-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathdemo.py
executable file
·229 lines (185 loc) · 11.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import cv2
import os
from utils import ACTION_TO_ID
class Demonstration():
def __init__(self, path, demo_num, check_z_height, task_type='stack'):
try:
# path is expected to be <logs/exp_name>
self.action_log = np.loadtxt(os.path.join(path, 'transitions',
'executed-actions-' + str(demo_num) + '.log.txt'))
except OSError:
raise OSError("Demo Number " + str(demo_num) + " does not exist.")
self.rgb_dir = os.path.join(path, 'data', 'color-heightmaps')
self.depth_dir = os.path.join(path, 'data', 'depth-heightmaps')
self.demo_num = demo_num
self.check_z_height = check_z_height
self.task_type = task_type
# image_names should contain all heightmaps that have demo_num as their poststring
self.image_names = sorted([i for i in os.listdir(self.rgb_dir) if int(i.split('.')[-3]) == demo_num])
# get number of actions in demo
self.num_actions = len(self.action_log)
# check to make sure action log and image_names line up (+1 included to account for final img)
if len(self.image_names) != (self.num_actions + 1):
raise ValueError("MISMATCH: Number of images does not match number of actions in demo for demo number:", demo_num)
# populate actions in dict keyed by action_pair number {action_pair : {action : (x, y, z, theta)}}
# divide num actions by 2 to get number of grasp/place pairs
self.action_dict = {}
# start at 1 since the structure starts with size 1
for progress in range(1, (self.num_actions // 2) + 1):
demo_ind = (progress - 1) * 2
grasp_image_ind = int(self.image_names[demo_ind].split('.')[0])
place_image_ind = int(self.image_names[demo_ind + 1].split('.')[0])
self.action_dict[progress] = {ACTION_TO_ID['grasp'] : self.action_log[demo_ind],
ACTION_TO_ID['place'] : self.action_log[demo_ind + 1],
'grasp_image_ind': grasp_image_ind, 'place_image_ind': place_image_ind}
# for last progress val, grasp_image_ind and place_image_ind are both the same
image_ind = int(self.image_names[-1].split('.')[0])
self.action_dict[(self.num_actions // 2) + 1] = {'grasp_image_ind': image_ind,
'place_image_ind': image_ind}
def get_heightmaps(self, action_str, stack_height, use_hist=False, history_len=3):
rgb_filename = os.path.join(self.rgb_dir,
'%06d.%s.%d.color.png' % (stack_height, action_str, self.demo_num))
depth_filename = os.path.join(self.depth_dir,
'%06d.%s.%d.depth.png' % (stack_height, action_str, self.demo_num))
# read rgb and depth heightmap
rgb_heightmap = cv2.cvtColor(cv2.imread(rgb_filename), cv2.COLOR_BGR2RGB)
depth_heightmap = cv2.imread(depth_filename, -1).astype(np.float32)/100000
# if using history, need to modify depth heightmap
if use_hist:
depth_heightmap_history = [depth_heightmap]
image_ind = self.image_names.index(rgb_filename.split('/')[-1])
hist_ind = image_ind
# iterate through last history_len frames and add to list
for i in range(history_len - 1):
# calculate previous index
hist_ind = max(0, hist_ind - 1)
# load heightmap and add to list
heightmap_path = os.path.join(self.depth_dir, self.image_names[image_ind].replace('color', 'depth'))
hist_depth = cv2.imread(heightmap_path, -1).astype(np.float32)/100000
depth_heightmap_history.append(hist_depth)
return rgb_heightmap, np.stack(depth_heightmap_history, axis=-1)
return rgb_heightmap, np.stack([depth_heightmap] * 3, axis=-1)
def get_action(self, workspace_limits, primitive_action, stack_height, stack_trainer=None,
row_trainer=None, unstack_trainer=None, vertical_square_trainer=None, use_hist=False,
demo_mask=True, cycle_consistency=False):
# ensure one of stack trainer or row trainer is provided
if stack_trainer is None and row_trainer is None and unstack_trainer is None and vertical_square_trainer is None:
raise ValueError("Must provide at least one trainer")
# TODO(adit98) make the call to action_dict in get_heightmaps instead of here! Bad code...
if primitive_action == 'grasp':
color_heightmap, valid_depth_heightmap = self.get_heightmaps(primitive_action,
self.action_dict[stack_height]['grasp_image_ind'], use_hist=use_hist)
elif primitive_action == 'place':
color_heightmap, valid_depth_heightmap = self.get_heightmaps(primitive_action,
self.action_dict[stack_height]['place_image_ind'], use_hist=use_hist)
# get stack features if stack_trainer is provided
# TODO(adit98) can add specific rotation to these forward calls for speedup
if stack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
stack_push, stack_grasp, stack_place = stack_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
stack_push, stack_grasp, stack_place = stack_push.filled(0.0), \
stack_grasp.filled(0.0), stack_place.filled(0.0)
# get row features if row_trainer is provided
if row_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
row_push, row_grasp, row_place = row_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
row_push, row_grasp, row_place = row_push.filled(0.0), \
row_grasp.filled(0.0), row_place.filled(0.0)
# get unstack features if unstack_trainer is provided
if unstack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
unstack_push, unstack_grasp, unstack_place = unstack_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
unstack_push, unstack_grasp, unstack_place = unstack_push.filled(0.0), \
unstack_grasp.filled(0.0), unstack_place.filled(0.0)
# get vertical_square features if vertical_square_trainer is provided
if vertical_square_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
vertical_square_push, vertical_square_grasp, vertical_square_place = vertical_square_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
vertical_square_push, vertical_square_grasp, vertical_square_place = vertical_square_push.filled(0.0), \
vertical_square_grasp.filled(0.0), vertical_square_place.filled(0.0)
# get demo action index vector
action_vec = self.action_dict[stack_height][ACTION_TO_ID[primitive_action]]
# convert rotation angle to index
best_rot_ind = np.around((np.rad2deg(action_vec[-2]) % 360) * 16 / 360).astype(int)
# convert robot coordinates to pixel
workspace_pixel_offset = workspace_limits[:2, 0] * -1 * 1000
best_action_xy = ((workspace_pixel_offset + 1000 * action_vec[:2]) / 2).astype(int)
# initialize best actions for stacking and row making
best_action_stack, best_action_row, best_action_unstack, best_action_vertical_square = None, None, None, None
# initialize embedding arrays for each policy (for selected primitive_action)
stack_feat, row_feat, unstack_feat, vertical_square_feat = None, None, None, None
# index predictions to obtain best action
if primitive_action == 'grasp':
# NOTE that we swap the order that the best_action_xy coordinates are passed in since
# the NN output expects (theta, :, y, x)
if stack_trainer is not None:
best_action_stack = stack_grasp[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
stack_feat = stack_grasp
if row_trainer is not None:
best_action_row = row_grasp[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
row_feat = row_grasp
if unstack_trainer is not None:
best_action_unstack = unstack_grasp[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
if vertical_square_trainer is not None:
best_action_vertical_square = vertical_square_grasp[best_rot_ind, :,
best_action_xy[1], best_action_xy[0]]
vertical_square_feat = vertical_square_grasp
elif primitive_action == 'place':
if stack_trainer is not None:
best_action_stack = stack_place[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
stack_feat = stack_place
if row_trainer is not None:
best_action_row = row_place[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
row_feat = row_place
if unstack_trainer is not None:
best_action_unstack = unstack_place[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
unstack_feat = unstack_place
if vertical_square_trainer is not None:
best_action_vertical_square = vertical_square_place[best_rot_ind, :,
best_action_xy[1], best_action_xy[0]]
vertical_square_feat = vertical_square_place
# if we aren't using cycle consistency, return best action's embedding
if not cycle_consistency:
# return best action for each model, primitive_action
return best_action_row, best_action_stack, best_action_unstack, best_action_vertical_square, ACTION_TO_ID[primitive_action], None
# otherwise, return the entire 16x224x224 embedding space (only for selected primitive action)
else:
action_ind = (best_rot_ind, best_action_xy[1], best_action_xy[0])
return row_feat, stack_feat, unstack_feat, vertical_square_feat, ACTION_TO_ID[primitive_action], action_ind
def load_all_demos(demo_path, check_z_height, task_type):
"""
Function to load all demonstrations in a given path and return a list of demo objects.
Argument:
demo_path: Path to folder with demonstrations
"""
demos = []
demo_ind = 0
while True:
try:
demos.append(Demonstration(path=demo_path, demo_num=demo_ind,
check_z_height=check_z_height, task_type=task_type))
except OSError:
# demo does not exist, we loaded all the demos in the directory
break
# increment demo_ind
demo_ind += 1
return demos