgDo/Dc1oQJwCv/KSuETKaa25o0CXBzE65ujmFTZuGaOXMmli9fXmKZe/fu4e+//0Z6ejoChV4+0gILCwtYVDBpnrm5OWrWrImaJcz0EhFSU1Px+PFj3L59Wy10c3x8PJKTk5Geno78/HzIZDLExsYiNja2SD3jx4/HwoUL4VLWJIRGwB9/qHpEijDPQrFnD4vh5eAABAQIWzfHsCmzcAUEBJSa3KFOnTo4efIkLl68WERAWrdujWHDhuGHH36Ap6cnEhIS1H5XfFfsv9NURqz9eYUhIiQlJZXY41IMK7XF1tYWdnZ2StH79NNPsXHjRhHvQn/I5are1pdfCtsjKihQ+YRNncpyOXKqDmUWLjc3N7hp8S9w/fr1+Oqrr5TfY2Nj4efnh19//RXtXmb69PX1xezZs5Gfn68cHh0/fhwNGjSA08t/ib6+vjhx4gQmTZqkrOv48ePwLW8OrBJYsWIFbt68qSZOOTk5Wl1rbm6uNrdV3DyXl5eXwUU0FZMDB4D//gPs7ITvEf30E8t67eIC+PsLWzfH8BFtjqvGK27Rti9DZb722muo9tKJZ+jQoVi4cCE+++wzzJgxA3fu3MG6deuwZs0a5XX+/v54++23sXr1avTu3Ru7d+/GtWvXsG3bNsFtPnz4MM6ePVvkvKura6mhm11dXQ0iSqmhIJerekSTJjGBEYq8PFXC2JkzmTByqhjiLHAWJTIysog7BBHRf//9R506dSILCwvy8fGhZcuWFbl2z549VL9+fTI3N6fGjRvT4cOHy9S2tsutO3fupODgYNq9ezedO3eOIiIidBb3qrLx66/MRcHBgSgpSdi6N29mdXt5EQngjcLRMzwelwYqwyZrY0ImY9l67t1jPSMht+BkZwN16wKxscDGjcD48cLVzdEP5Xk/eVgbjuD8+isTLScn4eeftm5lolWjBjBqlLB1c4wHLlwcQSkoUM0/TZ3KXBWEIiMDCApix/Pmsc3anKoJFy6OoPz8M/DgAZuMnzhR2LrXrweePWNDxY8/FrZujnHBhYsjGPn5wKJF7Hj6dGFX+1JSWMZsgGW+rkSbCzjlgAsXRzB++gl49Ig5mgo9aR4czMSrUSNg8GBh6+YYH1y4OIKQlwcsXsyOZ85kW3yE4vlzQOHat2gRC83Mqdpw4eIIwg8/AI8fA56ewNixwta9YgWbmG/RAujXT9i6OcYJFy5OhcnNBRS7u2bOBITc1RQXx/y1ANZGMZGBOFUQ/s+AU2G+/x54+hTw9mahk4UkKIg5nfr6Aj17Cls3x3jhwsWpEDk5wJIl7HjWLBYsUCiePgW+/podf/UVwLeCchRw4eJUiG++AWJiWPILoT3Zv/qKTfp36QJ07Sps3RzjhgsXp9xkZwNLl7LjOXOE9WR/+JANQQHVaiWHo4ALF6fcbN0KxMezdGCffCJs3QsXss3aPXsCHTsKWzfH+OHCxSkXmZnAsmXseO5coFC+kwoTGgrs2sWOeW+LUxxcuDjlYvNmIDERqFNH+H2D8+ezJBv9+gGtWglbN6dyIGp6MmPjxIkTyMjIUEY19fDwgAl30y5CejqgyJcyb56w+wZv3gR++42tICr2PXI4r8KFqxBLly7FyZMnld9NTEzg6elZYhx5b2/vKheccONG4MULoF49YNgwYetWBB0cMgRo0kTYujmVBy5chWjcuDEyMjIQExOD+Ph4yGQyZeKMkrC1tS01IaynpydMTY3/caelqaI0zJ8PCHlLly4Bf/7J9iIq4tVzOMVh/G+SgKxfv155LJPJkJCQUGpC2NTUVGRkZOD+/fu4f/9+ifW7u7srE8IWFBQgNjYWU6dOLZKp25BZtw5ITgYaNhQ+SoMiueuIEUD9+sLWzalc8JjzFSQzMxOPHj3CrVu3iiSETUpKQkZGBvLy8jReb2JiguXLl2PixIkwF3JpTgRSUoBatYDUVGD3bmDQIOHqPn2aOZqambFAhLVqCVc3x7Apz/vJe1wlIJfLkZiYWGpC2OTkZK3rdHBwgL29PYgIz549Q25uLqZOnYqvv/4awcHB6N27t8GmOVuzholW48bAgAHC1UvEHFgBYPRoLlqc0uE9rkIsXboUN27cUApSXFwcCgoKtGrD2tpaq3muwr0qmUyGH374AYGBgcps2H5+fggODkajRo0qdtMCk5TEBCU9na36ffihcHUfPcocTS0tWSBCb2/h6uYYPuXpcXHhKkTnzp1x5swZtXMSiUS5slhSQlgHB4dy95TS0tKwZMkSrFmzBvn5+TAxMcH48eMxf/58ODs7l6tOoZkzh22mbtYMuHFDuPAyRECbNsD168CUKcDq1cLUyzEeuHBpQNsH8+uvv+LZs2dqAqXL1cCHDx9i6tSpOHjwIADA2dkZixcvxpgxY/S6Ivn8OVC7Ngvmd+AA0LevcHUfOMAcTW1sgIgIwN1duLo5xkG55qCFzkpriJQnU64+OX78ODVu3JgAEABq0qQJHT9+XG/2zJjBMke3bEkklwtXr0xG1KQJq3vWLOHq5RgX5Xk/+ZYfA6R79+4ICQnBxo0b4ezsjDt37uCdd97BBx98gIcPH+rUlsREYMMGdrxwobAxsfbsAe7cYbkXp04Vrl5O5YcLl4FiamqK8ePHIzw8HBMnToSJiQkOHjyIxo0bY8aMGUhLS9OJHStWAFlZbB6qd2/h6i0oUDmZTp3Ksl5zONrC57iMhNDQUEyePBl///03AMDDwwPTp09Hjx49ULt2bVHajI+XoEkTK+TkSLB/fw7eeUcGgK2gVtRlY8cOFgrHxQWIjBQ2ByPHuOCT8xqoDMIFAESEw4cPY/LkyToaMq4BMAnABQCqoFgZGRmwqUD+sbw8oEEDlhVo5Uo+TKzqlOf95ENFI0IikcDBwQF2OumeSAC88fJ4nqA1f/edKpXZF18IWjWnisA9542Ep0+fYvr06fj1118BMA/8CRMm4L333kMTkcIoEAGXLmWjffuDapPy1hXIP5adrUplNnu2sKnMOFUHLlwGTmZmJpYvX46VK1ciJycHEokEY8aMweLFi+Hm5iZ6+927C1vf1q1AbCxQvTrb3sPhlAcuXAYKEeHnn3/GjBkzlGF1OnfujLVr16JZs2Z6tq58ZGSwPIkAi7slZHINTtWCC5cBcvXqVfj7++PixYsAgFq1amHVqlXo37+/wW7A1oYNG4Bnz4DXXmOhazic8sKFqxB//PEHUlJS1Lb86GYinBEbG4tZs2bhhx9+AADY2Nhg1qxZmDJlCiwtLXVmhxikpDCfMIA5sgoZ7plT9eDCVYg1a9bg1KlTaufs7Ow0brBWnK/ofsacnBysWbMGS5YsQWZmJgDg448/RlBQELwrSaiENWuYeDVqJHwAQk7VgwtXIdq1awepVKoMa5Oeno709HSEhYUhLCxM43VSqRQeHh4lhrTx8fGBvb292lCPiPD7779j2rRpiIyMBAC0b98e69atQ9u2bUW/X13x/DkTLoAlwOD5RzgVhTuglkB6enqpoZvj4uIgk8m0qs/S0hKurq6ws7MDESE6OhoZGRkAAG9vb6xYsQJDhgyBVKiYMQbCjBlsmNiiBXDtmnAhcTiVA+45rwExPefz8/MRFhamFrr56dOnSEhIUAvdrOkxS6VSzJo1CzNmzICtra2gthkCcXFsMj47myXCEHK/I6dywEM3C0xWVlapPa7Y2Fjk5+drVZ+FhYUyWYZMJsOzZ88wceJELKrECQSDgphotW8P9Oqlb2s4lQUuXIWYPXs2rl27phSnlJQUra6TSCRwd3cvNXSzo6OjUbszlJWnT4Gvv2bHX30lbEgcTtWGC1chLly4gNOnT6uds7GxKTUhrJeXF8z4+n4RvvqKbaju3Bno2lXf1nAqE3yOqxCHDh1CcnKymkC9uhLI0Y6HD1nuRZkMOH8e6Nix9Gs4VRM+x1VB3n//fX2bUGlYtIiJVs+eXLQ4wsMXpjmCExoK7NzJjhcv1q8tnMoJFy6O4CxYwELi9OsHtGqlb2s4lREuXBxBCQkB9u5lK4gLF+rbGk5lRVThOnz4MNq1awcrKys4OTnhgw8+UPv96dOn6N27N6ytreHu7o5p06YVyRx9+vRptGzZEhYWFqhbty527NghpsmcCjJ3Lvs7eDDQtKl+beFUXkSbnN+3bx9Gjx6NpUuXomvXrigoKMCdO3eUv8tkMvTu3Ruenp64cOEC4uLi8PHHH8PMzAxLly4FAERGRqJ3794YO3Ysdu3ahRMnTmDUqFHw8vKCn5+fWKZzysmlS8w7Xiplw0UORzSETOyoID8/n3x8fOjbb7/VWObIkSMklUopPj5eeW7Lli1kb29Pubm5REQ0ffp0aty4sdp1gwYNIj8/vzLZY2wJYY2V7t1ZctdPPtG3JRxjwmASwt64cQMxMTGQSqVo0aIFvLy80LNnT7Ue18WLF9G0aVN4eHgoz/n5+SEtLQ13795Vlun+SuxgPz8/ZYA9TeTm5iItLU3twxGX06eBf/5hcbbmCZtbg8MpgijCFRERAQBYsGAB5syZgz///BNOTk7o3LkzkpKSAADx8fFqogVA+T0+Pr7EMmlpacjOztbYflBQEBwcHJSf6tWrC3ZvnKIQqea2Ro0CatXSqzmcKkCZhGvmzJmQSCQlfsLCwiCXywGwvX8ffvghWrVqhe3bt0MikWDv3r2i3EhhAgMDkZqaqvxERUWJ3mZV5u+/mXe8pSUwZ46+reFUBco0OR8QEICRI0eWWKZOnTqIi4sDADRq1Eh53sLCAnXq1MHTp08BAJ6enrhy5YratQkJCcrfFH8V5wqXsbe3h5WVlUYbLCwsYMEzMegEIpVYffEFUEkCtnIMnDIJl5ubm1YpsVq1agULCwvcv38fnTp1AsDiVj1+/Bg1a9YEAPj6+mLJkiVITEyEu7s7AOD48eOwt7dXCp6vry+OHDmiVvfx48fh6+tbFrM5InLoEAsOaGPDAgZyODpBrJUCf39/8vHxoWPHjlFYWBh99tln5O7uTklJSUREVFBQQE2aNKEePXpQSEgIHT16lNzc3CgwMFBZR0REBFlbW9O0adPo3r17tGnTJjIxMaGjR4+WyRa+qigOMhlR06ZsJXHWLH1bwzFWyvN+iiZceXl5FBAQQO7u7mRnZ0fdu3enO3fuqJV5/Pgx9ezZk6ysrMjV1ZUCAgIoPz9frcypU6eoefPmZG5uTnXq1KHt27eX2RYuXOLwyy9MtBwciF7+/4jDKTPleT95WBtOuSgoABo3Bh48YJEgFKuKHE5ZKc/7yfcqcsrFzp1MtFxcAH9/fVvDqWrweFyFOHjwIJKSktQCCVa1cMvakJen2kA9YwbAO7EcXcOFqxBr164tErrZysqq1NDN3t7eMDc314/ReuD774HHjwFPT2D8eH1bw6mKcOEqRKdOnWBpaalMlpGUlITs7Gw8fPgQDx8+LPFaNze3UhPCOjs7G33vLTtbFRxw9mzA2lq/9nCqJnxyvgSys7MRGxtbYnqymJgY5OXlaVWfmZmZMj2ZXC7Hs2fP8OWXXxpVerK1a4HJk4Hq1YHwcID7+XIqCk8IqwFdJIT977//EBYWhsjIyDIlhJVIJAgMDERgYKDBJ4TNyGDJXRMTgW++YfsSOZyKwoVLA+V5MESEtLS0UhPCxsfHK/dmloatrS1cXFxgZ2cHIkJUVJQycoWXlxeWLVuG4cOHQ2qgOeqXLQMCA5l43bvHIkFwOBWFC5cGtH0wM2fOxJUrV5TilJmZqVX9JiYm8PLyKnUS387OTu06IsLBgwcREBCgjKjRtm1brFu3Du3bty//DYtASgpQpw6QnAz89BMwfLi+LeJUFrhwaUDbB9O1a1ecOnVK7Zyjo2OJE+7e3t5wd3eHiYlJue3Lzc3F2rVr8dVXXyEjIwMAMHz4cCxbtgw+Pj7lrldI5s9njqavvw7cvg1U4HY5HDW4cGlA2wdz+PBhpKamKkXK29sbNjY2OrMzLi4Os2fPxvbt2wEA1tbWmDlzJqZOnVpiNAyxef6c9bbS01kijP/9T2+mcCoh5ZqDFmzDkQFjbHsVr169Sh06dCAABIBq1qxJe/bsIblcrhd7pk9nexKbN2cbqzkcITGY0M2citG6dWucP38ev/zyC6pVq4YnT55g4MCBePvtt3Hz5k2d2hIfD2zYwI4XL2aJMDgcfcP/GRooEokEgwcPxv379zF//nxYWVnh3LlzaNWqFUaPHl0kwKJYBAUxp9P27YHevXXSJIdTKnyOy0h4+vQpZsyYgd27dwMA7OzsMGHCBLz//vtoKlICw+hoCd54wwp5eRL88Uc2unRhbh/W1tZGvwOAYzjwyXkNVAbhUnD+/Hl8+eWXOhoybgXwOYBTALoqz2ZkZOh00YJTueFhbSo5RISkpCQdpVuTAHB/ecyDbXEMC77J2ki4e/cuJk+ejOPHjwNgiURmzpyJ7t27o5aI+cBCQ7PQqNExtXPWfGc1R89w4TJwXrx4gfnz52Pr1q2QyWQwNzdHQEAAAgMDi3jii0GbNqI3weGUGS5cBkp+fj62bt2K+fPnIzk5GQDQv39/rFy5EnXq1NGzdRyOfuHCZYD8/fffmDx5MkJDQwEATZs2xbp169ClSxc9W8bhGAZcuArxyy+/IDExUW1fopeXl86im4aHhyMgIAB//PEHAMDFxQVfffUVRo0aBVNT/p+Kw1HA34ZCfP311zhz5kyR8+7u7iVusq5odNPU1FR89dVXWLduHfLz82FqaooJEyZg3rx5cHJyquhtcTiVDi5chfDz84O7u7tazK38/HwkJiYiMTERISEhGq+1tLRU25xdnMh5eXnB0tJSeY1MJsP27dsxe/ZsJCYmAgB69uyJ4OBgNGzYUOzb5XCMFu6AWgJyuRzPnz8vNXTzixcvtK7Tzs5OuRr4/PlzZdjnBg0aIDg4GL169SrbzXE4Rg73nNeAmJ7z6enpiIiIwK1bt3D//n1EREQUG7pZE6amplixYgXGjx9fpTIFcTgKyvN+8qGiBgoKChAfH19q6Ob09HSt6pNKpXB3d1cmyygoKEBsbCymTp2KSZMmiXszHE4lgwtXISZOnIhLly4hJiYGCQkJWseSt7e31zhpr/h4eHhUKEoqh8NRwYWrEKGhobh27Zryu6mpqTKWfEmrioaenYfDqWzwOa5CnDx5EpmZmUqRcnd3N9iMOxxOZYHPcVWQrl27ll6Iw+HoHd6d4HA4RgcXLg6HY3Rw4eJwOEYHFy4Oh2N0cOHicDhGBxcuDodjdHDh4nA4RgcXLg6HY3Rw4eJwOEYHFy4Oh2N0cOHicDhGBxcuDodjdHDh4nA4RgcXLg6HY3Rw4eJwOEYHFy4Oh2N0cOHicDhGR5WIgKqITp2WlqZnSzgczqso3suyRJGvEsKlSCFWvXp1PVvC4XA0kZ6eDgcHB63KVolkGXK5HLGxsbCzs4NEIim1fFpaGqpXr46oqCjBE8gaM/y5FA9/LsWj7XMhIqSnp8Pb21vr5DRVoscllUpRrVq1Ml9nb2/P/yEWA38uxcOfS/Fo81y07Wkp4JPzHA7H6ODCxeFwjA4uXMVgYWGB+fPnw8LCQt+mGBT8uRQPfy7FI+ZzqRKT8xwOp3LBe1wcDsfo4MLF4XCMDi5cHA7H6ODCxeFwjA4uXBwOx+io0sK1ZMkSdOjQAdbW1nB0dCy2zNOnT9G7d29YW1vD3d0d06ZNQ0FBgVqZ06dPo2XLlrCwsEDdunWxY8cO8Y3XMZs2bUKtWrVgaWmJdu3a4cqVK/o2SVTOnj2L9957D97e3pBIJDhw4IDa70SEefPmwcvLC1ZWVujevTvCw8PVyiQlJWHYsGGwt7eHo6MjPvvsM2RkZOjwLoQnKCgIbdq0gZ2dHdzd3fHBBx/g/v37amVycnIwfvx4uLi4wNbWFh9++CESEhLUymjzXpVElRauvLw8DBgwAOPGjSv2d5lMht69eyMvLw8XLlzADz/8gB07dmDevHnKMpGRkejduze6dOmCkJAQTJo0CaNGjcKxY8d0dRui8+uvv2LKlCmYP38+bty4gWbNmsHPzw+JiYn6Nk00MjMz0axZM2zatKnY31esWIH169dj69atuHz5MmxsbODn54ecnBxlmWHDhuHu3bs4fvw4/vzzT5w9exZjxozR1S2IwpkzZzB+/HhcunQJx48fR35+Pnr06IHMzExlmcmTJ+OPP/7A3r17cebMGcTGxqJ///7K37V5r0qFOLR9+3ZycHAocv7IkSMklUopPj5eeW7Lli1kb29Pubm5REQ0ffp0aty4sdp1gwYNIj8/P1Ft1iVt27al8ePHK7/LZDLy9vamoKAgPVqlOwDQ/v37ld/lcjl5enrSypUrledSUlLIwsKCfvnlFyIiCg0NJQB09epVZZm//vqLJBIJxcTE6Mx2sUlMTCQAdObMGSJiz8HMzIz27t2rLHPv3j0CQBcvXiQi7d6r0qjSPa7SuHjxIpo2bQoPDw/lOT8/P6SlpeHu3bvKMt27d1e7zs/PDxcvXtSprWKRl5eH69evq92jVCpF9+7dK809lpXIyEjEx8erPRMHBwe0a9dO+UwuXrwIR0dHtG7dWlmme/fukEqluHz5ss5tFovU1FQAgLOzMwDg+vXryM/PV3s2DRs2RI0aNdSeTWnvVWlw4SqB+Ph4tYcLQPk9Pj6+xDJpaWnIzs7WjaEi8vz5c8hksmLvUfEMqhqK+y7pmcTHx8Pd3V3td1NTUzg7O1ea5yaXyzFp0iR07NgRTZo0AcDu29zcvMic8avPprT3qjQqnXDNnDkTEomkxE9YWJi+zeRwjJ7x48fjzp072L17t87brnTxuAICAjBy5MgSy9SpU0erujw9PYusnilWRzw9PZV/X10xSUhIgL29PaysrLS02nBxdXWFiYlJsfeoeAZVDcV9JyQkwMvLS3k+ISEBzZs3V5Z5dfGioKAASUlJleK5TZgwQbngUDjWnaenJ/Ly8pCSkqLW6yr870Wb96o0Kl2Py83NDQ0bNizxY25urlVdvr6+uH37tto/wOPHj8Pe3h6NGjVSljlx4oTadcePH4evr69wN6VHzM3N0apVK7V7lMvlOHHiRKW5x7JSu3ZteHp6qj2TtLQ0XL58WflMfH19kZKSguvXryvLnDx5EnK5HO3atdO5zUJBRJgwYQL279+PkydPonbt2mq/t2rVCmZmZmrP5v79+3j69KnasyntvdLGkCrLkydP6ObNm7Rw4UKytbWlmzdv0s2bNyk9PZ2IiAoKCqhJkybUo0cPCgkJoaNHj5KbmxsFBgYq64iIiCBra2uaNm0a3bt3jzZt2kQmJiZ09OhRfd2W4OzevZssLCxox44dFBoaSmPGjCFHR0e1VaHKRnp6uvLfAwAKDg6mmzdv0pMnT4iIaNmyZeTo6EgHDx6kW7duUd++fal27dqUnZ2trOPdd9+lFi1a0OXLl+n8+fNUr149GjJkiL5uSRDGjRtHDg4OdPr0aYqLi1N+srKylGXGjh1LNWrUoJMnT9K1a9fI19eXfH19lb9r816VRpUWrhEjRhCAIp9Tp04pyzx+/Jh69uxJVlZW5OrqSgEBAZSfn69Wz6lTp6h58+Zkbm5OderUoe3bt+v2RnTAhg0bqEaNGmRubk5t27alS5cu6dskUTl16lSx/zZGjBhBRMwlYu7cueTh4UEWFhbUrVs3un//vlodL168oCFDhpCtrS3Z29vTJ598ovyforFS3DMBoPZvPjs7m7744gtycnIia2tr6tevH8XFxanVo817VRI8HheHwzE6Kt0cF4fDqfxw4eJwOEYHFy4Oh2N0cOHicDhGBxcuDodjdHDh4nA4RgcXLg6HY3Rw4eJwOEYHFy4Oh2N0cOHicDhGBxcuDodjdPwf9EK6ckvOPccAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -216,7 +211,7 @@
},
{
"cell_type": "markdown",
- "id": "10726c77-5b03-49fe-8529-415aa5679d2d",
+ "id": "7886a6a9",
"metadata": {},
"source": [
"As you can see, the `full_connect` method inserted one synapse (in blue) from every neuron in the first layer to the output neuron. The `fully_connect` method builds this synapse from the zero-eth compartment and zero-eth branch of the presynaptic neuron onto a random branch of the postsynaptic neuron. If you want more control over the pre- and post-synaptic branches, you can use the `connect` method:"
@@ -224,8 +219,8 @@
},
{
"cell_type": "code",
- "execution_count": 138,
- "id": "cd1eee20-06d7-413f-b61b-377ce39f33f4",
+ "execution_count": 7,
+ "id": "f78efb05",
"metadata": {},
"outputs": [],
"source": [
@@ -236,13 +231,13 @@
},
{
"cell_type": "code",
- "execution_count": 139,
- "id": "944aa107-607f-45f1-91dd-4c413d7c3da1",
+ "execution_count": 8,
+ "id": "10cc3baa",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAH5CAYAAAA/e9PUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHqklEQVR4nO2dd3gUVdvG763pm0I6SQg1lEAk1FBFIkhvyify0gVBmkrvoCAICEqVooCKoIiAKKJIV5p0Qo3SQgkQIAVSN/t8fxx2ZzfJJttLcn7XNVc2szPnPDNkbs458xQRERE4HA7HiRDb2wAOh8MxFi5cHA7H6eDCxeFwnA4uXBwOx+ngwsXhcJwOLlwcDsfp4MLF4XCcDqm9DbAFKpUK9+7dg5eXF0Qikb3N4XA4WhARMjIyEBoaCrHYsLFUmRCue/fuITw83N5mcDicYkhKSkJYWJhBx5YJ4fLy8gLAboxCobCzNRwOR5v09HSEh4drnlNDKBPCpZ4eKhQKLlwcjoNizDIOX5zncDhOBxcuDofjdHDh4nA4TgcXLg6H43Rw4eJwOE4HFy4Oh+N0cOHicDhOBxcuDofjdHDh4nA4TgcXLg6H43Rw4eJwOE4HFy4Oh+N0cOHicDhOBxcuDofjdHDh4nA4TgcXLg6H43Rw4eJwOE5HmciAaihubm7Izs6GRCKBi4sLFAoFQkNDUb16dTRp0gQ9evRAcHCwvc3kcMo8IiIiexthbdLT0+Ht7Y20tLRiUzcbkzpWJBJBJpPB3d0dfn5+qFChAurWrYvXXnsNrVq1glTK/0/gcAzB0OdTGy5cWvTv3x+nT59GcnIynj17htzcXOTn55vVt0QigVwuh0KhQFBQEKpVq4amTZuiRYsWuH79Orp27cpFjlOm4cKlB1NuTEGUSiV2796NP//8E2fPnsXt27fx5MkTZGZmQqlUwpzbaExZJg6ntMGFSw+WEC41SqUS//zzD3777TecPHkS//33H1JSUvD8+XPk5eVBpVKZ1G7jxo1x+PBhPvrilDlMeT75U6JFSkoKduzYgYMHD+Ly5cu4d+8e0tLSkJ2dDZVKZdaoSiwWQyaTwcPDAwEBAVAoFDh//jxycnIAAMeOHYNcLseYMWOwYMECS10Sh1Mq4SMuLYxZnNc+RyKRwNXVFb6+vggLC0N0dDRefvlldO7cGZ6ensWef/78eTRt2hTPnj3T7HNxccH27dvx2muvGW0Ph+Ns8KmiHgy9MWKxWGdUJRaLIZfL4enpiaCgIFSuXBkNGzZE165dUatWLYvauHTpUrz33ns6U83Q0FCcO3cO/v7+Fu2Lw3EkuHDpwdAbc/78eVSrVg2urq42tE6Xbt26Yfv27Tr7WrdujT///NM+BnE4VsYU4eKe81rUqVPHrqIFANu2bUNGRgYiIyM1+/bu3QuxWIw5c+bYzzAOx4HgwuWAeHp64saNGzh8+DDc3NwAAESEqVOnwt3dHX/99ZedLeRw7AsXLgemWbNmyMzMxIcffqh5cZCVlYXmzZujYsWKOgv6HE5Zgq9xORHx8fHYu3evzj5XV1ecPHnSKv3duiXHmjX+mDbtPlxchD+TqKgo7m/GsRh8cV4PpUW4AOZrFhYWpvH/sh4SANcAVAIwF8BkzTcJCQkWf6vKKbvwxflSztKlSxEUFGQD0QKAfABjXnweD6ChDfrkcAyDj/edAH1Oqp999hni4uKsOm2bMCEVv/7qg4oVD2HLlv/g6kqIioqyWn8cjiFw4XJgsrOzERMTg2vXrmn2iUQim4YFff01UKsWcOOGCzZvrgkejcRxBPhU0UH53//+Bzc3Nx3RiouLQ25urk1jGf38gNWr2edPPwWOHLFZ1xyOXrhwORjr16+HVCrFxo0bNfv8/f2RlJSEI0eO2OVtXqdOQL9+ABHQvz+QmWlzEzgcHbhwaSGXyyESiSAWi+Hi4gJfX19UrVoVr776KiZMmIB9+/ZBqVRape+rV6/C19cXAwYM0CQvlMlk2LJlCx49emT3fF2ffQaULw8kJgJTptjVFA6Hu0NoY2x2CO3c9CEhIYiKikKzZs3QpUsXg4VGqVSifv36OHfunM7+oUOHYuXKlUbZY2127wbatQNEIuDAAaBFC3tbxCkNcD8uPRh6YyZPnoy///5bk900KyvL7OymIpEIUqkUHh4e8PX1RUREBF566SW89tpr+O677/DNN9/oHB8TE4OTJ086rIPn4MHA2rVApUrA+fOAh4e9LeI4O1y49GApB9SbN29i+/bt+Pvvv5GYmIjk5GSkp6dbJDe9j48Pjh075vCuBunpQHQ0kJQEjBgBLF1qb4s4zg53QLUykZGR6N+/Pzp06IDY2FhUqFABfn5+cHNzg1QqNSkRIQCsXbsWT58+dXjRAgCFAvjqK/Z52TJg/3772sMpmzjmfMROHD16FL/88gtOnTqFGzduWCSXPKCbJdXb2xvly5eHt7c3EhMT8fnnn6Nz584WvArrEx8PDB0KfPEFMHAgmzJ6ednbKk5Zgk8VtTBlxKTOkurh4YHAwEBUrlwZ9evXR6dOnRAbG2uO2Q5NRgZQpw5w8yYTMQd7j8BxInixDDMRiUSahXj1KMnNzU2TS75WrVp45ZVX0LFjxxJzyZd2vLzYlPGVV9jIq3t34NVX7W0Vp6zAhUuLJ0+ewMfHx95mOA2tWrEF+mXLgEGDgIQEtgbG4VgbvjivBRct45k3j7lGJCUBY8aUfDyHYwm4cHHMwsMDWL+eOaWuXcucVDkca8OFi2M2zZsDo0ezz2+/DaSm2tUcThmACxfHIsyZA1StCty9C7z/vr2t4ZR2rC5cd+/exf/+9z+UK1cObm5uqF27tk6OdCLC9OnTERISAjc3N8THxyMxMVGnjSdPnqB3795QKBTw8fHBoEGDeKEIB8PdXZgyrl8P/PKLvS3ilGasKlxPnz5F06ZNIZPJ8Ntvv+HSpUv49NNP4evrqzlm/vz5WLJkCb744gscP34cHh4eaNu2LbKzszXH9O7dGxcvXsSePXvwyy+/4NChQxgyZIg1TeeYQJMmwgL9kCHAkyf2tYdTiiErMmHCBGrWrJne71UqFQUHB9OCBQs0+1JTU8nFxYU2bdpERESXLl0iAPTPP/9ojvntt99IJBLR3bt3DbIjLS2NAFBaWpqJV8IxlMxMourViQCi//3P3tZwnAFTnk+rjrh+/vln1K9fH2+88QYCAwNRt25drFmzRvP9jRs3kJycjPj4eM0+b29vNGrUCEePHgXAwnB8fHxQv359zTHx8fEQi8U4fvx4kf3m5OQgPT1dZ+PYBjc3NlUUi4FvvwW2b7e3RZzSiFWF6/r161i5ciWqVq2K33//HcOGDcOoUaOwYcMGAEBycjIAICgoSOe8oKAgzXfJyckIDAzU+V4qlcLPz09zTEHmzp0Lb29vzRYeHm7pS+MUQ6NGwPjx7PM77wApKfa1h1P6sKpwqVQqxMbG4uOPP0bdunUxZMgQDB48GF988YU1u8WkSZOQlpam2ZKSkqzaH6cwM2eyIhsPHwIjR9rbGk5pw6rCFRISgpo1a+rsq1GjBm7fvg0ACA4OBgA8ePBA55gHDx5ovgsODsbDhw91vlcqlXjy5InmmIKos5Jqbxzb4uLCpowSCbB5M/Djj/a2iFOasKpwNW3aFFevXtXZd+3aNVSoUAEAULFiRQQHB+uUlU9PT8fx48cRFxcHgFW2SU1NxalTpzTH7Nu3DyqVCo0aNbKm+RwzqV8fmDSJfR42jI2+OByLYMWXBXTixAmSSqU0Z84cSkxMpI0bN5K7uzt9++23mmPmzZtHPj4+tGPHDjp//jx16dKFKlasSFlZWZpjXnvtNapbty4dP36c/vrrL6patSr16tXLYDv4W0X7kZNDVKcOe8vYoweRSmVviziOhinPp1WFi4ho586dFB0dTS4uLlS9enVavXq1zvcqlYqmTZtGQUFB5OLiQq1bt6arV6/qHPP48WPq1asXeXp6kkKhoAEDBlBGRobBNnDhsi+nTxNJpUy8Nm+2tzUcR8OU55MnEuTYhFmz2IK9nx9w8SKgZ3mSUwbhOec5DsvkycBLLzFv+qFDWXFZDsdUuHBpIZPJNAVh5XI5vL29ERkZiRYtWuDdd9/FTz/9pBOKxDEcmQzYsIH93LED+O47e1vEcWb4VFELY3POqwXO09MTQUFBqFq1Kho1aoROnTqhVq1a5ppdKpkzB5g6FfD1ZRlTQ0PtbRHH3vC6inow9MbMmjULf/31F27evImUlBRkZmYiLy/P7IKw6tz1Pj4+CAsLQ3R0NOrUqYO7d+9i+PDhBle9Lg0olUDjxsCpU0DHjsDPP7OMEpyyCxcuPVhqcT4lJQU//fQTDh06hKtXr+LevXtIS0tDdnY2VCqVyQJ34sQJNGjQwGS7nI2LF4HYWCA3lzmp9utnb4s49oQvzlsZf39/tG/fHnFxcahSpQqCgoLg5eUFFxcXiMWm38qGDRuiatWqZWb9rFYt4MMP2efRo4E7d+xrD8f54CMuLfbs2YNff/0VZ8+exe3bt/HkyRNkZmZCqVSaPV2USqWaUmcRERGoWrUqdu3aVShQvGfPnvj+++9N7stZUCqBZs2A48eB114Ddu3iU8ayCp8q6sGaBWElEgnkcjm8vLwQHByMatWqoWnTpujYsSOqVKlS4vnJycmoU6cOHj16pNPmihUrSn2yxCtXmItETg6wZg3LV88pe3Dh0oOhN0YikUClUgEQRkkeHh7w8/NDhQoVUKdOHbz22muIj4+HVGrZkpQ//fQT3nzzTeTl5Wn2KRQKHDlypFS/ofz0U2DsWFZg9sIF4EUYK6cMwYVLD4bemOzsbLi6utrQssKMHDkSy5Yt09lXu3ZtnD592uJi6Qjk5wMtWgBHjgCtWwN79vApY1mDL86bib1FCwCWLl2KvLw8xMbGavZduHABMpmsVE4dJRJg3TqWOXXvXmDVKntbxHEGuHA5IFKpFKdOnUJiYqJOYZE1a9ZAJpNh8+bNdrTO8lSrBsydyz6PHQvcuGFfeziODxcuB6ZKlSp48uQJNmzYoJkmKpVK9OrVC/7+/rh586Z9DbQgI0eywrLPnwMDBwIvlho5nCLha1xORN++ffHNN9/o7JNIJDh16pRV1r/OnnXDunX+mD37Lry8BCWJioqySn///QfUqQNkZgJLlwIjRli8C44Dwhfn9VBahAsAnj17hoCAABs4q4oAXARQA8AMAB9qvklISLDam87ly5lgubsD584BBniUcJwcvjhfyhkzZgwUCoWNPOwJTLAA4AMAvsUcazmGDQNatWKjrgED+JSRUzSl7/16KeSXX35Bjx49kJubq9nn5eWF9evXIyoqymr9qlTA669n49o1bwwefBWjR7Ok8dbsUywGvvoKqF0b+OsvYMkS4L33rNYdx1mxROpVR8dZUzffv3+fgoODCWz4QwBIIpHQsmXLbGbDtm0s5bKHB9HDhzbrlr74gvXr6kpUIJM3p5ThcJWsOabz8ssvIyQkRCeWsUePHlAqlRg+fLjN7OjSBahXj73tmz/fZt1iyBAgPh7Izgb692eOqhyOGi5cDsasWbMgFotx8OBBzb5KlSohIyMDP9qhOKFIJGRyWL4c0FM83Cr9fvklCwU6ehRYvNg2/XKcAy5cWkilUohEIk2coru7OwIDA1GnTh10794dCxYswL///muVvg8dOgQ3NzfMnDlTk4nC3d0dR44cwX///QdPT0+r9GsI7dqx5H9ZWYKjqC2IiBAEa+pU4PJl2/XNcWy4O4QWxmaH0E5X4+Pjg4iICNSuXRuvvPIKOnbsaFAIUWpqKmJiYjTVvdXtfvzxx5g4caJR9liTP/8EXn0VkMuBf/8FwsNt0y8R0L49sHs30LAh8PffQCkM2SzTcD8uPRh6Y9avX48///wTly9fxv3795Genm52dlNANzd9YGAgqlSpgtjYWPz00084f/68zrFt2rTB77//bnJf1oIIePll4NAh4J13gC++sF3fd+4A0dFAWhob8TmQnnMsABcuPVjKAVWpVOLYsWPYtWsXTp8+jRs3biAlJQXPnz9HXl6eJiWOKZQvXx4JCQnw8fExuQ1rc+gQ0LIlG/FcuwZUrGi7vjdsYIv0cjnLVx8dbbu+OdaFO6DagKysLOTk5ECpVCI/P18zGjNH///44w/cuXPHoUULYOlnXn2VZS/96CPb9t23LyuukZvLBEwrbRmnDMJHXFqsXr0ae/fuxdWrV5GcnIz09HTk5uYi38x38eosqdplzCpVqoT//vsPs2fPdqpEgcePs4V6iYQtlletaru+791jI62nT5lwTp1qu7451oNPFfVgi8V5Pz8/RERE4KWXXsKrr76K+Ph4h8jvZQ06dgR+/RXo3Rv49lvb9r1xI/C//7HCsv/8A8TE2LZ/juXhwqUHQ2+MVCrVjK7UoySFQoHg4GBERUUhLi4OXbt2RWRkpI0sd0xOn2ZOqSIRK+pas6bt+iYCuncHtm9n+eqPH2frXhznhQuXHkpTdghHoXt3YNs24I03gB9+sG3fDx6wEmePHwMzZgAzZ9q2f45l4YvzHJsxaxYbcW3ZwtLP2JKgIObFDwBz5rARIKdswYWLYxK1awM9e7LP06fbvv+ePYHXX2dvOPv3ZyXOOGUHLlwck5k5k6Wh+flntlBuS0QiYMUKICCAlTWztXsGx75w4eKYTPXq7M0iYJ9RV0AAsHIl+zxvnu3Fk2M/uHBxzGLGDObTtXs3q41oa3r0AN58k6W96d+fpcHhlH64cHHMonJllmIZAKZNs48Ny5axBftLl/gbxrICFy6O2UydyhxC9+0DDhywff/lygmFZBcsAI4ds70NHNvChYtjNhUqAIMHs8/TpjEnUVvTpQvzqFep2JQxK8v2NnBsBxcujkWYPBlwcWEFLvbssY8Nn38OhIQAV6/ab9rKsQ1cuDgWoXx5VloMsN+oy88PWL2afV60iCUd5JROuHBxLMbEiayQ64kTwC+/2MeGjh3ZVJGI/czMtI8dHOvChYtjMYKCWBVqgPl12auY6+LFbAT4779sCsspfXDh4liUceMAT0/g7FkWhG0PfHyAtWvZ588/B7QKJnFKCVy4OBbF3x94/332ecYM+9VDfO014O232eeBA4Fnz+xjB8c6cOHiWJwPPmCjnosXbZ/yRptPP2XViK5f5wU2ShtcuLRQKpX2NqFU4OMDjBnDPs+cyTI42AOFAvjqK/Z5+XLmIMspHXDh0sLFxUVTEFYikcDV1RXlypVD9erV0b59e0yfPh3/8Ehegxg9mnm0X7vG0i3bi/h4YOhQ9nngQCAjw362cCwHz4CqhSk558ViMVxdXeHt7Y3y5cujZs2aePnll9G1a1eHr9pjbebPByZMACpVAq5cYWFB9iAjA6hTB7h50/Y1ITklY1KGYrIRc+fOJQA0evRozb6srCx69913yc/Pjzw8PKh79+6UnJysc96tW7eoffv25ObmRgEBATR27FjKy8szqu+0tDQCQGlpacUet2XLFho0aBA1btyYwsLCyNPTk6RSKYlEIgJg8iYWi8nFxYV8fX2patWq1KZNG+rfvz81adKEjhw5YtS1OBPPnhEFBhIBRKtX29eWffuYHQDR77/b1xaOLoY+n9rYRLhOnDhBkZGRVKdOHR3hGjp0KIWHh9PevXvp5MmT1LhxY2rSpInme6VSSdHR0RQfH09nzpyhXbt2kb+/P02aNMmo/k25Mfo4d+4cffjhh9S5c2eqWbMm+fv7k6urK4nFYpOFbevWrWbb5agsXszEIjycKDvbvraMHCnYkppqX1s4Ag4pXBkZGVS1alXas2cPtWzZUiNcqampJJPJaMuWLZpjL1++TADo6NGjRES0a9cuEovFOqOwlStXkkKhoJycHINtsJRwZWVl0datW2nYsGHUvHlzqlChAikUCpLJZGaPygICAuj+/ftm2eeIZGURhYYywVi61L62PHtGVLkys2XQIPvawhFwSOHq27cvvffee0REOsK1d+9eAkBPnz7VOT4iIoIWLVpERETTpk2jmJgYne+vX79OAOj06dN6+8zOzqa0tDTNlpSUZNCNWbJkCXXt2pVq1aplkZGUepNIJOTh4UHBwcEUGxtLb731Fq1cuZJatmxZ6NhmzZoZPRV2dJYvZ2IREkKUmWlfWw4dIhKJmD27dtnXFg7D4YRr06ZNFB0dTVlZWUSkK1wbN24kuVxe6JwGDRrQ+PHjiYho8ODB1KZNG53vnz9/TgBoVzF/dTNmzChSQEq6MaasXcnlcp21q0mTJtHhw4cNFp+srCyqUqWKTrsikcjo6bAjk51NVKECE4tPP7W3NUTvv89sCQ0levLE3tZwTBEuq7lDJCUlYfTo0di4caPNKzpPmjQJaWlpmi0pKcmg8yQSCQBo3CE8PDwQGhqKBg0aoE+fPli7di0ePXoEYoKP/Px85OTk4MmTJ7h27Rp+//13fPzxx2jWrBmkUqlBfbq6uiIxMREnTpyAh4cHAICIMHfuXLi5uWFfKXA+cnER0szMm2d/L/bZs4Fq1YB79wQvf46TYS0V3bZtm2aapN7wYjQhkUjozz//tNpUsSCWXJy3NgsXLiw0PQ0LCyt0n5yN3FxhfWnuXHtbQ3TkCJFYzOz5+Wd7W1O2caipYnp6Ol24cEFnq1+/Pv3vf/+jCxcuaBbnf/zxR805V65cKXJx/sGDB5pjVq1aRQqFgrKNeEXlTMKlpn379oWmpu3atbO3WWbx9ddMKPz8iBzhn2LcOGZPcDDR48f2tqbs4lDCVRTaa1xEzB0iIiKC9u3bRydPnqS4uDiKi4vTfK92h2jTpg2dPXuWdu/eTQEBAXZ1h7AlT58+pfDw8ELravPnz7e3aSahVBJVr87EYtYse1vD3niq7end297WlF1MeT5t6jn/8ssv46WXXsJnn30GAMjOzsaYMWOwadMm5OTkoG3btlixYgWCg4M159y6dQvDhg3DgQMH4OHhgX79+mHevHkGryEBJnrmOhCHDh1C27Ztka1Ve8vd3R1fffUVoqOjrdo3ESu+qk1UVJRR91+b779n5cQUCuDGDZa11J6cOAHExbHcYT/9BHTrZl97yiIO7TlvT5x1xFWQadOmme0vZtzWioBdBJTT2Z+QkGDyNeTnE9WuzUY5kydb8OaYwaRJzJ7AQKJHj+xtTdnDod4qcizPhx9+iCdPnsDFxcUGvUkBrAXQDsApAPUs0qpYDMyaxT5//jnw6JFFmjWLGTOAWrWAhw+FDK4cx4YHWTsRb7zxBn788UedfVKpFGfPnrVKf//+64LRo8Nx65YL5HIVpky5jx49Us2aKgJs+lm/PnD6NDB2LKuFaG9OnQIaNWKJD3/4AXjjDXtbVHbgU0U9OPtUceXKlRp3EvUWHBxskxCh1FSiLl2EAOXBgy0Tc/jrr6w9NzciR4l0mjaN2eTvT6T1IptjZRz+raK9cFbhSkhIIIVCoSNYcrmcdu7caVM78vOJ5swRQmUaNCC6fdu8NlUqosaNWXujRlnGTnPJySGqU4fZ1KMHs5Fjfbhw6cHZhCsrK4tq1qxZKAxI25XEHuzezXyw1KOSvXvNa2/PHtaWXE6UlGQZG83lzBkiqZTZtWmTva0pG/DFeTNJSUmxtwkYOHAg3NzccOnSJc2+Bg0aIDc3V+NGYi/atmVrQXXrAikpwKuvsmSBpq6Stm4NtGgB5OYCc+ZY1lZTeeklITxp+HAgOdmu5nD0YUUhdRgMVXRtVwORSERSqZQ8PT0pLCyMGjZsSAMGDKANGzZYJfxm48aNJJVKdUZZfn5+dOPGDYv3ZS6ZmUT9+wvrXj16EKWnm9bWwYOsDZmMyFEuNTeXqG5dZleXLnzKaG34VFEPht4YbdEwdFNnN/Xz86Nq1apRu3btaPLkyXTkyBGDMkQkJiaSn5+fTptSqZQ2btxoqcu3CioV0cqVTHAAoho1iC5fNq2t+HjWxsCBlrXRHM6fF67tm2/sbU3phguXHgy9Mersph07dqQaNWpQuXLlLJKTSx1Y7uHhQaGhoVS/fn3q2rUreXt7Fzp2kJNluDt6lKh8efaAe3kRmZLM9ehRdr5EQnTtmuVtNJU5c5hdPj5Ed+/a25rSCxcuPVhycT4jI4M2bdpEQ4cOpSZNmlBERAR5eXmZnZs+OjraaRMIJicTvfyyMHWcMIHI2Etp397xYgbz8ojq12d2dejAp4zWwuFjFe2FpRxQr169im3btuH48eP4999/8eDBA2RkZCA3NxcqlcrkdhMSElCrVi2Tz3cElEpWdPXTT9nvrVsDmzYBAQGGnX/qFHNKFYmAhASgZk3r2WoMly6xlxG5ucC6dUD//va2qPRhyvPJhUuLcePG4ciRI7hz5w6ePn2KrKws5Ofnw5xbJBKJIJPJ4O7ujnLlyiEyMhJ169ZFo0aNcPv2bfTt2xf+/v4mt+9o/PADq1/4/DmrIr11K9CggWHndu8ObNvGvNbtWQG7IOoyawoFq84dFmZvi0oXXLj0YI26ito1FRUKBUJCQlCjRg20aNECnTt31slwUda4eJGJ0LVrgFzOqki//XbJ5124AMTEsAnn2bPssyOQnw80awYcO8ZcQn77rXDGDI7pcOHSg6E3Ri6XIy8vD2KxGDKZDB4eHvD390fFihVRr149tGvXDo0bNzYrTq+skJYG9OsH7NjBfn/7bWDpUqCkLN5vvslS33TpAmzfbnUzDebqVebjlZ0NrFljmBBzDIMLlx5KS5C1s6FSsRzzU6cKgdVbtwIREfrPuXKFZWpQqYB//mHnOAqLFgFjxgBeXmx0WKGCvS0qHZjyfHLPeY7VEIuByZOB3btZwsCTJ4F69YC9e/WfU7060Ls3+zx9um3sNJTRo4GmTYGMDGDQINMjBjjmw4WLY3XatGFvDWNjWahQmzbAJ5/of/CnTwckEraWdOSIbW0tDomEvVl0c2Piu2qVvS0qu3Dh4tiEyEjgr7+AAQPYNHDiROD114H09MLHVqkiuB2o4wYdhapV2fQXYLnEbtywrz1lFS5cHJvh5gZ8+SXwxReATMZyvDdqBFy+XPjYadPYMfv2AQcO2NzUYhkxggWHP3/OXD/McOHjmAgXLo5NEYmAd94BDh8Gypdni/ENG7JFe20qVBDe3E2b5ljrSWIxmzJ6eDBRXbHC3haVPbhwcexCo0YsdfPLL7PK1q+/Dowfzzzw1UyZwqpg//UXsGeP3UwtkkqVmGMqwJxT//3XvvaUNbhwcexGYCATpLFj2e8LFjAHT3UBjfLlgWHD2GdHG3UBwNChwCuvAJmZbE0uP9/eFpUduHBx7IpUygTrhx/Y1GvfPuYy8c8/7PuJEwF3d1b/8Ndf7WtrQcRitmbn6Qn8/TewZIm9LSo7cOHiOARvvMHEqVo1ICmJhdisWQMEBQklw6ZPd7xRV2SkEFg+eTLzsOdYHy5cHIehZk020urWjWVjGDKELdCPHMlGNWfOsCBsR2PwYJbGOjubTxltBRcujkOhULA3jHPnClOxbt2Y/xfARl2OJgwiEbNToWCB2IsW2dui0g8XLo7DIRKxta3du4Fy5Vio0LffsjWwixcdK+WNmvBwYPFi9nnaNJbHi2M9uHBxHJZXX2WhQvXqAU+fsrd3ADBzpq7bhKMwYADQrh2Qk8OmjI5oY2mBCxfHoalQgflxDRwoLMxfuwasXWtfu4pCJGIvFLy92VrdggX2tqj0woWL4/C4ujKhWrWKBToDwKhRwPnz9rWrKMqXF9wiZsxg6W84locLlxY3b96Eko/vHRKRiL1l3LuXLdrn5bFQoR9/tLdlhenTB+jUidnYvz/7ybEsXLi0qFSpEmQyGUQiEUQiEaRSKTw8PBASEoJ69eqhV69eWL58OZJ5eWO70bIlW+MC2FrSG28UDhWyNyIRGx36+rKwJnU2CY7l4BlQtTAm57z2OWqB8/PzQ4UKFVC3bl28+uqriI+P52merUB2NlC5MnDvnrCvVStg82YWRuQofPcdS4oolbI1r5desrdFjglP3awHQ2/Mv//+ix07duDo0aO4du0akpOT8ezZM+Tm5iLfTOchiUQCuVwOLy8vBAcHQy6X4/bt2/jkk0/Qn9e8MpoVK4Dhw9moJjeXpZgJC2M+YA0b2ts6BhHQowdzmo2JYZEBcrm9rXI8TEqtbsnCjo6KJQvC5uXl0c6dO2n06NHUsmVLqlixInl7e5NMJjO5IOzixYvNv8gyRnY2UUSEUIA2Kop9lsuJVq1ynOKtyclE5cox26ZPt7c1jgmvZK0HSwnXiRMnaNq0adSuXTuKiooiPz8/cnFxIbFYbHIFa/Xm6elJp06dstAVlw3WrGGCEBBAdPcuUbduQjXtgQOJsrLsbSHj+++ZTRIJEf8nLgwXLj0YemNGjRpFDRo0oNDQUPLw8CCJRGLyKEq9icVicnV1pXLlylFUVBS1b9+eZs6cSadOnaL33nuv0PHVqlWjLEd54hyc3FyiSpWYKMydy0ZZ8+YRicVsX/36RDdv2ttKxhtvMJuio9lokSPAhUsPht4YYwRJJBKRVColT09PCg8Pp7i4OBo8eDBt2rSJMjIyDLYtLy+PGjduXKj93r17m3vZZYING5gg+PkRqf959+wRpmflyrHf7c3Dh2xkCBBNnmxvaxwLLlx6MPTGyOVynVGSv78/1apVi7p27UqzZ8+mhIQEq9mYlJRE/v7+OuIlkUho3bp1VuuzNKBUElWvzgRh1ixh/82bRPXqsf1isTAisyc//ijYc+KEfW1xJLhw6cGSi/PWZsuWLSSTyXQEzMfHhxITE+1tmsOyeTMTBG9voidPhP1ZWUSDBgnrXt26CaMye9GrF7OlRg3HWYOzN6Y8n9wB1cF4/fXXkZubi6FDh2r2paamomrVqnjppZe4Z38RvPEGULs2kJYmJPUDhFCh1auZG8K2bcxVwp6ZG5YuZckRL19mIUEcE7GikDoMzjTi0iYvL49iYmIKrX8NGzbM3qY5HD/9xEYynp5Ejx4V/v74caKwMHaMhwfRDz/Y3kY127cLU8YjR+xnh6NgyvPJHVCdgKtXr6Jx48ZITU3V7JPJZJg/fz5atWplVe/8/HwhsFlNVFSUw0UEEAH167MQm3HjhAo82jx6BLz5JstrD7AiHXPnMs92W9O3L/DNNyxV9dmzrOZkWYU7oOrBWUdcBVm7di1JJBKzfcYM39oRcJqAQJ391nxJYQ6//MJGMm5uRPfvF31MXh7R+PHCulerVkQPHtjWTiK2FhcSwmz44APb9+9I8DWuUs6gQYNw8+ZNyG0SNyIF8DmAugD+BFDOBn2aR/v2rF5jVhYbSRWFVAp88gnLKuHpCezfzxIVHj9uW1t9fVnuLoBlTv3rL9v27+zwqaKToFQq0aJFCxw9elRnv7u7O06cOGGVPm/flqNfv0g8eiRDjRpZ+PLLm1AoVA45VVSzZw/Qpg1bjP/vPxa/qI/Ll1k++6tX2fFLlrDUOSbE2pvMwIGsKnaVKmzK6OFhu74dBT5V1IOzTxXHjx9fyIPfVh72ly4JjpONGxOlp1u9S7NQqYiaN2f2Dh1a8vFpaUTduwtTxwEDiDIzrW+nmqdPhZcGo0bZrl9Hgvtx6cFZheuPP/4gFxcXHcGyR0zjuXPMMx0gatGC6Plzm3ZvNAcPMltlMqIbN0o+vmCoUGysYedZit27BeE8cMB2/ToKDidcH3/8MdWvX588PT0pICCAunTpQleuXNE5Jisri959913y8/MjDw8P6t69OyUnJ+scc+vWLWrfvj25ublRQEAAjR07lvLy8gy2w9mE69GjRxQaGloo5tGeWSROniRSKNjDFR/v+M6T8fFCsLWh/Pknkb+/EEL0++/Ws68ggwezfitWJDIiYqxU4HDC1bZtW1q3bh0lJCTQ2bNnqX379hQREUHPnj3THDN06FAKDw+nvXv30smTJ6lx48bUpEkTzfdKpZKio6MpPj6ezpw5Q7t27SJ/f3+aNGmSwXYYemMOHz5Mj4pyArIh8fHxhd7ude7c2a42qTlyhPlAAUQdOhDl5NjbIv0cPSpkZDAm6ODWLRacDRCJRERz5hDl51vPTjVpaUKannfftX5/joTDCVdBHj58SADo4MGDRESUmppKMpmMtmzZojnm8uXLBICOHj1KRES7du0isVisMwpbuXIlKRQKyjHwyTH0xhRcRxKJRCSXy8nHx4eqVKlCrVu3prFjx9LevXuNGvEZwuzZswv1X6FCBaMCtm3BgQPM3QBga0MWvg0WpX17Zuf//mfceVlZRG+/LUzfuna1TajQnj1Cn3/+af3+HAWHF67ExEQCQBcuXCAior179xIAevr0qc5xERERtGjRIiIimjZtGsXExOh8f/36dQJAp0+fLrKf7OxsSktL02xJSUkG3ZiCIx1DN4lEQu7u7hQcHEx169alN998k5YsWUJJSUkl3pPDhw+Tm5ubTntubm4acXdEfv+dJewDWOydUmlvi4rm5Elh5HTpkvHnr14tXGe1akQXL1rexoIMG8b6i4iwf1ylrXBo4crPz6cOHTpQ06ZNNfs2btxIcrm80LENGjSg8ePHExHR4MGDqU2bNjrfP3/+nADQrl27iuxrxowZRQpMSTcmKyuLdu7cSaNGjaIWLVpQZGQkKRQKs7Kbao/eZDIZeXt7U3h4OEVFRRVyJhWJRDRz5kxjb61d+PlnIqlUeBNni+mUKXTtymzs2dO0848fJwoPt12oUEYGUWQk62/IEOv25Sg4tHANHTqUKlSooDMKsZZwmTriMpQbN27QkiVLqGfPnhQTE0NBQUHk5uZmlld7y5YtLWKbLdmyRXgTN2yY/dPGFMW5c8L06+xZ09p4+JDolVeEdsaMse4Uef9+oS9bviCwFw4rXMOHD6ewsDC6fv26zn5rTRULYom3ik+fPqV169ZRv379qEGDBlS+fHny9PQkqVRq9mjM3i8EzOHbb9lUDCB6/33HFK+ePZl9XbqY3kbBUKGXX7ZuqNDIkayfsDCi1FTr9eMIOJxwqVQqGj58OIWGhtK1a9cKfa9enP/xxx81+65cuVLk4vwDrb+SVatWkUKhoGwDc+AaemN69uxJ1apVs1guee0sqWFhYdSwYUMaMGAAbdiwgW7cuEG//fabQfY7OmvXCg+0I2b3vHRJGBn+8495bf34I8tAARCVL8/eXlqDZ8+IKlc23qXDGXE44Ro2bBh5e3vTgQMH6P79+5otU8s1eejQoRQREUH79u2jkydPUlxcHMXFxWm+V7tDtGnThs6ePUu7d++mgIAAq7hDGCNK2rnka9SoQR07dqQPP/ywzBa8WLZMEK+PPrK3NYXp04fZ1q6d+W1duiRkXZXJiFautM5I89AhYTT766+Wb99RcDjh0vfQa6cjVjug+vr6kru7O3Xr1o3uFwjtv3nzJrVr147c3NzI39+fxowZYxUHVDc3N80oycvLiyIiIqhJkyY0dOhQo3PJl0UWLhTEa+FCe1ujS2Ii8+kCLJMDKz2dqEcP4Xr797dOqND777P2Q0N1s7uWJhxOuBwFZ/Ocd2Y++kh4mJcts7c1uqjTOLdubZn2VCqiTz6xbqjQ8+fMFQMg6tvXsm07Cly49MCFy7ZMniyI19q19rZG4OZNNrWDhWMCrR0qdOSIII47dli2bUeA5+PiOASzZwPvv88+Dx4MbNxoX3vUVKgAvP02+zxtGpNWS9C6NXDqFNCgAfDkCfDaa8CcOYBKZZn24+KAMWPY53feAR4/tky7To0VhdRh4CMu26NSCV7gEgnz+XIE7twhcnFhdv3xh2XbzsoSgqXV7heWcmXIymKVgQCit96yTJuOAh9xcRwGkQhYtgwYMIDlre/VC9i5095WAeXLA+oCSlOnWm7UBbCqQqtXs8ymcjmwYwcbhSUkWKbtDRtY/v/vvgN++sn8Np0ZLlwcqyEWs4f4rbcApRJ4/XXgjz/sbRUwcSIrTnHiBPDrr5Zv/+23WSrm8HAgMZGlk/7+e/PbbdAAmDCBfR46lBX/KKtw4eJYFYmEjRS6dwdyc4GuXYGDB+1rU3AwMGIE+zx9umVHXWoaNGDrXq1bA5mZrLrQmDFMwM1h+nQgOpqJlvoayiJcuDhWRyoFNm0COnRghSw6dAAKpM63OePHs2IZZ86wQrHWICAA2L1bGCUtWgTExwMPHpjepouLMGX84Qe2lUW4cHFsglzOKuvExwPPn7M3b6dO2c8ef3/gvffY5xkzLPcGsCBSKTBvHrB1KxPKgwdZVaFjx0xvMzYWmDKFfX73XfOE0FnhwsWxGa6uwPbtQPPmQHo6q8Zz/rz97PngA8Dbmy2eW3vk0r078M8/QPXqwN27QIsWwMqVpk9Tp0wBYmKYa8SwYdaZ7joyXLg4NsXDgy2IN2rEfJ7i41mZMHvg6yv4R82caf76U0lUr85eCPToAeTlsdHSgAFs+mwscjmbMkqlbKq7ebPl7XVkuHBxbI6XF1v7iY1li8ytWwP//msfW0aPBvz8WG3F776zfn9eXsCWLcD8+eyt64YNQNOmwI0bxrcVE8MW6wFg+HDg/n3L2urIcOHi2AUfH+YaER3NHrjWrYFbt2xvh0LBFuoBYNYsNhKyNiIRMG4cK17r789eENSvD/z+u/FtTZzI/gN4+pR51ZeVKSMXLo7dKFcO+PNPICoKuH0beOUVtv5ja0aMAAIDgevXgfXrbdfvK68Ap08DDRuyaXO7dsaHCslkbNQmkzEH32+/tZ69jgQXLo5dCQoC9u4FKlViwtG6te3fknl4sJELAHz0EZCTY7u+w8OBQ4eAIUPYaGnqVKBbNyAtzfA2oqPZaBEARo2yj/jbGi5cHLtTvjywbx97iK9eBV591faBxEOHAqGhQFISsHatbft2cQFWrQK+/JJ9/vln40OFxo1j56SmCiJYmuHCpcXu3bvxr71Wics4FSow8QoJAS5cYK4Sqam269/NTfCNmjPHtDd95jJwIAsViogwPlRIKmXTXBcXYNcu20557YIVg74dBnMKwspkMlIoFFShQgVq1qwZDRs2jLZu3UpZjl6D3km5dIkoIIBlQWjcmGUatRXZ2UI16Re1WuzCo0dE8fFClon33yfKzTXs3Pnz2TkKBdHt29a101LwRIJ6sEbOee1NnX/e39+fatWqRV27dqXZs2dTQkKCja6wdHHuHEvIBxC1aMGygNqKNWtYv4GBrGCFvVAqiSZOFMSrRQsirWLuxZ7XuDE7p00bx6y6VBAuXHow9Mbk5eXRwYMHafz48RQfH09VqlQhHx8fksvlFikIq674ExISQkFBQSSXy2ncuHE2ugvOxcmTbNQAsNGHrQa4ublElSqxfufNs02fxfHTT0ReXkLeeUPy5V+5QuTqys5Zvdr6NpoLFy49WDqR4KNHj2jt2rXUp08fql+/PoWGhpKHh4fJovbBBx9YxK7Sxt9/s+rRAFGHDkQ5Obbpd8MGIQ2zI+SevHxZSCIokxEtX17ySGrRIna8pydLWe3IcOHSgyWE6/79+7Rs2TJ68803qW7duhQcHEzu7u5mVa/W3uRyOe3cudOCV1062L9fGD306GHdCtJqlEqiqCjW56xZ1u/PENLTiV5/XZg69u1bfFUhpZKoWTN27CuvEOXn285WY+HCpQdDb0y3bt2oUqVK5OPjQzKZzCLTQ/XifmRkJDVv3pxGjBhB27dvp6ysLFq2bFkh4QsODnbqytbW4PffieRyIW2xUmn9PjdtYv15eztOWTCVimjBAqFwRt26RAWKw+uQmEjk5saOXbHCdnYaCxcuPVhjcV4ikZCbmxsFBgZSnTp16PXXX6fFixfTDRPqU/Xo0aNQ+61atTLxaksnP/9MJJWyh3DAAOuPIPLziaKjWX9Tpli3L2PZt0948+rrS7R7t/5jlyxhx3l4EP33n+1sNAYuXHow9Ma4u7trRkk+Pj5UqVIlatWqFX3wwQf022+/GVWE1lgyMjKoYsWKhUZsM2fOtFqfzsaWLcJoY9gw678x27pVWCdytEHw7dtEDRsy+0QiVs+yKDHPzydq2ZId17KlY04ZuXDpwZmq/Bw5coTc3d11BMzNzY0OHjxob9Mcgm+/FcrSf/CBdcVLpWLTMYDIEV/+ZmcTvfOOsO7VqRPR06eFj/vvP+Elx5IlNjezRLhw6cGZhEvN3LlzC62xRUREUEZGhr1Nsztr1woPq7Wncb/8wvpxcyO6f9+6fZnKV18JJdeqVCG6cKHwMStWCNeRmGh7G4uDC5cenFG41LRp06bQ+lfHjh3tbZbdWbZMEK/Zs63Xj0pF1KgR62f0aOv1Yy4nTxJVqMDsdHdnLxe0yc8nat2afd+0qW1ecBiKKc+niKi0h2MC6enp8Pb2RlpaGhQKhb3NMZqUlBTExMTg3r17mn1isRhjxoxBly5d4OPjY1N7oqKiIJVKbdpnUSxcyIKLAeDTT1kqZmuwZw+LnXRxYQkPw8Ks04+5pKSwUnB79rDf33uPJSyUydjvt26xTBLPnrHCHepq4/bGpOfTajLqQDjziEubP/74g1xdXS3iN2bYNouA3whYQcA4Al4noB799ddlhwkl+fBDYeS1bJl1+lCpiJo3F14KODJKJdGkSbqhQtpT3NWr2X5XV+Zh7wjwqaIeSotwERGdOnWKZDKZjYTrT80DUHDz8iKqU4eVmX/vPaLPP2cuCxcuENlyGU6lIpo8WbBr7Vrr9HPggOC5boLHi80pGCr0999sv0rFYhjxIojdEaaMfKqoB2efKgJAdnY26tSpg8TERJ395cqVw0ErVVg9d84N//7rgrt35bh7V4Y7d9jPlBRZiecGBAAVKwKRkeyn9lahAiv2YCmIWNGLxYtZWuRvvgF697Zc+2ri41nSw4EDWe4sR+fqVVZd6NIlNl1cvJgV6Lhzh00Z09PZVFI93bYXpjyfXLicgF69emFzgTIuzZo1w/79++2y1pSVBdy8yQo83Lih+/nGDZb/vDhEIpY8sKCgqbfQUFbw1BiIWMGIlSvZud9/z6rpWJKjR4EmTVj7V64AVapYtn1r8OwZE9otW9jvffoAX3zB7s/AgWzd7vRpoGZN+9nIhUsPzipcq1evxrvvvov8/HzNvoCAAJw+fRphjrpCDJZ2WFvICm4lJemTydioTJ+w+fsz8SuISgW8/Tawbp1QtqtjR8teW4cOLFHf//7HRnbOABFbjJ8wAcjPZ9WBtm5laZ537WKZU48cYffMHnDh0oOzCdfVq1fRqFEjpGklHpfJZNi8eTO6d+9uR8vMhwh4+FC/qN2+XXJ9Qw8P/aIWEcGmQ5s2senoL7+wVNCW4tQpVpFHJAIuXgRq1LBc29Zm/37g//6PlYTz9QU+/5yJV2oqy/o6ebJ97OLCpQdDb8z69evh7++P+Ph4uLq62tBChlKpRGxsLC5cuKCzf8SIEVi6dKnN7bEHSiUr9qBP2LQ8QvTi68sEMjWVjSJGjADathXW18z9p+3WjVXk7tnT8NTKjsKdO2wKfeIEE99u3YCffmKj3FOngNq1bW8TFy49GHpjxGIxCt4OiUQCuVwOT09PBAUFoWrVqoiLi0O3bt1QxYKLHEOGDMGaNWt09tWtWxcnTpxwCJ8pRyE7m43K9AmbIUU2QkP1j9jCwkpeXzt/nk23AODcOaBOHfOvy5bk5LBCuKtWsd+Dglhlpbp1gePHBb8vW8GFSw/mCJchiEQiSKVSuLm5wcfHBxEREYiOjkbr1q3RsWPHYkdvmzdvRp8+faDUmh/5+vrixIkTFhXGskJ6uvCy4No1YOlSVrlHLGZTx+zs4s+XStl0U5+wBQaykcr//R/www9A165sLc0UcnOBFSuA//4DKldmU1xLvm0tiXXrgGHDmJCJxWyNcNYsoTq2reDCpQdjbkxycjK2b9+Ow4cP48qVK7h//z7S09ORnZ2ts0huCmKxGGKxGG5ubhCLxTprWAAb3a1duxb9+/c3qx+OwPPnrNDq4cOAnx9blHZ3L3q0dutWyZWs3d2Zi4e/P3DoEAEQYf585ipRsSKr0G0I48ezBXPtPymJhHn/z59v4sWawKlTbOqoriIukQAnTwIvvWQ7G7hw6cHSi/NKpRLHjh3Drl27cOrUKdy8eRMpKSlIS0szWdx69+6Nb8tKGWIbk5HBFuiPH2f+ZYcOAdWrFz4uP5+toWmLmbarx507MKBe4VOIxbcgl9+Dj89TREYSmjQJQc+eDVCnjgJubky0FizQ38K4cbYVr8ePgTffZFXFASbKN2+ylyC2gAuXHswVLqVSif3792P37t04c+YMbt26hSdPniAzMxN5eXkmTS+1ycrKssvLgLJEaioreX/mDFvjOnSITc+MITdXWF+7di0PI0Z8CWAIWHnSJwD8DGjlPoAbAG4DuAvAH0D2i/1tATSARCJFZqZtp435+cyJ9/PP2e/h4WwBPzjY+n3zWEU9GBpS0KJFCwoKCiI3NzeL5JJXZ0kNCAig2rVrU7du3Wj+/Pl05coVysrKonPnztnoDnCIWDJAdVbTiAjLFJHo0uURAUQi0RkC6hHQlIDuBIwiYBEB2wg4S0Ca3vAptvUr8PcjIolEQi4uLuTn50dubm4kl8tp5cqV5htdDOPGCTb5+wuhQtaExyrqwdKpm9VZUr29vSkyMpJatGhBo0aNop07d/JCsQ5OcjJRtWrswaxcmejOHfPaW7myaCESidi2dSvLbvvdd5uoT5/3qFy5AQQMJWA6AfdfHJ9JgLvBf39LrJwNsF074TokEqKlS62bsJHHKurB0KGot7c3nj9/DrlcDoVCgeDgYERFRaFZs2bo1KkTIiMjbWc0x2rcvQu0aAFcvw5ERQEHDzKXAGPJz2cL9XfuFPxGCWA/gN2Qy88gLOw2njx5jMzMTOTm5oHpz8cAJgFIBfASgFtG9e3p6YmDBw8iNjbWeMNLICWFhQA9eiTs+9//mPuEu7vFu+NTRX2UpuwQHMtw8yZReDgbVdSuTZSSYtz5WVlZVLlyDAFBBFQmIOvFKCXegFHTq1qjM+1CKRIC3AgIpOjo2tSjRw9auHAhJb5IWTp+/PhCWXGrVaumM8pXKllJt+++Yz9Nzf7w00/CyFGd5z8mxjoFN/hUUQ9cuDhFkZhIFBLCHsrY2KLztesjLy+vgBgtfiFEPxe7tBAe3oDE4scvjr1FQF6haWZx+e3z8vIoLi6uUB+9e/emrVuJwsJ02woLY9NVU3jrLWE90N+fffbxIfr1V9Pa0wcXLj1w4eLo49IlodRX48as8KqhiMWSF6MkdwJqE/DZi0X2ZQQkacRj/352vHb65IAAYSSjvZ5kaFGOpKQkCggIKCBgEgLW6V1rM5aUFKLgYNbO0KFCCmuRiGjmTMtVDOLCpQcuXJziOHuW1SfEi4yhz58bdp5SyUY06qpDRS3Qh4cL07U5c4Sc8JcuEeXkEC1eTDRiBPuZk2O87Vu2bCmQWFJOLHPtNb12lHRN2lPNbduENvbuJercWbi+9u2FYrnmXEupFq5ly5ZRhQoVyMXFhRo2bEjHjx83+FwuXJyS+OcfIoWCPZCvvkpk6MvhrVuFUU1xI52//mIjKoBV5bEk+/cTAcMIaEbApRc2rCUgRmcqqh75FXctRU01X36ZfVYX5NXegoOJ+vUTrs2U0WOpFa7NmzeTXC6nr776ii5evEiDBw8mHx8fevDggUHnc+HiGMLffwv1Bzt0MHzUUNQDHx4uiNbjx8KLgN69Le9asGZNQUG5T8AbWqOwoQSwUVRx11DUyFHfaNLQzRDxKrXuEI0aNUKDBg2wbNkyAIBKpUJ4eDhGjhyJiRMnlni+s+Xj4tiPAwdYbGN2Novh27zZsAR7+fksHvL+fSAkBGjenMX9EbHUMTt2AFWrsthALy/L2ErEUtK8807BrBjXAdQDc7VQI8OAATMxaFDLQlWhVCqgdWtt9wcRmOZp4wmgwov9NwFkApAACHvxHQA8BvCg0LnPn0fB3V3/TSyV7hA5OTkkkUho27ZtOvv79u1LnTt3LvKc7OxsSktL02xJSUl8xMUxmN9/J5LL2YjhrbfMKyixZAlrRy4nOnXKcjbeucMKlahHNkVN49hCvSkRIJ8TsJ+AqgX2r33RbiIJDrNiAj7S6jOdgGo6540fn1DstZgy4hIbJm/2IyUlBfn5+Qgq4CEYFBSE5OTkIs+ZO3cuvL29NVt4eLgtTOWUEtq0AX78kY20vvsOGDKEjUqM5fRpYOxY9nnBAsASvqIqFUuFU6MGG8VJpcCUKSyNtEhUMKV1fwCfG9lDIwAjALwMNsLS5gMASQCqAFBn4lUBmAbgpxe/ewEYpHPW7dtGmmAApTJD3aRJk/CBVnXQ9PR0Ll4co+jUiYnWm28CX33FsqYuW1Z0rvuiyMhgObtyc4EuXYCRI8236eJFYPBgVrQDABo1AtasEbKWyuUsQSDz5D8PoBmADJ02WrZsieXLl+vsO3GCFc5gVAYLGk8F8FkRVuSDBYhPfLEBQBBYsDgApAHo8GJj1KsXZdR1GoSZI1arY8pUsSB8cZ5jKt98IyxQjxlj2MK6SsUW4dWL9I8fm2dDVhbRtGmspiNA5OnJ4geLmsI+e5ZFERE1dKZqIpGIPvjgA73tq906zFmE17dJJCW/5Ci1bxUbNmxII0aM0Pyen59P5cuXp7lz5xp0Phcujjlov7WbOrXk49etEx7agwfNC8E5dIgoKkrov1Mnotu3iz62T58+hdarGjZsSHl5eSX2s3Spfl80c94wWuutolMI1+bNm8nFxYXWr19Ply5doiFDhpCPjw8lJycbdD4XLo65aD/Ys2frP+7SJeZgChD16mV6CM7Tp0RDhgjnBQUR/fBD0SO+DRs2FErDVK5cObphYMltlUrw1XJxKdqtoyiXD/XWujX349LL0qVLKSIiguRyOTVs2JCOHTtm8LlcuDiWYMEC4cH89FOiyZMn08aNGykjI4OIiDIzierUYd/Xrq1/BFNcCI5KRfTjj0IMJUA0eLDgoa5NYmIi+fr66giWVCqlTZs2GXVda9eyftzdWfymvhGiUkm0bx8b9altW7aMfcc9560AFy6OpfjwQ20hGlZgarb8xf5kAqoTEEVAewJmEnBBR7yKCsFJStINqalWjejAgcI25OXlUWxsbKFp4aBBg4y+nvv3WeA0QLRwYfHHqlRE48cXFi1z4cKlBy5cHEuhUhFNmqQtXgNeCEd3rX3jCBhBwCoC/iYh++krL44VESAlV1dPCg0Npfr1G1KjRl+Tq2sO4YVP1tSpRYcdjRgxopBg1a5d26B1rKLo2ZPZXK8eUXFNqFREEyZYXrSIuHDpxdAbs3LlSp2hP4dTFCoV0fDh6tGTinx97xOgLGGhOoeAwovnQM0X4qY+7ggBtQgAicViTfpvV1fXQud6e3tTQkLxzp3FsXOnsB51+nTx12st0SIyTbhKpR+Xqbz77rsgIp19YrEYMpkMHh4e8Pf3R+XKlVG/fn106tQJDRo0sJOlHFuRlwckJgIJCcCFC2xLSGC1EAGASISnTw2pKHEVQFUAnQH8CxYeMwLAeAByAOlgGVG/AHPqZKFtACumoo1EIsGKFSswZMgQk68rI4PVVARYSbS6dYs+jgiYNAn45BP2+9KlwPDhJndrMZwiVtFcbFEQViwWw9XVFd7e3ggNDUWNGjXQsmVLdOnSBf7+/iU3wrErRMzDWy1Q6p9XrjAn0qIICNBNbyxwB8A2AH+BCdYDMGHKAXPgbA5gNQB1jbQdAIaDVf0pHnd3dzx//tyYSyuSUaOYCFWqxK6zqJTMRYnWiBFmd10IXp5MD8bcmGfPnuHnn3/Gvn37cPHiRdy5cwepqamagrDm3C6RSASRSARXV1cQEbKzs9GjRw9s2bLF5DY5xvP4sa44JSSwLT296OM9PIDoaOahrv5ZpUo2atUaimfP1msdSQAWAxijp2dvAPPBSpoBrCTZSABbdaqh+/r6IiIiAjExMYiPj0fbtm2RnJyM4OBgi5SxO3YMaNKECdMff7CakwUhAiZPBubNY79bS7SAUhpkbQmssTh/7tw5mj17NnXu3Jlq1qxJ/v7+JJVKi1jDKHl7/fXXLWYXR+D5c5Zn66uviD74gOXZ0nYzKLhJpax82ZtvsqR/O3YQXb9edKbPe/eIgAcvzl1JwNMXny8X8W8sIaDXi7eNrK/Gjc/T2bO3bH5PcnKEEm19+xZ9jEpFNHGicF+WLrWuTXyNy0pkZ2dj165d+PPPP3HhwgXcvn0bqampyMrKglKpNGsUBgA//vgjpFIpli1bhqFDh1rI6rKDUql/HUrfP01kpO4IKjqaVfwxpAhrfj6regMEgsUEngUwFGwquBnAbwDioQ4FjoxklaEBoFo1Fl/YokVtk6/XHBYsYPfG3x/49NPC3xccaS1ZYr2RlllYT0cdB0MVvUmTJuTv70+urq4kFotNGj1pbxKJhDw8PCgkJIRiY2PprbfeopUrV9L9+/eJiGjnzp0kl8t1zlEoFGa9KSrNqFQs3OXXX4nmzSP63/9Y5Rl1CpqiNn9/olatiEaNIlq9mujoUePyyhfFRx8JDpuGhsHIZCze0J5lN69eFTzjv/228PcFR1pWLt+ogbtD6MHSBWHFYrGmwnDVqlWpTZs2NGnSJDp8+LBJ/jSjR48uVHaqVq1aJvvmlAYeP2bOl8uWEb3zDlHTpkTe3vqFwd2dqGFDooEDmef2n3+y4q+W5tAhocjF+vVE8fEli1ZcHJG9/y/Kzydq2ZLZ07Zt4dChgv5pthItIi5cejH0xvj4+JBUKiUPDw8KDQ2lBg0aUL9+/WjdunX01JjaVSaQl5dH9evXLySSAwYMsGq/9ub5c6KTJ1lg8pgxRG3aEIWG6hcBiYSoZk2i//s/FjO4fTur9WepijPFkZIixOv16cNsV1fBKWrkJZcz4bWFbSWhDhR3dycqGMJoT9Ei4sKlF2fynL9x4wb5+fnpiJdUKqWNGzfa2zSzyMsjunyZaMsWounTibp3J6patfipVoUKRB07sunLxo1E584RZWfbx36VSgjHqVqVKCODaO5c9nvFikS//SaUOQNYPF9Skn1sLYh2WM+nn+p+V1C0Pv/c9vZx4dKDMwmXmo0bNxZ6S+nn52dwxL+9UKnYA7trF9H8+WxkUrdu4awD2lu5ciw7wciRRKtWER05QuRo/1SffSaMos6cYUHPajFQZ1YA2Ajsxx8tXxDDHN54o+iwHkcQLSIuXHpxRuFSM2DAACo4faxfv75DrH89ecLWfJYvZwVDmzUTHmZ961ANGhANGEC0aBHRH3+w0YAjPeRFcfKkkMRP7RqgDoHRzvU+ZIhx1bBtwc8/C1PsM2eE/Y4iWkSluMqPuTh7lR+lUom6desiISFBZ3/Pnj3Rp08fVKxY0ar9Z2eLcP26CxITXZCY6Ip79/xw8aIYd/U4eksk7LV/7dq6LgcVKwJih69yoEtGBssV/++/QNeurKrOyZNA48ZCHvqoKGD1aqBFC7uaWoj0dKBWLZbKefx4wQOeCJg6Ffj4Y/b7558zT3r72ckdUIvEmUdc2iQkJJBCoTD47af522ICrlBxAcQREawG4YQJ7BX72bP2W4eyNCoVq/Kjvs6HD9nCtXr0JRIxFwdHvd4RI5idlSoJ1blVKqLJk4V/v88+s6+NRHyqqJfSIlxERNu3by+U7dJ621YtkUohVrJqCU2ffpf+/psoNdXed8O6fPmlMM36+muixo11RXvDBntbqJ8jR4QXH3v2sH2OKFpE3HO+VJOcnIyYmBg8fPhQZ3/FihWxc+dOq/R55owbMjNvolq1HPj7KyESBQB4BVFRgQYVSXVmLl8WPMabN2dVcJRKVg5MqQReew3o29e+NuojN5dVAyIC+vUD4uMLTw8/+4xVBHJarCikDoMzj7jy8vKoefPmhUZDPXv2tLdppZbMTCGeT50/vuDbQ+2FbkdD7dnv70/06BEbaU2Z4ngjLTV8qqgHZxWuadOmFfKor1KlCmXZM26kDNC/v+6UMCSE5Yhv14793quXvS3Uz5UrQgjUt986vmgRceHSi7MJ1969ewtlvPTw8KATJ07Y27RSjUpF9N57uqL1zjvMxeHgQcH9ITHR3pYWTX4+UYsWQlhPfr6uaC1ebG8Li4YLlx4MvTEzZ86kDz/8kE6dOmUjy3R5+vQphYeH6wiWWCym+fPn28WessTt20SvvKLrFHvoEPtOpSJq0oTtHzrUvnYWh3ZYz/XrziFaRFy49GLojSk4LQNYFWCpVEqenp5Uvnx5atiwIQ0YMIA2bNhg0fjF9u3bF+q7Xbt2FmufUzRKJXNx8PQUHvKwMBbSo0btxOnmRnT3rv1sLY6C1XqmTnUO0SLiwqUXc4TL0E07Y0S1atWobdu2NHnyZDpy5EixXu7z588vlEInPDzc6kHdHKLz54kaNdKdGnp5Ed28KRyjVAoL9RMn2s/WklCH9cTG6ro8OLpoEXHh0ouxN+bUqVM0c+ZMat++PdWoUYPKlStnkRxdamGUyWSF8nABIFdXV9q7d6+V7wYnK4s93OpwHe03h9u26R77zTdsv49P0UVZHQH1iFAsJnr7beFaFi2yt2WGwYVLD9ZYnM/IyKBNmzbR4MGDqUmTJhQaGlpkCSlDBW3y5MkWs42jn/37WXYH9cPdrh2Rry/7PGKE7rE5OUSRkey7uXPtYm6JpKUJqXbi4pxPtIi4A6rVuHr1KrZt24bjx4/j33//xYMHD5CRkYHc3FxNCSlTEYlEyM3NhbS0e3TamSdPWLzel1+y30NCWAGI5cuBp0+Bl15iaY21Wb2apVwOCbFvLF9xTJnCYhF9fICjR9m+RYuA99+3q1nWx4pC6jAYqujR0dHk5eVFUqnUrPUuvBhFyeVy8vHxoSpVqlB8fDyNHTuW9u7dS3l5eZSXl6dJ4cyxHioV0ebNRIGBwmhk6FAWrjRrFvvdw4OlNdYmI4MoKIh9v2KFfWwviSNHCseOOtNISw2fKurBkqmbRSKRJpd8aGgoxcbGUu/evWnVqlX06NEjG10RxxBu3WIB4OqHukYNosOH2XcHDwopmL/+uvC5s2ez7ypXJsrNta3dhpCTwzLBaotWwSSBzgKfKppJQEAA0tPTNVWrK1asiHr16qFjx45o0KABn845Cfn5wLJlbBr1/Dkgk7HPEycCLi5ASgrw1lssLU3fvkCfPrrnP34MzJ/PPn/0ETvf0fjkE+DSJeH3Tz9lFanLDFYUUofB2TznOaZz7hwrmqEehTRtSnTpkvC9SsXSQQNEUVG6/lpqxo1j38fEOEa++IJcviyMFp15pKXGlOfTydK6cThFk5XF6gHWqwecOAEoFMDKlcChQ0CNGsJxn38O/PILG3l9/z3g6anbzp07bNEeYJkUHC3xYX4+0LatkMRw4cIyNtJ6AZ/7cJye/fuBIUNYllIA6N6dFTItX173uJMn2ZtFgL15i4kp3NaHHwLZ2SyVTbt21rXbWIhYFtbbt9nvkycDY8bY1ST7YcURoMPAp4qlk8ePWR1F9ZQpNLSwA6matDS20A4QdetWdJ77q1dZ0kCA6K+/rGq6Sbz/vnCtnTvb2xrLwaeKnDIBEbB5M5sCfvUV2zdsGFus7tq16OPfeQf47z+gQgXmyyUSFT5u2jQ2FevYEWja1KqXYDQzZwKLF7PPYWEs931Zhk8VOU7F7dvAu+8Cv/7Kfq9RA1izpnih+eorJnQSCbBpE+DrW/iYU6eAH35ggjZnjnVsN5WZM4FZs9hnkYit0UkkdjXJ7vARF8cpyM9nC+s1azLRksvZw3zmTPGidfEiMHIk+zxnDhAXV/Rxkyezn717A3XqWNZ2c9AWLYCt0RW1NlfmsOLU1WHga1zOTUEXh2bNdF0c9PH8OVGtWuycNm30uzbs28eOkcmI/vvPsrabw4wZug6mlSuztNKlDb7GxSlVZGUBkybpujh88QVw8KCui4M+3n+fjbiCg4Gvvy7atYGI9QGwN5OVKln2Gkyl4EgLAFatAtzc7GKO42FFIXUY+IjL+di7l6hKFWG00b27cUn8vv9eqH2oLs9VFNu2CaltHCV0VHukpY6X7N/f3lZZDx6rqAcuXM7D48dEAwYID2758vpdHPTx339ECgU7v7hsQUqlEO83ZYpZZlsMbdFq04b9DAggSkmxt2XWgwuXHrhwOT4qFdGmTUIWB5GI6N13mf+VMeTkENWvL4T7FJN8ltavZ8f5+rKCGPZm5kxBtMaOFar1bNxob8usCxcuPXDhcmxu3hRKfwFsFPT336a1NWaMIEa3buk/LjubKCKCHesItUi0ReuTT4iaN2efX3utaGfZ0gRfnOc4Ffn5rKJyrVrAb78JLg6nTwNNmhjf3q+/siwJALBuHRARof/YL75gPmGhoULFansxaxZbjAdYVgofH+DwYcDdncVbFuUsW+axopA6DHzE5XicPUvUoIEwymjenGU9MJU7d1hJMYBo5Mjij01PZ+tGANGqVab3aQkKjrTu3SPy9nbepICmwKeKeuDC5ThkZrJqOeqYQG9vJh7mpI9RKolatmTt1a3LpoHFoc58WrWqfZMEqu1QixYR0euvs9/r12fXVRbgwqUHQ2/MpEmTaNKkSXTw4MFiS4pxTOPPP4VAZ4CoRw82wjAX9ajF05Po2rXij330iJUgA5jLhL0oSrR27GC/SyRsRFpW4MKlB3PrKkokEnJ3d6fg4GCKjY2lt956i5YtW8ZzxhtISgrzQ9J2cdi+3TJtHzggJNX75puSj//gA6H+oL2SBBYlWmlp7L4ARBMm2Mcue8GFSw+G3hhz6iaKRCKSyWTk4+NDlSpVolatWtHo0aPpt99+K7OjN5WKvcpXryeJRETDhxvv4qCPhw9ZKhtDHTRv3SJycWHH795tGRuMRVu05s0T9g8fXrrDeorDoYTrxo0bNHDgQIqMjCRXV1eqVKkSTZ8+nXJycnSOO3fuHDVr1oxcXFwoLCyMPlH/F6TFDz/8QFFRUeTi4kLR0dH066+/GmWLsTcmMTGRFi5cSD169KDatWtTYGAgubm5kUQiMVnYCo7g1CIZFxdn1LU4Czdu6Lo41KpluotDUahURO3bs7arVyd69qzkc9S5u15+2T4uBh9+WLRoHTnCRB1g0+myhkMJ12+//Ub9+/en33//nf777z/asWMHBQYG0pgxYzTHpKWlUVBQEPXu3ZsSEhJo06ZN5ObmRqu0XvX8/fffJJFIaP78+XTp0iWaOnUqyWQyunDhgsG2WGNxPi8vj3777TcaPXo0tWzZksLDw00uCBsXF1dqRmVKJXsbpq4OLZezB7bA/1dm8+mnrH0XFxaEXRLaedqPHrWsLYagT7RycoRA8NIc1lMcDiVcRTF//nyqWLGi5vcVK1aQr6+vzihswoQJFBUVpfm9Z8+e1KFDB512GjVqRO+8847B/ZorXCdOnKBp06ZRu3btqFq1auTn50cuLi5mTS2LmmqOHz/eJPschbNnBa91S7g46OPECZbJATC85mGPHuz4Ll0sb09J6BMt7e9Ke1hPcTi8cE2ZMoXq1aun+b1Pnz7UpcBf0r59+wgAPXnyhIiIwsPDafHixTrHTJ8+nerUqaO3n+zsbEpLS9NsSUlJBt2YGjVqkIeHB0kkErMLworFYnJ1daVy5cpRjRo1qGPHjjRz5kw6deqUpr9Tp06Rp6enznkuLi70xx9/GHhHHYPMTLagrO3isHq1dRa/U1OJKlYU3koaMuU7cUJYY0tIsLxNxaEtWnPn6n53+bIQ1vPdd7a1y5FwaOFKTEwkhUJBq1ev1ux79dVXaciQITrHXbx4kQDQpRcJl2QyGX1X4F91+fLlFBgYqLevGTNmFCkmlioIK5VKycvLiyIiIiguLo4GDx5MmzZtooyial0ZwOLFiwuN3kJDQ52iwGxBF4fXX7eMi0NRqFREPXuyfipUMDy+sHVrdk6/ftaxSx8ffaRftPLzhbCedu1Kf1hPcdhEuCZMmFDiw325wPzgzp07VLlyZRo0aJDOfmsJl6kjruDgYHJ1dSV/f3+qVasWde3alebOnUsJNvpvunPnzoXuZXx8vE36NpaUFCYE6gezfHnmh2RNVq9mfUmlhq9T7dkjJAm8ccOq5ulQnGgRMadbgMjDg8VqlmVsIlwPHz6ky5cvF7tpr1ndvXuXqlatSn369KH8AnMHa00VC+JMnvMZGRlUoUKFQqO82bNn29s0IiraxWHECMu5OOjjwgUiV1dd3ydDbFWvuY0aZV37tClJtLTDegr8aZdJHG6qeOfOHapatSq9+eabpCwifkG9OJ+rFXcxadKkQovzHTt21DkvLi7Opovz9uDw4cPk5uamI2Du7u505MgRu9l04wbLVqB+KGvVYq/yrc3z50LerLZtDV87+/FHYVTz4IF1bVRTkmgRCS8KGjQoO2E9xeFQwnXnzh2qUqUKtW7dmu7cuUP379/XbGpSU1MpKCiI+vTpQwkJCbR582Zyd3cv5A4hlUpp4cKFdPnyZZoxY4ZDuEPYipkzZxZ6UVCxYkWT19NMIS+PuR9ouzh89JHlXRz08fbbrN/gYMMFKC+P+XcBRNOnW9c+NbNnC6L18cdFH7N9e9kM6ykOU55PERERrMD69esxYMCAIr/T7vL8+fMYPnw4/vnnH/j7+2PkyJGYMGGCzvFbtmzB1KlTcfPmTVStWhXz589H+/btDbYlPT0d3t7eSEtLg0KhMO2C7Mwrr7yC/fv36+xr2bIlBg0ahNjYWKv1e+WKK6ZPD8WlSyzZef36z7F+vQtq1bJNZbvNm4FevVhqlz17gNatDTvvq6+AQYOAcuWA69dZvnprMmcOMHUq+/zxx0Iee23S01mVort3gYkTgblzrWuTs2DS82ktFXUknHnEpc2jR48oJCTELDcNwzcxAfMIyHsxinhCwCACRDZ7WZGYKARET51q+HlZWURhYey8Tz+1nn1qDBlpEbGMrgDLpV/WwnqKw6Gmio5EaREuIqJly5aZ7WNm+Lb9xQP5PQFBmv22EK6cHKJ69diD3qxZ8SmYC6L2qg8LYyJmTQwVrb//FsJ69u61rk3OhinPJ69k7SScP38eTZs2xbNnzzT7xGIxYmJi8M0331ilz+RkKS5fvo1WrWoB2KvZHxUVZZX+tJk4kVWX9vMDvvsOkBr4l5qezqZqAMsq6upqNRPx8cfC9HDOnKKnhwCQkwMMHszkbcAA4JVXrGdTmcGKQuowOPOIKysri6Kiogq5R4wdO9beplmNnTuFUYyxvmHTp7PzoqKMG6UZy5w5go1z5hR/rDojRGAgq2LE0YVPFfXgrMLVp0+fQtO3xo0bl5qA7KJIShJSMI8ebdy5Dx4w1weAuUJYC2NE69IlIaxn0ybr2eTMcOHSg7MJ14YNGwql0PH396ekpCR7m2ZV8vKIWrQQEv2VlIK5IKNHC2mPrRVCY4xo5eez9TnwsJ5i4cKlB0NvzODBg6l37960cuVKu2Q3TUxMJF9fXx3BkslktGXLFpvbYg/U0zxDUjAX5MYNYWRTXOVqc/j4Y0G0DAlk+OILHtZjCFy49GBu6maRSERyuZx8fHyocuXK1Lp1axo7dizt3bvXItO2vLw8io2NLdTv4MGDzW7bWdi3T3jrZkoBVHXcZOvWFjeNiIwXrbt3hWraPKyneLhw6cHQG2NuhlN1bvqgoCCKiYmhnj170pIlS4qd4o0YMaJQO3Xq1CnV61gFefiQKCSEPeQDBxp/fkKCkCTwxAnL22esaBERde/Ow3oMhQuXHoy9MVlZWbR9+3YaMWIENW/enCIjI0mhUJBMJrOYD1VR7Xh7e9OVK1esfDcci/x8IcVzjRqGpWAuSNeu7Pzu3S1vnymitW0bD+sxBi5cerDW4vyNGzdo8eLF9Prrr1PlypXJ3d3dJGGTSCS0du1ai9rmLCxYwB5yV1ei8+eNP//oUXa+WMze4FmSuXMF0froI8POSU0VCnhMnGhZe0or3AHVCqSmpmL79u04cOAALl26hHv37iEtLQ3Z2dnIz8/Xibs0BYlEAqVSaSFrnYvjxwWnzc8+A2rXNu58IuH8/v2BGjUsZ9u8eULbH30kOJqWxOTJwL17QJUqwPTplrOHUwDr6ajjYKiiR0REWCSXvDpLqqenJ4WFhVHjxo1p0KBBtGHDBnr6Im1nXl4eZVk7HsWBefqUKDKSjUzeeMM0V4HffxeyVdy6ZTnbTBlpEfGwHlPhIy4zuX37donHiMViyOVyeHp6IjAwEJUqVULDhg3RpUsX1KlTx+C+pFIppIbGsZQyiIAhQ4CbN4HISGD1apb9wRhUKmFENHw4EBFhGdtMHWnxsB7bUjafHD1EREQgNTUVPj4+CAsLQ506ddC6dWu89tpr8PT0tLd5pYbVq4EtW1j84fffAz4+xrfx44/A6dOAl5f+GEFj+eQToa0PPzRctNTnXroEBAYCCxdaxh5OMVhxBOgwOJvnfGnm/HkhBfOCBaa1kZtLVLUqa2PWLMvYNW+eMD388EPjzuVhPebB3yrqgQuXY/DsGXN5wIsQGFPLl6mLZgQEEKWnm2+XOaKlHdbTvj0P6zEFU55PsX3He5yyxKhRwOXLQEgIsGEDIDbhry8ri6WrAYApU9hU0Rw++YSl0AHY9HDaNOPOX7MG+OsvwMMDWLnS+LU6jmlw4eLYhO++Y+mURSJg40YgIMC0dpYvZ+4GERHA0KHm2TR/viBas2YZL1r37gHjx7PPc+ZY7gUBxwCsOAJ0GPhU0b4kJrLAaZhZuOLpUyJfX9bOunXm2fTJJ8L00NR1MnVYT8OGPKzHHPhUkeNw5OQA//d/wLNnQPPmxo9qtFm4EHj6lBWc6NPH9HbmzwfU9VhmzTLNUXT7duCnn9ib0TVrAInEdHs4xsOFi2NVJkxgbgvlyhmXgrkgycnA4sXs85w5pguFJUQrLY35jgHAuHGAEe57HAvBhYtjNX7+Gfj8c/Z5/XogLMz0tubMATIzgUaNgC5dTGtjwQJBtGbOND0kZ9IkIazHnBEkxwysOHV1GPgal+25fZvIz4+tAb3/vnlt/fcfkUzG2tq3z7Q25s8X1rRmzjTdlr/+Etox1RaOLnyNi+MQKJXAW28BT54A9eqZX/h0xgwgLw9o0wZo1cr48xcsEN7+zZzJ2jMFdVgPAAwcaJotHMvAhYtjcWbNYr5NXl4spMfFxfS2Llxg7hOAUHbMGCwlWgCLY7x8mYX1LFhgejsc8+HCxbEo+/ax9SiAxSRWrmxee1OmsInZG2+w0ZsxLFwoiNaMGeaJ1uXLgnAuWcLqPXLsiBWnrg4DX+OyDQ8eEAUHs/WfQYPMb0+9niSREBmbGFadoBAgmjHDPDvy84maNmVtdejAw3osDV/j4tgNlQro25e5LdSsyUYl5qCdJHDgQMCY4tkLFzI3BYCNstQhQqayejXw998srGfFCh7W4whw4eJYhIULgd9/ZyXvv/8ecHc3r73du4HDh9n6mDFuC5YWrbt3BRcKHtbjOHDh4pjNsWNsLQpgI63oaPPa004SOHKk4f5fn35qWdFS95+eDjRsCIwYYX57HMvAEwlq0b9/fzx//hyNGzdGjx49EBkZaW+THJ7UVKBXL+YC0bMn8Pbb5rf5/ffAuXOAQiEEQZfEp58CY8eyz5YSrW3b2MbDehwQK665OQyWKAgrk8lIoVBQhQoVqHnz5jRs2DDaunVrmc4br1IR9ejBFq0rVWIVbswlN5eocmXjyoEtXGi5hXg1qalCrcdJkyzTJqdoeCJBPRh6Y6RSqVlFMsRiMbm6upK/vz/VqlWLunbtSrNnz6aEhAQbXaltWbmSPdhSqeUKsarbDAwkysgo+XhriBYR0dChrM0qVYgyMy3XLqcwXLj0YOyNycvLo4MHD9L48eMpPj6eqlatSr6+viSXyy1WEFa9VatWzcpXbx3OnSNycWEP98KFlmnz+XNhlLN0acnHf/qpIFrmpMspyOHDPKzHlnDh0oO1/LgePXpEa9eupV69elHVqlXJw8PDpNJm1apVc6op57NnRNWrC+mKTU3BXBB1CuXISKKcnOKPLShalvKtys4Wrm3gQMu0ySkeLlx6MEe4kpKSaNmyZfTmm29S3bp1KTg4mNzd3UkikVh05AWA3nzzTStcveXp35892KGhRI8eWabNJ0+IfHxYu19/Xfyx1hItIhaArZ6qPn5suXY5+uHCpQdDb0z58uVJJpOZPR3UXsyPjIykFi1a0KhRo2j79u06I6ukpCQKCAjQOVcikdDatWutfUtM5ptvhJL3Bw5Yrt2JE1m70dHFZxO1pmhpV+vZvNly7XKKhwuXHgy9MYaIkkQiITc3NwoKCqKYmBh6/fXXafHixXTjxg2T7du6dSvJZDKdfnx8fOiKsXEuVubaNSEFsyUXwu/dI3JzY+3+/LP+4xYtEkRr2jTLihYP67EfXLj0YOiNqVSpEvn4+FClSpWoVatW9MEHH9Aff/xBeXl5NrFzxIgRhYSyTp06Nuu/OLKzierWZQ92y5aWzbE+bBhrNy5Ov2BYU7SIhLeZnp5Et25Ztm1O8XDh0oMzBVnn5eVR3bp1CwnY4MGD7WrXqFHswS5XjujOHcu1m5jI3CkAooMHiz7G2qJ15w6RQsHa//xzy7bNKRkuXHpwJuFSk5iYSL6+vjriJZPJaMuWLTa3Zft2QTh++cWybffqJRSILQprixYRUbdurP1GjXi1HnvAhUsPzihcajZs2FDoDaa/vz8lJSXZpP9bt4SSYB98YNm2z5wRROnMmcLfa4vW1KnWEa2ffhKcaM+ft3z7nJIx5fkUERGhlJOeng5vb2+kpaVBoVDY2xyT6Nu3L7755hudfdWqVcPgwYPRrl07q/SpVAIDBkTizBkPREdn4ptvbkImI0RFRUFqarkeLTp0AHbtAt58E9i0Sfe7zz4D3n+ffZ46lVWZtnQ6mbQ0oEYN4P59YPJkIQEix7aY9HxaTUYdCGcecWmTlZVFNWrUsLj/mP7toxcjnlQCKmr2WyKE6dAhYaSTmKj73eLF1h9pEQlhPVWrEjmR/2+pgycSLOW4urpabXRVGAmAFi8+DwFww2ItaycJfPttVuZLjS1GWgDLif/FF+zz6tUsjxjHeeBpbZyE3bt3o0uXLsjNzdXsk8vlePnll7Fo0SKr9KlUAgcP3kbr1tMBCNn8ooxJR1oEv/7KMoq6uenWJdQWrSlTrCda2tV6Bg0CXn7Z8n1wrIwVR4AOgzNPFR89ekQhISGFnGCXLVtmb9NMQqlk3vEA0YQJwv7PPhOmh1OmWNcBdMYM1k9QEAs14tgX/lZRD84qXK1atSq07tStWzd7m2UW6pAhHx9BNGwpWhcvCsVlv//eev1wDMdhhSs7O5tiYmIIAJ0p8N773Llz1KxZM3JxcaGwsDD65JNPCp3/ww8/UFRUFLm4uFB0dDT9+uuvRvXvbML14YcfFoqXrFixImUYkqDKgcnJIapYkYnGxx+zfbYUrfx8oiZNWF8dO/KwHkfBYYVr1KhR1K5du0LClZaWRkFBQdS7d29KSEigTZs2kZubG61atUpzzN9//00SiYTmz59Ply5doqlTp5JMJqMLFy4Y3L+hN6Zr167UokULGjFiRKGAaFtw+PBhcnNz0xEsd3d3OnLkiE3tsBbLljHRCA5mqXG0RWvyZOsLyYoVQljP7dvW7YtjOA4pXLt27aLq1avTxYsXCwnXihUryNfXl3K0ki9NmDCBoqKiNL/37NmTOnTooNNmo0aN6J133tHbZ3Z2NqWlpWm2pKQkg25McVkhJBIJubq6UkBAAEVHR1O3bt1o/vz5FgmEzsjIoAoVKuj0JxKJaLahuYudgGfP2JoSwATE1qJ15w6Rlxfrb8kS6/bFMQ6HE67k5GQqX748/fPPP3Tjxo1CwtWnTx/q0qWLzjn79u0jAPTkxQJIeHg4LV68WOeY6dOnU506dfT2O2PGjCLFp6Qb4+LiYpbfkzqdjZeXF0VERFCTJk1o6NChtGXLFr2jt86dOxdqJz4+vlg7nZE5c5hoVK6s6xFvC9EiIuralYf1OCoOJVwqlYpee+01+uijj4iIihSuV199lYYMGaJznnpkdunSJSIikslk9N133+kcs3z5cgoMDNTbt6kjLm3u379PK1eupLfeeotiY2MpJCSEPDw8rJJAUL2FhobSI0tl5nMgUlKEIOY+fWwvWlu38rAeR8YU4TLaj2vixIn45JNPij3m8uXL+OOPP5CRkYFJak9DG+Li4gIXFxez2ggODsbQoUMxdOhQvccolUocO3YMP/zwA/bs2YO7d+8iMzMT+fn5Rtu7c+dOvPrqq2bZ7Kh88gmrTRgaCqijliZNAmbPtn5V6NRUoR7i+PFA7drW7Y9jG4wWrjFjxqB///7FHlOpUiXs27cPR48eLSQg9evXR+/evbFhwwYEBwfjwYMHOt+rfw8ODtb8LOoY9ffWRKlUYv/+/fjjjz9w5swZ3Lx5E48fP0ZmZiby8vJAFgjzdHFxQXZ2tgWsdUzu3gWWLmWf791jPydNYnGBtihlP3Eii0WsWlXX2ZXj3BgtXAEBAQgICCjxuCVLlmD27Nma3+/du4e2bdvi+++/R6NGjQAAcXFxmDJlCvLy8iCTyQAAe/bsQVRUFHx9fTXH7N27F++9956mrT179iAuLs5Y00skICAAT58+NXrEVBCJRAK5XA5PT08EBwejWrVqiIuLQ8eOHc32Onc2PvwQ0NZlW4rW4cPAqlXsMw/rKWVYb+aqS1FrXKmpqRQUFER9+vShhIQE2rx5M7m7uxdyh5BKpbRw4UK6fPkyzZgxw2ruEDBw8d3b25sqVqxILVu2pFGjRtHOnTsdIkupo3H1KpFIJKxpTZpkO98p7Wo9gwbZpk+OaTjU4nxBihIuIl0H1PLly9O8efMKnfvDDz9QtWrVSC6XU61atazmgFqrVi0KDg6mmJgY6tmzJy1ZssRmea9KI+pUzwArhmFLh8/p03lYj7PA83HpoTTk43I2xo8HFixgnwcOBNautc30EAAuXgTq1gXy8oDvvwd69rRNvxzTMOX55GltOBZn2TJBtGrWtK1oqVTAkCFMtDp2BN54wzb9cmwLFy6ORVm2DBg5kn0WiYCff7adaAFsMf7IEcDTE1ixwrZ9c2wHFy6OxdAWLQAYNgyoXNl2/d+9C0yYwD5//DEQHm67vjm2hQsXxyIUFK2CSQJtwYgRQEYG0KgR8O67tu2bY1u4cHHMZvlyQbTKlWM/338fsIGPsIaffgK2bwekUmDNGkAisV3fHNvDhYtjFsuXCyE17dsDjx8Dvr7AuHG2s0E7rGfCBB7WUxbgwsUxGW3RGjsWSEhgnydOBHx8bGeHOqynWjVWYINT+uHFMjgmoS1a48ezAOrbt9lP9X5bwMN6yiZcuDhGU1C0pkwRSozNmAG4u9vGjpwc5rMFsDJnLVvapl+O/eFTRY5RFBStefOAzz8HHj1iGRgGDLCdLR9/DFy5AgQFAfPn265fjv3hwsUxmKJE6/FjwUv+o4+AF0k+rM7Fi8Dcuezz0qXshQCn7MCFi2MQK1YIojVuHBMtkYiJR0YGiw20VXiNdlhPp07A66/bpl+O48CFi1MiK1YAw4ezz+PGsYymIhGQlMRGYQATMLGN/pq++EII61m+nIf1lEW4cHGKRZ9oAcCsWWyBvGVLoE0b29hz5w5zfwCYWPKwnrIJFy6OXooTrStXgHXr2Oe5c20z6iESwnoaN2axkJyyCXeH0KJDhw54+vQpatasiVdeeQWdO3eGp6envc2yCytXCqI1dqyuaAHM0VOlArp0AayQRbtIfvoJ2LGDhfWsXs3DesoyPJGgFmKxWG8BDLFYDJlMBg8PDwQEBKBy5cpo2LAh2rdvjwYNGljLdLuwcqUQpDx2LHM10Batf/4BGjZk+86fB6KjrW9TaipQowaQnMz8xrTKGXCcHJMSfVonGatjYWhqWFdXV7MLwkqlUvLw8KDQ0FBq0KAB9evXj9atW0dPnz61zcWaibpMPUA0dmzR6Zbj49n3ffvazq4hQ1if1aoR6amty3FSeOpmPZii6M+ePcPPP/+Mffv24dKlS7hz5w6ePn2K7Oxs5OfnW6Q0GQAEBQUhOTnZIm2ZS0kjLQDYuxeIj2f+WteuAZGR1rfr0CHBK/7AAe4hX9rgIy49mKLohpKQkEDvvfce1ahRg7y8vEyqdB0YGEj379+3uG3GsHKlMNIaM6bokZZKRdSgATtm1Cjb2JWVRRQVxfp8+23b9MmxLTapZF2WyM7Oxi+//IJ9+/bhwoULuH37NlJTU5GVlQWlUmmxUdfDhw8REhKC5s2bY9++fZBKbfvP8sUXwhu6MWOYJ3xRbwm3bWPrWx4ebJ3JFnz8MXD1Kg/r4RTAejrqOBiq6H5+fiQWi81e55JIJOTh4UEhISEUGxtLvXv3plWrVhUaVWVkZFCVKlUKnT958mRr3g4dDBlpERHl5Ql1CqdNs41tCQlEMhnr84cfbNMnx/Y4dF1Fe2KpgrBisZhcXFzIz8+PqlWrRm3btqVJkybR4cOHzSoIe+LECfLw8NDpy9XVlfbu3Wtym4ZgqGgREX31FTuuXDmi1FSrmkVERPn5RHFxrM9OnWxbk5FjW7hw6cHQGxMTE0Ply5e329vA+fPnFxrxhYeHW8WGL74QROuDD4oXhqwsovBwduzChRY3pUiWLWP9eXoS3b5tmz459oELlx6suThvDdq1a1dotNeuXTuLtW+MaBERLVrEjg0LI8rMtJgZeklKIvLyYn0uXWr9/jj2hQuXHpxNuIiInj59SmFhYYWmqvPnzzerXWNFKy2NTQ8BorVrzeraIFQqos6dWX+NGxMpldbvk2NfuHDpwRmFS83evXsLOcZ6eHjQiRMnjG7LWNEiIpoxgx0fFcUW6K3Nli2sP5mM6MIF6/fHsT/cAVUPJjm4ORhTpkzB3LlzdVwwAgMD0b9/f/Tt27fE87ds8cWsWaEAgL59UzBu3IMSA6MfP5agXbuqyMyUYNGiJLRpkw4AiIqKsorLhnZYz9SpLDEhp/TDHVD14MwjLm3y8vKoefPmJrhpDNaMtIBPjThv8Ytz/tHZn5CQYJXrU4f1REXxsJ6yhCnPJ09r40RIpVIEBQUZedZgAKtffF4EYIyB54kAqAsUTjSyT+M5dIhlfAB4tR5OyXDPeSdh9erVePfdd5Gfn6/Z5+XlhW7dumH8+PFFnlN4etgWIlFbg/skAs6cuYHY2M919kdFRZlwBfrJzhaq9QweDLRoYdHmOaUQLlwOzsWLF9GkSROkp6dr9snlcmzduhUdO3bUe97q1SxDKQC89x6waJE/RCJ/o/u3RcoadVhPcDAP6+EYBp8qOihKpRLR0dGIjo7WiJZIJMLo0aORk5NTrGitWQO88w77zETLcfOyX7zICm8ArFqPLStgc5wXPuJyQN5++218+eWXOvvq16+Po0ePlvg2b80aYdrl6KKlUrGpYV4e0Lkz0KOHvS3iOAtcuLRo3rw5Hj9+jIoVK6Jhw4bo1KkTYmNjbdb/d999h379+kGpVGr2+fn54dSpU4g0IPGVM4kWwPJ/HT0KeHnxaj0cI7HiW06HwdDXrSKRqNisD1KplDw9Pal8+fLUsGFDGjBggEXiGW/cuEF+fn46/UmlUtq4caPBbaxeLTiXvvee4wcla4f1LFtmb2s49oR7zuvB0Bvj6elZrHgZshWVQWLy5Ml05MiRQhkk8vLyqH79+oXaGDBggFHXt2aNIFqjRzu+aGmH9cTFsUwQnLIL95zXg6me86dPn8bOnTtx8uRJ/Pfff3j48CGeP3+O3NxcqFQqi9tZq1YtnDx5Eq5GODGtXcvWiQBg9Ghg8WLHn3L9+COrei2TAWfOALVq2dsijj3hnvN6sKbn/KNHj2jMmDFUs2ZNk1M3KxQKOnfunNF9O9tIi4joyROi4GBm89Sp9raG4wjw1M0W5urVq9i2bRtOnDiBxMREPHjwABkZGRYdcSkUCqSlpRl9njOOtABgwgQWixgVZbv0z5zSBxcuLby8vPD8+XOzcsmLRCLIZDK4u7vD398fkZGRiI2NRYcOHdCkSROLBCd/+aVzitbBg+zNJ8DDejjmwYVLi+JESyQSQSwWw9XVFd7e3ggNDUWNGjXQrFkzdO/eHf7+xnulm8KXXwJvv80+jxrlPKLFw3o4loQLlxZxcXFISUlBxYoVUa9ePXTs2BENGjSwedUdfRQUrc8+cw7RAoA5c1gdRh7Ww7EEjvFEOgh///23vU3QizOLVkICD+vhWBYeq+gEfPWVsKblbKKVn89sVyp5WA/HcnDhcnC++oqNtIiAkSOdS7QAFtZz7BgP6+FYFi5cDkxB0fr8c+d68JOSgEmT2Oe5c4GwMPvawyk9WFW4fv31VzRq1Ahubm7w9fVF165ddb6/ffs2OnToAHd3dwQGBmLcuHE6AcYAcODAAcTGxsLFxQVVqlTB+vXrrWmyw+DsokUEDB8OPHsGxMUBw4bZ2yJOqcJa3rA//vgj+fr60sqVK+nq1at08eJF+v777zXfK5VKio6Opvj4eDpz5gzt2rWL/P39adKkSZpjrl+/Tu7u7vTBBx/QpUuXaOnSpSSRSGj37t1G2eJsOee//JJIJGLe5SNHOodHfEF++EGo1mOlFPWcUoLDBFnn5eVR+fLlaW0xhfh27dpFYrGYkpOTNftWrlxJCoWCcnJyiIho/PjxVKtWLZ3z/u///o/atm1rlD3OJFzaojVihHOK1pMnREFB7BqmTbO3NRxHx2GKZZw+fRp3796FWCxG3bp1ERISgnbt2iEhIUFzzNGjR1G7dm2d4g9t27ZFeno6Ll68qDkmPj5ep+22bdvi6NGjxfafk5OD9PR0nc0Z0J4ejhgBLFniXNNDNePHAw8esLCeyZPtbQ2nNGIV4bp+/ToAYObMmZg6dSp++eUX+Pr64uWXX8aTJ08AAMnJyYUq1qh/T05OLvaY9PR0ZGVl6e1/7ty58Pb21mzh4eEWuzZrsW5d6RCtgwdZHCXAwnt4WA/HGhglXBMnToRIJCp2u3LliiYAecqUKejRowfq1auHdevWQSQSYcuWLVa5EG0mTZqEtLQ0zZaUlGT1Ps1h3Tpg0CDnFy3tsJ4hQ4Dmze1rD6f0YpTn/JgxY9C/f/9ij6lUqRLu378PAKhZs6Zmv4uLCypVqoTbt28DAIKDg3HixAmdcx88eKD5Tv1TvU/7GIVCATc3N702uLi4wMXFxbCLsjPaojV8uPOKFiCE9YSEAJ98Ym9rOKUZo4QrICAAAQEBJR5Xr149uLi44OrVq2jWrBkAIC8vDzdv3kSFChUAsLjAOXPm4OHDhwgMDAQA7NmzBwqFQiN4cXFx2LVrl07be/bsQVxcnDFmOywFRWvpUucVLR7Ww7Ep1npTMHr0aCpfvjz9/vvvdOXKFRo0aBAFBgbSkydPiEhwh2jTpg2dPXuWdu/eTQEBAUW6Q4wbN44uX75My5cvLzXuEOvWCW8Phw93zreHapRKosaN2bV06eLc18KxPQ7jDkFElJubS2PGjKHAwEDy8vKi+Ph4Sijg0HPz5k1q164dubm5kb+/P40ZM6ZQXvb9+/fTSy+9RHK5nCpVqkTr1q0z2hZHE67SJFpEREuXsmvx8iK6c8fe1nCcDZ5zXg+m5py3BuvXAwMHsunhu+8Cy5Y57/QQYGE9NWsyD/nly9k1cTjGYMrzyWMVbUhpEy3tsJ4mTYChQ+1tEaeswPNxadGkSROkpKSgQoUKFk+3vGFD6RItgFXr2bmTVetZswYQ8/8GOTaCTxW1EIvFxeabl0gkcHFxgUKhQGhoKKpXr44mTZqgR48eGheOotiwARgwoHSJ1tOnQI0azEN++nRg1ix7W8RxVkyZKnLh0sLb2xsZGRlmF8uQSqXw8PCAn58f5PLBuHJlPAAx3nlHhZUrxU4vWgBLDrh2LQvrOXuWe8hzTIcLlx5MXZz/999/sWPHDhw7dgzXrl1DcnKypjxZfn6+AS30BbAObClxBYDhhY7w8vJymlhKNQcPAi+/zD4fOsQ95DnmwYVLD9Z8q5iSkoJ58+Zh165dSEpKQlZW1gtRK1m01Hh6euLvv/9GnTp1LGqbNcjOBmJimIf8kCHAqlX2tojj7JjyfPLFeT0olUr8888/+OWXX3DmzBn8999/SElJwfPnz5GXl1dCQdg+MFS0AODZs2eIiYlBVFQUzp49C1cHnnfNns3Dejj2hwuXFp6ensjMzDRzjasfiL4CIIaPzyY0bbobjRp9iA4dOiA2NlbnWKVSiebNm+PYsWMAWOVsNzc39OnTB19//bU5l2IVLlwQxIqH9XDsimV9YB0TQz1zRSIRAShyE4lEJJVKycvLiyIiIqhJkyY0dOhQ2rRpE2VkZBAR0YYNgkf8sGFE+fmG2ZeUlET+/v46/UkkEtqwYYO5l24xlEqiRo14WA/H8nDPeT0YOodu2bIlnjx5gipVqqBRo0bo1KkTatWqZVAfX38N9O/PXB6GDWMuD8b6NW3evBl9+/ZFXl6eZp+Pjw/++ecfVKlSxbjGLMzSpaw0mpcXcPkyUL68Xc3hlCJMWoO2mow6ENaOVfz6a9NGWvoYPHhwoRFfbGxsoThOW3H7NpGnJ7u+5cvtYgKnFOMwqZvLEt98A/Trx0ZaQ4eaNtIqyOrVq5GXl6fzlvH06dOQyWQYOXKkmRYbh9pplof1cBwJLlxmUFC0li+3XNiLVCrFuXPncOXKFXh7e2v2L1u2DHK5HD/99JNlOiqBLVuAX37hYT0cx4K/VTQRa4qWNlFRUUhNTcXq1avx7rvvIj8/H3l5eejRowfc3d3x+uuvY/z48ZbvGEBamhjvvlsFgAyDBj0E0SNcvMhsskT8JodjMlacujoMll7j+uYbYU1r6FDz17SMoWfPnnrffFp+W0NMmi8RINfsL5hXjcMxB77GZQO+/Rbo25c9zu+8Y72RVlEolUrcuXPHNp1BDMDrxefBAHJt1C+HUzJ8vG8EBUVrxQrbidbkyZMxb948HefYkJAQ9O/fH71797Zav1ev/ouoKN24nqioKKv1x+EYAhcuA7GXaO3ZswedOnVCTk6OZp+npycOHjxYyBPfGhjoxsbh2BQ+VTSAb78VFuJtJVopKSkoX7482rRpoxEtsViMxYsXIyMjwyaixeE4KnzEVQJq0VKpWDYEW4hW27Zt8ccff+js69y5M3bs2GHdjjkcJ4ELlxZ16tRBSkoKQkJCUL16dcjlA/H1169ApRJhyBBg5Urrita8efMwefJknXWsiIgInDt3Dj48opnD0cBjFbUQ6aQmfQvA1wAkAFYBGAaRCJDJZHB3d0e5cuUQGRmJmJgYvPbaa2jVqpXJvk1Hjx5FfHw8MjMzNfvc3Nywe/dutGjRwqQ2ORxngScS1IOhN6ZcuXJIS0t7kQiwDYAdADYAGAbmwmQYEokEcrkcCoUCwcHBiIqKQrNmzdCpUydERkZqjlPn4bp+/bpmn0gkwowZMzBjxgxjL5PDcUq4cOnB1AyoJ0/mIClpNw4c2IezZ8/i9u3bePLkCbKysqBUKs3K21UULVu2xIEDByzaJofj6HDh0oM1UzefPn0a33zzDX7//XfcuXMHmZmZBuajFwgODsaZM2eKrRTE4ZRWeOpmC5Kamort27fjwIEDuHz5Mu7evYu0tDRkZ2cjPz/fYqOt4OBg3L9/3yJtcThlBS5cWri5uSE7O9vk80UiESQSCVxdXeHj44OwsDDUqlULr7zyCjp37gxPT08LWsvhlF24cGmh7Z1eELFYDLlcDk9PTwQGBqJKlSpo2LAhOnXq5BTVeTic0gQXLi06dOiA1NRUREdHo3Xr1ujYsaNDV9zhcMoqXLi02Llzp71N4HA4BsBjFTkcjtPBhYvD4TgdXLg4HI7TwYWLw+E4HVy4OByO08GFi8PhOB1cuDgcjtPBhYvD4TgdXLg4HI7TwYWLw+E4HVy4OByO08GFi8PhOB1cuDgcjtPBhYvD4TgdXLg4HI7TwYWLw+E4HVy4OByO01EmMqCqK/Kkp6fb2RIOh1MQ9XNpTOWsMiFcGRkZAIDw8HA7W8LhcPSRkZEBb29vg44tEwVhVSoV7t27By8vL4hEohKPT09PR3h4OJKSkixeQNaZ4felaPh9KRpD7wsRISMjA6GhoRCLDVu9KhMjLrFYjLCwMKPPUygU/A+xCPh9KRp+X4rGkPti6EhLDV+c53A4TgcXLg6H43Rw4SoCFxcXzJgxAy4uLvY2xaHg96Vo+H0pGmvelzKxOM/hcEoXfMTF4XCcDi5cHA7H6eDCxeFwnA4uXBwOx+ngwsXhcJyOMi1cc+bMQZMmTeDu7g4fH58ij7l9+zY6dOgAd3d3BAYGYty4cVAqlTrHHDhwALGxsXBxcUGVKlWwfv166xtvY5YvX47IyEi4urqiUaNGOHHihL1NsiqHDh1Cp06dEBoaCpFIhO3bt+t8T0SYPn06QkJC4Obmhvj4eCQmJuoc8+TJE/Tu3RsKhQI+Pj4YNGgQnj17ZsOrsDxz585FgwYN4OXlhcDAQHTt2hVXr17VOSY7OxvDhw9HuXLl4OnpiR49euDBgwc6xxjyXBVHmRau3NxcvPHGGxg2bFiR3+fn56NDhw7Izc3FkSNHsGHDBqxfvx7Tp0/XHHPjxg106NABrVq1wtmzZ/Hee+/h7bffxu+//26ry7A633//PT744APMmDEDp0+fRkxMDNq2bYuHDx/a2zSr8fz5c8TExGD58uVFfj9//nwsWbIEX3zxBY4fPw4PDw+0bdsW2dnZmmN69+6NixcvYs+ePfjll19w6NAhDBkyxFaXYBUOHjyI4cOH49ixY9izZw/y8vLQpk0bPH/+XHPM+++/j507d2LLli04ePAg7t27h+7du2u+N+S5KhHi0Lp168jb27vQ/l27dpFYLKbk5GTNvpUrV5JCoaCcnBwiIho/fjzVqlVL57z/+7//o7Zt21rVZlvSsGFDGj58uOb3/Px8Cg0Npblz59rRKtsBgLZt26b5XaVSUXBwMC1YsECzLzU1lVxcXGjTpk1ERHTp0iUCQP/884/mmN9++41EIhHdvXvXZrZbm4cPHxIAOnjwIBGx+yCTyWjLli2aYy5fvkwA6OjRo0Rk2HNVEmV6xFUSR48eRe3atREUFKTZ17ZtW6Snp+PixYuaY+Lj43XOa9u2LY4ePWpTW61Fbm4uTp06pXONYrEY8fHxpeYajeXGjRtITk7WuSfe3t5o1KiR5p4cPXoUPj4+qF+/vuaY+Ph4iMViHD9+3OY2W4u0tDQAgJ+fHwDg1KlTyMvL07k31atXR0REhM69Kem5KgkuXMWQnJysc3MBaH5PTk4u9pj09HRkZWXZxlArkpKSgvz8/CKvUX0Pyhrq6y7uniQnJyMwMFDne6lUCj8/v1Jz31QqFd577z00bdoU0dHRANh1y+XyQmvGBe9NSc9VSZQ64Zo4cSJEIlGx25UrV+xtJofj9AwfPhwJCQnYvHmzzfsudfm4xowZg/79+xd7TKVKlQxqKzg4uNDbM/XbkeDgYM3Pgm9MHjx4AIVCATc3NwOtdlz8/f0hkUiKvEb1PShrqK/7wYMHCAkJ0ex/8OABXnrpJc0xBV9eKJVKPHnypFTctxEjRmheOGjnugsODkZubi5SU1N1Rl3afy+GPFclUepGXAEBAahevXqxm1wuN6ituLg4XLhwQecPcM+ePVAoFKhZs6bmmL179+qct2fPHsTFxVnuouyIXC5HvXr1dK5RpVJh7969peYajaVixYoIDg7WuSfp6ek4fvy45p7ExcUhNTUVp06d0hyzb98+qFQqNGrUyOY2WwoiwogRI7Bt2zbs27cPFStW1Pm+Xr16kMlkOvfm6tWruH37ts69Kem5MsSQMsutW7fozJkzNGvWLPL09KQzZ87QmTNnKCMjg4iIlEolRUdHU5s2bejs2bO0e/duCggIoEmTJmnauH79Orm7u9O4cePo8uXLtHz5cpJIJLR79257XZbF2bx5M7m4uND69evp0qVLNGTIEPLx8dF5K1TayMjI0Pw9AKBFixbRmTNn6NatW0RENG/ePPLx8aEdO3bQ+fPnqUuXLlSxYkXKysrStPHaa69R3bp16fjx4/TXX39R1apVqVevXva6JIswbNgw8vb2pgMHDtD9+/c1W2ZmpuaYoUOHUkREBO3bt49OnjxJcXFxFBcXp/nekOeqJMq0cPXr148AFNr279+vOebmzZvUrl07cnNzI39/fxozZgzl5eXptLN//3566aWXSC6XU6VKlWjdunW2vRAbsHTpUoqIiCC5XE4NGzakY8eO2dskq7J///4i/zb69etHRMwlYtq0aRQUFEQuLi7UunVrunr1qk4bjx8/pl69epGnpycpFAoaMGCA5j9FZ6WoewJA528+KyuL3n33XfL19SV3d3fq1q0b3b9/X6cdQ56r4uD5uDgcjtNR6ta4OBxO6YcLF4fDcTq4cHE4HKeDCxeHw3E6uHBxOByngwsXh8NxOrhwcTgcp4MLF4fDcTq4cHE4HKeDCxeHw3E6uHBxOByn4/8Bvxkjmh25jnMAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAH5CAYAAAA/e9PUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLl0lEQVR4nO2dd3hT1RvHv0n33puyZMneWEBFQZAhCP5YAgKKCLIpq+xdZtkbBRQVRUQUEES2sim7tBRa6G6BznQ3eX9/HJI0tGmTNLM9n+fJ05ubc89575X79Yz3vK+AiAgcDodjQggNbQCHw+GoCxcuDodjcnDh4nA4JgcXLg6HY3Jw4eJwOCYHFy4Oh2NycOHicDgmh7mhDdAHEokECQkJcHBwgEAgMLQ5HA6nGESErKws+Pr6QihUrS9VJYQrISEB/v7+hjaDw+GUQWxsLKpVq6ZS2SohXA4ODgDYg3F0dDSwNRwOpziZmZnw9/eXvaeqUCWESzo8dHR05MLF4Rgp6kzj8Ml5DodjcnDh4nA4JgcXLg6HY3Jw4eJwOCYHFy4Oh2NycOHicDgmBxcuDodjcnDh4nA4JgcXLg6HY3Jw4eJwOCYHFy4Oh2NycOHicDgmBxcuDodjcnDh4nA4JgcXLg6HY3Jw4eJwOCYHFy4Oh2NyVIkIqKoyYcIE3Lt3D76+vvDz81P4+Pr6wtfXF5aWloY2k8Op8nDhKsa1a9dw7dq1Mst4eHiUELTXRc7V1ZVnE+JwdIiAiMjQRuiazMxMODk5ISMjo8yY81evXkVUVBTi4+Nln4SEBNnfgoICldqzsrJS2muTHnt4eCA7OxteXl5c5DhVGlXfz+Jw4VIRIsKLFy9kQlaauMXHx+PFixdq1du4cWPcuHEDVlZWGtnF4Zg6mryffKioIgKBAB4eHnB3d0fNmjVLFTDpJzY2Fs+fP4dEIim33vv376NRo0ZYs2YN+vTpw3tfHI4KcOEqRmFhIZKSksrsUcXHxyM7O1ul+szMzODt7V1iqOjr6wtHR0dcuHABP/zwA548eYK+ffuic+fOWLduHZo0aaLjO+VwTBs+VCxGy5YtcevWLZXqdHJyUjo5Lz3v5eUFMzOzMusRiUQIDg7G2rVrkZ+fD6FQiDFjxmDRokVwd3dX6z45HFOEz3EpQdUH06tXL5w8eRI+Pj5KxUh6bGdnp1Ubo6OjMX36dBw6dAgA4OzsjEWLFmHs2LGwsLDQalscjjHBhUsJqj4YkUgEW1tbCIWG88s9d+4cJk2ahLt37wIA3nzzTYSEhODDDz80mE0cji7RRLi453wx7O3tDSpaANCpUyeEhoZix44dcHd3x8OHD9G9e3f06tULjx49MqhtHI6xwIXLCDEzM8Po0aMRGRmJqVOnwtzcHMeOHUOjRo0QGBiI9PR0Q5vI4RgULlxGjLOzM9auXYv79++jZ8+eKCoqQkhICOrVq4edO3dCLBYb2kQOxyDwOS4T4sSJE5gyZQrCw8MBAL6+vujfvz+WLVumk/YePRJg/XoLrF1bABsb+XlbW1vub8bRGnxyXgmVRbgA5ms2depUbN26VSUHV80RAngE4A0AcwHIxVEkEml9VZVTdeGT85Wc6OhoDB48GJs3b9axaAGABMCcV8dBAHx13B6Hozrcc94EKM1J9auvvsLMmTPh5uams2EbEdC1qxiXL9th0KBn2L07HwAbKnI4hoQPFY0YiUSC77//HkFBQUhMTAQAvW8LunkTaNOGidjly8Bbb+mlWU4Vgg8VKxGXL1/GW2+9hREjRiAxMRFvvPEGfv/9d5w6dUqvexlbtQJGjGDHkyYBOh+hcjgqwIXLyIiLi8PQoUPRvn17XL9+Hfb29li5ciUePHhgsOgRy5cD9vbAtWvA/v16b57DKQGf4yrGqFGjcOvWrTI3Tru4uOhEPHJycrBmzRqsXLkSOTk5EAgEGDlyJJYtWwZvb2+tt6cO3t7AvHnAzJnArFlAv35MyDgcQ8HnuIrRtm1bXL9+vcy6bGxsFIStNJHz8fFROTAgEeGXX37BjBkzEBMTAwDo0KEDNmzYgFatWql+kzomPx9o1Ah48gSYPRvQkesYpwrC/biUoOqDefDgAZ4+fao0HtfLly9VbtPd3b3M6BJ+fn6IiorClClTcOnSJQCAv78/Vq9ejQEDBhilg+eRI8DHHwNWVsDDh0CtWoa2iFMZ4MKlBG2tKubl5SnEoFcmcPn5+WrVa2Njg1mzZmHatGlG7WpABHzwAXD6NPDJJ8CvvxraIk5lgIdu1jHW1taoXr06LC0tYWVlBUtLy1I/cXFxEIlEKtXp7e2Na9euwd/fX8fWVxyBAFi/HmjWDDh0CDh3DujUycBGcaokXLiKkZGRUWoM+eK9q+TkZJW91h0cHMoMRPjs2TP06dMHnp6eOr4z7dG4MTB2LLBlC3OPCA0FygnyyuFoHT5ULIaqoZvNzMxkUVLLSkPm4OCgzdswGl6+BOrWBdLSgO3bga++MrRFHFOGDxUriJ+fH6Kjo8t0h/Dz84Onp2e5seQrM25uwKJFwMSJwNy5wMCBgLOzoa3iVCV4j6sYRUVFMDfnWq4KhYVsruvhQ2DKFCAkxNAWcUwVvuWngnDRUh0LC2DdOna8aRPwKkQYh6MXuHBxNKZbN+Cjj4CiIiAw0NDWcKoSXLg4FWLtWtb7On6cfTgcfcCFi1Mh6tZlbhEAMHUqm/vicHSNzoUrPj4eQ4cOhZubG2xsbNCkSRPcuHFD9jsRYf78+fDx8YGNjQ26dOmCyMhIhTpSU1MxZMgQODo6wtnZGV988YXKDp4c3TN3LuDhAUREMP8uDkfX6FS40tLS0KFDB1hYWOCvv/5CWFgY1q5dCxcXF1mZVatWYePGjdi+fTuuXr0KOzs7dOvWDXl5ebIyQ4YMwYMHD3Dq1CkcPXoUFy5cwOjRo3VpOkcNnJxY6BsAWLgQeP7coOZwqgKkQ2bOnEkdO3ZU+rtEIiFvb29avXq17Fx6ejpZWVnRTz/9REREYWFhBICuX78uK/PXX3+RQCCg+Ph4lezIyMggAJSRkaHhnXDKo6iIqEULIoBozBhDW8MxJTR5P3Xa4/rjjz/QunVr9O/fH56enmjRogV27dol+z06OhpJSUno0qWL7JyTkxPatWuHy5cvA2CRQJ2dndG6dWtZmS5dukAoFOLq1aultpufn4/MzEyFD0e3mJkBGzaw4507gTt3DGsPp3KjU+GKiorCtm3bULduXZw8eRJjx47FxIkTsW/fPgBAUlISAMDLy0vhOi8vL9lvSUlJJfbymZubw9XVVVbmdYKDg+Hk5CT7mMIG5srA228DAwaw8M6TJ7NoEhyOLtCpcEkkErRs2RLLly9HixYtMHr0aHz55ZfYvn27LptFUFAQMjIyZJ/Y2FidtseRs2oVYG3NIkccPmxoaziVFZ0Kl4+PDxo2bKhw7s0335RF+pSGJE5OTlYok5ycLPvN29sbKSkpCr8XFRUhNTVVaUhjKysrODo6Knw4+qFGDWD6dHYcGAgUW2PhcLSGToWrQ4cOiIiIUDj36NEj1KhRAwBQq1YteHt74/Tp07LfMzMzcfXqVQQEBAAAAgICkJ6ejps3b8rKnDlzBhKJBO3atdOl+RwNmTkT8PMDnj6VbwvicLSKDhcL6Nq1a2Rubk7Lli2jyMhI+uGHH8jW1pb2798vK7NixQpydnamI0eO0N27d6lPnz5Uq1Ytys3NlZX58MMPqUWLFnT16lX6999/qW7dujR48GCV7eCrivpn/362wmhnR6Ti4i+niqLJ+6lT4SIi+vPPP6lx48ZkZWVFDRo0oJ07dyr8LpFIaN68eeTl5UVWVlbUuXNnioiIUCjz8uVLGjx4MNnb25OjoyONHDmSsrKyVLaBC5f+kUiIAgKYeH32maGt4RgzmryfPKwNR2dcvw60bcuOr16VH3M4xeFhbThGRZs2wPDh7HjSJO4ewdEevMdVjBEjRiA0NLTMcMweHh4QCrneq0piIlCvHiASsSzYQ4YY2iKOscHTkylB1QfTpk0bhQ3gpWFhYSGLN19WzHk7Oztt34bJEhzMksj6+rKN2DwLNqc4XLiUoOqDCQ8Px7Nnz5Rm+UlJSYGqj8vJyanMhLBubm7IyclBnTp1VM56bark5QENGwLR0SySxJIlhraIY0xw4VKCtibnCwsLkZiYWG5C2OzsbJXrrFOnDm7evFnpFw1++40lkbW2ZnHqa9Y0tEUcY4FPzusYCwsLeHl5wcfHB97e3rKPj4+PwjkbGxuV63z8+DHq1auHb7/9VuV8jaZI377Ae++x3teMGYa2hmPq8B5XMV6+fIm4uDilyWDj4+Px4sULldt1dXVVOlT09PTElStXsG7dOjx9+hQAy+u4YcMGdOzYsaK3bJTcvQu0aME2YZ8/D7zzjqEt4hgDfKioBFUfTKtWrRAaGlpufZaWlmVOzvv5+ckiupZHQUEBNm7ciCVLlsjC7wwaNAgrV65E9erVVb9JE2HsWJZEtnlz4MYNngWbw4VLKao+mD59+uDy5cvlJoR1c3ODQCDQqo3JycmYO3cuvvnmGxARbGxsMH36dMyYMaNSrVA+f87cI9LTWdyuL780tEUcQ8OFSwmqPhiJRGJwH61bt25h8uTJuHDhAgCgWrVqWLVqFQYNGqR1sTQU69ezJLIeHkBkJAv9zKm68Mn5CmJo0QKAFi1a4Ny5czh48CBq1KiBuLg4fPrpp+jYsWO5PmamwrhxQIMGrPfFXSM4mmD4N5VTAoFAgP/97394+PAhlixZAltbW1y6dAlt2rTByJEjkZiYaGgTK0TxLNgbNwKPHhnWHo7pwYXLiLGxscHcuXPx6NEjDBs2DACwd+9e1KtXDytWrFDIhGRqfPgh0KMHy8PIs2Bz1IXPcZkQV65cweTJk2VJQlxcXNCzZ09s27ZNJ/NfV68KsX69BbZvz1eYh7K1tdVKexERQOPGQFERcOIE0K1bhavkmCB8cl4JlUW4AEAsFmPq1KnYsmULxGKxDlsSAHgA4E0ACwAslv0iEom0ttI5dSobNr75JssMZGGhlWo5JgSfnK/k3L17Fx988AE2btyoY9ECAAITLACYCsCljLKaM38+4O7OtgFt26aTJjiVEN7jMgGeP3+OefPmYdeuXZBIJLC2tkZgYCAmTJgAex2GWpBIgPbtrXH/vhmmTSvAwoWFALQ3VJSycyfw1VeAszNzj3B311rVHBNAo/ezwnFXTQBTDd2cn59PISEh5OTkRGBdIOrfvz9FR0frzYbDh+Wx41NSdNNGURFRs2asna+/1k0bHOPF6DJZczTn+PHjaNq0KaZOnYqMjAy0aNEC58+fxy+//IKaegyt0KcP0KoVkJ3NcibqAjMz5pQKsO1A9+7pph1O5YELl5ERHh6OHj16oGfPnoiIiICHhwd27dqF69ev4x0D7EoWCIDFr+blt2wBlCQPrzCdOrGwNzwLNkcV+BxXMQYMGIDr16+XGbrZz89PrbA1qpKWloZFixZhy5YtKCoqgoWFBSZNmoS5c+fCycB7YoiA9u2BK1eAiROBDRt00050NFtdzM9nWbA//lg37XCMC+4OoQRVH0zr1q0VEs8qw8XFpdzQzZ6eniptISoqKsLu3bsxd+5cvHz5EgDw0UcfYe3atahbt67qN6lj/vkH+OADwNISePwY8PfXTTtz5wLLlgG1awNhYUAlDw7LARcupaj6YOLi4hAbG6s0sml8fDxycnJUatPc3FwhNv3rIufr64vbt29j8eLFCAsLAwA0bNgQ69atQ9euXbVy39qEiA3nLlxgK4Dbt+umHZGIRY9ITARWrGBZsTmVGy5cStCWOwQRISMjo9zQzeruJXRxccHixYsxZswYmJuba2yfrrlwAXj3XcDcnO0vrFVLN+18/z3w2WcsqcajR4CPj27a4RgH3AFVD4jFYqWfoqIitR1Da9SogcjISIwfP96oRQtgEUs/+IBt0dFlVIchQ1jyWJEImDNHd+1wTBfe4ypGTEwMYmJilPakEhISVN7YbGFhUWL+q/h3V1dXpKWloVWrViYVKPDqVeCtt5gLw8OHgK6m4a5cAQIC2PH160Dr1rpph2N4+FBRCdqenHdzcys3dLObm5tRxPfSBb16AceOsZ7R/v26a+ezz9iwsX174N9/mWsGp/LBhUsJqj6YgQMH4saNG2WGbvb19YW1tbUerTc+QkOZU6pAANy/z3Im6oL4eDZRn5MD/PgjMHiwbtrhGBYuXEow9b2Kxki/fszXqn9/4JdfdNfOsmXMRaJaNSA8HDChUTVHRfjkPEdvLFrEelwHD7JwNLpi6lSgRg0gLg5YvVp37XBMCy5cHI1o0gQYMIAdz5+vu3ZsbIA1a9jxypVATIzu2uKYDly4OBqzcCEgFAJ//MFW/nTFJ58w/7G8PO6QymFw4eJoTIMGbGUR0G2vSyBg0SMEAuDAAeDiRd21xTENuHBxKsSCBcyn68QJ4NIl3bXTvLk8eezkySyKBKfqwoWLUyHeeAMYOZIdz5un27aWLAEcHZk7xt69um2LY9xw4eJUmLlzWZKLM2eAc+d0146nJ+vhAUBQEJCZqbu2OMYNFy5OhalRQz6MmzdPt0EAx49nTqkpKczHi1M14cLF0QqzZ7PYWf/+C5w6pbt2LC2BkBB2vG4dS67BqXpw4eJoBT8/YOxYdqzrXlePHiwTdmEhMG2a7trhGC9cuDhaY9YswNYWuHYNOHpUd+0IBKzXZWbGfMh02cPjGCdcuDhaw8uLzUEBzK9Lly4Lb74pb2vKFBYjjFN14MLF0SrTp7PIpbdvs03YumTBAsDNDXjwANixQ7dtcYwLLlwcreLuznpAABMWNQPCqoWLizwS67x5wKtcI5wqABcujtaZOhVwdmY9IV2GvAGYG0aTJkBaGts7yakacOEqRhUITaYXnJ2BwEB2vHChbuefzM3lWbC3bWNiyan88ECCxejXrx+uXbtWbkJYHoywfLKyWBagly/Z9pzhw3XbnjSw4QcfACdP8jDPpgSPgKoEVR9Mq1atEBoaWm599vb25cac9/b2NvqsPbpm1SoWhqZ2bRa91MJCd21FRbGVxoIC5iLx0Ue6a4ujXYxauFasWIGgoCBMmjQJ61/17fPy8hAYGIgDBw4gPz8f3bp1w9atW+Hl5SW7LiYmBmPHjsXZs2dhb2+P4cOHIzg4WC1RUPXBJCUllZsQNlPFDXICgQBeXl5Ke23Ozs5ITk7GO++8AycnJ5XvxZTIzmailZIC7Nwp3xakK4KCWBLZOnVYLHyeBds0MFrhun79OgYMGABHR0e89957MuEaO3Ysjh07hr1798LJyQnjx4+HUCjEf//9B4DlMGzevDm8vb2xevVqJCYm4rPPPsOXX36J5cuXq9y+NmPOi0SichPCJiQkqJxfsVq1arhx44aCWFcm1q9nq4z+/mx7ji7FJCuL7WNMSmK9venTddcWR3sYZcx5kUiEIUOGYNeuXXBxcZGdz8jIwDfffIOQkBC8//77aNWqFfbs2YNLly7hypUrAIC///4bYWFh2L9/P5o3b47u3btjyZIl2LJlCwoKCnRtegkkEgmys7OVfkQiEbKzs9VKChsXF4e6detizZo1BrknXTNmDODrC8TGArt26bYtBwcgOJgdL1kCJCfrtj2O4dB5j2v48OFwdXXFunXr0KlTJzRv3hzr16/HmTNn0LlzZ6SlpcHZ2VlWvkaNGpg8eTKmTJmC+fPn448//sDt27dlv0dHR6N27doIDQ1FixYtSm0zPz8f+fn5su+ZmZnw9/cvV9Gjo6Px7NkzpT2pxMREFBYWqnTfNjY2ZU7w+/n5ISwsDLNnz5bdX926dbF27Vr06tULgko0u7x1KzBuHODjAzx5wuLI6wqJBGjXDrhxA/jiC2D3bt21xdEOmvS4dDp7fODAAYSGhuJ6KQHJk5KSYGlpqSBaAODl5YWkpCRZmdeHUNLv0jKlERwcjEWLFqltb//+/ctNCPv63JWyyXknJ6dyxadGjRro1q0b9u7di9mzZyMyMhK9e/fGBx98gHXr1qFRo0Zq34Mx8sUXbOj27BlzWZg6VXdtCYXAxo0siey33wJffw20bKm79jiGQWfCFRsbi0mTJuHUqVN6T6AaFBSEqcXeDmmPqzzq168PkUhUpjuEt7c3LLS4PCYUCvH555/jf//7H5YvX45169bh1KlTaNasGcaOHYtFixbB1dVVa+0ZAisr5tk+ahSbPB89mm0L0hUBAcCnn7IkspMmARcucPeISgfpiMOHDxMAMjMzk30AkEAgIDMzM/rnn38IAKWlpSlcV716dQoJCSEionnz5lGzZs0Ufo+KiiIAFBoaqrItGRkZBIAyMjIqels65/Hjx/Txxx8TAAJArq6utHnzZiosLDS0aRWioIDojTeIAKLgYN23FxtLZGvL2jtwQPftcTRHk/dTZ8KVmZlJ9+7dU/i0bt2ahg4dSvfu3aP09HSysLCgX3/9VXZNeHg4AaDLly8TEdHx48dJKBRScnKyrMyOHTvI0dGR8vLyVLbFlIRLyj///EONGzeWCVijRo3o1KlThjarQnz3HRMSV1ciffynWLSItVe9OlF2tu7b42iGUQlXabz77rs0adIk2fcxY8ZQ9erV6cyZM3Tjxg0KCAiggIAA2e9FRUXUuHFj6tq1K92+fZtOnDhBHh4eFBQUpFa7pihcRESFhYW0ZcsWcnNzkwlY7969KTIy0tCmaURREVGDBkxMFi3SfXvZ2Uy09NUeRzNMTrhyc3Pp66+/JhcXF7K1taW+fftSYmKiwjVPnz6l7t27k42NDbm7u1NgYKDawyZTFS4pqampNGnSJNlw28LCgqZNm0YJCQkkEol0+snKKnlOIpFofC8HDjAhcXQkevlSiw9JCT//zNqzsSGKidF9exz1MXrhMhSmLlxSwsLCqFu3brLel+4/bxNwngAnhfMikUjjexCLiZo0YWIye7YWH44SJBKit99m7X36qe7b46iPJu8njw5hQrz55ps4evQoJkyYADMzMx23ZgbgGwDvANCe56hQCEg9VTZsAJ4/11rVpVI8C/aPP+o2aS1Hf3DhMiEuXryItm3bYtOmTRCLxfDw8MAXX3wBkUikg08Gzp2rBnNzAtAfGzbkyX6ztbWt0H18/DHzrcrOZv5duqZlS+Dzz9nxpEk8C3alQIc9QKPB1IeKT58+pQEDBsiGak5OThQSEkL5+fk6b3v1ajbMsrYmuntXe/UeOyafe3ptWlMnJCUROTiwNvfs0X17HNXhc1xKMFXhEolENG/ePLK2tiYAJBQK6auvvqKUlBS92SAWE3Xvzl74Bg2IKjC9pYBEQvTWW6zeiRO1U2d5SEXY25soM1M/bXLKhwuXEkxNuMRiMX3//ffk5+cn62V16tSJbt++bRB7UlKIfHzYSz9ypPbqPXWK1WlpyRxGdU1+PlGdOqzNWbN03x5HNbhwKUHVB1NQUKAni5Rz9epVeuutt2SCVatWLTp06FCFXBC0wZkzRAIBe+n379dOnRIJ0TvvsDrHjNFOneXxxx9ysXz8WD9tcspGE+HiEVCL8dFHH+HChQvlhm728vLSenTThIQEBAUF4bvvvgMA2NnZYc6cOZgyZYre93oqY8ECYPFits8wNBSoW7fidV64ALz7LouO+ugRULNmxessCyKgWzeWRLZvX+C333TbHqd8jDaQoKFR9cG0bNkSt27dKrc+oVAIb29vpdEhpOccHR3LjRCRm5uLkJAQBAcHIzs7GwALBbR8+XL4+vqqd6M6pqgIeP994OJFtlJ36ZJ2AgN+8AHwzz9s5e+bbypeX3k8eAA0a8ZSp50+ze6JYzi4cClB1QcjjW5aVujmxMRElQMF2tnZKe21ubm54eLFi9i5cyfi4uIAAAEBAdiwYQPatGmjlfvWBXFxQPPmLAnGpEnyDDsV4coVFtHBzAx4+FA7PbnymDgR2LSJpTYLDWXZgjiGgQuXErQZulksFiMlJaXU0M3ST1xcnMqx6QEWvnnlypUYPHiwSQQQPHpUnoziyBGgd++K19mzJ3D8ODBkCLB/f8XrK4/UVCaQqaks0OHYsbpvk1M6XLiUoC3hysnJKbUXVvxcQkKCylFSARYD7ObNm7Czs9PYLkMwdSqwbh3g6grcvs1iyleEmzeB1q2Zh/v9+0DDhloxs0y2bAHGjwfc3Fg8/GKRxTl6hAuXElR9MPfu3UN0dLTSoWJ6errKbXp6epY5we/h4YHc3FxUq1ZNq4EJ9UV+PtChAxOcjh2Bs2crPtyS5kbs31/3GbABNmfXvDmb89LWsJejPly4lKDqg2nbtm2pYaaLY2trW2YceWmUVEtLS23fhtHx5AnQogXLrjN3LktQURHu3WOT5kSsF9esmVbMLJN//mGLA2ZmrP0339R9mxxFuHApQdUH8+WXX+L27dtK48j7+vqqFEu+KnHgADB4MBvinToFdO5csfoGDQJ+/hno0wf4/XetmFguH3/M5uq6dQP++ouHedY3XLiUoM3JeU5JRo1ibgze3qynVJEUkeHhQKNGbCP09ets3kvXPH7M5tQKC9nCQ8+eum+TI8co8ypyKj8bN7IXPykJGD68YtEXGjRgK4sAMH++duwrjzp1WNJagP2thOktKx1cuDgVxtaWDe+srYGTJ4E1aypW3/z5bM7pr7/0Fz9rzhzWU4yMBDZv1k+bHM3hwsXRCo0bs54XwETgVTJyjahTBxgxgh3Pm1dh01TC0RFYvpwdL1oEpKTop12OZnDh4miNUaOAAQOYm8GgQYAa3iMlmDeP7V88cwY4d05bFpbNiBFAq1ZAZqb+BJOjGVy4OFpDIAB27gRq12ZZq0eNYq4NmlCjBrseYCKijyUkoVDuy7VrF1to4BgnXLg4WsXJiblIWFgAhw4B27drXtecOWwT97//MlcLfdCxI+stEjGn1Mq/5m6acOHiaJ02bYAVK9jxlCnAnTua1ePnJ99DqK9eFwCsXAnY2LCQO4cO6adNjnpw4eLohMmTgR492NaggQNZYgxNmDWLrVpeuwYcO6ZVE5VSvTowYwY7njYNyM3VT7sc1eHCxdEJQiGwbx/g6wtERLDNzJrg5SW/dv58/fW6ZswAqlVjc3UhIfppk6M6XLg4OsPdneUyFAqBvXs1D1czfTqLunrrFtuErQ9sbeWp05YvB+Lj9dMuRzW4cHF0yrvvyl0Lxoxh4ZnVxd2dDT0B1utSMY5jhRk0iEXAyMlhQ1aO8cCFi6Nz5s1jApadzcQgP1/9OqZOZSuWDx7oJ+QNIM+CDbDeYkWcajnahQsXR+eYmQE//MB6TrdusaGfuri4AIGB7HjhQubkqg9atwZGjmTHPAu28cCFi6MX/PzYPBfAYr1rErJm0iQWcfXRIyaE+mL5cjbHdu2aftvlKIcLF0dv9OzJhnwAy+gTE6Pe9Y6OwMyZ7HjxYhaGRh94e7NAiQBrXyTST7sc5XDhKkZeXh6qQHgygxIczBxU09KATz9Vf8g3bhzg6QlERcl7cPpg8mTgjTeAxER2DxzDwgMJFqNXr144c+ZMmRFQpX+rQmhmXREVxUI+Z2YCs2cDy5apd/369cwj39+fhaHRRm5HVThyhEVLtbJiadRq1dJPu5UdHgFVCao+mBYtWuC2ijtrPTw8lMacl553c3PjYZ6V8PPPbIVRIAD+/hvo0kX1a/PyWO8nIYHFzho3Tnd2FoeIxac/fRr45BPg11/1025lhwuXElR9MLm5uUrTjhU/LlAxRKaVlZWCsBU/trS0RHR0NAYOHIhq1app61ZNitGjWRQGLy+2n1GdkM9btzLB8vFhSTtsbHRnZ3Hu32dJPCQSltmoUyf9tFuZ4cKlBG3GnCcivHjxQqnAxcXFITY2FmlpaSrV5+XlhUuXLqF27doVsssUyckB2rZlvlldu7KIp0IVZ13z84F69dgEf0iIPPSyPhg3jgln06YsC7aZmf7arozwmPM6JjMzE+Hh4bhz506pn9u3b+P+/fsqixYAJCcno2HDhpg9ezaysrJ0aL3xIQ35bGPDhovSLTaqYGUl98gPDtbvSt/ixcyv7O5dYPdu/bXLkcN7XMW4ffs2oqKilA4VRSq+HWZmZvD29i4zIayfnx+io6MxadIknHsV4tPHxwfBwcEYNmwYhKp2PSoBu3cDX37Jei4XLwIBAapdV1jIkmtERTHx0ue2nE2bgIkTmVNtZCTg7Ky/tisbfKioBG0mhHVycio3IaynpyfMVBw/EBGOHDmCwMBAREVFAQDatGmDDRs2IEDVN9jEIWKuEQcOsJAyt2+zHo0qfPcdyyzk6gpERzNfL31QWMjmuh4+ZMNUHkFCc7hwKUHVBzNmzBjcvXu3VDGSnrOzs9OJjfn5+diwYQOWLFki69kNGTIEK1asqBKT95mZQMuWbKK9b18WwE+VBVmxmCXqCA9nSS70ldIMYBmNPvwQMDdnk/b16+uv7cqERnPQVAXIyMggAJSRkWFoU8olMTGRPv/8cxIIBASAbG1tafHixZSTk2No03TO9etEFhZEANGWLapfd+AAu8bJiSg1VWfmlUqvXqztHj30225lQpP3kwuXkXLjxg3q0KEDASAAVL16dTpw4ABJJBJDm6ZTQkKYEFhZEd26pdo1YjFRkybsujlzdGpeCSIi5GJ7/Lh+264scOFSgikKFxGRRCKhAwcOkL+/v0zAOnbsSDdv3jS0aTpDIpH3YurVI8rKUu26335j19jbEz1/rlsbX2faNNZ2/fpEBQX6bbsyoMn7yee4TICcnBysWbMGK1asQG5uLgQCAUaOHIk5c+bA09NTZ9750n8Zr1dva2ur0x0BL14AzZuzqKOffcZCQJcHEQtBExrKwuao41pRUTIygLp1gefPgXXr5EEPOarB57iUYKo9rteJiYmhTz/9VNb70v1nKAEnCWikcF4kEun8Xs+fJxIKWU9m3z7Vrjl6lJW3sSFKTNStfa+za5d8ni0lRb9tmzp8qKiEyiJcRER5eXn09ddfk1Ao1LFoCQl4TKwvU0TAFgLc9CZcRESLFjExsLMjCg8vv7xEQtSuHbtm4kTd21ecoiKi5s1Z22PG6LdtU4cLlxIqg3BJJBL6/fff6Y033pCJS82aNWnGjBkkEol08rl3L5v69Cl8JV5ETk4SWrEij/Ly9LNAUFRE9N57rO1mzYhyc8u/5u+/WXlLS6LYWJ2bqMD586xtoZDozh39tm3KcOFSgqkL171796hz584ywfL29qa9e/eSWCzWS/tnz8p7EwBR3bpEf/zBeji6Jj6eyN2dtTt+fPnlJRKit982XM9nwADW9nvv6ef5VAa4cCnBVIXrxYsXCsNCKysrCgoKoszMTL3bUlREtHs3kZeXXMC6dCG6e1f3bR8/Lm/zt9/KLy/t+VhYEEVH69w8BZ4+JbK2Zu0fOqTftk0VoxOu5cuXU+vWrcne3p48PDyoT58+FP7aZEVubi59/fXX5OrqSnZ2dtSvXz9KSkpSKPPs2TPq0aMH2djYkIeHB02bNo0KCwtVtsPUhKugoIA2bNhALi4usl5Wv3796MmTJ4Y2jTIyiGbNYkMx6bBozBjdT0hLXQ6cnZk4lEeXLqz855/r1q7SmDePtV2rlmrD26qO0QlXt27daM+ePXT//n26ffs29ejRg6pXr64wuTtmzBjy9/en06dP040bN+itt96i9u3by34vKiqixo0bU5cuXejWrVt0/Phxcnd3p6CgIJXtUPXBpKWlUYGBHXFOnDhBb775pkywmjZtSmfOnDGoTaURFUX0v//Je0KOjkRr1hDl5+umvfx8orZtWVsBAeX7S12+zMqamRFFRurGJmWIRER+fqz95cv127YpYnTC9TopKSkEgM6fP09EROnp6WRhYUEHDx6UlXn48CEBoMuXLxMR0fHjx0koFCr0wrZt20aOjo6Ur+JbouqD6dGjBwkEAvL09KQWLVpQr1696KuvvqLFixfTN998Q3/99RfdvXuXXr58qXUP9oiICOrVq5dMsNzc3Gj79u1UVFSk1Xa0zfnzRC1ayAWsTh2i33/XzfxOVBQTSIBIlf9v9ejByg4dqn1bymP/fvmKaHy8/ts3JYxeuCIjIwkA3bt3j4iITp8+TQAoLS1NoVz16tUpJCSEiIjmzZtHzZo1U/g9KiqKAFBoaGip7eTl5VFGRobsExsbq9KDadWqlcruAtbW1vTGG2/Q22+/TYMGDaLAwEAKCQmhn3/+mf7991+KioqivLy8cp9JWloaTZ06lSwsLAgAmZub0+TJkylV35vuKkBREdG33xJ5e8sF7P33dbOy9ssvrH6BgK0glsWNG/KyYWHat6UsJBLWMwSIhg/Xb9umhibCZV6eg6q2kEgkmDx5Mjp06IDGjRsDAJKSkmBpaQnn14IZeXl5ISkpSVbG67WYvtLv0jKvExwcjEWLFqlt47Vr1/Dy5csyQzfHx8fj5cuXyMvLw5MnT/DkyZMy63R3dy8RYcLHxwfW1ta4cOECDh8+LAs82KNHD6xduxYNGjRQ23ZDYmbGkqb+73/AihXA2rXAmTMsIcaoUcCSJSwzjzbo3x/46itgxw5g6FAW8tnbu/SyrVqx5Ba//86SyP78s3ZsUAWBANiwgUV43bcP+PprdszREjoUUgXGjBlDNWrUoNhizjU//PADWVpalijbpk0bmjFjBhERffnll9S1a1eF37OzswkAHVeyq1XTHpeq5ObmUlRUFF28eJEOHDhAa9eupalTp9LAgQMpICCAqlWrJutBqfKpX78+HTt2TCu2GQPR0XK3AOn816pVRCp0QFUiJ4eocWP5ymZZXiF37sjtuH1bO+2rw/DhrO233uLuEcow2qHiuHHjqFq1ahQVFaVwXldDxdfRxqpiYWEhxcbG0pUrV+jQoUO0adMmmjVrFg0bNozef/99ql+/Pjk4OKjtod68eXODLwjoigsXiFq1kgvHG28QHT6snRf4wQO2tUeVCXCpiPbpU/F21SU+ns1zAWzei1MSoxMuiURC48aNI19fX3r06FGJ36WT87/++qvsXHh4eKmT88nJybIyO3bsIEdHR5XmkIhUfzAXL16kPXv20NKlS2ns2LHUu3dvatWqFfn4+Ki1xcbBwYEaNGhAnTt3ps8++4yCgoJo8+bN9Ntvv9HVq1cpLi6OcnNz6bm+wxgYALGYaM8exfmv997TTu/nm2/kK4f//qu8XFiYfN/j9esVb1ddli9nbfv5sRVHjiJGJ1xjx44lJycnOnfuHCUmJso+xYPijRkzhqpXr05nzpyhGzduUEBAAAUEBMh+l7pDdO3alW7fvk0nTpwgDw8PnbhDtGvXrkxBMjMzo2rVqlG7du2oX79+NGHCBAoODqbvvvuOTp8+TeHh4QZxDjUFsrJYrCwrK/mE+ZdfEr3msqcWEgnRp5+y+vz9iV6+VF522DBWrnt3zdvTlNxc5tMFMB8vjiJGJ1zKBGDPnj2yMlIHVBcXF7K1taW+fftS4mtb+58+fUrdu3cnGxsbcnd3p8DAQJ04oE6ZMoW6du1KI0aMoDlz5tDWrVvpyJEjdOPGDUpISDB61wRT4OlTooED5b0vBweilSs1n//KzGQuGADRxx8rH4ZGRrKeGUB06ZLm9mvKoUOsbWtr/XvzGztGJ1zGgql5zlcF/v2XqHVruYDVrs1ebk3mv27ckEch3bRJebkvvmBlOnfW3G5NkUjkG8b799d/+8YMFy4lcOEyTsRiFmvLx0cuYO++S6TimosC69fLo0Iou/7pU7nAnTtXIdM14s4d+VzbKx9sDmn2flad5H0co0MoZBFOHz1iyV2trYHz55n/1ahRgBI3vVKZOBHo3RsoKAAGDgRKy61bowarF2Dt6Tv2b9OmwOjR7HjSJJahiKMhOhRSo4H3uEyDZ8+IBg2S977s7YmCg1XfqPziBVG1auzaYcNKLxMXJ18gKM/zXhekpLCN4gCLmsrhPS6OiVO9OvDTT8B//wFt2gAiERAUBLz5JvDrr+X3kNzcgB9/ZD25778vPVa9nx8wZgw7njtX/70uDw9gwQJ2PHs2i1fP0QAdCqnRwHtcpodYTPT99/IoCwDRO+8QqZLgaMkSVt7Wlujhw5K/JybKnVf//FP7tpdHQQFRgwas/cBA/bdvbPAeF6fSIBSyvYgRESw7tbU1cOECy+TzxRdAYqLya4OCgPffB3Jy2HxXXp7i797ewPjx7Hj+fP33uiwsgJAQdrxxI5vj46gHFy6OUWNnByxaxATs00+ZyHz7LVCvHhAcXFKUALbpe/9+Niy7excIDCxZZsYMwN4euHULOHxY9/fxOt27Az16AIWFpdvHKRsuXByToHp14IcfgEuXgHbt2PzX7NlAgwbAwYMle00+PsB337HjrVuBQ4cUf3d3l+c/XLAAkEh0fgslCAkBzM2Bo0eBkyf1374pw4WLY1IEBDDx2r+fTbQ/ewYMGAC88w5w86Zi2Q8/ZD0rgA0vnz5V/H3qVMDJCbh/H/jlF72Yr0D9+sCECex4yhTW++KoBhcujskhFAJDhrDh48KFgI0N8O+/bCVy5EggIUFedulS1kPLyAAGD1YUBxcX+TBt4UKgqEifd8GYP5/1/h4+BLZt03/7JosOFwuMBr6qWLmJjWXhmaWrj3Z2REuXsrhdRGxvoJMT+23mTMVrMzKIXF3Vy5itbbZvlycCqQIBQ0rAVxU5VZJq1Zjf1pUrwFtvAdnZzEerQQMW9bRGDeCbb1jZlSsV55McHeXDyUWLDDNcGzWKedWnp8t9vDhlw4WLU2lo147Nf/3wAxOzmBhg0CDg7bfZ5P7YsazcsGGK7hTjx7PQ0lFRwN69+rfbzIyFeQaA7duBe/f0b4OpwYWLU6kQCJjbREQE60HZ2jJP/LZtgcxM5oX//DkTL+leQTs7YNYsdrxkCZCfr3+7O3UCPvmErW5Onqx/3zJTgwsXp1Jia8smviMimEgBrCcWHc0cQE+fZok9pIwZA/j6ArGxwO7dhrF59WrAyoolGjlyxDA2mApcuIrx4sUL5ObmGtoMjhapVo35c129ylwp8vLk81jz5wMXL7JjGxtgzhx2vGwZYIh/BrVqyVc5AwMN0/MzFQRElb9TmpmZCScnJ2RkZMDR0VFpuR49euCvv/6Ci4uLLKVY8Y80vZifnx88PDwgFHLdNyWI2GT99OlAXBw7Z2nJHEA/+IAJRb16bG4sJIT5VukbkYjZkJjIeoQzZ+rfBn2j6vtZHC5cxWjbti2uX7+uUp0WFhbw8fFRELPSRM7Ozk5bt8HRErm5wPLlrGcl/dc/dCgTir/+Ar78Uj5Zb4j/fN9/z+KU2dsDkZHK80ZWFrhwKUHVB0NESE9PLzchbEpKClR9bE5OTiXEzNvbG2KxGI8fP8aYMWNkCXI5+uXkSbZfULrdx9YWmDaNCUd0tOF6PBIJG9Zeu8Ycar/9Vv826BMuXErQ5MGURWFhIZKSkkoIXFxcHGJiYhAbG4ukpCTkqzBJ4erqirNnz6Jp06YVtoujPps2seipAoG89+XiAqSlAa6uTMC08E9Gba5cYeIFANevs6gYlRUuXErQhnAVFBQo9Lxe74VJz2kyuS8UCjF69GgsXrwYHh4eGtnH0QwioG9ftorn7c02PUvnvwA2bNy50zC2DRvG9mS2b8+2NAkEhrFD13DhUoKqD+b8+fOIjIwsVZCeP3+ucnuurq7lTu67u7sjJiYGM2bMwMGDBwGwYeXChQsxbtw4WFhYVPi+OaqRmgo0b85cIQYNAho1YnscpR3m//2PTdb7++vXrvh4NlGfk8Miuw4erN/29QUXLiWo+mDeeustXL16VenvVlZWJSbjS/tubW2tln0XLlzApEmTcPv2bQBA/fr1sW7dOnTv3l2tejia899/wLvvMqfUPXuALl2AJk3YNhyAuUvMnMlWJG1t9WfXsmVs+1K1aswnTZ9t6wsuXEpQ9cFMnz4dDx8+LHWl0NfXF25ubhDoqL8uFovx7bffYs6cObLeXffu3RESEoIGDRropE2OIsuXM18uW1vgxg0WseGTT9iWHKmXfbVqbNJ+8GAWpULX5OYyb/9nz9g+xoULdd+mvtFoKkdrW7yNGFOKDpGenk7Tpk0jCwsLAkDm5uY0efJkSk1NNbRplR6xmKhLFxapoUkTouxsohYt2PfevYlq1JBHoGjXjujyZf3YdfCgPAv2s2f6aVOf8ISwSjAl4ZLy6NEj+uijjwgAASA3Nzfatm0bFRUVGdq0Sk1iIpGnJxOKsWOJjh5lxzY2LDzO8uUsbZpUwD79lCgmRrc2SSQsUQjA0rdVNrhwKcEUhUvKyZMnqWHDhjIBa9KkCZ0+fdrQZlVqTp6UC9PBg6x3BRBNmsR+T0gg+vxzIoFALmrz5xOJRLqz6dYteXsXL+quHUPAhUsJpixcREQFBQW0ceNGcnFxkQlY37596d69e5Senk4ikUivH4lEYuhHonNmzWIi4eTEAgwCLJFsbKy8zM2bRG+/LRc5X1+i775jQ05dMHo0a6dlS921YQi4cCnB1IVLyosXL2j8+PFkZmYmEzDdfhYScIKAJQT0IcCPAJBIl10LI6GggCgggAlF27ZEHTvKh4/FkUiIfv2VqGZNuYC1aUP033/atyk5mcjRkbXxzTfar99QcOFSQmURLiKizMxM+uKLL0ggEOhBuC7KXkb5J4G6dy+khQuJjh1jL1Nl5elTFk5ZOrcEEFlYsLmu18nNJQoOVpz/GjRI+5Ppa9eyuj09WdjpyoAm7yd3hzARJBIJ9u3bh9mzZyMpKQkA0LRpU3z66acYL81uqmXu3BHi+nUhQkPZ5+FDIcTiku4g/v4sUUXr1uzTqhXbLlMZ+O035hIBMCfV27eBzz+Xh4J+naQk5nf17bdMvqyt2f7HmTPZpumKUlDA/MsePWIhp1eurHidhoa7QyjB1Htc//77L7Vq1UrWE6pTpw798ccfep9rys5mQ6ANG4iGDWNp5KUTxq9/3niDaOBAotWric6dI8rM1KupWmXcOHkyC4DIzIwoMrLsa0JD5SuBAJGPD9HevdqZm5KudFpYlG+HKcCHikowVeF69uwZDRo0SCZYjo6OtHr1asrLyzO0aTIyMpgwrVnDhOqNN0oXMoGACd2wYUz4/vuPCaEpkJtL1KwZuw83N/Z36NDyr5NIiA4dIqpVS/4cWrcm+vffitkjkRB9+CGrr0+fitVlDHDhUoKpCVd2djYtWLCAbGxsCAAJBAIaNWoUJSUlGdo0lXj5kujvv5nPU79+RP7+pYuZmRlR06bMtWDbNqLr14mMSJMVCA9nac+KC3FYmGrX5uYSrVxJ5OAgv37gQDaHpilhYez5AexZmzJcuJSg6oOJjY2llJQUEhtorVkikdCPP/5I/v7+sl7W22+/TaGhoQaxR5skJbHJ/IULiXr1IvLyKl3MLCyIWrUiGjOGaPduotu3iQoLDW09Q+oWIf0MGCD/raiI6OxZoh9/ZH9L8xNOSiIaNUo+vLayIpozhygrSzN7Jk1i9TRqZDzPSBP45LwSVJ386969O06cOAFLS0v4+PiUGd3Bz88PNjY2WrPxxo0bmDRpEi5dugQAqF69OlavXo3+/fvrbH+kISFi0Q9u3GCf69fZ39TUkmWtrYEWLdjEv3QRoF49todQ3wwfzmLYS7lzB3j8GJg0STEcTrVqLOVYv34l67h9m4WFPneOfff2BoKDWdRTdfY/pqUBdesCL18CmzcD48ZpckeGh2+yVoKqD+a9997DOem/JhVwcXEpN3Szp6dnmbHpExMTMXv2bOx9ldDP1tYWQUFBCAwM1KowmgJEwNOnikJ28yZLK/Y69vZs9VK6ktm6NfDGG7qPWSUSsXYfPWLf27Zltr7+Fknt+PXX0sWLiMUAmzYNePKEnWvVCli3juWBVJVt24Cvv2aruJGRprmay4VLCeo8mIKCAiQmJioNGCj9npOTo1Lb5ubmst6br68vfH194erqCgsLC/z33384d+4c8vLyAABDhw5FcHAwqlWrVuF7rixIJOyFLN4zu3WLxah6HWdnuYhJe2b+/toXs9u3mWCVl/VaIGA9r+ho5b3D/Hxg40aWzzEri53r35+5OdSqVb4tRUVAy5YsieyECawuU4MLlxK07cdFRMjIyCghZjExMYiKikJcXBySkpKQLg3mVA5t2rTBhg0bECCN1cspk6IiIDxcsWd2+zbzcXodDw9FH7PWrQEfn4rbsGULy4DNuAJgHYBNALYDyAXgJ/v88osf+vb1grm5udL6kpNZurTdu5lYW1kBU6cCQUGAgwMrIxazdGqJiewe3n6bCeKZM0Dnzuz4zh0WCNGU4MKlhIoKFxEhNTW1zAQa8fHxakVJFQqFkEgkePvtt3Hu3Dme6qyCFBQA9+8r9szu32ci9zp+foo9s1atAHd39doTiyWwtDwLiaTzqzOZABwBHAHwcYnyAoEQrq5eqFWr7HnT6GhHTJ0qwNmz7DpvbxYnzMGBzYspm0fr1w84fJilWTt50rTCPHPhUoKqD+bYsWOIiIgoNXSzKokvAJa2rLx5L2mU1JycHNhrw52aUyq5ucDdu/Je2Y0bQFhYyfkoAKhZs6T3v5NT2fX/+SfQuzcBkKpECoDvATwFEF/skwRArJLNdnZ28PHxhbX1ADx9OgEikderX+IAHATQD0ANAPIEH927s+Hi6tVMwP/4A/joI5WaMwq4cClB1QfTvn17XL58Wenvbm5u5a40urm58d6TESMSsTmy4j2zyMjSy9arp9gza9FCMc9iWJiqwzIxmKjJxeyTTxJgaxuD6OhoxMXFISUlpZR5U0sA4wHMByBV0RMAGgEoGQBfKmR16rDeppWVKrYZHi5cSlD1wSxYsACPHj0qtcfk4+Ojdix5jmmQng6Ehir2zJ4+LVlOKGRhlNu0YT20LVuA0mcHCEAq5EJlDsAMwO8AogDEQyhMgESSoqKFHgAWA/jyVT35AI4B+ACAQ6lXrF7NVixNAS5cSqgMm6w5+uX5c+aKUXwBICGhtJIEIBmAF9iQMQlAEwAvXv0uBHAPQEMAswEEK1xtaWmpNMeBn58fQkP9MGWKLwAbAJEAsgC0BNAWbPgYDGDYq3bkODiwnqSXF4weTd5P5cscHE4VxsMD+PBD9pGSkAD8/Tdb7UtLA9gQ0AyAd7ErvQEkArgJ4D7YhH1DANlgvaOdkK42bt/uh9Gjy07AIs2yzagLJpTnwHp0iQCeACgAEPvqd0ZWFkv8sXu3+vduCvAeF4ejIikpQKdOLPtPzZqAr+8EsI0OrQE0BVAfrGek2pLe6dPA+++XXUYsZm3Fx7++qJAP4ACAoWDiGQpgLYCVAJgfoEAAXL0KZGeXdKEwJvhQUQlcuDgVJTUVeO89tkrp58f8qapXVyYqquHkVNL7v2bNkq4Mv/3GktICytoRg/XikgHYApiJ5s1n4/Ztc1haKvq3lbUVqSIo8zFThUodj2vz5s1Uo0YNsrKyorZt29LVq1dVvtbUokNwjIv0dLbxG2CbwyMi5L8dOsQ2TSuLS6bsY2lZ+nk3N6Ju3djm699/J4qLk4fHqVatrDpvEtBRtjnfxaUtAYWlhhcSCFh92qI026pVU72NShsd4sCBA2RpaUnffvstPXjwgL788ktydnamZBXjBnPh4mhKVhZR+/bsZXR3J7p/v2SZ0l5cZULm78/KFxSwyBe7dhF99RUTRguL0q/x9ib66COiBQvYp3h4HMWPhIAD5OBQ/ZWAzXt1Pq9UO7SR6U4q3BURyEobHaJdu3Zo06YNNm/eDICFMfb398eECRMwa9ascq/nQ0WOJuTkAD17sigOzs7A2bMsfHNpFB8qubsDQ4bIXSVWrGDDyvKGUPn5bCha3MfswYPXJ+iVY2bGFg46d87Fhx+uAbABbJGgBoDDABoD8IR0Te74ceCdd1SrW9k9v/mmstVWhp8f8PSpLczNlc/7VcqhYn5+PpmZmdHhw4cVzn/22WfUu3fvUq/Jy8ujjIwM2Sc2Npb3uDhqkZdH1LUr6z04OBCpMTNBO3aw62xs5D21+HjN7JCGyw4JUcykXdqndm2WoOPTT6Xn4gjY+Or4rGwYqbvPSgKuEeCkcP748bKzQmnS4zJ6F+8XL15ALBbD6zWHFC8vL1nSiNcJDg6Gk5OT7OPvX9LLmMNRRmEhMGAAc32wtWU9k7ZtVbs2Px9YupQdL17MemgvXgBDh7IeirrY2gIBASz0zbNngIUF6/0BQN++zM7atdn3qCjgwAHgxx+lV/sB+ArALQB71W9cLVYCmAGgDYBuCr8oeU0rhmb/H9Af8fHxBIAuXbqkcH769OnUtm3bUq/hPS6OphQWEvXvL49Q+s8/6l2/ZQu71teXKCeHTeRLQz4vWqSZTUuXyueNhgxhxzVqEOXny8u8fMkycC9bxuLaA+LXemS/E/AuAccIEBEgot27K5YY+Phx0au68ou1kyerX/o5c6bspC6VcnJek6Hi6/DJeY4qFBWxJBh4FUL6+HH1rs/NJfLzY9dv3iw///337JxQSHT+vHp17twpF59Vq+TJOr79tvTyYrGYgoK+I8CXAC8CehCwh4CnJYaWZ8+qZ8vrFBYq5pEsbYJelUWASilcRERt27al8ePHy76LxWLy8/Oj4OBgla7nwsUpD7GYxYMHWBKK1/4/qRIbN8pdAaRJP6Sx6KWpyvz8iJ4/V62+w4eZ2AHMPWLJEnZct27pMeYvX75M7dq1Kza/VJuA316tNmp3VVEiIZoxo2zR0uWqokkI14EDB8jKyor27t1LYWFhNHr0aHJ2dlY56w0XLk5ZSCRE48fLe0UHDqhfR04Oc1sAiLZvZ+eU+V61asXaLIvz59lQFWCC+vIlkZMT+/7jj4pl4+LiaOjQoTLBsre3pyFDggnIVSoqFfHjel20Ro0qeZ9Stw9VqLTCRUS0adMmql69OllaWlLbtm3pypUrKl/LhYujDImEaPp0+Qu3d6/q1z548IDi4+OpqKiIQkIU556U+TdJPyNGKK/3zh25SPXpw3pXc+aw740by5PK5uTk0JIlS8jW1lYmWiNGjKCEhAQiKl041RGU0nhdtKRDYlWyHCmjUgtXReDCxVHG/Pnyl1DaU1IVX19fAkBCoQMJhSkEELVosZnGjRtPjo7LCdhHwD8EPCQgq4R4XbpU8mWPimJZrwGijh1ZTy4lRT7Bf/gwS2P3yy+/UI0aNWSC1b59e7p27VoJGysiKK+jTLQqChcuJXDh4pRGcLD8JVy/Xr1rxWIxVa9enYRCIQHTXtXz+NWEeCcCxhOwg4D/CMh49XtPAuoTcP7VkO0FAdsIOETAFfL0jCcfH4msZ5WaytoKDJQPMW/eDKV33nlHJljVqlWjH3/8kSTljT0riERCNHOm9kWLiAuXUlR9ME+fPpV1/TmVm3Xr5C/hihXqXy8SEV27RrRxYxFZWTHXA1vbAqVDQ+YyMOyV4DgREP3q/I+vztkRc94kEghiqEmTbtS7d28aMmQ6mZuzemvX/lomWDY2NrRgwQISicp27tQGuhQtokq85aeiqJsQVigUwtvbu9wwzXz7kGmyfTswdiw7XrAAWLhQednCQhaQ7/59lgLs3j12HBXFXuPS8PFhW38UEYFFQ0149VcCYAhYSJoFADoBeA/AcwAdAbxK3IjNAMYB+BcAS7g4aNAgrFy5EtWrV1fjrjWDiGUaWrmSfd+0qXh2I+3AAwlWkKKiIln2nYSEBCQkJOD69etKy9vb25cZvdLPzw/e3t6wsLDQ411wymLvXrlozZjBhAtgL2hMjFygpH/Dw0tPewawYINpaSyT0KhR7NOoESAU5uONNxKQlCQN3SwVq+KfBAAPwDzO54G9iiIAPSEXrRpg4ZoBoXABiASYPn06VkpVRMfoQ7Q0hfe4XkMsFiM5ObncVGSZpaVXLgWBQAAvLy+FhLAuLi4oLCzEkydPMHXqVLytTupijsYcOMA2P0skLB5Vp05MoKQfZf9J7eyAxo2BJk3kfxs2lOCrr0Lxxx+t4eSUiICAL5GYGIf4+Hi8ePGi9IpKIADLCFQdQBFYXsZ0AL6YNs0PkZEBOHLEDZ07E44ezYelpaXeErEQAbNnsw3igG5FiwcSVIIuokOIRKISgvbs2TNERUUhNjZWlhBWUs7WfgcHBxw7doyLlw7IyWGZeO7dYzkH//yz7PLm5kCDBiVFqkYNliijOOnpgItLOgBnAAMB/KLwu5WVFZycfJGe7oeCAmlyWF84OPghK0v63R9A6b3x774DRo5k+xsvXWL7FfWFPkUL4ENFnSGRSPD8+fNye2FpLBC5SpiZmUEsFiMrKwvvvPMOBgwYgFWrVqFGjRo6vJPKSVFR6fNQT54on4eqWVNRnBo3BurXBywtVWtz3ToAcIaLSzwmTGgIf/9dClMFbm4slvzrkUHbtwfeeEMxsWtxBAIWpfSvv5ho9expWNHauNF4hofF4T2uYvzxxx8IDw8vIUiJiYkoKi0lcinY2NiUmgy2+NyXj48PLC0t8fz5c8ybNw+7du2CRCKBtbU1pk+fjpkzZ8KueAI/DgD2UsXFKYrTvXssBryyeSgnJzYEJGJhktevB5o1k6e114TUVCZ8WVnAwYPysMqqEhQkF4biSEM2h4SwuFpELG1aixaa26oOpYnWhAm6b5cPFZWgjYSwxeeqylppdHJyKjNrS2ncuXMHkydPxrlz5wAAfn5+WLlyJT799FO166ospKYqipN0Hiojo/Tytras1yTtQTVpwpK/fvopGzL26cNERhvrJHPmAMuXA02bsuSy6kw7/fcf0KULkJfHbC6eA9bfnwnrDz/I48wfPFhxe1WBiN1X8KvsafoSLYALl1JUfTCLFy/G48ePS10p9Pb2hrm57kbWRITffvsN06ZNw9NX2UjfeustbNiwAW1VDQZlguTksB7T6yKlLKqmmRkb0knFSSpUNWsqCsjVq0wgRCKWYuz337WT2fnFC9ZWdjabN/v4Y9WvvX+fRUBNTwd69QJ+/RW4fFkxwcTt2yxphkDAyjdsWHGby8OQogVU0gio2sCUPOdzc3Np+fLlZGdnJ3M2/Oyzzyhe0xCaRkJhIdHDh0QHD7JtNv36sSgHZe3nq1GDqFcvolmziH74ge3hk0ZdKIvQUCJnZ1bHe++xbTPaQrrlpUWL8jdKF+fpUxajC2Ax7LOzSy/XowcrM3SoduwtD4mEKChI/sw3bNBPu8XhnvNKMCXhkhIfH0/Dhw+XiZednR0tW7aMcnNzDW1amUgkRLGxLJbVqlVEw4axl1wa6aC0j5sbUadORBMmsLDHly4Rafqf6t49ecyqDh1YsgttkZxMZGvL6v7zT9Wve/6cqH59dl3DhizSQ2n89588rE5kpHZsLgtjEC0iLlxKMUXhknL16lUKCAiQCVjNmjXp119/1fneNFVITSW6cIFF/Rwzhm0KlvZ0SvvY2hK1aUM0ciSLof7330SJier1XMoiIoKlDwNYFND0dO3UK0W6Z7BNG9VtFomI2rWTR2aIjVVe9r335GFidI2xiBYR3/KjFFPP8kNE+OmnnzBjxgzEx8cDAN59910sX74cdevWha2trU7bz80FIiKECAsT4sEDAcLDLXD/vgCvTCmBmRlQr17JeahatdSbyFaHqCiWsSY+nq0anjkDuLpqr/7ERBbbPS+PuSp8+GH51xQWAr17AydOMFv+/ZdlxSmNM2eAzp2ZO0ZkJMsKpCuIgLlz2QIDwBLETpyou/bKg89xKcGUe1zFEYlENH/+fLK2tpb1wHT7WUdAOAFFSntR1asT9ezJNuHu389yBaoyD6VNYmKIataUD8VSUrTfxqRJrP6AANV6W2KxPAy0jQ3R5cvKy0okrF6ABTTUJRIJ0ezZmkfF0AV8qKiEyiJcRETJyck0ePBgPQnXoWIi9YJYiquNtGFDHv33n/aHYpqQkEBUpw6zsU4d9l3bxMXJ5+hOnVLtGumw0syM6NixssseOyYXOF3YL8UYRYtIs/eTe86bCAUFBdi0aRMWL14s2yfZqVMnDBkyBIMHD9ZJm1euCJGdnYdGjSTw8rKGQNAGQBvY2lrCGNzLUlLY8OrxY+aicOYMcyvQNsHBLO3Y22+z9spjzRpg7Vp2/O23QI8eystKh20A81DXhf3F25EOD9evByZN0k1bekGHQmo0mHKPSyKR0J9//kl169aV9YRatmxJFy9eNLRpBuXlS6KmTVnPwc+PRQ7VBc+eEVlasnZUyYqzb5+8R7N6dfnlDx1iZe3tVU+ioS4SiTz0szH1tKTwoaISTFW4wsLCqFu3bjLB8vLyom+++YbE0qDjVZT0dGnuQLaKGBGhu7a++kruD1YeR4+yoSFANG1a+eWLiogaNWLl582ruK2lYeyiRcSFSymmJlwvX76kiRMnkpmZGQEgCwsLmjFjhsnYr0uyspgDJ8BS29+/r7u2oqOJzM1ZWxculF320iU2RwUw3zVV/t/yww+svLMzUVqaNixW5HXRWrdO+21oAy5cSlD1wTx8+JDCw8MpMzNTT5YpUlhYSFu2bCFXV1dZL6tPnz4UqQ9vRBMgJ0fu6+TsTHTrlm7b++IL1tYHH5Rd7sEDIhcXVrZ7d6KCgvLrLiiQLyosW6Yde4tjKqJFxIVLKao+mK5du8oEw8HBgRo0aECdO3emzz77jIKCgmjTpk3022+/0dWrVykuLo4KS8vKqSH//PMPNW7cWNZ+o0aN6JSqS1hVgLw8om7d2Evo4EB09apu23v8WD7su3RJebmYGHkKsHbtmMOpKuzeLe81atO7n4iJ1ty5piFaRHxVscJYWVnBwcEBWVlZyMrKQnh4OMLDw5WWFwqFpUaMeD1qhKOjo9IoD48fP8a0adNw5MgRAICrqyuWLFmC0aNH63RTtylRWAgMGACcPMkiKhw/Duh63/mSJSweVvfuyuNhpaYC3bqxUDsNGgDHjrFoqeWRnw8sXsyOg4IAe3vt2U0EzJ8PLF3Kvq9bB0yerL36jQXuOV8KWVlZSgMGSr8nJiZCLBar1L6dnZ1MzLy9veHo6AihUIgbN27g9u3bKCoqgpmZGb7++mssXLgQrtp0+TZxiopYaJqDB1l0h2PHVHNJqAiPHjEPd4mERZkoTSRzclj0icuXAT8/FqVUVW/3LVvkrg9PngA2Ntqx+3XRCgkBpkzRTt26hHvOK0EXk/NFRUWUkJBA169fpyNHjtDmzZtp8uTJ9NFHH1GLFi3Ix8eHrKysVHL07Nq1Kz148EBrtlUWxGI20Q0QWViwjdv6YMgQ1mavXqX/XlDAdgtI59rUWSDIziby9mbXbtmiHXuJSg4PQ0K0V7eu4UNFHZGTk1NmyGZpRqDCwkKV6jMzM4O5uTkKCgrQs2dP/PHHH1U2YKAyiIAxY4Dvv2d7H3/5hQ3bdM3Dh8CPP7LjRYtKt+vLL1nPz9oaOHqUZfZRlW3bgKQkFsd+1Cjt2EzEshWZWk+rInDhKsaPP/6IsLCwEqKUnp6u0vUCgQCenp6lBiIsPu/l4uICACgsLISlqkHOqxBEzKt71y62KfuHH9QL2FcRFi1i7X/8MdCyZcnfZ80C9u2Ti2mHDqrXnZUlD4u8YIHq8e3LQipaS5aw71VBtAAuXAps3boV//33X6m/2draljsJ7+Pjo1YORS5aJSFi4rBpE/v+7bfAwIH6afv+fSZGQOlJYkNCgFWr2PGuXcBHH6lX/8aNLIJq3brAsGEVMhVASdFau7ZqiBbAhUuBjz/+GM2aNSu1x1TWyiBHeyxaJBeH7duB4cP12zYRi/XerJnibz/8AAQGsuMVK1jqMHVISwNWr5a3U9EF49JEa+rUitVpUuhwzs1oMDXP+apKcLDhtqbcvs3aFQhYFNXi/PWX3IN+8mTNAh9KnUEbN1bNq74sJBIW/lr6rNaurVh9hoY7oCqBC5fxs26d/EUMDtZ/+x9/zNoeNEjx/JUr8nDNn36qmeikpBDZ2bE6fvutYnZWNtEi4sKlFC5cxs327fIXccEC/bd/4wZrWyhkCT2kPHwoj1/ftStRfr5m9Utjc7VsWbEw1a+L1po1mtdlTHDhUgIXLuNl7175izhjhvbiz6tDr16s/eKZdeLiWHRXgMWY13RbTnw8kbU1q6eifmiVUbSIuHAphQuXcXLgAOvlAEQTJxpGtK5elUcqffSInUtNZXNRAFG9ehULBT1uHKunffuK3d+CBZVTtIi4cCmFC5fx8dtv8k3MX35pGNEiIvrwQ2bDiBHse04Oy1YEEPn4sNA2mvL0KfP4VzUIoTIqs2gRceFSChcu4+LYMfkLrWrsKl1QPI/hkycsaW3v3uyckxNLQFsRpGFxOnfWvI7ioqVKRFVThAuXErhwGQ///CNPPNG/PxMLQ9GlC7Nj1CjW4/v8c/bdyqr8wIHl8eiRamFxyqIqiBYRFy6lcOEyDi5ckLsW9OmjWsA9XXH+vHzzdnS0PPuNUEj0++8Vr1+6UbtnT82uryqiRcSFSylcuAzP1assACDA5pX0nXvxdTp1YraMGcOyOEtFYteuitd97x5zZAWIbt5U//qqJFpEXLiUwoXLsISGsvAvAAu9nJNjWHvOnGG2WFoSbd4sF5mlS7VTf79+rL5PPlH/2uKitWqVduwxdrhwKYELl+G4f1/uxNmhg/bDFKuLRCJfNezdW75IMH68dlY2pc6sAoH6iTwWLqx6okXEhUspXLgMQ0QESx8GsHRixpD5+u+/5XNb0vm2AQO0t7LZowerc8gQ9a6rqqJFxIVLKVy49M+TJyxRK0DUrBlL4GpoJBKit95iNklTiXXurL35tuLuFeokZqrKokWk2fsp1E8MCk5VIjaWxYWPjwcaNgROnQKMIYz+yZPAlSuAQADk5gKtWgGHD7NY9tpg3jz2d+RIoE4d1a5ZtEge+2vlSmD6dO3YUtnhwsXRKomJwPvvA0+fspf3n38ADw9DW8X6M7Nny4/r1GHZghwctFP/mTPsY2kpF7DyWLxYUbRmzNCOLVUBHkiwGA8ePAAA+Pr6wtnZmQcOVJPnz1nmm8ePgZo12Yvs42NoqxiHDwO3brFjT0/W+/L01E7dRHKxGj1atWw/ixezQIAAFy1N4MJVjKlTp+Lvv/8GANjY2CgN0Sz97uvry8MvvyI1FfjgAyAsjKXrOnMG8Pc3tFWMoiLg88/ZsaUlE63atbVX/4kTLD2ZtbW8V1cWXLQqDheuYtjZ2cHV1RWpqanIzc3F48eP8fjx4zKv8fDwKFPc/Pz84ObmVql7bxkZwIcfAnfuAF5eTLRq1TK0VQwioGdPZiPAYso3b67d+ufOZcfSXIllUVy0VqzgoqUxulopiI6Ops8//5xq1qxJ1tbWVLt2bZo/fz7lvxaN7c6dO9SxY0eysrKiatWq0cqVK0vU9csvv1D9+vXJysqKGjduTMeOHVPLFnVXLXJycujx48d0/vx5+vHHH2nNmjU0ZcoUGjBgAHXo0IFq1qxJlpaWBJSfMxEAWVlZUa1atahjx47Ut29fGj58OH366acUEBBAR44cUetejI2sLBayBWD+Wq+HPTY0xXMNauIQWh6HDrG67e3LD3+zeLHclhUrtG+LqWJU7hB//fUXjRgxgk6ePElPnjyhI0eOkKenJwUGBsrKZGRkkJeXFw0ZMoTu379PP/30E9nY2NCOHTtkZf777z8yMzOjVatWUVhYGM2dO5csLCzonhpviC7cISQSCT1//pxu375Nx44do+3bt9PUqVPp448/ppYtW5Kfnx/Z2NiUK2o2Njb0+++/k8RQcV0qQE4O84QHmGd8aKihLVJk82a5UFhba98lo6iIqFEjVv/cuWWX5aKlHKMSrtJYtWoV1apVS/Z969at5OLiotALmzlzJtWvX1/2fcCAAdTztZ2q7dq1o6+++krldisqXBkZGRQWFkanTp2ivXv30rJly2jcuHH08ccfU5s2bcjX15eEQqHKPTBLS0uytrYmgUAgO9elSxe1xNjQ5OURdevGXkQHB7YX0Zj45Rf5Vh7oKCT0Dz/IRTstTXk5LlplY/SZrDMyMuBazKHn8uXLeOeddxQmuLt164aVK1ciLS0NLi4uuHz5Mqa+lnepW7du+P3335W2k5+fj/z8fNn3zMxMlez7/vvv8eDBgxIJYUUikUrXm5mZwcfHp9T5ruLnHF6twWdlZSE4OBhr167FP//8g2bNmmHs2LFYtGgR3NzcVGrTEBQWslyHJ08CtrbMraBtW0NbJefMGWDoUCYVAODkBEyerN02iorkc1XTpgHOzqWXW7IEmD+fHQcHAzNnateOKosOhVSByMhIcnR0pJ07d8rOffDBBzR69GiFcg8ePCAAFBYWRkREFhYW9OOPPyqU2bJlC3l6eipta8GCBaX2dMpT9A4dOijtJTk7O1PDhg3pgw8+oBEjRtCcOXNo69at9Pvvv9P169cpISGBioqK1H0sRET05MkT6tevn6wtFxcX2rBhAxUYMu6LEgoL2RYZvIpb9c8/hrZIkZs35VEo7O3Z3yVLtN/ON9+wut3dle+/XLLEsJmLTAW9DBVnzpxZ7lDoYfFUKUQUFxdHb7zxBn3xxRcK53UlXHl5eZSRkSH7xMbGqvRgQkJCaNKkSbRy5Urav38/nT17lh49ekQikajc56INzpw5Q02bNpU9xzfffJNOnDihl7ZVQSxmEUule/0qmvxB20RGEnl6MvvefJP9dXUl0vZOr7w8eSINZenBuGipjl6EKyUlhR4+fFjmp/icVXx8PNWtW5eGDRtG4td2sg4bNoz69OmjcO7MmTMEgFJTU4mIyN/fn9atW6dQZv78+dS0aVOVbTalvYpFRUW0fft2cnd3lwlYr169KCIiwqB2SSQsNrx0L15F8wNqm8REotq15Xsja9XSnWhs2SKPSV9aiB4uWuphdJPzcXFxVLduXRo0aFCpwyjp5HzxIVFQUFCJyflevXopXBcQEKDXyXlDkJaWRlOmTCFzc3MCQBYWFhQYGEjpBgixIJEQTZggjxB64IDeTSiTjAyi5s2ZfbVrsyzY5Q3jNCUnhwkWwATsdbhoqY9RCVdcXBzVqVOHOnfuTHFxcZSYmCj7SElPTycvLy8aNmwY3b9/nw4cOEC2trYl3CHMzc1pzZo19PDhQ1qwYIFRuEPoi4cPH1KPHj1kvS8PDw/auXOnxvNp6iKRsHyH0pdx7169NKsyublylwxPT6KwMHlvSxfRQ9esYXXXqFEyqsTSpfLntHy59tuurBiVcO3Zs0fpHFhxijug+vn50YpS1ot/+eUXqlevHllaWlKjRo107oBqjBw/fpzq168ve4bNmzeno0ePUlxcHIlEIp19goLyZS/jhg15JBKJjMbnrKiI6H//k7tk3LzJQi9LRUzbU5OZmawXB7DJ+eJw0dIcoxIuY6IyCBcRUUFBAa1fv56cnZ1V9hmr2GeG7GUEJsrO62uxoiwkEqKxY+UhmE+fJsrPl0+ah4Rov02pONWpo5idiItWxeDCpYTKIlxEbCvVRx99pAfRMifg31cvpOJKsjEI16JF8hDJP//Mzm3bxs55e2s/rn1qKsu1CDDHUylctCoOFy4lVAbhysrKotmzZ5OVlRUBIKFQSJ988gkdPHhQZ8PEpCQR7diRV+K8oYeK27fLxWLzZnYuL4+oWjV2buNG7bcp3fPYqBEbohIRLVsmt2PZMu23WVXgwqUEUxYusVhM+/btIx8fH1mP5/3336e7d+8a2jSDcOgQW9kEiObNk5+X7kv082MT9tokJUXuzCp1A+GipT24cCnBVIXr8uXL1LZtW5lg1a5dmw4fPmzwHo+hOHuWzWcBRKNHy7Py5OQQ+fqy81u3ar/dadNY3S1bsja5aGkXLlxKMDXhiouLo6FDh8oEy97enlasWEF5hs6iakBu3SJydGRi0bevfLhGJPfbql5d+4lmExJYZAmA7RTgoqV9uHApQdUHc/36dbp06RI9ffq0RNwwfZCTk0NLliwhW1tbAkACgYBGjhyp4PtWFXnyhE24A0TvvKM4FMzOlqdAK7YNVmuMH8/qbt9eUbS0lTyWYwLRIYydoKAg/PPPP7Lvnp6eZYZv9vPzg4uLS4WjmxIRfv31V0yfPh3Pnj0DALRv3x4bNmxA69atK1S3qZOSAnTrBiQlAU2bAkeOsBDJUrZtA5KTWcTVESO02/azZ8COHey4YUNgzhx2vHSp/JhjGLhwFcPLyws1atRAQkICCgsLkZKSgpSUFNySZlkoBWtra6Uhm4t/t1KSA+vWrVuYNGkSLl68CACoVq0aVq9ejYEDB1bqcM+qkJUF9OghT77x11+K4WNEIhazHWDJKiwstNv+kiUshE/t2sDu3ewcFy3jQEAkjVpUecnMzISTkxMyMjLg6OhYbnmJRIIXL14oxOQqHqNLeu7ly5cq2+Du7g4fHx+4u7vD0dERAoEA9+7dw5MnTwCw5BwzZszAjBkzYGtrq/G9Vhby81ms+NOnAXd34L//gHr1FMusXAnMmgW88QYQHg6Ya/F/w5GRwJtvAmKx/BwXLd2g7vsJ8B5XqQiFQnh6esLT0xMtWrRQWi4vL08mao8fP0Z4eDiioqIQGxuLpKQkpKWlQSQSyYTwxYsXpdYzePBgrFy5Ev7GkhbHwEgkwPDhTLTs7FhP63XRyswEVq1ixwsWaFe0AJaotbhoLVnCRcuY4MJVDkVFRUhKSiq395WVlaVSfQKBAPb29hAKhcjOzsbAgQOxf/9+Hd+F6UAETJoE/PwzG/odPgyUNs23aRNLiVa/PjB4sHZtePAA+OEH+fclS+SZfDjGAReuYmzbtg337t1TEKXk5GSoOpp2dHRUOokvPe/l5QVzc3MQW9GFUMiTiRdn+XJg82Z2vG8fy9X4OhkZwJo17FgXva1Bg+THXLSMEy5cxfjxxx/x77//ljhvbm4OHx+fMuPI+/n5wd7eXuW2BAJBlZ98f53du+UisWGD8p7U+vVAejpb6RswQLs2TJgA3L8vP+aiZZxw4SrGkCFD0KlTpxIC5eHhATMzM0ObV6k5cgT46it2HBQETJxYerm0NCAkhB0vXAho8z/LypXy3l7TpsDGjdqrm6NduHAVY8yYMYY2oUpy8SIbnkkkwOefA8uWKS8bEsIm5ps0AT75RHs2SFcoAUAgAH79VXt1c7QPn2DhGJR794CPPgLy8tjfHTuYcJTGy5dsmAiw3pa2pgeLixbAxLNuXe3UzdENXLg4BuPpU+YVn5EBdOgAHDhQ9kT7mjXM6bR5c+Djj7Vjw+uiZWHBnFk5xg0XLo5BeP6ciVZiItCoEfDnnyy5bFnlN21ix4sWaae3tWqVXLSkLnSjRwM1alS8bo5u4cLF0TsiEfOKf/QIqF6dZcR2cSn7mtWrgexsoFUrNqSsKKtWybNKDx0KxMayPZCzZ1e8bo7u4cLF0SsFBWxS/fp1wM2NiZafX9nXJCfLV/sWL1Y+B6YqxUVr4UIgLIwdjxsH+PpWrG6OfuDCxdEbEgkwciTw999sWHjsGNCgQfnXrVwJ5OYC7doB3btXzIbiorVoEXN7CA0F7O3l5znGD3eH4OgFIiAwEPjxRzYBf+gQE6LySEhgoWuAive2Vq9W7GnNmQM0a8a+T54MeHhoXjdHv/AeF0cvrFold2XYswf48EPVrluxgrlKdOhQ+vYfVVm9Gpgxgx0vXMi2Cv3yC9uX6OzMRJVjQugkpKGRYWqhmysb334rjxy6dq3q18XGymPMnz6tefurVsnbX7iQnSssJKpbl0czNQZ46GYlcOEyHH/8QWRmxgRixgz1rpUmfH33XXliDHUpTbSIWCZqgGWmzszUrG6OduDCpQQuXIbhv//kiSaGD1dPfJ4+JbKwYNeeO6dZ+6tXy0VrwQL5+bw8ecbrNWs0q5ujPTR5P/kcF0cnPHgA9OrF5qd69gR27VJvYn3ZMhY2uXNn4N131W9/zRpg+nR2vGABm9eS8s03QEwM4OMDjB2rft0cw8OFi6N1YmKYV3xaGvDWW2wSXJ148FFRbAIfYC4L6lKWaOXmshDMAFtV5FGyTRMuXByt8vIlE634eBaz/ehR9cVh6VKgqIjV06GDeteWJVoAc61ITGQe+6NGqVc3x3jgwsXRGtnZbFgYHg5Uq8a84t3c1KsjMhL47jt2rG5va+3askVLJAKCg+W/K0m8xDEBuANqMa5evYqCggJZIEHr4gn8OGVSWAj07w9cvcr2HZ48Kd+4rA5LlrAkFT17quagKmXtWmDaNHZcmmgBLDDgixdAnTrAZ5+pbxvHeODCVYy5c+cqJIR1dXUtM1eiNDpqVY8bL5EAX3zBsvHY2LCtPA0bql9PeLg8SYU6vS1VRCs9nTmhSuvWdpx6jn7h//mK4efnhzp16iA+Ph65ublITU1Famoq7t27p/QaCwsL+Pj4KE2SIT1nZ2enxzvRLzNnAt9/z8IoHzwIBARoVs/ixUwEe/dmUSBUQRXRAljk1PR0FkJn4EDN7OMYDzwhbCkQEdLT08tNSaZOBiAnJyf4+vrCzc0NDg4OKCoqQkxMDGbNmoUR2s4dr0eKT4bv3cvyIWpCWBjQuDHzugoNBcpIZykjJES+VWf+fOW9tBcvgFq12BzXoUNAv36a2cjRDTwhrJYQCARwcXGBi4sLGjdurLRcYWEhkpKSEBcXh4iICERERODJkyeIjY1FcnIyUlNTIRKJIBaLkZGRgYyMjBJ1fPUqQ8Rnn31mckPO776Ti9aqVZqLFsBEh4iJiiaipaynBbDoEiIRq7dvX81t5BgPvMdVDvn5+UhMTCy1x1X8ODc3V6X6zMzM4ODgAIFAgMzMTIhfpUtu3bo11q9fjw7qrv8biOPH2ZBOLAamTmU9L00jN9y7x8LLAMDduywRRlmUJlrK2k5MBGrXZo6wx44BPXpoZiNHd/AeVwXZvHkz7t69qyBQL168UPl6Nzc3pZP50nPu7u6ynlV+fj42bdqExYsX48aNG+jYsSMGDx6MlStXwl+TJTk9ceUKW0EUi1n00NWrKxZuRtpbGjBAu6IFsASzeXls3q2isbw4RoRONh8ZGaruhXr77bcJQImPlZUV1a5dmzp27EgDBw6kqVOn0tq1a+nAgQN04cIFevLkCeXm5mpsX1JSEo0aNYoEAgEBIBsbG1q4cCFlZ2drXKeuCAsjcnVl+/w+/JCooKBi9YWGsroEAqIHD8ouGxIi33s4b175ex+L73esSHQJjm7hm6yVoOqD2bVrFy1atIh27dpFx48fpzt37tCLFy9IomloAjUJDQ1VEE9/f3/66aef9NZ+ecTEEPn7MyFo25YoK6vidfbuzer79NOyy6krWkREo0ax8u+/X3E7ObqDC5cSTCk6hEQioZ9//pmqV68uE7AOHTrQ9evXDWrXy5dEDRsyIahfn+j584rXef06q08oJAoPV15OE9GKjJSH0/nvv4rbytEdXLiUYErCJSUnJ4eWLFlCtra2BIAEAgGNHDmSEhMT9W5LdjZR+/ZMBHx92RBMG/Tower87DPlZTQRLSKioUPZNT16aMdWju7gwqUEUxQuKXFxcTR06FBZ78ve3p5WrFhBeXl5emm/oICoVy8mAs7ORPfuaafey5dZnWZmrHdUGsVFa+5c1UXrwQM2ZwYQ3bihHXs5uoMLlxJMWbikXL58mdq2bSsTsNq1a9O+ffvo8ePHJBKJdPLJyhLR0KEFBBBZW0vo779zSCQSaWXOrWtXJiyff1767+vWaSZaRET/+x+7rl+/CpvJ0QNcuJRQGYSLiEgsFtN3331H3t7epa5+av8T/Eo8Cgn4SHZeJBJV6D4uXmTCYm5OFBVV8veKiFbxVUpt9Q45uoVHQK3kCIVCNGvWDPXq1dNDa+YAWr46Hg3gT63VvGAB+/v552wrTnHWrwemTGHHc+eqn5Js3jz2d/BgtoWIUznhnvMmwosXLzBv3jzs3LkTEokEVlZWGDFiBD755BO0b99eJ20WFAB//22GXr3ECudtbW0h0NDj9Nw54L33WETUx49ZQD8pxUVrzhwW4kadZi5fBtq3Z5u9w8IAveg7p8Jo9H7qrP9nRJjyULGgoIDWr19Pzs7OsqFa//79KTo62tCmqY1EQvTOO2wo9/XXir+tXy8fHs6Zo1lWn86dy5434xgnfI5LCaYqXMePH6cGDRrIBKtZs2Z0TtOUN0bAP/8wYbGyYjkTpWhDtM6cYddbWGjPXYOjH4xWuPLy8qhZs2YEgG7duqXw2507d6hjx45kZWVF1apVo5UrV5a4/pdffqH69euTlZUVNW7cmI4dO6ZW+6YmXOHh4dSjRw+ZYHl4eNDOnTupqKjI0KZpjEQi9wWbOFF+XhuiJZEQdejA6hg3Tns2c/SD0QrXxIkTqXv37iWEKyMjg7y8vGjIkCF0//59+umnn8jGxoZ27NghK/Pff/+RmZkZrVq1isLCwmju3LlkYWFB99RYMlL1wZw9e5aOHj1KoaGhlJycTGKxWO17rQhpaWk0ZcoUMjc3JwBkYWFBgYGBlJ6erlc7dMHJk/TKrYIoIYGdKy5as2drnvT1r7/kdcfHa89mjn4wSuGSDncePHhQQri2bt1KLi4ulJ+fLzs3c+ZMql+/vuz7gAEDqGfPngp1tmvXjr766iulbebl5VFGRobsExsbq9KDef/99xXcASwsLKhGjRrUvn176t+/P02aNIlWrVpFP/zwA507d44iIyO1shG6qKiItm/fTu7u7rK2e/XqRRERERWu2xiQSIjatWPiMmUKO6ct0ZJIiFq1YvUEBmrPZo7+MDrhSkpKIj8/P7p+/TpFR0eXEK5hw4ZRnz59FK45c+YMAaDU1FQiIvL396d169YplJk/fz41bdpUabsLFiwo1S+pvAczduxYatGiBXl6eqrl7+Ts7EyNGjWirl270siRI2nOnDm0detWOnLkCN24cYMSExOV9t7OnDlDTZs2ldX15ptv0okTJ8q009Q4dowJi40NUVIS0YYN2hEtIqLDh1k9dnZEKSlaM5mjRzQRLp3F4yIijBgxAmPGjEHr1q3x9OnTEmWSkpJQ6zVHHi8vL9lvLi4uSEpKkp0rXiYpKUlp20FBQZg6darse2ZmpkrxrbZu3So7LigokAUQVBa6OT4+Hjk5OUhPT0d6ejoePHigtG4zMzN4eXnBzc0Njo6OICI8fvwYKSkpAABnZ2csXrwYY8aMgYU62VONHCIWNwsAxo8Hfv4ZmDSJfZ89m+VQ1DSWl1gs99uaPBnw8KiwuRwTQW3hmjVrFlauXFlmmYcPH+Lvv/9GVlYWgoKCNDZOU6ysrGBVwaR5lpaWqFGjBmrUqKG0DBEhIyMDT58+xb179xRCNyclJSEtLQ1ZWVkoLCyEWCxGQkICEhISStQzbtw4LFq0CG7qJiE0Af78E7h5E7CzA5yd5aIVFFQx0QJYhuz79wEnJ3lwQU7VQG3hCgwMLDe5Q+3atXHmzBlcvny5hIC0bt0aQ4YMwb59++Dt7Y3k5GSF36Xfvb29ZX9LKyP9XZcQEVJTU8vsccXHx8t6Tapgb28PBwcHmeh9/vnn2Lx5sw7vwnBIJPLeVkAAcyoFmGgtW1Yx0SoqknvgT5vGcjlyqg5qC5eHhwc8VOiTb9y4EUuXLpV9T0hIQLdu3fDzzz+j3atMnwEBAZgzZw4KCwtlw6NTp06hfv36cHn1LzEgIACnT5/G5MmTZXWdOnUKAZrmwCqDVatW4datWwrilJeXp9K1lpaWCuGaSwvd7OPjA1t189GbML//Dty5wzJGS9NVakO0AJYOLTKSZcqW9uI4VQjdTLeVpLTJ+fT0dPLy8qJhw4bR/fv36cCBA2Rra1vCHcLc3JzWrFlDDx8+pAULFujMHeKdd94pdfLd3d2dmjVrRt27d6dRo0bRggULaOfOnXTs2DG6desWpaSkGE2UUmNBLCZq3Fg+CQ8QBQVVbCJeSn4+UY0arM7VqyteH8ewGN2qYnFKEy4iRQdUPz8/WrFiRYlrf/nlF6pXrx5ZWlpSo0aNdOaAun//fgoJCaEDBw7QxYsXKSoqSm9xryobP/+sKFqzZmlHtIiItm5ldfr4sCCHHNNGE+Him6w5WkcsBvz8AOnU5KxZLNtORYeHAJCbC9SpAyQkAJs3A+PGVbxOjmHR5P3kYW04WueLL+SiNWWK9kQLALZvZ6JVvTowapR26uSYHly4OFplwwZg3z52/M47wNq12hMtkQgIDmbH8+ezSX9O1YQLF0drbN7MHEEBwNqa+XBpS7QAYONG4PlzNlT87DPt1csxPbhwcbTC5s3AhAny7wsXAtqcTkxPZxmzpXVXos0FHA3gwsWpMFu2KIqWuzvb3qNNQkKYeDVsCAwapN26OaYHFy5OhdiyRS5S0h5WUBDb4qMtXrwA1q1jx4sXs9DMnKoNFy6OxhQXrQ8/BDIzAW9vYMwY7bazahWbmG/RAujbV7t1c0wTLlwcjSguWoGBgDQwxqxZgDZ3NSUmsvkzgG3KFvJ/sRxosFeRwykuWjNmADVqALGxgK8vMHq0dtsKDmZOpwEBQPfu2q2bY7pw4eKoxeuitXAhULcu+z57NmBjo722YmKAHTvYcUVD4HAqF7zjzVGZ10VrxQpg924gPh6oVk37nuxLl7Lcju+9B7z/vnbr5pg2XLg4KrF1q1y0pk9nopWXx7bzACzrtDY92R8/Br79lh0vWaK9ejmVAy5cnHLZulW+mXn6dGDlSjZs274dSEpic1wjR2q3zUWL2Gbt7t2BDh20WzfH9OHCxSkTZaKVnc16XQCL+25pqb02w8KAH35gx7y3xSkNLlwcpSgTLelvKSlA7dra3ze4YAGL4tW3L9CqlXbr5lQO+KpiMU6fPg2RSCQLu+zl5QWzKuqmvW2bXLSmTVMUraws9h1gURq0uW/w1i3g119ZW4sXa69eTuWCC1cxli9fjjNnzsi+m5mZwdvbu8w48r6+vpUuOOG2bcDXX7PjadOY53pxV4TNm4GXL5kbxJAh2m1bmlxj8GCgcWPt1s2pPHDhKkajRo0gEokQHx+PpKQkiMViWeKMsrC3ty8hZq8LnLe3N8zNjf9xlydamZnyKA0LFgDavKUrV4CjR9leRGkGHw6nNIz/TdIjGzdulB2LxWIkJyeXmxA2IyMDIpEIERERiIiIKLN+T09PWULYoqIiJCQkYNq0aQrJaw1JeaIFsECBaWlAgwbaj9IgTe46fDhQr5526+ZULnjM+QqSnZ2NJ0+e4O7duyUSwqampkIkEqGgoEDp9WZmZli5ciUmTJgAS20uzanJ9u3A2LHsODCQ9apeF630dKBmTSAjAzhwABg4UHvtnzvHHE0tLIBHj1g7nKqBJu8n73GVgUQiQUpKSrkJYdPS0lSu08nJCY6OjiAiPH/+HPn5+Zg2bRp27NiBkJAQ9OzZEwI9721RRbQAFlomIwNo1Ajo31977RMxB1YA+PJLLlqc8uE9rmIsX74coaGhMkFKTExEUVGRSm3Y2tqqNM9VvFclFouxb98+BAUFybJhd+vWDSEhIWjYsGHFblpFVBWt1FQmKFlZbNXvk0+0Z8OJE8zR1NoaePKEbdbmVB00GhHpIk+asaFq3rZ33323RDJYgUBAPj4+1Lp1a+rduzeNHTuWli5dSnv27KG///6b7t+/T2lpaRVKCJuRkUEzZswgCwsLAkBmZmY0ceJEevnypcZ1qsK2bfK8h4GBZec9nDOHlWvWjCV71RYSCVGrVqzuqVO1Vy/HdDDqhLCGRNUHc+DAAdq0aRMdOnSIrly5QrGxsVRYWKgnK4kiIyOpT58+MtF0dXWlLVu26MSG7dvlojV1atmi9fw5kb09K/v779q14/BhVq+dHVFysnbr5pgGXLiUoMmDMSSnTp2iRo0ayQSscePGdOrUKa3Vr45oERHNnMnKtmypvWzURKzn1rgxq3v2bO3VyzEtuHApwdSEi4iosLCQNm/eTK6urjIB69OnD0VGRlaoXnVFKzmZyNaWlf/zzwo1XYKffmL1OjkRpaZqt26O6cCFSwmmKFxSXr58SRMmTCAzMzMCQJaWljRjxgyN7kVd0SJic18AUZs22u1tFRYS1avH6l6yRHv1ckwPTd5PvqpoIoSFhWHKlCn4+++/AQBeXl6YMWMGunbtilq1apV7/bffmmPiRBYwa/z4QgQHF5QbUTQpSYDGjW2QlyfA4cN5+OADMQC2glpRl429e1koHDc3IDoacHCoUHUcE4avKirBlHtcxZFIJPTnn39SnTp1Sqx+lv35UtbTAtaqcd26V9f8p3BeJBJV6D7y84lq1mT2rF6tpYfDMVk0eT95WBsTQiAQwMnJCQ5qdU++BLDz1XEIgEBVWwPQ9NXxfDXaK59vvgGePmWpzKRbjDgcdeCe8yZCTEwMZsyYgZ9//hkA88AfP348PvroIzRWEkah5PDwKwgEX6ncJhFw5Uou3nrriMKw0rYC+cdyc1kseQCYM0e7qcw4VQgd9gCNBlMeKopEIpo3bx5ZW1vLHGK/+uorSklJKfO6HTvkE/GTJ2t3Yr0ihIQwm/z9ifLyDG0Nxxjgq4pKMEXhkkgktH//fvLz85PNLXXq1Ilu375d7rU7dxqnaGVlEXl4MLt27TK0NRxjQZP3kw8VjZDr169j0qRJuHz5MgCgZs2aWLNmDfr161fuat6uXfKkrJMnAyEhxpOPcNMm4Plz4I03WOgaDkdTuHAV488//0R6errCBmn1JsIrRkJCAmbPno19+/YBAOzs7DB79mxMnToV1tbW5V5vzKKVns7iewEsg482wz1zqh5cuIqxbt06nD17VuGcg4OD0mgP0vMVjW6al5eHdevWYdmyZcjOzgYAfPbZZwgODoaviqESjFm0ABYSJz0daNhQ+wEIOVUPLlzFaNeuHYRCoSysTVZWFrKyshAeHo7w8HCl1wmFQnh5eZUZ0sbPzw+Ojo4KQz0iwm+//Ybp06cjOjoaAPDWW29hw4YNaNu2rcp2794tF61Jk4xPtF68YMIFsAQYVTT/CEeLcM/5MsjKyio3dHNiYiLEYrFK9VlbW8Pd3R0ODg4gIsTFxUEkEgEAfH19sWrVKgwePBhCoerudbt3s+B7ABOtdeuMS7QAYOZMNkxs0QK4cQNQ4/Y4VQBN3k8uXBWksLAQ4eHhCqGbY2JikJycrBC6WdljFgqFmD17NmbOnAl7e3u12jYF0UpMZJPxubksEUbPnoa2iGNs8NDNWiYnJ6fcHldCQgIKCwtVqs/KykqWLEMsFuP58+eYMGECFmuQQNAURAsAgoOZaL31FtCjh6Gt4VQWuHAVY86cObhx44ZMnNLT01W6TiAQwNPTs9zQzc7OzlqJJ//NN6YhWjExwI4d7HjpUuO0kWOacOEqxqVLl3Du3DmFc3Z2duUmhPXx8YGFntb3v/kGGDWKHU+caLyiBTCxKigAOnUC3n/f0NZwKhN8jqsYf/zxB9LS0hQE6vWVQEPyumitX2+8ovX4Mcu9KBYD//4LdOhgaIs4xgqf46ogvXv3NrQJSjEl0QKY24NYzLL3cNHiaBu+MG0CfPutfE7LFEQrLAzYv58dL1liWFs4lRMuXEbOt9+ynhYRMGGC8YsWACxcyOzt2xdo1crQ1nAqI1y4jJjXRWvDBuMXrdu3gYMHmZ2LFhnaGk5lRafCdezYMbRr1w42NjZwcXHBxx9/rPB7TEwMevbsCVtbW3h6emL69OklMkefO3cOLVu2hJWVFerUqYO9e/fq0mSjwRRFCwDmzWN/Bw0CmjQxrC2cSoz2o+swfv31V3JxcaFt27ZRREQEPXjwgH7++WfZ70VFRdS4cWPq0qUL3bp1i44fP07u7u4UFBQkKxMVFUW2trY0depUCgsLo02bNpGZmRmdOHFCLVtMLR7XN98QCQQsbtWECcYTT6s8Ll9mNguFRBERhraGYyoYTSDBwsJC8vPzo927dystc/z4cRIKhZSUlCQ7t23bNnJ0dKT8/HwiIpoxYwY1atRI4bqBAwdSt27d1LLHlISruGiNH286okVE1KULs3vkSENbwjEljCZZRmhoKOLj4yEUCtGiRQv4+Pige/fuuH//vqzM5cuX0aRJE3h5ecnOdevWDZmZmXjw4IGsTJcuXRTq7tatmyzAnjLy8/ORmZmp8DEFig8Px48HNm40jeEhAJw7B/zzD4uzNV+7uTU4nBLoRLiioqIAAAsXLsTcuXNx9OhRuLi4oFOnTkhNTQUAJCUlKYgWANn3pKSkMstkZmYiNzdXafvBwcFwcnKSffz9/bV2b7pizx7TFS0i+dzWqFFAzZoGNYdTBVBLuGbNmgWBQFDmJzw8HBKJBADb+/fJJ5+gVatW2LNnDwQCAQ4ePKiTGylOUFAQMjIyZJ/Y2Fidt1kR9uwBvvjCNEULAP7+m3nHW1sDc+ca2hpOVUAtz/nAwECMGDGizDK1a9dGYmIiAKBhw4ay81ZWVqhduzZiYmIAAN7e3rh27ZrCtcnJybLfpH+l54qXcXR0hI2NjVIbrKysYGVlpdpNGZjiojVunOmJFpFcrL7+GlAxYCuHUyHUEi4PDw94eHiUW65Vq1awsrJCREQEOnbsCIDFrXr69Clq1KgBAAgICMCyZcuQkpICT09PAMCpU6fg6OgoE7yAgAAcP35coe5Tp04hICBAHbONltdFa9Mm0xItAPjjDxYc0M6OBQzkcPSCrlYKJk2aRH5+fnTy5EkKDw+nL774gjw9PSk1NZWI5O4QXbt2pdu3b9OJEyfIw8OjVHeI6dOn08OHD2nLli2Vxh1izx756uG4caa1eihFLCZq0oTdw+zZhraGY6oYjTsEEVFBQQEFBgaSp6cnOTg4UJcuXej+/fsKZZ4+fUrdu3cnGxsbcnd3p8DAQCosLFQoc/bsWWrevDlZWlpS7dq1ac+ePWrbYmzCVRlEi4jop5/YPTg5Eb36/xGHozaavJ88rI2e2bsX+PxzNjz8+mtg82bTGx4CQFER0KgR8OgRiwQhXVXkcNRFk/eT71XUI5VFtAAW/eHRI8DNjUVh5XD0CY/HVYwjR44gNTVVIZCgtsIt79tXeUSroEC+gXrmTMDAnVhOFYQLVzHWr19fInSzjY1NuaGbfX19YWlpqbTeffuAkSMrh2gBzMP/6VPA25uthnI4+oYLVzE6duwIa2trWbKM1NRU5Obm4vHjx3j8+HGZ13p4eJQqcA8ftsW6dU1AJMCYMYTNmwUmLVq5ufLggHPmALa2hrWHUzXhk/NlkJubi4SEhDLTk8XHx6OgoEBJDZ8B2AM2lbgV5uaT4e7O0pNJJBI8f/4cEydO1Cg9maFYvx6YMgXw9wciIwET8fPlGDE8IawS9JEQ9s6dOwgPD0d0dDRiYmIQGdkeycnBYKK1DcDXpV4vEAgQFBSEoKAgtRPC6huRiCV3TUkBdu2Sx8DncCoCFy4laPJgiAiZmZnlJoRNSkqS7c2UMwzAXkh7WgCbCLK3t4ebmxscHBxARIiNjZVFrvDx8cGKFSswdOhQCI00R/2KFUBQEBOvhw9ZJAgOp6Jo1LHQujeZEaKqg9vMmTPpvffeo3r16pGdnR0BUOljZmZG1apVo3bt2lGrVhsIEBNA9P774XTq1GkKDw+nzMzMEu1JJBI6fPgw1a5dW1ZX27Zt6fLly7p6FBqTlkbk4sIcTr//3tDWcCoT3AFVCaoq+vvvv4+zZ88qnHN2dla6oig97+npCTMzM3z3HTBiBFs9HDuWrR6q0nnKz8/H+vXrsXTpUohEIgDA0KFDsWLFCvj5+VXk1rXGggXM0fTNN4F79wAzM0NbxKks8B6XElRV9KNHj9IPP/xAZ8+epUePHpFIJFK5jX375Nt4xo5l+/jUJSEhgUaOHCnrfdna2tLixYspJydH/cq0yPPnRA4O7N4OHjSoKZxKiFHtVTQmdL1X8bvvKi5axbl+/Tq1b99eJmA1atSgX375hSQG2tQ4Ywa7t+bNK35vHM7rcOFSgi6Fq7hojRmjvRdbIpHQTz/9RNWqVZMJ2Ntvv02hoaHaaUBFEhOJbGzY/f35p16b5lQRjCbmfFXh+++B4cPZnNaYMcCWLarNaamCQCDAoEGDEBERgQULFsDGxgYXL15Eq1at8OWXX5YIsKgrgoOZ0+lbbwE9e+qlSQ6nXPjkvIboUrRKIyYmBjNnzsSBAwcAAA4ODhg/fjx69+6NJjpKYBgXJ0DTpjYoKBDgzz9z8d57zO3D1tZWK/s3ORyAT84rRdtDxe+/183wUBUuXrxILVq0UNlVo2Kf7cSk+YzCeXUWLTic8uBDRT2wfz/w2Wfsdf7qK933tIpDREhNTdVTujUBAM9XxzzYFse44Jus1eB10dq6VX+i9eDBA0yZMgWnTp0CwBKJzJo1C126dEFNHeYDCwvLQcOGJxXO2fKd1RwDw4VLRQwlWi9fvsSCBQuwfft2iMViWFpaIjAwEEFBQXBwcNB5+23a6LwJDkdtuHCpwP798ol4fYlWYWEhtm/fjgULFiAtLQ0A0K9fP6xevRq1a9fWbeMcjpHDhascpKIlkQCjR+tHtP7++29MmTIFYWFhAIAmTZpgw4YNeO+993TbMIdjInDhKsZPP/2ElJQU2b7Ea9fqITDQDRKJAKNHA9u26Va0IiMjERgYiD///BMA4ObmhqVLl2LUqFEwN+f/qTgcKfxtKMaOHTtw/vz5V98+BfAdAAGsrb/D1avr0bt36aGb/fz84OrqqrFvU0ZGBpYuXYoNGzagsLAQ5ubmGD9+PObPnw8XFxdt3R6HU2ngwlWMbt26wdPTE/Hx8Xj82AwpKYUAdiMvbyzu3CHcuXNL6bXW1tYyEVMWScLHxwfW1taya8RiMfbs2YM5c+YgJSUFANC9e3eEhISgQYMGur5dDsdk4Z7zZXDnjgReXi+QlFR26OaXL1+qXKeDg4NsNfDFixeysM/169dHSEgIevTood7NcTgmDo+AqgRdhm7OyspCVFQU7t69i4iICERFRSEmJgbJyclITU2FSCQqIyY9YG5ujlWrVmHcuHFlZgricCormryffKiohKKiIiQlJZUbujkrK0ul+oRCITw9PeHmxpJlFBUVISEhAdOmTcPkyZN1ezMcTiWDC1cxJkyYgCtXriA+Ph7JycmlxJIvHUdHR6WT9tKPl5cXzHjYUA5HK3DhKkZYWBhu3Lgh+25ubg4fH59yQzcbe3YeDqeywee4inHmzBlkZ2fLRMrT09NoM+5wOJUFPsdVQd5//31Dm8DhcFSAdyc4HI7JwYWLw+GYHFy4OByOycGFi8PhmBxcuDgcjsnBhYvD4ZgcXLg4HI7JwYWLw+GYHFy4OByOycGFi8PhmBxcuDgcjsnBhYvD4ZgcXLg4HI7JwYWLw+GYHFy4OByOycGFi8PhmBxcuDgcjslRJSKgSqNTZ2ZmGtgSDofzOtL3Up0o8lVCuKQpxPz9/Q1sCYfDUUZWVhacnJxUKlslkmVIJBIkJCTAwcEBAoGg3PKZmZnw9/dHbGys1hPImjL8uZQOfy6lo+pzISJkZWXB19dX5eQ0VaLHJRQKUa1aNbWvc3R05P8QS4E/l9Lhz6V0VHkuqva0pPDJeQ6HY3Jw4eJwOCYHF65SsLKywoIFC2BlZWVoU4wK/lxKhz+X0tHlc6kSk/McDqdywXtcHA7H5ODCxeFwTA4uXBwOx+TgwsXhcEwOLlwcDsfkqNLCtWzZMrRv3x62trZwdnYutUxMTAx69uwJW1tbeHp6Yvr06SgqKlIoc+7cObRs2RJWVlaoU6cO9u7dq3vj9cyWLVtQs2ZNWFtbo127drh27ZqhTdIpFy5cwEcffQRfX18IBAL8/vvvCr8TEebPnw8fHx/Y2NigS5cuiIyMVCiTmpqKIUOGwNHREc7Ozvjiiy8gEon0eBfaJzg4GG3atIGDgwM8PT3x8ccfIyIiQqFMXl4exo0bBzc3N9jb2+OTTz5BcnKyQhlV3quyqNLCVVBQgP79+2Ps2LGl/i4Wi9GzZ08UFBTg0qVL2LdvH/bu3Yv58+fLykRHR6Nnz5547733cPv2bUyePBmjRo3CyZMn9XUbOufnn3/G1KlTsWDBAoSGhqJZs2bo1q0bUlJSDG2azsjOzkazZs2wZcuWUn9ftWoVNm7ciO3bt+Pq1auws7NDt27dkJeXJyszZMgQPHjwAKdOncLRo0dx4cIFjB49Wl+3oBPOnz+PcePG4cqVKzh16hQKCwvRtWtXZGdny8pMmTIFf/75Jw4ePIjz588jISEB/fr1k/2uyntVLsShPXv2kJOTU4nzx48fJ6FQSElJSbJz27ZtI0dHR8rPzyciohkzZlCjRo0Urhs4cCB169ZNpzbrk7Zt29K4ceNk38ViMfn6+lJwcLABrdIfAOjw4cOy7xKJhLy9vWn16tWyc+np6WRlZUU//fQTERGFhYURALp+/bqszF9//UUCgYDi4+P1ZruuSUlJIQB0/vx5ImLPwcLCgg4ePCgr8/DhQwJAly9fJiLV3qvyqNI9rvK4fPkymjRpAi8vL9m5bt26ITMzEw8ePJCV6dKli8J13bp1w+XLl/Vqq64oKCjAzZs3Fe5RKBSiS5culeYe1SU6OhpJSUkKz8TJyQnt2rWTPZPLly/D2dkZrVu3lpXp0qULhEIhrl69qnebdUVGRgYAwNXVFQBw8+ZNFBYWKjybBg0aoHr16grPprz3qjy4cJVBUlKSwsMFIPuelJRUZpnMzEzk5ubqx1Ad8uLFC4jF4lLvUfoMqhrS+y7rmSQlJcHT01Phd3Nzc7i6ulaa5yaRSDB58mR06NABjRs3BsDu29LSssSc8evPprz3qjwqnXDNmjULAoGgzE94eLihzeRwTJ5x48bh/v37OHDggN7brnTxuAIDAzFixIgyy9SuXVulury9vUusnklXR7y9vWV/X18xSU5OhqOjI2xsbFS02nhxd3eHmZlZqfcofQZVDel9Jycnw8fHR3Y+OTkZzZs3l5V5ffGiqKgIqampleK5jR8/XrbgUDzWnbe3NwoKCpCenq7Q6yr+70WV96o8Kl2Py8PDAw0aNCjzY2lpqVJdAQEBuHfvnsI/wFOnTsHR0RENGzaUlTl9+rTCdadOnUJAQID2bsqAWFpaolWrVgr3KJFIcPr06Upzj+pSq1YteHt7KzyTzMxMXL16VfZMAgICkJ6ejps3b8rKnDlzBhKJBO3atdO7zdqCiDB+/HgcPnwYZ86cQa1atRR+b9WqFSwsLBSeTUREBGJiYhSeTXnvlSqGVFmePXtGt27dokWLFpG9vT3dunWLbt26RVlZWUREVFRURI0bN6auXbvS7du36cSJE+Th4UFBQUGyOqKiosjW1pamT59ODx8+pC1btpCZmRmdOHHCULeldQ4cOEBWVla0d+9eCgsLo9GjR5Ozs7PCqlBlIysrS/bvAQCFhITQrVu36NmzZ0REtGLFCnJ2dqYjR47Q3bt3qU+fPlSrVi3Kzc2V1fHhhx9SixYt6OrVq/Tvv/9S3bp1afDgwYa6Ja0wduxYcnJyonPnzlFiYqLsk5OTIyszZswYql69Op05c4Zu3LhBAQEBFBAQIPtdlfeqPKq0cA0fPpwAlPicPXtWVubp06fUvXt3srGxIXd3dwoMDKTCwkKFes6ePUvNmzcnS0tLql27Nu3Zs0e/N6IHNm3aRNWrVydLS0tq27YtXblyxdAm6ZSzZ8+W+m9j+PDhRMRcIubNm0deXl5kZWVFnTt3poiICIU6Xr58SYMHDyZ7e3tydHSkkSNHyv6naKqU9kwAKPybz83Npa+//ppcXFzI1taW+vbtS4mJiQr1qPJelQWPx8XhcEyOSjfHxeFwKj9cuDgcjsnBhYvD4ZgcXLg4HI7JwYWLw+GYHFy4OByOycGFi8PhmBxcuDgcjsnBhYvD4ZgcXLg4HI7JwYWLw+GYHP8HuTgyyvbHwJoAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -403,10 +732,10 @@
},
{
"cell_type": "markdown",
- "id": "38e85474-520c-4b27-a14a-d67755540bb3",
+ "id": "66e0c675",
"metadata": {},
"source": [
- "That's it! You now know how to simulate networks of morphologically detailed neurons. Next, you should learn how to modify parameters of your simulation in [this tutorial](https://jaxleyverse.github.io/jaxley/latest/tutorial/03_setting_parameters/)."
+ "That's it! You now know how to simulate networks of morphologically detailed neurons. We recommend that you now have a look at how you can [speed up your simulation](https://jaxley.readthedocs.io/en/latest/tutorials/04_jit_and_vmap.html). To learn more about handling synaptic parameters, we recommend to check out [this tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/09_advanced_indexing.html)."
]
}
],
diff --git a/docs/tutorials/03_setting_parameters.ipynb b/docs/tutorials/03_setting_parameters.ipynb
deleted file mode 100644
index 58fab0de..00000000
--- a/docs/tutorials/03_setting_parameters.ipynb
+++ /dev/null
@@ -1,997 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "d856c612",
- "metadata": {},
- "source": [
- "# Setting parameters"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3efb9902",
- "metadata": {},
- "source": [
- "In this tutorial, you will learn how to:\n",
- "\n",
- "- set parameters of `Jaxley` models such as compartment radius or channel conductances \n",
- "- set initial states \n",
- "- set synaptic parameters \n",
- "\n",
- "Here is a code snippet which you will learn to understand in this tutorial:\n",
- "```python\n",
- "cell = ... # See tutorial on Basics of Jaxley.\n",
- "cell.insert(Na())\n",
- "\n",
- "cell.set(\"radius\", 1.0) # Set compartment radius.\n",
- "cell.branch(0).set(\"Na_gNa\", 0.1) # Set sodium maximal conductance.\n",
- "cell.set(\"v\", -65.0) # Set initial voltage.\n",
- "\n",
- "net = ... # See tutorial on Networks of Jaxley.\n",
- "fully_connect(net.cell(0), net.cell(1), IonotropicSynapse())\n",
- "net.IonotropicSynapse().set(\"IonotropicSynapse_gS\", 0.01)\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0c2975da",
- "metadata": {},
- "source": [
- "In the previous two tutorials, you learned how to build single cells or networks and how to simulate them. In this tutorial, you will learn how to change parameters of such simulations.\n",
- "\n",
- "Let's get started!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "205a670b",
- "metadata": {},
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import jax.numpy as jnp\n",
- "from jax import jit, vmap\n",
- "\n",
- "import jaxley as jx\n",
- "from jaxley.channels import Na, K, Leak"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ce3c9c5c",
- "metadata": {},
- "source": [
- "### Preface: Building the cell or network\n",
- "\n",
- "We first build a cell (or network) in the same way as we showed in the previous tutorials:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "6b6a4eed",
- "metadata": {},
- "outputs": [],
- "source": [
- "dt = 0.025\n",
- "t_max = 10.0\n",
- "\n",
- "comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=2)\n",
- "cell = jx.Cell(branch, parents=[-1, 0])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "05aed6d3",
- "metadata": {},
- "source": [
- "### Setting parameters in `Jaxley`\n",
- "\n",
- "To modify parameters of the simulation, you can use the `.set()` method. For example\n",
- "```python\n",
- "cell.set(\"radius\", 0.1)\n",
- "```\n",
- "will modify the radius of every compartment in the cell to 0.1 micrometer. You can also modify the parameters only of some branches:\n",
- "```python\n",
- "cell.branch(0).set(\"radius\", 1.0)\n",
- "```\n",
- "or even of compartments:\n",
- "```python\n",
- "cell.branch(0).comp(0).set(\"radius\", 10.0)\n",
- "```\n",
- "\n",
- "You can always inspect the current parameters by inspecting `cell.nodes`, which is a pandas Dataframe that contains all information about the cell. You can use `.set()` to set morphological parameters, channel parameters, synaptic parameters, and initial states. Note that `Jaxley` uses the same units as the `NEURON` simulator, which are listed [here](https://www.neuron.yale.edu/neuron/static/docs/units/unitchart.html)."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b9305c6f",
- "metadata": {},
- "source": [
- "### Setting morphological parameters\n",
- "\n",
- "`Jaxley` allows to set the following morphological parameters:\n",
- "\n",
- "- `radius`: the radius of the (zylindrical) compartment (in micrometer) \n",
- "- `length`: the length of the zylindrical compartment (in micrometer) \n",
- "- `axial_resistivity`: the resistivity of current flow between compartments (in ohm centimeter)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "43ede5b4",
- "metadata": {},
- "outputs": [],
- "source": [
- "cell.branch(0).set(\"axial_resistivity\", 1000.0)\n",
- "cell.set(\"length\", 1.0) # This will set every compartment in the cell to have length 1.0."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "eb5d658d",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ],
- "text/plain": [
- " pre_locs post_locs pre_branch_index post_branch_index pre_cell_index \\\n",
- "0 0.25 0.25 0 1 0 \n",
- "\n",
- " post_cell_index type type_ind global_pre_comp_index \\\n",
- "0 1 IonotropicSynapse 0 0 \n",
- "\n",
- " global_post_comp_index global_pre_branch_index global_post_branch_index \\\n",
- "0 6 0 3 \n",
- "\n",
- " IonotropicSynapse_gS IonotropicSynapse_e_syn IonotropicSynapse_k_minus \\\n",
- "0 0.1 0.0 0.025 \n",
- "\n",
- " IonotropicSynapse_s \n",
- "0 0.1 "
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "net.edges"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2ff08f94",
- "metadata": {},
- "source": [
- "### Summary"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8a89c630",
- "metadata": {},
- "source": [
- "You can now modify parameters of your `Jaxley` simulation. In [the next tutorial](https://jaxleyverse.github.io/jaxley/latest/tutorial/04_jit_and_vmap/), you will learn how to make parameter sweeps (or stimulus sweeps) fast with jit-compilation and GPU parallelization."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.12.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/tutorials/04_jit_and_vmap.ipynb b/docs/tutorials/04_jit_and_vmap.ipynb
index adde4cfe..c090c78e 100644
--- a/docs/tutorials/04_jit_and_vmap.ipynb
+++ b/docs/tutorials/04_jit_and_vmap.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "a6eb663b",
+ "id": "cfd523b5",
"metadata": {},
"source": [
"# Speeding up simulations"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "1432557f",
+ "id": "adfd37cf",
"metadata": {},
"source": [
"In this tutorial, you will learn how to:\n",
@@ -30,7 +30,7 @@
" param_state = None\n",
" param_state = cell.data_set(\"Na_gNa\", params[0], param_state)\n",
" param_state = cell.data_set(\"K_gK\", params[1], param_state)\n",
- " return jx.integrate(cell, param_state=param_state)\n",
+ " return jx.integrate(cell, param_state=param_state, delta_t=0.025)\n",
"\n",
"# Define 100 sets of sodium and potassium conductances.\n",
"all_params = jnp.asarray(np.random.rand(100, 2))\n",
@@ -47,7 +47,7 @@
},
{
"cell_type": "markdown",
- "id": "9d0d9e3a",
+ "id": "757dcad9",
"metadata": {},
"source": [
"In the previous tutorials, you learned how to build single cells or networks and how to change their parameters. In this tutorial, you will learn how to speed up such simulations by many orders of magnitude. This can be achieved in to ways:\n",
@@ -60,7 +60,7 @@
},
{
"cell_type": "markdown",
- "id": "6968a673",
+ "id": "c813d313",
"metadata": {},
"source": [
"### Using GPU or CPU"
@@ -68,7 +68,7 @@
},
{
"cell_type": "markdown",
- "id": "3e94fcda",
+ "id": "f69b53c7",
"metadata": {},
"source": [
"In `Jaxley` you can set whether you want to use `gpu` or `cpu` with the following lines at the beginning of your script:"
@@ -76,8 +76,8 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "871643b5",
+ "execution_count": 1,
+ "id": "2f080339",
"metadata": {},
"outputs": [],
"source": [
@@ -87,7 +87,7 @@
},
{
"cell_type": "markdown",
- "id": "880631c9",
+ "id": "c38c665a",
"metadata": {},
"source": [
"`JAX` (and `Jaxley`) also allow to choose between `float32` and `float64`. Especially on GPUs, `float32` will be faster, but we have experienced stability issues when simulating morphologically detailed neurons with `float32`."
@@ -95,8 +95,8 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "219765f6",
+ "execution_count": 2,
+ "id": "86d4a917",
"metadata": {},
"outputs": [],
"source": [
@@ -105,7 +105,7 @@
},
{
"cell_type": "markdown",
- "id": "be03d1e6",
+ "id": "dc16b92d",
"metadata": {},
"source": [
"Next, we will import relevant libraries:"
@@ -113,8 +113,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "06c8773f",
+ "execution_count": 3,
+ "id": "bd054087",
"metadata": {},
"outputs": [],
"source": [
@@ -129,7 +129,7 @@
},
{
"cell_type": "markdown",
- "id": "99d5a379",
+ "id": "9d2ae1fa",
"metadata": {},
"source": [
"### Building the cell or network\n",
@@ -139,8 +139,8 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "5d1fbb79",
+ "execution_count": 4,
+ "id": "a869e670",
"metadata": {},
"outputs": [
{
@@ -157,7 +157,7 @@
"t_max = 10.0\n",
"\n",
"comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=4)\n",
+ "branch = jx.Branch(comp, ncomp=4)\n",
"cell = jx.Cell(branch, parents=[-1, 0, 0, 1, 1, 2, 2])\n",
"\n",
"cell.insert(Na())\n",
@@ -174,7 +174,7 @@
},
{
"cell_type": "markdown",
- "id": "6597241d",
+ "id": "d9193627",
"metadata": {},
"source": [
"### Parameter sweeps\n",
@@ -184,8 +184,8 @@
},
{
"cell_type": "code",
- "execution_count": 22,
- "id": "7bc771dd",
+ "execution_count": 5,
+ "id": "79a01358",
"metadata": {},
"outputs": [],
"source": [
@@ -193,12 +193,12 @@
" param_state = None\n",
" param_state = cell.data_set(\"Na_gNa\", params[0], param_state)\n",
" param_state = cell.data_set(\"K_gK\", params[1], param_state)\n",
- " return jx.integrate(cell, param_state=param_state)"
+ " return jx.integrate(cell, param_state=param_state, delta_t=dt)"
]
},
{
"cell_type": "markdown",
- "id": "6e8ceb93",
+ "id": "2f8e301a",
"metadata": {},
"source": [
"The `.data_set()` method takes three arguments: \n",
@@ -210,7 +210,7 @@
},
{
"cell_type": "markdown",
- "id": "336bd08f",
+ "id": "a343e454",
"metadata": {},
"source": [
"Having done this, the simplest (but least efficient) way to perform the parameter sweep is to run a for-loop over many parameter sets:"
@@ -218,8 +218,8 @@
},
{
"cell_type": "code",
- "execution_count": 25,
- "id": "94aea7ba",
+ "execution_count": 6,
+ "id": "4806598a",
"metadata": {},
"outputs": [
{
@@ -240,7 +240,7 @@
},
{
"cell_type": "markdown",
- "id": "7b6eb06a",
+ "id": "e0f1becb",
"metadata": {},
"source": [
"The resulting voltages have shape `(num_simulations, num_recordings, num_timesteps)`."
@@ -248,7 +248,7 @@
},
{
"cell_type": "markdown",
- "id": "82a74dd9",
+ "id": "c4345c02",
"metadata": {},
"source": [
"### Stimulus sweeps\n",
@@ -266,7 +266,7 @@
},
{
"cell_type": "markdown",
- "id": "78e4d9f4",
+ "id": "5dd3c975",
"metadata": {},
"source": [
"### Speeding up for loops via `jit` compilation\n",
@@ -276,8 +276,8 @@
},
{
"cell_type": "code",
- "execution_count": 34,
- "id": "db108c01",
+ "execution_count": 7,
+ "id": "017e98d9",
"metadata": {},
"outputs": [],
"source": [
@@ -286,8 +286,8 @@
},
{
"cell_type": "code",
- "execution_count": 35,
- "id": "63503ab8",
+ "execution_count": 8,
+ "id": "d9aa805a",
"metadata": {},
"outputs": [],
"source": [
@@ -297,8 +297,8 @@
},
{
"cell_type": "code",
- "execution_count": 36,
- "id": "7153695e",
+ "execution_count": 9,
+ "id": "27c12fe3",
"metadata": {},
"outputs": [
{
@@ -317,7 +317,7 @@
},
{
"cell_type": "markdown",
- "id": "a89191e5",
+ "id": "401d1f52",
"metadata": {},
"source": [
"`jit` compilation can be up to 10k times faster, especially for small simulations with few compartments. For very large models, the gain obtained with `jit` will be much smaller (`jit` may even provide no speed up at all)."
@@ -325,7 +325,7 @@
},
{
"cell_type": "markdown",
- "id": "f917e00f",
+ "id": "d29ff570",
"metadata": {},
"source": [
"### Speeding up with GPU parallelization via `vmap`\n",
@@ -335,8 +335,8 @@
},
{
"cell_type": "code",
- "execution_count": 38,
- "id": "ab0108d4",
+ "execution_count": 10,
+ "id": "fefffaf7",
"metadata": {},
"outputs": [],
"source": [
@@ -346,7 +346,7 @@
},
{
"cell_type": "markdown",
- "id": "7cc2e980",
+ "id": "fd03669d",
"metadata": {},
"source": [
"We can then run this method on __all__ parameter sets (`all_params.shape == (100, 2)`), and `Jaxley` will automatically parallelize across them. Of course, you will only get a speed-up if you have a GPU available and you specified `gpu` as device in the beginning of this tutorial."
@@ -354,8 +354,8 @@
},
{
"cell_type": "code",
- "execution_count": 41,
- "id": "febeee5f",
+ "execution_count": 11,
+ "id": "c2a22648",
"metadata": {},
"outputs": [],
"source": [
@@ -364,7 +364,7 @@
},
{
"cell_type": "markdown",
- "id": "075cad19",
+ "id": "a4464e06",
"metadata": {},
"source": [
"GPU parallelization with `vmap` can give a large speed-up, which can easily be 2-3 orders of magnitude."
@@ -372,7 +372,7 @@
},
{
"cell_type": "markdown",
- "id": "01ff66a6",
+ "id": "0df64cc1",
"metadata": {},
"source": [
"### Combining `jit` and `vmap`"
@@ -380,7 +380,7 @@
},
{
"cell_type": "markdown",
- "id": "83b99b60",
+ "id": "8125f061",
"metadata": {},
"source": [
"Finally, you can also combine using `jit` and `vmap`. For example, you can run multiple batches of many parallel simulations. Each batch can be parallelized with `vmap` and simulating each batch can be compiled with `jit`:"
@@ -388,8 +388,8 @@
},
{
"cell_type": "code",
- "execution_count": 43,
- "id": "bf61d2c1",
+ "execution_count": 12,
+ "id": "db1eced1",
"metadata": {},
"outputs": [],
"source": [
@@ -398,8 +398,8 @@
},
{
"cell_type": "code",
- "execution_count": 44,
- "id": "21becf24",
+ "execution_count": 13,
+ "id": "82f34a7d",
"metadata": {},
"outputs": [],
"source": [
@@ -410,7 +410,7 @@
},
{
"cell_type": "markdown",
- "id": "61758507",
+ "id": "a5cca5a0",
"metadata": {},
"source": [
"That's all you have to know about `jit` and `vmap`! If you have worked through this and the previous tutorials, you should be ready to set up your first network simulations."
@@ -418,14 +418,16 @@
},
{
"cell_type": "markdown",
- "id": "0e37ecac",
+ "id": "37fc2f3c",
"metadata": {},
"source": [
"### Next steps\n",
"\n",
- "If you want to learn more, we recommend you to read the [tutorial on building channel and synapse models](https://jaxleyverse.github.io/jaxley/latest/tutorial/05_channel_and_synapse_models/) or to read the [tutorial on groups](https://jaxleyverse.github.io/jaxley/latest/tutorial/06_groups/), which allow to make your `Jaxley` simulations more elegant and convenient to interact with.\n",
+ "If you want to learn more, we recommend you to read the [tutorial on building channel and synapse models](https://jaxley.readthedocs.io/en/latest/tutorials/05_channel_and_synapse_models.html).\n",
+ "\n",
+ "Alternatively, you can also directly jump ahead to the [tutorial on training biophysical networks](https://jaxley.readthedocs.io/en/latest/tutorials/07_gradient_descent.html) which will teach you how you can optimize parameters of biophysical models with gradient descent.\n",
"\n",
- "Alternatively, you can also directly jump ahead to the [tutorial on training biophysical networks](https://jaxleyverse.github.io/jaxley/latest/tutorial/07_gradient_descent/) which will teach you how you can optimize parameters of biophysical models with gradient descent."
+ "Finally, if you want to learn more about JAX, check out their [tutorial on jit](https://jax.readthedocs.io/en/latest/jit-compilation.html) or their [tutorial on vmap](https://jax.readthedocs.io/en/latest/automatic-vectorization.html)."
]
}
],
diff --git a/docs/tutorials/05_channel_and_synapse_models.ipynb b/docs/tutorials/05_channel_and_synapse_models.ipynb
index 89a77e42..96412184 100644
--- a/docs/tutorials/05_channel_and_synapse_models.ipynb
+++ b/docs/tutorials/05_channel_and_synapse_models.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "aa1d59bb",
+ "id": "c1157b43",
"metadata": {},
"source": [
"# Building ion channel models\n",
@@ -11,13 +11,13 @@
"\n",
"- define your own ion channel models beyond the preconfigured channels in `Jaxley` \n",
"\n",
- "This tutorial assumes that you have already learned how to [build basic simulations](https://jaxleyverse.github.io/jaxley/latest/tutorial/01_morph_neurons/)."
+ "This tutorial assumes that you have already learned how to [build basic simulations](https://jaxley.readthedocs.io/en/latest/tutorials/01_morph_neurons.html)."
]
},
{
"cell_type": "code",
"execution_count": 1,
- "id": "2ce9b547",
+ "id": "56c05124",
"metadata": {},
"outputs": [],
"source": [
@@ -36,27 +36,27 @@
},
{
"cell_type": "markdown",
- "id": "52e5c740",
+ "id": "470b4f8f",
"metadata": {},
"source": [
- "First, we define a cell as you saw in the [previous tutorial](https://jaxleyverse.github.io/jaxley/latest/tutorial/01_morph_neurons/):"
+ "First, we define a cell as you saw in the [previous tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/01_morph_neurons.html):"
]
},
{
"cell_type": "code",
"execution_count": 2,
- "id": "9f0b772e",
+ "id": "3f6c47d2",
"metadata": {},
"outputs": [],
"source": [
"comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=4)\n",
+ "branch = jx.Branch(comp, ncomp=4)\n",
"cell = jx.Cell(branch, parents=[-1, 0, 0, 1, 1, 2, 2])"
]
},
{
"cell_type": "markdown",
- "id": "9b9e243b",
+ "id": "3450d0d6",
"metadata": {},
"source": [
"You have also already learned how to insert preconfigured channels into `Jaxley` models:\n",
@@ -71,19 +71,17 @@
},
{
"cell_type": "markdown",
- "id": "72415bdb",
+ "id": "934fd9fa",
"metadata": {},
"source": [
"### Your own channel\n",
- "Below is how you can define your own channel. We will go into detail about individual parts of the code in the next couple of cells.\n",
- "\n",
- "Note that a channel needs to have the functions `update_states` and `compute_currents` and `init_states` with all input arguments shown below. "
+ "Below is how you can define your own channel. We will go into detail about individual parts of the code in the next couple of cells."
]
},
{
"cell_type": "code",
"execution_count": 3,
- "id": "51456f0d",
+ "id": "e5a5f4f8",
"metadata": {},
"outputs": [],
"source": [
@@ -129,7 +127,7 @@
},
{
"cell_type": "markdown",
- "id": "4e7801e5",
+ "id": "6682c9fc",
"metadata": {},
"source": [
"Let's look at each part of this in detail. \n",
@@ -158,7 +156,7 @@
" def update_states(self, states, dt, v, params):\n",
"```\n",
"\n",
- "The inputs `states` to the `update_states` method is a dictionary which contains all states that are updated (including states of other channels). `v` is a `jnp.ndarray` which contains the voltage of a single compartment (shape `()`). Let's get the state of the potassium channel which we are building here:\n",
+ "Every channel you define must have an `update_states()` method which takes exactly these five arguments (self, states, dt, v, params). The inputs `states` to the `update_states` method is a dictionary which contains all states that are updated (including states of other channels). `v` is a `jnp.ndarray` which contains the voltage of a single compartment (shape `()`). Let's get the state of the potassium channel which we are building here:\n",
"```python\n",
"ns = states[\"n_new\"]\n",
"```\n",
@@ -189,7 +187,7 @@
},
{
"cell_type": "markdown",
- "id": "76a41eb6",
+ "id": "07cffb1d",
"metadata": {},
"source": [
"Alright, done! We can now insert this channel into any `jx.Module` such as our cell:"
@@ -198,7 +196,7 @@
{
"cell_type": "code",
"execution_count": 4,
- "id": "a955d604",
+ "id": "72046028",
"metadata": {},
"outputs": [],
"source": [
@@ -208,7 +206,7 @@
{
"cell_type": "code",
"execution_count": 5,
- "id": "ddc61a4b",
+ "id": "8943b07b",
"metadata": {},
"outputs": [
{
@@ -232,7 +230,7 @@
{
"cell_type": "code",
"execution_count": 6,
- "id": "393283ed",
+ "id": "388dee2d",
"metadata": {},
"outputs": [],
"source": [
@@ -242,12 +240,12 @@
{
"cell_type": "code",
"execution_count": 7,
- "id": "a75711c0",
+ "id": "e2a4bb2d",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADeCAYAAAA933f2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp5ElEQVR4nO3deXhTZf428PskadIlbUp3Cl3AQlnLbimIKFRAEFwqCjOyi4AoIjgq408RR0WGV1AYFEcFdFxYRBhHEcTKVi370palRWhpgS7Q2r1Nm+R5/0gaiS3Y0CxNuT/XlavJWb95hsntOc85z5GEEAJERHTLkzm7ACIiah4YCEREBICBQEREJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAXCgQXn31VUiSZPHq1KmTeX51dTVmz54Nf39/qNVqJCQkID8/34kVExG5FpcJBADo2rUrcnNzza+kpCTzvGeffRb/+9//sGnTJuzZsweXL1/GQw895MRqiYhci8LZBVhDoVAgJCSk3vSSkhJ8/PHH+OKLLzBkyBAAwNq1a9G5c2fs378f/fv3d3SpREQux6UC4ezZswgNDYW7uzvi4uKwePFihIeH48iRI6itrUV8fLx52U6dOiE8PBzJycnXDQStVgutVmv+bDAYUFRUBH9/f0iSZPfvQ0Rkb0IIlJWVITQ0FDLZjU8KuUwgxMbGYt26dYiOjkZubi4WLVqEQYMGIS0tDXl5eVAqlfD19bVYJzg4GHl5edfd5uLFi7Fo0SI7V05E5Hw5OTlo27btDZdxmUC49957ze9jYmIQGxuLiIgIbNy4ER4eHje1zQULFmDevHnmzyUlJQgPD0dOTg58fHyaXDMRkbOVlpYiLCwM3t7ef7qsywTCH/n6+qJjx4749ddfcc8996CmpgbFxcUWRwn5+fkN9jnUUalUUKlU9ab7+PgwEIioRWnMaXCXusroWuXl5Th37hxat26NPn36wM3NDYmJieb56enpyM7ORlxcnBOrJCJyHS5zhPDcc89h9OjRiIiIwOXLl7Fw4ULI5XKMHz8eGo0G06ZNw7x58+Dn5wcfHx88/fTTiIuL4xVGRESN5DKBcPHiRYwfPx6FhYUIDAzEHXfcgf379yMwMBAAsHz5cshkMiQkJECr1WL48OF47733nFw1EZHrkIQQwtlFNBelpaXQaDQoKSlhHwIRtQjW/K65bB8CERHZFgOBiIgAMBCIiMiEgUBERAAYCEREZMJAICIiAAwEIiIyYSAQEREABgIREZkwEIiICAADgYiITBgIREQEgIFAREQmDAQiIgLAQCAiIhMGAhERAWAgEBGRCQOBiIgAMBCIiMiEgUBERAAYCEREZMJAICIiAAwEIiIyYSAQEREABgIREZkwEIiICAADgYiITBQ3s1J2djYuXLiAyspKBAYGomvXrlCpVLaujYiIHKjRgZCVlYX3338f69evx8WLFyGEMM9TKpUYNGgQnnjiCSQkJEAm44EHEZGradQv95w5c9CjRw9kZmbi9ddfx6lTp1BSUoKamhrk5eVh27ZtuOOOO/DKK68gJiYGhw4dsnfdRERkY406QvDy8sL58+fh7+9fb15QUBCGDBmCIUOGYOHChdi+fTtycnLQr18/mxdLRET2I4lrz/3c4kpLS6HRaFBSUgIfHx9nl0NE1GTW/K41+mR/3759sXr1apSWlja5QCIian4aHQg9evTA888/j9atW2PChAnYvXu3HcsiIiJHa3QgfPzxx8jLy8OqVauQk5ODoUOHIioqCm+++SYuXbpkzxqJiMgBrLo+1NPTE5MnT8bu3buRkZGBcePG4YMPPkBkZCRGjRqFr7/+2l51EhGRnTW5U1kIgc2bN2PGjBkoLi6GXq+3VW0Ox05lImpprPldu6k7levs3r0ba9euxebNm6FQKDB9+vSmbI6IiJzI6kC4ePEi1q1bh3Xr1uH8+fMYNGgQ3nvvPYwdOxYeHh72qJGIiByg0YGwceNGrFmzBomJiQgKCsKkSZMwdepUREVF2bM+IiJykEYHwmOPPYZRo0Zhy5YtGDlyJMcrIiJqYRodCBcvXkRQUJA9ayEiIidqdCBcGwaXL19GUlISCgoKYDAYLJabM2eO7aojIiKHsbpTed26dZgxYwaUSiX8/f0hSZJ5niRJDAQiIhdl9X0IYWFhmDlzJhYsWNDi+hF4HwIRtTR2GdyuTmVlJcaNG9fiwoCI6FZn9a/6tGnTsGnTJnvUQkRETmT1KSO9Xo/77rsPVVVV6N69O9zc3CzmL1u2zKYFOhJPGRFRS2PXoSsWL16MHTt2IDo6GgDqdSo3B6tWrcLSpUuRl5eHHj16YOXKlbj99tudXRYRUbNmdSC8/fbbWLNmDSZPnmyHcppuw4YNmDdvHlavXo3Y2Fi88847GD58ONLT03kfBRHRDVjdh6BSqTBw4EB71GITy5Ytw/Tp0zFlyhR06dIFq1evhqenJ9asWePs0oiImjWrA+GZZ57BypUr7VFLk9XU1ODIkSOIj483T5PJZIiPj0dycnK95bVaLUpLSy1eRES3KqtPGR08eBA//fQTvv32W3Tt2rVep7IzH5Jz9epV6PV6BAcHW0wPDg7GmTNn6i2/ePFiLFq0yFHlERE1a1YHgq+vLx566CF71OJwCxYswLx588yfS0tLERYW5sSKiIicx+pAWLt2rT3qsImAgADI5XLk5+dbTM/Pz0dISEi95VUqFVQqlaPKIyJq1lrU7cZKpRJ9+vRBYmKieZrBYEBiYiLi4uKcWBkRUfPXqEAYMWIE9u/f/6fLlZWVYcmSJVi1alWTC7tZ8+bNw4cffohPPvkEp0+fxqxZs1BRUYEpU6Y4rSYiIlfQqFNGY8eORUJCAjQaDUaPHo2+ffsiNDQU7u7u+O2333Dq1CkkJSVh27ZtGDVqFJYuXWrvuq/r0UcfxZUrV/DKK68gLy8PPXv2xPbt2+t1NBMRkaVGD12h1WqxadMmbNiwAUlJSSgpKTFuQJLQpUsXDB8+HNOmTUPnzp3tWrA9cegKImpprPlds3osozolJSWoqqqCv79/vUtPXRUDgYhaGruOZVRHo9FAo9Hc7OpERNTMtKirjIiI6OYxEIiICAADgYiITBgIREQE4CYDobi4GB999BEWLFiAoqIiAMDRo0dx6dIlmxZHRESOY/VVRikpKYiPj4dGo0FWVhamT58OPz8/fP3118jOzsann35qjzqJiMjOrD5CmDdvHiZPnoyzZ8/C3d3dPH3kyJHYu3evTYsjIiLHsToQDh06hBkzZtSb3qZNG+Tl5dmkKCIicrybeoRmQ08Wy8jIQGBgoE2KIiIix7M6EMaMGYPXXnsNtbW1AIxjGWVnZ+OFF15AQkKCzQskIiLHsDoQ3n77bZSXlyMoKAhVVVUYPHgwoqKi4O3tjTfeeMMeNRIRkQNYfZWRRqPBzp07kZSUhJSUFJSXl6N3794WD7YnIiLXc9OjnbZEHO2UiFoau452umLFiganS5IEd3d3REVF4c4774RcLrd200RE5ERWB8Ly5ctx5coVVFZWolWrVgCA3377DZ6enlCr1SgoKED79u2xa9cuhIWF2bxgIiKyD6s7ld98803069cPZ8+eRWFhIQoLC5GRkYHY2Fi8++67yM7ORkhICJ599ll71EtERHZidR/Cbbfdhs2bN6Nnz54W048dO4aEhAScP38ev/zyCxISEpCbm2vLWu2OfQjXt/98IUJ83BEZ4OXsUojICtb8rll9hJCbmwudTldvuk6nM9+pHBoairKyMms3Tc3U+7vPYdy/92Py2oPOLoWI7MjqQLj77rsxY8YMHDt2zDzt2LFjmDVrFoYMGQIASE1NRbt27WxXJTnNFweysWT7GQBAVmElLhdXObkiIrIXqwPh448/hp+fH/r06QOVSgWVSoW+ffvCz88PH3/8MQBArVbj7bfftnmx5Fg/nMzD/21NtZh2LLvYOcUQkd1ZfZVRSEgIdu7ciTNnziAjIwMAEB0djejoaPMyd999t+0qJKc4cqEIT395DAYBPNo3DG4KCZ/tz8bhC0UYFdPa2eURkR1YHQh1OnXqhE6dOtmyFmomfi0ox7RPDkOrM2BIpyC88WA37DiZj8/2Z2Pf2avOLo+I7OSmAuHixYv45ptvkJ2djZqaGot5y5Yts0lh5BxXy7WYtOYgiitr0SPMF//6Sy8o5DLc0SEAcpmEXwvKkVNUiTA/T2eXSkQ2ZnUgJCYmYsyYMWjfvj3OnDmDbt26ISsrC0II9O7d2x41koPU6Ax48rOjuFRchUh/T6yZ1BeeSuM/EY2HG/pEtMLBzCLsSi/AxLhI5xZLRDZndafyggUL8NxzzyE1NRXu7u7YvHkzcnJyMHjwYIwdO9YeNZKDvPbtSRzMKoK3SoGPJvWDv1plMX9IpyAAwK4zBc4oj4jszOpAOH36NCZOnAgAUCgUqKqqglqtxmuvvYYlS5bYvEByjC8OZOOz/dmQJOCdcT0RFaSut8zd0cZA+OVcIUqrax1dIhHZmdWB4OXlZe43aN26Nc6dO2eed/UqOxxdUerFErz6zUkAwHPDojG0c3CDy3UMVqNDkBpanQH/O3HZkSUSkQNYHQj9+/dHUlISAGDkyJGYP38+3njjDUydOhX9+/e3eYFkX2XVtXjqy6Oo0RswrEswnrzrtusuK0kSHu1nHLBww6EcR5VIRA5idSAsW7YMsbGxAIBFixZh6NCh2LBhAyIjI803ppFrEEJgwdepuFBYiTa+Hlj6cA9IknTDdR7s1QZucgkpF0tw8nKJgyolIkew+iqj9u3bm997eXlh9erVNi2IHGfDoRx8m5ILhUzCyr/0gsbT7U/X8VerMKxrCL5LycXH+zKx7NGe9i+UiBzC6iOE9u3bo7CwsN704uJii7Cg5i27sBKvfXsKAPDc8Gj0Dm/V6HVn3Gn83/m/Jy7jQmGFXeojIsezOhCysrKg1+vrTddqtbh06ZJNiiL7MhgE/vbVCVTW6BHbzg9PDLIuyGPa+mJwx0DoDQLv7Tr35ysQkUto9Cmjb775xvx+x44d0Gg05s96vR6JiYmIjIy0aXFkH58mZ+FAZhE8lXIsfbgHZLIb9xs0ZM7QDtiTcQWbjuRg0oBIdAnl8yOIXF2jA+GBBx4AYLzSZNKkSRbz3NzcEBkZyRFOXUDW1Qos2Z4OAHjx3k4I97+5ISj6RLTCqJjW+C4lF6/+7yQ2PNH/Tzukiah5a/QpI4PBAIPBgPDwcBQUFJg/GwwGaLVapKen47777rNnrdREQgj839Y0VNXqEdfeH4/FRjRpe38f2RnubjIczCzCpsMXbVQlETmL1X0ImZmZCAgIsEctZGffp+Uh6derUCpkeCuh+02dKrpWG18PzI3vCAB47dtTuPhbpS3KJCInadQpoxUrVjR6g3PmzLnpYsh+Kmt0eN10VdHMwbchwt82z0aePqg9fjiZh6PZxXhm/XF8Ob0/lAqr/zuDiJoBSQgh/myhxj4OU5IknD9/vslFOYs1D6N2Nf/cfgbv7T6Htq088OO8wXB3k9ts21lXKzD6X0koq9ZhQv8I/OOBbjbbNhE1jTW/a406QsjMzLRJYeQc56+U48N9xqB+5b4uNg0DAIgM8MI7j/bEtE8O4z/7L6B7Gw0eMQ1xQUSuo0nH9kIINOIAg5zsn9vTUasXuCs6EPd0aXjguqYa2jkYc+M7AAAWbEnFj6fy7bIfIrKfmwqETz/9FN27d4eHhwc8PDwQExOD//znP7aujWzgWPZv2H4yDzLJeFWQPS8NnTOkAx7q1QZ6g8CTXxxF8rn6d7QTUfN1U4PbzZo1CyNHjsTGjRuxceNGjBgxAjNnzsTy5cvtUSPdJCEElmw/AwB4qHdbdAz2tuv+ZDIJSx6OQXznYNToDJi67hD2Zlyx6z6JyHYa1al8rXbt2mHRokXmh+TU+eSTT/Dqq6+6dH9DS+tU3pNxBZPWHIRSIcOu5+5CG18Ph+y3ulaPGf85gj0ZV+Aml/DuuF4Y2b21Q/ZNRJas+V2z+gghNzcXAwYMqDd9wIAByM3NtXZzZCdCCKxIPAsAmNA/wmFhAADubnJ8OLEvRnVvjVq9wJOfH8WKxLMwGNjfRNScWR0IUVFR2LhxY73pGzZsQIcOHWxSFDXdgcwiHLnwG5QKmXl0UkdSKmRYMb4XJsUZ74ZetjMDT35+FBVancNrIaLGsfp5CIsWLcKjjz6KvXv3YuDAgQCAn3/+GYmJiQ0GBTnHql2/AgAe6dsWQT7uTqlBLpOw6P5u6BLqg//bmobtJ/OQsbIMyx/tiR5hvk6piYiur9FHCGlpaQCAhIQEHDhwAAEBAdi6dSu2bt2KgIAAHDx4EA8++KDdCo2MjIQkSRavt956y2KZlJQUDBo0CO7u7ggLC8M///lPu9XTnJ3IKca+s1chl0mYcef1H4npKI/2C8f6J+IQ7KPC+asVeOj9X/Duj2eh0xucXRoRXaPRRwgxMTHo168fHn/8cYwbNw6fffaZPetq0GuvvYbp06ebP3t7/37VTGlpKYYNG4b4+HisXr0aqampmDp1Knx9ffHEE084vFZn+vde401o9/cMRZjfzY1mamt9Ilphx9w78dLWNHyXkovlP2Zg+8k8vP5AN/SJaPzDeYjIfhp9hLBnzx507doV8+fPR+vWrTF58mTs27fPnrXV4+3tjZCQEPPLy+v38Xg+//xz1NTUYM2aNejatSvGjRuHOXPmYNmyZQ6t0dnyS6ux42QeAOM4Q82Jr6cS/xrfC++O6wmNhxtO55Yi4f1f8PxXJ1BQWu3s8ohueY0OhEGDBmHNmjXIzc3FypUrkZmZicGDB6Njx45YsmQJ8vLy7FknAOCtt96Cv78/evXqhaVLl0Kn+72DMjk5GXfeeSeUSqV52vDhw5Geno7ffvutwe1ptVqUlpZavFzdlwezoTMI9Itshc6tm9+ls5Ik4f6ebbDrubvwaF/j8BYbD1/EnUt3Ycn2MyiurHFyhUS3LquvMvLy8sKUKVOwZ88eZGRkYOzYsVi1ahXCw8MxZswYe9QIwDiK6vr167Fr1y7MmDEDb775Jp5//nnz/Ly8PAQHWw7LUPf5emG1ePFiaDQa8ysszLXH36nVG/DFgWwAwGP9m/asA3vz81JiycMx2DxrAHqH+6K61oD3d5/DoH/uwjs/ZqCogsFA5GhW35j2RxUVFfj888+xYMECFBcXN/i85et58cUXsWTJkhsuc/r0aXTq1Kne9DVr1mDGjBkoLy+HSqXCsGHD0K5dO3zwwQfmZU6dOoWuXbvi1KlT6Ny5c71taLVaaLVa8+fS0lKEhYW57I1p21Jz8eTnRxGgVuGXF4e4zDDUQggkni7A//shHWfyygAA7m4yjO0ThscHtbPZUN1EtyKbj3bakL1792LNmjXYvHkzZDIZHnnkEUybNs2qbcyfPx+TJ0++4TLt2zd8Hjw2NhY6nQ5ZWVmIjo5GSEgI8vMtB1Sr+xwSEtLgNlQqFVQqlVU1N2d1Rwfjbw9zmTAAjKeR4rsEY0inIHybmosP9pzDycul+M/+C/jswAXc2SEQ4/qFYWjnYJf6XkSuxqpAuHz5MtatW4d169bh119/xYABA7BixQo88sgjFh28jRUYGIjAwECr1wOA48ePQyaTISgoCAAQFxeHl156CbW1tXBzcwMA7Ny5E9HR0WjVquVfxZJXUo2fz10FADzS1zVPfclkEsb0CMXomNZIPleIf+87j93pV7Anw/jy91IioU9bPNS7DaKDvfkMZyIba3Qg3Hvvvfjxxx8REBCAiRMnYurUqYiOjrZnbWbJyck4cOAA7r77bnh7eyM5ORnPPvssHnvsMfOP/V/+8hcsWrQI06ZNwwsvvIC0tDS8++67t8yAe/89fglCAP0iWzWbS01vliRJGBAVgAFRAci6WoGNh3Ow6chFXCnT4t97z+Pfe8/jtkAvjIoJxX0xre0+aB/RraLRfQhjxozBtGnTcN9990Eut+0DVv7M0aNH8eSTT+LMmTPQarVo164dJkyYgHnz5lmc8klJScHs2bNx6NAhBAQE4Omnn8YLL7zQ6P248uB2I97ZizN5ZXjzwe74S2y4s8uxuVq9AbvTr2Dj4RzsSb+CmmtuamsX4IW7ogNxd3QQbm/nZ/MHABG5Mmt+15rcqdySuGognM0vwz3L98JNLuHQS/Hw9VT++UourLS6Fomn8/FdSi72Zly1CAcPNzkG3OaPOzoEILadPzqFeEMm46klunU5pFOZmo8fTE8nuyMqoMWHAQD4uLvhwV5t8WCvtiirrsXPv17FrjNXsCu9AAVlWiSeKUDimQLTsgr0i/RDbHs/9Iv0Q5dQH6gUPIIgaggDoQWoC4R7ujR8NVVL5u3uhhHdWmNEt9YQQuB0bhl2ZxRg//kiHMkqQmm1ziIg3OQSOoX4oHtbDWLaaNC9rQYdg73hJufVS0QMBBeXX1qNEznFkCQgvkuQs8txKkmS0CXUB11CffDkXYBOb8Cp3FIczCzCgcwiHM4qwm+VtUi9VILUSyX4wrSeUiFDx2A1OgZ5o0Owt/F9sDfa+HrwdBPdUhgILm6n6eigZ5gvgrydM8x1c6WQyxDT1hcxbX3x+KD2EELg4m9VSL1UgpSLJUi9VIyUiyUoq9Yh7VIp0i5ZDl3iqZQjKkiN9gFeCPf3QqS/JyL8PRHu54UAtZKXvVKLw0BwcfvOGp9ZHN85+E+WJEmSEObniTA/T/MjPQ0GgeyiSpzJK8PZ/DJkFJTjbH4Zzl+pQGWNHikXjeHxR15KOcL9vRDh54lQXw+01rgjROOOUF93hGg8EOSt4mkocjkMBBdmMAjsP18EABhwm7+Tq3FNMpmEyAAvRAZ4YUS33/tgdHoDsgorcTa/DJmFFcgurMSFwkpkF1XickkVKmr0OJ1bitO5DQ+IKElAoFqF1r4eCPZWwV+tQoBaiQC1Cv5qJfy9fv+s8XDjqSlqFhgILuxUbilKqmqhVinQvY3G2eW0KAq5DFFBakQFqevN0+r0yCmqQnaRMShyS6qRW1KNvJJq5JZWIa+kGrV6gYIyLQrKtA1s3ZJcJsHPS4lWnm7w9VDCx8MNGouXAhpPy2k+7m7wUing4SZnmJDNMBBcWPK5QgDA7e38oODpCYdRKeTXDQvAeORWWFGDvJJqXC6pQkGZFoXlWhSW16CwQourZTW4WmH8XFJVC71B4EqZFlcaER4N8VTK4aVSwEsph6dSAbVKAU+VHF5KBbxUxmleKuMy7go5VG4yi7/ubg1Nk0Fl+qxSyNhfcotgILiw5PPGQIhrz9NFzYlMJiHQW4VAbxW6t73xkVuNzoCiihpcLdeiuLIWJVX1X6UNTCurroXBdEtpZY0elTV6XLHjd1IpZFAqZFDKZVDIJbjJLd8r5DIo5RIUMhncFDK4yeqmSxbLGV8SFHIZFDIJMkky/pVJkMskyCXTe8l45CSXySCXATLJNP+P65imy8zrAoo/rCNBgiQZT+PJJOn3v4Dpcby/f66bb3xJkEmABONfNLjcDdY3rWfejguEKgPBRRkMAocyjf0Hcew/cFlKhQwhpg5pawghUF1rQEWNDpVaPcq1OlTW6Ex/9ajQ6oyvGj0qa3So0BqnVesMqK7VQ1v395r31bUGaHXGv9U6Pa4dw0CrM0Cr4zOwm8oYFKYgsZhmmoG6+aZpf1gHAN5K6I77YkLtUh8DwUVlFVagTKuDSiFDpxAO7narkSQJHko5PJRyoOEzV00ihECtXqBap4e29vcQ0RkM0OkFavTGv7V6g+kloNMbLKcbBGp1xvk6g0CNaf1avfG9QQjoDQIGIaDTC+iFgMEgoBfG/+DRGwR0pvn6a/6a1zHULS+gN+Ca95bLCQEICBgEjO+FgADM8wzGBepNE6Z2sPzc1HY17qf+hhq/Yb3BfqMNMRBcVNpl49UtnVv7sP+AbE6SJCgVkvH5E7y9xYIQdeFi+gtT6FgEj/EvrgkTcziZPhu39fv6MC5uDiH8YZm69wHe9nuGCwPBRZ28bLw2vlsb1xmEj6glkCRjH4f5HE8Lwv+0dFEnTXfVdg3l5aZEZBsMBBckhEBa3RECA4GIbISnjGzgSpkWxZU1jtuf6RJFhUxCxxA79CgS0S2JgWAD/957Dh/uy3T4fjsGe3NsfyKyGQaCDXgoFfDzcuyDaeQyCRPjIhy6TyJq2fgIzWu46iM0iYiux5rfNXYqExERAAYCERGZMBCIiAgAA4GIiEwYCEREBICBQEREJgwEIiICwEAgIiITBgIREQHg0BUW6m7aLi0tdXIlRES2Ufd71phBKRgI1ygrKwMAhIWFObkSIiLbKisrg0Zz4+HyOZbRNQwGAy5fvgxvb2/zA60bo7S0FGFhYcjJyeEYSH/AtmkY2+X62DYNu9l2EUKgrKwMoaGhkMlu3EvAI4RryGQytG3b9qbX9/Hx4T/g62DbNIztcn1sm4bdTLv82ZFBHXYqExERAAYCERGZMBBsQKVSYeHChVCpVM4updlh2zSM7XJ9bJuGOaJd2KlMREQAeIRAREQmDAQiIgLAQCAiIhMGAhERAWAg2MSqVasQGRkJd3d3xMbG4uDBg84uya727t2L0aNHIzQ0FJIkYevWrRbzhRB45ZVX0Lp1a3h4eCA+Ph5nz561WKaoqAh//etf4ePjA19fX0ybNg3l5eUO/Ba2t3jxYvTr1w/e3t4ICgrCAw88gPT0dItlqqurMXv2bPj7+0OtViMhIQH5+fkWy2RnZ2PUqFHw9PREUFAQ/va3v0Gn0znyq9jc+++/j5iYGPNNVXFxcfj+++/N82/Vdvmjt956C5IkYe7cueZpDm0bQU2yfv16oVQqxZo1a8TJkyfF9OnTha+vr8jPz3d2aXazbds28dJLL4mvv/5aABBbtmyxmP/WW28JjUYjtm7dKk6cOCHGjBkj2rVrJ6qqqszLjBgxQvTo0UPs379f7Nu3T0RFRYnx48c7+JvY1vDhw8XatWtFWlqaOH78uBg5cqQIDw8X5eXl5mVmzpwpwsLCRGJiojh8+LDo37+/GDBggHm+TqcT3bp1E/Hx8eLYsWNi27ZtIiAgQCxYsMAZX8lmvvnmG/Hdd9+JjIwMkZ6eLv7+978LNzc3kZaWJoS4ddvlWgcPHhSRkZEiJiZGPPPMM+bpjmwbBkIT3X777WL27Nnmz3q9XoSGhorFixc7sSrH+WMgGAwGERISIpYuXWqeVlxcLFQqlfjyyy+FEEKcOnVKABCHDh0yL/P9998LSZLEpUuXHFa7vRUUFAgAYs+ePUIIYzu4ubmJTZs2mZc5ffq0ACCSk5OFEMawlclkIi8vz7zM+++/L3x8fIRWq3XsF7CzVq1aiY8++ojtIoQoKysTHTp0EDt37hSDBw82B4Kj24anjJqgpqYGR44cQXx8vHmaTCZDfHw8kpOTnViZ82RmZiIvL8+iTTQaDWJjY81tkpycDF9fX/Tt29e8THx8PGQyGQ4cOODwmu2lpKQEAODn5wcAOHLkCGpray3aplOnTggPD7dom+7duyM4ONi8zPDhw1FaWoqTJ086sHr70ev1WL9+PSoqKhAXF8d2ATB79myMGjXKog0Ax/+b4eB2TXD16lXo9XqL/yEAIDg4GGfOnHFSVc6Vl5cHAA22Sd28vLw8BAUFWcxXKBTw8/MzL+PqDAYD5s6di4EDB6Jbt24AjN9bqVTC19fXYtk/tk1DbVc3z5WlpqYiLi4O1dXVUKvV2LJlC7p06YLjx4/f0u2yfv16HD16FIcOHao3z9H/ZhgIRHYwe/ZspKWlISkpydmlNBvR0dE4fvw4SkpK8NVXX2HSpEnYs2ePs8tyqpycHDzzzDPYuXMn3N3dnV0OrzJqioCAAMjl8no9/vn5+QgJCXFSVc5V971v1CYhISEoKCiwmK/T6VBUVNQi2u2pp57Ct99+i127dlkMpx4SEoKamhoUFxdbLP/Htmmo7ermuTKlUomoqCj06dMHixcvRo8ePfDuu+/e0u1y5MgRFBQUoHfv3lAoFFAoFNizZw9WrFgBhUKB4OBgh7YNA6EJlEol+vTpg8TERPM0g8GAxMRExMXFObEy52nXrh1CQkIs2qS0tBQHDhwwt0lcXByKi4tx5MgR8zI//fQTDAYDYmNjHV6zrQgh8NRTT2HLli346aef0K5dO4v5ffr0gZubm0XbpKenIzs726JtUlNTLQJz586d8PHxQZcuXRzzRRzEYDBAq9Xe0u0ydOhQpKam4vjx4+ZX37598de//tX83qFt0+Tu8Vvc+vXrhUqlEuvWrROnTp0STzzxhPD19bXo8W9pysrKxLFjx8SxY8cEALFs2TJx7NgxceHCBSGE8bJTX19f8d///lekpKSI+++/v8HLTnv16iUOHDggkpKSRIcOHVz+stNZs2YJjUYjdu/eLXJzc82vyspK8zIzZ84U4eHh4qeffhKHDx8WcXFxIi4uzjy/7hLCYcOGiePHj4vt27eLwMBAl7+88sUXXxR79uwRmZmZIiUlRbz44otCkiTxww8/CCFu3XZpyLVXGQnh2LZhINjAypUrRXh4uFAqleL2228X+/fvd3ZJdrVr1y4BoN5r0qRJQgjjpacvv/yyCA4OFiqVSgwdOlSkp6dbbKOwsFCMHz9eqNVq4ePjI6ZMmSLKysqc8G1sp6E2ASDWrl1rXqaqqko8+eSTolWrVsLT01M8+OCDIjc312I7WVlZ4t577xUeHh4iICBAzJ8/X9TW1jr429jW1KlTRUREhFAqlSIwMFAMHTrUHAZC3Lrt0pA/BoIj24bDXxMREQD2IRARkQkDgYiIADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBERAAYCUT2TJ0/GAw884LT9T5gwAW+++abdtn/q1Cm0bdsWFRUVdtsHuSbeqUy3FEmSbjh/4cKFePbZZyGEqDcGvSOcOHECQ4YMwYULF6BWq+22n4cffhg9evTAyy+/bLd9kOthINAt5doHhmzYsAGvvPIK0tPTzdPUarVdf4j/zOOPPw6FQoHVq1fbdT/fffcdpk+fjuzsbCgUfCwKGfGUEd1SQkJCzC+NRgNJkiymqdXqeqeM7rrrLjz99NOYO3cuWrVqheDgYHz44YeoqKjAlClT4O3tjaioKHz//fcW+0pLS8O9994LtVqN4OBgTJgwAVevXr1ubXq9Hl999RVGjx5tMT0yMhKvv/46Jk6cCLVajYiICHzzzTe4cuUK7r//fqjVasTExODw4cPmdS5cuIDRo0ejVatW8PLyQteuXbFt2zbz/HvuuQdFRUW3/ANqyBIDgagRPvnkEwQEBODgwYN4+umnMWvWLIwdOxYDBgzA0aNHMWzYMEyYMAGVlZUAgOLiYgwZMgS9evXC4cOHsX37duTn5+ORRx657j5SUlJQUlJi8azpOsuXL8fAgQNx7NgxjBo1ChMmTMDEiRPx2GOP4ejRo7jtttswceJE1B3wz549G1qtFnv37kVqaiqWLFliceSjVCrRs2dP7Nu3z8YtRS7tZodoJXJ1a9euFRqNpt70SZMmifvvv9/8efDgweKOO+4wf9bpdMLLy0tMmDDBPC03N1cAEMnJyUIIIf7xj3+IYcOGWWw3JydHAKg3FHidLVu2CLlcLgwGg8X0iIgI8dhjj9Xb18svv2yelpycLACYh0Xu3r27ePXVV2/4/R988EExefLkGy5DtxYeIRA1QkxMjPm9XC6Hv78/unfvbp5W91DzuqdWnThxArt27TL3SajVanTq1AkAcO7cuQb3UVVVBZVK1WDH97X7r9vXjfY/Z84cvP766xg4cCAWLlyIlJSUetv08PAwH9EQATxlRNQobm5uFp8lSbKYVvcjbjAYAADl5eUYPXq0xaMRjx8/jrNnz+LOO+9scB8BAQGorKxETU3NDfdft68b7f/xxx/H+fPnMWHCBKSmpqJv375YuXKlxTaLiooQGBjYuAagWwIDgcgOevfujZMnTyIyMhJRUVEWLy8vrwbX6dmzJwDjfQK2EBYWhpkzZ+Lrr7/G/Pnz8eGHH1rMT0tLQ69evWyyL2oZGAhEdjB79mwUFRVh/PjxOHToEM6dO4cdO3ZgypQp0Ov1Da4TGBiI3r17Iykpqcn7nzt3Lnbs2IHMzEwcPXoUu3btQufOnc3zs7KycOnSJcTHxzd5X9RyMBCI7CA0NBQ///wz9Ho9hg0bhu7du2Pu3Lnw9fWFTHb9/9s9/vjj+Pzzz5u8f71ej9mzZ6Nz584YMWIEOnbsiPfee888/8svv8SwYcMQERHR5H1Ry8Eb04iakaqqKkRHR2PDhg2Ii4uzyz5qamrQoUMHfPHFFxg4cKBd9kGuiUcIRM2Ih4cHPv300xvewNZU2dnZ+Pvf/84woHp4hEBERAB4hEBERCYMBCIiAsBAICIiEwYCEREBYCAQEZEJA4GIiAAwEIiIyISBQEREABgIRERk8v8B7iFs9rGZxaYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADeCAYAAAA933f2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp5ElEQVR4nO3deXhTZf428PskadIlbUp3Cl3AQlnLbimIKFRAEFwqCjOyi4AoIjgq408RR0WGV1AYFEcFdFxYRBhHEcTKVi370palRWhpgS7Q2r1Nm+R5/0gaiS3Y0CxNuT/XlavJWb95hsntOc85z5GEEAJERHTLkzm7ACIiah4YCEREBICBQEREJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAXCgQXn31VUiSZPHq1KmTeX51dTVmz54Nf39/qNVqJCQkID8/34kVExG5FpcJBADo2rUrcnNzza+kpCTzvGeffRb/+9//sGnTJuzZsweXL1/GQw895MRqiYhci8LZBVhDoVAgJCSk3vSSkhJ8/PHH+OKLLzBkyBAAwNq1a9G5c2fs378f/fv3d3SpREQux6UC4ezZswgNDYW7uzvi4uKwePFihIeH48iRI6itrUV8fLx52U6dOiE8PBzJycnXDQStVgutVmv+bDAYUFRUBH9/f0iSZPfvQ0Rkb0IIlJWVITQ0FDLZjU8KuUwgxMbGYt26dYiOjkZubi4WLVqEQYMGIS0tDXl5eVAqlfD19bVYJzg4GHl5edfd5uLFi7Fo0SI7V05E5Hw5OTlo27btDZdxmUC49957ze9jYmIQGxuLiIgIbNy4ER4eHje1zQULFmDevHnmzyUlJQgPD0dOTg58fHyaXDMRkbOVlpYiLCwM3t7ef7qsywTCH/n6+qJjx4749ddfcc8996CmpgbFxcUWRwn5+fkN9jnUUalUUKlU9ab7+PgwEIioRWnMaXCXusroWuXl5Th37hxat26NPn36wM3NDYmJieb56enpyM7ORlxcnBOrJCJyHS5zhPDcc89h9OjRiIiIwOXLl7Fw4ULI5XKMHz8eGo0G06ZNw7x58+Dn5wcfHx88/fTTiIuL4xVGRESN5DKBcPHiRYwfPx6FhYUIDAzEHXfcgf379yMwMBAAsHz5cshkMiQkJECr1WL48OF47733nFw1EZHrkIQQwtlFNBelpaXQaDQoKSlhHwIRtQjW/K65bB8CERHZFgOBiIgAMBCIiMiEgUBERAAYCEREZMJAICIiAAwEIiIyYSAQEREABgIREZkwEIiICAADgYiITBgIREQEgIFAREQmDAQiIgLAQCAiIhMGAhERAWAgEBGRCQOBiIgAMBCIiMiEgUBERAAYCEREZMJAICIiAAwEIiIyYSAQEREABgIREZkwEIiICAADgYiITBQ3s1J2djYuXLiAyspKBAYGomvXrlCpVLaujYiIHKjRgZCVlYX3338f69evx8WLFyGEMM9TKpUYNGgQnnjiCSQkJEAm44EHEZGradQv95w5c9CjRw9kZmbi9ddfx6lTp1BSUoKamhrk5eVh27ZtuOOOO/DKK68gJiYGhw4dsnfdRERkY406QvDy8sL58+fh7+9fb15QUBCGDBmCIUOGYOHChdi+fTtycnLQr18/mxdLRET2I4lrz/3c4kpLS6HRaFBSUgIfHx9nl0NE1GTW/K41+mR/3759sXr1apSWlja5QCIian4aHQg9evTA888/j9atW2PChAnYvXu3HcsiIiJHa3QgfPzxx8jLy8OqVauQk5ODoUOHIioqCm+++SYuXbpkzxqJiMgBrLo+1NPTE5MnT8bu3buRkZGBcePG4YMPPkBkZCRGjRqFr7/+2l51EhGRnTW5U1kIgc2bN2PGjBkoLi6GXq+3VW0Ox05lImpprPldu6k7levs3r0ba9euxebNm6FQKDB9+vSmbI6IiJzI6kC4ePEi1q1bh3Xr1uH8+fMYNGgQ3nvvPYwdOxYeHh72qJGIiByg0YGwceNGrFmzBomJiQgKCsKkSZMwdepUREVF2bM+IiJykEYHwmOPPYZRo0Zhy5YtGDlyJMcrIiJqYRodCBcvXkRQUJA9ayEiIidqdCBcGwaXL19GUlISCgoKYDAYLJabM2eO7aojIiKHsbpTed26dZgxYwaUSiX8/f0hSZJ5niRJDAQiIhdl9X0IYWFhmDlzJhYsWNDi+hF4HwIRtTR2GdyuTmVlJcaNG9fiwoCI6FZn9a/6tGnTsGnTJnvUQkRETmT1KSO9Xo/77rsPVVVV6N69O9zc3CzmL1u2zKYFOhJPGRFRS2PXoSsWL16MHTt2IDo6GgDqdSo3B6tWrcLSpUuRl5eHHj16YOXKlbj99tudXRYRUbNmdSC8/fbbWLNmDSZPnmyHcppuw4YNmDdvHlavXo3Y2Fi88847GD58ONLT03kfBRHRDVjdh6BSqTBw4EB71GITy5Ytw/Tp0zFlyhR06dIFq1evhqenJ9asWePs0oiImjWrA+GZZ57BypUr7VFLk9XU1ODIkSOIj483T5PJZIiPj0dycnK95bVaLUpLSy1eRES3KqtPGR08eBA//fQTvv32W3Tt2rVep7IzH5Jz9epV6PV6BAcHW0wPDg7GmTNn6i2/ePFiLFq0yFHlERE1a1YHgq+vLx566CF71OJwCxYswLx588yfS0tLERYW5sSKiIicx+pAWLt2rT3qsImAgADI5XLk5+dbTM/Pz0dISEi95VUqFVQqlaPKIyJq1lrU7cZKpRJ9+vRBYmKieZrBYEBiYiLi4uKcWBkRUfPXqEAYMWIE9u/f/6fLlZWVYcmSJVi1alWTC7tZ8+bNw4cffohPPvkEp0+fxqxZs1BRUYEpU6Y4rSYiIlfQqFNGY8eORUJCAjQaDUaPHo2+ffsiNDQU7u7u+O2333Dq1CkkJSVh27ZtGDVqFJYuXWrvuq/r0UcfxZUrV/DKK68gLy8PPXv2xPbt2+t1NBMRkaVGD12h1WqxadMmbNiwAUlJSSgpKTFuQJLQpUsXDB8+HNOmTUPnzp3tWrA9cegKImpprPlds3osozolJSWoqqqCv79/vUtPXRUDgYhaGruOZVRHo9FAo9Hc7OpERNTMtKirjIiI6OYxEIiICAADgYiITBgIREQE4CYDobi4GB999BEWLFiAoqIiAMDRo0dx6dIlmxZHRESOY/VVRikpKYiPj4dGo0FWVhamT58OPz8/fP3118jOzsann35qjzqJiMjOrD5CmDdvHiZPnoyzZ8/C3d3dPH3kyJHYu3evTYsjIiLHsToQDh06hBkzZtSb3qZNG+Tl5dmkKCIicrybeoRmQ08Wy8jIQGBgoE2KIiIix7M6EMaMGYPXXnsNtbW1AIxjGWVnZ+OFF15AQkKCzQskIiLHsDoQ3n77bZSXlyMoKAhVVVUYPHgwoqKi4O3tjTfeeMMeNRIRkQNYfZWRRqPBzp07kZSUhJSUFJSXl6N3794WD7YnIiLXc9OjnbZEHO2UiFoau452umLFiganS5IEd3d3REVF4c4774RcLrd200RE5ERWB8Ly5ctx5coVVFZWolWrVgCA3377DZ6enlCr1SgoKED79u2xa9cuhIWF2bxgIiKyD6s7ld98803069cPZ8+eRWFhIQoLC5GRkYHY2Fi8++67yM7ORkhICJ599ll71EtERHZidR/Cbbfdhs2bN6Nnz54W048dO4aEhAScP38ev/zyCxISEpCbm2vLWu2OfQjXt/98IUJ83BEZ4OXsUojICtb8rll9hJCbmwudTldvuk6nM9+pHBoairKyMms3Tc3U+7vPYdy/92Py2oPOLoWI7MjqQLj77rsxY8YMHDt2zDzt2LFjmDVrFoYMGQIASE1NRbt27WxXJTnNFweysWT7GQBAVmElLhdXObkiIrIXqwPh448/hp+fH/r06QOVSgWVSoW+ffvCz88PH3/8MQBArVbj7bfftnmx5Fg/nMzD/21NtZh2LLvYOcUQkd1ZfZVRSEgIdu7ciTNnziAjIwMAEB0djejoaPMyd999t+0qJKc4cqEIT395DAYBPNo3DG4KCZ/tz8bhC0UYFdPa2eURkR1YHQh1OnXqhE6dOtmyFmomfi0ox7RPDkOrM2BIpyC88WA37DiZj8/2Z2Pf2avOLo+I7OSmAuHixYv45ptvkJ2djZqaGot5y5Yts0lh5BxXy7WYtOYgiitr0SPMF//6Sy8o5DLc0SEAcpmEXwvKkVNUiTA/T2eXSkQ2ZnUgJCYmYsyYMWjfvj3OnDmDbt26ISsrC0II9O7d2x41koPU6Ax48rOjuFRchUh/T6yZ1BeeSuM/EY2HG/pEtMLBzCLsSi/AxLhI5xZLRDZndafyggUL8NxzzyE1NRXu7u7YvHkzcnJyMHjwYIwdO9YeNZKDvPbtSRzMKoK3SoGPJvWDv1plMX9IpyAAwK4zBc4oj4jszOpAOH36NCZOnAgAUCgUqKqqglqtxmuvvYYlS5bYvEByjC8OZOOz/dmQJOCdcT0RFaSut8zd0cZA+OVcIUqrax1dIhHZmdWB4OXlZe43aN26Nc6dO2eed/UqOxxdUerFErz6zUkAwHPDojG0c3CDy3UMVqNDkBpanQH/O3HZkSUSkQNYHQj9+/dHUlISAGDkyJGYP38+3njjDUydOhX9+/e3eYFkX2XVtXjqy6Oo0RswrEswnrzrtusuK0kSHu1nHLBww6EcR5VIRA5idSAsW7YMsbGxAIBFixZh6NCh2LBhAyIjI803ppFrEEJgwdepuFBYiTa+Hlj6cA9IknTDdR7s1QZucgkpF0tw8nKJgyolIkew+iqj9u3bm997eXlh9erVNi2IHGfDoRx8m5ILhUzCyr/0gsbT7U/X8VerMKxrCL5LycXH+zKx7NGe9i+UiBzC6iOE9u3bo7CwsN704uJii7Cg5i27sBKvfXsKAPDc8Gj0Dm/V6HVn3Gn83/m/Jy7jQmGFXeojIsezOhCysrKg1+vrTddqtbh06ZJNiiL7MhgE/vbVCVTW6BHbzg9PDLIuyGPa+mJwx0DoDQLv7Tr35ysQkUto9Cmjb775xvx+x44d0Gg05s96vR6JiYmIjIy0aXFkH58mZ+FAZhE8lXIsfbgHZLIb9xs0ZM7QDtiTcQWbjuRg0oBIdAnl8yOIXF2jA+GBBx4AYLzSZNKkSRbz3NzcEBkZyRFOXUDW1Qos2Z4OAHjx3k4I97+5ISj6RLTCqJjW+C4lF6/+7yQ2PNH/Tzukiah5a/QpI4PBAIPBgPDwcBQUFJg/GwwGaLVapKen47777rNnrdREQgj839Y0VNXqEdfeH4/FRjRpe38f2RnubjIczCzCpsMXbVQlETmL1X0ImZmZCAgIsEctZGffp+Uh6derUCpkeCuh+02dKrpWG18PzI3vCAB47dtTuPhbpS3KJCInadQpoxUrVjR6g3PmzLnpYsh+Kmt0eN10VdHMwbchwt82z0aePqg9fjiZh6PZxXhm/XF8Ob0/lAqr/zuDiJoBSQgh/myhxj4OU5IknD9/vslFOYs1D6N2Nf/cfgbv7T6Htq088OO8wXB3k9ts21lXKzD6X0koq9ZhQv8I/OOBbjbbNhE1jTW/a406QsjMzLRJYeQc56+U48N9xqB+5b4uNg0DAIgM8MI7j/bEtE8O4z/7L6B7Gw0eMQ1xQUSuo0nH9kIINOIAg5zsn9vTUasXuCs6EPd0aXjguqYa2jkYc+M7AAAWbEnFj6fy7bIfIrKfmwqETz/9FN27d4eHhwc8PDwQExOD//znP7aujWzgWPZv2H4yDzLJeFWQPS8NnTOkAx7q1QZ6g8CTXxxF8rn6d7QTUfN1U4PbzZo1CyNHjsTGjRuxceNGjBgxAjNnzsTy5cvtUSPdJCEElmw/AwB4qHdbdAz2tuv+ZDIJSx6OQXznYNToDJi67hD2Zlyx6z6JyHYa1al8rXbt2mHRokXmh+TU+eSTT/Dqq6+6dH9DS+tU3pNxBZPWHIRSIcOu5+5CG18Ph+y3ulaPGf85gj0ZV+Aml/DuuF4Y2b21Q/ZNRJas+V2z+gghNzcXAwYMqDd9wIAByM3NtXZzZCdCCKxIPAsAmNA/wmFhAADubnJ8OLEvRnVvjVq9wJOfH8WKxLMwGNjfRNScWR0IUVFR2LhxY73pGzZsQIcOHWxSFDXdgcwiHLnwG5QKmXl0UkdSKmRYMb4XJsUZ74ZetjMDT35+FBVancNrIaLGsfp5CIsWLcKjjz6KvXv3YuDAgQCAn3/+GYmJiQ0GBTnHql2/AgAe6dsWQT7uTqlBLpOw6P5u6BLqg//bmobtJ/OQsbIMyx/tiR5hvk6piYiur9FHCGlpaQCAhIQEHDhwAAEBAdi6dSu2bt2KgIAAHDx4EA8++KDdCo2MjIQkSRavt956y2KZlJQUDBo0CO7u7ggLC8M///lPu9XTnJ3IKca+s1chl0mYcef1H4npKI/2C8f6J+IQ7KPC+asVeOj9X/Duj2eh0xucXRoRXaPRRwgxMTHo168fHn/8cYwbNw6fffaZPetq0GuvvYbp06ebP3t7/37VTGlpKYYNG4b4+HisXr0aqampmDp1Knx9ffHEE084vFZn+vde401o9/cMRZjfzY1mamt9Ilphx9w78dLWNHyXkovlP2Zg+8k8vP5AN/SJaPzDeYjIfhp9hLBnzx507doV8+fPR+vWrTF58mTs27fPnrXV4+3tjZCQEPPLy+v38Xg+//xz1NTUYM2aNejatSvGjRuHOXPmYNmyZQ6t0dnyS6ux42QeAOM4Q82Jr6cS/xrfC++O6wmNhxtO55Yi4f1f8PxXJ1BQWu3s8ohueY0OhEGDBmHNmjXIzc3FypUrkZmZicGDB6Njx45YsmQJ8vLy7FknAOCtt96Cv78/evXqhaVLl0Kn+72DMjk5GXfeeSeUSqV52vDhw5Geno7ffvutwe1ptVqUlpZavFzdlwezoTMI9Itshc6tm9+ls5Ik4f6ebbDrubvwaF/j8BYbD1/EnUt3Ycn2MyiurHFyhUS3LquvMvLy8sKUKVOwZ88eZGRkYOzYsVi1ahXCw8MxZswYe9QIwDiK6vr167Fr1y7MmDEDb775Jp5//nnz/Ly8PAQHWw7LUPf5emG1ePFiaDQa8ysszLXH36nVG/DFgWwAwGP9m/asA3vz81JiycMx2DxrAHqH+6K61oD3d5/DoH/uwjs/ZqCogsFA5GhW35j2RxUVFfj888+xYMECFBcXN/i85et58cUXsWTJkhsuc/r0aXTq1Kne9DVr1mDGjBkoLy+HSqXCsGHD0K5dO3zwwQfmZU6dOoWuXbvi1KlT6Ny5c71taLVaaLVa8+fS0lKEhYW57I1p21Jz8eTnRxGgVuGXF4e4zDDUQggkni7A//shHWfyygAA7m4yjO0ThscHtbPZUN1EtyKbj3bakL1792LNmjXYvHkzZDIZHnnkEUybNs2qbcyfPx+TJ0++4TLt2zd8Hjw2NhY6nQ5ZWVmIjo5GSEgI8vMtB1Sr+xwSEtLgNlQqFVQqlVU1N2d1Rwfjbw9zmTAAjKeR4rsEY0inIHybmosP9pzDycul+M/+C/jswAXc2SEQ4/qFYWjnYJf6XkSuxqpAuHz5MtatW4d169bh119/xYABA7BixQo88sgjFh28jRUYGIjAwECr1wOA48ePQyaTISgoCAAQFxeHl156CbW1tXBzcwMA7Ny5E9HR0WjVquVfxZJXUo2fz10FADzS1zVPfclkEsb0CMXomNZIPleIf+87j93pV7Anw/jy91IioU9bPNS7DaKDvfkMZyIba3Qg3Hvvvfjxxx8REBCAiRMnYurUqYiOjrZnbWbJyck4cOAA7r77bnh7eyM5ORnPPvssHnvsMfOP/V/+8hcsWrQI06ZNwwsvvIC0tDS8++67t8yAe/89fglCAP0iWzWbS01vliRJGBAVgAFRAci6WoGNh3Ow6chFXCnT4t97z+Pfe8/jtkAvjIoJxX0xre0+aB/RraLRfQhjxozBtGnTcN9990Eut+0DVv7M0aNH8eSTT+LMmTPQarVo164dJkyYgHnz5lmc8klJScHs2bNx6NAhBAQE4Omnn8YLL7zQ6P248uB2I97ZizN5ZXjzwe74S2y4s8uxuVq9AbvTr2Dj4RzsSb+CmmtuamsX4IW7ogNxd3QQbm/nZ/MHABG5Mmt+15rcqdySuGognM0vwz3L98JNLuHQS/Hw9VT++UourLS6Fomn8/FdSi72Zly1CAcPNzkG3OaPOzoEILadPzqFeEMm46klunU5pFOZmo8fTE8nuyMqoMWHAQD4uLvhwV5t8WCvtiirrsXPv17FrjNXsCu9AAVlWiSeKUDimQLTsgr0i/RDbHs/9Iv0Q5dQH6gUPIIgaggDoQWoC4R7ujR8NVVL5u3uhhHdWmNEt9YQQuB0bhl2ZxRg//kiHMkqQmm1ziIg3OQSOoX4oHtbDWLaaNC9rQYdg73hJufVS0QMBBeXX1qNEznFkCQgvkuQs8txKkmS0CXUB11CffDkXYBOb8Cp3FIczCzCgcwiHM4qwm+VtUi9VILUSyX4wrSeUiFDx2A1OgZ5o0Owt/F9sDfa+HrwdBPdUhgILm6n6eigZ5gvgrydM8x1c6WQyxDT1hcxbX3x+KD2EELg4m9VSL1UgpSLJUi9VIyUiyUoq9Yh7VIp0i5ZDl3iqZQjKkiN9gFeCPf3QqS/JyL8PRHu54UAtZKXvVKLw0BwcfvOGp9ZHN85+E+WJEmSEObniTA/T/MjPQ0GgeyiSpzJK8PZ/DJkFJTjbH4Zzl+pQGWNHikXjeHxR15KOcL9vRDh54lQXw+01rgjROOOUF93hGg8EOSt4mkocjkMBBdmMAjsP18EABhwm7+Tq3FNMpmEyAAvRAZ4YUS33/tgdHoDsgorcTa/DJmFFcgurMSFwkpkF1XickkVKmr0OJ1bitO5DQ+IKElAoFqF1r4eCPZWwV+tQoBaiQC1Cv5qJfy9fv+s8XDjqSlqFhgILuxUbilKqmqhVinQvY3G2eW0KAq5DFFBakQFqevN0+r0yCmqQnaRMShyS6qRW1KNvJJq5JZWIa+kGrV6gYIyLQrKtA1s3ZJcJsHPS4lWnm7w9VDCx8MNGouXAhpPy2k+7m7wUing4SZnmJDNMBBcWPK5QgDA7e38oODpCYdRKeTXDQvAeORWWFGDvJJqXC6pQkGZFoXlWhSW16CwQourZTW4WmH8XFJVC71B4EqZFlcaER4N8VTK4aVSwEsph6dSAbVKAU+VHF5KBbxUxmleKuMy7go5VG4yi7/ubg1Nk0Fl+qxSyNhfcotgILiw5PPGQIhrz9NFzYlMJiHQW4VAbxW6t73xkVuNzoCiihpcLdeiuLIWJVX1X6UNTCurroXBdEtpZY0elTV6XLHjd1IpZFAqZFDKZVDIJbjJLd8r5DIo5RIUMhncFDK4yeqmSxbLGV8SFHIZFDIJMkky/pVJkMskyCXTe8l45CSXySCXATLJNP+P65imy8zrAoo/rCNBgiQZT+PJJOn3v4Dpcby/f66bb3xJkEmABONfNLjcDdY3rWfejguEKgPBRRkMAocyjf0Hcew/cFlKhQwhpg5pawghUF1rQEWNDpVaPcq1OlTW6Ex/9ajQ6oyvGj0qa3So0BqnVesMqK7VQ1v395r31bUGaHXGv9U6Pa4dw0CrM0Cr4zOwm8oYFKYgsZhmmoG6+aZpf1gHAN5K6I77YkLtUh8DwUVlFVagTKuDSiFDpxAO7narkSQJHko5PJRyoOEzV00ihECtXqBap4e29vcQ0RkM0OkFavTGv7V6g+kloNMbLKcbBGp1xvk6g0CNaf1avfG9QQjoDQIGIaDTC+iFgMEgoBfG/+DRGwR0pvn6a/6a1zHULS+gN+Ca95bLCQEICBgEjO+FgADM8wzGBepNE6Z2sPzc1HY17qf+hhq/Yb3BfqMNMRBcVNpl49UtnVv7sP+AbE6SJCgVkvH5E7y9xYIQdeFi+gtT6FgEj/EvrgkTcziZPhu39fv6MC5uDiH8YZm69wHe9nuGCwPBRZ28bLw2vlsb1xmEj6glkCRjH4f5HE8Lwv+0dFEnTXfVdg3l5aZEZBsMBBckhEBa3RECA4GIbISnjGzgSpkWxZU1jtuf6RJFhUxCxxA79CgS0S2JgWAD/957Dh/uy3T4fjsGe3NsfyKyGQaCDXgoFfDzcuyDaeQyCRPjIhy6TyJq2fgIzWu46iM0iYiux5rfNXYqExERAAYCERGZMBCIiAgAA4GIiEwYCEREBICBQEREJgwEIiICwEAgIiITBgIREQHg0BUW6m7aLi0tdXIlRES2Ufd71phBKRgI1ygrKwMAhIWFObkSIiLbKisrg0Zz4+HyOZbRNQwGAy5fvgxvb2/zA60bo7S0FGFhYcjJyeEYSH/AtmkY2+X62DYNu9l2EUKgrKwMoaGhkMlu3EvAI4RryGQytG3b9qbX9/Hx4T/g62DbNIztcn1sm4bdTLv82ZFBHXYqExERAAYCERGZMBBsQKVSYeHChVCpVM4updlh2zSM7XJ9bJuGOaJd2KlMREQAeIRAREQmDAQiIgLAQCAiIhMGAhERAWAg2MSqVasQGRkJd3d3xMbG4uDBg84uya727t2L0aNHIzQ0FJIkYevWrRbzhRB45ZVX0Lp1a3h4eCA+Ph5nz561WKaoqAh//etf4ePjA19fX0ybNg3l5eUO/Ba2t3jxYvTr1w/e3t4ICgrCAw88gPT0dItlqqurMXv2bPj7+0OtViMhIQH5+fkWy2RnZ2PUqFHw9PREUFAQ/va3v0Gn0znyq9jc+++/j5iYGPNNVXFxcfj+++/N82/Vdvmjt956C5IkYe7cueZpDm0bQU2yfv16oVQqxZo1a8TJkyfF9OnTha+vr8jPz3d2aXazbds28dJLL4mvv/5aABBbtmyxmP/WW28JjUYjtm7dKk6cOCHGjBkj2rVrJ6qqqszLjBgxQvTo0UPs379f7Nu3T0RFRYnx48c7+JvY1vDhw8XatWtFWlqaOH78uBg5cqQIDw8X5eXl5mVmzpwpwsLCRGJiojh8+LDo37+/GDBggHm+TqcT3bp1E/Hx8eLYsWNi27ZtIiAgQCxYsMAZX8lmvvnmG/Hdd9+JjIwMkZ6eLv7+978LNzc3kZaWJoS4ddvlWgcPHhSRkZEiJiZGPPPMM+bpjmwbBkIT3X777WL27Nnmz3q9XoSGhorFixc7sSrH+WMgGAwGERISIpYuXWqeVlxcLFQqlfjyyy+FEEKcOnVKABCHDh0yL/P9998LSZLEpUuXHFa7vRUUFAgAYs+ePUIIYzu4ubmJTZs2mZc5ffq0ACCSk5OFEMawlclkIi8vz7zM+++/L3x8fIRWq3XsF7CzVq1aiY8++ojtIoQoKysTHTp0EDt37hSDBw82B4Kj24anjJqgpqYGR44cQXx8vHmaTCZDfHw8kpOTnViZ82RmZiIvL8+iTTQaDWJjY81tkpycDF9fX/Tt29e8THx8PGQyGQ4cOODwmu2lpKQEAODn5wcAOHLkCGpray3aplOnTggPD7dom+7duyM4ONi8zPDhw1FaWoqTJ086sHr70ev1WL9+PSoqKhAXF8d2ATB79myMGjXKog0Ax/+b4eB2TXD16lXo9XqL/yEAIDg4GGfOnHFSVc6Vl5cHAA22Sd28vLw8BAUFWcxXKBTw8/MzL+PqDAYD5s6di4EDB6Jbt24AjN9bqVTC19fXYtk/tk1DbVc3z5WlpqYiLi4O1dXVUKvV2LJlC7p06YLjx4/f0u2yfv16HD16FIcOHao3z9H/ZhgIRHYwe/ZspKWlISkpydmlNBvR0dE4fvw4SkpK8NVXX2HSpEnYs2ePs8tyqpycHDzzzDPYuXMn3N3dnV0OrzJqioCAAMjl8no9/vn5+QgJCXFSVc5V971v1CYhISEoKCiwmK/T6VBUVNQi2u2pp57Ct99+i127dlkMpx4SEoKamhoUFxdbLP/Htmmo7ermuTKlUomoqCj06dMHixcvRo8ePfDuu+/e0u1y5MgRFBQUoHfv3lAoFFAoFNizZw9WrFgBhUKB4OBgh7YNA6EJlEol+vTpg8TERPM0g8GAxMRExMXFObEy52nXrh1CQkIs2qS0tBQHDhwwt0lcXByKi4tx5MgR8zI//fQTDAYDYmNjHV6zrQgh8NRTT2HLli346aef0K5dO4v5ffr0gZubm0XbpKenIzs726JtUlNTLQJz586d8PHxQZcuXRzzRRzEYDBAq9Xe0u0ydOhQpKam4vjx4+ZX37598de//tX83qFt0+Tu8Vvc+vXrhUqlEuvWrROnTp0STzzxhPD19bXo8W9pysrKxLFjx8SxY8cEALFs2TJx7NgxceHCBSGE8bJTX19f8d///lekpKSI+++/v8HLTnv16iUOHDggkpKSRIcOHVz+stNZs2YJjUYjdu/eLXJzc82vyspK8zIzZ84U4eHh4qeffhKHDx8WcXFxIi4uzjy/7hLCYcOGiePHj4vt27eLwMBAl7+88sUXXxR79uwRmZmZIiUlRbz44otCkiTxww8/CCFu3XZpyLVXGQnh2LZhINjAypUrRXh4uFAqleL2228X+/fvd3ZJdrVr1y4BoN5r0qRJQgjjpacvv/yyCA4OFiqVSgwdOlSkp6dbbKOwsFCMHz9eqNVq4ePjI6ZMmSLKysqc8G1sp6E2ASDWrl1rXqaqqko8+eSTolWrVsLT01M8+OCDIjc312I7WVlZ4t577xUeHh4iICBAzJ8/X9TW1jr429jW1KlTRUREhFAqlSIwMFAMHTrUHAZC3Lrt0pA/BoIj24bDXxMREQD2IRARkQkDgYiIADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBERAAYCUT2TJ0/GAw884LT9T5gwAW+++abdtn/q1Cm0bdsWFRUVdtsHuSbeqUy3FEmSbjh/4cKFePbZZyGEqDcGvSOcOHECQ4YMwYULF6BWq+22n4cffhg9evTAyy+/bLd9kOthINAt5doHhmzYsAGvvPIK0tPTzdPUarVdf4j/zOOPPw6FQoHVq1fbdT/fffcdpk+fjuzsbCgUfCwKGfGUEd1SQkJCzC+NRgNJkiymqdXqeqeM7rrrLjz99NOYO3cuWrVqheDgYHz44YeoqKjAlClT4O3tjaioKHz//fcW+0pLS8O9994LtVqN4OBgTJgwAVevXr1ubXq9Hl999RVGjx5tMT0yMhKvv/46Jk6cCLVajYiICHzzzTe4cuUK7r//fqjVasTExODw4cPmdS5cuIDRo0ejVatW8PLyQteuXbFt2zbz/HvuuQdFRUW3/ANqyBIDgagRPvnkEwQEBODgwYN4+umnMWvWLIwdOxYDBgzA0aNHMWzYMEyYMAGVlZUAgOLiYgwZMgS9evXC4cOHsX37duTn5+ORRx657j5SUlJQUlJi8azpOsuXL8fAgQNx7NgxjBo1ChMmTMDEiRPx2GOP4ejRo7jtttswceJE1B3wz549G1qtFnv37kVqaiqWLFliceSjVCrRs2dP7Nu3z8YtRS7tZodoJXJ1a9euFRqNpt70SZMmifvvv9/8efDgweKOO+4wf9bpdMLLy0tMmDDBPC03N1cAEMnJyUIIIf7xj3+IYcOGWWw3JydHAKg3FHidLVu2CLlcLgwGg8X0iIgI8dhjj9Xb18svv2yelpycLACYh0Xu3r27ePXVV2/4/R988EExefLkGy5DtxYeIRA1QkxMjPm9XC6Hv78/unfvbp5W91DzuqdWnThxArt27TL3SajVanTq1AkAcO7cuQb3UVVVBZVK1WDH97X7r9vXjfY/Z84cvP766xg4cCAWLlyIlJSUetv08PAwH9EQATxlRNQobm5uFp8lSbKYVvcjbjAYAADl5eUYPXq0xaMRjx8/jrNnz+LOO+9scB8BAQGorKxETU3NDfdft68b7f/xxx/H+fPnMWHCBKSmpqJv375YuXKlxTaLiooQGBjYuAagWwIDgcgOevfujZMnTyIyMhJRUVEWLy8vrwbX6dmzJwDjfQK2EBYWhpkzZ+Lrr7/G/Pnz8eGHH1rMT0tLQ69evWyyL2oZGAhEdjB79mwUFRVh/PjxOHToEM6dO4cdO3ZgypQp0Ov1Da4TGBiI3r17Iykpqcn7nzt3Lnbs2IHMzEwcPXoUu3btQufOnc3zs7KycOnSJcTHxzd5X9RyMBCI7CA0NBQ///wz9Ho9hg0bhu7du2Pu3Lnw9fWFTHb9/9s9/vjj+Pzzz5u8f71ej9mzZ6Nz584YMWIEOnbsiPfee888/8svv8SwYcMQERHR5H1Ry8Eb04iakaqqKkRHR2PDhg2Ii4uzyz5qamrQoUMHfPHFFxg4cKBd9kGuiUcIRM2Ih4cHPv300xvewNZU2dnZ+Pvf/84woHp4hEBERAB4hEBERCYMBCIiAsBAICIiEwYCEREBYCAQEZEJA4GIiAAwEIiIyISBQEREABgIRERk8v8B7iFs9rGZxaYAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -266,22 +264,22 @@
},
{
"cell_type": "markdown",
- "id": "784e1904",
+ "id": "63056871",
"metadata": {},
"source": [
"### Your own synapse\n",
"\n",
- "The parts below assume that you have already learned how to [build network simulations in `Jaxley`](https://jaxleyverse.github.io/jaxley/latest/tutorial/02_small_network/).\n",
+ "The parts below assume that you have already learned how to [build network simulations in `Jaxley`](https://jaxley.readthedocs.io/en/latest/tutorials/02_small_network.html).\n",
"\n",
"Note that again, a synapse needs to have the two functions `update_states` and `compute_current` with all input arguments shown below. \n",
"\n",
- "The below is an example of how to define your own synapse model in `Jaxley`:`"
+ "The below is an example of how to define your own synapse model in `Jaxley`:"
]
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "0cd18715",
+ "execution_count": 8,
+ "id": "5c6e7e9a",
"metadata": {},
"outputs": [],
"source": [
@@ -312,7 +310,7 @@
},
{
"cell_type": "markdown",
- "id": "760999d4",
+ "id": "eb80aa94",
"metadata": {},
"source": [
"As you can see above, synapses follow closely how channels are defined. The main difference is that the `compute_current` method takes two voltages: the pre-synaptic voltage (a `jnp.ndarray` of shape `()`) and the post-synaptic voltage (a `jnp.ndarray` of shape `()`)."
@@ -320,8 +318,8 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "id": "819de78d",
+ "execution_count": 9,
+ "id": "ee961d5d",
"metadata": {},
"outputs": [],
"source": [
@@ -330,8 +328,8 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "id": "b453a9f1",
+ "execution_count": 10,
+ "id": "2db6ac96",
"metadata": {},
"outputs": [],
"source": [
@@ -344,8 +342,8 @@
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "5a6b35a4",
+ "execution_count": 11,
+ "id": "522ce876",
"metadata": {},
"outputs": [
{
@@ -367,8 +365,8 @@
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "0bafd39a",
+ "execution_count": 12,
+ "id": "d94c2440",
"metadata": {},
"outputs": [],
"source": [
@@ -377,13 +375,13 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "57fa3456",
+ "execution_count": 13,
+ "id": "14ea80f5",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADeCAYAAAA933f2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx30lEQVR4nO3dd3xUdb7/8ddMJjPpE9IJJAQIhiJFWgigrBCRIrqKjV3pIrBYKLorekXxurJer2D5YbmugO6qgFjWVSwsUiUUqaHXFCCFJKQnk8zM9/fHSQZiAiaQyaR8no/HeZyZc87M+cwhzHvO+Z7zPTqllEIIIUSLp3d1AUIIIRoHCQQhhBCABIIQQogKEghCCCEACQQhhBAVJBCEEEIAEghCCCEqSCAIIYQAJBCEEEJUkEAQQggBNKFAeOGFF9DpdFWGzp07O+aXlpYya9YsAgMD8fHxYezYsWRkZLiwYiGEaFqaTCAAdOvWjbS0NMewdetWx7w5c+bw73//m88++4xNmzZx/vx57rnnHhdWK4QQTYvB1QXUhcFgICwsrNr0vLw8PvjgAz755BOGDh0KwPLly+nSpQvbt29nwIABDV2qEEI0OU0qEE6cOEF4eDgeHh7ExcWxaNEiIiMj2b17N+Xl5cTHxzuW7dy5M5GRkSQkJFwxECwWCxaLxfHcbreTk5NDYGAgOp3O6Z9HCCGcTSlFQUEB4eHh6PVXPyjUZAIhNjaWFStWEBMTQ1paGgsXLuTmm2/m4MGDpKenYzQa8ff3r/Ka0NBQ0tPTr/ieixYtYuHChU6uXAghXC81NZW2bdtedZkmEwgjR450PO7RowexsbG0a9eO1atX4+npeU3vOX/+fObOnet4npeXR2RkJKmpqfj5+V13zUII4Wr5+flERETg6+v7m8s2mUD4NX9/f2644QZOnjzJbbfdRllZGbm5uVX2EjIyMmpsc6hkMpkwmUzVpvv5+UkgCCGaldocBm9SZxldrrCwkFOnTtG6dWv69OmDu7s769evd8w/duwYKSkpxMXFubBKIYRoOprMHsKTTz7JmDFjaNeuHefPn+f555/Hzc2NcePGYTabmTp1KnPnziUgIAA/Pz8ee+wx4uLi5AwjIYSopSYTCGfPnmXcuHFkZ2cTHBzM4MGD2b59O8HBwQAsWbIEvV7P2LFjsVgs3H777bz99tsurloIIZoOnVJKubqIxiI/Px+z2UxeXp60IQghmoW6fK812TYEIYQQ9UsCQQghBCCBIIQQooIEghBCCEACQQghRAUJBCGEEIAEghBCiAoSCEIIIQAJBCGEEBUkEIQQQgASCEIIISpIIAghhAAkEIQQQlSQQBBCCAFIIAghhKgggSCEEAKQQBBCCFFBAkEIIQQggSCEEKKCBIIQQghAAkEIIUQFCQQhhBCABIIQQogKEghCCCEACQQhhBAVJBCEEEIAEghCCCEqGK7lRSkpKSQnJ1NcXExwcDDdunXDZDLVd21CCCEaUK0DISkpiXfeeYeVK1dy9uxZlFKOeUajkZtvvplHHnmEsWPHotfLjocQQjQ1tfrmfvzxx+nZsydnzpzhpZde4vDhw+Tl5VFWVkZ6ejpr165l8ODBLFiwgB49erBr1y5n1y2EEKKe1WoPwdvbm9OnTxMYGFhtXkhICEOHDmXo0KE8//zzfP/996SmptKvX796L1YIIYTz6NTlx35auPz8fMxmM3l5efj5+bm6HCGEuG51+V6r9cH+vn378u6775Kfn3/dBQohhGh8ah0IPXv25M9//jOtW7dm/PjxbNy40YllCSGEaGi1DoQPPviA9PR0li5dSmpqKsOGDSM6OpqXX36Zc+fOObNGIYQQDaBO54d6eXkxadIkNm7cyPHjx3nwwQd57733iIqKYvTo0XzxxRfOqlMIIYSTXXejslKKzz//nOnTp5Obm4vNZquv2hqcNCoLIZqbunyvXdOVypU2btzI8uXL+fzzzzEYDEybNu163k4IIYQL1TkQzp49y4oVK1ixYgWnT5/m5ptv5u233+a+++7D09PTGTUKIYRoALUOhNWrV7Ns2TLWr19PSEgIEydOZMqUKURHRzuzPiGEEA2k1oHw0EMPMXr0aL788ktGjRol/RUJIUQzU+tAOHv2LCEhIc6sRQghhAvVOhAuD4Pz58+zdetWMjMzsdvtVZZ7/PHH6686IYQQDabOjcorVqxg+vTpGI1GAgMD0el0jnk6nU4CQQghmqg6X4cQERHBjBkzmD9/frNrR5DrEIQQzY1TOrerVFxczIMPPtjswkAIIVq6On+rT506lc8++8wZtQghhHChOh8ystls3HHHHZSUlNC9e3fc3d2rzF+8eHG9FtiQ5JCREKK5cWrXFYsWLeKHH34gJiYGoFqjcmOwdOlSXn31VdLT0+nZsydvvfUW/fv3d3VZQgjRqNU5EF577TWWLVvGpEmTnFDO9Vu1ahVz587l3XffJTY2ltdff53bb7+dY8eOyXUUQghxFXVuQzCZTAwaNMgZtdSLxYsXM23aNCZPnkzXrl1599138fLyYtmyZa4uTQghGrU6B8ITTzzBW2+95YxarltZWRm7d+8mPj7eMU2v1xMfH09CQkK15S0WC/n5+VUGIYRoqep8yGjnzp389NNPfPPNN3Tr1q1ao7Irb5KTlZWFzWYjNDS0yvTQ0FCOHj1abflFixaxcOHChipPCCEatToHgr+/P/fcc48zamlw8+fPZ+7cuY7n+fn5REREuLAiIYRwnToHwvLly51RR70ICgrCzc2NjIyMKtMzMjIICwurtrzJZMJkMjVUeUII0ag1q8uNjUYjffr0Yf369Y5pdrud9evXExcX58LKhBCi8atVIIwYMYLt27f/5nIFBQW88sorLF269LoLu1Zz587l/fff58MPP+TIkSPMnDmToqIiJk+e7LKaRN2k5hQzZ9U+nvpsP9d5y28hRB3U6pDRfffdx9ixYzGbzYwZM4a+ffsSHh6Oh4cHFy9e5PDhw2zdupW1a9cyevRoXn31VWfXfUUPPPAAFy5cYMGCBaSnp9OrVy++//77ag3NovEpLbfx3qbTvL3xJBar1q369CEdiA7xdXFlQrQMte66wmKx8Nlnn7Fq1Sq2bt1KXl6e9gY6HV27duX2229n6tSpdOnSxakFO5N0XeE6649ksPDfh0nJKQbATa/DZlcseaAnd9/U1sXVCdF01eV7rc59GVXKy8ujpKSEwMDAaqeeNlUSCA0vPa+U5/51kHWHtRMBQv1M/NforuxOvsiKbUlMGdSeBWO6urhKIZoup/ZlVMlsNmM2m6/15aKFU0qxalcqf117hIJSKwa9jqmD2/PYsE74mAyUVRwy2n8217WFCtGCXHMgCHGtUnOKmf9FIltPZgHQs62Z/7m3JzFhl9oK+kUFALA/NZfiMiteRvlTFcLZ5H+ZaDBKKf6xPZlFa49SUm7DZNDz5PAYpgxuj5u+ak+5EQGetPH35FxuCbuSLjLkhmAXVS1Ey9GsrkMQjdeFAguTV+xiwb8OUVJuI7Z9AD/MvoVpt3SoFgagnawwsGMgANtOZTV0uUK0SLKHIJzup6MZPPXZAbKLyjAa9DwzsjMT4qLQ1xAElxsYHchnu8+y7WR2A1UqRMt2TYGQm5vLmjVrOHXqFE899RQBAQHs2bOH0NBQ2rRpU981iibKYrXx8rdH+DAhGYDOYb688eBNVdoKrmZgxyAADp7PI7e4DH8vo9NqFUJcQyAcOHCA+Ph4zGYzSUlJTJs2jYCAAL744gtSUlL46KOPnFGnaGLO5Zbwp4/3sD81F4Apg9rz5xExeLi71fo9Qv086BTiw4nMQjYcy5TrEYRwsjq3IcydO5dJkyZx4sQJPDw8HNNHjRrF5s2b67U40TRtPn6BO97cwv7UXMye7iyf1I8FY7rWKQwqjezeGoBvD6TVd5lCiF+pcyDs2rWL6dOnV5vepk0b0tPT66Uo0TTZ7Yo3159g4vKdXCwup3sbM988NphbO1/7rUvv6KEFwubjWeSVlNdXqUKIGlzTLTRrurPY8ePHCQ6WUwNbqtJyG49+uofF646jFIzrH8FnM+KICPC6rve9IdSXTiE+lNns/Odwxm+/QAhxzeocCHfeeScvvvgi5eXarzWdTkdKSgp/+ctfGDt2bL0XKBq/zIJSHvi/7axNTMfdTccrY7uz6J4e13SIqCZ39AgHYM3us/XyfkKImtU5EF577TUKCwsJCQmhpKSEIUOGEB0dja+vL3/961+dUaNoxI6m53P30m3sT83F38udf0yN5YF+kfW6jvv6tkWvg4TT2ZzMLKzX9xZCXFLns4zMZjPr1q1j69atHDhwgMLCQnr37l3lxvaiZdhy4gIz/7mHQouVDkHefDCpH+2DvOt9PeH+ngztHMp/jmTw8Y5knh/Trd7XIYS4jt5OmyPp7bT2vktM4/GVeym3KQZ0CODdh/o49TqBjccymbR8F74eBrY9PRRfj+bRw64QzubU3k7ffPPNGqfrdDo8PDyIjo7mlltuwc2tfo4fi8Zn9a5Unv7iAHYFo7u3ZskDvTAanNsLyi2dgukQ7M3pC0X8c3sKM3/X0anrE6IlqvMeQvv27blw4QLFxcW0atUKgIsXL+Ll5YWPjw+ZmZl06NCBDRs2EBER4ZSinUX2EH7b+5tP89e1RwDtTKKXft+9xr6InOHz3WeZ99l+gnyMbPnzUDyN8qNDiN9Sl++1Ov+se/nll+nXrx8nTpwgOzub7Oxsjh8/TmxsLG+88QYpKSmEhYUxZ86ca/4AonF6b9MpRxhMH9KBl+9uuDAAuLNXOG1beZJVWMY/tic12HqFaCnqvIfQsWNHPv/8c3r16lVl+t69exk7diynT59m27ZtjB07lrS0pnV1qewhXNnft5zmpW+1MJh72w08PqyTS+pY/Usqf15zAF8PA5ueupUAb+nfSIirceoeQlpaGlartdp0q9XquFI5PDycgoKCur61aKRW/HzGEQZPDOvksjAAGNu7LV1b+1FQauX1/xx3WR1CNEd1DoRbb72V6dOns3fvXse0vXv3MnPmTIYOHQpAYmIi7du3r78qhct8ujOFF/59GIBHb41mdrzrwgDATa/jv+7oAsDHO1I4kSE/PISoL3UOhA8++ICAgAD69OmDyWTCZDLRt29fAgIC+OCDDwDw8fHhtddeq/diRcP68VA6z36ZCGhtBvOG34BO13BtBlcysGMQt3UNxWZXPPvVQex2OXNaiPpwzdchHD16lOPHtV32mJgYYmJi6rUwV5A2hEt2J1/kD+9vx2K182C/CBbd071RhEGl1Jxibn99M8VlNhbe2Y2JA6NcXZIQjVJdvtfkwrTLSCBoTmYWcu+728gtLmdo5xD+b3wfDG6N726r/0hI4rl/HcLL6MYPs2+57o70hGiOnHphGsDZs2f5+uuvSUlJoaysrMq8xYsXX8tbikYiq9DCxGU7yS0up2eEP//vDzc1yjAA+GNsO75NTGP76Rxmr9rHykcG4N5IaxWiKahzIKxfv54777yTDh06cPToUW688UaSkpJQStG7d29n1CgaSJnVzp/+uYdzuSVEBXqxbGJfvIyN97bber2OV+/tyag3t7A7+SKv/nCMZ0Z1cXVZQjRZdf45NX/+fJ588kkSExPx8PDg888/JzU1lSFDhnDfffc5o0bRQF785hA7k3LwNRn4+8R+BPqYXF3Sb4oI8OLVe3sC8H+bT/PjIblJkxDXqs6BcOTIESZMmACAwWCgpKQEHx8fXnzxRV555ZV6L1A0jE92pPDP7SnodPD6g72IDvFxdUm1NuLGMKYO1k5znrNqH0fSqt/ASQjx2+ocCN7e3o52g9atW3Pq1CnHvKysrPqrTDSYxLN5vPD1IQCeHB7DsC6hLq6o7v4yojNxHQIpKrMxdcUuMgtKXV2SEE1OnQNhwIABbN26FYBRo0Yxb948/vrXvzJlyhQGDBhQ7wUK5yooLefRT/dQZrMzvGsof2qivYgaDXrefagPHYK9OZ9XypQVu+QezELUUZ0DYfHixcTGxgKwcOFChg0bxqpVq4iKinJcmCaaBqUU879IJDm7mDb+nrx6b89Gda1BXZm93Fk2sR+B3kYOnstn8vKdFFqqd7MihKiZXIdwmZZ2HcLKnSk8/UUiBr2O1TPi6B3ZytUl1YvD5/MZ9/528krK6d8+gA8n95euskWL5dTO7Tp06EB2dna16bm5uXTo0KGubydcJCW7mBe/0fooevL2mGYTBgBdw/34x9T++JoM7DyTw8TlO+XwkRC1UOdASEpKwmazVZtusVg4d+5cvRQlnMtuVzy1Zj/FZTZi2wfwyM3NL8h7tPVnxZR+jlB44L0EMvOloVmIq6n1VUdff/214/EPP/yA2Wx2PLfZbKxfv56oqKh6LU44x0cJSew4k4OX0Y1X7+2JvgFvctOQ+rQLYOX0AUxctouj6QXc8842Vkzu36ROqRWiIdW6DUGv13YmdDodv36Ju7s7UVFRvPbaa9xxxx31X2UDaQltCElZRYx8Ywsl5TZevKsbE+KiXF2S06VkFzN+2Q6Ss4vxNRl4/cFeTfLUWiGuhVPaEOx2O3a7ncjISDIzMx3P7XY7FouFY8eONekwaAmUUvzXVwcpKbcR1yGQh2LbubqkBhEZ6MXnMwfSPyqAAouVhz/6hTfXn5Bus4X4lTq3IZw5c4agoCBn1CKc7LuD6Ww9mYXRoOdvY7s320NFNQnyMfHPh2OZENcOpWDxuuNMXL5T2hWEuEyt2hDefPPNWr/h448/fs3FCOcpLrPyUsVZRTOGdKRdoLeLK2p4RoOeF++6kRvbmFnwr4NsOZHFiDe28MrYHtzWVQ4hCVGrNoTa3g5Tp9Nx+vTp6y7KVZpzG8L/fH+Utzeeom0rT/4zdwge7i37vPyTmYU8/uleDlf0e3Rnz3AWjOlKUBPo0E+IupAb5Fyj5hoIpy8Ucvvrmym3Kf5vfB+GdwtzdUmNgsVq47Ufj/P3LaexK/D3cufZUV24t0/bJn3FthCXc+qFaZdTSlU740g0Pv/z/THKbYrfxQTLoZHLmAxuPDOqC1/NGkTX1n7kFpfz1JoD3P9eAvtTc11dnhAN7poC4aOPPqJ79+54enri6elJjx49+Mc//lHftYl6sDflIt8fSkevg2dGdZFfvjXo0daffz06iKdHdsbDXc+upIvctfRnZq/cy7ncEleXJ0SDuabO7WbOnMmoUaNYvXo1q1evZsSIEcyYMYMlS5Y4o0ZxjZRSvPL9UQDu6d2WG0J9XVxR4+XupmfGkI5sePJ33NO7DQBf7TvPrf+7kQX/Osh5CQbRAtS5DaF9+/YsXLjQcZOcSh9++CEvvPACZ86cqdcCG1Jza0PYdPwCE5ftxGjQs+HJ39HG39PVJTUZiWfz+Ovaw2w/nQOAu5uO+/pGMHNIRyICvFxcnRC159Q2hLS0NAYOHFht+sCBA0lLS6vr2wknUUrx5voTAIwf0E7CoI66tzXz6bQBfDItlgEdAii3KT7ZkcKt/7uRxz7dy+7ki9J+JpqdOgdCdHQ0q1evrjZ91apVdOrUqV6KEtdvx5kcdidfxGjQM/2W5td5XUPQ6XQM7BjEykfiWD09jsHRQVjtin/vP8/Yd7Zx19Kf+WLPWUrLq3f2KERTVOvO7SotXLiQBx54gM2bNzNo0CAAfv75Z9avX19jUAjXWLrhJAD3921LiJ+Hi6tphOw2KMmF4mywFICtrOqgFLi5g94Abu7017vzz1GeHM9ry8f7cllzKJ8DZ/OYu3o/L3x9iDt7hXNvnwh6tjVLw71osmrdhnDw4EFuvPFGAHbv3s2SJUs4cuQIAF26dGHevHncdNNNTis0KiqK5OTkKtMWLVrE008/7Xh+4MABZs2axa5duwgODuaxxx7jz3/+c63X0VzaEPan5nLX0p9x0+vY+OTvWuYxb6Ug/xxkHIKc03Ax6dJQmKGFAdd3yMeqN5Fn9+SC3Zcs5UcWZqwegbRtG8UNHTsQEBoBvq3B3BY8zCBBIVygLt9rtd5D6NGjB/369ePhhx/mwQcf5J///Od1F1pXL774ItOmTXM89/W9dNZMfn4+w4cPJz4+nnfffZfExESmTJmCv78/jzzySIPX6kr/t1m7WvyuXuEtJwzKiiB1ByT9DOd+gbQDUJLz268zmcHDD9yM2mCoGKMDeznYKgZ7OZSXQGk+lBcBYLBbCMRCoD730vuVA2cqhssZfbRg8GujjSsHvzbgH6k9dnOvn20hxDWqdSBs2rSJ5cuXM2/ePObMmcO9997L1KlTufnmm51ZXxW+vr6EhdV8le3HH39MWVkZy5Ytw2g00q1bN/bt28fixYtbVCBk5Jfyw6F0AKY1wxvfOCil/fo//h0c/xHO7wH7r+6frHOD4M4QFA2torTBvx34hYNXIHi2urYvYZsVygq0cCjNg+IsKLxAaW4aZ5KTyExLhaJMgskjTJdNgK4QygrhwlFtqInODcxtLtVYWW/lc+8g2cMQTlfn006LiopYvXo1K1asYMuWLURHRzN16lQmTpx4xS/r+hAVFUVpaSnl5eVERkbyhz/8gTlz5mAwaJk2YcIE8vPz+eqrrxyv2bBhA0OHDiUnJ4dWrarfItJisWCxWBzP8/PziYiIaNKHjF7/z3Fe/88J+kW14rMZ1c8Ga9KUgrT9cGA1HPk35KVUnW+OgHaDIHIAtO4JIV3B3TXtJ1mFFtYdzuC7g+nsOXmOEJVFa1024bpsIt1y6OVXSAdjLsH2C7gXnkNn/Y1eV929oVW7XwXGZc+NLWRPUNSZUw4ZVfL29mby5MlMnjyZkydPsnz5cpYuXcpzzz3HiBEjqtxZrT49/vjj9O7dm4CAALZt28b8+fNJS0tj8eLFAKSnp1frhC80NNQxr6ZAWLRoEQsXLnRKva5QbrPzyQ7tS/KhAc3oXgd55+DAKm24/Be2wQM63AoxI7Rxq8bzmYN8TIzrH8m4/pHkFZez8Xgmm49nsfHEBS4UWCDr0rLB3gaGtoPBwUX08s4lnEzccpMhN1lr88g/rx2myjysDTXxDtE+v3/kr4Z2WlC6KBhF03LdndsVFRXx8ccfM3/+fHJzc2u83/KVPP3007zyyitXXebIkSN07ty52vRly5Yxffp0CgsLMZlMDB8+nPbt2/Pee+85ljl8+DDdunXj8OHDdOnSpdp7NLc9hLWJafzp4z0E+ZjY9vRQjIbr6qrKtex2OL0Bdn2gHRZSdm26mwliRkL3+6Dj0Cb3y1gpxZG0AjafuMDm4xf4JfkiZVZ7lWV8TAZ6tDXTva2ZHm386RHmQVt9FrrKgLiYBBeTL40teb+9Yp/QGsJCAqMlcOoeQqXNmzezbNkyPv/8c/R6Pffffz9Tp06t03vMmzePSZMmXXWZDh1qPg4eGxuL1WolKSmJmJgYwsLCyMjIqLJM5fMrHcoymUyYTM2nu+PKvYNx/SOabhiUXIR9n2hBkHPq0vR2g6Dng9D1Lu2MnSZKp9PRNdyPruF+zBjSEYvVRuLZPHYm5bDzTA67ky5SYLGy7VQ2205lO17n7+VO9zZmbmwzmBtCR3DDjb50DPbRujEvuaiFQ25KzUNZoXZmVWEGnN1Vc2GVgWGO0NpYKgffynGYNHq3AHUKhPPnz7NixQpWrFjByZMnGThwIG+++Sb3338/3t51v+FKcHAwwcHBdX4dwL59+9Dr9YSEhAAQFxfHs88+S3l5Oe7u2h/uunXriImJqfFwUXOTnlfKz6e04xD3941wcTXXIPMIJCyFxDVgreg3yOQHvf4AfadC8A2urc9JTAY3+kYF0DcqgD/9Dmx2xbH0AhLP5XLgbB6J5/I4kpZPbnE5W05kseXEpWNNeh1EBXrTKdSHmFBfokP7ERU5hHY3eWP2rPjyVkoLjCuFRW5y7QIDnRYafq21M6P8wrVTav3aaNN8QsE7WGuol8bvJqvWh4xGjhzJf/7zH4KCgpgwYQJTpkwhJibG2fUBkJCQwI4dO7j11lvx9fUlISGBOXPmMHLkSD788EMA8vLyiImJYfjw4fzlL3/h4MGDTJkyhSVLltT6LKOmfB3Ce5tOsei7o02vMTl1J2xdAsfWXpoW0g36Pwzd7weTj+tqayQsVhvH0wvZfzaXo+n5HE8v5FhGAXkl5Vd8TSsvdyIDvYkK9KJdxbhtKy/C/T0I9fPA3a1iD7JKYCRr7TX556AgTWu7yD8H+Wnaabe1oXcHnxAtHHxCwadi7B1S9bF3EHj4g76J7sk2IU45ZOTu7s6aNWu44447cHNr2LttmUwmVq5cyQsvvIDFYqF9+/bMmTOHuXPnOpYxm838+OOPzJo1iz59+hAUFMSCBQtazCmnX+49B8DdN7V1cSW1oBScXA9bF0PyzxUTddDlDhgwSztLSH5lOpgMbnSvaFOopJTiQoGF4xlaOBxPL+B0ViHJ2cVkFli4WFzOxeLcGu/roNNBiK+J1mZPwv09KsZmWpv7ExRmIijaSJCvCV+TQbvq2m7XrujOP3cpJH4dGEWZ2im49vKKaed++4Pp9FooeAWAZ4C2d1H52KtVxTig6tjDT7umQ/4+nELumHaZprqHcCKjgNuWbMbdTceuZ+Px9zK6uqSa2axw+CvY+jpkJGrT9O7Q8wEYNBuCpC+s+lBksZKSU0xydhFJ2RXjrGLO5ZaQnldKmc3+228CmAx6gnxMBPkYK8YmgnyNBHqb8Pdyx+zpXjE2YvZ0x+xuw1iarYVDYcVQlAmFF7TDUUUXLk2vTUP4Fem0w4kefmDyvcpj86XH7l5g9K4Ye2mn8Rq9tOf65n072QZpVBaNx4+HtcbzwdFBjTMMykth38ew7U2t8RO0/5B9J8OAP2kXZIl6420y0KW1H11aV//Pb7crsovKSMsr4XxuacW4hPN5pWTklZJVaCGrsIxCixWL1c653JI63STIy+iGv6c7Zi8fzJ7+mD274WNyx8fkhpefAR+TAW+jGz7uila6QsyqAF9VgI89H09rHp7WPIxluehLLqIruahdbV5yEYpztMd2K6C0QLmuULmMm6l6SBi9wd1Te+zupV3BbvCouJrd9KvHJu09qjz+1fJuRq1frIq+sRyPL3+u07t8z0cCoRmoDITbujayeyWX5sEvyyDhbe2XImi7/QNmQr+HtcMAokHp9TqCfU0E+5rocZWjiyVlNrIKLVwotJBVoIWEFhYWsovKyC8pJ7e4nLyScnKLyyiwWFEKistsFJfZOJ/3GxfaVeNdMYRrderAw91NGwx6PNzdMPnpMbuX08rNQiu3Usz6Yvx0pfjqSvClGB+K8VbFeNqL8LAXYbIVYbIVYrIWYrCXYrCW4GYrwWArQW8tQVfZl5XNAiUWLXhcTe9+WUi4Xfb8sgC57UXt1GsnkEBo4jLyS9mfmotOB/FdQ1xdjqYgA3a8o506asnXpvm1hYGPQe/x2q8v0ah5Gt2ICPCqdV9YNruioLQyICrGJdq4yGKlyGKlsGJcZLE5HhdarBSVXZpWeU2G/bJwqZmpYrhWCg/K8MSCFxY8ddrYS2fBE22ofOxBGUaseOjKMOmsmHRWPHXlmLBi1FnxoByj43k5RsoxYsVEGe5Ke27Aihs23JRNG3OFw3b2in6zrFfeK0s6n0GUk87nkUBo4tZV7B30ivAnxNfFFxflnIZtb8Hej7VfXaD1JTRoNnS/V85jb8bc9Dr8vYz4exlpF3jt71Nus1NssVFqtVFabqO03F4xtlFqvfTYUm53LFNSZq+yfLnt0lBmVVjtFc+tijLb5fMVZVbtcbHNTrrt0nxnt6zqsOOGHQO2ywY7bthw12mhYahxsDPZ8yainFSXBEITt+XEBQDiu4S6roj0RK2h+NAXl64obtsPBs+FG0bIqYWi1tzd9Ji99Jhx3Y8HpRQ2u6LcpoWJ3Q5Wux1bxfRqg1JYbQq7UljtCrv90thWwzSrvWJZm/Z6hcKutL0spbTH9op1qYrHldPsdkX7KOcdGpZAaMLsduW45+/Ajtfxs+xaKAVnNsHPb8Cpny5Nj46HwXO0K4vl1EDRBOl0OgxuOgxuAM37DKRfk0Bowg6n5ZNXUo6PyUD3Ng3UnUPlqaM/vwHpB7RpOj10/b0WBK17NEwdQoh6J4HQhCVU9HXTv30ABjcnH5YpztH6GNr5nnZVK4DBU2skjpuldcMshGjSJBCasITTWiDEdXDi4aJzu7WzhQ5+DpV99nsFQuwMOXVUiGZGAqGJstsVu85o7Qdx9d1+kJ8GB9do9x9IT7w0PbQ79Juq9Trq7lm/6xRCuJwEQhOVlF1EgcWKyaCnc5jvb7/gt1xM0m5FefQbOLMZxw3o3YzQ7W5tb6BtP2koFqIZk0Boog6e1y746tLa79raD/LOaj2Nnt2lnSX063v9RsRCj/uh693g3cBnMAkhXEICoYk6dF7rx+XGNlforMpqgaKsS52L5SZD1gnIPgGZR6HgfNXldW5aL6Odhms3oQloX/P7CiGaLQmEhma3a32mFF3QunUozdfGloJL4/ISsJVpX+qOsQWsZY7xfWnZ3GUspe0JHbxu1+ZZSy8tr37jVqY6NwjtBhH9od1A7XaUns3/RkJCiCuTQHCG4hzIOKT9Gs86qd0KsiD9UnfAdut1ryIaQA8UXWUhvUG7UYl3kNaXUFA0BHaCoBu06wWkTyEhxGUkEK6TUorUixexnNmOz5nv8DyXgDH35NVfpNNhN/lhM5qxG32wu3tjN/pVjH1RBg+Um/HSoLvssZs7+eV6lmxIxqYz8v8mxOJu8tJ6RXR0v2vUbppu9Lt6txHlxfW7MYQQTudp8NRuXOQEcoOcy1zLDXKKy4uJ/STWyZUJIYRmxx924OVeu15ooW7fa9LrmBBCCEAOGV03T4MnO+7fpD0xuLj7aSFEs+dpcN5FoRII10mn0+HlKd03CCGaPjlkJIQQApBAEEIIUUECQQghBCCBIIQQooIEghBCCEACQQghRAUJBCGEEIAEghBCiApyYdplKrt1ys/Pd3ElQghRPyq/z2rTbZ0EwmUKCgoAiIiIcHElQghRvwoKCjCbzVddRno7vYzdbuf8+fP4+vrWqXvZ/Px8IiIiSE1NrXUvqS2FbJuayXa5Mtk2NbvW7aKUoqCggPDwcPRX6w4f2UOoQq/X07Zt22t+vZ+fn/wBX4Fsm5rJdrky2TY1u5bt8lt7BpWkUVkIIQQggSCEEKKCBEI9MJlMPP/885hMJleX0ujItqmZbJcrk21Ts4bYLtKoLIQQApA9BCGEEBUkEIQQQgASCEIIISpIIAghhAAkEOrF0qVLiYqKwsPDg9jYWHbu3Onqkpxq8+bNjBkzhvDwcHQ6HV999VWV+UopFixYQOvWrfH09CQ+Pp4TJ05UWSYnJ4c//vGP+Pn54e/vz9SpUyksLGzAT1H/Fi1aRL9+/fD19SUkJITf//73HDt2rMoypaWlzJo1i8DAQHx8fBg7diwZGRlVlklJSWH06NF4eXkREhLCU089hdVqbciPUu/eeecdevTo4bioKi4uju+++84xv6Vul1/729/+hk6nY/bs2Y5pDbptlLguK1euVEajUS1btkwdOnRITZs2Tfn7+6uMjAxXl+Y0a9euVc8++6z64osvFKC+/PLLKvP/9re/KbPZrL766iu1f/9+deedd6r27durkpISxzIjRoxQPXv2VNu3b1dbtmxR0dHRaty4cQ38SerX7bffrpYvX64OHjyo9u3bp0aNGqUiIyNVYWGhY5kZM2aoiIgItX79evXLL7+oAQMGqIEDBzrmW61WdeONN6r4+Hi1d+9etXbtWhUUFKTmz5/vio9Ub77++mv17bffquPHj6tjx46pZ555Rrm7u6uDBw8qpVrudrnczp07VVRUlOrRo4d64oknHNMbcttIIFyn/v37q1mzZjme22w2FR4erhYtWuTCqhrOrwPBbrersLAw9eqrrzqm5ebmKpPJpD799FOllFKHDx9WgNq1a5djme+++07pdDp17ty5Bqvd2TIzMxWgNm3apJTStoO7u7v67LPPHMscOXJEASohIUEppYWtXq9X6enpjmXeeecd5efnpywWS8N+ACdr1aqV+vvf/y7bRSlVUFCgOnXqpNatW6eGDBniCISG3jZyyOg6lJWVsXv3buLj4x3T9Ho98fHxJCQkuLAy1zlz5gzp6elVtonZbCY2NtaxTRISEvD396dv376OZeLj49Hr9ezYsaPBa3aWvLw8AAICAgDYvXs35eXlVbZN586diYyMrLJtunfvTmhoqGOZ22+/nfz8fA4dOtSA1TuPzWZj5cqVFBUVERcXJ9sFmDVrFqNHj66yDaDh/2akc7vrkJWVhc1mq/IPARAaGsrRo0ddVJVrpaenA9S4TSrnpaenExISUmW+wWAgICDAsUxTZ7fbmT17NoMGDeLGG28EtM9tNBrx9/evsuyvt01N265yXlOWmJhIXFwcpaWl+Pj48OWXX9K1a1f27dvXorfLypUr2bNnD7t27ao2r6H/ZiQQhHCCWbNmcfDgQbZu3erqUhqNmJgY9u3bR15eHmvWrGHixIls2rTJ1WW5VGpqKk888QTr1q3Dw8PD1eXIWUbXIygoCDc3t2ot/hkZGYSFhbmoKteq/NxX2yZhYWFkZmZWmW+1WsnJyWkW2+3RRx/lm2++YcOGDVW6Uw8LC6OsrIzc3Nwqy/9629S07SrnNWVGo5Ho6Gj69OnDokWL6NmzJ2+88UaL3i67d+8mMzOT3r17YzAYMBgMbNq0iTfffBODwUBoaGiDbhsJhOtgNBrp06cP69evd0yz2+2sX7+euLg4F1bmOu3btycsLKzKNsnPz2fHjh2ObRIXF0dubi67d+92LPPTTz9ht9uJjY1t8Jrri1KKRx99lC+//JKffvqJ9u3bV5nfp08f3N3dq2ybY8eOkZKSUmXbJCYmVgnMdevW4efnR9euXRvmgzQQu92OxWJp0dtl2LBhJCYmsm/fPsfQt29f/vjHPzoeN+i2ue7m8RZu5cqVymQyqRUrVqjDhw+rRx55RPn7+1dp8W9uCgoK1N69e9XevXsVoBYvXqz27t2rkpOTlVLaaaf+/v7qX//6lzpw4IC66667ajzt9KabblI7duxQW7duVZ06dWryp53OnDlTmc1mtXHjRpWWluYYiouLHcvMmDFDRUZGqp9++kn98ssvKi4uTsXFxTnmV55COHz4cLVv3z71/fffq+Dg4CZ/euXTTz+tNm3apM6cOaMOHDignn76aaXT6dSPP/6olGq526Uml59lpFTDbhsJhHrw1ltvqcjISGU0GlX//v3V9u3bXV2SU23YsEEB1YaJEycqpbRTT5977jkVGhqqTCaTGjZsmDp27FiV98jOzlbjxo1TPj4+ys/PT02ePFkVFBS44NPUn5q2CaCWL1/uWKakpET96U9/Uq1atVJeXl7q7rvvVmlpaVXeJykpSY0cOVJ5enqqoKAgNW/ePFVeXt7An6Z+TZkyRbVr104ZjUYVHByshg0b5ggDpVrudqnJrwOhIbeNdH8thBACkDYEIYQQFSQQhBBCABIIQgghKkggCCGEACQQhBBCVJBAEEIIAUggCCGEqCCBIIQQApBAEKKaSZMm8fvf/95l6x8/fjwvv/yy097/8OHDtG3blqKiIqetQzRNcqWyaFF0Ot1V5z///PPMmTMHpVS1Pugbwv79+xk6dCjJycn4+Pg4bT333nsvPXv25LnnnnPaOkTTI4EgWpTLbxiyatUqFixYwLFjxxzTfHx8nPpF/FsefvhhDAYD7777rlPX8+233zJt2jRSUlIwGOS2KEIjh4xEixIWFuYYzGYzOp2uyjQfH59qh4x+97vf8dhjjzF79mxatWpFaGgo77//PkVFRUyePBlfX1+io6P57rvvqqzr4MGDjBw5Eh8fH0JDQxk/fjxZWVlXrM1ms7FmzRrGjBlTZXpUVBQvvfQSEyZMwMfHh3bt2vH1119z4cIF7rrrLnx8fOjRowe//PKL4zXJycmMGTOGVq1a4e3tTbdu3Vi7dq1j/m233UZOTk6Lv0GNqEoCQYha+PDDDwkKCmLnzp089thjzJw5k/vuu4+BAweyZ88ehg8fzvjx4ykuLgYgNzeXoUOHctNNN/HLL7/w/fffk5GRwf3333/FdRw4cIC8vLwq95qutGTJEgYNGsTevXsZPXo048ePZ8KECTz00EPs2bOHjh07MmHCBCp3+GfNmoXFYmHz5s0kJibyyiuvVNnzMRqN9OrViy1bttTzlhJN2rV20SpEU7d8+XJlNpurTZ84caK66667HM+HDBmiBg8e7HhutVqVt7e3Gj9+vGNaWlqaAlRCQoJSSqn//u//VsOHD6/yvqmpqQqo1hV4pS+//FK5ubkpu91eZXq7du3UQw89VG1dzz33nGNaQkKCAhzdInfv3l298MILV/38d999t5o0adJVlxEti+whCFELPXr0cDx2c3MjMDCQ7t27O6ZV3tS88q5V+/fvZ8OGDY42CR8fHzp37gzAqVOnalxHSUkJJpOpxobvy9dfua6rrf/xxx/npZdeYtCgQTz//PMcOHCg2nt6eno69miEADlkJEStuLu7V3mu0+mqTKv8Erfb7QAUFhYyZsyYKrdG3LdvHydOnOCWW26pcR1BQUEUFxdTVlZ21fVXrutq63/44Yc5ffo048ePJzExkb59+/LWW29Vec+cnByCg4NrtwFEiyCBIIQT9O7dm0OHDhEVFUV0dHSVwdvbu8bX9OrVC9CuE6gPERERzJgxgy+++IJ58+bx/vvvV5l/8OBBbrrppnpZl2geJBCEcIJZs2aRk5PDuHHj2LVrF6dOneKHH35g8uTJ2Gy2Gl8THBxM79692bp163Wvf/bs2fzwww+cOXOGPXv2sGHDBrp06eKYn5SUxLlz54iPj7/udYnmQwJBCCcIDw/n559/xmazMXz4cLp3787s2bPx9/dHr7/yf7uHH36Yjz/++LrXb7PZmDVrFl26dGHEiBHccMMNvP322475n376KcOHD6ddu3bXvS7RfMiFaUI0IiUlJcTExLBq1Sri4uKcso6ysjI6derEJ598wqBBg5yyDtE0yR6CEI2Ip6cnH3300VUvYLteKSkpPPPMMxIGohrZQxBCCAHIHoIQQogKEghCCCEACQQhhBAVJBCEEEIAEghCCCEqSCAIIYQAJBCEEEJUkEAQQggBSCAIIYSo8P8BwIpPzHz7ekEAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADeCAYAAAA933f2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx30lEQVR4nO3dd3xUdb7/8ddMJjPpE9IJJAQIhiJFWgigrBCRIrqKjV3pIrBYKLorekXxurJer2D5YbmugO6qgFjWVSwsUiUUqaHXFCCFJKQnk8zM9/fHSQZiAiaQyaR8no/HeZyZc87M+cwhzHvO+Z7zPTqllEIIIUSLp3d1AUIIIRoHCQQhhBCABIIQQogKEghCCCEACQQhhBAVJBCEEEIAEghCCCEqSCAIIYQAJBCEEEJUkEAQQggBNKFAeOGFF9DpdFWGzp07O+aXlpYya9YsAgMD8fHxYezYsWRkZLiwYiGEaFqaTCAAdOvWjbS0NMewdetWx7w5c+bw73//m88++4xNmzZx/vx57rnnHhdWK4QQTYvB1QXUhcFgICwsrNr0vLw8PvjgAz755BOGDh0KwPLly+nSpQvbt29nwIABDV2qEEI0OU0qEE6cOEF4eDgeHh7ExcWxaNEiIiMj2b17N+Xl5cTHxzuW7dy5M5GRkSQkJFwxECwWCxaLxfHcbreTk5NDYGAgOp3O6Z9HCCGcTSlFQUEB4eHh6PVXPyjUZAIhNjaWFStWEBMTQ1paGgsXLuTmm2/m4MGDpKenYzQa8ff3r/Ka0NBQ0tPTr/ieixYtYuHChU6uXAghXC81NZW2bdtedZkmEwgjR450PO7RowexsbG0a9eO1atX4+npeU3vOX/+fObOnet4npeXR2RkJKmpqfj5+V13zUII4Wr5+flERETg6+v7m8s2mUD4NX9/f2644QZOnjzJbbfdRllZGbm5uVX2EjIyMmpsc6hkMpkwmUzVpvv5+UkgCCGaldocBm9SZxldrrCwkFOnTtG6dWv69OmDu7s769evd8w/duwYKSkpxMXFubBKIYRoOprMHsKTTz7JmDFjaNeuHefPn+f555/Hzc2NcePGYTabmTp1KnPnziUgIAA/Pz8ee+wx4uLi5AwjIYSopSYTCGfPnmXcuHFkZ2cTHBzM4MGD2b59O8HBwQAsWbIEvV7P2LFjsVgs3H777bz99tsurloIIZoOnVJKubqIxiI/Px+z2UxeXp60IQghmoW6fK812TYEIYQQ9UsCQQghBCCBIIQQooIEghBCCEACQQghRAUJBCGEEIAEghBCiAoSCEIIIQAJBCGEEBUkEIQQQgASCEIIISpIIAghhAAkEIQQQlSQQBBCCAFIIAghhKgggSCEEAKQQBBCCFFBAkEIIQQggSCEEKKCBIIQQghAAkEIIUQFCQQhhBCABIIQQogKEghCCCEACQQhhBAVJBCEEEIAEghCCCEqGK7lRSkpKSQnJ1NcXExwcDDdunXDZDLVd21CCCEaUK0DISkpiXfeeYeVK1dy9uxZlFKOeUajkZtvvplHHnmEsWPHotfLjocQQjQ1tfrmfvzxx+nZsydnzpzhpZde4vDhw+Tl5VFWVkZ6ejpr165l8ODBLFiwgB49erBr1y5n1y2EEKKe1WoPwdvbm9OnTxMYGFhtXkhICEOHDmXo0KE8//zzfP/996SmptKvX796L1YIIYTz6NTlx35auPz8fMxmM3l5efj5+bm6HCGEuG51+V6r9cH+vn378u6775Kfn3/dBQohhGh8ah0IPXv25M9//jOtW7dm/PjxbNy40YllCSGEaGi1DoQPPviA9PR0li5dSmpqKsOGDSM6OpqXX36Zc+fOObNGIYQQDaBO54d6eXkxadIkNm7cyPHjx3nwwQd57733iIqKYvTo0XzxxRfOqlMIIYSTXXejslKKzz//nOnTp5Obm4vNZquv2hqcNCoLIZqbunyvXdOVypU2btzI8uXL+fzzzzEYDEybNu163k4IIYQL1TkQzp49y4oVK1ixYgWnT5/m5ptv5u233+a+++7D09PTGTUKIYRoALUOhNWrV7Ns2TLWr19PSEgIEydOZMqUKURHRzuzPiGEEA2k1oHw0EMPMXr0aL788ktGjRol/RUJIUQzU+tAOHv2LCEhIc6sRQghhAvVOhAuD4Pz58+zdetWMjMzsdvtVZZ7/PHH6686IYQQDabOjcorVqxg+vTpGI1GAgMD0el0jnk6nU4CQQghmqg6X4cQERHBjBkzmD9/frNrR5DrEIQQzY1TOrerVFxczIMPPtjswkAIIVq6On+rT506lc8++8wZtQghhHChOh8ystls3HHHHZSUlNC9e3fc3d2rzF+8eHG9FtiQ5JCREKK5cWrXFYsWLeKHH34gJiYGoFqjcmOwdOlSXn31VdLT0+nZsydvvfUW/fv3d3VZQgjRqNU5EF577TWWLVvGpEmTnFDO9Vu1ahVz587l3XffJTY2ltdff53bb7+dY8eOyXUUQghxFXVuQzCZTAwaNMgZtdSLxYsXM23aNCZPnkzXrl1599138fLyYtmyZa4uTQghGrU6B8ITTzzBW2+95YxarltZWRm7d+8mPj7eMU2v1xMfH09CQkK15S0WC/n5+VUGIYRoqep8yGjnzp389NNPfPPNN3Tr1q1ao7Irb5KTlZWFzWYjNDS0yvTQ0FCOHj1abflFixaxcOHChipPCCEatToHgr+/P/fcc48zamlw8+fPZ+7cuY7n+fn5REREuLAiIYRwnToHwvLly51RR70ICgrCzc2NjIyMKtMzMjIICwurtrzJZMJkMjVUeUII0ag1q8uNjUYjffr0Yf369Y5pdrud9evXExcX58LKhBCi8atVIIwYMYLt27f/5nIFBQW88sorLF269LoLu1Zz587l/fff58MPP+TIkSPMnDmToqIiJk+e7LKaRN2k5hQzZ9U+nvpsP9d5y28hRB3U6pDRfffdx9ixYzGbzYwZM4a+ffsSHh6Oh4cHFy9e5PDhw2zdupW1a9cyevRoXn31VWfXfUUPPPAAFy5cYMGCBaSnp9OrVy++//77ag3NovEpLbfx3qbTvL3xJBar1q369CEdiA7xdXFlQrQMte66wmKx8Nlnn7Fq1Sq2bt1KXl6e9gY6HV27duX2229n6tSpdOnSxakFO5N0XeE6649ksPDfh0nJKQbATa/DZlcseaAnd9/U1sXVCdF01eV7rc59GVXKy8ujpKSEwMDAaqeeNlUSCA0vPa+U5/51kHWHtRMBQv1M/NforuxOvsiKbUlMGdSeBWO6urhKIZoup/ZlVMlsNmM2m6/15aKFU0qxalcqf117hIJSKwa9jqmD2/PYsE74mAyUVRwy2n8217WFCtGCXHMgCHGtUnOKmf9FIltPZgHQs62Z/7m3JzFhl9oK+kUFALA/NZfiMiteRvlTFcLZ5H+ZaDBKKf6xPZlFa49SUm7DZNDz5PAYpgxuj5u+ak+5EQGetPH35FxuCbuSLjLkhmAXVS1Ey9GsrkMQjdeFAguTV+xiwb8OUVJuI7Z9AD/MvoVpt3SoFgagnawwsGMgANtOZTV0uUK0SLKHIJzup6MZPPXZAbKLyjAa9DwzsjMT4qLQ1xAElxsYHchnu8+y7WR2A1UqRMt2TYGQm5vLmjVrOHXqFE899RQBAQHs2bOH0NBQ2rRpU981iibKYrXx8rdH+DAhGYDOYb688eBNVdoKrmZgxyAADp7PI7e4DH8vo9NqFUJcQyAcOHCA+Ph4zGYzSUlJTJs2jYCAAL744gtSUlL46KOPnFGnaGLO5Zbwp4/3sD81F4Apg9rz5xExeLi71fo9Qv086BTiw4nMQjYcy5TrEYRwsjq3IcydO5dJkyZx4sQJPDw8HNNHjRrF5s2b67U40TRtPn6BO97cwv7UXMye7iyf1I8FY7rWKQwqjezeGoBvD6TVd5lCiF+pcyDs2rWL6dOnV5vepk0b0tPT66Uo0TTZ7Yo3159g4vKdXCwup3sbM988NphbO1/7rUvv6KEFwubjWeSVlNdXqUKIGlzTLTRrurPY8ePHCQ6WUwNbqtJyG49+uofF646jFIzrH8FnM+KICPC6rve9IdSXTiE+lNns/Odwxm+/QAhxzeocCHfeeScvvvgi5eXarzWdTkdKSgp/+ctfGDt2bL0XKBq/zIJSHvi/7axNTMfdTccrY7uz6J4e13SIqCZ39AgHYM3us/XyfkKImtU5EF577TUKCwsJCQmhpKSEIUOGEB0dja+vL3/961+dUaNoxI6m53P30m3sT83F38udf0yN5YF+kfW6jvv6tkWvg4TT2ZzMLKzX9xZCXFLns4zMZjPr1q1j69atHDhwgMLCQnr37l3lxvaiZdhy4gIz/7mHQouVDkHefDCpH+2DvOt9PeH+ngztHMp/jmTw8Y5knh/Trd7XIYS4jt5OmyPp7bT2vktM4/GVeym3KQZ0CODdh/o49TqBjccymbR8F74eBrY9PRRfj+bRw64QzubU3k7ffPPNGqfrdDo8PDyIjo7mlltuwc2tfo4fi8Zn9a5Unv7iAHYFo7u3ZskDvTAanNsLyi2dgukQ7M3pC0X8c3sKM3/X0anrE6IlqvMeQvv27blw4QLFxcW0atUKgIsXL+Ll5YWPjw+ZmZl06NCBDRs2EBER4ZSinUX2EH7b+5tP89e1RwDtTKKXft+9xr6InOHz3WeZ99l+gnyMbPnzUDyN8qNDiN9Sl++1Ov+se/nll+nXrx8nTpwgOzub7Oxsjh8/TmxsLG+88QYpKSmEhYUxZ86ca/4AonF6b9MpRxhMH9KBl+9uuDAAuLNXOG1beZJVWMY/tic12HqFaCnqvIfQsWNHPv/8c3r16lVl+t69exk7diynT59m27ZtjB07lrS0pnV1qewhXNnft5zmpW+1MJh72w08PqyTS+pY/Usqf15zAF8PA5ueupUAb+nfSIirceoeQlpaGlartdp0q9XquFI5PDycgoKCur61aKRW/HzGEQZPDOvksjAAGNu7LV1b+1FQauX1/xx3WR1CNEd1DoRbb72V6dOns3fvXse0vXv3MnPmTIYOHQpAYmIi7du3r78qhct8ujOFF/59GIBHb41mdrzrwgDATa/jv+7oAsDHO1I4kSE/PISoL3UOhA8++ICAgAD69OmDyWTCZDLRt29fAgIC+OCDDwDw8fHhtddeq/diRcP68VA6z36ZCGhtBvOG34BO13BtBlcysGMQt3UNxWZXPPvVQex2OXNaiPpwzdchHD16lOPHtV32mJgYYmJi6rUwV5A2hEt2J1/kD+9vx2K182C/CBbd071RhEGl1Jxibn99M8VlNhbe2Y2JA6NcXZIQjVJdvtfkwrTLSCBoTmYWcu+728gtLmdo5xD+b3wfDG6N726r/0hI4rl/HcLL6MYPs2+57o70hGiOnHphGsDZs2f5+uuvSUlJoaysrMq8xYsXX8tbikYiq9DCxGU7yS0up2eEP//vDzc1yjAA+GNsO75NTGP76Rxmr9rHykcG4N5IaxWiKahzIKxfv54777yTDh06cPToUW688UaSkpJQStG7d29n1CgaSJnVzp/+uYdzuSVEBXqxbGJfvIyN97bber2OV+/tyag3t7A7+SKv/nCMZ0Z1cXVZQjRZdf45NX/+fJ588kkSExPx8PDg888/JzU1lSFDhnDfffc5o0bRQF785hA7k3LwNRn4+8R+BPqYXF3Sb4oI8OLVe3sC8H+bT/PjIblJkxDXqs6BcOTIESZMmACAwWCgpKQEHx8fXnzxRV555ZV6L1A0jE92pPDP7SnodPD6g72IDvFxdUm1NuLGMKYO1k5znrNqH0fSqt/ASQjx2+ocCN7e3o52g9atW3Pq1CnHvKysrPqrTDSYxLN5vPD1IQCeHB7DsC6hLq6o7v4yojNxHQIpKrMxdcUuMgtKXV2SEE1OnQNhwIABbN26FYBRo0Yxb948/vrXvzJlyhQGDBhQ7wUK5yooLefRT/dQZrMzvGsof2qivYgaDXrefagPHYK9OZ9XypQVu+QezELUUZ0DYfHixcTGxgKwcOFChg0bxqpVq4iKinJcmCaaBqUU879IJDm7mDb+nrx6b89Gda1BXZm93Fk2sR+B3kYOnstn8vKdFFqqd7MihKiZXIdwmZZ2HcLKnSk8/UUiBr2O1TPi6B3ZytUl1YvD5/MZ9/528krK6d8+gA8n95euskWL5dTO7Tp06EB2dna16bm5uXTo0KGubydcJCW7mBe/0fooevL2mGYTBgBdw/34x9T++JoM7DyTw8TlO+XwkRC1UOdASEpKwmazVZtusVg4d+5cvRQlnMtuVzy1Zj/FZTZi2wfwyM3NL8h7tPVnxZR+jlB44L0EMvOloVmIq6n1VUdff/214/EPP/yA2Wx2PLfZbKxfv56oqKh6LU44x0cJSew4k4OX0Y1X7+2JvgFvctOQ+rQLYOX0AUxctouj6QXc8842Vkzu36ROqRWiIdW6DUGv13YmdDodv36Ju7s7UVFRvPbaa9xxxx31X2UDaQltCElZRYx8Ywsl5TZevKsbE+KiXF2S06VkFzN+2Q6Ss4vxNRl4/cFeTfLUWiGuhVPaEOx2O3a7ncjISDIzMx3P7XY7FouFY8eONekwaAmUUvzXVwcpKbcR1yGQh2LbubqkBhEZ6MXnMwfSPyqAAouVhz/6hTfXn5Bus4X4lTq3IZw5c4agoCBn1CKc7LuD6Ww9mYXRoOdvY7s320NFNQnyMfHPh2OZENcOpWDxuuNMXL5T2hWEuEyt2hDefPPNWr/h448/fs3FCOcpLrPyUsVZRTOGdKRdoLeLK2p4RoOeF++6kRvbmFnwr4NsOZHFiDe28MrYHtzWVQ4hCVGrNoTa3g5Tp9Nx+vTp6y7KVZpzG8L/fH+Utzeeom0rT/4zdwge7i37vPyTmYU8/uleDlf0e3Rnz3AWjOlKUBPo0E+IupAb5Fyj5hoIpy8Ucvvrmym3Kf5vfB+GdwtzdUmNgsVq47Ufj/P3LaexK/D3cufZUV24t0/bJn3FthCXc+qFaZdTSlU740g0Pv/z/THKbYrfxQTLoZHLmAxuPDOqC1/NGkTX1n7kFpfz1JoD3P9eAvtTc11dnhAN7poC4aOPPqJ79+54enri6elJjx49+Mc//lHftYl6sDflIt8fSkevg2dGdZFfvjXo0daffz06iKdHdsbDXc+upIvctfRnZq/cy7ncEleXJ0SDuabO7WbOnMmoUaNYvXo1q1evZsSIEcyYMYMlS5Y4o0ZxjZRSvPL9UQDu6d2WG0J9XVxR4+XupmfGkI5sePJ33NO7DQBf7TvPrf+7kQX/Osh5CQbRAtS5DaF9+/YsXLjQcZOcSh9++CEvvPACZ86cqdcCG1Jza0PYdPwCE5ftxGjQs+HJ39HG39PVJTUZiWfz+Ovaw2w/nQOAu5uO+/pGMHNIRyICvFxcnRC159Q2hLS0NAYOHFht+sCBA0lLS6vr2wknUUrx5voTAIwf0E7CoI66tzXz6bQBfDItlgEdAii3KT7ZkcKt/7uRxz7dy+7ki9J+JpqdOgdCdHQ0q1evrjZ91apVdOrUqV6KEtdvx5kcdidfxGjQM/2W5td5XUPQ6XQM7BjEykfiWD09jsHRQVjtin/vP8/Yd7Zx19Kf+WLPWUrLq3f2KERTVOvO7SotXLiQBx54gM2bNzNo0CAAfv75Z9avX19jUAjXWLrhJAD3921LiJ+Hi6tphOw2KMmF4mywFICtrOqgFLi5g94Abu7017vzz1GeHM9ry8f7cllzKJ8DZ/OYu3o/L3x9iDt7hXNvnwh6tjVLw71osmrdhnDw4EFuvPFGAHbv3s2SJUs4cuQIAF26dGHevHncdNNNTis0KiqK5OTkKtMWLVrE008/7Xh+4MABZs2axa5duwgODuaxxx7jz3/+c63X0VzaEPan5nLX0p9x0+vY+OTvWuYxb6Ug/xxkHIKc03Ax6dJQmKGFAdd3yMeqN5Fn9+SC3Zcs5UcWZqwegbRtG8UNHTsQEBoBvq3B3BY8zCBBIVygLt9rtd5D6NGjB/369ePhhx/mwQcf5J///Od1F1pXL774ItOmTXM89/W9dNZMfn4+w4cPJz4+nnfffZfExESmTJmCv78/jzzySIPX6kr/t1m7WvyuXuEtJwzKiiB1ByT9DOd+gbQDUJLz268zmcHDD9yM2mCoGKMDeznYKgZ7OZSXQGk+lBcBYLBbCMRCoD730vuVA2cqhssZfbRg8GujjSsHvzbgH6k9dnOvn20hxDWqdSBs2rSJ5cuXM2/ePObMmcO9997L1KlTufnmm51ZXxW+vr6EhdV8le3HH39MWVkZy5Ytw2g00q1bN/bt28fixYtbVCBk5Jfyw6F0AKY1wxvfOCil/fo//h0c/xHO7wH7r+6frHOD4M4QFA2torTBvx34hYNXIHi2urYvYZsVygq0cCjNg+IsKLxAaW4aZ5KTyExLhaJMgskjTJdNgK4QygrhwlFtqInODcxtLtVYWW/lc+8g2cMQTlfn006LiopYvXo1K1asYMuWLURHRzN16lQmTpx4xS/r+hAVFUVpaSnl5eVERkbyhz/8gTlz5mAwaJk2YcIE8vPz+eqrrxyv2bBhA0OHDiUnJ4dWrarfItJisWCxWBzP8/PziYiIaNKHjF7/z3Fe/88J+kW14rMZ1c8Ga9KUgrT9cGA1HPk35KVUnW+OgHaDIHIAtO4JIV3B3TXtJ1mFFtYdzuC7g+nsOXmOEJVFa1024bpsIt1y6OVXSAdjLsH2C7gXnkNn/Y1eV929oVW7XwXGZc+NLWRPUNSZUw4ZVfL29mby5MlMnjyZkydPsnz5cpYuXcpzzz3HiBEjqtxZrT49/vjj9O7dm4CAALZt28b8+fNJS0tj8eLFAKSnp1frhC80NNQxr6ZAWLRoEQsXLnRKva5QbrPzyQ7tS/KhAc3oXgd55+DAKm24/Be2wQM63AoxI7Rxq8bzmYN8TIzrH8m4/pHkFZez8Xgmm49nsfHEBS4UWCDr0rLB3gaGtoPBwUX08s4lnEzccpMhN1lr88g/rx2myjysDTXxDtE+v3/kr4Z2WlC6KBhF03LdndsVFRXx8ccfM3/+fHJzc2u83/KVPP3007zyyitXXebIkSN07ty52vRly5Yxffp0CgsLMZlMDB8+nPbt2/Pee+85ljl8+DDdunXj8OHDdOnSpdp7NLc9hLWJafzp4z0E+ZjY9vRQjIbr6qrKtex2OL0Bdn2gHRZSdm26mwliRkL3+6Dj0Cb3y1gpxZG0AjafuMDm4xf4JfkiZVZ7lWV8TAZ6tDXTva2ZHm386RHmQVt9FrrKgLiYBBeTL40teb+9Yp/QGsJCAqMlcOoeQqXNmzezbNkyPv/8c/R6Pffffz9Tp06t03vMmzePSZMmXXWZDh1qPg4eGxuL1WolKSmJmJgYwsLCyMjIqLJM5fMrHcoymUyYTM2nu+PKvYNx/SOabhiUXIR9n2hBkHPq0vR2g6Dng9D1Lu2MnSZKp9PRNdyPruF+zBjSEYvVRuLZPHYm5bDzTA67ky5SYLGy7VQ2205lO17n7+VO9zZmbmwzmBtCR3DDjb50DPbRujEvuaiFQ25KzUNZoXZmVWEGnN1Vc2GVgWGO0NpYKgffynGYNHq3AHUKhPPnz7NixQpWrFjByZMnGThwIG+++Sb3338/3t51v+FKcHAwwcHBdX4dwL59+9Dr9YSEhAAQFxfHs88+S3l5Oe7u2h/uunXriImJqfFwUXOTnlfKz6e04xD3941wcTXXIPMIJCyFxDVgreg3yOQHvf4AfadC8A2urc9JTAY3+kYF0DcqgD/9Dmx2xbH0AhLP5XLgbB6J5/I4kpZPbnE5W05kseXEpWNNeh1EBXrTKdSHmFBfokP7ERU5hHY3eWP2rPjyVkoLjCuFRW5y7QIDnRYafq21M6P8wrVTav3aaNN8QsE7WGuol8bvJqvWh4xGjhzJf/7zH4KCgpgwYQJTpkwhJibG2fUBkJCQwI4dO7j11lvx9fUlISGBOXPmMHLkSD788EMA8vLyiImJYfjw4fzlL3/h4MGDTJkyhSVLltT6LKOmfB3Ce5tOsei7o02vMTl1J2xdAsfWXpoW0g36Pwzd7weTj+tqayQsVhvH0wvZfzaXo+n5HE8v5FhGAXkl5Vd8TSsvdyIDvYkK9KJdxbhtKy/C/T0I9fPA3a1iD7JKYCRr7TX556AgTWu7yD8H+Wnaabe1oXcHnxAtHHxCwadi7B1S9bF3EHj4g76J7sk2IU45ZOTu7s6aNWu44447cHNr2LttmUwmVq5cyQsvvIDFYqF9+/bMmTOHuXPnOpYxm838+OOPzJo1iz59+hAUFMSCBQtazCmnX+49B8DdN7V1cSW1oBScXA9bF0PyzxUTddDlDhgwSztLSH5lOpgMbnSvaFOopJTiQoGF4xlaOBxPL+B0ViHJ2cVkFli4WFzOxeLcGu/roNNBiK+J1mZPwv09KsZmWpv7ExRmIijaSJCvCV+TQbvq2m7XrujOP3cpJH4dGEWZ2im49vKKaed++4Pp9FooeAWAZ4C2d1H52KtVxTig6tjDT7umQ/4+nELumHaZprqHcCKjgNuWbMbdTceuZ+Px9zK6uqSa2axw+CvY+jpkJGrT9O7Q8wEYNBuCpC+s+lBksZKSU0xydhFJ2RXjrGLO5ZaQnldKmc3+228CmAx6gnxMBPkYK8YmgnyNBHqb8Pdyx+zpXjE2YvZ0x+xuw1iarYVDYcVQlAmFF7TDUUUXLk2vTUP4Fem0w4kefmDyvcpj86XH7l5g9K4Ye2mn8Rq9tOf65n072QZpVBaNx4+HtcbzwdFBjTMMykth38ew7U2t8RO0/5B9J8OAP2kXZIl6420y0KW1H11aV//Pb7crsovKSMsr4XxuacW4hPN5pWTklZJVaCGrsIxCixWL1c653JI63STIy+iGv6c7Zi8fzJ7+mD274WNyx8fkhpefAR+TAW+jGz7uila6QsyqAF9VgI89H09rHp7WPIxluehLLqIruahdbV5yEYpztMd2K6C0QLmuULmMm6l6SBi9wd1Te+zupV3BbvCouJrd9KvHJu09qjz+1fJuRq1frIq+sRyPL3+u07t8z0cCoRmoDITbujayeyWX5sEvyyDhbe2XImi7/QNmQr+HtcMAokHp9TqCfU0E+5rocZWjiyVlNrIKLVwotJBVoIWEFhYWsovKyC8pJ7e4nLyScnKLyyiwWFEKistsFJfZOJ/3GxfaVeNdMYRrderAw91NGwx6PNzdMPnpMbuX08rNQiu3Usz6Yvx0pfjqSvClGB+K8VbFeNqL8LAXYbIVYbIVYrIWYrCXYrCW4GYrwWArQW8tQVfZl5XNAiUWLXhcTe9+WUi4Xfb8sgC57UXt1GsnkEBo4jLyS9mfmotOB/FdQ1xdjqYgA3a8o506asnXpvm1hYGPQe/x2q8v0ah5Gt2ICPCqdV9YNruioLQyICrGJdq4yGKlyGKlsGJcZLE5HhdarBSVXZpWeU2G/bJwqZmpYrhWCg/K8MSCFxY8ddrYS2fBE22ofOxBGUaseOjKMOmsmHRWPHXlmLBi1FnxoByj43k5RsoxYsVEGe5Ke27Aihs23JRNG3OFw3b2in6zrFfeK0s6n0GUk87nkUBo4tZV7B30ivAnxNfFFxflnIZtb8Hej7VfXaD1JTRoNnS/V85jb8bc9Dr8vYz4exlpF3jt71Nus1NssVFqtVFabqO03F4xtlFqvfTYUm53LFNSZq+yfLnt0lBmVVjtFc+tijLb5fMVZVbtcbHNTrrt0nxnt6zqsOOGHQO2ywY7bthw12mhYahxsDPZ8yainFSXBEITt+XEBQDiu4S6roj0RK2h+NAXl64obtsPBs+FG0bIqYWi1tzd9Ji99Jhx3Y8HpRQ2u6LcpoWJ3Q5Wux1bxfRqg1JYbQq7UljtCrv90thWwzSrvWJZm/Z6hcKutL0spbTH9op1qYrHldPsdkX7KOcdGpZAaMLsduW45+/Ajtfxs+xaKAVnNsHPb8Cpny5Nj46HwXO0K4vl1EDRBOl0OgxuOgxuAM37DKRfk0Bowg6n5ZNXUo6PyUD3Ng3UnUPlqaM/vwHpB7RpOj10/b0WBK17NEwdQoh6J4HQhCVU9HXTv30ABjcnH5YpztH6GNr5nnZVK4DBU2skjpuldcMshGjSJBCasITTWiDEdXDi4aJzu7WzhQ5+DpV99nsFQuwMOXVUiGZGAqGJstsVu85o7Qdx9d1+kJ8GB9do9x9IT7w0PbQ79Juq9Trq7lm/6xRCuJwEQhOVlF1EgcWKyaCnc5jvb7/gt1xM0m5FefQbOLMZxw3o3YzQ7W5tb6BtP2koFqIZk0Boog6e1y746tLa79raD/LOaj2Nnt2lnSX063v9RsRCj/uh693g3cBnMAkhXEICoYk6dF7rx+XGNlforMpqgaKsS52L5SZD1gnIPgGZR6HgfNXldW5aL6Odhms3oQloX/P7CiGaLQmEhma3a32mFF3QunUozdfGloJL4/ISsJVpX+qOsQWsZY7xfWnZ3GUspe0JHbxu1+ZZSy8tr37jVqY6NwjtBhH9od1A7XaUns3/RkJCiCuTQHCG4hzIOKT9Gs86qd0KsiD9UnfAdut1ryIaQA8UXWUhvUG7UYl3kNaXUFA0BHaCoBu06wWkTyEhxGUkEK6TUorUixexnNmOz5nv8DyXgDH35NVfpNNhN/lhM5qxG32wu3tjN/pVjH1RBg+Um/HSoLvssZs7+eV6lmxIxqYz8v8mxOJu8tJ6RXR0v2vUbppu9Lt6txHlxfW7MYQQTudp8NRuXOQEcoOcy1zLDXKKy4uJ/STWyZUJIYRmxx924OVeu15ooW7fa9LrmBBCCEAOGV03T4MnO+7fpD0xuLj7aSFEs+dpcN5FoRII10mn0+HlKd03CCGaPjlkJIQQApBAEEIIUUECQQghBCCBIIQQooIEghBCCEACQQghRAUJBCGEEIAEghBCiApyYdplKrt1ys/Pd3ElQghRPyq/z2rTbZ0EwmUKCgoAiIiIcHElQghRvwoKCjCbzVddRno7vYzdbuf8+fP4+vrWqXvZ/Px8IiIiSE1NrXUvqS2FbJuayXa5Mtk2NbvW7aKUoqCggPDwcPRX6w4f2UOoQq/X07Zt22t+vZ+fn/wBX4Fsm5rJdrky2TY1u5bt8lt7BpWkUVkIIQQggSCEEKKCBEI9MJlMPP/885hMJleX0ujItqmZbJcrk21Ts4bYLtKoLIQQApA9BCGEEBUkEIQQQgASCEIIISpIIAghhAAkEOrF0qVLiYqKwsPDg9jYWHbu3Onqkpxq8+bNjBkzhvDwcHQ6HV999VWV+UopFixYQOvWrfH09CQ+Pp4TJ05UWSYnJ4c//vGP+Pn54e/vz9SpUyksLGzAT1H/Fi1aRL9+/fD19SUkJITf//73HDt2rMoypaWlzJo1i8DAQHx8fBg7diwZGRlVlklJSWH06NF4eXkREhLCU089hdVqbciPUu/eeecdevTo4bioKi4uju+++84xv6Vul1/729/+hk6nY/bs2Y5pDbptlLguK1euVEajUS1btkwdOnRITZs2Tfn7+6uMjAxXl+Y0a9euVc8++6z64osvFKC+/PLLKvP/9re/KbPZrL766iu1f/9+deedd6r27durkpISxzIjRoxQPXv2VNu3b1dbtmxR0dHRaty4cQ38SerX7bffrpYvX64OHjyo9u3bp0aNGqUiIyNVYWGhY5kZM2aoiIgItX79evXLL7+oAQMGqIEDBzrmW61WdeONN6r4+Hi1d+9etXbtWhUUFKTmz5/vio9Ub77++mv17bffquPHj6tjx46pZ555Rrm7u6uDBw8qpVrudrnczp07VVRUlOrRo4d64oknHNMbcttIIFyn/v37q1mzZjme22w2FR4erhYtWuTCqhrOrwPBbrersLAw9eqrrzqm5ebmKpPJpD799FOllFKHDx9WgNq1a5djme+++07pdDp17ty5Bqvd2TIzMxWgNm3apJTStoO7u7v67LPPHMscOXJEASohIUEppYWtXq9X6enpjmXeeecd5efnpywWS8N+ACdr1aqV+vvf/y7bRSlVUFCgOnXqpNatW6eGDBniCISG3jZyyOg6lJWVsXv3buLj4x3T9Ho98fHxJCQkuLAy1zlz5gzp6elVtonZbCY2NtaxTRISEvD396dv376OZeLj49Hr9ezYsaPBa3aWvLw8AAICAgDYvXs35eXlVbZN586diYyMrLJtunfvTmhoqGOZ22+/nfz8fA4dOtSA1TuPzWZj5cqVFBUVERcXJ9sFmDVrFqNHj66yDaDh/2akc7vrkJWVhc1mq/IPARAaGsrRo0ddVJVrpaenA9S4TSrnpaenExISUmW+wWAgICDAsUxTZ7fbmT17NoMGDeLGG28EtM9tNBrx9/evsuyvt01N265yXlOWmJhIXFwcpaWl+Pj48OWXX9K1a1f27dvXorfLypUr2bNnD7t27ao2r6H/ZiQQhHCCWbNmcfDgQbZu3erqUhqNmJgY9u3bR15eHmvWrGHixIls2rTJ1WW5VGpqKk888QTr1q3Dw8PD1eXIWUbXIygoCDc3t2ot/hkZGYSFhbmoKteq/NxX2yZhYWFkZmZWmW+1WsnJyWkW2+3RRx/lm2++YcOGDVW6Uw8LC6OsrIzc3Nwqy/9629S07SrnNWVGo5Ho6Gj69OnDokWL6NmzJ2+88UaL3i67d+8mMzOT3r17YzAYMBgMbNq0iTfffBODwUBoaGiDbhsJhOtgNBrp06cP69evd0yz2+2sX7+euLg4F1bmOu3btycsLKzKNsnPz2fHjh2ObRIXF0dubi67d+92LPPTTz9ht9uJjY1t8Jrri1KKRx99lC+//JKffvqJ9u3bV5nfp08f3N3dq2ybY8eOkZKSUmXbJCYmVgnMdevW4efnR9euXRvmgzQQu92OxWJp0dtl2LBhJCYmsm/fPsfQt29f/vjHPzoeN+i2ue7m8RZu5cqVymQyqRUrVqjDhw+rRx55RPn7+1dp8W9uCgoK1N69e9XevXsVoBYvXqz27t2rkpOTlVLaaaf+/v7qX//6lzpw4IC66667ajzt9KabblI7duxQW7duVZ06dWryp53OnDlTmc1mtXHjRpWWluYYiouLHcvMmDFDRUZGqp9++kn98ssvKi4uTsXFxTnmV55COHz4cLVv3z71/fffq+Dg4CZ/euXTTz+tNm3apM6cOaMOHDignn76aaXT6dSPP/6olGq526Uml59lpFTDbhsJhHrw1ltvqcjISGU0GlX//v3V9u3bXV2SU23YsEEB1YaJEycqpbRTT5977jkVGhqqTCaTGjZsmDp27FiV98jOzlbjxo1TPj4+ys/PT02ePFkVFBS44NPUn5q2CaCWL1/uWKakpET96U9/Uq1atVJeXl7q7rvvVmlpaVXeJykpSY0cOVJ5enqqoKAgNW/ePFVeXt7An6Z+TZkyRbVr104ZjUYVHByshg0b5ggDpVrudqnJrwOhIbeNdH8thBACkDYEIYQQFSQQhBBCABIIQgghKkggCCGEACQQhBBCVJBAEEIIAUggCCGEqCCBIIQQApBAEKKaSZMm8fvf/95l6x8/fjwvv/yy097/8OHDtG3blqKiIqetQzRNcqWyaFF0Ot1V5z///PPMmTMHpVS1Pugbwv79+xk6dCjJycn4+Pg4bT333nsvPXv25LnnnnPaOkTTI4EgWpTLbxiyatUqFixYwLFjxxzTfHx8nPpF/FsefvhhDAYD7777rlPX8+233zJt2jRSUlIwGOS2KEIjh4xEixIWFuYYzGYzOp2uyjQfH59qh4x+97vf8dhjjzF79mxatWpFaGgo77//PkVFRUyePBlfX1+io6P57rvvqqzr4MGDjBw5Eh8fH0JDQxk/fjxZWVlXrM1ms7FmzRrGjBlTZXpUVBQvvfQSEyZMwMfHh3bt2vH1119z4cIF7rrrLnx8fOjRowe//PKL4zXJycmMGTOGVq1a4e3tTbdu3Vi7dq1j/m233UZOTk6Lv0GNqEoCQYha+PDDDwkKCmLnzp089thjzJw5k/vuu4+BAweyZ88ehg8fzvjx4ykuLgYgNzeXoUOHctNNN/HLL7/w/fffk5GRwf3333/FdRw4cIC8vLwq95qutGTJEgYNGsTevXsZPXo048ePZ8KECTz00EPs2bOHjh07MmHCBCp3+GfNmoXFYmHz5s0kJibyyiuvVNnzMRqN9OrViy1bttTzlhJN2rV20SpEU7d8+XJlNpurTZ84caK66667HM+HDBmiBg8e7HhutVqVt7e3Gj9+vGNaWlqaAlRCQoJSSqn//u//VsOHD6/yvqmpqQqo1hV4pS+//FK5ubkpu91eZXq7du3UQw89VG1dzz33nGNaQkKCAhzdInfv3l298MILV/38d999t5o0adJVlxEti+whCFELPXr0cDx2c3MjMDCQ7t27O6ZV3tS88q5V+/fvZ8OGDY42CR8fHzp37gzAqVOnalxHSUkJJpOpxobvy9dfua6rrf/xxx/npZdeYtCgQTz//PMcOHCg2nt6eno69miEADlkJEStuLu7V3mu0+mqTKv8Erfb7QAUFhYyZsyYKrdG3LdvHydOnOCWW26pcR1BQUEUFxdTVlZ21fVXrutq63/44Yc5ffo048ePJzExkb59+/LWW29Vec+cnByCg4NrtwFEiyCBIIQT9O7dm0OHDhEVFUV0dHSVwdvbu8bX9OrVC9CuE6gPERERzJgxgy+++IJ58+bx/vvvV5l/8OBBbrrppnpZl2geJBCEcIJZs2aRk5PDuHHj2LVrF6dOneKHH35g8uTJ2Gy2Gl8THBxM79692bp163Wvf/bs2fzwww+cOXOGPXv2sGHDBrp06eKYn5SUxLlz54iPj7/udYnmQwJBCCcIDw/n559/xmazMXz4cLp3787s2bPx9/dHr7/yf7uHH36Yjz/++LrXb7PZmDVrFl26dGHEiBHccMMNvP322475n376KcOHD6ddu3bXvS7RfMiFaUI0IiUlJcTExLBq1Sri4uKcso6ysjI6derEJ598wqBBg5yyDtE0yR6CEI2Ip6cnH3300VUvYLteKSkpPPPMMxIGohrZQxBCCAHIHoIQQogKEghCCCEACQQhhBAVJBCEEEIAEghCCCEqSCAIIYQAJBCEEEJUkEAQQggBSCAIIYSo8P8BwIpPzHz7ekEAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
@@ -402,14 +400,12 @@
},
{
"cell_type": "markdown",
- "id": "f5fbd53c",
+ "id": "658b032d",
"metadata": {},
"source": [
"That's it! You are now ready to build your own custom simulations and equip them with channel and synapse models!\n",
"\n",
- "This tutorial does not have an immediate follow-up tutorial. You could read the [tutorial on groups](https://jaxleyverse.github.io/jaxley/latest/tutorial/06_groups/), which allow to make your `Jaxley` simulations more elegant and convenient to interact with.\n",
- "\n",
- "Alternatively, you can also directly jump ahead to the [tutorial on training biophysical networks](https://jaxleyverse.github.io/jaxley/latest/tutorial/07_gradient_descent/) which will teach you how you can optimize parameters of biophysical models with gradient descent."
+ "This tutorial does not have an immediate follow-up tutorial. If you have not done so already, you can check out our [tutorial on training biophysical networks](https://jaxley.readthedocs.io/en/latest/tutorials/07_gradient_descent.html) which will teach you how you can optimize parameters of biophysical models with gradient descent."
]
}
],
diff --git a/docs/tutorials/06_groups.ipynb b/docs/tutorials/06_groups.ipynb
index 0237a2db..362f6525 100644
--- a/docs/tutorials/06_groups.ipynb
+++ b/docs/tutorials/06_groups.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "af3e0abc",
+ "id": "51419bb0",
"metadata": {},
"source": [
"# Defining groups\n",
@@ -40,8 +40,8 @@
},
{
"cell_type": "code",
- "execution_count": 40,
- "id": "bffff534",
+ "execution_count": 1,
+ "id": "d703515b",
"metadata": {},
"outputs": [],
"source": [
@@ -64,30 +64,21 @@
},
{
"cell_type": "markdown",
- "id": "89194cda",
+ "id": "94f247bc",
"metadata": {},
"source": [
- "First, we define a network as you saw in the [previous tutorial](https://jaxleyverse.github.io/jaxley/latest/tutorial/01_morph_neurons/):"
+ "First, we define a network as you saw in the [previous tutorial](https://jaxley.readthedocs.io/en/latest/tutorials/02_small_network.html):"
]
},
{
"cell_type": "code",
- "execution_count": 41,
- "id": "aede87e2",
+ "execution_count": 2,
+ "id": "10c4f776",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/michaeldeistler/Documents/phd/jaxley/jaxley/modules/base.py:1533: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
- " self.pointer.edges = pd.concat(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"comp = jx.Compartment()\n",
- "branch = jx.Branch(comp, nseg=2)\n",
+ "branch = jx.Branch(comp, ncomp=2)\n",
"cell = jx.Cell(branch, parents=[-1, 0, 0, 1])\n",
"network = jx.Network([cell for _ in range(3)])\n",
"\n",
@@ -102,7 +93,7 @@
},
{
"cell_type": "markdown",
- "id": "1cf2350c",
+ "id": "465fc6fa",
"metadata": {},
"source": [
"### Group: apical dendrites\n",
@@ -111,8 +102,8 @@
},
{
"cell_type": "code",
- "execution_count": 42,
- "id": "f89707da",
+ "execution_count": 3,
+ "id": "3f23fceb",
"metadata": {},
"outputs": [],
"source": [
@@ -123,7 +114,7 @@
},
{
"cell_type": "markdown",
- "id": "70ba6d44",
+ "id": "ee58e3e9",
"metadata": {},
"source": [
"After this, we can access `network.apical` as we previously accesses anything else:"
@@ -131,8 +122,8 @@
},
{
"cell_type": "code",
- "execution_count": 43,
- "id": "8f1bf2de",
+ "execution_count": 4,
+ "id": "5b2c9ee1",
"metadata": {},
"outputs": [],
"source": [
@@ -141,409 +132,17 @@
},
{
"cell_type": "code",
- "execution_count": 44,
- "id": "55e9dddc",
+ "execution_count": 5,
+ "id": "1e6efa3e",
"metadata": {},
"outputs": [
{
"data": {
- "text/html": [
- "
"
]
@@ -872,7 +888,7 @@
},
{
"cell_type": "markdown",
- "id": "9aa2db31",
+ "id": "6e8a104d",
"metadata": {},
"source": [
"Indeed, the loss goes down and the network successfully classifies the patterns."
@@ -880,7 +896,7 @@
},
{
"cell_type": "markdown",
- "id": "4a2b4b0a-1f97-4ea3-a5f2-af12ed5398ed",
+ "id": "cd9e7cc4",
"metadata": {},
"source": [
"### Summary"
@@ -888,7 +904,7 @@
},
{
"cell_type": "markdown",
- "id": "ef8c1dbe-a688-43bc-ade4-440abf359925",
+ "id": "b6fc5e6d",
"metadata": {},
"source": [
"Puh, this was a pretty dense tutorial with a lot of material. You should have learned how to:\n",
@@ -902,16 +918,16 @@
},
{
"cell_type": "markdown",
- "id": "0e6045a5-76db-455e-8a4a-63e5a99ddc77",
+ "id": "7cef661e",
"metadata": {},
"source": [
- "This was one of the last tutorials of the `Jaxley` toolbox. If anything is still unclear please create a [discussion](https://github.com/jaxleyverse/jaxley/discussions). If you find any bugs, please open an [issue](https://github.com/jaxleyverse/jaxley/issues). Happy coding!"
+ "This was the last \"basic\" tutorial of the `Jaxley` toolbox. If you want to learn more, check out our [Advanced Tutorials](https://jaxley.readthedocs.io/en/latest/advanced_tutorials.html). If anything is still unclear please create a [discussion](https://github.com/jaxleyverse/jaxley/discussions). If you find any bugs, please open an [issue](https://github.com/jaxleyverse/jaxley/issues). Happy coding!"
]
}
],
"metadata": {
"kernelspec": {
- "display_name": "jaxley12",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -925,7 +941,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.7"
+ "version": "3.12.4"
}
},
"nbformat": 4,
diff --git a/docs/tutorials/08_importing_morphologies.ipynb b/docs/tutorials/08_importing_morphologies.ipynb
index 5aebcb1a..672e78a7 100644
--- a/docs/tutorials/08_importing_morphologies.ipynb
+++ b/docs/tutorials/08_importing_morphologies.ipynb
@@ -16,7 +16,8 @@
"```python\n",
"import jaxley as jx\n",
"\n",
- "cell = jx.read_swc(\"my_cell.swc\", nseg=4, assign_groups=True)\n",
+ "cell = jx.read_swc(\"my_cell.swc\", ncomp=4)\n",
+ "cell.branch(2).set_ncomp(2) # Modify the number of compartments of a branch.\n",
"```\n",
"\n",
"To work with more complicated morphologies, `Jaxley` supports importing morphological reconstructions via `.swc` files.\n",
@@ -52,7 +53,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "(1, 157, 8)\n"
+ "(157, 1256)\n"
]
},
{
@@ -76,14 +77,12 @@
" \n",
"