-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwork1.jl
39 lines (27 loc) · 1.22 KB
/
work1.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#### workfile 1
using Statistics
using Distributions
using Plots
using Random
using JLD
# Random.seed!(1234)
#### przesuwamy o 1 bo rozkład musi spełniać f(1) = 0
EX₁ = 5 - 1
max_val1 = 14 - 1
distr_variants1 = [ (round(1-cdf(NegativeBinomial(r,EX₁/(r+EX₁)), max_val1),digits=3), r) for r in 2:0.1:8 ]
r₁ = distr_variants1[findfirst(x->x[1]==0.005, distr_variants1)][2]
neg_bin = NegativeBinomial(r₁, EX₁/(r₁+EX₁))
############
#### dodajemy 0.5 do wartości maksymalnej bo rozkład będzie dyskretyzowany przez zaokrąglanie matematyczne
EX₂ = 14
max_val2 = 42 + 0.5
distr_variants2 = [ (round(1-cdf(LogNormal(log(EX₂)- (σ^2)/2,σ), max_val2),digits=3), σ) for σ in 0.1:0.01:0.6 ]
σ₂ = distr_variants2[findfirst(x->x[1]==0.005, distr_variants2)][2]
log_norm1 = LogNormal(log(EX₂)- (σ₂^2)/2, σ₂)
#############
EX₃ = 10
max_val3 = 28 + 0.5
distr_variants3 = [ (round(1-cdf(LogNormal(log(EX₃)- (σ^2)/2,σ), max_val3),digits=3), σ) for σ in 0.1:0.01:0.6 ]
σ₃ = distr_variants3[findfirst(x->x[1]==0.005, distr_variants3)][2]
log_norm2 = LogNormal(log(EX₃)- (σ₃^2)/2, σ₃)
save("data/duration_dists.jld", Dict{String, Distribution}("F_E" => neg_bin, "F_I" => log_norm1, "F_C" => log_norm2))