-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdandrndqn_main.py
70 lines (59 loc) · 2.17 KB
/
dandrndqn_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
""" Jeonggwan Lee([email protected])
"""
import pickle
import ipdb
import gym
import tensorflow as tf
from record import get_test_record_title
from deep_action_network import DeepActionNetwork
from deep_reward_network import DeepRewardNetwork
#from deep_q_network import DQN
from deep_q_network_without_drn import DQN
TRANSITION = 15000
MAX_STEPS = 300
EPOCH_SIZE = 100
BATCH_SIZE = 100
def generate_trajectories_from_expert_policy(env, n_trajectories=100):
trajectories = []
rewards_list = []
for _ in range(n_trajectories):
state = env.reset()
trajectory = []
rewards = 0
for _ in range(TRANSITION):
if state[2] < 0: # pole angle is minus(left)
if state[3] < 0: # pole velocity is minus(left) => bad situation.
action = 0 # go left
else: # pole velocity is plus(right) => good situation.
action = env.action_space.sample()
else: # pole angle is plus(right)
if state[3] < 0: # pole velocity is minus(left) => good situation.
action = env.action_space.sample()
else:
action = 1 # go right
next_state, reward, done, info = env.step(action)
trajectory.append([state, action, reward, next_state, done])
state = next_state
rewards += 1
if done:
rewards_list.append(rewards)
break
# for j
trajectories.append(trajectory)
# for i
print("expert policy average reward : {}".format(sum(rewards_list)/n_trajectories))
return trajectories
if __name__ == '__main__':
sess = tf.Session()
env = gym.make("CartPole-v0")
expert_trajectories = generate_trajectories_from_expert_policy(env, n_trajectories=300)
dan = DeepActionNetwork(sess, pre_soft=True)
ipdb.set_trace()
if not dan.isRestore():
dan.learn(expert_trajectories)
dan.test(env, isRender=False, num_test=100)
ipdb.set_trace()
drn = DeepRewardNetwork(sess, dan)
drn.learn(env)
dqn = DQN(sess, drn)
dqn.learn(env)