-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproc.h
95 lines (80 loc) · 3.59 KB
/
proc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// Per-CPU state
struct cpu {
uchar apicid; // Local APIC ID
struct context *scheduler; // swtch() here to enter scheduler
struct taskstate ts; // Used by x86 to find stack for interrupt
struct segdesc gdt[NSEGS]; // x86 global descriptor table
volatile uint started; // Has the CPU started?
int ncli; // Depth of pushcli nesting.
int intena; // Were interrupts enabled before pushcli?
struct proc *proc; // The process running on this cpu or null
};
extern struct cpu cpus[NCPU];
extern int ncpu;
#define NUM_QUEUES (int)5 // c4c76835d1286fa240fe02c4da81f6d4
//PAGEBREAK: 17
// Saved registers for kernel context switches.
// Don't need to save all the segment registers (%cs, etc),
// because they are constant across kernel contexts.
// Don't need to save %eax, %ecx, %edx, because the
// x86 convention is that the caller has saved them.
// Contexts are stored at the bottom of the stack they
// describe; the stack pointer is the address of the context.
// The layout of the context matches the layout of the stack in swtch.S
// at the "Switch stacks" comment. Switch doesn't save eip explicitly,
// but it is on the stack and allocproc() manipulates it.
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;
};
enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
int start_time; // Start time of the process c4c76835d1286fa240fe02c4da81f6d4
int end_time; // End time of the process
int run_time; // Run time of the process
int priority; // The priority of process for PBS, between [0,100], default 60, less is higher
int timeslices; // The number of CPU timeslices received by the process c4c76835d1286fa240fe02c4da81f6d4
int age_time; // The time when it entered the current queue and is waiting since
int cur_timeslices; // The number of timeslices received in current run c4c76835d1286fa240fe02c4da81f6d4
int queue; // The ready queue in which the process is waiting
int punish;
int num_run; // Extra stuff needed for pinfo c4c76835d1286fa240fe02c4da81f6d4
int ticks[NUM_QUEUES];
};
// Process memory is laid out contiguously, low addresses first:
// text
// original data and bss
// fixed-size stack
// expandable heap
// Scheduling algorithms used by scheduler c4c76835d1286fa240fe02c4da81f6d4
#define SCHED_RR 0
#define SCHED_FCFS 1
#define SCHED_PBS 2
#define SCHED_MLFQ 3
// Struct for MLFQ scheduling queue nodes c4c76835d1286fa240fe02c4da81f6d4
struct node {
struct node *next;
struct proc *p;
int use;
};
#define TIMESLICE(i) (int)(1<<i)
#define AGE_LIMIT (int)30
struct node surplus_nodes[NPROC];
struct node *queues[NUM_QUEUES]; // lower indices are higher priority