-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_supervised.py
155 lines (128 loc) · 6.55 KB
/
train_supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import time
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_text as text
from absl import app, flags, logging
from tensorflow.keras import mixed_precision
from tfds_korean import klue_sts, kornli, korsts # noqa
from tqdm import tqdm
from model import BertConfig, BertModelForSimCSE
from optimizer import LinearWarmupAndDecayScheduler
from train_unsupervised import STSBenchmarkCallback, get_single_bert_input
FLAGS = flags.FLAGS
def def_flags():
flags.DEFINE_string("config", "./configs/char_bert_base.json", help="bert config")
flags.DEFINE_string("pretrained_weight", "./model-checkpoints/char_bert_base/model", help="pretrained bert weight")
flags.DEFINE_string("vocab_path", "vocabs/vocab_char_16424.txt", help="Vocab path")
flags.DEFINE_boolean("mixed_precision", False, help="do mixed precision training")
flags.DEFINE_string("tensorboard_log_path", "logs", help="tensorboard log dir")
flags.DEFINE_string("model_checkpoints", "models", help="model checkpoint path")
flags.DEFINE_integer("batch_size", 128, help="batch size")
flags.DEFINE_integer("epochs", 3, help="epochs to train")
flags.DEFINE_integer("max_sequence_length", 48, help="max sequence length")
flags.DEFINE_integer("evaluation_frequency", 125, help="evaluation frequency (steps)")
flags.DEFINE_float("temperature", 0.05, help="temperature for SimCSE")
flags.DEFINE_float("warmup_ratio", 0.05, help="warm up ratio")
flags.DEFINE_float("learning_rate", 5e-5, help="Learning rate")
def main(argv):
if FLAGS.mixed_precision:
mixed_precision.set_global_policy("mixed_float16")
logging.info(f"Compute dtype: {mixed_precision.global_policy().compute_dtype}")
logging.info(f"Variable dtype: {mixed_precision.global_policy().variable_dtype}")
tokenizer = text.BertTokenizer(FLAGS.vocab_path, unknown_token="[UNK]")
unk_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[UNK]"))
pad_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[PAD]"))
cls_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[CLS]"))
sep_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[SEP]"))
assert all([unk_id != id_ for id_ in [pad_id, cls_id, sep_id]])
logging.info(f"PAD ID: {pad_id}, UNK ID: {unk_id} CLS ID: {cls_id}, SEP ID: {sep_id}")
bert_input_fn = get_single_bert_input(
tokenizer=tokenizer,
pad_id=pad_id,
cls_id=cls_id,
sep_id=sep_id,
max_sequence_length=FLAGS.max_sequence_length,
)
klue_sts_ds = (
tfds.load("klue_sts", split="dev")
.batch(FLAGS.batch_size)
.map(lambda x: {"sentence1": bert_input_fn(x["sentence1"]), "sentence2": bert_input_fn(x["sentence2"]), "score": x["label"]})
)
korsts_ds = (
tfds.load("korsts", split="dev")
.batch(FLAGS.batch_size)
.map(lambda x: {"sentence1": bert_input_fn(x["sentence1"]), "sentence2": bert_input_fn(x["sentence2"]), "score": x["score"]})
)
ds = get_supervised_dataset(bert_input_fn, FLAGS.batch_size)
logging.info(f"batch_size: {FLAGS.batch_size}, element_spec: {ds.element_spec}")
bert_config = BertConfig.from_json(FLAGS.config)
logging.info(f"Config: L{bert_config.num_hidden_layers}, A{bert_config.num_attention_heads}, H{bert_config.hidden_size}.")
logging.info("Initialize Teacher BERT Model")
bert_model = BertModelForSimCSE(bert_config, temperature=FLAGS.temperature, name="bert_model")
if FLAGS.pretrained_weight:
logging.info(f"Load pretrained weights from {FLAGS.pretrained_weight}")
bert_model.load_weights(FLAGS.pretrained_weight)
for batch, _ in ds.take(1):
bert_model(batch)
bert_model.summary()
steps_per_epoch = len([1 for _ in ds])
total_steps = steps_per_epoch * FLAGS.epochs
warmup_steps = int(FLAGS.warmup_ratio * total_steps)
logging.info(f"total steps: {total_steps}, warmup steps: {warmup_steps}")
optimizer = tf.keras.optimizers.Adam(
learning_rate=LinearWarmupAndDecayScheduler(
FLAGS.learning_rate,
warmup_steps=warmup_steps,
total_steps=total_steps,
),
)
timestamp = int(time.time())
checkpoint_path = os.path.join(FLAGS.model_checkpoints, f"supervised-{timestamp}", "model-{epoch}")
tensorboard_logdir = os.path.join(FLAGS.tensorboard_log_path, f"supervised-{timestamp}")
bert_model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=optimizer,
)
bert_model.fit(
ds,
epochs=FLAGS.epochs,
callbacks=[
tf.keras.callbacks.TensorBoard(tensorboard_logdir),
STSBenchmarkCallback(klue_sts_ds, korsts_ds, model_save_dir=checkpoint_path, evaluation_frequency=FLAGS.evaluation_frequency),
],
)
def get_supervised_dataset(bert_input_fn, batch_size):
def _get_ds_from_split(split) -> tf.data.Dataset:
ds = tfds.load("kornli", split=split)
# label: [entailment, neutral, contradiction] => [0, 1, 2]
sentences = {}
for batch in tqdm(ds.as_numpy_iterator(), desc=f"reading {split}"):
sentence1: str = batch["sentence1"].decode("utf8")
sentence2: str = batch["sentence2"].decode("utf8")
gold_label: int = batch["gold_label"]
if sentence1 not in sentences:
sentences[sentence1] = {}
if gold_label != 1: # not neutral
sentences[sentence1][gold_label] = sentence2
dataset_input = [(key, val[0], val[2]) for key, val in sentences.items() if 0 in val and 2 in val]
logging.info(f"dataset length of split {split}: {len(dataset_input)}")
return tf.data.Dataset.from_tensor_slices(dataset_input)
return (
_get_ds_from_split("mnli_train")
.concatenate(_get_ds_from_split("snli_train"))
.shuffle(500_000, reshuffle_each_iteration=True)
.batch(batch_size)
.map(lambda x: (bert_input_fn(x[:, 0]), bert_input_fn(x[:, 1]), bert_input_fn(x[:, 2])), num_parallel_calls=tf.data.AUTOTUNE)
.map(create_label, num_parallel_calls=tf.data.AUTOTUNE)
)
def create_label(x1, x2, z):
batch_size = tf.shape(x1["input_word_ids"])[0]
label = tf.expand_dims(tf.range(batch_size, dtype=tf.int64), -1)
ctx = tf.distribute.get_replica_context()
if ctx and ctx.num_replicas_in_sync != 1:
label += ctx.replica_id_in_sync_group * batch_size
return (x1, x2, z), label
if __name__ == "__main__":
def_flags()
app.run(main)