forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpickler.cpp
806 lines (722 loc) · 24.6 KB
/
pickler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
#include <ATen/ATen.h>
#include <ATen/core/Dict.h>
#ifdef USE_RPC
#include <torch/csrc/distributed/rpc/rref_context.h>
#endif
#include <ATen/quantized/Quantizer.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/utils/byte_order.h>
#include <string>
#include <type_traits>
namespace torch::jit {
using ::c10::IValue;
// Protocol 2 is the highest that can be decoded by Python 2
// See https://docs.python.org/3/library/pickle.html#data-stream-format
constexpr static uint8_t PROTOCOL_VERSION = 2;
// NOLINTNEXTLINE(bugprone-exception-escape)
Pickler::~Pickler() {
flush();
}
void Pickler::protocol() {
push<PickleOpCode>(PickleOpCode::PROTO);
push<uint8_t>(PROTOCOL_VERSION);
}
void Pickler::startTuple() {
// All attributes get pushed into a tuple and their indices saved in the
// module def
push<PickleOpCode>(PickleOpCode::MARK);
}
void Pickler::endTuple() {
push<PickleOpCode>(PickleOpCode::TUPLE);
}
void Pickler::stop() {
push<PickleOpCode>(PickleOpCode::STOP);
flush();
}
// unmemoized version called by pushIValue
void Pickler::pushIValueImpl(const IValue& ivalue) {
if (ivalue.isTensor()) {
pushTensor(ivalue);
} else if (ivalue.isTuple()) {
pushTuple(ivalue);
} else if (ivalue.isDouble()) {
pushDouble(ivalue.toDouble());
} else if (ivalue.isComplexDouble()) {
pushComplexDouble(ivalue);
} else if (ivalue.isInt()) {
pushInt(ivalue.toInt());
} else if (ivalue.isBool()) {
pushBool(ivalue.toBool());
} else if (ivalue.isString()) {
pushString(ivalue.toStringRef());
} else if (ivalue.isGenericDict()) {
pushDict(ivalue);
} else if (ivalue.isNone()) {
push<PickleOpCode>(PickleOpCode::NONE);
} else if (ivalue.isIntList()) {
pushSpecializedList(ivalue, "build_intlist", [=](const IValue& ivalue) {
for (const int64_t item : ivalue.toIntVector()) {
pushInt(item);
}
});
} else if (ivalue.isTensorList()) {
pushSpecializedList(ivalue, "build_tensorlist", [=](const IValue& ivalue) {
for (const at::Tensor& item : ivalue.toTensorVector()) {
pushIValue(item);
}
});
} else if (ivalue.isDoubleList()) {
pushSpecializedList(ivalue, "build_doublelist", [=](const IValue& ivalue) {
for (double item : ivalue.toDoubleVector()) {
pushDouble(item);
}
});
} else if (ivalue.isBoolList()) {
pushSpecializedList(ivalue, "build_boollist", [=](const IValue& ivalue) {
for (bool item : ivalue.toBoolList()) {
pushBool(item);
}
});
// note: isList must be after isIntList and friends because
// isList is true for all lists.
} else if (ivalue.isList()) {
pushGenericList(ivalue);
} else if (ivalue.isObject()) {
auto obj = ivalue.toObject();
auto type = obj->type();
if (memoized_class_types_ != nullptr) {
// memoize every class type the Pickler encountered
// This is used to make sure we capture all the run-time types
// and serialize them properly for class/interface polymorphism
memoized_class_types_->emplace_back(type);
}
auto type_name = type->name().value();
if (type_renamer_) {
type_name = type_renamer_(type);
}
pushGlobal(type_name.prefix(), type_name.name());
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
push<PickleOpCode>(PickleOpCode::NEWOBJ);
if (checkHasValidSetGetState(type)) {
Function& getstate = type->getMethod("__getstate__");
pushIValue(getstate({obj}));
} else {
push<PickleOpCode>(PickleOpCode::EMPTY_DICT);
push<PickleOpCode>(PickleOpCode::MARK);
for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
pushString(type->getAttributeName(i));
pushIValue(obj->getSlot(i));
}
push<PickleOpCode>(PickleOpCode::SETITEMS);
}
push<PickleOpCode>(PickleOpCode::BUILD);
} else if (ivalue.isDevice()) {
pushDevice(ivalue);
} else if (ivalue.isCapsule()) {
std::stringstream err;
err << "Cannot serialize custom bound C++ class";
if (memoized_class_types_ && !memoized_class_types_->empty()) {
if (auto qualname = memoized_class_types_->back()->name()) {
err << " " << qualname->qualifiedName();
}
}
err << ". Please define serialization methods via def_pickle() for "
"this class.";
AT_ERROR(err.str());
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
TORCH_CHECK(
torch::distributed::rpc::getAllowJitRRefPickle() == true,
"RRef jit pickling is only allowed inside RPC calls.");
pushRRef(ivalue);
#else
TORCH_CHECK(
false, "RRef pickling is only supported with the distributed package");
#endif
} else if (ivalue.isEnum()) {
auto enum_holder = ivalue.toEnumHolder();
const auto& qualified_class_name =
enum_holder->type()->qualifiedClassName();
pushGlobal(qualified_class_name.prefix(), qualified_class_name.name());
pushIValue(enum_holder->value());
push<PickleOpCode>(PickleOpCode::REDUCE);
} else {
AT_ERROR("Unknown IValue type for pickling: ", ivalue.tagKind());
}
}
void Pickler::pushDevice(const IValue& ivalue) {
auto device = ivalue.toDevice();
auto deviceStr = device.str();
auto it = memoized_devices_map_.find(deviceStr);
if (it == memoized_devices_map_.end()) {
pushGlobal("torch", "device");
pushString(deviceStr);
push<PickleOpCode>(PickleOpCode::TUPLE1);
push<PickleOpCode>(PickleOpCode::REDUCE);
memoized_devices_map_[deviceStr] = pushNextBinPut();
} else {
pushBinGet(it->second);
}
}
#ifdef USE_RPC
void Pickler::pushRRef(const IValue& ivalue) {
// It is the same as how rref is pickled in python, see PyRRef::pickle
auto rrefInterface = ivalue.toRRef();
auto rref =
c10::static_intrusive_pointer_cast<distributed::rpc::RRef>(rrefInterface);
pushGlobal("torch.distributed.rpc", "rref");
auto& ctx = distributed::rpc::RRefContext::getInstance();
auto rrefForkData = ctx.prepareChildFork(rref);
push<PickleOpCode>(PickleOpCode::MARK);
pushInt(rrefForkData.ownerId_);
pushInt(rrefForkData.rrefId_.createdOn_);
pushInt(rrefForkData.rrefId_.localId_);
pushInt(rrefForkData.forkId_.createdOn_);
pushInt(rrefForkData.forkId_.localId_);
pushInt(rrefForkData.parent_);
pushString(rrefForkData.typeStr_);
push<PickleOpCode>(PickleOpCode::TUPLE);
push<PickleOpCode>(PickleOpCode::REDUCE);
}
#endif
void Pickler::pushIValue(const IValue& ivalue) {
bool shouldMemoizeByPointer =
ivalue.isPtrType() && !ivalue.isString() && ivalue.use_count() > 1;
// Mutable ivalues are memoized by pointer equality, which we handle at this
// outer granularity. Immutable ivalues are memoized by value equality which
// is handled in the type-specific handlers inside pushIValueImpl.
if (shouldMemoizeByPointer) {
const void* ptr = ivalue.internalToPointer();
TORCH_CHECK(
ptr != nullptr,
"Pickler cannot memoize ",
ivalue.tagKind(),
" IValue ",
ivalue);
auto memo_entry = memoized_ivalue_map_.find(ptr);
if (memo_entry != memoized_ivalue_map_.end()) {
// This value has already been pushed, just do a BINGET
pushBinGet(memo_entry->second);
return;
}
pushIValueImpl(ivalue);
memoized_ivalues_.push_back(ivalue);
memoized_ivalue_map_[ptr] = pushNextBinPut();
} else {
pushIValueImpl(ivalue);
}
}
void Pickler::pushInt(int64_t n) {
if (n >= std::numeric_limits<uint8_t>::min() &&
n <= std::numeric_limits<uint8_t>::max()) {
push<PickleOpCode>(PickleOpCode::BININT1);
push<uint8_t>(n);
} else if (
n >= std::numeric_limits<uint16_t>::min() &&
n <= std::numeric_limits<uint16_t>::max()) {
push<PickleOpCode>(PickleOpCode::BININT2);
push<uint16_t>(to_le16(n));
} else if (
n >= std::numeric_limits<int32_t>::min() &&
n <= std::numeric_limits<int32_t>::max()) {
push<PickleOpCode>(PickleOpCode::BININT);
push<int32_t>(to_le32(n));
} else {
// Push 8 byte integer
push<PickleOpCode>(PickleOpCode::LONG1);
push<uint8_t>(8);
push<int64_t>(to_le64(n));
}
}
void Pickler::pushBool(bool value) {
push<PickleOpCode>(value ? PickleOpCode::NEWTRUE : PickleOpCode::NEWFALSE);
}
void Pickler::pushBinGet(uint32_t memo_id) {
if (memo_id <= std::numeric_limits<uint8_t>::max()) {
push<PickleOpCode>(PickleOpCode::BINGET);
push<uint8_t>(memo_id);
} else {
// Memoized too many items, issue a LONG_BINGET instead
push<PickleOpCode>(PickleOpCode::LONG_BINGET);
push<uint32_t>(memo_id);
}
}
// unmemoized encoding of a string
void Pickler::pushStringImpl(const std::string& string) {
if (string.size() <= UINT_MAX) {
push<PickleOpCode>(PickleOpCode::BINUNICODE);
push<uint32_t>(to_le32(string.size()));
pushBytes(string);
} else {
push<PickleOpCode>(PickleOpCode::BINUNICODE8);
push<int64_t>(to_le64(string.size()));
pushBytes(string);
}
}
void Pickler::pushString(const std::string& string) {
auto it = memoized_strings_map_.find(string);
if (it == memoized_strings_map_.end()) {
pushStringImpl(string);
memoized_strings_map_[string] = pushNextBinPut();
} else {
pushBinGet(it->second);
}
}
void Pickler::pushStorageOfTensor(const at::Tensor& tensor) {
const at::Storage& storage = tensor.storage();
void* addr = storage.unsafeGetStorageImpl();
auto it = memoized_storage_map_.find(addr);
if (it != memoized_storage_map_.end()) {
pushBinGet(it->second);
return;
}
// Tuple for persistent_load
push<PickleOpCode>(PickleOpCode::MARK);
// typename
pushString("storage");
// data_type
std::string data_type =
std::string(toString(tensor.scalar_type())).append("Storage");
pushGlobal("torch", data_type);
// root_key
std::string root_key = get_tensor_id_ != nullptr
? get_tensor_id_(tensor)
: std::to_string(tensor_data_.size());
pushString(root_key);
// location
pushString(tensor.device().str());
// size
pushInt(tensor.storage().nbytes() / tensor.element_size());
push<PickleOpCode>(PickleOpCode::TUPLE);
push<PickleOpCode>(PickleOpCode::BINPERSID);
// TODO: Skip this if not writing tensors
memoized_storage_map_[addr] = pushNextBinPut();
tensor_data_.push_back(tensor);
}
void Pickler::pushBytes(const std::string& string) {
static const size_t kSmallStr = 32;
if (string.size() <= kSmallStr &&
bufferPos_ + string.size() <= buffer_.size()) {
// Small string that fits: buffer the data.
memcpy(buffer_.data() + bufferPos_, string.data(), string.size());
bufferPos_ += string.size();
} else {
// Otherwise, first flush, then write directly.
flush();
writer_(string.data(), string.size());
}
}
void Pickler::pushGlobal(
c10::string_view module_name,
c10::string_view class_name) {
std::string key;
key.reserve(module_name.size() + class_name.size() + 2);
key.append(module_name.data(), module_name.size());
key.push_back('\n');
key.append(class_name.data(), class_name.size());
key.push_back('\n');
const auto memo_entry = memoized_globals_map_.find(key);
if (memo_entry == memoized_globals_map_.end()) {
push<PickleOpCode>(PickleOpCode::GLOBAL);
pushBytes(key);
// Push BINPUT without adding anything to the memoized_ivalues_
size_t memo_id = pushNextBinPut();
memoized_globals_map_.insert({key, memo_id});
} else {
pushBinGet(memo_entry->second);
}
}
void Pickler::pushTensor(const IValue& ivalue) {
if (tensor_table_ == nullptr) {
pushLiteralTensor(ivalue);
} else {
pushTensorReference(ivalue);
}
}
void Pickler::pushLiteralSparseTensor(const at::Tensor& tensor) {
pushGlobal("torch._utils", "_rebuild_sparse_tensor");
push<PickleOpCode>(PickleOpCode::MARK);
// layout
auto layout = static_cast<int>(tensor.layout());
pushInt(layout);
switch (layout) {
case static_cast<int>(c10::Layout::Sparse):
// size
push<PickleOpCode>(PickleOpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
// requires grad
pushIValue(tensor.requires_grad());
// indices
pushTensor(tensor._indices());
// values
pushTensor(tensor._values());
break;
case static_cast<int>(c10::Layout::SparseCsr):
push<PickleOpCode>(PickleOpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
pushIValue(tensor.requires_grad());
pushTensor(tensor.crow_indices());
pushTensor(tensor.col_indices());
pushTensor(tensor.values());
break;
default:
TORCH_CHECK(
false,
"Unsupported sparse tensor layout type in serialization ",
static_cast<c10::Layout>(layout));
break;
}
// backward_hooks
pushGlobal("collections", "OrderedDict");
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
// Construct the collections.OrderedDict for the backward_hooks
push<PickleOpCode>(PickleOpCode::REDUCE);
push<PickleOpCode>(PickleOpCode::TUPLE);
// Call torch._utils._rebuild_sparse_coo_tensor
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushLiteralTensor(const IValue& ivalue) {
// In contrast to tensor references, literal tensors are included in the
// pickle program binary blob. They are written to the file after the STOP
// opcode. They can't be included in the pickle program itself without a bunch
// of extra machinery since byte strings are limited to 4 GB.
//
// The format here is the same one used by `torch.save()`. The code for the
// format can be found in `torch/serialization.py`.
auto& tensor = ivalue.toTensor();
if (tensor.is_sparse() || tensor.is_sparse_csr()) {
pushLiteralSparseTensor(tensor);
return;
}
bool quantized = tensor.is_quantized();
// The arguments to this function are:
// storage, storage_offset, size, stride, requires_grad, backward_hooks
pushGlobal(
"torch._utils", quantized ? "_rebuild_qtensor" : "_rebuild_tensor_v2");
push<PickleOpCode>(PickleOpCode::MARK);
pushStorageOfTensor(tensor);
// storage offset
pushInt(tensor.storage_offset());
// size
push<PickleOpCode>(PickleOpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
// stride
push<PickleOpCode>(PickleOpCode::MARK);
for (auto stride : tensor.strides()) {
pushInt(stride);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
if (quantized) {
push<PickleOpCode>(PickleOpCode::MARK);
pushGlobal("torch", toString(tensor.qscheme()));
// tuple of (qscheme, scale, zp) or (qscheme, scales, zps, axis)
switch (tensor.qscheme()) {
case at::kPerTensorAffine:
pushDouble(tensor.q_scale());
pushInt(tensor.q_zero_point());
break;
case at::kPerChannelAffineFloatQParams:
case at::kPerChannelAffine: {
pushTensor(tensor.q_per_channel_scales());
pushTensor(tensor.q_per_channel_zero_points());
pushInt(tensor.q_per_channel_axis());
} break;
default:
TORCH_CHECK(
false,
"Unsupported tensor quantization type in serialization ",
toString(tensor.qscheme()));
break;
}
push<PickleOpCode>(PickleOpCode::TUPLE);
}
// requires_grad
pushIValue(tensor.requires_grad());
// backward_hooks
pushGlobal("collections", "OrderedDict");
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
// Construct the collections.OrderedDict for the backward_hooks
push<PickleOpCode>(PickleOpCode::REDUCE);
if (!quantized) {
// Only push it for regular tensor if the dictionary is not empty.
auto metadata = torch::jit::getTensorMetadata(tensor);
if (!metadata.empty()) {
// IValues based on std::unordered_map<K, V> are slow and deprecated.
// Thus, pass a c10::Dict to pushDict.
c10::Dict<std::string, bool> math_bits_;
for (const auto& pair : metadata) {
math_bits_.insert(pair.first, pair.second);
}
pushDict(math_bits_);
}
}
push<PickleOpCode>(PickleOpCode::TUPLE);
// Call torch._utils._rebuild_tensor_v2
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushSpecializedList(
const IValue& ivalue,
const char* list_name,
const std::function<void(const IValue&)>& item_pusher) {
pushGlobal("torch.jit._pickle", list_name);
// Reduce arguments are spread (e.g. `*args`) before calling the global,
// so wrap in a tuple
push<PickleOpCode>(PickleOpCode::MARK);
push<PickleOpCode>(PickleOpCode::EMPTY_LIST);
// Mark list
push<PickleOpCode>(PickleOpCode::MARK);
// Add all items
item_pusher(ivalue);
// Finish list
push<PickleOpCode>(PickleOpCode::APPENDS);
// Finish tuple
push<PickleOpCode>(PickleOpCode::TUPLE);
// Call reduce
push<PickleOpCode>(PickleOpCode::REDUCE);
}
static inline double swapDouble(double value) {
const char* bytes = reinterpret_cast<const char*>(&value);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
double flipped;
char* out_bytes = reinterpret_cast<char*>(&flipped);
for (const auto i : c10::irange(sizeof(double))) {
out_bytes[i] = bytes[sizeof(double) - i - 1];
}
return *reinterpret_cast<double*>(out_bytes);
}
void Pickler::pushDouble(double value) {
push<PickleOpCode>(PickleOpCode::BINFLOAT);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
// Python pickle format is big endian, swap.
push<double>(swapDouble(value));
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
push<double>(value);
#else
#error Unexpected or undefined __BYTE_ORDER__
#endif
}
void Pickler::pushComplexDouble(const IValue& value) {
c10::complex<double> d = value.toComplexDouble();
pushGlobal("builtins", "complex");
pushIValue(d.real());
pushIValue(d.imag());
push<PickleOpCode>(PickleOpCode::TUPLE2);
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushLong(const std::string& data) {
uint64_t size = data.size();
TORCH_INTERNAL_ASSERT(
size <= std::numeric_limits<uint8_t>::max(),
"Cannot pickle a long larger than 255 bytes");
push<PickleOpCode>(PickleOpCode::LONG1);
push<uint8_t>(size);
pushBytes(data);
}
void Pickler::pushTensorReference(const IValue& ivalue) {
pushGlobal("torch.jit._pickle", "build_tensor_from_id");
tensor_table_->push_back(ivalue.toTensor());
int64_t tensor_id = tensor_table_->size() - 1;
// Reduce arguments are spread (e.g. `*args`) before calling the global,
// so wrap in a tuple
push<PickleOpCode>(PickleOpCode::MARK);
pushIValue(tensor_id);
push<PickleOpCode>(PickleOpCode::TUPLE);
push<PickleOpCode>(PickleOpCode::REDUCE);
}
// startTypeTag() and endTypeTag() must be called in a pair, with 1 argument
// pushed on the stack in between them. They will add the type of a container
// ivalue to the stack as a string so we can preserve type tags across
// serialization
void Pickler::startTypeTag() {
if (tag_aggregates_) {
pushGlobal("torch.jit._pickle", "restore_type_tag");
}
}
namespace {
c10::optional<std::string> type_printer(const c10::Type& type) {
if (auto dyn = type.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str(type_printer);
}
return c10::nullopt;
}
} // namespace
// See startTypeTag
void Pickler::endTypeTag(const IValue& ivalue) {
if (!tag_aggregates_) {
return;
}
TORCH_INTERNAL_ASSERT(ivalue.isGenericDict() || ivalue.isList());
// Push the dict type
auto type = ivalue.type();
TORCH_INTERNAL_ASSERT(type);
auto annot_str = type->annotation_str(type_printer);
pushString(annot_str);
// Pop the dict and type into a tuple
push<PickleOpCode>(PickleOpCode::TUPLE2);
// Call function via reduce
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushDict(const IValue& ivalue) {
auto dict = ivalue.toGenericDict();
startTypeTag();
push<PickleOpCode>(PickleOpCode::EMPTY_DICT);
static_assert(
std::is_unsigned<decltype(dict.size())>::value,
"Expected size to be non-negative.");
push<PickleOpCode>(PickleOpCode::MARK);
// Sort the dict for deterministic keys
for (const auto& entry : dict) {
pushIValue(entry.key());
pushIValue(entry.value());
}
push<PickleOpCode>(PickleOpCode::SETITEMS);
endTypeTag(ivalue);
}
size_t Pickler::pushNextBinPut() {
if (memo_id_ <= std::numeric_limits<uint8_t>::max()) {
push<PickleOpCode>(PickleOpCode::BINPUT);
push<uint8_t>(memo_id_);
} else {
// Memoized too many items, issue a LONG_BINPUT instead
push<PickleOpCode>(PickleOpCode::LONG_BINPUT);
push<uint32_t>(memo_id_);
}
AT_ASSERT(memo_id_ <= std::numeric_limits<uint32_t>::max());
++memo_id_;
return memo_id_ - 1;
}
void Pickler::pushGenericList(const IValue& ivalue) {
auto list = ivalue.toListRef();
startTypeTag();
// Push the list items
push<PickleOpCode>(PickleOpCode::EMPTY_LIST);
push<PickleOpCode>(PickleOpCode::MARK);
for (const IValue& item : list) {
pushIValue(item);
}
push<PickleOpCode>(PickleOpCode::APPENDS);
endTypeTag(ivalue);
}
void Pickler::pushTuple(const IValue& ivalue) {
auto tuple = ivalue.toTuple();
auto tuple_size = tuple->elements().size();
switch (tuple_size) {
case 0: {
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
} break;
case 1: {
pushIValue(tuple->elements()[0]);
push<PickleOpCode>(PickleOpCode::TUPLE1);
} break;
case 2: {
pushIValue(tuple->elements()[0]);
pushIValue(tuple->elements()[1]);
push<PickleOpCode>(PickleOpCode::TUPLE2);
} break;
case 3: {
pushIValue(tuple->elements()[0]);
pushIValue(tuple->elements()[1]);
pushIValue(tuple->elements()[2]);
push<PickleOpCode>(PickleOpCode::TUPLE3);
} break;
default: {
push<PickleOpCode>(PickleOpCode::MARK);
for (const IValue& item : tuple->elements()) {
pushIValue(item);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
} break;
}
}
WriteableTensorData getWriteableTensorData(
const at::Tensor& tensor,
bool to_cpu) {
WriteableTensorData result;
result.tensor_ = tensor;
result.size_ = tensor.storage().nbytes();
// TODO HIP support
if (tensor.storage().device_type() != DeviceType::CPU && to_cpu) {
// NB: This new tensor is created to support cuda tensors.
// Storages can be mutated when converting tensors from cuda to cpu,
// and we need a cpu tensor to copy data from.
result.tensor_ =
at::empty({0}, tensor.options())
.set_(
tensor.storage(),
/* storage_offset = */ 0,
/* size = */
{static_cast<int64_t>(
tensor.storage().nbytes() / tensor.element_size())},
/* stride = */ {1})
.cpu();
TORCH_CHECK(
result.tensor_.storage().nbytes() == result.size_,
"Storage tensor size did not match record size");
}
return result;
}
bool checkHasValidSetGetState(const std::shared_ptr<c10::ClassType>& cls) {
// Check that the schemas for __getstate__ and __setstate__ are correct
auto getstate = cls->findMethod("__getstate__");
if (getstate == nullptr) {
return false;
}
auto get_schema = getstate->getSchema();
// Check __getstate__
// __getstate__ is expected to be (self) -> T
TORCH_CHECK(
get_schema.arguments().size() == 1,
"'__getstate__' must have 'self' as its only argument, but found ",
get_schema.arguments().size(),
" arguments");
TORCH_CHECK(
get_schema.returns().size() == 1,
"'__getstate__' must return 1 value, but found ",
get_schema.returns().size());
// Check __setstate__ if the method exists
// __setstate__ is expected to be (self, T) -> None
auto setstate = cls->findMethod("__setstate__");
if (!setstate) {
return false;
}
auto set_schema = setstate->getSchema();
TORCH_CHECK(
set_schema.arguments().size() == 2,
"'__setstate__' must have 'self' and the state as its "
"only arguments, but found ",
set_schema.arguments().size(),
" arguments");
TORCH_CHECK(
set_schema.returns().size() == 1,
"'__setstate__' must return None, but found ",
set_schema.returns().size(),
" return values");
TORCH_CHECK(
set_schema.returns().at(0).type()->isSubtypeOf(*NoneType::get()),
"'__setstate__' must return None, but found value of type",
set_schema.returns().at(0).type()->annotation_str());
// Check that the return type of __getstate__ matches the input to
// __setstate__
auto get_type = get_schema.returns().at(0).type();
auto set_type = set_schema.arguments().at(1).type();
TORCH_CHECK(
get_type->isSubtypeOf(*set_type),
"'__getstate__'s return type (",
get_type->annotation_str(),
") does not match '__setstate__'s argument type (",
set_type->annotation_str(),
")");
return true;
}
} // namespace torch::jit