-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
147 lines (69 loc) · 4.13 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import os
import sys
import torch
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from datasets.builder_dataset import build_dataset
from models.builder_model import build_model
from utils.optim.builder_optimizer import build_optimizer
from utils.envs.env import init_seeds
from utils.envs.torch_utils import select_device
from tqdm import tqdm
from utils.losses.builder_loss import build_loss
from datasets.builder_dataset import convert_data2device
from utils.checkpoint.file_utils import get_save_dir
from utils.checkpoint.checkpoint import save_ckpt
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data_type', type=str, default="dance", choices=['dance'], help='data sets')
parser.add_argument('--source', type=str, default=r"C:\Users\Administrator\Desktop\dance", help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'], help='data ')
parser.add_argument('--batch_size', type=int, default=1, help='total batch size for all GPUs')
parser.add_argument('--num_workers', type=int, default=0, help='load data worker number')
parser.add_argument('--total_epochs', type=int, default=20, help='epoches')
parser.add_argument('--num_classes', type=int, default=2, help='number of boxes class')
parser.add_argument('--model_name', type=str, default="diff_track", choices=['resnet', 'diff_track'], help='Select Model')
parser.add_argument('--weights', nargs='+', type=str, default='False', help='model path(s)')
parser.add_argument('--img_size', type=list, default=[(720, 540)], help='inference size h,w')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--project', default=ROOT / 'runs/test', help='save results to project/name')
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
args = parser.parse_args()
return args
def main(args):
init_seeds()
device = select_device(args.device, args.batch_size) # 设置显卡
save_dir = get_save_dir(args.project, args.resume)
# kwargs_data={'batch_size':args.batch_size}
# train_dataset, train_loader = build_dataset(args, mode='train')
val_dataset, val_loader = build_dataset(args, mode='val')
model = build_model(args.model_name, args).to(device)
model = torch.nn.DataParallel(model) # DP 模式
model.eval()
with tqdm(total=len(val_loader)) as pbar:
for iter,data in enumerate(val_loader):
# pre_imgs, cur_images, pre_targets, cur_targets = data
pre_imgs = data["pre_images"].to(device) # data['pre_imgs'].to(device) #torch.stack(data['pre_imgs'], 0).to(device) #
cur_images = data["cur_images"].to(device) # data['cur_images'].to(device)
# pre_target = pre_targets.to(device) # data['pre_targets']
# cur_target = cur_targets.to(device) # data['cur_targets']
pre_targets = convert_data2device(data["pre_targets"], args.data_type, device)
cur_targets = convert_data2device(data["cur_targets"], args.data_type, device)
pred_logits,pred_boxes = model(pre_imgs, cur_images, pre_targets["boxes"])
outputs={"pred_logits":pred_logits,"pred_boxes":pred_boxes}
# #################### 打印信息控制############
# if (iter+1) % 100 == 0:
# print('\tepoch: {}|{}\tloss:{}'.format(epoch + 1, iter + 1, np_loss))
# pbar.set_description("epoch {}|{}".format(args.total_epochs, epoch + 1))
# pbar.set_postfix(iter_all='{}||{}'.format(max_iter, cur_iter),
# iter_epoch='{}||{}'.format(len(train_loader), iter + 1), loss=np_loss)
# pbar.update()
if __name__ == "__main__":
args = parse_opt()
main(args)