forked from zjworlder/ForK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkrigingmaxeipredictGEK.f90
117 lines (104 loc) · 6.99 KB
/
krigingmaxeipredictGEK.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
!Copyright (C) 2012 Brian A. Lockwood
!
!This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
!
!This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
!You should have received a copy of the GNU General Public License along with
!this program. If not, see <http://www.gnu.org/licenses/>.
!> \file krigingmaxeipredictGEK.f90
!> \brief Subroutine to Predict maximum expected improvement from Gradient-Enhanced Kriging Surface based on a current minimum value(requires <a href=buildkrigingGEK_8f90.html>buildkrigingGEK</a> to be called first) <br>
!> Only Works for Ordinary Kriging (Constant Mean function)
!> \detail See documentation for <a href=krigingmaxeipredict_8f90.html>krigingmaxeipredict</a> for details. This subroutine is the gradient-enhanced version and is functionally the same as the function-only subroutine.
!> \author Brian Lockwood
!> Department of Mechanical Engineering
!> University of Wyoming
!> \date May 2, 2012
!> \param(in) <b>ndim </b>: The dimension of the problem
!> \param(in) <b>ntot </b>: The number of Training points
!> \param(in) <b>X </b>: The location of the training points (size=[ndimxntot])
!> \param(in) <b>gtot</b>: Number of derivative values included in training data (ndim*ntot if all derivatives are included at the training points)
!> \param(in) <b>pts</b>: List identifying what point the derivative value is enforced at (size=[gtot] with values ranging from 1 to ntot)
!> \param(in) <b>dims</b>: List identifying the dimension the derivative is taken with respect to (size=[gtot] with values ranging from 1 to ndim)
!> \param(in) <b>stot </b>: Number of Terms in the regression
!> \param(in) <b>H</b>: The collocation matrix for the regression including derivative values. (size=[stotxntot+gtot]) <br>
!> Columns 1:ntot are the basis evaluated at the training points <br>
!> Columns ntot+1:ntot+gtot are the derivative of the basis evaluated at the training points
!> \param(in) <b> beta</b>: Regression coefficients based on the optimal estimate for the Kriging model (size=[stot]) <br>
!> Supplied by <a href=buildkrigingGEK_8f90.html>buildkrigingGEK</a> subroutine
!> \param(in) <b>V</b>: Processed Training Data (size=[ntot+gtot]) <br>
!> Supplied by <a href=buildkrigingGEK_8f90.html>buildkrigingGEK</a> subroutine
!> \param(in) <b>hyper</b>: Hyperparameters for the Kriging Model (size=[ndim+3]) <br>
!> Supplied by <a href=buildkrigingGEK_8f90.html>buildkrigingGEK</a> subroutine
!> \param(out) <b> Xm </b>: Location of the maximum Expected Improvement (size=[ndim])
!> \param(out) <b> Eim </b>: Maximum Expected Improvement
!> \param(in) <b>covarflagi</b>: Flag to govern which covariance function is used <br>
!> <ul>
!> <li>covarflag==1 Uses Matern function with \f$\nu=3/2\f$
!> <li>covarflag==2 Uses Matern function with \f$\nu=5/2\f$ </ul> <br>
!> The parameter \f$\nu\f$ governs the smoothness and differentiability of the covariance function. <br>
!> When using gradient values, \f$\nu=1/2\f$ is not differentiable enough so \f$\nu \geq 3/2\f$ must be used<br>
!> Must supply the same covariance flag as used in <a href=buildkrigingGEK_8f90.html>buildkrigingGEK</a>.
!> \param(in) <b>optflagi</b>: Flag to govern the optimization algorithm used to determine maximum Expected Improvement <br>
!> <ul><li>optflag=0 Simplex Search (Nelder-Mead Method) to determine maximum Expected Improvement<br>
!> Local optimization technique using simplex elements to determine search direction and line search to determine step sizes <br>
!> Fastest method but inherently sequential and may stall on local optimum
!> <li>optflag=1 Pattern Search used to determine maximum Expected Improvement <br>
!> Global optimization method with fixed search directions (forward and backward in each direction) <br>
!> Each iteration requires \f$2*ndim\f$ function evaluations; however, these may be performed in parallel using openmp (Each thread performs own likelihood evaluation so OMP_STACK_SIZE must be set large enough) <br> </ul>
!> \param(in) <b> Lb </b> Lower Bound for each variable (size = [ndim]) <br>
!> Should be the minimum possible value of Xm in each dimension
!> \param(in) <b> Ub </b> Upper Bound for each variable (size = [ndim]) <br>
!> Should be the maximum possible value of Xm in each dimension
!> \param(in) <b> Ymin </b> The current minimum value that the new candidate improves on. <br>
!> In the context of optimization, Ymin is the minimum value for the current optimization iteration. <br>
!> The expected improvement at a point uses the mean and variance from the Kriging model to predict the improvement in the minimum value if a new simulation is performed at that location.
!> Hence, the maximum expected improvement is the location in the design space most likely to reduce the minimum value by the largest amount.
subroutine krigingmaxeipredictGEK(ndim,ntot,X,gtot,pts,dims,stot,H,beta,V,hyper,Xm,Ym,covarflagi,optflag,Lb,Ub,Ymin)
use argument
implicit none
integer, intent(in) :: ndim, ntot
real(8), intent(in) :: X(ndim,ntot)
integer, intent(in) :: gtot
integer, intent(in) :: pts(gtot), dims(gtot)
integer, intent(in) :: stot
real(8), intent(in) :: H(stot,ntot)
real(8), intent(in) :: V(ntot),hyper(ndim+2),Beta(stot)
real(8), intent(out) :: Xm(ndim)
real(8), intent(out) :: Ym
integer, intent(in) :: covarflagi,optflag
real(8), intent(in) :: Lb(ndim), Ub(ndim)
real(8), intent(in) :: Ymin
type (generalarg) argwrap
type (arg_kriging_grad) kriging
kriging % descriptor = 'Kriging Grad'
kriging % value = 'EI'
kriging%ndim=ndim
kriging%ntot=ntot
allocate(kriging % X(ndim,ntot))
kriging%X=X
kriging%gtot=gtot
allocate(kriging%pts(gtot))
kriging%pts=pts
allocate(kriging%dims(gtot))
kriging%dims=dims
kriging%stot=stot
allocate(kriging%H(stot,ntot+gtot))
kriging%H=H
allocate(kriging%beta(stot))
kriging%beta=beta
allocate(kriging%V(ntot+gtot))
kriging%V=V
allocate(kriging%hyper(ndim+3))
kriging%hyper=hyper
kriging%covarflag=covarflagi
kriging%ymin=Ymin
argwrap % descriptor = kriging%descriptor
argwrap % gradkrigingarg = kriging
if (optflag==0) then
call simplexsearch(ndim,Xm,Xm,Ym,Lb,Ub,1,argwrap)
else
call patternsearch(ndim,Xm,Xm,Ym,Lb,Ub,1,argwrap)
end if
return
end subroutine krigingmaxeipredictGEK