-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path2_feature_pipeline.py
108 lines (77 loc) · 3.52 KB
/
2_feature_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python
import modal
import datetime
import time
import requests
import pandas as pd
import json
import hopsworks
from functions import *
import warnings
from urllib.request import urlopen
warnings.filterwarnings("ignore")
stub = modal.Stub("air_quality_daily")
image = modal.Image.debian_slim().pip_install(["hopsworks", "geopy"])
def features():
target_url='https://repo.hops.works/dev/jdowling/target_cities.json'
response = urlopen(target_url)
target_cities = json.loads(response.read())
today = datetime.date.today()
hindcast_day = today - datetime.timedelta(days=1)
forecast_day = today + datetime.timedelta(days=7)
start_of_cell = time.time()
df_aq_raw = pd.DataFrame()
for continent in target_cities:
for city_name, coords in target_cities[continent].items():
df_ = get_aqi_data_from_open_meteo(city_name=city_name,
coordinates=coords,
start_date=str(hindcast_day),
end_date=str(today))
df_aq_raw = pd.concat([df_aq_raw, df_]).reset_index(drop=True)
end_of_cell = time.time()
print("-" * 64)
print(f"Parsed new PM2.5 data for ALL locations up to {str(today)}.")
print(f"Took {round(end_of_cell - start_of_cell, 2)} sec.\n")
df_aq_update = df_aq_raw
df_aq_update['date'] = pd.to_datetime(df_aq_update['date'])
df_aq_update = df_aq_update.dropna()
df_weather_update = pd.DataFrame()
start_of_cell = time.time()
for continent in target_cities:
for city_name, coords in target_cities[continent].items():
df_ = get_weather_data_from_open_meteo(city_name=city_name,
coordinates=coords,
start_date=str(today),
end_date=str(forecast_day),
forecast=True)
df_weather_update = pd.concat([df_weather_update, df_]).reset_index(drop=True)
end_of_cell = time.time()
print("-" * 64)
print(f"Parsed new weather data for ALL cities up to {str(today)}.")
print(f"Took {round(end_of_cell - start_of_cell, 2)} sec.\n")
df_aq_update.date = pd.to_datetime(df_aq_update.date)
df_weather_update.date = pd.to_datetime(df_weather_update.date)
df_aq_update["unix_time"] = df_aq_update["date"].apply(convert_date_to_unix)
df_weather_update["unix_time"] = df_weather_update["date"].apply(convert_date_to_unix)
df_aq_update.date = df_aq_update.date.astype(str)
df_weather_update.date = df_weather_update.date.astype(str)
return df_aq_update, df_weather_update
@stub.function(image=image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("jim-hopsworks-gcp"))
def g():
df_aq_update, df_weather_update = features()
project = hopsworks.login()
fs = project.get_feature_store()
air_quality_fg = fs.get_feature_group(
name = 'air_quality',
version = 1
)
weather_fg = fs.get_feature_group(
name = 'weather',
version = 1
)
air_quality_fg.insert(df_aq_update, write_options={"wait_for_job": False})
weather_fg.insert(df_weather_update, write_options={"wait_for_job": False})
if __name__ == "__main__":
stub.deploy("air_quality_daily")
with stub.run():
g()