-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbest_classifier.py
74 lines (58 loc) · 2.1 KB
/
best_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from sklearn.linear_model import SGDClassifier
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
import pandas as pd
from sklearn.decomposition import TruncatedSVD
from sklearn import preprocessing
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn import metrics
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
import csv
#k-fold cross validation
from sklearn.cross_validation import KFold
#accuracy
from sklearn.metrics import accuracy_score
# my method
from sklearn.ensemble import VotingClassifier
def compute_and_print(): #prints all results
stats = []
for i, (train_index, test_index) in enumerate(kf):
#10-fold cross validation (9 samples for training, 1 for testing)
X_train1, X_test = X_train[train_index], X_train[test_index]
Y_train1, Y_test = Y_train[train_index], Y_train[test_index]
probas_ = pipeline.fit(X_train1,Y_train1).predict(X_test)
stats.append(accuracy_score(Y_test, probas_))
return stats
''' preprocessing:
apart from CountVectorizer and TfidfTransformer TruncatedSVD of 300 elements and random state 42'''
df=pd.read_csv("grids.csv")
#print df
le = preprocessing.LabelEncoder()
le.fit(df["TripId"])
Y_train=le.transform(df["TripId"])
X_train1=df['Grids']
X_train=np.array(X_train1)
vectorizer=CountVectorizer()
transformer=TfidfTransformer()
svd=TruncatedSVD(n_components=300, random_state=42)
kf = KFold(len(X_train), n_folds=10)
#Our best method
# voting classifier of 3 classifiers
'''1 best version of KNN
2 simple RandomForestClassifier
3 Best RandomForestClassifier'''
#My method---Voting Classifier
clf1 = RandomForestClassifier(n_estimators=40,n_jobs=-1)
clf2 = RandomForestClassifier(n_estimators=50,n_jobs=-1)
clf3 = KNeighborsClassifier(n_neighbors=7,n_jobs=-1)
clf = VotingClassifier(estimators=[('rf1',clf1),('rf2',clf2),('knn',clf3)], voting='hard')
pipeline = Pipeline([
('vect', vectorizer),
('tfidf', transformer),
('svd',svd),
('clf', clf)
])
print compute_and_print()