-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcreate_symlink_hazeworld.py
148 lines (126 loc) · 6.46 KB
/
create_symlink_hazeworld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
The code to create symlinks for train and test.
Also create the meta info.
"""
import argparse
import os
import os.path as osp
import shutil
def parse_args():
parser = argparse.ArgumentParser(description='Generate symlinks for train and test')
parser.add_argument('-d', '--dataset', help='which dataset to process',
default='all')
parser.add_argument('--root-dir', help='the dir to store train and test symlinks',
default='./data/HazeWorld')
parser.add_argument('--gt-dir', help='the dir that contains the ground truth images',
default='./data/HazeWorld/gt')
parser.add_argument('--hazy-dir', help='the dir that contains synthetic hazy images',
default='./data/HazeWorld/hazy')
parser.add_argument('--trans-dir', help='the dir that contains transmission maps',
default='./data/HazeWorld/transmission')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
root = osp.realpath(args.root_dir)
gt_dir = osp.realpath(args.gt_dir)
hazy_dir = osp.realpath(args.hazy_dir)
trans_dir = osp.realpath(args.trans_dir)
print(f"\nHazeWorld root:\t\t{root}")
print(f"GT dir:\t\t\t{gt_dir}")
print(f"Hazy dir:\t\t{hazy_dir}")
print(f"Transmission dir:\t{trans_dir}\n")
if args.dataset == 'all':
datasets = os.listdir(gt_dir)
datasets.sort()
datasets = [x for x in datasets if x in ('Cityscapes', 'DDAD', 'UA-DETRAC', 'VisDrone', 'DAVIS', 'REDS')]
else:
datasets = [args.dataset]
for folder in ('gt', 'hazy', 'transmission'):
os.makedirs(osp.join(root, f'train/{folder}'), exist_ok=True)
os.makedirs(osp.join(root, f'test/{folder}'), exist_ok=True)
meta_info_train = []
meta_info_test = []
for dataset in datasets:
print(f'Processing dataset...: {dataset}')
with open(osp.join(gt_dir, dataset, 'mapping_info_GT_train.txt'), 'r') as f:
train_lines = f.readlines()
train_lines = [x.strip() for x in train_lines]
with open(osp.join(gt_dir, dataset, 'mapping_info_GT_test.txt'), 'r') as f:
test_lines = f.readlines()
test_lines = [x.strip() for x in test_lines]
for folder in ('gt', 'hazy', 'transmission'):
os.makedirs(osp.join(root, f'train/{folder}', dataset), exist_ok=True)
os.makedirs(osp.join(root, f'test/{folder}', dataset), exist_ok=True)
split_mapping = {}
split_folders = {} # only for checking
for lines in (train_lines, test_lines):
for line in lines:
src_split, dst_split, folder, cnt = line.split()
if src_split not in split_mapping:
split_mapping[src_split] = dst_split
split_folders[dst_split] = []
else:
assert split_mapping[src_split] == dst_split, \
f"{dataset}-{src_split}: {split_mapping[src_split]} vs {dst_split}"
assert folder not in split_folders[dst_split]
split_folders[dst_split].append(folder)
splits = os.listdir(osp.join(hazy_dir, dataset))
splits = [x for x in splits if osp.isdir(osp.join(hazy_dir, dataset, x))]
for split in splits:
dst_split = split_mapping[split]
folders = os.listdir(osp.join(hazy_dir, dataset, split))
folders.sort()
for folder in folders:
beta = folder.split('_')[-1]
num_files = len(os.listdir(osp.join(hazy_dir, dataset, split, folder))) # num files in hazy
# link gt folder
prefix = '_'.join(folder.split('_')[:-2])
src = osp.join(gt_dir, dataset, split, prefix)
dst = osp.join(root, dst_split, 'gt', dataset, folder)
assert osp.isdir(src), f"No gt dir: {src}"
assert len(os.listdir(src)) == num_files, f'{src}: {len(os.listdir(src))}, {num_files}'
if not osp.isdir(dst):
os.symlink(src, dst)
# link hazy folder
src = osp.join(hazy_dir, dataset, split, folder)
dst = osp.join(root, dst_split, 'hazy', dataset, folder)
assert osp.isdir(src), f"No hazy dir: {src}"
assert len(os.listdir(src)) == num_files, f'{src}: {len(os.listdir(src))}, {num_files}'
if not osp.isdir(dst):
os.symlink(src, dst)
# link transmission folder
prefix = '_'.join(folder.split('_')[:-2]) + f'_{beta}'
src = osp.join(trans_dir, dataset, split, prefix)
dst = osp.join(root, dst_split, 'transmission', dataset, folder)
assert osp.isdir(src), f"No transmission dir: {src}"
assert len(os.listdir(src)) == num_files, f'{src}: {len(os.listdir(src))}, {num_files}'
if not osp.isdir(dst):
os.symlink(src, dst)
train_folders = os.listdir(osp.join(root, 'train/gt', dataset))
train_folders.sort()
test_folders = os.listdir(osp.join(root, 'test/gt', dataset))
test_folders.sort()
print(f"[{dataset:10s} (ori)]\ttotal: {(len(train_folders) + len(test_folders)) / 4},"
f"\ttrain: {len(train_folders) / 4},\ttest: {len(test_folders) / 4}")
train_meta = []
test_meta = []
for folder in train_folders:
files = os.listdir(osp.join(root, 'train/gt', dataset, folder))
line = f"{dataset}/{folder} {len(files)}\n"
train_meta.append(line)
for folder in test_folders:
files = os.listdir(osp.join(root, 'test/gt', dataset, folder))
line = f"{dataset}/{folder} {len(files)}\n"
test_meta.append(line)
meta_info_train.extend(train_meta)
meta_info_test.extend(test_meta)
with open(osp.join(root, 'train', f'meta_info_GT_{dataset}.txt'), 'w') as f:
f.writelines(train_meta)
with open(osp.join(root, 'test', f'meta_info_GT_{dataset}.txt'), 'w') as f:
f.writelines(test_meta)
print(f"\n[HazeWorld Train]\t{len(meta_info_train)}")
print(f"[HazeWorld Test ]\t{len(meta_info_test)}")
with open(osp.join(root, 'train', f'meta_info_GT_train.txt'), 'w') as f:
f.writelines(meta_info_train)
with open(osp.join(root, 'test', f'meta_info_GT_test.txt'), 'w') as f:
f.writelines(meta_info_test)