-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNV_Vector.c
423 lines (338 loc) · 11.2 KB
/
CNV_Vector.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
* =====================================================================================
*
* Filename: CNV_Vector.c
*
* Description:
*
* Version: 1.0
* Created: 02/13/2011 11:05:52 AM
* Revision: none
* Compiler: gcc
*
* Author: YOUR NAME (),
* Company:
*
* =====================================================================================
*/
#include <stdlib.h>
#include <assert.h>
#include <float.h>
#include <stdarg.h>
#include <gsl/gsl_fit.h>
#include "CNV_Vector.h"
#include "CNV_Error.h"
//===============================
// Constructors and Destructors
//===============================
// create a new vector
CNV_Vector* CNV_VectorAlloc(size_t size)
{
// newVector size should not be zero
assert(size != 0);
// create new newVector object
CNV_Vector* newVector = malloc(sizeof(CNV_Vector));
if (newVector == NULL)
CNV_ErrQuit("ERROR: Not enough memory to create a new newVector object.\n");
// allocate memory for data storage
newVector->data = malloc(sizeof(double) * size);
if (newVector->data == NULL)
CNV_ErrQuit("ERROR: Not enough memory for data storage in the newVector object.\n");
// initialize members in newVector object
newVector->size = size;
newVector->stride = 1;
return newVector;
}
// create a new vector and initialize every element into zero
CNV_Vector* CNV_VectorCalloc(size_t size)
{
// newVector size should not be zero
assert(size != 0);
// create new newVector object
CNV_Vector* newVector = malloc(sizeof(CNV_Vector));
if (newVector == NULL)
CNV_ErrQuit("ERROR: Not enough memory to create a new newVector object.\n");
// allocate memory for data storage and intialize every element to zero
newVector->data = calloc(size, sizeof(double));
if (newVector->data == NULL)
CNV_ErrQuit("ERROR: Not enough memory for data storage in the newVector object.\n");
// initialize members in newVector object
newVector->size = size;
newVector->stride = 1;
return newVector;
}
// create a new vector view
CNV_VectorView* CNV_VectorViewAlloc(void)
{
// create new newVector object
CNV_VectorView* newVectorView = malloc(sizeof(CNV_VectorView));
if (newVectorView == NULL)
CNV_ErrQuit("ERROR: Not enough memory to create a new newVector object.\n");
// initialize members in newVector object
newVectorView->size = 0;
newVectorView->stride = 1;
return newVectorView;
}
// free a vector
void CNV_VectorFree(CNV_Vector* vector)
{
// should not free a null pointer
assert(vector != NULL);
if (vector->data != NULL)
free(vector->data);
free(vector);
}
// free a vector view
void CNV_VectorViewFree(CNV_VectorView* vectorView)
{
// should not free a null pointer
assert(vectorView != NULL);
free(vectorView);
}
// create a new size vector
CNV_SizeVector* CNV_SizeVectorAlloc(size_t size)
{
assert(size > 0);
// allocate memory for the size vector object
CNV_SizeVector* sizeVector = (CNV_SizeVector*) malloc(sizeof(CNV_SizeVector));
if (sizeVector == NULL)
CNV_ErrSys("ERROR: Not enough memroy for a size vector.\n");
// allocate memory for the data
sizeVector->sizeData = (size_t*) malloc(size * sizeof(size_t));
if (sizeVector->sizeData == NULL)
CNV_ErrSys("ERROR: Not enough memroy for the data storage of a size vector.\n");
// initialize members
sizeVector->count = 0;
sizeVector->capacity = size;
return sizeVector;
}
// free a size vector
void CNV_SizeVectorFree(CNV_SizeVector* sizeVector)
{
assert(sizeVector != NULL);
if (sizeVector->sizeData != NULL)
free(sizeVector->sizeData);
free(sizeVector);
}
//===============================
// Constant methods
//===============================
void CNV_VectorPrint(const CNV_Vector* vector, FILE* output)
{
// input arguments check
assert(vector != NULL && vector->data != NULL && output != NULL);
// position where to stop
size_t stopPos = vector->size * vector->stride;
for (unsigned i = 0; i < stopPos; i += vector->stride)
fprintf(output, "%-10.2f ", vector->data[i]);
fprintf(output, "\n\n");
}
// calculate the median value of all the elements in a vector (ignore NAN)
// Torben's method (without changing the element order in the vector)
double CNV_VectorGetMedian(const CNV_Vector* vector)
{
// check input arguments
assert(vector != NULL && vector->data != NULL);
// number of elements in vector less than the guess median
unsigned less;
// number of elements in vector greater than the guess median
unsigned greater;
// number of elements in vector equal to the guess median
unsigned equal;
// the position that is after the last element in the vector
unsigned stopPos = vector->stride * vector->size;
// real size = vector size - number of NAN
unsigned realSize = vector->size;
// first index of the element whose value is not NAN
unsigned firstNotNAN = 0;
// minimum value in search region
double min;
// maximum value in search region
double max;
// guess median
double guess;
// maximum value that less than the guess median
double maxltguess;
// minimum value that greater than the guess median
double mingtguess;
// find the max and min values in the vector
unsigned i;
for (i = 0; i != stopPos; i += vector->stride)
{
min = vector->data[i];
max = vector->data[i];
// min and max can not be NAN
if (!isnan(min))
break;
else
--realSize;
}
// get the position of first element whose value is not NAN
firstNotNAN = i;
for (; i != stopPos; i += vector->stride)
{
if (vector->data[i] < min)
min = vector->data[i];
if (vector->data[i] > max)
max = vector->data[i];
if (isnan(vector->data[i]))
--realSize;
}
// the real size cannot be 0 or greater than the vector size
assert(realSize > 0 && realSize <= vector->size);
unsigned breakPt = (realSize + 1) / 2;
while (TRUE)
{
guess = (min + max) / 2;
maxltguess = min;
mingtguess = max;
less = 0;
greater = 0;
equal = 0;
for (unsigned i = firstNotNAN; i != stopPos; i += vector->stride)
{
if (vector->data[i] < guess)
{
++less;
if (vector->data[i] > maxltguess)
maxltguess = vector->data[i];
}
else if (vector->data[i] > guess)
{
++greater;
if (vector->data[i] < mingtguess)
mingtguess = vector->data[i];
}
else if (vector->data[i] == guess)
{
++equal;
}
}
if (less <= breakPt && greater <= breakPt)
break;
else if (less > greater)
max = maxltguess;
else
min = mingtguess;
}
// decide which value to be returned
if (less < breakPt && greater < breakPt)
return guess;
else if (greater == breakPt && less == breakPt)
return ((mingtguess + maxltguess) / 2);
else if (less + equal == greater)
return ((guess + mingtguess) / 2);
else if (greater + equal == less)
return ((guess + maxltguess) / 2);
else if (greater > less)
return mingtguess;
else
return maxltguess;
}
// calculate the k-th smallest value in the vector
int CNV_VectorGetKthSmallest(const CNV_Vector* vector, double* temp, double* results, size_t resultsLength, ...)
{
assert(vector != NULL && vector->data != NULL);
assert(temp != NULL && results != NULL && resultsLength % 2 == 0);
// how many elements greater than guess
const size_t vectorSize = vector->size;
const size_t stopPos = vector->size * vector->stride;
// max element in the vector
double max = DBL_MIN;
// copy all the elements in vector to a temporary array
for (unsigned i = 0, j = 0; i != stopPos; i += vector->stride, ++j)
{
temp[j] = vector->data[i];
if (temp[j] > max)
max = temp[j];
}
va_list varArg;
va_start(varArg, resultsLength);
unsigned argNum = resultsLength / 2;
for (unsigned count = 0; count != argNum; ++count)
{
size_t k = va_arg(varArg, size_t);
size_t leftBound = 0;
size_t rightBound = vectorSize - 1;
while (leftBound < rightBound)
{
double swapTemp = 0.0;
double guess = temp[k];
size_t i = leftBound;
size_t j = rightBound;
do
{
while (temp[i] < guess)
++i;
while (temp[j] > guess)
--j;
if (i <= j)
{
// CNV_SWAP_NUM(temp[i], temp[j], swapTemp);
swapTemp = temp[i];
temp[i] = temp[j];
temp[j] = swapTemp;
++i;
--j;
}
} while (i <= j);
if (j < k)
leftBound = i;
if (k < i)
rightBound = j;
}
results[2 * count] = temp[k];
double kPlusOne = max;
for (unsigned i = k + 1; i != vectorSize; ++i)
{
if (temp[i] < kPlusOne)
kPlusOne = temp[i];
}
results[2 * count + 1] = kPlusOne;
}
va_end(varArg);
return CNV_OK;
}
// compute the the best-fit linear regression coefficient of the model y = c1 * x and the r squared value of the fit
int CNV_VectorLinearFit(const CNV_Vector* x, const CNV_Vector* y, double* coeff, double* rSquare)
{
assert(x != NULL && x->data != NULL);
assert(y != NULL && y->data != NULL);
assert(x->size == y->size);
// covariance value of the coefficiency
double cov = 0.0f;
// sum squares of regression
double sse = 0.0f;
// least-squares fit with gsl library function
gsl_fit_mul(x->data, x->stride, y->data, y->stride, x->size, coeff, &cov, &sse);
double meanY = 0.0f;
double sumSquareY = 0.0f;
size_t stopPosY = y->stride * y->size;
for (unsigned i = 0; i != stopPosY; i += y->stride)
{
meanY += y->data[i];
sumSquareY += CNV_SQUARE(y->data[i]);
}
// mean value of y vector
meanY = meanY / y->size;
//total sum of squares (sum of squares about the mean)
double sst = sumSquareY - (y->size * CNV_SQUARE(meanY));
// r square (goodness of fit)
*rSquare = 1 - (sse / sst);
return CNV_OK;
}
//===============================
// Non-constant methods
//===============================
// initialize a vector view
CNV_VectorView* CNV_VectorGetView(double* data, size_t size, size_t stride)
{
// check input arguments
assert(data != NULL && size != 0 && stride != 0);
// create a new vector view and then initialize it
CNV_VectorView* newVectorView = CNV_VectorViewAlloc();
newVectorView->data = data;
newVectorView->size = size / stride;
newVectorView->stride = stride;
return newVectorView;
}