forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtracer.cpp
1114 lines (1028 loc) · 36.4 KB
/
tracer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/frontend/tracer.h>
#include <ATen/Backtrace.h>
#include <ATen/ScalarOps.h>
#include <ATen/TracerMode.h>
#include <ATen/core/Dict.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/fixup_trace_scope_blocks.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/normalize_ops.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/utils/variadic.h>
#include <torch/custom_class.h>
#include <memory>
#include <sstream>
#include <string>
namespace torch::jit::tracer {
////////////////////////////////////////////////////////////////////////////////
// Recording the traces
////////////////////////////////////////////////////////////////////////////////
namespace detail {
template <typename T>
void genericAddInput(Node* n, T value) {
Value* v = n->owningGraph()->insertConstant(value);
recordSourceLocation(v->node());
n->addInput(v);
}
template <typename T>
void genericAddOptionalInput(
Node* n,
const char* name,
const c10::optional<T>& value) {
if (value) {
jit::tracer::addInputs(n, name, *value);
} else {
Graph* g = n->owningGraph();
Value* none = g->insertNode(g->createNone())->output();
n->addInput(none);
}
}
template <typename T>
void badArgType(const T& v) {
AT_ERROR(
"Found an unsupported argument type in the JIT tracer: ",
c10::demangle_type<T>(),
". File a bug report.");
}
thread_local std::shared_ptr<TracingState> tracing_state;
} // namespace detail
static std::atomic<bool> tracer_state_warn_mode{true};
std::atomic<bool>& getTracerStateWarnMode() {
return tracer_state_warn_mode;
}
std::function<void()> pauseTracing() {
// NOLINTNEXTLINE
std::shared_ptr<tracer::TracingState> state = getTracingState();
tracer::setTracingState(nullptr);
return [state]() { tracer::setTracingState(state); };
}
void delValueTrace(const IValue& var) {
getTracingState()->delValue(var);
}
void TracingState::delValue(const IValue& var) {
for (const auto i : c10::irange(env_stack.size())) {
auto& value_map = env_stack.at(env_stack.size() - 1 - i);
auto it = value_map.find(var);
if (it == value_map.end()) {
continue;
}
value_map.erase(it);
}
}
// Given a IValue 'var', return the 'node' which represents the instruction
// which computes the value of this variable in the IR.
// Here, we interpret untraced variables as constants that are just embedded
// in the graph. This is useful to handle code which does things like this
// (from torch.autograd.variable, now moved to C++):
//
// def mm(self, matrix):
// output = Variable(self.data.new(self.data.size(0), matrix.data.size(1)))
// return Addmm.apply(output, self, matrix, 0, 1, True)
//
// Here, mm fakes up a dummy variable with uninitialized data to do an inplace
// update on, but subsequently ignores it because the alpha scaling factor is
// zero. This is one of the cases where a Variable can be created inside of a
// trace, and if we treat it as a constant, everything will work out.
Value* getValueTrace(const IValue& var) {
return getTracingState()->getValue(var);
}
static Value* getOptTensorValueTrace(const c10::optional<at::Tensor>& var) {
return getValueTrace(IValue(var));
}
Value* TracingState::getValue(const IValue& var) {
// allow tracing of tuples passed to List[Tensor] or Tuple[Tensor...]
// arguments
if (var.isTensorList()) {
return graph
->insertNode(graph->createList(
TensorType::get(),
fmap(
var.toTensorVector(),
[&](const IValue& val) { return getValue(val); })))
->output();
} else if (var.isTuple()) {
return graph
->insertNode(graph->createTuple(fmap(
var.toTupleRef().elements(),
[&](const IValue& val) { return getValue(val); })))
->output();
} else if (var.isGenericDict()) {
auto dict = var.toGenericDict();
TypePtr key_type = dict.keyType();
TypePtr value_type = dict.valueType();
std::vector<Value*> keys;
std::vector<Value*> values;
for (const auto& entry : dict) {
keys.emplace_back(getValue(entry.key()));
values.emplace_back(getValue(entry.value()));
}
auto dict_node = graph->createDict(key_type, value_type, keys, values);
return graph->insertNode(dict_node)->output();
}
if (var.isTensor()) {
auto& ten = var.toTensor();
if (!ten.defined()) {
Node* n = graph->createNone();
return graph->insertNode(n)->output();
}
for (const auto i : c10::irange(env_stack.size())) {
auto& value_map = env_stack.at(env_stack.size() - 1 - i);
auto it = value_map.find(var);
if (it == value_map.end()) {
continue;
}
if (!it->second->hasDebugName()) {
auto unique_name = getTracingState()->lookup_var_name_fn(ten);
if (!unique_name.empty()) {
it->second->setDebugName(unique_name);
}
}
return it->second;
}
// Didn't find it. Bake in a constant
if (ten.requires_grad()) {
pauseTracing();
std::ostringstream oss;
oss << "Cannot insert a Tensor that requires grad as a constant. "
<< "Consider making it a parameter or input, or detaching the gradient\n"
<< "Tensor:\n"
<< ten;
throw std::runtime_error(oss.str());
}
Value* constant = graph->insertConstant(ten);
recordSourceLocation(constant->node());
constant->inferTypeFrom(ten);
auto it = env_stack.back().emplace(var, constant);
return it.first->second;
} else if (var.isFuture() || var.isObject()) {
for (const auto i : c10::irange(env_stack.size())) {
auto& future_map = env_stack.at(env_stack.size() - 1 - i);
auto it = future_map.find(var);
if (it == future_map.end()) {
continue;
}
return it->second;
}
// Find torchbind classes
if (isCustomClass(var)) {
auto obj = Object(var.toObject());
auto qualname = obj.type()->name();
auto custom_class_type = getCustomClass(qualname->qualifiedName());
if (custom_class_type) {
auto capsule = var.toObject()->getAttr("capsule");
for (const auto i : c10::irange(env_stack.size())) {
auto& value_map = env_stack.at(env_stack.size() - 1 - i);
auto it = value_map.find(capsule);
if (it == value_map.end()) {
continue;
}
return it->second;
}
}
}
std::ostringstream oss;
if (var.isFuture()) {
oss << "Tried to trace Future or Object that the tracer was not aware of.";
} else {
oss << "Tried to trace " << var
<< " but it is not part of the active trace. Modules that are called during a trace"
<< " must be registered as submodules of the thing being traced.";
}
throw std::runtime_error(oss.str());
} else {
// If the values are non-tensors, we try to create constants
// and bake those constants into the traced graph
auto constant = tryInsertConstant(*graph, var);
if (constant) {
recordSourceLocation(constant.value()->node());
return *constant;
}
std::ostringstream os;
os << "Tracer cannot get value trace for type " << var.tagKind() << ". "
<< "The below value could not be materialized as a constant:\n"
<< var;
throw std::runtime_error(os.str());
}
}
bool TracingState::hasValue(const IValue& var) const {
for (const auto& frame : env_stack) {
if (frame.count(var)) {
return true;
}
}
return false;
}
Value* TracingState::getOutput(const IValue& iv, size_t i) {
bool tracing_mode_strict = getTracingState()->strict;
if (iv.isTensor()) {
const at::Tensor& var = iv.toTensor();
if (!var.defined()) {
Node* n = graph->createNone();
return graph->insertNode(n)->output();
}
auto& value_map = getTracingState()->env_stack.back();
auto it = value_map.find(iv);
if (it == value_map.end()) {
std::ostringstream os;
os << "output " << i << " (" << var
<< ") of traced region did not have observable "
<< "data dependence with trace inputs; this probably indicates your "
"program "
<< "cannot be understood by the tracer.";
throw std::runtime_error(os.str());
}
return it->second;
} else if (iv.isTensorList()) {
if (tracing_mode_strict) {
tracer::warn(
"Encountering a list at the output of the tracer", STRICT_TRACER_MSG);
}
return graph
->insertNode(graph->createList(
TensorType::get(),
fmap(
iv.toTensorVector(),
[&](const IValue& ival) { return getOutput(ival, i); })))
->output();
} else if (iv.isTuple()) {
const auto& tuple = iv.toTupleRef().elements();
auto tuple_node = graph->createTuple(
fmap(tuple, [&](const IValue& ival) { return getOutput(ival, i); }));
graph->insertNode(tuple_node);
return tuple_node->output();
} else if (iv.isGenericDict()) {
if (tracing_mode_strict) {
throw std::runtime_error(
"Encountering a dict at the output of the tracer" +
std::string(STRICT_TRACER_MSG));
}
auto dict = iv.toGenericDict();
TypePtr key_type = dict.keyType();
TypePtr value_type = dict.valueType();
bool key_type_valid = key_type->isSubtypeOf(*StringType::get()) ||
key_type->isSubtypeOf(*TensorType::get());
bool value_type_valid = value_type->isSubtypeOf(*TensorType::get());
// Support tuple values that contain only tensors
if (value_type->isSubtypeOf(*AnyTupleType::get())) {
value_type_valid = true;
for (const auto& type : value_type->containedTypes()) {
if (!type->isSubtypeOf(*TensorType::get())) {
value_type_valid = false;
break;
}
}
}
if (!key_type_valid || !value_type_valid) {
std::ostringstream os;
os << "output " << i << " (" << dict << ") of traced region "
<< "cannot be understood by the tracer, only outputs matching"
<< "dict[Union[str, Tensor], Union[Tensor, Tuple[Tensor, ...]]] "
<< "can be a dictionary output of a traced function";
throw std::runtime_error(os.str());
}
std::vector<Value*> keys;
std::vector<Value*> values;
for (const auto& entry : dict) {
keys.emplace_back(getValue(entry.key()));
values.emplace_back(getOutput(entry.value(), i));
}
auto dict_node = graph->createDict(key_type, value_type, keys, values);
graph->insertNode(dict_node);
return dict_node->output();
} else {
AT_ERROR(
"Only tensors, lists, tuples of tensors, or dictionary of tensors can be output from traced functions");
}
}
Node* TracingState::createNode(c10::Symbol op_name, size_t num_outputs) {
return graph->create(op_name, num_outputs);
}
void TracingState::insertNode(Node* node) {
graph->insertNode(node);
}
// XXX: this function mutates input
static IValue addInput(
const std::shared_ptr<TracingState>& state,
const IValue& input,
const TypePtr& type,
Value* value) {
value->setType(type);
if (type->isSubtypeOf(*TensorType::get())) {
auto input_tensor = input.toTensor();
auto name = Variable(input_tensor).name();
if (state->hasValue(input)) {
input_tensor = input_tensor.view(input_tensor.sizes());
}
if (!value->hasDebugName()) {
value->setDebugName(name);
}
state->setValue(input_tensor, value);
return input_tensor;
} else if (auto tuple_type = type->cast<TupleType>()) {
auto unpack_node =
state->graph->insertNode(state->graph->createTupleUnpack(value));
auto elem_values = unpack_node->outputs();
auto elem_types = tuple_type->elements();
auto tuple = input.toTuple();
const auto& elems = tuple->elements();
size_t num_elems = elems.size();
AT_ASSERT(
elem_values.size() == num_elems && elem_types.size() == num_elems);
for (const auto i : c10::irange(num_elems)) {
tuple->unsafeSetElement(
i, addInput(state, elems.at(i), elem_types[i], elem_values[i]));
}
return tuple;
} else if (auto dict_type = type->cast<DictType>()) {
auto dict = input.toGenericDict();
// Unpack the list values statically
for (const auto& entry : dict) {
const IValue& key = entry.key();
auto static_key = state->graph->insertConstant(key);
auto static_value =
state->graph->insert(aten::__getitem__, {value, static_key});
recordSourceLocation(static_value->node());
dict.insert_or_assign(
entry.key(),
addInput(
state, entry.value(), dict_type->getValueType(), static_value));
}
return dict;
} else if (auto list_type = type->cast<ListType>()) {
size_t num_elems = input.isList() ? input.toListRef().size()
: input.toTensorVector().size();
auto list_unpack = state->graph->insertNode(
state->graph->createListUnpack(value, num_elems));
auto unpack_outputs = list_unpack->outputs();
if (input.isTensorList()) {
auto elems = input.toTensorList();
for (const auto i : c10::irange(num_elems)) {
elems[i] = addInput(
state,
elems.get(i),
list_type->getElementType(),
unpack_outputs[i])
.toTensor();
}
return elems;
} else {
auto elems = input.toList();
for (const auto i : c10::irange(num_elems)) {
elems[i] = addInput(
state,
elems.get(i),
list_type->getElementType(),
unpack_outputs[i]);
}
return elems;
}
} else {
AT_ERROR(
"Only tensors or (possibly nested) dict or tuples of tensors can be "
"inputs to traced functions. Got ",
type->repr_str());
}
}
static void gatherParametersAndBuffers(
const std::shared_ptr<TracingState>& state,
Value* self_value,
const Module& self,
const std::string& prefix) {
Graph& g = *self_value->owningGraph();
state->setValue(self._ivalue(), self_value);
auto self_ty = self.type();
for (const NameValue& s : self.named_attributes(/*recurse=*/false)) {
auto qualname = prefix + "." + s.name;
Value* trace_get_attr = g.insertNode(g.create(prim::TracedAttr))
->s_(attr::scope, qualname)
->output()
->setType(s.value.type());
if (s.value.type()->isSubtypeOf(*TensorType::get())) {
addInput(state, s.value, s.value.type(), trace_get_attr);
}
if (isCustomClass(s.value)) {
tracer::setValueTrace(s.value, trace_get_attr);
}
auto attr_type = self_ty->getAttribute(s.name);
// Skipping Parameters and Buffers that are behind an `InterfaceType`
// because it is illegal for InterfaceType to expose any attribute.
// And these attributes should never be used/exposed outside of
// InterfaceType'd module anyway.
if (attr_type->is_module() &&
attr_type->kind() != TypeKind::InterfaceType) {
gatherParametersAndBuffers(
state, trace_get_attr, Module(s.value.toObject()), qualname);
}
}
}
std::pair<std::shared_ptr<TracingState>, Stack> trace(
Stack inputs,
const std::function<Stack(Stack)>& traced_fn,
std::function<std::string(const Variable&)> var_name_lookup_fn,
bool strict,
bool force_outplace,
Module* self,
const std::vector<std::string>& argument_names) {
try {
// Start tracing, treating 'inputs' as inputs to the trace, which can be
// varied on subsequent invocations of the trace. Any other variables
// will be treated as constants.
if (isTracing()) {
AT_ERROR("Tracing can't be nested");
}
auto state = std::make_shared<TracingState>();
setTracingState(state);
// if we are a module, then make sure the modules parameters are in the map
// and mapped to accesses to the self object
if (self) {
Value* self_value = state->graph->insertInput(0, "self")->setType(
self->_ivalue()->type());
gatherParametersAndBuffers(state, self_value, *self, {"__module"});
}
// When enough argument name hints are provided, use them as debug names
// for traced function/modules.
// Here argument_names is allowed to have more names than needed because
// some arguments may have valid default values, therefore they don't need
// example inputs.
if (argument_names.size() >= inputs.size()) {
for (size_t i = 0, e = inputs.size(); i < e; ++i) {
IValue& input = inputs[i];
input = addInput(
state,
input,
input.type(),
state->graph->addInput(argument_names[i]));
}
} else {
for (IValue& input : inputs) {
input = addInput(state, input, input.type(), state->graph->addInput());
}
}
auto graph = state->graph;
getTracingState()->lookup_var_name_fn = std::move(var_name_lookup_fn);
getTracingState()->strict = strict;
getTracingState()->force_outplace = force_outplace;
// Invoke the traced function
auto out_stack = traced_fn(inputs);
// Exit a trace, treating 'out_stack' as the outputs of the trace. These
// are the variables whose values will be computed upon subsequent
// invocations of the trace.
size_t i = 0;
for (auto& output : out_stack) {
// NB: The stack is in "reverse" order, so when we pass the diagnostic
// number we need to flip it based on size.
state->graph->registerOutput(
state->getOutput(output, out_stack.size() - i));
i++;
}
setTracingState(nullptr);
if (getInlineEverythingMode()) {
Inline(*graph);
}
FixupTraceScopeBlocks(graph, self);
NormalizeOps(graph);
return {state, out_stack};
} catch (...) {
tracer::abandon();
throw;
}
}
// Abort tracing. Used to reset the state in case of errors.
void abandon() {
setTracingState(nullptr);
}
void setValueTrace(const IValue& v, Value* value) {
return getTracingState()->setValue(v, value);
}
void TracingState::setValue(const IValue& v, Value* value) {
if (v.isTensor()) {
auto& var = v.toTensor();
AT_ASSERT(var.defined());
env_stack.back()[v] = value;
// If the value comes from a CallFunction or CallMethod, it may not have
// shape information attached. For debuggability, we enhance the type
// information by assigning the concrete value's tupe to the jit::Value.
if (auto tensor_type = value->type()->cast<TensorType>()) {
if (!tensor_type->isComplete()) {
value->inferTypeFrom(var);
}
}
} else if (v.isTensorList()) {
auto outputs = v.toTensorList();
Node* unpack_node =
graph->insertNode(graph->createListUnpack(value, outputs.size()));
for (const auto i : c10::irange(outputs.size())) {
setValue(outputs.get(i), unpack_node->outputs()[i]);
}
} else if (v.isTuple()) {
const auto& outputs = v.toTupleRef().elements();
Node* unpack_node = graph->insertNode(graph->createTupleUnpack(value));
for (const auto i : c10::irange(outputs.size())) {
setValue(outputs[i], unpack_node->outputs()[i]);
}
} else if (v.isList()) {
auto elements = v.toListRef();
Node* unpack_node =
graph->insertNode(graph->createListUnpack(value, elements.size()));
for (const auto i : c10::irange(elements.size())) {
setValue(elements[i], unpack_node->outputs()[i]);
}
} else if (isCustomClass(v)) {
auto capsule = v.toObject()->getAttr("capsule");
env_stack.back()[capsule] = value;
} else if (v.isFuture() || v.isObject()) {
env_stack.back()[v] = value;
} else if (v.isGenericDict()) {
auto dict = v.toGenericDict();
TypePtr key_type = dict.keyType();
TypePtr value_type = dict.valueType();
for (const auto& entry : dict) {
auto static_key = graph->insertConstant(entry.key());
auto static_value = graph->insert(aten::__getitem__, {value, static_key});
setValue(entry.value(), static_value);
}
} else {
std::ostringstream os;
os << "Tracer cannot set value trace for type " << v.tagKind() << ". "
<< "Supported types are tensor, tensor list, and tuple of tensors.";
throw std::runtime_error(os.str());
}
}
void addInputs(Node* n, const char* name, int64_t value) {
using ArgumentStash = jit::tracer::ArgumentStash;
if (ArgumentStash::hasValue(name)) {
Value* v = ArgumentStash::popValue(name);
n->addInput(v);
} else {
detail::genericAddInput(n, value);
}
}
void addInputs(Node* n, const char* name, c10::SymInt value) {
addInputs(n, name, value.guard_int(__FILE__, __LINE__));
}
void addInputs(Node* n, const char* name, c10::optional<int64_t> value) {
using ArgumentStash = jit::tracer::ArgumentStash;
if (ArgumentStash::hasValue(name)) {
Value* v = ArgumentStash::popValue(name);
n->addInput(v);
} else if (value) {
detail::genericAddInput(n, *value);
} else {
Graph* g = n->owningGraph();
Value* none = g->insertNode(g->createNone())->output();
n->addInput(none);
}
}
void addInputs(Node* n, const char* name, bool value) {
detail::genericAddInput(n, value);
}
void addInputs(Node* n, const char* name, const c10::optional<bool>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(Node* n, const char* name, double value) {
detail::genericAddInput(n, value);
}
void addInputs(Node* n, const char* name, const c10::optional<double>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(Node* n, const char* name, const at::Scalar& value) {
using ArgumentStash = jit::tracer::ArgumentStash;
if (ArgumentStash::hasValue(name)) {
Value* v = ArgumentStash::popValue(name);
n->addInput(v);
} else {
detail::genericAddInput(n, value);
}
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::Scalar>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(Node* n, const char* name, const c10::string_view value) {
detail::genericAddInput(n, std::string(value));
}
void addInputs(
Node* n,
const char* name,
const c10::optional<c10::string_view>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(Node* n, const char* name, const at::Tensor& value) {
n->addInput(getValueTrace(value));
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::Tensor>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::Generator>& value) {
Graph* g = n->owningGraph();
if (value.has_value() && value->defined()) {
detail::genericAddInput(n, *value);
} else {
Value* undef_gen = g->insertNode(g->createNone())->output();
n->addInput(undef_gen);
}
}
void addInputs(Node* n, const char* name, at::Device value) {
detail::genericAddInput(n, value);
}
void addInputs(Node* n, const char* name, c10::Stream stream) {
detail::genericAddInput(n, c10::IValue(stream));
}
void addInputs(Node* n, const char* name, at::Layout value) {
detail::genericAddInput(n, static_cast<int64_t>(value));
}
void addInputs(Node* n, const char* name, at::ScalarType value) {
detail::genericAddInput(n, static_cast<int64_t>(value));
}
void addInputs(Node* n, const char* name, at::MemoryFormat value) {
detail::genericAddInput(n, static_cast<int64_t>(value));
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::MemoryFormat>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::Layout>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::Device>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(
Node* n,
const char* name,
c10::optional<at::DimnameList> value) {
TORCH_CHECK(false, "NYI: Named tensors are not supported with the tracer");
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::ScalarType>& value) {
detail::genericAddOptionalInput(n, name, value);
}
void addInputs(
Node* n,
const char* name,
at::ArrayRef<at::Tensor> value,
bool allow_undefined) {
addInputs(n, name, at::ITensorListRef(value), allow_undefined);
}
void addInputs(
Node* n,
const char* name,
std::vector<at::Tensor> value,
bool allow_undefined) {
addInputs(n, name, at::ITensorListRef(value), allow_undefined);
}
void addInputs(
Node* n,
const char* name,
at::ITensorListRef value,
bool allow_undefined) {
Graph* g = n->owningGraph();
Node* list_node = nullptr;
if (allow_undefined) {
// if allow undefined, we create a list of optional tensors
list_node = g->insertNode(
g->createList(OptionalType::ofTensor(), fmap(value, getValueTrace)));
} else {
list_node = g->insertNode(
g->createList(TensorType::get(), fmap(value, getValueTrace)));
}
n->addInput(list_node->output());
}
TORCH_API void addInputs(
Node* n,
const char* name,
const List<c10::optional<at::Tensor>>& value) {
Graph* g = n->owningGraph();
Node* list_node = nullptr;
list_node = g->insertNode(g->createList(
OptionalType::ofTensor(), fmap(value, getOptTensorValueTrace)));
n->addInput(list_node->output());
}
void addInputs(
Node* n,
const char* name,
ArrayRef<c10::intrusive_ptr<c10::ivalue::Object>> value,
const ClassTypePtr& class_type) {
Graph* g = n->owningGraph();
Node* list_node =
g->insertNode(g->createList(class_type, fmap(value, getValueTrace)));
n->addInput(list_node->output());
}
void addInputs(Node* n, const char* name, at::IntArrayRef value) {
using ArgumentStash = jit::tracer::ArgumentStash;
std::vector<Value*> info = ArgumentStash::hasIntArrayRef(name)
? ArgumentStash::popIntArrayRef(name)
: ArgumentStash::IntArrayRefTrace(value.size());
auto& g = getTracingState()->graph;
for (const auto i : c10::irange(info.size())) {
if (info[i] != nullptr)
continue;
info[i] = g->insertConstant(value[i]);
recordSourceLocation(info[i]->node());
}
for (jit::Value* v : info) {
if (*v->type() != *jit::IntType::get()) {
throw std::runtime_error(
"Type mismatch in setposattr for IntArrayRef. Check that your program "
"is valid without tracing, and please file a bug report if it is.");
}
}
n->addInput(
g->insertNode(g->createList(jit::IntType::get(), info))->output());
}
void addInputs(Node* n, const char* name, c10::SymIntArrayRef value) {
addInputs(n, name, C10_AS_INTARRAYREF_SLOW(value));
}
void addInputs(Node* n, const char* name, c10::optional<c10::SymInt> value) {
addInputs(
n,
name,
value.has_value()
? c10::make_optional(value->guard_int(__FILE__, __LINE__))
: c10::nullopt);
}
void addInputs(
Node* n,
const char* name,
const c10::optional<at::IntArrayRef>& opt_value) {
detail::genericAddOptionalInput(n, name, opt_value);
}
void addInputs(
Node* n,
const char* name,
const at::OptionalIntArrayRef& opt_value) {
if (opt_value.has_value()) {
jit::tracer::addInputs(n, name, *opt_value);
} else {
Graph* g = n->owningGraph();
Value* none = g->insertNode(g->createNone())->output();
n->addInput(none);
}
}
void addInputs(
Node* n,
const char* name,
const at::OptionalSymIntArrayRef& opt_value) {
if (opt_value.has_value()) {
jit::tracer::addInputs(n, name, *opt_value);
} else {
Graph* g = n->owningGraph();
Value* none = g->insertNode(g->createNone())->output();
n->addInput(none);
}
}
void addInputs(Node* n, const char* name, ArrayRef<double> value) {
std::vector<Value*> info;
auto& g = getTracingState()->graph;
for (double elt : value) {
info.push_back(g->insertConstant(elt));
recordSourceLocation(info.back()->node());
}
n->addInput(
g->insertNode(g->createList(jit::FloatType::get(), info))->output());
}
void addInputs(
Node* n,
const char* name,
const c10::optional<c10::ArrayRef<double>>& opt_value) {
detail::genericAddOptionalInput(n, name, opt_value);
}
void addInputs(
Node* n,
const char* name,
const c10::intrusive_ptr<c10::ivalue::Object>& obj) {
Value* v = getValueTrace(obj);
n->addInput(v);
}
void addOutput(Node* node, const at::Tensor& output) {
setOutput(node->addOutput(), output);
}
void setOutput(Value* value, const at::Tensor& output) {
if (output.defined()) {
value->inferTypeFrom(output);
setValueTrace(output, value);
}
}
void addOutput(Node* node, const std::vector<at::Tensor>& outputs) {
Value* value = node->addOutput()->setType(ListType::ofTensors());
Graph* graph = node->owningGraph();
Node* unpack_node = graph->insertNode(
graph->create(prim::ListUnpack, {value}, outputs.size()));
for (const auto i : c10::irange(outputs.size())) {
Value* output_val = unpack_node->outputs()[i];
output_val->inferTypeFrom(outputs[i]);
setValueTrace(outputs[i], output_val);
}
}
void addOutput(Node* node, const c10::List<at::Tensor>& outputs) {
return addOutput(node, outputs.vec());
}
void addOutput(
Node* node,
const c10::intrusive_ptr<c10::ivalue::Object>& output) {
Value* output_val = node->addOutput();
output_val->inferTypeFrom(output);
setValueTrace(output, output_val);
}
const std::shared_ptr<TracingState>& getTracingState() {
return detail::tracing_state;
}
void setTracingState(std::shared_ptr<TracingState> state) {
at::tracer::impl::set_dispatch_enabled(state != nullptr);
detail::tracing_state = std::move(state);
}
TracingState::TracingState() : graph(new Graph()), env_stack{Frame()} {}
TracingState::~TracingState() = default;
autograd::Variable getSizeOf(const autograd::Variable& var, int64_t dim) {
auto& tracing_state = getTracingState();
auto& graph = tracing_state->graph;
Variable size_var;
{
// Make sure this scalar to tensor isn't traced!
at::AutoDispatchBelowADInplaceOrView guard;
size_var = scalar_to_tensor(at::Scalar(var.size(dim)));
}
auto* value = getValueTrace(var);
auto dim_val = graph->insertConstant(dim);
recordSourceLocation(dim_val->node());
auto* node = graph->insertNode(graph->create(aten::size, {value, dim_val}));
recordSourceLocation(node);
node->output()->setType(jit::IntType::get());
auto ten =
graph->insertNode(graph->createNumToTensor(node->output()))->output();
setValueTrace(size_var, ten);
return size_var;
}
autograd::Variable getNumelOf(const autograd::Variable& var) {
auto& tracing_state = getTracingState();
auto& graph = tracing_state->graph;
Variable numel_var;
{
// Make sure this scalar to tensor isn't traced!
at::AutoDispatchBelowADInplaceOrView guard;
numel_var = scalar_to_tensor(at::Scalar(var.numel()));
}
auto* value = getValueTrace(var);
auto* node = graph->insertNode(graph->create(Symbol::aten("numel"), {value}));
recordSourceLocation(node);
node->output()->setType(jit::IntType::get());
auto ten =
graph->insertNode(graph->createNumToTensor(node->output()))->output();
setValueTrace(numel_var, ten);
return numel_var;
}
void ensureUniqueIfOutOfPlaced(const char* name, const at::Tensor& tensor) {
auto& state = getTracingState();
if (state && state->force_outplace == false) {
// If we're not converting in-place ops to out-of-place, this check is
// unnecessary
return;
}
auto aliases = tensor.storage().use_count();
if (isTracing() && aliases > 1) {
std::stringstream ss;
ss << "There are " << aliases
<< " live references to the data region being modified when tracing in-place operator "
<< name
<< ". This might cause the trace to be incorrect, because all other views "
<< "that also reference this data will not reflect this change in the trace! "
<< "On the other hand, if all other views use the same memory chunk, but are disjoint (e.g. "
<< "are outputs of torch.split), this might still be safe.";
warn(ss.str().c_str());
}
}
void ensureUniqueIfOutOfPlaced(
const char* name,
const c10::optional<at::Tensor>& tensor) {
ensureUniqueIfOutOfPlaced(name, tensor.has_value() ? *tensor : at::Tensor());
}