-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuserVanna.py
174 lines (148 loc) · 6.26 KB
/
userVanna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pandas as pd
import docx2txt
from vanna.ZhipuAI import ZhipuAI_Chat
from vanna.vannadb import VannaDB_VectorStore
from dotenv import load_dotenv
import os
from vanna.flask import VannaFlaskApp
import threading
from vanna.ZhipuAI import ZhipuAI_Chat
from vanna.chromadb import ChromaDB_VectorStore
from vanna.ZhipuAI import ZhipuAIEmbeddingFunction
import uuid
# 加载 .env 文件
load_dotenv()
# 读取环境变量
api_key = os.getenv('API_KEY')
local_adress=os.getenv('LOCAL_ADRESS')
# 创建zhipuembedding实例
zhipu_ai_embedding_function = ZhipuAIEmbeddingFunction(
config={"api_key":api_key,"model_name":"embedding-2"}
)
# 基本不变,系统设定的llm和向量数据库装置
# 初始化系统
# 重写VannaFlaskApp类中的run方法,实现自定义的flask启动方式
class CustomFlaskApp(VannaFlaskApp):
def run(self, port):
try:
from google.colab import output
output.serve_kernel_port_as_window(port)
from google.colab.output import eval_js
print("Your app is running at:")
print(eval_js(f"google.colab.kernel.proxyPort({port})"))
except:
print("Your app is running at:")
print(f"http://{local_adress}:{port}")
self.flask_app.run(host="0.0.0.0", port=port, use_reloader=False, debug=True)
class init_Vanna(ChromaDB_VectorStore, ZhipuAI_Chat):
def __init__(self, config=None, vsconfig=None):
ChromaDB_VectorStore.__init__(self, config=vsconfig)
ZhipuAI_Chat.__init__(self, config=config)
# 全局字典存储每个用户的向量数据库路径
user_vsconfig_paths = {}
class userVanna:
def __init__(self, sql_name, user_id, init_Vanna=init_Vanna, customflaskapp=CustomFlaskApp):
self.sql_name = sql_name
self.user_id = user_id
self.vsconfig = self.get_or_create_vsconfig_path()
self.user_Vanna = init_Vanna(config={"api_key": api_key, "model": "glm-4-flash"}, vsconfig=self.vsconfig)
self.port = None
self.customflaskapp = customflaskapp
self.port_event = threading.Event()
def get_or_create_vsconfig_path(self):
if self.user_id in user_vsconfig_paths:
path = user_vsconfig_paths[self.user_id]
else:
path = self.generate_unique_path()
user_vsconfig_paths[self.user_id] = path
return {
"embedding_function": zhipu_ai_embedding_function,
"n_results_sql": 5,
"n_results_documentation": 5,
"n_results_ddl": 3,
"path": path
}
def generate_unique_path(self):
# 生成一个唯一的向量数据库路径
unique_id = uuid.uuid4().hex
directory="./embedding_db"
if not os.path.exists(directory):
os.makedirs(directory)
path=f"{directory}/{unique_id}.chroma"
return path
def connect(self, **kwargs):
if self.sql_name == "mysql":
self.get_Mysql_connect(**kwargs)
elif self.sql_name == "sqlite":
self.get_SQLite_connect(**kwargs)
elif self.sql_name == "snowflake":
self.get_snowflake_content(**kwargs)
else:
raise ValueError("Unsupported database type")
def get_Mysql_connect(self, host=None, dbname=None, user=None, password=None, port=None):
self.user_Vanna.connect_to_mysql(host=host, dbname=dbname, user=user, password=password, port=port)
def get_SQLite_connect(self, adress=None, port=None, dbname=None):
self.user_Vanna.connect_to_sqlite(f"{adress}:{port}/{dbname}")
def get_snowflake_content(self, account, username, password, database, role):
self.user_Vanna.connect_to_snowflake(account=account, username=username, password=password, database=database, role=role)
# 其他方法...
def pre_train(self, log_callback=None):
if log_callback:
log_callback("开始预训练...")
df_information_schema = self.user_Vanna.run_sql("SELECT * FROM INFORMATION_SCHEMA.COLUMNS")
if log_callback:
log_callback("获取到数据库元数据。")
plan = self.user_Vanna.get_training_plan_generic(df_information_schema)
if log_callback:
log_callback("训练计划创建完毕。")
self.user_Vanna.train(plan=plan)
if log_callback:
log_callback("正在训练...")
self.user_Vanna.train(
ddl="""
CREATE TABLE IF NOT EXISTS my-table (
id INT PRIMARY KEY,
name VARCHAR(100),
age INT
)
"""
)
if log_callback:
log_callback("正在使用DDL语句训练,注意,这并不会在您的数据库上进行任何操作")
if log_callback:
log_callback("预训练已完毕。")
return 0
def documentation_train(self, file_path):
if file_path.endswith('.docx'):
file_path = docx2txt.process(file_path)
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
f.close()
self.user_Vanna.train(documentation=content)
def sql_train(self, sql_list):
for sql in sql_list:
self.user_Vanna.train(sql=sql)
def sql_question_train(self, file_path):
df = pd.read_excel(file_path)
for index, row in df.iterrows():
question = row['question']
sql = row['sql']
self.user_Vanna.train(question=question, sql=sql)
def inference(self, question):
return self.user_Vanna.ask(question)
def web_server(self):
app = self.customflaskapp(self.user_Vanna, allow_llm_to_see_data=True)
self.port = self.find_free_port()
self.port_event.set()
app.run(port=self.port)
def find_free_port(self):
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
def start_web_server(self):
thread = threading.Thread(target=self.web_server)
thread.start()
self.port_event.wait()
return self.port