-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathlanguage_embedders.py
executable file
·146 lines (119 loc) · 5.19 KB
/
language_embedders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import numpy as np
from spacy.tokenizer import Tokenizer
from transformers import BertTokenizer, BertModel
import pdb
np.random.seed(12)
torch.manual_seed(12)
class RandomEmbedder(torch.nn.Module):
def __init__(self,
tokenizer: Tokenizer,
vocab: set,
embedding_dim: int,
trainable: bool = True):
super(RandomEmbedder, self).__init__()
self.tokenizer = tokenizer
self.trainable = trainable
# set embeddings
self.unk_embedding = torch.zeros((1, embedding_dim))
self.pad_token = torch.ones((1, embedding_dim))
self.vocab = vocab
self.word_to_idx = {word:i+2 for i, word in enumerate(vocab)}
self.word_to_idx["<UNK>"] = 0
self.word_to_idx["<PAD>"] = 1
self.embeddings = torch.nn.Embedding(len(self.vocab) + 2, embedding_dim)
self.output_dim = embedding_dim
def set_device(self, device):
self.device = device
if "cuda" in str(device):
self.embeddings = self.embeddings.cuda(self.device)
def forward(self, words):
words = [w if w in self.vocab else "<UNK>" for w in words]
lookup_tensor = torch.tensor([self.word_to_idx[w] for w in words], dtype = torch.long)
lookup_tensor = lookup_tensor.to(self.device)
output = self.embeddings(lookup_tensor)
return output
class GloveEmbedder(torch.nn.Module):
def __init__(self,
tokenizer: Tokenizer,
vocab: set,
embedding_file: str,
embedding_dim: int = 300,
trainable: bool = True):
super(GloveEmbedder, self).__init__()
self.tokenizer = tokenizer
self.trainable = trainable
# read embeddings from file
print(f"reading embeddings...")
with open(embedding_file) as f1:
contents = f1.readlines()
# set embeddings
self.unk_embedding = torch.zeros((1, embedding_dim))
self.pad_token = torch.ones((1, embedding_dim))
self.vocab = vocab
self.word_to_idx = {word:i+2 for i, word in enumerate(vocab)}
self.word_to_idx["<UNK>"] = 0
self.word_to_idx["<PAD>"] = 1
self.embeddings = torch.nn.Embedding(len(self.vocab) + 2, embedding_dim)
self.output_dim = embedding_dim
fake_weight = torch.clone(self.embeddings.weight)
for line in contents:
line = line.split(" ")
key = line[0]
embeddings = [float(x) for x in line[1:]]
assert(len(embeddings) == embedding_dim)
if key in self.vocab:
# initialize with glove embedding when you can, otherwise keep random for unks
key_idx = self.word_to_idx[key]
fake_weight[key_idx] = torch.tensor(np.array(embeddings))
self.embeddings.load_state_dict({"weight": fake_weight})
if not trainable:
self.embeddings.weight.requires_grad = False
else:
self.embeddings.weight.requires_grad = True
def set_device(self, device):
self.device = device
if "cuda" in str(device):
self.embeddings = self.embeddings.cuda(self.device)
def forward(self, words):
words = [w if w in self.vocab else "<UNK>" for w in words]
lookup_tensor = torch.tensor([self.word_to_idx[w] for w in words], dtype = torch.long)
lookup_tensor = lookup_tensor.to(self.device)
output = self.embeddings(lookup_tensor)
return output
class BERTEmbedder(torch.nn.Module):
def __init__(self,
model_name: str = "bert-base-uncased",
max_seq_len: int = 60,
trainable: bool = False):
super(BERTEmbedder, self).__init__()
self.model_name = model_name
self.trainable = trainable
self.max_seq_len = max_seq_len
self.tokenizer = BertTokenizer.from_pretrained(self.model_name)
self.bert_model = BertModel.from_pretrained(self.model_name)
self.output_dim = 768
self.bert_model.eval()
def set_device(self, device):
self.device = device
if "cuda" in str(device):
self.bert_model = self.bert_model.to(device)
def forward(self, words):
words = [x if x != "<PAD>" else "[PAD]" for x in words]
text = " ".join(words)
tokenized_text = self.tokenizer.tokenize(text)[0:self.max_seq_len ]
if len(tokenized_text) < self.max_seq_len:
# happens when there is weird whitepsace in the command
pads = ["[PAD]" for i in range(self.max_seq_len - len(tokenized_text))]
tokenized_text += pads
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens]).to(self.device)
if not self.trainable:
with torch.no_grad():
outputs = self.bert_model(tokens_tensor)
else:
self.bert_model.train()
outputs = self.bert_model(tokens_tensor, token_type_ids=segments_tensors)
# use top layer
encoded_sequence = outputs[0]
return encoded_sequence.squeeze(0)