-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbomap_main.py
344 lines (296 loc) · 13.2 KB
/
bomap_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import pickle
import ipdb
import gym
import numpy as np
import copy
import os
import datetime
from reward_basis import RewardBasis
from record import get_test_record_title
from replay_memory import Memory
from lspi import LSPI
from lstd_mu import LSTD_MU
from irl_test import IRL_test
TRANSITION = 15000
MEMORY_SIZE = 50000
important_sampling = False
class IRL_LSTDMU:
def __init__(self, env, reward_basis, gamma, epsilon, debug_name, lspi_bfdim=20, lspi_bfopt="deep_cartpole",
num_traj_for_policy=100, num_expert=200, num_traj_for_mu=200, num_eval=100, psi_s0_iter=100):
self.env = env
self.reward_basis = reward_basis
self.gamma = gamma
self.epsilon = epsilon
self.theta = None
self.num_actions = self.env.action_space.n
self.state_dim = self.env.observation_space.shape[0]
action_dim = 1
self.memory = Memory(MEMORY_SIZE, action_dim, state_dim)
self.agent = LSPI(self.num_actions, self.state_dim, lspi_bfdim, gamma=0.99,
opt=lspi_bfopt, saved_basis_use=True)
self.expert_trajectories = self._generate_trajectories_from_expert_policy(
n_trajectories=num_expert)
self.mu_expert = self.compute_feature_expectation(self.expert_trajectories)
self.num_traj_for_policy = num_traj_for_policy
self.num_traj_for_mu = num_traj_for_mu
self.num_eval = num_eval
self.psi_s0_iter = psi_s0_iter
# Bin name definition
self.p = self.reward_basis._num_basis()
self.csv_name = "CartPole-v0_#Expert{}_#NewTrajPerLSPI{}_RBOpt{}_RBDim{}_TrainEpisode{}_LSPIBFOpt{}_LSPIBFDim{}_#Eval{}_LSTDMU_{}.csv".format(
num_expert,
self.num_traj_for_mu,
self.reward_basis.opt,
self.p,
num_traj_for_policy,
lspi_bfopt,
lspi_bfdim,
num_eval,
debug_name)
print("#csv name : ", self.csv_name)
with open(self.csv_name, 'a') as f:
f.write("t,best,mean,worst,sd,mean_ar,std_ar\n")
def _generate_trajectories_from_initial_policy(self, n_trajectories=100):
trajectories = []
rewards_list = []
for _ in range(n_trajectories):
state = self.env.reset()
trajectory = []
rewards = 0
for _ in range(TRANSITION): # TRANSITION
if state[0] > 0: # right
action = 0 # go right
next_state, reward, done, info = self.env.step(action)
else: # left
action = 1 # go left
next_state, reward, done, info = self.env.step(action)
trajectory.append([state, action, reward, next_state, done])
state = next_state
rewards += 1
if done:
rewards_list.append(rewards)
break
# for j
trajectories.append(trajectory)
# for i
print("initial policy0 average reward : {}".format(sum(rewards_list)/n_trajectories))
return trajectories
def _generate_trajectories_from_expert_policy(self, n_trajectories=100):
trajectories = []
rewards_list = []
for _ in range(n_trajectories):
state = self.env.reset()
trajectory = []
rewards = 0
for _ in range(TRANSITION):
if state[2] < 0: # pole angle is minus(left)
if state[3] < 0: # pole velocity is minus(left) => bad situation.
action = 0 # go left
else: # pole velocity is plus(right) => good situation.
action = self.env.action_space.sample()
else: # pole angle is plus(right)
if state[3] < 0: # pole velocity is minus(left) => good situation.
action = self.env.action_space.sample()
else:
action = 1 # go right
next_state, reward, done, info = self.env.step(action)
trajectory.append([state, action, reward, next_state, done])
state = next_state
rewards += 1
if done:
rewards_list.append(rewards)
break
# for j
trajectories.append(trajectory)
# for i
print("expert policy average reward : {}".format(sum(rewards_list)/n_trajectories))
return trajectories
def _generate_new_trajectories(self, agent, n_trajectories=1000):
trajectories = []
for _ in range(n_trajectories):
state = self.env.reset()
trajectory = []
for _ in range(TRANSITION):
action = agent.act(state)
next_state, reward, done, _ = self.env.step(action)
trajectory.append([state, action, reward, next_state, done])
state = next_state
if done:
break
# for _
trajectories.append(trajectory)
# for _
return trajectories
def compute_feature_expectation(self, trajectories):
mu_sum = None
for i, one_traj in enumerate(trajectories):
one_mu = None
gamma_update = 1.0 / self.gamma
for j, sample in enumerate(one_traj): # [s, a, r, s', d]
state = sample[0]
phi_state = self.reward_basis.evaluate(state)
gamma_update *= self.gamma
phi_time_unit = phi_state * gamma_update
if j == 0:
one_mu = phi_time_unit
else:
one_mu += phi_time_unit
# for j
if i == 0:
mu_sum = one_mu
else:
mu_sum += one_mu
# for i
mu = mu_sum / len(trajectories)
return mu
def agent_train_wrapper(self, memory, theta, isRender=False):
approx_rewards = []
for i in range(self.num_traj_for_policy):
state = self.env.reset()
for j in range(TRANSITION):
if isRender:
self.env.render()
action = self.env.action_space.sample()
next_state, _, done, _ = self.env.step(action)
phi_state = self.reward_basis.evaluate(state)
reward = np.dot(phi_state, theta)
approx_rewards.append(reward)
memory.add([state, action, reward, next_state, done])
state = next_state
if done:
break
mean = sum(approx_rewards) / len(approx_rewards)
std = np.var(approx_rewards) ** (1/2)
print("approx reward : {}. approx std : {}".format(mean, std))
sample = memory.select_sample(memory.container_size)
self.agent.train(sample, w_important_sampling=important_sampling)
# Clean up
memory.clear_memory()
return mean, std
def loop(self):
# psi function for psi_s0
psi_function = self.agent.basis_function
q = psi_function._num_basis()
# Initialization & list definition
iteration = 0
t_collection = []
test_reward_collection = []
speed_collection = []
# Time checker definition
time_checker_option = True
time_checker_collection = []
# IRL algorithm 1.
initial_trajectories = self._generate_trajectories_from_initial_policy(n_trajectories=200)
self.mu_initial = self.compute_feature_expectation(initial_trajectories)
# IRL algorithm 2.
self.mu_bar = self.mu_initial
self.theta = self.mu_expert - self.mu_bar
t = np.linalg.norm(self.theta, 2)
print("Initial threshold: ", t)
initial_t = copy.deepcopy(t)
# IRL algorithm 3.
while t > self.epsilon:
# IRL algorithm 4.
self.agent.initialize_policy()
mean_ar, std_ar = self.agent_train_wrapper(self.memory,
self.theta,
isRender=False)
# Test
mean, best, worst, variance = IRL_test(self.env, self.agent, iteration, num_eval=self.num_eval)
test_reward_collection.append(mean)
# Time checker 1
start = datetime.datetime.now()
# Get psi(s0)
_psi_sum = np.zeros((q,))
for i in range(self.psi_s0_iter):
_psi = psi_function.evaluate(self.env.reset(), self.env.action_space.sample())
_psi_sum += _psi
psi = _psi_sum / self.psi_s0_iter
psi = np.resize(psi, [len(psi), 1])
# Optimal policy sampling
for i in range(self.num_traj_for_mu):
state = self.env.reset() # s0
for j in range(TRANSITION):
action = self.env.action_space.sample() # a0, a1, a2, ...
next_state, _, done, _ = self.env.step(action)
self.memory.add([state, action, None, next_state, done])
state = next_state # s1, s2, s3, ...
if done:
break
jth_optimal_policy = self.agent.policy
lstd_mu = LSTD_MU(psi_function, self.gamma)
samples = self.memory.select_sample(self.memory.container_size)
self.memory.clear_memory()
# for lstdmu sampling finish
if important_sampling:
xi = lstd_mu.get_parameter_xi_with_important_sampling(samples,
jth_optimal_policy,
self.reward_basis)
else:
xi = lstd_mu.get_parameter_xi(jth_optimal_policy, self.reward_basis, samples)
mu_origin = np.matmul(xi.T, psi) # (p, q) x (q, 1)
mu_origin = np.reshape(mu_origin, [self.p])
# Time checker 2
first_end = datetime.datetime.now()
first_end_result = first_end - start
if time_checker_option:
new_trajectories = self._generate_new_trajectories(self.agent, n_trajectories=100)
mu = self.compute_feature_expectation(new_trajectories)
mu_diff = mu - mu_origin
print("mu_norm : {}".format(np.linalg.norm(mu_diff)))
print("mu_diff ", mu_diff)
# Time checker 3
second_end = datetime.datetime.now()
second_end_result = second_end - first_end
time_checker_collection.append([first_end_result, second_end_result])
speed = second_end_result / first_end_result
print("speed : ", speed)
speed_collection.append(speed)
# 2. Projection method
updated_loss = mu_origin - self.mu_bar
self.mu_bar += updated_loss * updated_loss.dot(self.theta) / np.square(updated_loss).sum()
self.theta = self.mu_expert - self.mu_bar
t = np.linalg.norm(self.theta, 2)
t_collection.append(t)
if iteration == 0:
th_gap = initial_t - t_collection[-1]
print("iteration {0:} threshold : {1:.5f}, speed: {2:}".format(iteration, t, speed))
elif iteration > 0:
th_gap = t_collection[-1] - t_collection[-2]
print("iteration {0:} threshold : {1:.5f}, threshold_gap: {2:.5f}, speed: {3:}".format(
iteration,
t,
th_gap,
speed))
with open(self.csv_name, 'a') as f:
f.write("{},{},{},{},{},{},{},{}\n".format(t, best, mean, worst, variance, mean_ar, std_ar, speed))
iteration += 1
if iteration == 200:
break
return
if __name__ == '__main__':
state_dim = 4
feature_means = None
env = gym.make("CartPole-v0")
gamma = 0.99
epsilon = 0.1
rb_dim = 5
rb_bfopt = "deep_cartpole"
#rb_bfopt = "gaussian_sum"
lspi_bfdim = 5
lspi_bfopt = "deep_cartpole"
#lspi_bfopt = "gaussian_sum"
num_traj_for_policy = 100
num_expert = 100
num_traj_for_mu = 1
reward_basis = RewardBasis(state_dim, rb_dim, gamma, feature_means, bfopt=rb_bfopt)
iteration_names = ["DEBUG"]
for debug_name in iteration_names:
irl = IRL_LSTDMU(env, reward_basis, gamma, epsilon, debug_name,
lspi_bfdim=lspi_bfdim,
lspi_bfopt=lspi_bfopt,
num_traj_for_policy=num_traj_for_policy,
num_expert=num_expert,
num_traj_for_mu=num_traj_for_mu,
num_eval=100)
irl.loop()