-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbomap_with_dan_main.py
312 lines (260 loc) · 10.9 KB
/
bomap_with_dan_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import pickle
import ipdb
import gym
import numpy as np
import copy
import os
import datetime
import tensorflow as tf
from record import get_test_record_title
from replay_memory import Memory
from lspi import LSPI
from lstd_mu import LSTD_MU
from deep_action_network import DeepActionNetwork
from irl_test import IRL_test
TRANSITION = 15000
EPISODE = 30
BATCH_SIZE = 400
MEMORY_SIZE = TRANSITION + 1000
NUM_EVALUATION = 100
PSI_S0_ITERATION = 1000
NUM_LSTDMU_SAMPLING = 1000
important_sampling = True
class IRL_LSTDMU_DAN:
def __init__(self, env, dan, expert_trajectories, gamma, epsilon):
self.env = env
self.dan = dan
self.expert_trajectories = expert_trajectories
self.gamma = gamma
self.epsilon = epsilon
self.theta = None
self.num_actions = self.env.action_space.n
self.state_dim = self.env.observation_space.shape[0]
action_dim = 1
self.memory = Memory(MEMORY_SIZE, BATCH_SIZE, action_dim, self.state_dim)
self.mu_expert = self.compute_feature_expectation(expert_trajectories)
def _generate_trajectories_from_initial_policy(self, n_trajectories=1000):
trajectories = []
for _ in range(n_trajectories):
self.env.seed()
state = self.env.reset()
trajectory = []
for _ in range(TRANSITION): # TRANSITION
#env.render()
if state[0] > 0: # right
action = 0 # go right
next_state, reward, done, info = self.env.step(action)
else: # left
action = 1 # go left
next_state, reward, done, info = self.env.step(action)
trajectory.append([state, action, reward, next_state, done])
state = next_state
if done:
break
# for j
trajectories.append(trajectory)
# for i
return trajectories
def _generate_new_trajectories(self, agent, n_trajectories=1000):
trajectories = []
for _ in range(n_trajectories):
self.env.seed()
state = self.env.reset()
trajectory = []
for _ in range(TRANSITION):
action = agent.act(state)
next_state, reward, done, _ = self.env.step(action)
trajectory.append([state, action, reward, next_state, done])
state = next_state
if done:
break
# for _
trajectories.append(trajectory)
# for _
return trajectories
def compute_feature_expectation(self, trajectories):
mu_sum = None
for i, one_traj in enumerate(trajectories):
one_mu = None
gamma_update = 1.0 / self.gamma
for j, sample in enumerate(one_traj): # [s, a, r, s', d]
state = sample[0]
phi_state = self.dan.get_features(state)
gamma_update *= self.gamma
phi_time_unit = phi_state * gamma_update
if j == 0:
one_mu = phi_time_unit
else:
one_mu += phi_time_unit
# for j
if i == 0:
mu_sum = one_mu
else:
mu_sum += one_mu
# for i
mu = mu_sum / len(trajectories)
return mu
def _test_policy_with_approxi_reward(self, agent, dan, theta, isRender=False):
total_reward = 0.0
state = self.env.reset()
for _ in range(TRANSITION):
if isRender:
self.env.render()
phi = self.dan.get_features(state)
approxi_reward = np.dot(phi, theta.T).min()
action = agent.act(state)
next_state, _, done, _ = self.env.step(action)
state = next_state
total_reward += approxi_reward
if done:
break
return total_reward
def _get_best_agent(self, memory, agent, theta, isRender=False):
Best_agent = None
Best_mean_reward = float("-inf")
mean_reward = float("-inf")
# 1000 * 100
for i in range(EPISODE):
self.env.seed()
state = self.env.reset()
for j in range(TRANSITION):
if isRender:
self.env.render()
action = self.env.action_space.sample()
next_state, _, done, _ = self.env.step(action)
phi_state = self.dan.get_features(state)
reward = np.dot(phi_state, theta.T).min()
memory.add([state, action, reward, next_state, done])
state = next_state
if done:
break
if memory.container_size < BATCH_SIZE:
sample = memory.select_sample(memory.container_size)
else:
sample = memory.select_sample(BATCH_SIZE)
error = agent.train(sample, w_important_sampling=important_sampling)
reward_list = []
for j in range(NUM_EVALUATION):
total_reward = self._test_policy_with_approxi_reward(agent,
self.dan,
theta)
reward_list.append(total_reward)
mean_reward = sum(reward_list) / NUM_EVALUATION
if Best_mean_reward < mean_reward:
#print("Get Best reward {}".format(mean_reward))
Best_agent = copy.deepcopy(agent)
Best_mean_reward = mean_reward
memory.clear_memory()
if i % 20 == 0:
print("Find Best Agent iteration : {}/{}".format(i, EPISODE))
# for i
# Clean up
memory.clear_memory()
return Best_agent
def loop(self, loop_iter):
pre_soft = self.dan.pre_soft
dan_output = self.dan._num_basis()
best_policy_bin_name = "CartPole-v0_DAN{}_PreSoft{}_ImportantSampling{}_FindBestAgentEpi{}_best_policy_irl_lstdmu_pickle_{}.bin".format(dan_output, pre_soft, important_sampling, EPISODE, loop_iter)
print("#Experiment name : ", best_policy_bin_name)
iteration = 0
Best_agents = []
t_collection = []
test_reward_collection = []
# 1.
initial_trajectories = self._generate_trajectories_from_initial_policy()
self.mu_initial = self.compute_feature_expectation(initial_trajectories)
# 2.
self.mu_bar = self.mu_initial
self.theta = self.mu_expert - self.mu_bar # theta
t = np.linalg.norm(self.theta, 2)
print("Initial threshold: ", t)
# 3.
agent = LSPI(self.num_actions, self.state_dim)
psi_function = agent.basis_function
q = psi_function._num_basis()
while t > self.epsilon:
print("iteration: ", iteration)
# 4.
agent = LSPI(self.num_actions, self.state_dim)
best_agent = self._get_best_agent(self.memory,
agent,
self.theta,
isRender=False)
self.memory.clear_memory()
Best_agents.append(best_agent)
test_reward = IRL_test(self.env, best_agent, iteration)
test_reward_collection.append(test_reward)
# Time checker 1
# start = datetime.datetime.now()
# Get psi(s0)
_psi_sum = np.zeros((q,))
for i in range(PSI_S0_ITERATION):
_psi = psi_function.evaluate(self.env.reset(), self.env.action_space.sample())
_psi_sum += _psi
psi = _psi_sum / PSI_S0_ITERATION
psi = np.resize(psi, [len(psi), 1])
# sampling
for i in range(NUM_LSTDMU_SAMPLING):
state = self.env.reset()
for j in range(TRANSITION):
action = best_agent.act(state)
next_state, _, done, _ = self.env.step(action)
self.memory.add([state, action, None, next_state, done])
if done:
break
# collect sample done
jth_policy = best_agent.policy
lstd_mu = LSTD_MU(psi_function, self.gamma)
samples = self.memory.select_sample(BATCH_SIZE * 2)
self.memory.clear_memory()
if important_sampling:
xi = lstd_mu.train_parameter_with_important_sampling(samples,
jth_policy,
self.dan)
else:
xi = lstd_mu.train_parameter(samples, jth_policy, self.dan)
mu_origin = np.dot(xi.T, psi)
mu_origin = np.reshape(mu_origin, [-1])
# Time checker 2
# first_end = datetime.datetime.now()
# first_end_result = first_end - start
new_trajectories = self._generate_new_trajectories(best_agent, n_trajectories=1000)
mu = self.compute_feature_expectation(new_trajectories)
# Time checker 3
# second_end = datetime.datetime.now()
# second_end_result = second_end - first_end
# print(first_end_result)
# print(second_end_result)
#updated_loss = mu - self.mu_bar
updated_loss = mu_origin - self.mu_bar
self.mu_bar += updated_loss * updated_loss.dot(self.theta.T) / np.square(updated_loss).sum()
self.theta = self.mu_expert - self.mu_bar
t = np.linalg.norm(self.theta, 2)
t_collection.append(t)
print("threshold: ", t)
if iteration > 0:
print("threshold_gap: %05f" % (t_collection[-1] - t_collection[-2]))
iteration += 1
if os.path.exists(best_policy_bin_name):
os.remove(best_policy_bin_name)
with open(best_policy_bin_name, 'wb') as f:
pickle.dump([Best_agents, t_collection, test_reward_collection], f)
if iteration == 200:
break
# end while
return
if __name__ == '__main__':
exp_name = get_test_record_title("CartPole-v0", 999, 'keepBA¬RB', num_tests=1, important_sampling=True)
traj_name = exp_name + '_#Trajectories100_pickle.bin'
with open(traj_name, 'rb') as rf:
expert_trajectories = pickle.load(rf) #[[state, action, reward, next_state, done], ...]
env = gym.make("CartPole-v0")
sess = tf.Session()
dan = DeepActionNetwork(sess, pre_soft=False)
dan.learn(expert_trajectories)
gamma = 0.99
epsilon = 0.1
loop_iteration = list(range(10))[2:]
for it in loop_iteration:
irl = IRL_LSTDMU_DAN(env, dan, expert_trajectories, gamma, epsilon)
irl.loop(it)