-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimplex_init_only.py
176 lines (153 loc) · 4.49 KB
/
simplex_init_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
from collections import defaultdict
class Simplex:
def __init__(self, parsed_input, rows=None, c=None):
if rows != None:
self.A = parsed_input.A[rows,:]
self.b = parsed_input.b[rows]
else:
self.A = parsed_input.A
self.b = parsed_input.b
self.col_dict = parsed_input.col_dict
self.c = c
self.B = []
self.I = []
def initialization_phase(self):
if np.all(self.b > 0):
#print "feasible"
self.I = np.arange(1+self.A.shape[1]+self.A.shape[0])
return True
else:
(m,n)= self.A.shape
#print (m, n)
self.A = np.concatenate((-np.ones((m,1),np.float32), \
self.A, np.identity(m,np.float32)),1)
ind = np.arange(self.A.shape[1])
B = ind[-m:]
I = ind[:n+1]
self.c = np.zeros(1+m+n, np.float32)
self.c[0] = -1
# Force x0 to enter
[B, I, obj, terminal_case] = self.pivot(B, I, True)
terminal_case = False
while not terminal_case:
[B, I, obj, terminal_case] = self.pivot(B,I,False)
#print 'result', [B, I, obj]
self.B = B
self.I = I
#print 'self',self.I
#print self.B
if obj < 0.0:
#print "infeasible"
return False;
else:
#print "feasible"
result = self.get_assignment()
return True
def solve(self):
return self.initialization_phase()
def get_assignment(self):
result_dict = {}
(m,n) = self.A.shape
for i in self.I:
result_dict[i] = 0
ind = 0
for i in self.B:
Ab = self.A[:,self.B]
Ai = self.A[:,self.I]
b_hat = np.linalg.solve(Ab, self.b)
result_dict[i] = b_hat[ind]
ind = ind + 1
result = []
#print self.I, self.B
#print result_dict
for key, val in self.col_dict.iteritems():
#print key, val
if val <= n:
result.append((key, result_dict[val+1]))
#print 'result', result
orig_variables = defaultdict(float)
for ans in result:
var = ans[0]
val = ans[1]
if 'pp' in var:
var = var.replace('pp', '')
val *= -1
else:
var = var.replace('p', '')
orig_variables[var] += val
return orig_variables
#return result
def pivot(self, B, I, force_flag):
Ab = self.A[:,B]
Ai = self.A[:,I]
cb = self.c[B]
ci = self.c[I]
# pi = Ab \ cb
pi = np.linalg.solve(np.transpose(Ab), cb)
obj = np.dot(pi, self.b)
c_hat = ci - np.dot(pi, Ai)
#choose enter
if force_flag:
enter = 0
else:
if (c_hat.max() <= 0):
#print "done"
return [B, I, obj, True]
enter = np.argmax(c_hat)
b_hat = np.linalg.solve(Ab, self.b)
a_j_hat = -np.linalg.solve(Ab, self.A[:,I[enter]])
if force_flag:
leave = self.b.argmin()
leavelim = -b_hat[leave] / a_j_hat[leave]
else:
#search for leave index
leave = -1
leavelim = np.Inf
for i in np.arange(Ab.shape[0]):
if a_j_hat[i] < 0:
ll = -b_hat[i] / a_j_hat[i]
if ll < leavelim:
leavelim = ll
leave = i
#leave = (b_hat/ a_j_hat).argmax()
if leave == -1:
#print "Unbounded"
return [B,I, obj, True]
temp = I[enter]
I[enter] = B[leave]
B[leave] = temp
obj= np.dot(pi, self.b) + c_hat[enter] * leavelim
return [B, I, obj, False]
'''
A = np.float32([[1,1],[-1,-1]])
b = np.float32([-1, 1-0.001])
'''
'''
# feasible
A = np.float32([[2,-3,7,-15], \
[0,1,-4,6], \
[-1,0,1,-2],\
[0,1,1,0]])
b = np.float32([10,12,4,16])
c = np.float32([1,-1,1,-1])
'''
'''
# feasible
A = np.float32([[-2,1],\
[0,1],\
[1,-2],\
[1,0]])
b = np.float32([-2,4,-2,4])
'''
'''
#infeasible
A = np.float32([[1,-1,0],\
[0,1,1],\
[-1,0,1],\
[0,0,-1]])
b = np.float32([5,14,-6,-7])
rows = [0,1,2,3]
mySimplex = Simplex(A, b, rows)
result = mySimplex.solve()
'''