forked from canyilu/LibADMM-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_low_rank_matrix_models.m
177 lines (146 loc) · 2.86 KB
/
example_low_rank_matrix_models.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
%
% References:
%
% C. Lu. A Library of ADMM for Sparse and Low-rank Optimization. National University of Singapore, June 2016.
% https://github.com/canyilu/LibADMM.
% C. Lu, J. Feng, S. Yan, Z. Lin. A Unified Alternating Direction Method of Multipliers by Majorization
% Minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, pp. 527-541, 2018
%
addpath(genpath(cd))
clear
%% Examples for testing the low-rank matrix based models
% For detailed description of the sparse models, please refer to the Manual.
%% generate toy data
d = 10;
na = 200;
nb = 100;
A = randn(d,na);
X = randn(na,nb);
B = A*X;
b = B(:,1);
opts.tol = 1e-6;
opts.max_iter = 1000;
opts.rho = 1.2;
opts.mu = 1e-3;
opts.max_mu = 1e10;
opts.DEBUG = 0;
%% RPCA
n1 = 100;
n2 = 200;
r = 10;
L = rand(n1,r)*rand(r,n2); % low-rank part
p = 0.1;
m = p*n1*n2;
temp = rand(n1*n2,1);
[~,I] = sort(temp);
I = I(1:m);
Omega = zeros(n1,n2);
Omega(I) = 1;
E = sign(rand(n1,n2)-0.5);
S = Omega.*E; % sparse part, S = P_Omega(E)
Xn = L+S;
lambda = 1/sqrt(max(n1,n2));
opts.loss = 'l1';
opts.DEBUG = 1;
tic
[Lhat,Shat,obj,err,iter] = rpca(Xn,lambda,opts);
toc
rel_err_L = norm(L-Lhat,'fro')/norm(L,'fro')
rel_err_S = norm(S-Shat,'fro')/norm(S,'fro')
err
iter
%% low rank matrix completion (lrmc) and regularized lrmc
n1 = 100;
n2 = 200;
r = 5;
X = rand(n1,r)*rand(r,n2);
p = 0.6;
omega = find(rand(n1,n2)<p);
M = zeros(n1,n2);
M(omega) = X(omega);
[Xhat,obj,err,iter] = lrmc(M, omega, opts);
rel_err_X = norm(Xhat-X,'fro')/norm(X,'fro')
E = randn(n1,n2)/100;
M = X+E;
lambda = 0.1;
[Xhat,obj,err,iter] = lrmcR(M, omega, lambda, opts);
%% low rank representation (lrr)
lambda = 0.001;
opts.loss = 'l21';
tic
[X,E,obj,err,iter] = lrr(A,A,lambda,opts);
toc
obj
err
iter
%% latent LRR (latlrr)
lambda = 0.1;
opts.loss = 'l1';
tic
[Z,L,obj,err,iter] = latlrr(A,lambda,opts);
toc
obj
err
iter
%% low rank and sparse representation (lrsr)
lambda1 = 0.1;
lambda2 = 4;
opts.loss = 'l21';
tic
[X,E,obj,err,iter] = lrsr(A,B,lambda1,lambda2,opts);
toc
obj
err
iter
%% improved graph clustering (igc)
n = 100;
r = 5;
X = rand(n,r)*rand(r,n);
C = rand(size(X));
lambda = 1/sqrt(n);
opts.loss = 'l1';
opts.DEBUG = 1;
tic
[L,S,obj,err,iter] = igc(X,C,lambda,opts);
toc
err
iter
%% multi-task low-rank affinity pursuit (mlap)
n1 = 100;
n2 = 200;
K = 10;
X = rand(n1,n2,K);
lambda = 0.1;
alpha = 0.2;
opts.loss = 'l1';
tic
[Z,E,obj,err,iter] = mlap(X,lambda,alpha,opts);
toc
err
iter
%% robust multi-view spectral clustering (rmsc)
n = 100;
r = 5;
m = 10;
X = rand(n,n,m);
lambda = 1/sqrt(n);
opts.loss = 'l1';
opts.DEBUG = 1;
tic
[L,S,obj,err,iter] = rmsc(X,lambda,opts);
toc
err
iter
%% sparse spectral clustering (sparsesc)
lambda = 0.001;
n = 100;
X = rand(n,n);
W = abs(X'*X);
I = eye(n);
D = diag(sum(W,1));
L = I - sqrt(inv(D))*W*sqrt(inv(D));
k = 5;
[P,obj,err,iter] = sparsesc(L,lambda,k,opts);
obj
err
iter