diff --git a/docs/.buildinfo b/docs/.buildinfo new file mode 100644 index 0000000..f1de869 --- /dev/null +++ b/docs/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 8fe30070bba40e3767582ac3be3eb183 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/.nojekyll b/docs/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/docs/01_setting_up_environment.html b/docs/01_setting_up_environment.html new file mode 100644 index 0000000..7cb7936 --- /dev/null +++ b/docs/01_setting_up_environment.html @@ -0,0 +1,659 @@ + + + + + + + + + + + 1.1 Setting up your computing environment — FINM August Review: Python + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

1.1 Setting up your computing environment

+ +
+ +
+
+ + + + +
+ +
+

1.1 Setting up your computing environment#

+
+

Required Software#

+

As noted on the first page, this review session requires the following software:

+
    +
  • Python 3.11 or greater, Anaconda Distribution

    + +
  • +
  • The Visual Studio Code (VS Code) text editor

    +
      +
    • A good text editor is important for software development. Some of your classes will use a fully-fledged Integrated Development Environment (IDE) like PyCharm. For this review, I suggest Visual Studio Code. You can download it here: https://code.visualstudio.com/

    • +
    • There are several VS Code extensions that I recommend installing. To learn about extensions, see here. I recommend installing at least these two extensions: the Jupyter and Python VS Code extensions.

    • +
    +
  • +
  • Git

    +
      +
    • Although there are many different Git clients and Git GUI’s that you could use, +I prefer that you install GitHub Desktop. You will need to install both +Git (link here: https://git-scm.com/downloads) +and GitHub Desktop (link here: apps/desktop).

    • +
    • Some classes will use GitHub. GitHub is a website that allows you to store, interact with, and share your Git repositories online. Please register an account with GitHub if you don’t already have one.

    • +
    +
  • +
+
+

Note

+

It’s also important that you have a quality laptop. I recommend a laptop with at least 16GB of RAM and at least 500 GB of storage (at a minimum). +So much of your schooling and of your job will revolve around your laptop. +It’s important to invest in a good one. If you have any questions about your laptop, please ask in the discussion section on Canvas.

+
+
+
+

What is Anaconda?#

+

Anaconda is a free and open-source distribution of Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda. Anaconda is widely used in the scientific community and data science, as it simplifies the installation of packages and their dependencies.

+
    +
  • What is the different between Python and Anaconda?

    +
      +
    • Python is a general purpose programming language. It’s not just used for data science, etc. It is also used in web development, as example. For example, Python is used in the back end of the website Reddit was used to create parts of YouTube back in the day.

    • +
    • Anaconda, on the other hand, is a software distribution. It is a collection of Python packages that are targeted towards data science and scientific computing. +There are other distributions of Python that are also targeted towards scientific computing, but Anaconda is one of the most popular ones.

    • +
    • Anaconda is a set of about a hundred packages that are useful for data science and scientific computing, including conda, numpy, scipy, ipython notebook, and so on.

    • +
    +
  • +
  • What’s the difference between Anaconda and conda?

    +
      +
    • Anaconda is a software distribution, while conda is the package manager that comes with the Anaconda distribution.

    • +
    • conda is a package manager that installs packages from the Anaconda repository as well as from other repositories. A package manager is useful for installing new packages, +keeping track of the packages you have installed, and updating packages.

    • +
    • conda also makes it easy to manage software environments. This is useful when you have different projects that require different versions of packages.

    • +
    +
  • +
+
+

Note

+

Let’s pause here and make sure that everyone has Anaconda installed. Let’s test the following. Please raise your hand if any of these things is not working:

+
    +
  • Open a terminal and type conda --version. You should see the version of conda that you have installed. Depending on how you installed Anaconda, you may +have to open the Anaconda Prompt on Windows.

  • +
  • Type conda activate to make sure that you can activate the base environment. Later on we’ll create our own environment for use in our projects.

  • +
  • Type jupyter notebook to make sure that you can open a Jupyter notebook. This will open a new tab in your web browser with the Jupyter notebook interface.

  • +
  • Type jupyter lab to try out Jupyter Lab. This is a newer interface that is similar to Jupyter notebook but has more features.

  • +
+
+
+
+

What is Visual Studio Code?#

+

Visual Studio Code is a lightweight code editor that is great for Python development. It has a lot of features that make it a great editor for data science work.

+
    +
  • IntelliSense: IntelliSense is a feature that helps you write code faster. It provides code completions based on variable types, function definitions, and imported modules.

  • +
  • Debugging: Visual Studio Code has a built-in debugger that makes it easy to debug your Python code.

  • +
  • Git integration: Visual Studio Code has built-in Git integration that makes it easy to work with Git repositories.

  • +
  • Extensions: Visual Studio Code has a rich ecosystem of extensions that add additional functionality to the editor. There are extensions for Jupyter notebooks, Python, and many other languages and tools.

  • +
  • What’s the difference between Visual Studio and Visual Studio Code?

    +
      +
    • Visual Studio is a full-fledged Integrated Development Environment (IDE) that is used primarily for developing in C# and .NET. It is a very powerful IDE that has a lot of features.

    • +
    • Visual Studio Code (VS Code), on the other hand, is a lightweight code editor. Visual Studio Code has become a very popular editor for Python development and will be better suited for data science work than Visual Studio (the IDE).

    • +
    +
  • +
+
+

Note

+

Let’s pause here and make sure that everyone has VS Code installed. We’ll run a few test files and configure VS Code with some helpful defaults. Please raise your hand if any of these things is not working:

+
    +
  • Open VS Code and create a new Python file. You can do this by clicking on the New File button in the top left corner of the window and then saving the file with a .py extension.

  • +
  • Make sure the proper extensions are installed: Python and Jupyter. Also, you might consider the following additional extensions: GitHub Copilot, Black Formatter, Data Wrangler, Excel Viewer, Markdown Preview Github styling, Rainbow CSV, Rewrap, Code Spell Checker, and GitLens.

  • +
  • Set the default terminal in Windows to Command Prompt. Use the “Select Default Profile” option in the VS Code terminal to do this. You may also want to memorize the keyboard shortcuts for VS Code. You can start with the command ctrl + ` .

  • +
  • Open the terminal in VS Code and type python --version to make sure that Python is installed and that VS Code can find it.

  • +
  • Try running conda activate in the terminal.

  • +
  • Create a Python file .py and try opening the Python Interactive window. You can do this by right-clicking in the Python file and selecting “Run Python File in Terminal”. Also, you should learn the keyboard shortcut for opening the command palette. You can do this by pressing ctrl + shift + p.

  • +
  • Adjust the VS Code setting so that ctrl + enter will run Python code in the Interactive Window instead of the terminal by default.

  • +
+
+
+
+

What is Git and GitHub?#

+

Git is a distributed version control system that is used to track changes in source code during software development. It is designed to handle everything from small to very large projects with speed and efficiency. GitHub is a website that allows you to store, interact with, and share your Git repositories online. GitHub is a great tool for collaborating with others on software projects and for sharing your code with the world.

+

Please watch the following video to learn more about version control with Git:

+ +

Now, let’s take a look at GitHub.

+ +

You can find another nice video about GitHub here. +The code for this course is available on GitHub. You can find the repository here.

+
+

Note

+

Let’s pause here and make sure that everyone has Git installed and is able to download the

+
+
+
+

WRDS: How do I sign up?#

+

WRDS Logo

+

This course requires that you create a WRDS account. WRDS is a comprehensive data research platform that provides access to a wide range of financial, economic, and marketing data. +Follow the instructions below to create an account.

+
+

Important

+

If you have not requested an account already, please do so ASAP. You will need this for the next session.

+
+

New to WRDS?

+

Use the following link to access the WRDS Registration form at https://wrds-www.wharton.upenn.edu/register/?user_type=class-student

+
    +
  • Follow the directions on the Registration form to enter your identifying information.

    +
      +
    • For the Subscriber, select your school’s name from the drop-down list.

    • +
    • Your User type, Class - Students with Code, has been selected by default.

    • +
    • You will need to enter the course code. This can be found on Canvas here: TODO

    • +
    +
  • +
  • Click the Register for WRDS button.

    +
      +
    • WRDS accounts require two-factor authentication. We recommend you use a smartphone for the verification process. First, install the Duo Mobile app on your phone. This free app can be downloaded through your device’s app store. Follow the directions at How to Log into WRDS to register your smartphone and use Duo two-factor authentication to set up your WRDS account.

    • +
    +
  • +
+

Already Have a WRDS Account?

+

After you have logged into WRDS, use the following steps to enroll in our class account. You will need the Class Code above to enroll.

+
    +
  • In the top right corner of the screen, select Your Account > Your Account Info.

  • +
  • Scroll down until you see the Your Classes table and click the Enroll in a Class button.

  • +
  • Enter the Class Code and click Submit. You can find the code here: TODO

  • +
+
+

Important

+

If you have any difficulty setting up your account please contact WRDS Support at: https://wrds-www.wharton.upenn.edu/contact-support/. When opening your support ticket you must use the email associated with your existing WRDS account, or the email you intend to use to set up your new WRDS account.

+
+
+
+ + +
+ + + + + + + + +
+ + + + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/docs/WRDS_intro_and_web_queries.html b/docs/WRDS_intro_and_web_queries.html new file mode 100644 index 0000000..1f813a4 --- /dev/null +++ b/docs/WRDS_intro_and_web_queries.html @@ -0,0 +1,601 @@ + + + + + + + + + + + 2.1 Introduction to WRDS — FINM August Review: Python + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + +
+ + + + + + + + + + + + + +
+ +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + + + + + + +
+ +
+

2.1 Introduction to WRDS#

+
+

A Platform For Financial Data#

+

Wharton Research Data Services (WRDS) is a data research platform and business intelligence tool widely used in academic, government, and corporate sectors. It provides access to a vast repository of financial, economic, and marketing data, which is pivotal for conducting rigorous research in various fields, especially in finance and economics. The platform is known for its comprehensive and high-quality datasets.

+

WRDS Logo

+

WRDS offers a variety of datasets from numerous sources, including leading data providers like Compustat, CRSP, IBES, and Bloomberg. It covers a wide range of data types, including:

+
    +
  • Stock prices and trading volumes

  • +
  • Financial statement data

  • +
  • Analyst forecasts

  • +
  • Corporate governance data

  • +
  • Mutual fund and bond data

  • +
  • Macroeconomic data

  • +
+

WRDS Datasets

+

One of the key strengths of WRDS is its user-friendly interface, which allows for easy data extraction and manipulation. It provides powerful tools for data analysis, including the ability to execute custom queries and perform complex statistical analyses. In academic settings, WRDS is particularly valued for its role in facilitating empirical research in finance and economics. It allows researchers, professors, and students to access a wealth of data necessary for testing financial theories, exploring economic trends, and developing new insights in the field of quantitative finance.

+
+
+

The Core Data Sets#

+

WRDS provides some usage statistics on their website in an introduction presentation here. This chart shows +the percentage of usage across all WRDS data sets.

+

WRDS Database Usage

+

The two most popular data sets are CRSP and Compustat.

+

WRDS did an analysis finance papers published in the top 3 finance journals—the Journal of Finance, the Journal of Financial Economics, and the Review of Financial Studies—from the years 2004-2016. Out of all of these papers, the following chart shows how many times each data set was cited.

+

Top 10 Databases

+

All of the listed data sets, except for those colored in red, are available in WRDS.

+
+
+

Compustat#

+

Compustat Logo

+

Compustat Financials, S&P Global Market Intelligence

+

Compustat is a comprehensive database of financial, statistical, and market information, primarily focused on publicly traded companies. It is widely used in academic research, particularly in the fields of finance and economics, for conducting in-depth analysis of company performance and market trends. The dataset includes information from various countries and markets, making it a valuable resource for both domestic and international financial research.

+

Key features of the Compustat dataset include:

+
    +
  1. Financial Statements: Detailed income statements, balance sheets, and cash flow statements for a wide range of companies.

  2. +
  3. Historical Data: Longitudinal data that allows for historical trend analysis and time-series studies.

  4. +
  5. Global Coverage: Data on companies from various global markets, including North America, Europe, Asia, and more.

  6. +
  7. Segment Data: Information on business segments and geographical segments of companies.

  8. +
  9. Market Data: Includes stock prices, trading volume, and other market-related information.

  10. +
  11. Corporate Actions: Data on dividends, stock splits, mergers and acquisitions, and other corporate events.

  12. +
  13. Ratios and Metrics: Key financial ratios and metrics that are pre-calculated for ease of analysis, such as ROE, ROA, and EBITDA.

  14. +
+

Compustat is highly regarded for its accuracy, depth, and consistency, making it a fundamental resource for both theoretical and empirical research in finance. It’s extensively used for tasks like asset pricing models, risk management, portfolio construction, and corporate finance studies. For students and researchers in quantitative finance, Compustat provides a rich dataset for modeling, back-testing theories, and conducting robust financial analyses.

+

The following two videos provide a short introduction to Compustat on WRDS.

+

Compustat on WRDS Part 1 +Compustat on WRDS Part 2

+
+
+

CRSP#

+

CRSP Logo

+

Center for Research in Security Prices

+

The Center for Research in Security Prices (CRSP) is a renowned financial research database, primarily recognized for its comprehensive historical data on securities traded in the United States. Established at the University of Chicago’s Booth School of Business, CRSP is a crucial resource for academic, commercial, and governmental research in finance.

+

Key characteristics of the CRSP database include:

+
    +
  1. Extensive Historical Data: CRSP is particularly noted for its long historical time series, which in some cases go back as far as 1925. This historical depth is invaluable for long-term financial studies and analyses.

  2. +
  3. Stock Data: The database provides detailed information on stocks listed on NYSE, AMEX, and NASDAQ, including prices, returns, trading volumes, and other market indicators.

  4. +
  5. Indices: CRSP develops and maintains a series of stock indices that serve as benchmarks for the investment industry, including value- and equal-weighted indices.

  6. +
  7. Corporate Actions: Information on dividends, stock splits, and other corporate events that impact stock valuation is extensively covered.

  8. +
  9. Treasury and Mutual Fund Data: Beyond stocks, CRSP also includes data on US Treasury bills, bonds, and mutual funds, expanding its utility for various types of financial research.

  10. +
  11. Survivorship Bias-Free Data: CRSP’s dataset is known for being free of survivorship bias, as it includes data on companies that have ceased to exist, which is crucial for accurate historical analysis.

  12. +
  13. Research Quality: The accuracy, completeness, and cleanliness of the data make CRSP a gold standard for financial research, particularly in academic settings.

  14. +
+

For students and researchers in quantitative finance, CRSP provides essential data for analyzing stock performance, conducting empirical tests of asset pricing models, and studying market anomalies and behaviors. Its extensive historical data and robustness make it a fundamental tool for both historical analysis and contemporary market studies.

+

The following video provides a nice introduction to the basics of CRSP.

+

CRSP in WRDS Basics

+
+
+

How do these compare with Bloomberg or Datastream?#

+

Choosing between financial databases like CRSP, Bloomberg, or Datastream depends on the specific requirements of the research or analysis being conducted. Each of these platforms has unique strengths and features that make them suitable for different purposes. Here are some reasons why someone might opt for CRSP over Bloomberg or Datastream:

+
    +
  • Historical Depth: CRSP is renowned for its extensive historical data, particularly for U.S. securities. It offers data going back as far as 1925, which is invaluable for long-term historical research and analysis. This level of historical depth might not be matched by Bloomberg or Datastream.

  • +
  • Survivorship Bias-Free Data: CRSP’s data includes companies that have ceased to exist, which is crucial for accurate historical analyses. This feature helps in avoiding survivorship bias, making it a robust choice for academic studies that require comprehensive historical perspectives.

  • +
  • Data Consistency and Quality: CRSP is known for its high standards in data accuracy, consistency, and cleanliness, which are critical for reliable academic research.

  • +
+

On the other hand, there are some drawbacks of CRSP relative to Bloomberg or Datastream.

+
    +
  • Limited Scope: CRSP has a limited scope relative to Bloomberg or Datastream. It primarily focuses on US markets and lacks the global coverage found in Bloomberg.

  • +
  • Real-Time Data: Does not offer real-time data, which is essential for current market analysis.

  • +
  • Less Comprehensive: Fewer types of financial data compared to Bloomberg (e.g., lacks extensive international data, commodities, real-time news).

  • +
+

Broadly speaking, CRSP is more suited for academic research focused on historical analysis of the U.S. stock market, offering in-depth and high-quality data with a bias-free historical perspective. Bloomberg, on the other hand, excels in providing a wide range of real-time global financial data and tools, catering more to finance professionals and analysts who require real-time data and sophisticated analysis tools. The choice between them largely depends on the specific needs, goals, and resources of the user.

+
+
+

WRDS Web Queries#

+

To familiarize yourselves to using WRDS, please watch the following video about WRDS Web Queries. While we will be automating the query process using the WRDS Python package wrds, using the web query system is a good way for initial exploration of the data.

+

WRDS Web Queries

+
+
+ + +
+ + + + + + + + +
+ + + + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/docs/_images/060bb9ef810c5d371cf7bb17a560d6aa5a13376f8fd9eff7a0c49570e75e3c64.png b/docs/_images/060bb9ef810c5d371cf7bb17a560d6aa5a13376f8fd9eff7a0c49570e75e3c64.png new file mode 100644 index 0000000..28dbc93 Binary files /dev/null and b/docs/_images/060bb9ef810c5d371cf7bb17a560d6aa5a13376f8fd9eff7a0c49570e75e3c64.png differ diff --git a/docs/_images/1a46eda6d79546038961851db2e02a10c9421482f5d222c0fe83d99e5681491d.png b/docs/_images/1a46eda6d79546038961851db2e02a10c9421482f5d222c0fe83d99e5681491d.png new file mode 100644 index 0000000..01440d3 Binary files /dev/null and b/docs/_images/1a46eda6d79546038961851db2e02a10c9421482f5d222c0fe83d99e5681491d.png differ diff --git a/docs/_images/1f8cfca31b7ab8f5062a2f21114d47d5e017997e2d01649558c1a4c3658fb694.png b/docs/_images/1f8cfca31b7ab8f5062a2f21114d47d5e017997e2d01649558c1a4c3658fb694.png new file mode 100644 index 0000000..22a09f8 Binary files /dev/null and b/docs/_images/1f8cfca31b7ab8f5062a2f21114d47d5e017997e2d01649558c1a4c3658fb694.png differ diff --git a/docs/_images/29e1d3f0f59fb2b03229eb7a05718a798d7c28ff72c51538912022cef57c405a.png b/docs/_images/29e1d3f0f59fb2b03229eb7a05718a798d7c28ff72c51538912022cef57c405a.png new file mode 100644 index 0000000..fcb6861 Binary files /dev/null and b/docs/_images/29e1d3f0f59fb2b03229eb7a05718a798d7c28ff72c51538912022cef57c405a.png differ diff --git a/docs/_images/34627a4b2d9345061bf5db407c8f3cdbff5223fd4729f48e7a512a64758a7550.png b/docs/_images/34627a4b2d9345061bf5db407c8f3cdbff5223fd4729f48e7a512a64758a7550.png new file mode 100644 index 0000000..6da4fa4 Binary files /dev/null and b/docs/_images/34627a4b2d9345061bf5db407c8f3cdbff5223fd4729f48e7a512a64758a7550.png differ diff --git a/docs/_images/4335910687ec33dda054893f759f2635bf5dd46b90bd08918f8f70c4958652d3.png b/docs/_images/4335910687ec33dda054893f759f2635bf5dd46b90bd08918f8f70c4958652d3.png new file mode 100644 index 0000000..c9242d5 Binary files /dev/null and b/docs/_images/4335910687ec33dda054893f759f2635bf5dd46b90bd08918f8f70c4958652d3.png differ diff --git a/docs/_images/464e32e7fcef14371dc4933bb2430b902f8cfc0f2b7889c381c575dbe1474ebb.png b/docs/_images/464e32e7fcef14371dc4933bb2430b902f8cfc0f2b7889c381c575dbe1474ebb.png new file mode 100644 index 0000000..d15bd33 Binary files /dev/null and b/docs/_images/464e32e7fcef14371dc4933bb2430b902f8cfc0f2b7889c381c575dbe1474ebb.png differ diff --git a/docs/_images/472f16a94f3717c946ca25269498cf65b84651258cdbee71469c155559a2c884.png b/docs/_images/472f16a94f3717c946ca25269498cf65b84651258cdbee71469c155559a2c884.png new file mode 100644 index 0000000..66b2454 Binary files /dev/null and b/docs/_images/472f16a94f3717c946ca25269498cf65b84651258cdbee71469c155559a2c884.png differ diff --git a/docs/_images/56e6a82a31e79016cf1353627e41cedb119b32b6d2dcee3c8c6797073c25f98c.png b/docs/_images/56e6a82a31e79016cf1353627e41cedb119b32b6d2dcee3c8c6797073c25f98c.png new file mode 100644 index 0000000..281e6ed Binary files /dev/null and b/docs/_images/56e6a82a31e79016cf1353627e41cedb119b32b6d2dcee3c8c6797073c25f98c.png differ diff --git a/docs/_images/578d9d45d651b88291d52db0191cb30734a33da1241e1a0a793ed29b854823ba.png b/docs/_images/578d9d45d651b88291d52db0191cb30734a33da1241e1a0a793ed29b854823ba.png new file mode 100644 index 0000000..6812bc2 Binary files /dev/null and b/docs/_images/578d9d45d651b88291d52db0191cb30734a33da1241e1a0a793ed29b854823ba.png differ diff --git a/docs/_images/6394a97bd62de100c32e444d6ea5373259f06095b4b32f06cf568ebc7cfdc5db.png b/docs/_images/6394a97bd62de100c32e444d6ea5373259f06095b4b32f06cf568ebc7cfdc5db.png new file mode 100644 index 0000000..e8f81b9 Binary files /dev/null and b/docs/_images/6394a97bd62de100c32e444d6ea5373259f06095b4b32f06cf568ebc7cfdc5db.png differ diff --git a/docs/_images/657dd813fef1b4f77cfe786cd10a71eb6074d8b3b81fc52843757f7372890a7a.png b/docs/_images/657dd813fef1b4f77cfe786cd10a71eb6074d8b3b81fc52843757f7372890a7a.png new file mode 100644 index 0000000..5168bcd Binary files /dev/null and b/docs/_images/657dd813fef1b4f77cfe786cd10a71eb6074d8b3b81fc52843757f7372890a7a.png differ diff --git a/docs/_images/67dc7853db9af534c5d022b8511eb3dda93306e763ea42d22ae547fd5952ff3b.png b/docs/_images/67dc7853db9af534c5d022b8511eb3dda93306e763ea42d22ae547fd5952ff3b.png new file mode 100644 index 0000000..6f1d5cb Binary files /dev/null and b/docs/_images/67dc7853db9af534c5d022b8511eb3dda93306e763ea42d22ae547fd5952ff3b.png differ diff --git a/docs/_images/816efaf127e60f2e315b942a74da37523ff6308e5752e386d5db9dd8215066d5.png b/docs/_images/816efaf127e60f2e315b942a74da37523ff6308e5752e386d5db9dd8215066d5.png new file mode 100644 index 0000000..0af7698 Binary files /dev/null and b/docs/_images/816efaf127e60f2e315b942a74da37523ff6308e5752e386d5db9dd8215066d5.png differ diff --git a/docs/_images/8390f6811d48d06a84aa76a7767b5f57a0f7bddf17ead1aa933e4e99181ca932.png b/docs/_images/8390f6811d48d06a84aa76a7767b5f57a0f7bddf17ead1aa933e4e99181ca932.png new file mode 100644 index 0000000..457c3af Binary files /dev/null and b/docs/_images/8390f6811d48d06a84aa76a7767b5f57a0f7bddf17ead1aa933e4e99181ca932.png differ diff --git a/docs/_images/868318a28d951193717abab9326b1c3b28fcf261b310b166405317bc0083c6dd.png b/docs/_images/868318a28d951193717abab9326b1c3b28fcf261b310b166405317bc0083c6dd.png new file mode 100644 index 0000000..fa43993 Binary files /dev/null and b/docs/_images/868318a28d951193717abab9326b1c3b28fcf261b310b166405317bc0083c6dd.png differ diff --git a/docs/_images/8a0f19cc29e490a81c4a44c7d0b688d0c6c82a8f5d21b7129c0fce2c3fb68abf.png b/docs/_images/8a0f19cc29e490a81c4a44c7d0b688d0c6c82a8f5d21b7129c0fce2c3fb68abf.png new file mode 100644 index 0000000..7cc0ef8 Binary files /dev/null and b/docs/_images/8a0f19cc29e490a81c4a44c7d0b688d0c6c82a8f5d21b7129c0fce2c3fb68abf.png differ diff --git a/docs/_images/8e7785a0ed1434831e933f4c214b24a92e41b1f1d64fd594d2482edbc997f67b.png b/docs/_images/8e7785a0ed1434831e933f4c214b24a92e41b1f1d64fd594d2482edbc997f67b.png new file mode 100644 index 0000000..a98b6a1 Binary files /dev/null and b/docs/_images/8e7785a0ed1434831e933f4c214b24a92e41b1f1d64fd594d2482edbc997f67b.png differ diff --git a/docs/_images/922b30b7feb198ab37f78af7885ce4cc4036272946ec5b20c8c9a8e5948bfec4.png b/docs/_images/922b30b7feb198ab37f78af7885ce4cc4036272946ec5b20c8c9a8e5948bfec4.png new file mode 100644 index 0000000..dd87328 Binary files /dev/null and b/docs/_images/922b30b7feb198ab37f78af7885ce4cc4036272946ec5b20c8c9a8e5948bfec4.png differ diff --git a/docs/_images/92c1151fac08c169f9ee201a841cd7f0bf32a7d9b9eca5500ed32b37f99dbe65.png b/docs/_images/92c1151fac08c169f9ee201a841cd7f0bf32a7d9b9eca5500ed32b37f99dbe65.png new file mode 100644 index 0000000..721b76b Binary files /dev/null and b/docs/_images/92c1151fac08c169f9ee201a841cd7f0bf32a7d9b9eca5500ed32b37f99dbe65.png differ diff --git a/docs/_images/97fe5d7ffb10b3d82832bf2df717980d78bd501cc6fdd0f99e4bb17a0603a51f.png b/docs/_images/97fe5d7ffb10b3d82832bf2df717980d78bd501cc6fdd0f99e4bb17a0603a51f.png new file mode 100644 index 0000000..a69ee07 Binary files /dev/null and b/docs/_images/97fe5d7ffb10b3d82832bf2df717980d78bd501cc6fdd0f99e4bb17a0603a51f.png differ diff --git a/docs/_images/Compustat_Logo.png b/docs/_images/Compustat_Logo.png new file mode 100644 index 0000000..c0122ef Binary files /dev/null and b/docs/_images/Compustat_Logo.png differ diff --git a/docs/_images/a192e7992db2079887b64c87f617a96de2d9e4d80d4d2f7e27b4bd649548a28a.png b/docs/_images/a192e7992db2079887b64c87f617a96de2d9e4d80d4d2f7e27b4bd649548a28a.png new file mode 100644 index 0000000..8a37b0e Binary files /dev/null and b/docs/_images/a192e7992db2079887b64c87f617a96de2d9e4d80d4d2f7e27b4bd649548a28a.png differ diff --git a/docs/_images/a911cf3634dd822001207345fc93a99daf7b8049329821b1bfe6f4b61c21f59f.png b/docs/_images/a911cf3634dd822001207345fc93a99daf7b8049329821b1bfe6f4b61c21f59f.png new file mode 100644 index 0000000..a1152dc Binary files /dev/null and b/docs/_images/a911cf3634dd822001207345fc93a99daf7b8049329821b1bfe6f4b61c21f59f.png differ diff --git a/docs/_images/ae6637bb83bef008a47a26dc9375c9d24026b0762d335edfa0db8132c2853c5e.png b/docs/_images/ae6637bb83bef008a47a26dc9375c9d24026b0762d335edfa0db8132c2853c5e.png new file mode 100644 index 0000000..9940fac Binary files /dev/null and b/docs/_images/ae6637bb83bef008a47a26dc9375c9d24026b0762d335edfa0db8132c2853c5e.png differ diff --git a/docs/_images/b4919868dc0bd7f4e3ec8595941c5624da8ecf4fed3178b04ce75782f34e89ed.png b/docs/_images/b4919868dc0bd7f4e3ec8595941c5624da8ecf4fed3178b04ce75782f34e89ed.png new file mode 100644 index 0000000..62a2a3e Binary files /dev/null and b/docs/_images/b4919868dc0bd7f4e3ec8595941c5624da8ecf4fed3178b04ce75782f34e89ed.png differ diff --git a/docs/_images/c33c7752977f75e33be2d3be6f99e04a3f99bd2d3f828761ff5c02443920e076.png b/docs/_images/c33c7752977f75e33be2d3be6f99e04a3f99bd2d3f828761ff5c02443920e076.png new file mode 100644 index 0000000..f0ba9e0 Binary files /dev/null and b/docs/_images/c33c7752977f75e33be2d3be6f99e04a3f99bd2d3f828761ff5c02443920e076.png differ diff --git a/docs/_images/c63aeadfe5de0d8a3896236c829990bb4d90aa73b774285075e8b6d7624effa0.png b/docs/_images/c63aeadfe5de0d8a3896236c829990bb4d90aa73b774285075e8b6d7624effa0.png new file mode 100644 index 0000000..8bfb041 Binary files /dev/null and b/docs/_images/c63aeadfe5de0d8a3896236c829990bb4d90aa73b774285075e8b6d7624effa0.png differ diff --git a/docs/_images/cac40559f2e431c3a03c1497e3ca18a831fc2455b0a330473e148a150e7eee61.png b/docs/_images/cac40559f2e431c3a03c1497e3ca18a831fc2455b0a330473e148a150e7eee61.png new file mode 100644 index 0000000..e28a828 Binary files /dev/null and b/docs/_images/cac40559f2e431c3a03c1497e3ca18a831fc2455b0a330473e148a150e7eee61.png differ diff --git a/docs/_images/cd8230c311657d821e1bb1faea3bbd0025828e85ad7e4e1bbbdaf25975646abf.png b/docs/_images/cd8230c311657d821e1bb1faea3bbd0025828e85ad7e4e1bbbdaf25975646abf.png new file mode 100644 index 0000000..8fbdcd7 Binary files /dev/null and b/docs/_images/cd8230c311657d821e1bb1faea3bbd0025828e85ad7e4e1bbbdaf25975646abf.png differ diff --git a/docs/_images/compustat_on_WRDS_p1.png b/docs/_images/compustat_on_WRDS_p1.png new file mode 100644 index 0000000..6c6fea6 Binary files /dev/null and b/docs/_images/compustat_on_WRDS_p1.png differ diff --git a/docs/_images/compustat_on_WRDS_p2.png b/docs/_images/compustat_on_WRDS_p2.png new file mode 100644 index 0000000..8cfba86 Binary files /dev/null and b/docs/_images/compustat_on_WRDS_p2.png differ diff --git a/docs/_images/crsp-llc-logo-web-01_3.png b/docs/_images/crsp-llc-logo-web-01_3.png new file mode 100644 index 0000000..baab39c Binary files /dev/null and b/docs/_images/crsp-llc-logo-web-01_3.png differ diff --git a/docs/_images/crsp_in_wrds_thumbnail.png b/docs/_images/crsp_in_wrds_thumbnail.png new file mode 100644 index 0000000..c7aa8dd Binary files /dev/null and b/docs/_images/crsp_in_wrds_thumbnail.png differ diff --git a/docs/_images/d984513af18f7920b859d63ba06dcdecad45c3a0ae6c464d9daf4ab606ce5c8c.png b/docs/_images/d984513af18f7920b859d63ba06dcdecad45c3a0ae6c464d9daf4ab606ce5c8c.png new file mode 100644 index 0000000..d2de782 Binary files /dev/null and b/docs/_images/d984513af18f7920b859d63ba06dcdecad45c3a0ae6c464d9daf4ab606ce5c8c.png differ diff --git a/docs/_images/de53193fe28521fb9e481f9e7bad44d0c4eece91b59597c2cb00673ab3b991b7.png b/docs/_images/de53193fe28521fb9e481f9e7bad44d0c4eece91b59597c2cb00673ab3b991b7.png new file mode 100644 index 0000000..88fe3ac Binary files /dev/null and b/docs/_images/de53193fe28521fb9e481f9e7bad44d0c4eece91b59597c2cb00673ab3b991b7.png differ diff --git a/docs/_images/e5c36b7a44d3b765a52929938a5bf46ce1c0a4d4728006bcda581f700930bc97.png b/docs/_images/e5c36b7a44d3b765a52929938a5bf46ce1c0a4d4728006bcda581f700930bc97.png new file mode 100644 index 0000000..1ef2613 Binary files /dev/null and b/docs/_images/e5c36b7a44d3b765a52929938a5bf46ce1c0a4d4728006bcda581f700930bc97.png differ diff --git a/docs/_images/ecfc507e812947e3a43a10ea8605eaecae08efc4dc69502878c3ad25eb2f7069.png b/docs/_images/ecfc507e812947e3a43a10ea8605eaecae08efc4dc69502878c3ad25eb2f7069.png new file mode 100644 index 0000000..ab1ca41 Binary files /dev/null and b/docs/_images/ecfc507e812947e3a43a10ea8605eaecae08efc4dc69502878c3ad25eb2f7069.png differ diff --git a/docs/_images/f5d9cd5e7a92cc4be93475b1472979109c678c64d0d7e0411f1794b41cf84cbd.png b/docs/_images/f5d9cd5e7a92cc4be93475b1472979109c678c64d0d7e0411f1794b41cf84cbd.png new file mode 100644 index 0000000..8ff48ec Binary files /dev/null and b/docs/_images/f5d9cd5e7a92cc4be93475b1472979109c678c64d0d7e0411f1794b41cf84cbd.png differ diff --git a/docs/_images/f81cf2b372abaf92be7d54be06bd1092f1001c5898726fe66d9194daa54283fc.png b/docs/_images/f81cf2b372abaf92be7d54be06bd1092f1001c5898726fe66d9194daa54283fc.png new file mode 100644 index 0000000..3e0a6ad Binary files /dev/null and b/docs/_images/f81cf2b372abaf92be7d54be06bd1092f1001c5898726fe66d9194daa54283fc.png differ diff --git a/docs/_images/fc17938c4152220762dbe8a88d173212a091d566bfa78f1f2c1f468893b4fb22.png b/docs/_images/fc17938c4152220762dbe8a88d173212a091d566bfa78f1f2c1f468893b4fb22.png new file mode 100644 index 0000000..009d53c Binary files /dev/null and b/docs/_images/fc17938c4152220762dbe8a88d173212a091d566bfa78f1f2c1f468893b4fb22.png differ diff --git a/docs/_images/logo.png b/docs/_images/logo.png new file mode 100644 index 0000000..f33dc62 Binary files /dev/null and b/docs/_images/logo.png differ diff --git a/docs/_images/wrds_database_usage.png b/docs/_images/wrds_database_usage.png new file mode 100644 index 0000000..4fb6d95 Binary files /dev/null and b/docs/_images/wrds_database_usage.png differ diff --git a/docs/_images/wrds_logo.png b/docs/_images/wrds_logo.png new file mode 100644 index 0000000..0814739 Binary files /dev/null and b/docs/_images/wrds_logo.png differ diff --git a/docs/_images/wrds_subscriptions.png b/docs/_images/wrds_subscriptions.png new file mode 100644 index 0000000..4c1cb6b Binary files /dev/null and b/docs/_images/wrds_subscriptions.png differ diff --git a/docs/_images/wrds_top_10_databases.png b/docs/_images/wrds_top_10_databases.png new file mode 100644 index 0000000..87596f4 Binary files /dev/null and b/docs/_images/wrds_top_10_databases.png differ diff --git a/docs/_images/wrds_web_queries.png b/docs/_images/wrds_web_queries.png new file mode 100644 index 0000000..b20e2a0 Binary files /dev/null and b/docs/_images/wrds_web_queries.png differ diff --git a/docs/_sources/01_setting_up_environment.md b/docs/_sources/01_setting_up_environment.md new file mode 100644 index 0000000..4cf6b2f --- /dev/null +++ b/docs/_sources/01_setting_up_environment.md @@ -0,0 +1,150 @@ +# 1.1 Setting up your computing environment + +## Required Software + +As noted on the first page, this review session requires the following software: + + - Python 3.11 or greater, Anaconda Distribution + - For this class, please download the [Anaconda distribution of Python](https://www.anaconda.com/products/distribution). Be sure to download current version, with Python version 3.9. or greater. When you install Anaconda, be sure to install the full Anaconda distribution. + The MiniConda version is nice, but I only recommend it for advanced users. Nice instructions for installing and using Anaconda can be found (here.)[https://datascience.quantecon.org/introduction/local_install.html] + - The Visual Studio Code (VS Code) text editor + - A good text editor is important for software development. Some of your classes will use a fully-fledged Integrated Development Environment (IDE) like PyCharm. For this review, I suggest Visual Studio Code. You can download it here: https://code.visualstudio.com/ + - There are several VS Code extensions that I recommend installing. To learn about extensions, see [here.](https://code.visualstudio.com/docs/editor/extension-marketplace) I recommend installing at least these two extensions: the [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) and [Python](https://marketplace.visualstudio.com/items?itemName=ms-python.python) VS Code extensions. + - Git + - Although there are many different Git clients and Git GUI's that you could use, + I prefer that you install GitHub Desktop. You will need to install both + Git (link here: https://git-scm.com/downloads) + and GitHub Desktop (link here: https://github.com/apps/desktop). + - Some classes will use GitHub. GitHub is a website that allows you to store, interact with, and share your Git repositories online. [Please register an account with GitHub](https://github.com/) if you don't already have one. + +```{note} +It's also important that you have a quality laptop. I recommend a laptop with at least 16GB of RAM and at least 500 GB of storage (at a minimum). +So much of your schooling and of your job will revolve around your laptop. +It's important to invest in a good one. If you have any questions about your laptop, please ask in the discussion section on Canvas. +``` + + +## What is Anaconda? + +Anaconda is a free and open-source distribution of Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system `conda`. Anaconda is widely used in the scientific community and data science, as it simplifies the installation of packages and their dependencies. + + +- What is the different between Python and Anaconda? + - Python is a general purpose programming language. It's not just used for data science, etc. It is also used in web development, as example. For example, Python is used in the back end of the website Reddit was used to create parts of YouTube back in the day. + - Anaconda, on the other hand, is a software *distribution*. It is a collection of Python packages that are targeted towards data science and scientific computing. + There are other distributions of Python that are also targeted towards scientific computing, but Anaconda is one of the most popular ones. + - Anaconda is a set of about a hundred packages that are useful for data science and scientific computing, including conda, numpy, scipy, ipython notebook, and so on. +- What's the difference between Anaconda and `conda`? + - Anaconda is a software distribution, while `conda` is the package manager that comes with the Anaconda distribution. + - `conda` is a package manager that installs packages from the Anaconda repository as well as from other repositories. A package manager is useful for installing new packages, + keeping track of the packages you have installed, and updating packages. + - `conda` also makes it easy to manage software environments. This is useful when you have different projects that require different versions of packages. + + +```{note} +Let's pause here and make sure that everyone has Anaconda installed. Let's test the following. Please raise your hand if any of these things is not working: + +- Open a terminal and type `conda --version`. You should see the version of `conda` that you have installed. Depending on how you installed Anaconda, you may + have to open the Anaconda Prompt on Windows. +- Type `conda activate` to make sure that you can activate the base environment. Later on we'll create our own environment for use in our projects. +- Type `jupyter notebook` to make sure that you can open a Jupyter notebook. This will open a new tab in your web browser with the Jupyter notebook interface. +- Type `jupyter lab` to try out Jupyter Lab. This is a newer interface that is similar to Jupyter notebook but has more features. +``` + + +## What is Visual Studio Code? + +Visual Studio Code is a lightweight code editor that is great for Python development. It has a lot of features that make it a great editor for data science work. + +- **IntelliSense**: IntelliSense is a feature that helps you write code faster. It provides code completions based on variable types, function definitions, and imported modules. +- **Debugging**: Visual Studio Code has a built-in debugger that makes it easy to debug your Python code. +- **Git integration**: Visual Studio Code has built-in Git integration that makes it easy to work with Git repositories. +- **Extensions**: Visual Studio Code has a rich ecosystem of extensions that add additional functionality to the editor. There are extensions for Jupyter notebooks, Python, and many other languages and tools. + + +- What's the difference between Visual Studio and Visual Studio Code? + - Visual Studio is a full-fledged Integrated Development Environment (IDE) that is used primarily for developing in C# and .NET. It is a very powerful IDE that has a lot of features. + - Visual Studio Code (VS Code), on the other hand, is a lightweight code editor. Visual Studio Code has become a very popular editor for Python development and will be better suited for data science work than Visual Studio (the IDE). + + +```{note} +Let's pause here and make sure that everyone has VS Code installed. We'll run a few test files and configure VS Code with some helpful defaults. Please raise your hand if any of these things is not working: + +- Open VS Code and create a new Python file. You can do this by clicking on the New File button in the top left corner of the window and then saving the file with a `.py` extension. +- Make sure the proper extensions are installed: Python and Jupyter. Also, you might consider the following additional extensions: GitHub Copilot, Black Formatter, Data Wrangler, Excel Viewer, Markdown Preview Github styling, Rainbow CSV, Rewrap, Code Spell Checker, and GitLens. +- Set the default terminal in Windows to Command Prompt. Use the "Select Default Profile" option in the VS Code terminal to do this. You may also want to memorize the keyboard shortcuts for VS Code. You can start with the command ``ctrl + ` ``. +- Open the terminal in VS Code and type `python --version` to make sure that Python is installed and that VS Code can find it. +- Try running `conda activate` in the terminal. +- Create a Python file `.py` and try opening the Python Interactive window. You can do this by right-clicking in the Python file and selecting "Run Python File in Terminal". Also, you should learn the keyboard shortcut for opening the command palette. You can do this by pressing `ctrl + shift + p`. +- Adjust the VS Code setting so that `ctrl + enter` will run Python code in the Interactive Window instead of the terminal by default. +``` + + +## What is Git and GitHub? + +Git is a distributed version control system that is used to track changes in source code during software development. It is designed to handle everything from small to very large projects with speed and efficiency. GitHub is a website that allows you to store, interact with, and share your Git repositories online. GitHub is a great tool for collaborating with others on software projects and for sharing your code with the world. + +Please watch the following video to learn more about version control with Git: + + + +Now, let's take a look at GitHub. + + + +You can find another nice video about GitHub [here.](https://www.youtube.com/watch?v=pBy1zgt0XPc) +The code for this course is available on GitHub. You can find the repository [here](https://github.com/jmbejara/finm-python-crash-course). + + +```{note} +Let's pause here and make sure that everyone has Git installed and is able to download the +``` + + + + + + +## WRDS: How do I sign up? + +[![WRDS Logo](./assets/wrds_logo.png)](https://wrds-www.wharton.upenn.edu/) + +This course requires that you create a WRDS account. WRDS is a comprehensive data research platform that provides access to a wide range of financial, economic, and marketing data. +Follow the instructions below to create an account. + +```{important} +If you have not requested an account already, please do so ASAP. You will need this for the next session. +``` + + + +**New to WRDS?** + +Use the following link to access the WRDS Registration form at https://wrds-www.wharton.upenn.edu/register/?user_type=class-student + +- Follow the directions on the Registration form to enter your identifying information. + - For the Subscriber, select your school's name from the drop-down list. + - Your User type, Class - Students with Code, has been selected by default. + - You will need to enter the course code. This can be found on Canvas here: TODO + +- Click the Register for WRDS button. + - WRDS accounts require two-factor authentication. We recommend you use a smartphone for the verification process. First, install the Duo Mobile app on your phone. This free app can be downloaded through your device’s app store. Follow the directions at How to Log into WRDS to register your smartphone and use Duo two-factor authentication to set up your WRDS account. + +**Already Have a WRDS Account?** + +After you have logged into WRDS, use the following steps to enroll in our class account. You will need the Class Code above to enroll. + + - In the top right corner of the screen, select Your Account > Your Account Info. + - Scroll down until you see the Your Classes table and click the Enroll in a Class button. + - Enter the Class Code and click Submit. You can find the code here: TODO + + +```{important} +If you have any difficulty setting up your account please contact WRDS Support at: https://wrds-www.wharton.upenn.edu/contact-support/. When opening your support ticket you must use the email associated with your existing WRDS account, or the email you intend to use to set up your new WRDS account. +``` + + + + + + diff --git a/docs/_sources/WRDS_intro_and_web_queries.md b/docs/_sources/WRDS_intro_and_web_queries.md new file mode 100644 index 0000000..c56b73c --- /dev/null +++ b/docs/_sources/WRDS_intro_and_web_queries.md @@ -0,0 +1,123 @@ +# 2.1 Introduction to WRDS + +## A Platform For Financial Data + +Wharton Research Data Services (WRDS) is a data research platform and business intelligence tool widely used in academic, government, and corporate sectors. It provides access to a vast repository of financial, economic, and marketing data, which is pivotal for conducting rigorous research in various fields, especially in finance and economics. The platform is known for its comprehensive and high-quality datasets. + +[![WRDS Logo](./assets/wrds_logo.png)](https://wrds-www.wharton.upenn.edu/) + +WRDS offers a variety of datasets from numerous sources, including leading data providers like Compustat, CRSP, IBES, and Bloomberg. It covers a wide range of data types, including: + +- Stock prices and trading volumes +- Financial statement data +- Analyst forecasts +- Corporate governance data +- Mutual fund and bond data +- Macroeconomic data + +![WRDS Datasets](./assets/wrds_subscriptions.png) + +One of the key strengths of WRDS is its user-friendly interface, which allows for easy data extraction and manipulation. It provides powerful tools for data analysis, including the ability to execute custom queries and perform complex statistical analyses. In academic settings, WRDS is particularly valued for its role in facilitating empirical research in finance and economics. It allows researchers, professors, and students to access a wealth of data necessary for testing financial theories, exploring economic trends, and developing new insights in the field of quantitative finance. + +## The Core Data Sets + +WRDS provides some usage statistics on their website in an introduction presentation [here](https://wrds-www.wharton.upenn.edu/documents/1400/wrds_research_data_overview.pdf). This chart shows +the percentage of usage across all WRDS data sets. + +![WRDS Database Usage](./assets/wrds_database_usage.png) + +The two most popular data sets are CRSP and Compustat. + +WRDS did an analysis finance papers published in the top 3 finance journals---the Journal of Finance, the Journal of Financial Economics, and the Review of Financial Studies---from the years 2004-2016. Out of all of these papers, the following chart shows how many times each data set was cited. + +![Top 10 Databases](./assets/wrds_top_10_databases.png) + + +All of the listed data sets, except for those colored in red, are available in WRDS. + +## Compustat + +![Compustat Logo](./assets/Compustat_Logo.png) + +[Compustat Financials, S&P Global Market Intelligence](https://www.marketplace.spglobal.com/en/datasets/compustat-financials-(8)) + +Compustat is a comprehensive database of financial, statistical, and market information, primarily focused on publicly traded companies. It is widely used in academic research, particularly in the fields of finance and economics, for conducting in-depth analysis of company performance and market trends. The dataset includes information from various countries and markets, making it a valuable resource for both domestic and international financial research. + +Key features of the Compustat dataset include: + +1. **Financial Statements:** Detailed income statements, balance sheets, and cash flow statements for a wide range of companies. + +2. **Historical Data:** Longitudinal data that allows for historical trend analysis and time-series studies. + +3. **Global Coverage:** Data on companies from various global markets, including North America, Europe, Asia, and more. + +4. **Segment Data:** Information on business segments and geographical segments of companies. + +5. **Market Data:** Includes stock prices, trading volume, and other market-related information. + +6. **Corporate Actions:** Data on dividends, stock splits, mergers and acquisitions, and other corporate events. + +7. **Ratios and Metrics:** Key financial ratios and metrics that are pre-calculated for ease of analysis, such as ROE, ROA, and EBITDA. + +Compustat is highly regarded for its accuracy, depth, and consistency, making it a fundamental resource for both theoretical and empirical research in finance. It's extensively used for tasks like asset pricing models, risk management, portfolio construction, and corporate finance studies. For students and researchers in quantitative finance, Compustat provides a rich dataset for modeling, back-testing theories, and conducting robust financial analyses. + +The following two videos provide a short introduction to Compustat on WRDS. + +[![Compustat on WRDS Part 1](./assets/compustat_on_WRDS_p1.png)](https://wrds-www.wharton.upenn.edu/pages/grid-items/introduction-compustat-part-1/) +[![Compustat on WRDS Part 2](./assets/compustat_on_WRDS_p2.png)](https://wrds-www.wharton.upenn.edu/pages/grid-items/introduction-compustat-part-2/) + + +## CRSP + +![CRSP Logo](./assets/crsp-llc-logo-web-01_3.png) + +[Center for Research in Security Prices](https://www.crsp.org/) + +The Center for Research in Security Prices (CRSP) is a renowned financial research database, primarily recognized for its comprehensive historical data on securities traded in the United States. Established at the University of Chicago's Booth School of Business, CRSP is a crucial resource for academic, commercial, and governmental research in finance. + +Key characteristics of the CRSP database include: + +1. **Extensive Historical Data:** CRSP is particularly noted for its long historical time series, which in some cases go back as far as 1925. This historical depth is invaluable for long-term financial studies and analyses. + +2. **Stock Data:** The database provides detailed information on stocks listed on NYSE, AMEX, and NASDAQ, including prices, returns, trading volumes, and other market indicators. + +3. **Indices:** CRSP develops and maintains a series of stock indices that serve as benchmarks for the investment industry, including value- and equal-weighted indices. + +4. **Corporate Actions:** Information on dividends, stock splits, and other corporate events that impact stock valuation is extensively covered. + +5. **Treasury and Mutual Fund Data:** Beyond stocks, CRSP also includes data on US Treasury bills, bonds, and mutual funds, expanding its utility for various types of financial research. + +6. **Survivorship Bias-Free Data:** CRSP’s dataset is known for being free of survivorship bias, as it includes data on companies that have ceased to exist, which is crucial for accurate historical analysis. + +7. **Research Quality:** The accuracy, completeness, and cleanliness of the data make CRSP a gold standard for financial research, particularly in academic settings. + +For students and researchers in quantitative finance, CRSP provides essential data for analyzing stock performance, conducting empirical tests of asset pricing models, and studying market anomalies and behaviors. Its extensive historical data and robustness make it a fundamental tool for both historical analysis and contemporary market studies. + +The following [video](https://wrds-www.wharton.upenn.edu/pages/grid-items/crsp-basics/) provides a nice introduction to the basics of CRSP. + +[![CRSP in WRDS Basics](./assets/crsp_in_wrds_thumbnail.png)](https://wrds-www.wharton.upenn.edu/pages/grid-items/crsp-basics/) + + +## How do these compare with Bloomberg or Datastream? + +Choosing between financial databases like CRSP, Bloomberg, or Datastream depends on the specific requirements of the research or analysis being conducted. Each of these platforms has unique strengths and features that make them suitable for different purposes. Here are some reasons why someone might opt for CRSP over Bloomberg or Datastream: + +- **Historical Depth:** CRSP is renowned for its extensive historical data, particularly for U.S. securities. It offers data going back as far as 1925, which is invaluable for long-term historical research and analysis. This level of historical depth might not be matched by Bloomberg or Datastream. +- **Survivorship Bias-Free Data:** CRSP's data includes companies that have ceased to exist, which is crucial for accurate historical analyses. This feature helps in avoiding survivorship bias, making it a robust choice for academic studies that require comprehensive historical perspectives. +- **Data Consistency and Quality:** CRSP is known for its high standards in data accuracy, consistency, and cleanliness, which are critical for reliable academic research. + +On the other hand, there are some drawbacks of CRSP relative to Bloomberg or Datastream. + +- **Limited Scope**: CRSP has a limited scope relative to Bloomberg or Datastream. It primarily focuses on US markets and lacks the global coverage found in Bloomberg. +- **Real-Time Data**: Does not offer real-time data, which is essential for current market analysis. +- **Less Comprehensive**: Fewer types of financial data compared to Bloomberg (e.g., lacks extensive international data, commodities, real-time news). + +Broadly speaking, CRSP is more suited for academic research focused on historical analysis of the U.S. stock market, offering in-depth and high-quality data with a bias-free historical perspective. Bloomberg, on the other hand, excels in providing a wide range of real-time global financial data and tools, catering more to finance professionals and analysts who require real-time data and sophisticated analysis tools. The choice between them largely depends on the specific needs, goals, and resources of the user. + +## WRDS Web Queries + +To familiarize yourselves to using WRDS, please [watch the following video](https://vimeo.com/436447434) about WRDS Web Queries. While we will be automating the query process using the WRDS Python package [`wrds`](https://pypi.org/project/wrds/), using the web query system is a good way for initial exploration of the data. + +[![WRDS Web Queries](./assets/wrds_web_queries.png)](https://wrds-www.wharton.upenn.edu/pages/grid-items/introduction-web-queries-wrds/) + + diff --git a/docs/_sources/_notebook_build/_01_occupations.ipynb b/docs/_sources/_notebook_build/_01_occupations.ipynb new file mode 100644 index 0000000..7a3bf4d --- /dev/null +++ b/docs/_sources/_notebook_build/_01_occupations.ipynb @@ -0,0 +1,283 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1.4 Simple Pandas Exercises: Occupations\n", + "\n", + "For this part of the HW, we will practice Pandas using a practice dataset regarding the occupations, location, age, and gender of users of an app.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Run the cell below to add section numbering" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import the necessary libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import the dataset\n", + "\n", + "Import the dataset from here: https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user\n", + "\n", + "Assign it to a variable called `users` and use the `user_id` as index. (Hint: Use `pd.read_csv(url, sep='|')`)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Print the first 25 entries\n", + "\n", + "Use `head` to do this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## View the last 10 entries\n", + "\n", + "Use `tail`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is the number of observations in the dataset?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is the number of columns in the dataset?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Print the name of all the columns." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How is the dataset indexed?\n", + "\n", + "Print the DataFrame index and describe it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is the data type of each column?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Print only the occupation column\n", + "\n", + "Show two ways to do this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How many unique occupations there are in this dataset?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What are the 5 most common occupations in this dataset?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summarize the DataFrame.\n", + "\n", + "Use a single function (method) to describe the data (to show the mean, standard deviation, various quintiles, etc). This method should only work on one of the columns by default, but can be called on the whole dataset (a method of the DataFrame)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summarize all the columns\n", + "\n", + "Run `users.describe(include = \"all\")` and see how it compares to what we did before." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run `describe` only on the `occupation` column" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is the mean age of users?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is the age with fewest occurrences?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_sources/_notebook_build/_01_python_by_example.ipynb b/docs/_sources/_notebook_build/_01_python_by_example.ipynb new file mode 100644 index 0000000..f16baae --- /dev/null +++ b/docs/_sources/_notebook_build/_01_python_by_example.ipynb @@ -0,0 +1,1583 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "56ff7eda", + "metadata": {}, + "source": [ + "\n", + "\n", + "
\n", + " \n", + " \"QuantEcon\"\n", + " \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "84b7ac3c", + "metadata": {}, + "source": [ + "# 1.3 An Introductory Example\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "adf85dfd", + "metadata": {}, + "source": [ + "## Contents\n", + "\n", + "- [An Introductory Example](#An-Introductory-Example) \n", + " - [Overview](#Overview) \n", + " - [The Task: Plotting a White Noise Process](#The-Task:-Plotting-a-White-Noise-Process) \n", + " - [Version 1](#Version-1) \n", + " - [Alternative Implementations](#Alternative-Implementations) \n", + " - [Another Application](#Another-Application) \n", + " - [Exercises](#Exercises) " + ] + }, + { + "cell_type": "markdown", + "id": "123a514b", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "We’re now ready to start learning the Python language itself.\n", + "\n", + "In this lecture, we will write and then pick apart small Python programs.\n", + "\n", + "The objective is to introduce you to basic Python syntax and data structures.\n", + "\n", + "Deeper concepts will be covered in later lectures.\n", + "\n", + "You should have read the [lecture](https://python-programming.quantecon.org/getting_started.html) on getting started with Python before beginning this one." + ] + }, + { + "cell_type": "markdown", + "id": "dd04aadf", + "metadata": {}, + "source": [ + "## The Task: Plotting a White Noise Process\n", + "\n", + "Suppose we want to simulate and plot the white noise\n", + "process $ \\epsilon_0, \\epsilon_1, \\ldots, \\epsilon_T $, where each draw $ \\epsilon_t $ is independent standard normal.\n", + "\n", + "In other words, we want to generate figures that look something like this:\n", + "\n", + "![https://python-programming.quantecon.org/_static/lecture_specific/python_by_example/test_program_1_updated.png](https://python-programming.quantecon.org/_static/lecture_specific/python_by_example/test_program_1_updated.png)\n", + "\n", + " \n", + "(Here $ t $ is on the horizontal axis and $ \\epsilon_t $ is on the\n", + "vertical axis.)\n", + "\n", + "We’ll do this in several different ways, each time learning something more\n", + "about Python.\n", + "\n", + "We run the following command first, which helps ensure that plots appear in the\n", + "notebook if you run it on your own machine." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0cc7e562", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "1671a1d3", + "metadata": {}, + "source": [ + "## Version 1\n", + "\n", + "\n", + "\n", + "Here are a few lines of code that perform the task we set" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f9ef3835", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsZ0lEQVR4nO29eZxc5XXn/bu1V+9Sq1v7LrBYhSwZDHiBmNeAPU6IHWIzJGOwTWICHggexxC/MZM3Q8QkTiaOx7FjTwzM2A6OEy8xExtjVhOzCIEAARKL9qXVLbW6q7q79rrvH7fOc5/71HOXqr631uf7+fQH1F1ddfsuz3nOOb9zjqbrug6FQqFQKDqAULMPQKFQKBQKv1BGTaFQKBQdgzJqCoVCoegYlFFTKBQKRcegjJpCoVAoOgZl1BQKhULRMSijplAoFIqOIdLsA3CiXC7j6NGj6O/vh6ZpzT4chUKhUDQJXdeRTqexbNkyhEL2/lhLG7WjR49i5cqVzT4MhUKhULQIhw4dwooVK2x/3tJGrb+/H4DxRwwMDDT5aBQKhULRLFKpFFauXMnsgh0tbdQo5DgwMKCMmkKhUChcU1FKKKJQKBSKjkEZNYVCoVB0DMqoKRQKhaJjUEZNoVAoFB2DMmoKhUKh6BiUUVMoFApFx6CMmkKh8MSBk7PI5EvNPgyFwhFl1BQKhStvTczgvX/5GD7zj883+1AUCkeUUVMoFK7sPzELADg4OdfkI1EonFFGTaFQuJIpGGHHYklv8pEoFM4oo6ZQKFyhXFqxrIyaorVRRk2hULiSZZ5auclHolA4o4yaQqFwhYUflaemaHGUUVMoFK5k8oaHVlJGTdHiKKOmUChcIU+toMKPihZHGTWFQuEK5dSUp6ZodZRRUygUrpD6saCMmqLFUUZN4TuvHJ3Gtn97DalsodmHovCJjPLUFG2CMmoK3/nqo2/i75/Yi5+/crzZh6LwCd6o6boybIrWRRk1he9MZwwPbUZ5ah0D5dQAJetXtDbKqCl8h/IveaWU6xgsRk21ylK0MMqoKXwnWzCMWb6ojFqnkLF4auq6KloXZdQUvkO7emXUOgd+jpry1BStjDJqCt+hXX1OhR87BvK+AZVTU7Q2yqgpfCejPLWOQ4UfFe2CMmoK31Hhx85DhR8V7YIyagpfKZf1thaK8Co/hYGu64KnpoyaonVRRk3hKznOkOXazKj96q0TOPvOB/HNJ/Y2+1BaCvE6llT4UdHCKKOm8BV+R99untrTeydRLOt44dCpZh9KS8GHHgGgoMKPihYmUKO2bds2vOMd70B/fz9GR0dx1VVXYc+ePUF+pKLJ8OG7diu+HpvOAADyRbVo82SEkKzq/6hoZQI1ao8//jhuuukmPP3003jooYdQKBTw/ve/H7Ozs0F+rKKJtLOndmw6C6D9jHHQiEZNzVRTtDKRIN/8Zz/7meXf9957L0ZHR7Fjxw685z3vCfKjFU2CD1W1m1EbI6NWVGIRHjH8qDw1RSsTqFETmZ6eBgAsXLhQ+vNcLodcLsf+nUqlGnJcCv/gw4/tVnw9ljKMmsoZWREVoer8KFqZhglFyuUybr31Vlx88cU4++yzpa/Ztm0bBgcH2dfKlSsbdXgKn+A7T7STpzaTKyKdLQJor+NuBCqnpmgnGmbUbrrpJuzatQv333+/7WvuuOMOTE9Ps69Dhw416vAUPmHNqbVPGI9Cj4AyaiJV6kcl6Ve0MA0JP95888144IEH8MQTT2DFihW2r4vH44jH4404JEVAZNpU/cgbNSWEsFLlqanwo6KFCdSo6bqOz3zmM/jhD3+Ixx57DGvXrg3y4xQtQLZNhSLHKnJ+oP2KxoNGzKmp3o+KViZQo3bTTTfhu9/9Ln784x+jv78fY2NjAIDBwUEkk8kgP1rRJLLF9jRqlvCj8tQsiOFH1SZL0coEmlP72te+hunpaVxyySVYunQp+/re974X5Mcqmki7SvqPpboj/Pj03pO44M9/gQdfGfP8O1nhOqqGxopWJvDwo6K76IScWjsZ41p58o0TOJ7K4dHd47j8rCWefkd5aop2QvV+VPgKb9QKJR3lNlkAj3WJUctVwsNzee/KVDGnphoaK1oZZdQUvpIrWBe8dvHWxjihSLHcPsa4Vshgz+WLnn+nuk1WZ54bRWegjJrCV8RQVTsoCbOFEk7NFSzfaxdjXCt0PWZz3j011SZL0U4oo6bwFXFX3w6hPMqnRcMa+16nG7X5eWqdeW4UnYEyagpfqTJqbbAAUj5t+ZBZZlJoA2NcD7TJmJ1XTk15an4xOZvH7jHV49ZPlFFT+Iq4ALaDp3a8IudfNpREJGR4a+1gjOuBhCJiSNEJ2qgko2EASv3oJzf87+dw5Zd/iYMn55p9KB2DMmoKX2lHo0ae2pLBBGIR45Foh+OuB5ZTqyX8WDGAfQmjAkjVqfnHWxMz0HXjvwp/UEZN4SvtmVMzlI9LOaPWqXkjllOrRShSUbT2k1FTkn5fKJd1pDKGQGliJufyaoVXlFFT+IoY1sqXWr9Tv+mpJRENG49EO6g264E2GflS2fOGg7zv/jgZNeWp+UE6VwSdyhPKqPmGMmoKX8kKdWrtYBxoOOjSgQRi4e4IPwLe82r0uv5EFABQ7FAvttFMc2UkJ2fyNf3uT18+hl/7q8ew68i034fV9iijpvAV2tWTPL4djAOfU4uz8GNneiP8jDuveTUKKfcpT81XpjKmIavVU/vJS0exd2IWP9vlvYdnt6CMmsJXaAEcTBq7+lY3avlimS0oSwcTLPzY6sddL7yn5rVWja5pvxKK+MoU56nVatQmZw2DuO/ErK/H1Akoo6bwDV3X2QI4QEatxUNV4+ksdB2IhUNY2Bsz1Y9tkAusB6tRc/8bS2WdGXimflSemi9MZeoPP5JB3KuMWhXKqCl8I18qgwYztIunNsaFHjVN4yT9nblw89fDS6ssvkSDCUVafKPSLkxn5u+p7T8x27F9SutFGTWFb2Tz5mI3UBEVtLpQhOXTBhIAuFxghy7cOS6n5iX8yJdo9FaMmuoo4g/Tc6Z3Njmb93xedV1nnlqmUMLxdNbx9Xf+eBeuv+fZrrluyqgpfIMWwEhIQ2/c6D7RTp4aAMQi7XHc9aDrutVT8xB+JOVjIhpi+cZClyyOQcPn1Mo6cGrOWwhyNl+ybLr2TdiHIEtlHf/n6QN4dM8E3hhP13+wbYQyagrf4NsptYs0njy1pWTUwp1bfF0s6+Dt0VzO3VMjzy4RDTMvVs1T8wc+pwZ4D0GemrUaP6e82smZHLvmR6cytq/rJJRRazCHJufwlYff6MgbjPIv8WiYE1y09gI4ljKug+mptU8pQq2If5M3T834nWQ0jHCos8sdGs2UMO7Iq1hE9Oj2Onhq42nTUB451Xlrjgxl1BrM3z32Fv7qoddx5Zd/iZ++fKzZh+MrzFOLhZhRa/Wc2piNp9aJRk28FpkacmrJaBgR5qkpo+YH0xmrcfLqqU0Kntq+E/Z9Iyc4o3a4AzfSMpRRazAnKzfudKaAG7/zPG7/l5dqmm3VymTzfPixPXJTY1yLLABt42HWQ12eWsEMP9IEg04MzTYDUj8O98YAWA2QE+ThUaMAp1q1cU5EcnTKWVDSKSij1mBmKnmMLasXQNOA+7cfwnX3bIeut//u15JTa4Nu97qu43hlIVk8EAeAji6+5pWPgLecGglFkrEwIpVzozw1fyDjtH6kDwBwctZb+JE8tXNXDAIADp3K2N6vE5bwY3eMt1FGrcGQUbvp0vX49icvAAA8u2+ypqGNrQr1fbTm1Fr378oVy2yBphZQneypieFHL/dclg8/Vjw11VEEeP7gKdz2vZ0WT6gWdF1nQpH1o4ZRO+HZUzOM2sYlA0hGwyiVdRyyMVh8Tk15aopAmMkaRq0vHsXFGxaxEMKURzlvK8N7avE28NRyXPPlRGUAJhs908LHXS/itailTo0PP6rRM8A9/74fP3jhCP5159G6fj9bMKckbCCj5jWnVlkrFvTGsHZRLwB7WT/vqR1PZ1v6efQLZdQaTDpHRs3wDIZ6jCJlUQnVjrSbUePr6ijsyIQiHempWT0zLx1FrOFHMmrKU6PQLU1NrxVqZhwJaVi9sAeA9/DjqVljrVjYE8W6kYpRs8mr8Z6artd/vO2EMmoNhjw1ag47lDSSxNOZ9jdqWW4BbIcwHm+Eie5SP3oXiiSjIUQqkn4VfgSylQ2CTNxRLuvYPZZyzD3SJnaoJ4pF/UY+12v48RTnqa2reGp2tWri8R3uAlm/MmoNpFgqV43xGOwgTy1bMLtPtINxYN0yYpxRawNjXC/VOTX38KM0p6bCjyx/PC4xRPc9tR9X/M0vcd+v9tv+Pj3vA8koFvUZG9sTs3lPgjESiizoiWEt89SqZf26rrOc36qKN3ikC2T9yqg1kBlObUZ99IYqjX+nMrXl1F4+PI1vP32gpVSTfP6lHerUZJ5aJ6sfq3NqNbTJ4tSPKvxohnJlntrLlcGdOw6csv19iswMJaNY1Gd4avlimaUnnCCDuLA3hrWLjHycLPyYzhWZ8T1v5RCA7ugqEmn2AXQT6UroMR4xi5Przal94Ucv46XD0zh7+SC7YZtNu0n6c7LwIxsS2rrHXS+0wRhMRjGdKWDWi6SfO0dhpX5kOHlqlLd6a8K+KJoKr4d6YkhEw+iLRzCTK+JEOseagcvQdZ0JRYZ6ouiPRyufmcNsrsg2y4BpcPvjEVY20A1dRZSn1kDIU6N8GmCOaKk1p0YtdcQ+cM0kK+n92A6eWiJqPgbtYIzrhf6mBZWNlCdPjbumUdVRhEH3+nSmYBnPA5gF/ftP2o+FYTm1yvM/XAlBuolF5vIldh0X9sYw2BNlxduitzaeMozayEAcyxcYzQWOTiujpvCRGUH5CBg7NaB2ST8tNuID1Uxo92oRirSwceDDpUQ3qB/pnpvNF13D12yjEuM8NZVTs2zWRCn+8YoxyRbKOGajNqQaNcqpUwjSTSxCIpFYJMQiDEzWLxi1icpxjfTFsWzIaAOnPDWFr7AaNYmnVmv4kWqMMi1k1Cj/0i4NjXm5OmHWqXWeN0J1eQsrO3tdNzcidpijZ8Is36jCj9bNJB+CTGcLltz5XpsQpOmpGdeCiUVcatVMOX8MmmZsMuyM2njFoI4OJLBiyBSKtFIePgiUUWsgYo0awOXUagg/lss6W4zcFqVG0m51atmi2YGeYGHTFjbG9UIbDAp5Ae4F2NKcmgo/Wgr3KcwHVNeB2XXQp5zaYNJYC4bJU3Pp1M/L+Ym1NrVqlFMb6YtXJrsbHqbXerh2RRm1BmLWqJmLCqtTq8FTy3JFtC3lqVlyaq3f0Dibrw4/RtvAGMt4dt8k9js0tgXMhTgeDaOn4p265dUyBdPwR1mdWnudG78pl3VLBGKC867Gpq2elp2nxtSPPeSpkVHzFn6kvCgA21o1MmqjA3HEIiGMVurhOj0EGahRe+KJJ/ChD30Iy5Ytg6Zp+NGPfhTkx7U8MznjRu6XeGq1CEX4olkvObXZXLEhaj6mJuRGz7R0+NEhp9ZO6sex6Sw++o2n8Mn7tju+jvpwxiMh9MSMe9CtVo0vqA+rjiIAqsVPE5x3NiZ6ajYbDQo/Uk5txHP4UeKpVWT9eydmLKFFCouSMVs2VBGLdLisP1CjNjs7i02bNuGrX/1qkB/TNjjm1GqoU5urwahNZwq46O5H8Lv/8Ewth1oXzEhE2ksoIpP0t/Jxi4yns9B1YP/JOVu1HcB5apEQ89TcWmVl+cnXKvwIoPqZ4z01Cj+uGTZyWHbhx2r1o2F43AaFTlZ+j/fUVg/3IBzSkM4WLUaVhR8rRm15xah1egF2oHVqV155Ja688krPr8/lcsjlzBsklUoFcVhNwymnli2UkS2ULF6DHfxD5WbUdh9LYTpTwK4jwZ9LZtTaRP2Y5TxLoh06oYiQ51AqG53fF3K7eB7ymnmj5ppTy1fn1EplHbquM6FCIyiWyrh/+6GWqMsUPTU+p0Zy/os2LML+kwdxdDojfa7rDj9WPLWFPeY1TkTDOG20D7vH0nj58DSWVmYDUjeR0X5D+Uiy/k43ai2VU9u2bRsGBwfZ18qVKwP5HKfdbJDIPLW+eIQtFl5DkLyn5pZToxu4EYt0Jm/mX3hpfKuqrbKcZ0m0Y/E1v7FxWhTJU4tFQqxI181Ty3CSfur9CDTeW/ufj76J//dHu/CFH77c0M+VIW4kefXjsYpRO2PpAAaTUeh6tYCjUCozhSR5aqR+dPPUTs2ZRds85yw3ZqvtOmpsXvPFMk5VvLoqT03l1BrHHXfcgenpafZ16NAh3z/j/zx9AJv+9Od46NXjvr+3G9RRhM+paZpmtsryKBbJWDw158WX4ueNMC58hw4yDvTZrYiTpL+tPDXuHnAyaqanZgpFMgWXnBrf+zFsemaNLMDecWASf/vwGwBao9lAVph2YBnvUgn/LRlIMKm9GILkN68DQvjRaG1lv9EgoyZ642dXjNorlRZddB9Ew+b60i3hx5YyavF4HAMDA5Yvv3l09zjSuSI+988vsjqORsGKrxPWqK/Z1NjbA5upw1MDgjcuvPAizhu1FjUQMqEIdc1oJ0m/tRDY/h6i4utYJITemLunViiVUajUpPHhR/pZI0hnC7j1eztBNjTbAvcSbSLoXjkxk2PRH8ppLR1McGNhrApIMmr9CTNKM5CIsOiG08aE6tQWVBk1Y62kvpPkPS7qiyNU+QwlFOlQ6IaZmivgc//8UkNDY2ZOzdrbzWxqXLunlnMxavyoiSBbVhVKZRaS4sOPQCsbNUmdGhd+bNWwqYgl/OjQkcIiFIm759T4941HQ6z4Gmicp3bnj1/BockMBiobQS/jcoKGzsuyoSQ0zQjFTs7lUSiV2fqyeCDB+i2Knho/dobQNM1TCFIm6QeMcGdIM4zZeCpryvkroUfAzKmdmit4GhDbrnSfUeMe+sdfn8C3nznYsM+eyRo3My8UAbj+jx7Dj/Xk1IBgjQt/HIlYCKGQxnayrRp+5FtAEfFKfZ2ut4/Kj9+snJz1EH6MelM/0jXVNMMQco4a8+CC5F9fPIofvHAEIQ34i986F4AR+mv2ZoO8xd5YhAk2JtI5TKRz0HXDgxvmZp29dUIMP1byYkmrtzXsQSzCj53h6YmZTYtfOZpiIpGRikgEAAYSUdZ3tpO9tUCN2szMDHbu3ImdO3cCAPbt24edO3fi4MHGGRIeXddZeOaT71oLALjr/75qWyDpN7KGxgDX/9GjrN9rTk3XdcvNG6RRo3qmkGYqCFl3Du4Y5/JFPLp7vCV6VvLz34hoxFy5W9XDFOEnWp9IO4QfSSgSDrPwo6Onxgl/NE2DpmkNbWr8D7/cCwC46dINuHjDIgDGZqPZTbIpOhKPhpgIYzydYyKR0f4EQiGNdfoQ68dknhrg3iorky+xv10MPwJmXu3lI9NVcn6C8mqdPCw0UKP23HPPYfPmzdi8eTMA4LbbbsPmzZvxxS9+MciPtSWVLbLd6mfffzou3jCMbKGMz//LSw35fKZ+tPHUPAtFuIXIKRxzcjZvMXpBLgb0OYnKAgjIB25+44m9uP7e7fjHZ5uzseHJSDqK8GHTdlFAZj0KRXIWST8VX7t7anx4lnJAjTg3RytG4vKzlliuUa7JreHIU0tEwsxoTKRzTCSyeMD43prhXmiaIRDjW1Oxwuuk1ai5tcqikTOxcAi9serSn7OWGXm1XUemqwqvieUsr9ZYPUEjCdSoXXLJJdB1verr3nvvDfJjbaEHvi8eQU8sgrs/bIQ0tu8/FXisvlTW2QJS7anVmFPLmw+1qMTiEaW7jQg/uhUy0w6xFWTFsmOOhM0wW1t6ag7qQPIwDEl/Rf3owahZhDQVWX/QnlqprOPkjLkwR8MhNnm72a3heA+fasDG01lWo0Z1YolomBkRPq82lbHz1JzDj6T8HOqJSmsESdb/ytGUrae2jCkg59z/0Dalq3JqJ5giyHDdVyxIstATxaCDgm9HJKofh2rNqXEy7KzDoiRKdxth1BISo8Z7iOStOnkIjYIflcMTDXAW3Nh0Fv/jodfZAugHFvWjg1AkL/PUHAaFykoezFZZwRr8ydk8yrqRzyP5Ot1bzQ5d0/mOc57aeIr31Mw81roRs4UVkcrIPTUz/CjfmNjJ+YkzK57akakM9oylAUg8tQWdX6vWXUatcrPQjkjTNG6n5VzJP19oMY+FQ4hHrIso5dS8Fl/zhsxJ4izeuDkHr26+SGu+JN050pX+l62gvpIVXwPBFWBnCyV84t7t+PLDb+Cef9/n6/sSJ2ZytkIKa/G1e0PjrMyTpabGAXtq5GkM98YQqdxHZNSa7anlLJ5aJfw4k2Ny/iWDpiGRNRum0h1RKOI2U81OJEL0J6KsNu7gpOGJiZ4aHW8nd+rvMqNm1m4QFP/mW92IvHx4Gn/0zy/i7X/2UN25ILsaNYCrU/MoFLGoH1vEUzN7BPJTpCud+ksST83BQ2gEuq5bumXwxANqxvxnD7yKV48ZHR/ExrfzgffUcsWyrRdsLb52b2gsDc9S/8eA1Y9swCWn3qN7q9meWpaLSoxW1o+JlCkUsXpqpliEEAeEEvRv2viJUC5uQW9U+nPAzKsRo9yxAFyqo8b5jSIHTs7ir36+hxnaViLQ3o+tBjNq/eZOhzw1cQ4SYBRq/83Db+DFQ1Pse4/sHsc156+q+bPTNnJ+APPrKFKROMti7KJRC7KgOJv3llOjWj239kxBUyjpLC8k9uWLBtD/8cc7j+A7XPmIn4uBKJw4kc5J7zM+p8Z6PzpJ+klIE+Nzjo1paizLCSVbxVMrmmHckT5SP2ZBZ4RyagCwjjroWzw1azNjgilSba6Jm6cGGHm1B146xv5NIU1iMFmb0tqObzyxF9955iAGk1F86t3r5vVeftP1nhrttMTwY7ms4+bvPo8XD00hFg5h45J+APXvEtM2ykeACz96Vj+ax+Akca4KPwaoGpPl1OIS40CeWrPDj/zCmIwGG358a2IGf/wDo2fhltULAPhs1ISwsp3QgF+MWZ2aJ0/NXCZMT8353Jx0aczrBj/gkqB7q+nqR4unZqYvKE+6ROKpHTw5x+4nsZkx4XZNpubcjRrJ+o33j1alOhb45KnR9allZFaj6CqjNpGWGDVOvcRzYjaH2XwJIQ3499t/Dbe87zQA9Rs1p/Aj7djSHueeiTtVu4ecPLXhSmI5yCJoR/VjyTxeOg8zNuHHRnWMIK8lpJntjoiYj0KRclnHZ777AmbzJVywdiG+8MEzAPhr1MRaRZnQQNd1S/E1NTR2Ot/SnFrYPaf2rSf3Yct/+wV+8uJRj39BNa3sqWW5YauUo5rjashoowwYBm6oJ4piWcfDrxn9ZllOTQg/0jWxy3OysTM2QhHAGn4URSLGZxq/m84W5zXslUKordDhRaS7jJogFAHMCy/m1KiOY8lAAiP9cRaCqfeBmpE0MyYGuDBEysPOR7zpZcc0kyuyXRQljwPNqXF1aoQYfiyVdXbssgf3idcncPZ/fRD/8KR/Igo7eCMshm79DD8enc7g1WMpRMMavnLNZuZ5TM7mfeuM4cVTK5R00MfFw2FvnppE/OMlp/ZCJVz/9N6T7gdvg9kRw3xW4y2SU6PzHa9MO+jhzs+CnqjlGQiFNPzuO1cDAP7usbdQLuumpyaEH/lp5LJ7Y8qmRRbPUE8MKxca4U9RJAKAtRsD5udl0TrlVFLULLrKqJ1guz9zp7N4QO6pUScOqutIMjlxfQudk6cWDmnsZvNSqyY+1LKHnEKPg8ko29kFqX6U7epF9SPvncmEIjsPTaFU1vHvb54I7DgJO5EIwIcf5290zCLYBEYHEhjuo2tRdlQe1gJ5CCQRlxk13kuPR82GxtlC2bbmTBZSjniQ9FPokRR49dAOnhqdF94jWiwIMwDguovWIBEN4aXD03jwlTHWnHnAxqiVyro0SjApmXot4+xlg5Xjqj6WSDjE6mS91sXKmGaeWuvVcnaNUTNaZFGc3rzYFCo4XuWpGUZhqWDU6nW3nXJqAN+p3x9PjYorlw8lGzJOxWmMS05m1CS7Ufr54VPBF4bKuokQfp4vcXFOchMM/ApBUiiVCn1lDXH5xtexsNnQGLDPb8o7ilTCjw4Gnz7/wMl5GLUZ+5xas0NeYns13ngsHaw2JMN9cXzsHYa47C8f3MN+V7z3SJEKyCMZsgGhMt592giAaiUk4YcCclp5as1nJldki6tV/Wg8NNOZgsXjOcI8NeMmnW/hp5OnBpg1K9MeVEmiEXPy1JYvSJoS9SYVX5OXQCFYQL4bJcN/+FQm8Ka1WUmHfsIccDr/B3ZcMGqaprEcp29GrXIeqbDWyVOLhjWEQhpi4RBreWXnMcrOUTTkrn6kzz8ylalbbOPkqTW99yNXfA1Yj3GJxKgBwKfevRaRkMZUkGKNGmBEbMhQyiIZNPTTSSgCANecvxKPf+4S1t9WhH7f66grkTwXZXBq/tAsusaoUfK8Jxa27IgGk1G2+PLD/shTWy56agHk1IDadk90I5HAQXZMh7njb4RRk4Ufxc+lsgZCXEzJ8M/lS+wBDoqsxAgTLPxYnL9hlY0AofDRZJ2LiggzakP2Rs1sZmz8bZqmcZ365Z6abIpBOOQcfixVxrDQ/9fTuSJbKLENDm8waMFvNU9txCX8CAArFvTg189bxv4tikQIs9F09caVnnOnOjXAuLarh3ulZT5A7b1mRfhcnPLUmohMzg9QVxGz1oQgocgy6uMWM5PU9XgRZod++Q3p9UbTdR1zdHNXdlxOntqKBUlf1Xx2ZIQHHagOP6aFxVNcTGc4oxd0CFIWWiPY+fJBLTohETxQm6NJh7lZtUDXf8UC+/CjqXw0/167BZSQhWhJRGOXhzs1lwf/eByoI69GG4F4JGQRNpBYq9lCEb6hMVCtdrTjxveuZ/8vtsgiKCwsCnioRVYkpNmmMLxiTgWZv1Fr9gZDRvcYNaHvI49MAWknFCnr9UnjzQGhLp6ay43GFw3T4igTr/CeJi1kQUr6Zbt6MTfFhx+B6geXz7kF3ZtOVlhMRAPIqfF5F7pupwLy1CY8eGoAuEGhNkbNoUu/XU5N9BIPnpyVvs4Js5tI3OJtkBFptlCEHz0DWPN+duFHADhtcT/ef+ZiAPaeWk9UXmpBE6+HemK2HphXzF6z9d1/Fk+tyTWDMrqmo4idpwbwCkjjNdlCifVGo4WC361m8+WqokY32IBQl5yam6Sfv9nJU5PtlignuHxBEq8cNVozNUIo4lR8LdamiV1F0pzRE+c9HZqcwzXffBrXXbTGlw4GFDbhC4sJWvhryQc99dZJLBlMsPIJQpYbIqPmV/89JhSpeGrpbBHZQsk6rqVoXYgB01Ozk/XLFKJRF/Wj6CXWIxax6zCfZJ5aa+TUmPqR886cjBoA3PGBMzCXL+HaC1ZLf848NeFZodD9QHL+SzaVBNQb4ufz/jKvedeRaXz2n15EOKRh8UAciwcSWDyQwH+8YJVteNZPusaosRo1Se0GeWrUKot6uPXEwuwmotEXxbLRM3AQznFtkbTnnJrzQkcLTSSkMWmuGNfOF8vMQC/j1I/BSvqrRQWunpoYfszxRs26GP7iteM4fCqDn7x0zBej5qf6cfdYCv/xfz2Nty3ux89ufY/lZ7K5VqReO+WTUaNw2Gh/AtGwhkJJx+RsnkUZAPNvoTwnANdWWbI8adhFKCJ6avWEH8cl3UQAIBFpjTo1sRE2f22dwo+AUTP67U9dYPtzu5DwjEukpxYGfQw/yq7Fz18Zw57jxpSAV82OXfjQpmVYLBdk+krXGDUnT21U8NT40CPv6iejYaRzxboeKjf1I8upudxoJL9ORsNs5yp6asemM9B1I7813BtjC1ljcmr26kcxpyZKyWdz9p7aG+NGQ1in0Sq1IFuwiVjFG/Fq1J584wR0HXj9eBqFUpnlncplroyEN2p9/nlqxVKZ62EZwnBvHGOpLE7M5CxGja59jDNq1MHCzlOjjViPpfejs6SfPLWBRASpbBEHA/HUml18bXZmAYxcZk8sjMFk1DZX5hW7ong/jZrZa7bO8CPn4clCwdRQ+/KzFuPSt43ieCqH4+mstNwhCLrHqLHdn0NOLW1KkQFYFgXAyL+kc8W6Yvp2U68Jlrx1CQnwISHaKYrGivJRZJQbUafmqfi6ylPje1jqgqcmGLXKzm+iMlplvnkFmRFmx11j78dn900CMPKtY9NZrFzYA8DYoFABN7+Z8tNT4699PBLGcF8MY6lsVRhQlKEDppGYk6gfdV1nvQz5kFHEo6e2edUCPP76BA5OztV8veyMWquMnhE9tf5EFA985l1Ixqq709QKa5WVC85To6hQvR1FpjPm/SK7FuRlnrl0EB+ro/n7fOkeoYgXT60SfjRFFtadBZMUCxdS13XsODBpW3dULuuYybvUqXm80fgiZztP7bBQjiAb1uk3prGtHj1jFl9b/zZ+N5orli0dPA6fmmMqU13X8fpxw1PLF8tVHl9dx5uXDwg1jtv7+SqXdWzfP8kdt2mMaXFe0BO1eEgLfaxT472WeCTE7m9RLEKhZ14o0su8guqFKZU1N298nijs0tCYjOmmFYMIacZ9MVGjd+1m1Jrpqem6XiXpB4xhoHx3/nqx9dSyzutHLcy3+HrKklMrV6nB6fz0SJ6tRtBFRs09p1YVfhRuUtYqS1gEXjw8jY987Sn8l++/KP3suUKJyZz74/LwhNeQAK9Is+uFx8v5AXN33ghPzbH42kEoUvWzfIk9dBMzOYux9yMEyea/SQQ/rPejB0/tzYkZS8KdzwXK+hcCnFHzQf3IworhEEIhzRw0KRi1vBAyA8wOFjKhEeWXB5PWXoZRlyGhJ2eNz10ymGSRjlrzarJuIgDvqTVPKFIs66zNVa1iMS/02GxU/fXU5qe+FTfe4uaP0goyZXEj6CKj5q5+nJzNI18ssxq1pUM2Rk0QXByqPLSvVQZAitAui+8YIDLIeWplh24Nc7ynZhOOOWLjqTVa/Wh+rvEzytFQ7RGfU+PDs2QE6O9487g5YBGwH3dfC2z+W6z6epjF1+7ni0KPBD/DTibnB0yjNjVXmFendMA6TgYwS1bswo8WT82mJgqAdIwKAITDzpJ+s2l4DKuHjTBsrQrIE3Y5NTZ6pnmemsUztnmW54Pd8NYgcmr1duoXFdripprWqB5JaL8RdIVRm8sX2YmW1akt6IkyqfLETI4TiojhR9pFWW8EWtCPp7LSPAyF3friEdcq/7JeLajg4V17Mxxj/UzaZVM4xCy+brD6UcipkVGjcBbvnfEPLXmY5PW8XsmnEbWGs2R4Kb724qmRUaPFRhZ+FBdno9bI+P/5NJUFqqX67p6a+ff2OAylpMnci4XkPrXJKtlK+o3PHe6LY9VCo7zhQA21arqum5uBAW/hf7f3++S92/Hbf//UvDcQgPVZ45WkfkEbjaqcmo/hR17MksrWHsoXPTW7tn0q/BggJ9LG7jEeCUl3OpqmmRNsU9kqT4ewS1TTroqEAiJuzYyNYzM9L6dhocxTi5qvF3dKtJOimzce8b5I10OpbM7qkrbJEsKP5BnzD26ae2hXLDB2+GQgSPlI2A3BrAU/hCK6rjOj9oFzlgCwFo3L5PyA4bHTbnm+eTU226sSCqO+puI5knpqDuNnjjNPTTz2yrmxCz/O01NLZYrsfhE3oHb3uxOZQgkP7x7Hs/smWb3mfODHzsxXFCLDzVOzKwmqhUg4xN6nHgWkmIsTN9V8NKkZdIVRm+BCj3Y3Iu0K94yl2QIgFlLahfv4mpKjU1bVHsC3yHK+Ic2uIvY3mikUibCdq/iQszCfaNQCCj/yn++lowiF4/gHV+6pVYxaJfzoNFql3mOWCkU8zlM7fCqDsVQW0bCG/3Cu0dfv8JS5gNt5agDX/3GeRk3sbjHca3xWdfixuvi6x6FNFnlqYviRIhqyNlmznDJ4UV8cqysq0FpyapSHHExWT22uR/3I5zufO3DK8+/ZIZsb6Ce9Nl1e6Pno9cGoAcBQb/0F2FWemjg1JG8fBWkEXWHUWD5NsrgQtJt+4eAUAGMhEh8qWgDFmD6fGzo6LTFqWW9GzUv/RzNsFrJ9yFOV7gP0eUGrH/nP50MyVUYtR+FH41zzdWmznOEnD5kUkK+PG+HHC9YuBOCXp2bt38fj9XyRl3bO8kFsGO0DABybyrIF304oApiy/nkbNUGq7xp+5IuvbbpXAGYIWww/kvpR5sWSIU1EQ+iJhbGq4qnV0irLaSPAh9u99l/lPZEdByYdXukN2gwFEXoEOE/NpjGBHzk1oLapICJk1OheEDUGGRZ+bE7FWFcZNVmNGkEhsZ2Vqb1ijRpgP8+JV/GRyITHre8j4aX/I312TyxiK3FOCUY0aKGIKRKxhmR4j6dc1qvCj7yUPG3jqZ2YyWNqrgBNAy5YNwwAmEj7KRSxVz+6hR/JqL1j7UIsHkiwjjNkEJwW6Fpl/cdTWXzqvu34lx2HrX+HIC+nkN3kbN7iTUmLr0n9KPF87Dy1iEND4xMV5eNwb5x1igcMbyCV9eYR2CkfAauE3usGjQ/lP7f/1LxHGoktsvyGn37N42dODahf1p8tlNg5IEdAVIOr8GMDoJyaTPlI0AUir2CZpPrdLlHNe2pi0TDA54ucuw2w3ZNDnHuOUxkmJRLnbKHEjJcZfgxW0m/XnYNCXbli2RJqpPCjnfqRz6lR0fWqhT3M2Mka9taKl5ya2/mi+rQL1i5EOKRhaUVYRPeAXU4NqM2olcs6/vB7O/GL18bxrX/fZ/mZqH5c2GuIUMq6VbKdFzw6AI6jZ8amjWMXe/VFmKdWbRz4fBpgXEuaHee1s4gXTw3wnlfjw2vj6RwOTc6vUXZO2ET4jV1I2Mypza9jCVHv+BneS6P1tMpTU0YteJzk/ASNj6CNnMxTs8upzbrl1DwIRQBvBdgZTlmUkEicyYBqGtAXa4ynZjdwk/fU6KGMhjW2oFvr1Iy/uZfz1GZyRZYHOW20jy10ftSpOaofPQhrxtNZ7D0xC00Dtqw2wqIrhgxjfGRqTpgJVr1BqsWofeOXe/Grt04CqDZAYvgxEg6xRtd8CJIXOBCse4WwgBZKZa7eTPTU7NWPsudsVY1iESejRv1XAe95NTE//dw8Q5BZdh6DzqnJi6974/58rtdesyK0Ng0kIlzzB/NeKJbK7LlRkv4AMR82+/CjKB92Mmqi2ifjKhSx5rjsGPTQPTvD936UGFnq5t0XjyBUWQCCzqmxYkvRqNHnlsoWw94ryeXwecdENMwWxkf3jAMwxnaMcPmi+YaRZF0h2HFT+NFhSOhz+w1ju3HJANv1srDpZIYtzjFhJhjh1ai9fHgaX3pwD/v3jCD1lv0d5B2dSMs8teqGxqKhHE/noOuVDYgwZTniMHrGlPObv7OmEoI8MOktr+Zk1AD7Z9AO0ROZr1gkx4QiwSydbHKC2ELOpSNRrSyos6nxNKeslqU/MjaisUbSXUbNg1CEEFtkAfZtevhF4chUpmrB9ZrkHUhQUaQHoUgsLFU/pliBsxmm4KX18zUGMqgYmhZqgvcQzTxfVNqJXMw7koGgHOdpo33M0OU4z69eHNWPHjw1yqedv2YB+x6NfjkylbGEHmWKWy8z1ebyRdxy/wsolnVsWjnEvscj6+lI54m8Lf51sobGc3nr4NuxithptD/BNkZExKGjCN0Hw7yntpDEIh49NYecGmDW2XkdTkmeCB3Hjv3zM2qsE03AObVMocTylsb1MX7e9PDjnGnUkpJ0DF2XkBacmMaNLjFqXnJq7p5awqaFDb84z+VLVeFDL3VqgOnJOS3YfJ2aTP2YzlZ7hfxCFkSt2rHKIih2YImHzQefmvcanppZi0OLqZgIJ6NGD/Ppi/uRjIVZbdV8uooUSmafScfiawfP9sk3TwAAzl87zL7H5wLdPA6S9MumVBP//ae7sffELJYMJPBXV28CYFz/skUAUh1WpM0bX6Qu89TIoBe5OkPAzKfJZoNFHOapycKPVKu236MC0iy8tvHUaAK9x0YCtGi/74xRAEbOvN5GvgBfFxiQp8atEfRc03rg1JGoVuqdfk2vH+yJSTf5/PoURB2fF7rDqKXdc2rDvTEmUQVqy6mJu+cjQgjSbewMQUYv7VDlb9dRhIxDKlPtqfEFt0GEIGn+nDhagjemFGbrS5jhR12vfnDpHJDXAxj5wfUjhmRetmDXCv8Qynbcbr0f35qYwZvjM4iGNbz79EXs+3wpwkRFzi8TiQBmiNDJU/vprjEAwH+76mxLIwD+/pPVTcneW+ap8TkPfqNmp3wEOE/Ng1AEMI2aV09t3GUzQCUYouLODlqEN4z2Yc1wD3QdeP5g/d4ak/QH5KkZRd3G/9P0BFoPen2YAkDUO/2aDz/KiuHNSFLzBsB0vFHLFkostGUX0gCAUMjsKhKLhNjCwGPX0YB2J1SYekRQQLJ8kYun5sWoMfUj16UfMBct2YRcflcZhFjErk8gv4DS7LD+eKSyizO+T7mDWaFAnbweAFi5oIf9rSM2dVh2pLIF3Pzd5/EXP9vNvkeGQLMJkbgJa37+ynEAwIXrF1k2D+RdHp3K4njKxVPrMWeqyULC+WKZheI2rRxCIhpCiJ0zfrpBtae2gNXAFSSvs85Go9/jowOsRk1q1OxHz5zkJP0Etco6lsq63nuFUpltfuyeVTZTzbOnZrzfgp4YE/TMJwTJJP0BCUU0TeMmkovPhj+hR8AUitRafG0atQhkbfpY38cm5dOABhm1r371q1izZg0SiQQuuOACPPvss434WADmjj4WDrmOQqeQx7LBhHRHZNfBg266dYsMb0IUi3j11OimdQo/MvVjNMwmAfPHZBZemw+Apmmeu2TUAxWci70ywyGNeb+TlQWvLxGxPri0G2WemlV0ARj5NMKuuFjGXL6IT9yzHQ+8dAxfe/wtVnfGz8OSXWe3Diw/f9XwoN5/5mLL95cOJhAOaciXyni10txaDGsTJKbIF8vSjh7HU1nounHfDvfGpIsdYAoX+E4hC6lbxKyzUISOGQD2nTDDg2yTMlhtWMzwo72nxgtFFlQWT12Xlw7Ifj8c0phhFiFjIvZftYPCj0PJKLZW8p/zUUCanlpwS6dZq2acL78LrwF+fmNtnlpKIhSR5dSa1U0EaIBR+973vofbbrsNd955J55//nls2rQJl19+OcbHx4P+aADm4jfcF3N13WkBkoUeAfc2WRsWV4ya0P+x5pyag6fG14BEwiHmHdIxiZ3wiSAVkOYiWH3eyJie5HJqQPXcKLHsYSVn1Oi8AlxvQ5fwY7ZQwqfue46p3XTdXDQzDiIRwLn4+ngqy7rOiEYtEg4xb/WFSojLScVHBkamgDzGzqkp1pB1AMlJRugskIy2kYUfAeDcFUMAgJcOT7PvjTl4anbz1IqlMvs8Pswf4WT4bt7VBEsTxKoEKgTltcWN5S9ePS4NK5o5oCi2rjaM2s5DU54HwIpkHTrR+IVYapH2ufAaMD21VLYoLaS3g4zgUDIm3eS7PVuNIHCj9td//de44YYbcP311+PMM8/E17/+dfT09OBb3/pW0B8NwFCZ/d571uHqLStcX8s8NRujlohVG7V8scx2reRRVIUfPfZ+pAXdk6dWORaWY6g8bLSTEkMVdiG1X715Ar9664TjcTlRLJVZHkRWsB4TFm56MMUHtyqnNmSGH08f7Wf/bzcEkydfLOPGb+/Ar946iV5OXEKLpttuko65WNarxgA99KoRety8aqiqDAQwc4EU1rELo2maxkLcMqNG3j6fpxS9W8DGU5NM1pYVXwPAuSsGAZgqU8AMP8pyamTwRU/t1FwBum6EdMk7I+ymSYhMzNi3FWPvFalW3E2kc7jh/zyHT933nCWUq+u6Jfy4fqQPg8kosoVy3c2N2SaiAZ4aXWe/+z4CQqf+GsQispxaxiIUMY61Y8OP+XweO3bswGWXXWZ+YCiEyy67DE899VTV63O5HFKplOVrvqwe7sUff+AM3Pb+t7m+9j2nLUI8EsJ7Tx+R/pxdxDwfQzYXGOr/xwtFdF3njJpzTLyPUz/a7Z74jiJAtSLTbGZsfQBkIbVcsYRP3Lcdn7h3e93ThCdmciiVdURCmkXKTYhGrV/w1Ohvpb+LzkEyFmYL+hlLB9j7MaPm0Crrfz7yBh7dM4FENIR/uO4dWDvSWzlWY9E0u4nIb38ntejPK0bt8rOWSH93hbAhslPxAc5NjSmkywtEZMXSMkm/bAiknad2XqVU4KXDUwCM+3WM8xJF7Dw1yqct6ImxVlqEXdhe5PkDxjGQ/F5GUuKpUah2cjZv2RDO5UtM5TrUE0UopGFLxVt7bn99IUhxKkIQiCUvLKfmo1GLhs2JJbUMC2XF11z4McdtVjo+/HjixAmUSiUsXmwN0yxevBhjY2NVr9+2bRsGBwfZ18qVK4M8vCquOHspXvnTy/GhTcukP5d18KD8RiwSwupKUpzPqfH1Jl7Dj8b7VntrpbLOjBK102ELRtE+p0bHB1hnqqWzRWQLZWQL5bpHu1OYbPFAwqIeZZ9L4cdK6I+Oiy3QuZJlIeI7JvyPj56HbR8+B2cuM40a6yri4Km9WAmlff6KjXjnumEWViZPTTalm4dCuoDVqKWyBTxV8WrF0CPB5wL545XhVIB9jA2qNQ2LGLIF5EIRswbOHDgrttMizlo2iHBIw/FUDmPTWUxnCuy1svCjXZd+sxVddS4sHpGHDHl0XcePXzwCALjy7KW2r0tI3ov3NEigA5ihx1gkxBZZMmr1KiCDbpMFmIZb9NT8zKkB8l6z4+ms43Vy89S6IvxYC3fccQemp6fZ16FDhxp+DOIuk0d6ETl3m4QS4+kcW2xmuLZVbi55PBJmRkCWV7NU61eOhSky82TU5KFOmVCEl3F7bTgrwhZfya4eQFXeiB5MfpYXPbSxSMiyA37numFcc/4qy/t5EYpQyGllRUFpzsqzGjXb8CN3D/Dn69Hd4yiUdGwY7cO6kT7Zr1pUm/zxynA0alT7N1jtqfHhR5mknxarUllnnjvdj6KnloyFWdj8xcNTLJ+2oCcqNfpsnpog6ZcpHwnTU7MPPz5/8BQOTWbQGwvjsjPkGwY6XvG9poVFmaDw61AyyvLpb19VyatV8qK1EnRDY6B6/EwQOTWAa8tX2dDuHkvhXXc/is//y0u2v0PneqgnykLesjq1jg0/Llq0COFwGMePH7d8//jx41iypDp8E4/HMTAwYPlqJWgRLJZ1lmgmSXpvLIKFvWbylEI4fKcMLzUmfQ4F2LwRos9h+Qry1FhvNqunxpoLc54Hv+N36mLiBC2+slAVYC6iZJDp7+vhFuhawiteWmVNcQ8eYHpLlIdz203aqUVJyn/5WfaLLl9ft7A3xnJQMhZKBB0ETXvgFaWmUePDj9WeWiJq5hHpve3Uj4AZgnzx0BS7b2VeGsBPvhY8NYnykT8ewFko8sMXDC/t8rOXOO7y45IuFrxR4+sXp4X7ADByiCHNEHNR7rAWgh49A1Q3NaY2e757akkqwDau3b+9dAz5Upl1yxHRdd3dU+OmiDSLQI1aLBbDli1b8PDDD7PvlctlPPzww7jwwguD/OhASMTM00UXcpbz1DRNYyITyqvRDSLu4O0wa9WqjUxGUq2fEPJ86Ro8NT43Q0XbtUKLoJ24RvQMyHD1cQ9uLTtRUj9mC/atstgOvZJbGhEKtulcOe22KczGlwE8VulD+f4z5fk0wBp+tCu8JthMNUlXEbNMgvPUBKk3wIUVhXAYn6/Tdd02pwZYFZBMJGKzSWE5NaGjiFPTcFnYnqdQKuP/vnQMAHDVeculryFktaIWT40LP1KuaIgrD+iNR3D6YkN49EId3lrQbbKA6utMmxi/jRrrNVupZ3ziDSO0fjyVrcqZAsaaRx66tfdj2fIaINjz40bg4cfbbrsN3/zmN3Hffffhtddew4033ojZ2Vlcf/31QX+078TCZrU/PVRzOau7TYl9UkD+4Hlj/tVvnCfP04mQMZIVYIvKR6C6H2UqayZyLccukfTPcTv+usOPNoXX7HMFT8X01My8QS05g55YhP39slZZxZLZZ5J26KOCUXPLqQHVatHn9p/CbL6EJQMJphiUsXQwye4Rp3waACzsk3tqmXyJ5Tj58CPtfvmmxnzNneW9e806JD4vKBM4bFpp/D0vHp5yvZ4RG/XjSYem4W7hxyden8CpuQJG+uO4aP2w9DXme1V7B3bhR75GjWfzqiEAVsWnV4JuaAzwUYyAw49JM6c2PVdgYqGyDhyXlMzQeY6ENPRwzR+6KvwIAB/96EfxpS99CV/84hdx3nnnYefOnfjZz35WJR5pBzRN43JYxs09J0x5JaN2dCqLAydnsX3/KYQ09x0o4STrl3XD55uK8oM4RU9NNlON3/HXIuvlMXM/Njk14eE3c2pm+NHraB7CSSyS4jYD9NDS66n0gJ8eboe4CTh8ymjzdOayAccwciwSwuKKMMXVqNlMvyYvrTcWttQbysaS2Hpq3Hvz11wWNjt9cT/ikRDS2SKe3nsSgH340a5L/0lJM2NCJu7godDjh85d5pjTBkxPLWeTU+OFIrLwI2CGW1+oQywS9OgZoNpTCyr8SPfI9Fwev3rrBPh9yjHJtBG2SegxcpRmIbxcY9AsGiIUufnmm3HgwAHkcjk888wzuOCCCxrxsYEgxpHnWA2J8f1lzKhl8IPnjYf14g2LbMM5Ik4F2G6e2ky+yBoAizk1WZ0av9tNORR8O8H6PtqFH208NbOpcanmh5aJRSS7SQo59ScibIHkw4+6rrsKRYDqAmwv44sICkG6GrXe6noygFc+Ji0GVJpTs5GY81MAeO9cvB6A8beevdzw1ihcXnP4sfI3yNrL2U23AIzN2y9eM3KVV212j2bI8jhuQhGxO8nmiljk5SPT0jCbE1lJXaDfJIXOMV47EtUKr36k0CMh9q8FrHJ+4zirm0uLJUfNoKXUj+2AGP6YFRKjZNQOT83hBy8Yocff8lD4TTj1f5RNlOVzDPQ7sXDIfrYZdwPyi2M9nhpfeG3nqVXn1EjSb+5Gaw2vkGGRFWDzu0mCjEumUMJsvsTOY8JhNyluAmRjVeygekUq8bCDDM9JG09NzFPKcmpZm2Jgvv8j/Q2xcMi2UweFVGm3bhd+JGNfLem3H+/EVHKSbjYP7hpDtlDGupFenLPcPqxb9V62Rq1a0j8oeGrrR/rQF49gLl/C68dn2Pfn8kXc9X9fZRPNZeQamVPLBZxTS5r9H3/5xgQA89k6Nl0touFFIoC5kbJ4apKNd6NRRq1GxEJS0d2m8OOz+yZxaDKDvnjEUVggQnVcaZn6UeJh8MlapnyU9LiUFV9bwo915NROzORZ4bWddD3GN9DlRmfw+aFa63CcPDW+gwTRE4uw955I50xD4BBCYsKayk5+wsP0dOK295+Ov/itc/HhtzuHnMmoTWcKFo+BPDWxQ4t5ziQdRao8NbP/o5NIhKCQHGEXfiRPjZf067rOJP2LpJJ+e0/tRzuNaMZV5y33pA6WeWr8hmyCr1NjOTWrpxYOaSyPyOfV/uGX+/DNX+7Df3vgVdvPD3r0DMDl1PLWLv3+16kZ5+WVI9M4fCqDaFjDfzjX8JZlw45Fo0ab61yxzOohM92QU+s02AhzG0+NjBo99B84x1miLNLnEH6ck3hqvOdoKh+rO5fIjFpmnupH8ijsCq8Ba7iLmhkDQF/c3I2Ks9TcMFtlVQtFTs1ZHzyC5dVSWaZ+dLouZAAo/OgkhBAZ7U/gt7eudN3ND/XEmKiEF4uYLbIET03oKGKoGuUSc77/o5OcnyAFJGEXfpQVX8/lS2yxl0r6I+biJ/LyEaNQnuaduSFT3PGeWjpXZJs1c4NT/TyQEd95yMirFUtlfPfZgwCA3WNp244+XkRG84U8tUzAkn46LxQpePuqBSzKQCUlPNOC8IY/B3RtzTWqQyX9nYhY7Czm1JYMJsBvOD/8du+hR4AXilR7TlmJa8+HH80ateobiowLv7DMzrP42qmdEvtcbiHlH8oeLm9AO1KvbYCchCIyTw0w69smZnKecmpiCQSFH53GF9VKOKSxllCvcr0Ij7Khq9bz2is0NC6UdBYuFOd78f0f7QqvedYM97D7JhYJSQ0BHbPx2eZ9RCKRRDQk3aHLQoYELYJDNl35RWSKO3HoJ8n67cKPALB5pZFXI1n/L147zkJuuWLZdqhpI4qv+WejWCozA+7WO7ZWRAHNe04fYXWRXjw12ZQQL89W0CijViN2OTV62GKREJOQr1iQxPlrFtb0/k6SflkSNsGpH9M5eYssOi7A2vYpM0/1o6zprkjcxqjxC3St4RWnriIUchIXZV4sIgvjiojqR3Pag39GDTDbNu04YCrxaHFdLuTUzMXO2iUEmL+npmkaNlW8l8UDcdtQoCynxt930pFNkWrvit6DtX3zuAiKijtd15nIiQwq5dXswo8AcF5F1v/mxAxS2QL+91MHLD/ffSxd9Ttl7niDDD/2clEMPu/tZ0NjABgUzsu7NixieVxSNfOIRk02JaQrJP2dhhj+oIerl3O3aTH68NtX2Cbm7ej30FHE4qlRXLtQNqdeS3Nq1ZJ+q6dWe/hxzGbiNQ/vHfRb5OkUSuPq1DwOQRypFGDLpl9Td4RB0VPjjZoHoYipfjS6x9AC6SX8WAtbK4Mrn9tPI3J0JqcWzysZfaovzDlI9RdYPDX3nBoAbKqEIO1EIgCvftRZRxe3PAptvMTia0vbN4+LoKi445t/U+hsPJ21dujvrb6vFvXFsXJhEroO/PD5I/jVWycR0oB3n2ZMMn/tWHUzdf58B+upUQs5c6Maj4Qcu9PUAx+iH+qJ4uzlgyzkfWquYElPANXqR6A6X0qhX9X7sY0QE9WzkrqMz/zaafj1Tctw/UVran5/GpLpVHxtEYpEzOOhLiSkMOSRqR+tObXaPbVjKTJqcjk/IOTUeE+N1amVuDo1bw/CIodWWadcPLVxi1DEvU4tXzSnMTsNr6wXGlxJM75S2SLbbIjnVWxozLdsEj0kWsinMubi5FZbdflZS5CIhnDJ2+zzW9GQec7ImIh5ZRG7Nll0XHYTyGWIijtaaGPhEFZWQrnjqZwRuqscn8xTA4DzKiHIv3xwDwDg1zYuZn0nd4/JjBrXpq4hbbKKnsdW1UMsEmL5u4vXL0I4pGEgYYqqjgremtl+zjyfYuSKNvvNDD82L5vXpohtemjXzIcGLt04iks3ekt8izgVX2ckSVh+9Izd2BnApqOIoH7Udd2TAo2w8yhknwtYPbEeTnBDC1OfxBjLIKOWLZQxmy9ZjCUbYugUfpQIbuyOO18sMY9wYa/98Mp62TDSh4FEBKlsEa8dS7Hd+IKeaNXx0T2WLZRRLJVtO+8bv28sPLpuKjfdDMc5Kwax679e7lgAHeYmGBTLOiJh94Jbu44ifP7F630nKu5472GU27jQfRCLhGy7f2xeOYSfvHiUPWv/6cLV7By9Jgk/0vGHQ5prkfh8oA1foaRXNQL3m6GeGGbzGeahapqGpYMJvDE+g6NTGaznGneL4UeAXw+Ne5LSGyr82EYkBWXSXMFfd9vMqVV7TkxZZPHUzHCM3dgZQK5+5MOPhZLuOsRRZD5CEX4TQDkQr+rH3jjXKksIQZp1avbhx1qEIoWS7tjXcL5YZ3ydYrkMWS9NfizPXKHEDQit/jui4RC7lyhH5xZ+BJynVABmRxHAbJXllkexk/TL7mc3RMWdudBG2Iih8VTWklu1M5iUVwOAtYt68a4Ni7BxidFE/chUpko8ZbYkC3bZ5NcS2lD5nU8jPvz25Thj6YBlPiDfQIInJTFqfInTXB3h5CBQRq1GRCXXHNel3w+cOopI1Y+ckbUbOwPIPTUxZl6LArJU1ll/OLtmxoA1/MirMuOREMvPmJ6a93NoJxYxFzOrURvlOvV7abrK16mR8tHvfBqxtSIm2nHgFJNSy0K6sXCIGZW5XMl1CjPVwR2vGDU/xA0Wo0aTKlyMmt08tXqa34qKO36htXpq9iIR4qxlA+w6/847VyMU0jDYE2X1gXvGrN5aI5SPgPGs0nGRkjMoT+2z738bfnrLu5mwCOCNmlXW7+ypmU0NQpq8c02jUEatRrzk1OZDHyu8LFXVyrAkrKT4Olcs246dAeRd+sVBpLXk1SbSOdfCa8DeU9M0reqc1ZI3IM+L7/UHcOFHmzq1kzM5thHx0tA4VywH6qkBpgLyuQOTnKdW7f3y52wmV3SdwkyGnXKfXjw1N8IST80MP9rl1OThRy9hYBFRcccvtFQwPp7OcoIh+5B2PBLGDe9Zi4s3DOO3t5qlNxsrk9Z3C2KRRoydIajhN01NCCKnZgcZdd5T48fO8KH9OLce8mNnaklj+I3KqdVIVe9HnyWsfAhuNl+0GCjZHDB2PPmS7dgZwLz57IqvgdoUkMc8FF4DYk7Nelx98YhFEFPLbpRCnrz0OF8sM69B9NSGe+MIaUYbKOrW4rSY8r0fT84Yrw/KU9u0YgiRyvTp7fsMFaSd+KY3buTf5vJF28JrotpTm/89qmkaIiENxbLOmhqT7NzufNoKRQr1bQgT0TAKpSKyglEbHTA9NTvBkMjnLt9Y9b0zlvbjkd3jeFXIqzWi8JroiYYxhQKLhgTlqckwZf2mp8arTO1yarLmEM1AeWo1whd/6rrOLqRfMW9++rWogMzIcmqsr17JduwMUN32CajOadQSfjzmIZ8G2NepAdbFzMtkcJ5lzKjxo0aM3XlIqzbs4ZBWVWPmpU4tX+TDj8F4aslYGGdRQ+FK30GZpwZYmxo7CUUAzlOrGH4/PDUAiIStTY1ps9XrYtRyVZ5afeE8XnE3LQk/Ts0VMFHxcJzCj3ZQXk1UQJoTERpg1CrXebzydwSVU5OxVFKAzVSmkZBtnWy9mxS/UUatRvhC0lyxzHYvfl5Iu7yaU5d+V09NIumncCYZplrCj/UYNfG4+AfV62RwgjwZ3lOb4hY4mUpR7AbixagVSuXACq95tlZCkIRdnpJvauzmOVD/R/LA/QqbRSqyfvLUzNokt/CjPKdWq/yb9w54ozaYjLLrRo2KRRWsF85Y2g/AyKmVuRRAI8OPdJ1rFVH5ARufNZ1hJTNvjBvnU6xhNEcBlcz2c02U8wPKqNUML6HnJ0f7Ob6c9X8UWmWxjiISo8YrwWQ5NVH9WCiVWX9KulFrCj9WdnFi010Ra07Nely8uKbW8IrZzsd91AghjoJxWpxiFW8kXywzBVpQ4Ueg2qjZlUnwTY1dPTVhDIz/nlrFqOWcQ/B289Tq7ejOG8lp1nDAUDnSxuX140bo0Gv7LZ41w72IRUKYy5dwqDJHDzCnDAQ5IJSg68xyag301Gijmi2UWRj3sd3G1PeLNyyyvJbfVLdC4TWgjFrN8Dk1uoi8ks8P7MbPOPV+BEyDJRWKCEaNN8h1eWop8tTslY8AEAubxyfuNnmJeq1GzdFTs9md80YtHrEfwwJYzxc1fA0q/AgAW9aYRk3T7Lvk802NTaNm46kJC7pfgy3ZoNCy9V5yCz+Ko2cyEuGTF3jFnajIo7wa9W6sx1OLhEM4fbFRn8XXq+UamFMzRzMFM3bGiXgkzO51CkE+9roxmubSt41YXsvnS1th7AygjFrN8A+U3/k0ws6oSevUJA+YLFQhSvrJIEdCGhvsWEtOzUuLLP5zAVlOjfPUagyvUNx/PJ1jzXXtmhkTo5xRc9tN8g2gqQDWbejnfBjtT7Dmxov7E7YtkfiemeYi681TCyz8yARMzuHHUlm3NEJmObUaF8G4TU4NMK8xRQ1FFaxXKK/Gt8vKunjGfiJGfhqZUwNgaWy878QsDpycQzSs4SJbT60szfk3A2XUaoQPfVC3dL93JlQ8zXcV0XVdqn4Mh7SqVlQyr1Hs/cirNklYUsv4Gcozjbos9LxRE6cHiDm1WljUG0c0rEHXzbzDKWE0hghvlNwevGjluMfTWZY3XSiZ6uwnFIIUu/Pz9HDtxdw8NdG4+xV+5Ps/AtykChdPDRDqJH3IqYkFwaKHW0/4EQA2LjHyarxYpJGe2nzKXfxg2aCpgHxsjxF6fMeahVXPaZLz1Fph7AygjFrN8MqroAbiyYQiuWIZ1OZQXAT40fKysTOAJPzI8iAR9ju1eGqUv3JbNMR5ajz8IljrQxsKaaasvxIisesmQtRi1Oi4KWc31BP1vaGsyHsroZ2zlg3YvqaPmxhOi2zctvjaatz98jDMmWriDC274mtrwTTh1l7LDl5xNy2EnMVNVj3hRwA4k2rVuAJsVnztUxjXCdFT89pCzi94BeSje4zQ4yVC6BHgNvl5LvzYZE9N1anVCN/Bw62Ra72w8CPnqfE1ZeKCnIyGHQeEAvbhx54476l5M2rUeBdw917oc0Na9XH3zMNTA4ClA0kcmszgaCUU6jQUErCqH91k2XTcY5XcYZD5NOLXNy3DSF+cyftl8ONn9Mrja+c5iJ6aX0ZNnH5t5lLk11DTNMQjIeSKZatRq9Pz4WcaVocfRU+tPmPwtoqnduDkHGZzRfTGI6b6sQFCkV6huXcj1Y+AqYB8a2IWT+89CQC4VNLompU4FUt1FdMHgfLUasRabGgdEOoXfZL+j5S3iIVDVf35+EVB1syYfg8w6tR0XWfv1xMLM0PoVf1IHpGmVU+YFlk8EEdvLIzTF/dXSfb7LEKR2hcf2k1We2ry9xrlQlNJl4WJzheFHoNUPhKaZuQsnM6pmVMrmZ6ajbEaTEYtA2v9EoqIM9W8hOHpGPmuIpk6O7rT/X5yNl9VEDwyYN181DtVYbgvzrw+8tYaWnxd5ak11lCQEOvx18eRL5axfCjJRvvw8PPtWqX4WnlqNUI3dL5UZt6R356aLPzotAviFwU7T43fXeZLZTP8GDXDj2mPntqpikc0mIy6qj77E1E8+rlLpOfIIhSp46FdOmjtfHBqzjkkOlKLUEQwFI3w1LxgFl8XmaGwM2qRcAiDySgz9n7n1Ej04SUMn4iGkcoWhfBjvZJ+4/Ukd4+GNfYMjAoK1/kYoI1LBzCensDusRS2rF7AhR+b4Kk1OPxIQhHyxt/7thH5ANiYuclnxddKKNJe8AaEVHG+59Qk42ecOssnvOTUOO8uVyzLw48ec2qUTxMl43aM9iek4UWLpL+O8Io4et7NU+uNhdn5c82ptapRY7O2Sp48B/4a+ad+pJyaLnj99tfQrKfkw4/11TWJRm0waXbi58OP9YYeCSrCJgWkGX5sgqfWaKGIUPx/yenV+TTANPCZQut4asqo1Qi/MJysKAB9z6lJpl879ZhMePDUeKOWL5YtNSW8+lEcuinjFJsoPL+QnLX4uo7wo+CpURNbu5CTpmnMW3NbmERRSCPCj17gGxq7FV8D1mvkX/G1OZbH0lXHwduWNTVmE8jrzKlRvpNvCzfcG2Oe5HwHupJYhGrVzAbSjZD0m+dE0xrv/Yz0xZkgKBrWqoquCb5toMqptSmhkMYeUCrKtZMy1wst8HyOyympbjVqcgMb4qT/+WLZbELLhR/z3OBJJyZn5eNdasUi6a9jJ7qU6/+o67op6XfYoVN4qm09NVZ8XXSV9APWa+RXTi3MeWq8gMlp4ZXNVKs/p2Ydy8LnIEMhs6uIW77XjTO4bv3lss6N+mmspL83FvF9OK0boZDGyiPOX7vQtk6Ov66q+LqNoQsZWPiR5dTMcKCT/JlfFGTNjAleAZnhRC69sQjomfGigDzlojL0Cv+31NMGiEIkJ2ZySGWKrFzBqcxgxKtRq/LUWsuozXLz1JzUeLys3y/VXpRraOwkYOLhe6YS9Ur6k5y3ClQbL+oqMt/w47pFRrus2Uq7rEZ6avOp4fSLlQuMZgCXnF6teiSsHZbMjXIzUUatDuhCnqx0b+8JqKMIH36UFV4TfE7Nqd6Lr1Wb5UIFoZDGKSA9GDXKqc0z/Ng3T09tQU+ULTBUJBsNa46eM3lqTqEyQOKpBdhNpBasDY09eGp8+NGnOrsw11GECq/dzqc4XBeoX9Iv1olVGbXKtZpvJMHaLivVYPXj/PLNfvBfLj8d11+8Bte+c5Xta/iwcquEH5X6sQ6YUZutjFpvQPE1GVBZX0f+JpL9nOCbGpv9+ozPGkhGMJ0psAaxTkz6lFObb52apmlYNpTEvhOzeLWSzB9Mxhy7/X/s/FU4Np3FhzevsH0NUG0AhgPuJuKVnlo9NT786JenxoUfWa7XZaGXzVSrdxEU22qJRo3CZvO9PwHgjCUD2HUkhVePpRs2+RqYX7Nvv9iyeiG2rF7o+BpLM4oWCT8qo1YH1eHHYDw1mn4dDml4szL6Yf1Ib9Xr+Z26J0+tVKoK/RjGMGOpjbOjVvWjHfxmoN4Hd8lAAvtOzDKFmltI9IylA/jGf9rq+r6ipxZk38da6IuZ+U/a9Dh1uAjGU6tI+sveB0OauRcz/Ej/X7OkX7g2olH73QtXI5Ut4uotzhsXL5yx1OwB2YzJ10DzjJoXWIlTscwiS83u/di6Z6uFIZebmqb6vTPhww0zuSIGk1E2z2jD4v6q11s8NaecGjXpLVjDj4Dp4XkpwPYiyPBCbzyCaNiYomzXWd8NKsB+lRk1fzyqqNBPsxG7cy/w15o2Vd49Nf+Lr80GBM5LSSJiDT8WS2U2sLbm3o8untrGJQP4yjWba3pPO3ijRn93t3hqXuCvHXX0UZ5aGyI+VH7n1OKRMGKRENv9DCQibD4Uxfh5+J26XZ0aYC5+uZIZ/+bDj0BtQpH55tSi4RD+4rfORbZQdgybOkGNV18fM4x+vcZRhPfUWkXODxjHFQuHkOdalTlL+s3z4bunVtKlkyNkmNOvjddnuNxavZOvCaeN3HwhWf/hUxkWBWnEPDX+fDYrp+YF/lpQobbKqbUh4gPsd04NMNSAJ4t5zGSLGA/lkM4WEdKAtYuqw4/JGF987e6pGUIRa+HrQA1CEfIQ/MhZ/KZLbssN8tRo1z9fRSYRtxi11gg9Er3xMPJzZhjPySgsCCCnFuEaGnvtCsIEBZW8FBk1Tas9nCc+f/OV7jsx2BPFssEEjk5nWQchv0ojnAiFjC4pmUKppT01mhKS50YK9XSq+vGuu+7CRRddhJ6eHgwNDQX1MU1BXESC2Jnw/R/fqIymXzPcK32gvBRfA6KkX/TUvI2fKXDtwfwK9c2HZcKQ0npHjYjw4cfhFvLUgOocrpNRWNQfR0gzVKF+dZePcJ7aLOtM4xJ+FD01TmDiJOyRv5dzTs1vKARp9/lBQR13WtmoAdWbpWZ7aoFdnXw+j6uvvho33nhjUB/RNESj1hvA/CAKdaRzRRZ6PE0SeuSPJxrWHB+4GDdTTUzwe/XUamlm3AjE2WPzzfMR4ZDGwmyt6KnxOHkOA4ko7v7IufjvHznX944idakfC1ZPrZ4FUHz+Gm/UGrNo0+allcOPgNVzDoc0VsfYLAI7W3/6p38KALj33nuD+oimUT1CJQBPjWrVskUmEjlttFokApgPWX8i6rjrtUr6BfWjx5waaxrsoZlxI1gqeGp+eo+xcAiZcqnljFqVp+biOfz21pW+fj55asVSGZXbyDX8yLr0F62eWj0GotlGrRHqR8A8p63uqfHXox7P229a6mzlcjnkcjn271Qq5fDq5lElFAnAU6NWWTO5It4cd/bUyMg6iUQAPvxYqq5T86h+9DOf5gcDiQh6Y2Gm5rSbel0P0bCGTKF1Cq8JcZFrxNBKnggVX5fNaexew49ZMfxYh6fWyJwaYDY2JhrlqZGitNWNGn89mh16BFqso8i2bdswODjIvlau9HeH6RdVObUAbvJ+Lqf2+nFnT231sNHOZt2I3OgR8TCXUxPCP14HhZqDOFvDqGmahqVcR3G/cmqAGa5d1CIGnBCb3TY63BNhbbJ0S27MCXGeWsZh6oQb/PMXCWmBS8hXD/dajrNRntrVW1bg3BWDuGj9cEM+r174lEez5fxAjUbt9ttvh6Zpjl+7d++u+2DuuOMOTE9Ps69Dhw7V/V5Bwl/EZDQcSBiOjNq+E7OYzhQQ0oB1ksJrADh9cT8evPU9+PLHznN8TwpTTWcKoGb8lJ8hL88tp+ZXM2M/ocbGgFXCPl9IVTo60FqeGl8TFo+EGh7uMcOPeh3F11ZJfz1eT5hrzs2PnQmKcEhjk7BjDTzfHzt/Ff715ndZhtu2Ivw1bIV6zpr82s9+9rO47rrrHF+zbt26ug8mHo8jHm+tBUQGv2vze+o1QSGHFw5OATB2i043DD10TtBCQN4WYIauWO9HF/WjWaPWfJEIwRu1oaR/xvbW952O5w6cwnkrF/j2nn7A33PNWESYUSuXvRdfszZZ1sGi9Yar4lFDRt4osdIZSwew89BUQwaEthuWnFoLeGo1GbWRkRGMjMiHxXUTjYghk+JpT0X5KBulXiuUUyMFYzIaZiMtmFDE1VNrrZwaYBWL+KV+BICPbFmBj/jQaslveLVto0JhPKR+LPLqR491amLxdb2LYDIaRjpbDLTwmufMSl6tFTyRViNpMWrNz/8FdgQHDx7E5OQkDh48iFKphJ07dwIANmzYgL6++S/QzYQ3ZEHI+QFzFAuFCU/zwaiR9Ju8LX7HT4tDvlhGtlCyfXhPtVhODTAnYCeioa5YdHosRq3xf2+YUz+aRq0+oUi914t+r1Ge2qaVQwDm30WnE+HTMa3w/AVm1L74xS/ivvvuY//evNnoxfboo4/ikksuCepjGwK/kATlbotF1KdLej7WSpWnxjcUjkWgaYYRTWUL9kbNp2bGfkKeWisZ2iCxhh8b76lFOaGIWBpihzhPbT5CEf73GmXUzl0xhP/x0U22Yq1uhl9HWiH8GNgTce+990LX9aqvdjdogHgRg9kXiDLeIMKPfDubUEhj3qFTXm2y8rutFH7cumYBtq5egGvOt5/71ElYhSLN8NS4eWqehSLyOrV6jRq9XyMbAPzm5hU4e/lgwz6vXWjEJr8Wmh8AbUOSDUiM8l0ENM0fo0b5l6kMDTetbgybyhYd82rkqfnVY9EPemIR/PONFzX7MBoGf881I6cWZb0f9ap2a3bYqR/rfX4aHX5U2MNvaFoh/KikPHVgVT8G76mtWtjjy80SE2qFxAWFCrDTDgXYp3waEKqoH/7eaMYiYnbpNxtju3YU4SYk67ppDMWBn15RRq11SLSYp6aMWh00otiQ77bvh0gEqB49IoZO3Vpl8c2MWymn1m30NFn9GK2EHwulMtsgea1TA4Ti/zqN8sZKCcuZywZcXqkIGn5KSCsYNRV+rING1GXw4cfTfBCJANVDIu08NbvwI3lpIS3YGVYKZ3ihiF/jZGqBPDXeo3cNP0YEozaPNlkA8PkrNuK6i9dU9f5UNJ6EpcSp+SZFeWp10AihCL9wBeepVefUAHuhCAlMBlukmXG3wt9zje77CJhtsmjzo2nuKsxoWAPdMrlCaV4dRQBD2KQMWmtgMWoqp9aeNKKjSDwSZqElv2TEYqiqKvzo4qm1YuF1N8Ln1JrhqVFDY/LUkh46s2uaZhk/M9/wo6J1aOuOIgqDRrnbn37veuw7Metb3kCcpyXegNSN48DJWenvt2KNWjfCq1abWXxNuVev0YpENIy5fAnZYmnebbIUrYPq0t8B8A1VewO8iH/4/5yOv71ms2+hPjdP7dK3jQIAHnzlOA6fmqv6/UmlfGwJ+I74zfDUSNI/W2NeLMHUt6V5S/oVrYPY4L3ZKKNWJ3QhW6HXmVfcPLVzVgziXRsWoVTW8c0n9lb9PuXUWqlGrRuJhEPs/mump0Z4Nmp8+HGebbIUrUMj6nZrQRm1OiE3O6icWhCIRk0WKviDS9YDAO7ffggnZnKWn6mcWutAasPmFF87b47siHMF2Cqn1jkkVPixMxjuNUbkjLTYVGQnxF29TIZ94fphbFoxiFyxjHv/fb/lZyqn1jpQXq0ZRq3aU/MWrYjz4UePjZAVrY9SP3YIX7p6E/7mo+dh45L2Kf50Cz8Chkrtxoq3dt9T+5HmlJAqp9Y60IakGeE7cdK21905hUxnckUUy8b4iVZYBBXzw9qMovmbFGXU6uTMZQO4avPyZh9GTYh1anaL0fvPXIJ1I71IZ4v47jMH2fdPzbXe1OtuhdqzNcdTs36mV7EUGWC6jwAgEVNLULuj1I+KpiEq5ey6QIRCGj79XsNb+19P7mNNaFn4sYWmXncrG0aMgvy1i3ob/tmRkOipeZT0V8LfU1xnGnGjpWg/BpJRDPfGMNIfr5ou0gzUHdVFePXUAOCq85Zj+VASE+kc/u6xtwDwHfqVp9Zs/uyqs/Hof7kEW9csbPhnR8L1qh+N+48ERz2xiGvRtqL1iYZD+Omt78ZPb3l3S3QaUkatixCNmpNyMxYJ4QsfPAMA8PXH38Kb42mkc0YHCWXUmk8sEmqKlwaYHUWIWsOPVBqi5Pydw2h/Aov6WkM0p4xaFxHiisYB65BQGVeevQTvPm0R8sUy/vB7LxrvoZoZdz11hx9ZTi1f+T21/Cj8R91VXQavgHRL6mqahv/vN85GLBzCy0emAQBDPbGWCDEomke94ce4GH502VQpFPWgjFqXQUYtGtaqJP4y1i7qxaffu479W3UTUYjhR+9tsozXTVd6RtY7IFShcEIZtS6Dwo+11Af9waUbsHKhMeZD5dMU1Z5aneHHJvStVHQ+6q7qMigE1FuD9DYRDePPf/McxCMhXLh+OKhDU7QJYk6tx2OrOFI/smnZSiiiCAAV1O4ymKdWY+jn3aeN4MU7368UawpExN6PHu8J8d5phe4Tis5DeWpdBuXR6ummrQyaApB4ap7DjyHh3+p+UviPMmpdRpwZNbVLVtRH3eFHoaG2kvQrgkDdVV3GfDw1hQKY/zw18/fUxkrhP8qodRmxym7Zru+jQuGGpmkWb81rvZnYe1SFHxVBoIxal0Hhx1bopq1oX3hvzfvoGSH8qIyaIgCUUesyVPhR4Qc0/dprET9QPSZH1akpgkDdVV1GPKyEIor5Q55aLd6WyqkpGoEyal0GNSNW7a4U84FyarUW8Vv+raIFigBQW6Uu41PvXosFPTFcvXVlsw9F0cZQq6xacrOJqvCjMmoK/1FGrctYsaAHt1x2WrMPQ9HmUFPjWnKz1eFHZdQU/qPCjwqFombIU6slL1YVflSemiIAAjNq+/fvxyc/+UmsXbsWyWQS69evx5133ol8Ph/URyoUigZBQpFavK1wSEOU6/Cvwo+KIAgs/Lh7926Uy2X8/d//PTZs2IBdu3bhhhtuwOzsLL70pS8F9bEKhaIBROsIPwJGq6xCqQhA1UoqgiEwo3bFFVfgiiuuYP9et24d9uzZg6997Wu2Ri2XyyGXy7F/p1KpoA5PoVDMA9NTq20JiUfDSOeKld9VRk3hPw3NqU1PT2PhwoW2P9+2bRsGBwfZ18qVSqGnULQi0XDt4UfA2qlf5dQUQdAwo/bmm2/iK1/5Cn7/93/f9jV33HEHpqen2dehQ4cadXgKhaIGWPF1zUbNfL3KqSmCoGajdvvtt0PTNMev3bt3W37nyJEjuOKKK3D11VfjhhtusH3veDyOgYEBy5dCoWg9aFBorY2xyVOLhLy311IoaqHmnNpnP/tZXHfddY6vWbduHfv/o0eP4tJLL8VFF12Eb3zjGzUfoEKhaD0idagfAXOmmvLSFEFRs1EbGRnByMiIp9ceOXIEl156KbZs2YJ77rkHoZDamSkUnQB5avWGH1WLLEVQBGZljhw5gksuuQSrVq3Cl770JUxMTGBsbAxjY2NBfaRCoWgQ569ZgGQ0jPNWDtX0exR+VJ6aIigCk/Q/9NBDePPNN/Hmm29ixYoVlp/puh7UxyoUigZw86+dht9/73o2gsYr8YoxU3J+RVAE5qldd9110HVd+qVQKNqfWg0aYM5UU3J+RVCoJJdCoWgYZMxU+FERFMqoKRSKhsHUjyr8qAgIZdQUCkXDYEIRZdQUAaGMmkKhaBgkEOlR4UdFQKghoQqFomFcec5SPLv/FH77HaqvqyIYlFFTKBQNY/1IH/73J85v9mEoOhgVflQoFApFx6CMmkKhUCg6BmXUFAqFQtExKKOmUCgUio5BGTWFQqFQdAzKqCkUCoWiY1BGTaFQKBQdQ0vXqVFH/1Qq1eQjUSgUCkUzITvgNumlpY1aOp0GAKxcqboPKBQKhcKwC4ODg7Y/1/QWHnBWLpdx9OhR9Pf3Q9O0ut8nlUph5cqVOHToEAYGBnw8wvZHnRt71LmxR50bZ9T5safec6PrOtLpNJYtW4ZQyD5z1tKeWigUqpqaPR8GBgbUDWaDOjf2qHNjjzo3zqjzY08958bJQyOUUEShUCgUHYMyagqFQqHoGLrCqMXjcdx5552Ix+PNPpSWQ50be9S5sUedG2fU+bEn6HPT0kIRhUKhUChqoSs8NYVCoVB0B8qoKRQKhaJjUEZNoVAoFB2DMmoKhUKh6BiUUVMoFApFx9DxRu2rX/0q1qxZg0QigQsuuADPPvtssw+p4Wzbtg3veMc70N/fj9HRUVx11VXYs2eP5TXZbBY33XQThoeH0dfXh4985CM4fvx4k464edx9993QNA233nor+163n5sjR47gd37ndzA8PIxkMolzzjkHzz33HPu5ruv44he/iKVLlyKZTOKyyy7DG2+80cQjbgylUgl/8id/grVr1yKZTGL9+vX4sz/7M0vD3W45N0888QQ+9KEPYdmyZdA0DT/60Y8sP/dyHiYnJ3HttddiYGAAQ0ND+OQnP4mZmZnaD0bvYO6//349Fovp3/rWt/RXXnlFv+GGG/ShoSH9+PHjzT60hnL55Zfr99xzj75r1y59586d+gc+8AF91apV+szMDHvNpz/9aX3lypX6ww8/rD/33HP6O9/5Tv2iiy5q4lE3nmeffVZfs2aNfu655+q33HIL+343n5vJyUl99erV+nXXXac/88wz+t69e/UHH3xQf/PNN9lr7r77bn1wcFD/0Y9+pL/44ov6r//6r+tr167VM5lME488eO666y59eHhYf+CBB/R9+/bp3//+9/W+vj79y1/+MntNt5ybf/u3f9O/8IUv6D/4wQ90APoPf/hDy8+9nIcrrrhC37Rpk/7000/rv/zlL/UNGzbo11xzTc3H0tFG7fzzz9dvuukm9u9SqaQvW7ZM37ZtWxOPqvmMj4/rAPTHH39c13Vdn5qa0qPRqP7973+fvea1117TAehPPfVUsw6zoaTTaf20007TH3roIf29730vM2rdfm4+//nP6+9617tsf14ul/UlS5bof/mXf8m+NzU1pcfjcf0f//EfG3GITeODH/yg/olPfMLyvQ9/+MP6tddeq+t6954b0ah5OQ+vvvqqDkDfvn07e81Pf/pTXdM0/ciRIzV9fseGH/P5PHbs2IHLLruMfS8UCuGyyy7DU0891cQjaz7T09MAgIULFwIAduzYgUKhYDlXGzduxKpVq7rmXN1000344Ac/aDkHgDo3//qv/4qtW7fi6quvxujoKDZv3oxvfvOb7Of79u3D2NiY5fwMDg7iggsu6Pjzc9FFF+Hhhx/G66+/DgB48cUX8eSTT+LKK68E0N3nhsfLeXjqqacwNDSErVu3stdcdtllCIVCeOaZZ2r6vJbu0j8fTpw4gVKphMWLF1u+v3jxYuzevbtJR9V8yuUybr31Vlx88cU4++yzAQBjY2OIxWIYGhqyvHbx4sUYGxtrwlE2lvvvvx/PP/88tm/fXvWzbj83e/fuxde+9jXcdttt+OM//mNs374d//k//2fEYjF8/OMfZ+dA9px1+vm5/fbbkUqlsHHjRoTDYZRKJdx111249tprAaCrzw2Pl/MwNjaG0dFRy88jkQgWLlxY87nqWKOmkHPTTTdh165dePLJJ5t9KC3BoUOHcMstt+Chhx5CIpFo9uG0HOVyGVu3bsWf//mfAwA2b96MXbt24etf/zo+/vGPN/nomss//dM/4Tvf+Q6++93v4qyzzsLOnTtx6623YtmyZV1/bppJx4YfFy1ahHA4XKVSO378OJYsWdKko2ouN998Mx544AE8+uijljl1S5YsQT6fx9TUlOX13XCuduzYgfHxcbz97W9HJBJBJBLB448/jr/9279FJBLB4sWLu/bcAMDSpUtx5plnWr53xhln4ODBgwDAzkE3Pmef+9zncPvtt+NjH/sYzjnnHPzu7/4u/vAP/xDbtm0D0N3nhsfLeViyZAnGx8ctPy8Wi5icnKz5XHWsUYvFYtiyZQsefvhh9r1yuYyHH34YF154YROPrPHouo6bb74ZP/zhD/HII49g7dq1lp9v2bIF0WjUcq727NmDgwcPdvy5et/73oeXX34ZO3fuZF9bt27Ftddey/6/W88NAFx88cVV5R+vv/46Vq9eDQBYu3YtlixZYjk/qVQKzzzzTMefn7m5uaoJzOFwGOVyGUB3nxseL+fhwgsvxNTUFHbs2MFe88gjj6BcLuOCCy6o7QPnJXNpce6//349Ho/r9957r/7qq6/qv/d7v6cPDQ3pY2NjzT60hnLjjTfqg4OD+mOPPaYfO3aMfc3NzbHXfPrTn9ZXrVqlP/LII/pzzz2nX3jhhfqFF17YxKNuHrz6Ude7+9w8++yzeiQS0e+66y79jTfe0L/zne/oPT09+re//W32mrvvvlsfGhrSf/zjH+svvfSS/hu/8RsdKVsX+fjHP64vX76cSfp/8IMf6IsWLdL/6I/+iL2mW85NOp3WX3jhBf2FF17QAeh//dd/rb/wwgv6gQMHdF33dh6uuOIKffPmzfozzzyjP/nkk/ppp52mJP0yvvKVr+irVq3SY7GYfv755+tPP/10sw+p4QCQft1zzz3sNZlMRv+DP/gDfcGCBXpPT4/+m7/5m/qxY8ead9BNRDRq3X5ufvKTn+hnn322Ho/H9Y0bN+rf+MY3LD8vl8v6n/zJn+iLFy/W4/G4/r73vU/fs2dPk462caRSKf2WW27RV61apScSCX3dunX6F77wBT2Xy7HXdMu5efTRR6VrzMc//nFd172dh5MnT+rXXHON3tfXpw8MDOjXX3+9nk6naz4WNU9NoVAoFB1Dx+bUFAqFQtF9KKOmUCgUio5BGTWFQqFQdAzKqCkUCoWiY1BGTaFQKBQdgzJqCoVCoegYlFFTKBQKRcegjJpCoVAoOgZl1BQKhULRMSijplAoFIqOQRk1hUKhUHQM/z/bCiFAb4F7XQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "plt.rcParams['figure.figsize'] = (5,3)\n", + "\n", + "ϵ_values = np.random.randn(100)\n", + "plt.plot(ϵ_values)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "948de567", + "metadata": {}, + "source": [ + "Let’s break this program down and see how it works.\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "f801fb81", + "metadata": {}, + "source": [ + "### Imports\n", + "\n", + "The first two lines of the program import functionality from external code\n", + "libraries.\n", + "\n", + "The first line imports [NumPy](https://python-programming.quantecon.org/numpy.html), a favorite Python package for tasks like\n", + "\n", + "- working with arrays (vectors and matrices) \n", + "- common mathematical functions like `cos` and `sqrt` \n", + "- generating random numbers \n", + "- linear algebra, etc. \n", + "\n", + "\n", + "After `import numpy as np` we have access to these attributes via the syntax `np.attribute`.\n", + "\n", + "Here’s two more examples" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a783ea17", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sqrt(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6adab364", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.3862943611198906" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.log(4)" + ] + }, + { + "cell_type": "markdown", + "id": "ed236510", + "metadata": {}, + "source": [ + "We could also use the following syntax:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "80d2daad", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy\n", + "\n", + "numpy.sqrt(4)" + ] + }, + { + "cell_type": "markdown", + "id": "71c05b11", + "metadata": {}, + "source": [ + "But the former method (using the short name `np`) is convenient and more standard." + ] + }, + { + "cell_type": "markdown", + "id": "b581441f", + "metadata": {}, + "source": [ + "#### Why So Many Imports?\n", + "\n", + "Python programs typically require several import statements.\n", + "\n", + "The reason is that the core language is deliberately kept small, so that it’s easy to learn and maintain.\n", + "\n", + "When you want to do something interesting with Python, you almost always need\n", + "to import additional functionality." + ] + }, + { + "cell_type": "markdown", + "id": "a4540370", + "metadata": {}, + "source": [ + "#### Packages\n", + "\n", + "\n", + "\n", + "As stated above, NumPy is a Python *package*.\n", + "\n", + "Packages are used by developers to organize code they wish to share.\n", + "\n", + "In fact, a package is just a directory containing\n", + "\n", + "1. files with Python code — called **modules** in Python speak \n", + "1. possibly some compiled code that can be accessed by Python (e.g., functions compiled from C or FORTRAN code) \n", + "1. a file called `__init__.py` that specifies what will be executed when we type `import package_name` \n", + "\n", + "\n", + "You can check the location of your `__init__.py` for NumPy in python by running the code:" + ] + }, + { + "cell_type": "markdown", + "id": "7c7e5c25", + "metadata": { + "hide-output": false + }, + "source": [ + "```ipython\n", + "import numpy as np\n", + "\n", + "print(np.__file__)\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "368a8338", + "metadata": {}, + "source": [ + "#### Subpackages\n", + "\n", + "\n", + "\n", + "Consider the line `ϵ_values = np.random.randn(100)`.\n", + "\n", + "Here `np` refers to the package NumPy, while `random` is a **subpackage** of NumPy.\n", + "\n", + "Subpackages are just packages that are subdirectories of another package.\n", + "\n", + "For instance, you can find folder `random` under the directory of NumPy." + ] + }, + { + "cell_type": "markdown", + "id": "48753714", + "metadata": {}, + "source": [ + "### Importing Names Directly\n", + "\n", + "Recall this code that we saw above" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d501633b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "np.sqrt(4)" + ] + }, + { + "cell_type": "markdown", + "id": "a6648e84", + "metadata": {}, + "source": [ + "Here’s another way to access NumPy’s square root function" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fafee420", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from numpy import sqrt\n", + "\n", + "sqrt(4)" + ] + }, + { + "cell_type": "markdown", + "id": "63fb5694", + "metadata": {}, + "source": [ + "This is also fine.\n", + "\n", + "The advantage is less typing if we use `sqrt` often in our code.\n", + "\n", + "The disadvantage is that, in a long program, these two lines might be\n", + "separated by many other lines.\n", + "\n", + "Then it’s harder for readers to know where `sqrt` came from, should they wish to." + ] + }, + { + "cell_type": "markdown", + "id": "a668dae2", + "metadata": {}, + "source": [ + "### Random Draws\n", + "\n", + "Returning to our program that plots white noise, the remaining three lines\n", + "after the import statements are" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "dcc4d204", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvWUlEQVR4nO29eZgc1Xku/lav0z2rpBkto11it1jELvAC18QWcXAcJ07sYAeIL4kdkUDwzw5cx3ATP0S+9/r6OnEcsP3EJvfGNg65Nra5NgkBA8ZmlREgQAItoGW0jEaavfc6vz+qvlOnTldVV3dXVfdMn/d55rGZaXVVV1ed73zv937vpzHGGBQUFBQUFOYBYq0+AQUFBQUFhaCggpqCgoKCwryBCmoKCgoKCvMGKqgpKCgoKMwbqKCmoKCgoDBvoIKagoKCgsK8gQpqCgoKCgrzBolWn4AXdF3HyMgIent7oWlaq09HQUFBQaFFYIxhamoKw8PDiMXc87G2DmojIyNYuXJlq09DQUFBQaFNcODAAaxYscL1720d1Hp7ewEYH6Kvr6/FZ6OgoKCg0CpMTk5i5cqVPC64oa2DGlGOfX19KqgpKCgoKNQsRSmhiIKCgoLCvIEKagoKCgoK8wYqqCkoKCgozBuooKagoKCgMG+ggpqCgoKCwryBCmoKCgoKCvMGKqgphI7DEzlMzJZafRoKCgodABXUFELFVL6E//TFx/E79/yy1aeioKDQAVBBTSFUHJsqIFeq4K2x2VafioKCQgdABTWFUFGq6ACAYkWHrrMWn42CQmPIlyr42D8+g3se3xPaMSo6w/95+i28fnQqtGN0AlRQUwgV5YoVyIpmgFNQmGt4ZWQSP3/jOP73L98M7RhP7RnD5x7YgTt+uCO0Y3QCVFBTCBViICuUVFBTmJsolCoAgJliJbRjjM0UAAAHTuRCO0YnQAU1hVBRKgtBrRzegqCgECYK5uYsF2JQK5jPyuhUAYwpqr5RqKCmECrKQh2tUFaZmkLjePngBMamCy05drFs1YZLIdHolA0WKzomcqoFplGooKYQKmz0owpqCg1i7+g0rvn7J7HlO79qyfGLwr07G1K2lhfo+WNTrQne8wEqqCmECkU/KgSBkfE8AODwRL4lxxeDWlgUpPh8HJtUQa1RqKCmECoU/agQBIjyE9W0UUJkHGaL5VCOYc/UWhO85wNUUFMIFWL9oaiCmkKDoKBS1ltzD0VDPwqZmqIfG4YKagqholhWNbUwMDZdwOOvj3ZMQ3vLM7UIgpr4fCj6sXGooKYQKmz0Y0nV1ILCf/3xq7jum8/iF3uOt/pUIgEPai0K4tHQj2KmpujHRqGCmkKoKCn1Yyg4PG406LZKOBE1SmUjmJVb5EpTiIJ+LCv1YxBQQU0hVIi0jaqpBYe8qZTrlI1CsdWZWhT0o5Cpjaqg1jBUUFMIFUr9GA5IKdcplG6r6UdRbh8a/WirqXVGBh4GVFBTCBWqTy0cUP2lUzYKFNQqOmuJhVTU6seZYgUzhXCC53xHqEFt69atuOiii9Db24vFixfjAx/4AHbt2hXmIRXaDKqmFg54ptYh17QkqB5bka1FrX4EVF2tUYQa1B5//HFs2bIFTz/9NB5++GGUSiW85z3vwczMTJiHVWgjlGzqx85YgKNAgWdqnZH9ikGlFbJ+m/oxpAxKppIVBdkYEmG++UMPPWT773vvvReLFy/Gtm3b8M53vjPMQyu0CUT6sVjpjAU4CnChSIdsFMSMv6TryCAe6fFtmVpIdUyiHxMxDWWdqUytQYQa1GRMTEwAABYuXOj490KhgELB+iInJycjOS+F8FBS89QCR0VnnI7rlExNvI8qrcjUIvF+NI6xfEEGb43NKgVkg4hMKKLrOm655RZcfvnl2LBhg+Nrtm7div7+fv6zcuXKqE5PISSUlPoxcIiCgk7ZKIg1tVILrLJE+jEsAQd9r6sWZgGomlqjiCyobdmyBTt27MB9993n+prbb78dExMT/OfAgQNRnZ5CSFDqx+BhC2odslEQg0oramridc6FRj8ax1jJg5qqqTWCSOjHm266CQ8++CCeeOIJrFixwvV16XQa6XQ6ilNSiAjK0Dh45DtwoyBujiotVj+Gkakxxvh3uXKBEdQU/dgYQg1qjDH86Z/+KX7wgx/gsccew9q1a8M8nEIbQtGPwaPTM7WwJk97Hj9kSX+pwkCPCqcflalxQwg1qG3ZsgXf+c538MMf/hC9vb04cuQIAKC/vx+ZTCbMQyu0Cez0Y2cswGGjM2tqLc7UKuHSj3kh416l6MemEGpN7e6778bExASuuOIKLFu2jP9873vfC/OwCm0Ee/N1Z1BlYUMcJpnvkGtaLAtCkZbU1AS3j0Lw11zcnCxfYGz4T86WFGXfAEKnHxU6G6L7g3pAg0GhwzO1VgwKtUv6g6+pUfadTsSwIJtEKh5DsaJjdLqA5QOK1aoHyvtRIVSoIaHBQ8zOOiX7tQe1FttklSqBb9jpe+xKxqFpGoZ6DcGcchWpHyqoKYQK1XwdPHLFztsolFos6ReDGmN2CjgI0Pt1JY0lmQc1pYCsGyqoKYQK++iZzsgqwkZnqh8FQ+NWqB+lY3qNn9lxaALXffNZ7Dg04fv96dlIJwz7r8UqqDUMFdQUQoWiH4OHjX7slHlq5dbRj7pgS0bwkvX/318dxOOvj+Jftx30fQw5U1vcZwS10RbTj3NRF6GCWgg4NpXHw68ehd6igYbtBNV8HTxE6qtTNgqtFIqIWVoqbiyZXkFtfLYEoD5JvlhTA4DFvV3me7QuU7v7sT04//MPY/ex6ZadQyNQQS0E/NWPXsWN//t5PLn7eKtPpeVQk6+Dh0g/lnXWEjouKOwfm8W2t07WfJ3NpT/impoY1AaySQDe9OP4bBFAfc3TtFFJJ9qnpvbozqM4OVvCC/trfz/tBBXUQgDt0A6cnG3xmbQeyvsxeMiU41zeLFz/rWfxoXt+iQMnvJ8VMZBF3XwtMgz9GQpq7vfySTNTG52uJ6jJmRoFtdbRj5M5I3DL9cR2hwpqIYCK2kRDdDLEAn+pwhQlGwDyUhCbq0GtVNGxb2wGOgO2Hxj3fG0rbbIoqKXiMWTTRmuvV1CbyJn042TBd02KvkNLKNLF36NVmMwbn2OulQ1UUAsBdBPQzd3JkOsfc23X147IV2VqczMDPj5dAK35rx72np3YSpssHtQSMXSnjKDjh37MlSqY8ekTyZuvJaHI8elCS2zBAGAyp4Kaggl6AOnm7mSU5KxC9ao1jaqgNkevqZiFvDpSI6iJ6scW1dRSiRiyPKg5BytdZ7bNrN/maa5+NDO1Rd0paBqgM2BsJvpsrVzReUCea0yACmohwApqKlOTi/pzNatoJ8iNv3Nt0SEcFRb82pla64aEFgQRRyblTT9O5csQEyu/42Ms9aOxJCfiMSzqJleR6IPaVN7KRJvN1HYemcTuY9ORPfsqqIUA2lWOdzj9yBirohvn6gLcTpgv9ONRYcEfnSq4BgD5PoqcfqwY11ekH938H8dzdnbGr3rRUj/G+e9ILNKKuWpUTwOaLxn8/jeewVVfehz7x6IRzqmgFgJIHDHZ4UFNXHw0zfhfFdSax3wRisiNxa+5ZGtyth+1pL8gCEUyZlBzq5WdlNgZvwHJUj9aS/KCbkNpKQaYqCBSqM1malR/pGsXNlRQCwFFc+ccJv344Esj+My/vtjWRVxx8ek2aZu5mlW0E+RMTf7vuYKjEq3mRkHKaseo+/JEoUiWZ2rO11yuo/vN1ChwkqQfADJJ72OFCZLzA81tmnSd8Sw0k1RBbc6CFnOZiggSf/sfb+Bfnj/Y1o2RIm3RnTZu6LmaVbQTqvrU5qhQ5KjZg7V2sBuAu1ikKqi1UP2YNTdnMwVn+lFWPPuuqQmjZwgU4MIYSloLYnbYzEZUPHe6dmFDBbUQQA9hvqSHtoueNh+q2TbepZdtQc3M1OboAtxOmD9CEWPBf9dpQwDcMzW5ptMy9WNcUD+6PHcyO+O3eTov2WQBVmYT9EQAP5gMiH4Ug5pIrYYJFdQChq4z204yrF41Ul+1c5CgjDUe0/gDqvrUmgctgCRamKuU7qi54F95xmIAwN7RaUeqTa6hRe79aOtTMzZnbpTgSZN+pMGe/jM1u6ExYNWgWp2pNRXUzOuUMefERQEV1AKGLDcOK6jRjd7OCxplrMm4xmmVTnGVDxOU/ZNl01zM1EoVHcenjQCwYbgPgz1p6AzYdXSq+rXl9qAfDUm/KRRxoR8pUzttSQ+AOoQi0ugZQMzUWltTa2YjSpvvbEQiEUAFtcAh72rCEItUdMaP084LmhXUYkhRUGvj850rIDqqj4LaHNwo0GKfiGlYkE3hrOE+AM51tZYLRRyar92yJ9rEnrakFwBwYrboy9ZLHj0DAOlWCkUCytSiVj4CKqgFDpkqCcNVRHyg5oL6MRmP8R2oCmrNYz5kaqQKXNybRiym4cxlRhB49XD1YE05U4jcpV/0fqzRfE3049rBbsRjGhgDxqZrrwF8SKiT+rEFmxaRYWrm/qJzV5naHIa8KwujAVv0nWvnBc2RfmxjunQugDHGv3MKaq0QEjQLchNZ3GcY9561zCtTswexqJuvCw6S/tka9OPC7hQGe1IA/FGQ8ugZAMiYWVtLampBCUWEmlpUUEEtYMg3wEQI9KNIR7RzkBDpR9qBtnNmORcgbmJotlc73wNuIE9Ecs14m0k/7jwyVRW0qiX9LRSKpL3Vj5ThDGRTwky02gpIefQMYFF2raCXJwOyyaKMVtGPcxjyAxiGUETcuc0F9WMyHuMTg9s5s5wLEEUDc5l+JDn/EjNTWzvYg65kDLPFCt4am7G9tkoo0iJHkXQiXtP7kejHgWySj4/xk6nx5mtBKNLSPrVcMDZZOS4UiaZHDVBBLXDIN0AYDdjiA9XOEnkb/Zgk9WP7nu9cANFUiZjGF4o5mamZ2csSc8RKPKbh9KUmBSn1q1X1qbWy+VpgHGTBiujQP5BNYqjH//RqefQMIAS1OSwUoYCs6Mc5jFJZFooEn6nli3MlUxPoR1VTCwQiTTWXNwqUqVFNDXCvq1V7P0atfjQNjeMxZNPW4ixTkFP5Mp8P159J8plovjI1rn50Eoq0ovlarNs3/swq+nEeQN5VhkE/zrZBTW0qX8LOI/7GhSQE9aOqqTWHvDCiZC4rSo9KNTUAOMtUQL4u9arJQayVQ0JT8RjiMaOJeLZgf/aIesym4kgn4r5rarpuTSHoSlQ3X0fdp1Ys6/YSR1NCESM4KvXjHEaV+jGETG02oBuuGdx833Zs/vLP8cpItQSbUOL2QprqUwsI4oiSuZz9UvayRMjUFnQbakFRpABUP1OtkvSnEzFomsYpSHn6NSmdF2SNz+F3dIz4TDhK+iOmH6ekqQBKKNLhqGq+DqGmZqMfWxQkdh+bBgC8sH/c9TWKfgwe4ogSuqZzTdJfLOsYmzGeCzGokUhCVvvJz1Tk6keh+RoApyBlsQj1pJKAx8rUagU1wR/RwdA4H/EzI7NLxYoOxhrbSKia2jwALeS9poFvGJJ+cYdYbFGQoAd4z+i062vs9KPK1IKAvaY2N70fR6eNRT4Z17DAbEsAhEVcCtIypd8y+tFU8Lo1YIsiEQA29aNXUBDFP4m4g/djxJkaZco95hrGWOPZcU7ZZM19UFAbMovEk/ly4A+hWDhuRZCo6Izf+HtGZ1xfJ9KPqk8tGOQFQUHXHN0oWPW0LpvJLVlEyZmJLOmPWigiNl8D1gIt048nzeyT6EfK1AplvYpSFeHUowbA9v3qEQZykvMPCfXORlXWFv2oJP1zFjT1erDbuiGCnoAtjpJvhfJN/Dx7jrlnamWRflR9aoGgIApFKFObY/TjMa58TNt+z4UvJecaGgW9yEfPuAQ1OYOimlq/mal1JePo7TIWc6+6WkGo2YkQ61BRUpAk5ydHFKDxzaiiH+cBaFeZScV5+h60VVar1Y/i5zk0nqvasRKKIv2YVDW1IMB39XNYKMJ71Hq7bL93y9QoSyDaL/I+tYqdfqSsY6aqpmbSjxmLUvWjgHTP1Kz/jpKCJDn/QDbFlZ4NB7X5Rj8+8cQTuOaaazA8PAxN0/DAAw+Eebi2QFHITqhgHLSpsc3QuAXN1yelz7PXhYJ0Hj0zt7KKdoNIP87VOqXl+2jP1LpcRq3QfUS7/VbaZAHWHLucrH6ctdOPgD8FpFPjNQDEYtZzE6WrCGVqfV1JHsgbDWqzpXnm0j8zM4Nzzz0XX/3qV8M8TFuB15ESGi8YB92rlmtx87UsfnETi5SFHe5c7qlqJ+SEBXCuXtNjk9VyfsBa1PMlu9quxDM1M6i1yCaLghqfqVaDfgSAIR9WWaINlwyrVy2675jKC32ZRNMMC5+nFiH9GGr17uqrr8bVV18d5iHaDqJSKrSg1uI+NblNwU0sYtGPVp+aEoo0B2dHkblFPx4Vxs6IEBf1YkXn/001NVrgWzck1Di+JRSpTT/Wk6l1JatzjEwyjnGUIm3AdsrUGl1n8i3oU4tOkuIDhUIBhYL15U9OejtWtCNEE1+LfpxnNTWfmZqfPrUjE3lUGMPygUwIZzr/wOnHRFzoY5pbG4Vj0tgZgrio50t6lQsNpx+jtsmShBzdZk3NlX7stuhHP71q9P11OWRqrTA1njBran2ZpLUZbVT92Onz1LZu3Yr+/n7+s3LlysCPsf3AOP6/+1/EkYna4yAaAV/IEzH0Z4ybO+iglmtx8zV9nuF+Y1FyU0DWoh91neGav38SV3/5iZaMrJ+LcGq+LpYbb45tBaimtkSqqaXiMZDCX8w+q+jHVglFfNKP9WZqBZeaGtAaU2OiH/vFoNZoTa3TJf233347JiYm+M+BAwcCP8a9v9iHf912EJ9/8NXA3xtwph+DdhVp9eRrolPPX70AALDv+IxjL15JoB8tbt4638l8CaNTBUzmy75MXxVESX/cJgGfK3W1QrmCk+amSFY/aprGsxWxhsSFIi2qqcnN11amZj2HokO/vabmQ/3okam1YlCoRT8mmvJsreiM/7soa2ptFdTS6TT6+vpsP0GDdlf/7+XDjlN2m4Wo+KMdW9A1tVZPviaaZcPyfqTiMRTKOkbGc1WvKzrQj+LDIV4XWVGp4AxL/Riz1aDmSlCjzYu46RPhJEzgNbUkSfpbq37MODRfiw79AxlR/ehDKOJVU2uBqbElFEk25dkqBuJ5o35sR4hfzv/6j9cDf3+RquBCkYDpR3EXW9FZ5DUGolkWdqewdrAbgOUFKUJsvk451NTsQS14O7F2wc4jk9jrYSdWD0ShSDKuWXTdHOlVo5EzQ71pm5sIwSlTK7aQfmSMVXs/OghFaFPWnYrz1wFWpnZytuSa7XiqH13aHMIEuZ/0dSW5aUIjmRoFfU2rbiwPE6EeaXp6Gtu3b8f27dsBAPv27cP27duxf//+MA/rCdEr8eFXj+Klg+OBvn/J1qdm1tRCzNSA6Hfpospr/WIjqDmJRSzRjGZTshFVKQa1oHv52gWzxTJ+66u/xIfueSoQqyOx+VrTgu3/OzFTxK3f245f7jne9Hu5YXTKuZ5GcGrAFg0NgGjpR1EgYQW1au9HXk8TetQAYEE2yRuYT8w43+Ne6sdW1tT6MglBKFL/8XOCnN9pAxMWQg1qzz//PDZu3IiNGzcCAG699VZs3LgRd9xxR5iH9QQFANpB/a+Hg83WaEioW/N1RWc45EDV1QOZX4+6rjYhPMDrh3oAOAc1J/oRsM7XHtTmZ6Z2craEXKmCsZkiZlycV+oBpx/NBT7IXrWf7jiM779wCF9++I2m38sNR1161AhODdhy83WU3o/is2UZGldnavSMy5SqpmncWWi64HyPuzmKiL+LalBovlTh91Jfk0KRVoydAUIOaldccQUYY1U/9957b5iH9QR9OTddeQriMQ0/2zWKbW+dDO79BcWfU5/aVx59A5d/4VHc/3xjIhhdZ1WNmNFnatYDzIPasepetXKNoCYGsvlaUxMXZy9TW9/vR0IR83ryzCYAeooCzisjE6EZ6NLImYXdKce/O2Wecp9alC79TkGtO11dU+PshUOd0Apqzt+Rm/cjIE6/jiZTI5GIpgE9qYRjLdwvuO/jfApq7Qi6gU5d0oPfOX8FAODLAdbWiqJQJGv1qZHk+v+9dBgA8HePvtFQLUy8uWMtqKeIKq+BTBKnLHbP1ET6MRGPVZ1vJ2RqYrAJorYq2mQBwWZqJGaYKVawb8x9+kIzEOXiTkjz3rtqKzixphZVC4P4PMfMG5gEK46ZWqY6WFNQmyk4b2osmywvR5GIgprZo9abTiAWa264r0U/RtsO3XFBTXQH+MQV6wEAT+4+Htjur8SVUnF+g5d1htliBcem8njDFFQcOJHDT3Ycqfv9xaDWZy4MUWZqU4Uy6FL1ZZJcKDI2U+SjNwhifRGoXoAn20D9eHy6gMMTzdHBXrBnas0HtYJEVQVpaiwq9HYccp9o3gym8lZjrxOcZqrJzddAdGIRWc4PCPSjEKScLLIIlNlNuWTq8kZFRNQ1NbpH6XM04ygyL+nHdgQ9/OlEDMMDBq/PGAKpdwB2SX9X0lL9jedKeHrvCdtrv/b4nrp3nHRzdyVj/CGP0v+Rso1M0nC06E4neBP23uP2bK0qqEly7VarHxlj+M2//wXe86UnQls0xMU5iBFEsqjAqf+vUdDwTgB4pcl2Fzf6khZNGskig2hVp5paVmjgjYqClH0fAWHydanCn19iGhY4BjXvTE1ck2RErX7kIpEuM6gFQT9G2KMGdGBQEy1v0ok434lMB1DvACzKLZWIQdM0m1jkqT1jAIAPnr8cmWQcr4xM4snd9SnN6EbJinx3A8qkRkGN5GLtYP1i57qaaBkGWA8tLfStVj9O5ss4NJ7DVKHs2RzbDGz0YxBBrexCPwawsTkuZGovH2w8U/vh9kM496/+HT9/Y7Tqb/KiKcOa5l3dfC1aLUUlFpF9H43zsCZCF3h92J1+pADutnH2ztSibb4W5fyA9bkbsckiG7EoLbKADgxq8s6rp4uKuMEENXoIaCHnDdizJTxlSqV/fcMy/N5FhgXY1x7fW9f785Q+GQ90QfML2pGKNRE3BaSYtQKo8pFrdfP1cSEzoVpC0MgFLRQRJP1AcPQjY8xOP45MNFy3+sXu45gqlPGL3WNVf6tJPzpmanahCNDaTE3MPCj78qQfzSDoTj96GxqLrwkbopwfaC5TU/RjRJB3XlTEdbvh6n5/iXKjjOa1I1N4c2wWMQ24eN1CfPztaxGPaXhy9/G6dsWkuMoITZ5R1tSsfhwxqDk3YFdnavYgbMvUZqKnH8XMJGjXF0KQ9CNjrJp+DOgemMyVbcrdqXwZ+0/MNvReOYfvlx+nFv3IKfVqKziRnitF1Ksmu4kAQDym8etPC7dFPzoIRbpq0Y8ezdc0uy1i9aNMPzayaRI34FGirVz6w0a5ovMCMx/4V4PvrhclyX2AGrAf2mGoHs9e3o++riT6upK45pxleGD7CL72xB78/e+f7+v985x+jAtF3AgdvB1oljWmWEReBKuFIu41talCGaWKzl8bBY5PW9lhECIOJwRJP5YqjIt0iKZzCgKNYHTaoF97uxJYN9iNFw9OYMehSaxe1F33exHt5BTEa9GPXQ41QvGZSsY1lCosMqsseeo1IZtKIF8q8mDj1qcGiJL++jM1N6HIKyMT+MojuzGZN8bS5Es6rjh9CJ/ZfIbvz+aEyZw9k25G0i+uVVGiozI1kRemL6u3xg1XL2TKjW7y581euEvXL+Kv/c/vWAcA+OmOI75rBLNcKBIPVCTgF079OL3mAiVvDORrIWcV8iJfS9Y/WywHKuUemxHpx/CDWrOBU5S5B52p0WiUod403ra8HwDwcoMKSFro5e9X1xl/zojekpFOVNNtJSGwJGLG543KVcQpUwOshVqmHwccaNXuGmtMQaqTisg4qEEB4B9/vg8PvXIEv9wzhl/tH8erhyfxD4/tadqIYUIWijRlkxW9Qz/QaUGtXB3UeE0taKFInDI14+agtfiy9YP8tact6QVg1Af8Zoq89yMVD7RHyS+cagdc4ixlC2WJfhT5+YrOOOVL/WteYpGdRyZx7l/9O/7mJ68F8CkMiPRjFJlas3U7ei9Ns+6voO4BqqcN9aRxthnUXhlpMKgVnYPaTFFoB6mRqeUdmq+T8RgS5s0SuaTfJajlihV776YT/VhL/Uh9ak7qR5c+tRPms/LRS1fh7mstlqdZFS+X9JubDto4NyIUmS2qTC100IMf04AEdweIRigCAImYhgvNcS2A8aDQ4iTPZnKDKJMNapdeDyzfR+vhzbhQJHJ9UVyAxcxoWb8xINRL1v/M3hMoVRhe2D9e1/kyxvBPv3wTP3n5cNXfRkX6MSShSJA1tYIwIJS89IKafj0qZGobhq1MrZHMeNYlqJFQJiU5zIjo8mi+TiZiSJhZf1Qm3qQsls+Xso+ZYgU/fmmEb1qdmspr0o8emRoJguSaGl3bd5w6hKvPXsbZkNlSc/ex6NAPCH1qDYjRiIZWNbUQ4STPrXXD1X0MqaYm0nTnrhzgQZTQnY6jOKv7ztRERREpwJpd0OrBhIOkn3ZiBTMDIwNXd/qxwh/K7lQcg71pHBrPeSogD5406nWzde5E//3Vo7jzR68gnYjhvW9bys8NkNSPIWVquSDpR4faS1AbG+pRG+pN47SlPUjGNYzPlnBoPIcVC7INnacc1KZIhJBJuBrcpqXeS8aY7T6KE/3YwuZrwLhvAeCvH3wFB04YzftXnD5UldEBtW2yZEWriEzKWdLPZ7eZwSeTjKNUKWPG5Rh+IUv6m5l8rWyyIgAJFMQbrzdgSb8sjugX6IjLhHoagXpe/B7fTj82fsM1CtGhnyA2xYoPX0nKWsUFS3woF2StXj43kAl0PSqwUkXHf/vpTuOYZd0WxABZ0h8F/dhsUKve0QdOP/amkU7EOTXeiLMIfUeT+ZKtCZtbMLlQj4DQy2g+qxWd8SwoFY/xDVK71NQOnMghGdfwZ+8+FV/72AWO71G7+drcbNchFJHtxugYzdKPU3Km1sSmSdGPEcDJODRoSX9J2tmJi/+mddVBjY4/63OHZacfW9Cn5lBTEzMH0eS1ZC5oSfN686JzxQpqfZkkl0F70Y+HTppBrY6H9rvP7sfe41ZD+OEJe4O1PVMLn35sVv2YF6ZeE7ochmo2ArGmBoBTkDsO1e8sQt8RY/bnylI+uhNEsku/KN1Pxi36sRSR+tGpTw0AVi00VKHnrxrA//uzd+DWXzvNUZIPCJmawz1WquiccXGefG1tWmiDwBirztQcBpc2gkkhmwaaE4rkWiTp78igJt6gwUv6aSE3Hj5asFPxGM4X6mkEstypN1PLCI4ira6paZpWVVez0UYxuf5jz9RE42c3HDSDmt+HdjJfwpf/wxihQpTjYWnkz/EpsaYWfqY2U6w0VQvKOwgKgtrYiJkaAGxY0bgCMufSxjBVsGcBTrCar43PI7IQSUH9GFXztZuk/7arz8APt1yOf/3EZTyrdYNXn5p4fzhlaiJ1R895vqTzdYaupdM4nHrBGLMk/eQoYj7Xqvm6TeHUxBmkpF+ckkuU25nLevGB84bxmc2nOxaCeabmc7EWGxqbaYxsBMYO0bkfR36oRNrIqU/NTj+aw1Rd6MdcscJHlsjSZjfc89genJgpYt1QN646czEAe6Y2UygHWu9yg6xaa4YRcKQfHYZqNgLKWhf3Gj6eG4b7ABj0Yz1ikVJFt2VXYlCz6MfamRot4CVbUNO4+jEqmyzaLMiZWioRw7krB7hzvxfI0HjaoSWl4KDIFiFmb3KrRDym8dqe0+DSepEv6Xz9qhKKeNxfjDH84b3P4T//0/O2z2f1qSlJf2iwMjVBKBKgpF98mOkhSMRj+PKHN/KeNBlyv0st5EqWn1oj9ZSfvzGKa77yZEO1ktlihX9GOajJzgdiIZ/oR/F8nWpqbkKRQ+NWU3exotfMdkbGc/jHJ/cBAG7bfAZWmkKHI5NWUJPra6E5ikiLQTPH8RSKNJGplSs63zRQpnbmsj7EYxrGZoq26+b3HAn2oObdeA2In4foR0skomkaVy1Hnam5UYt+0Ju22nrkoCNm307iGXH8ixzU+jNJ/m+yAdCPtLETg6UfocjYTBGP7jyG/3jtqI1tUTW1COCUqRH9OBVApibuHmW6wg2c/vQr6RdSet5DUkdQ+9H2Ebx8aAIPNTD2huppqXisiicX+3YA+0NAu2uxT22S9/UkeW+PW02NqEeC3A8n4+tP7EWhrOPitQvxa2ctwVJzisCIQD9SUKNzC837US7wN5EROk1IDkIocmKmCMaMVhca3tmVjOOsZUa29oWf7vSdrbmp9ADrGfOkH+WamjBJHrC+r1YLRepBV9KaJShvXr3MjAkytS/X04Bg6Eex5slbRnw4ioiBTNwsUoD1+mxhoKOCmpP6sVZjZD0oSfy/H9R7fLuhcf01NXIKJ7f9ekD0YH82WbWrzEj0R6lcfS1E+lE0Rq5FPx6SamH5Gg/uPlMc8jvnr4CmaRgeMPrgjkyImZpxrFULjSwuV6o07cbgBJkubSZ48n6mhBjUmqegyU1kUU/a1vLwud84C4mYhh9uH8G3fvGmr/eSg7hTptab9iEUKVNNzf7McqFIxC79zQQ1TdNcN89eY2cIsqmxk+AmCPrREolYwdJPUJsQ1hLRFJvufZWphQjHmlqAkn56/5gG2+LgBboZ/faX2LwfJarGD6hXppFJ0xMOcn5CNmmnP4h+jMc0fi3EIOwkFPGdqdV4cGWFJmVqhyeq6UfyrQSsPqogQfQj3Q7NZGoFJ/oxAKs03qNmKh8JF69diM++70wAwF0/eQ1P7x2r+V5emZrToimjS2omL0qZWjJqoYjDmtEIel02r74yNYnan8hVX0eLKWmCfnSoefpx6RfXErqXyhW9amJ5VOiooObkhu0lt60XskjED3rS9dXUHEfP1LGg0bTeRoKak0M/oYp+NM8pIQR3pz61vkwSC7qtTM2J5jokBbVavWpyD88yM6gdnczzxZCUj0v60nzBCUPWT1nlIjNgBFNTEyT9AagfZeWjiOsvW4MPnDeMis5w03d+Zct2nSBnaiIjYI2dcc/UuPejJBQhOp839rdY/Vgvul3WGaeNigyZknWiHynw+S1jOEF26Af89anZgpp5L4klAkU/hggnjzW62YoVvWkVoTgg1C9483W96kex+bqOoDZdaIZ+pIep2t8uI3H68mIEeKkfk+a/YY4PJbmJEGplahNS8B3qSSOmGdnjmLmTpExtsCfNd7xhyPppcV7Sl276GF7qx2buXa+gpmkatn7wHJy5rA/Hp4v4ywd2eL6XvOGYdKQfa2dqFZ2ZSkq7K03kNlkB0I+A+9xGr7EzhAwNCvWoqXUHQj86ZGpxy8HFbZr5uPAdE61P5xrTms9y60VHBTVLyVRdUwP8U4BucFrIa8FqvvYX1ESZbCP1FLrpTzYwv8xp6jWBF7Ml9WMyUR3UxObr/kzS1p5wcqY62FJNjcp4Xg3YTo2piXgMS/rsFKQY1OghDkPWT9/XElMq38wx6NqmbepHZxf3euAV1ABjw7L1g2cDAJ7dN+YpGvGsqdUYEArYA3a+VKliP6I2NHZrvq4XvHZelOlH/5mak/qREAT9OMVn3VVnaoC7AlKshdO9ZDkfuVuihYWOCmpOPSfxmMZviGYpSNnM2A+ynH70F5hs9GOyfvqRaM5GaDDPmpof+lGQn09KsuQFLg3YhXKFCxlImu9FP84UK5xiFB96q65mBEgKaot6UkKmFiz9KA71XNwXIP1YQyjy0sFx3HzfC1UZrhvcamoizljai5hmBKZRqR1ChKf6UXKrcIK44SyUdciDZknSH5n6MSj6MeVMPzq5xMioEoo41CaDoB+nHDI1MYN0W2ec1I+tarwGOiyoOWVqgCjrb26nbrmJ+9+ZdLvs4JzAGLOZhFqNkfWrH6cL5brVfk6z1AhV6keH+iI9ILPFCleBUeCxrLLsmdrh8TwYM3ayy00Vo1cvDi2iybhmaztY1i9nasZxBnvSvIYQdKZWrOh81Ao1NTelfvTp/fiPT+7DD7eP4Ecvjvh631qZGh2TlKK7j067vk6knQDr+xDdKry8HzXN6svKlyqWf6j5O+79GNWQUAfFdCOw6Ed70KGNthdF1yVtGOWaMWAFzWa8H50yNbregHuZQ6QfeaZWao1DP9BhQc2NSrCUSU3Sjw1kavVI+kWKSexT80s/lit6U16ERD/2O8yM4playa5+TDnQj2IvC+02B1wasIl6XD6QqcoGnTAxa88ACTTehoQONEvNqKmZ9GPANTXxWhP92VSfWrmaqnJSP5KwZsKnGOi4j6AGAKcsNuyg3jjmHtQom6D3onusUBbcKjwcRQC7VZZF6RvfZbxNhoTWC7fnnDdf++lTM+8nb6FIM/QjWWRZ34+4yXBbZ0T6Uc7UolY+Ah0W1JxGzwDiLqq5RU0eEOoH2TpoAzFDEfvU/GZc8jEmJLHI82+ewKatjzjOHgOcHfoJcvNnyYF+TElBrTsV5xsAq1fN/h0QhbZiQbZK2uwEJ7kzYM/U8iUrUxwSMrWgXUVImCQ2NTdzjIKD+pHugYrOuHiCmsz9BlA/mRoAnLqkBwCw2yOo0fe/1AziFFjpXGKalVW4QVT7yTW1ZCzaTC2omlq3i8erU++hDJl+9K6pBUs/AkC6hqmxeE+PzRSh68xmEhE1OmqemlPzNeDu1P/p+1/Ef7x2FAuyKSzoTmGoJ40/uXI9zlkx4Pj+fFdZxwNQT6aWE9Sb8ZhWt6Rfpu3kvrBHdh7D4Yk8fvLyYfz62cuq/r2sKhQhqx+d2hvofImSE6cED7jQj5R1LF+Q4YHSS+Hl9MAD9poaBdVUPIa+TMKqqQVMP4oTFfoDUFha9KN1TcUAR/cB2Vr5oTpzAhVcM1MbMoLaG8em3N+PhDF9XQAmMFUoQ9ct6rEnnajplyj6P1bX1Foz+TrdZE2tx1R8VqkfHb5TGdY0cKlPrUsMas2rH53oR8BgA6YKXkIR656u6AwnZ4v8PmhFptZhQc27pibecKWKjvu3HQRgLv6mS0WhXMG3brjY8f0b6VMTb0ZdZ54PvLz7qdf3Tw6cclZENJRbLxIFnAEHSb+8UyxXHNSP0oMrZlNuQhFqvF6xIIOj5nnJ/oIinOoNgD1TGzPraYt6UtA0jdMtQQtFxBoYpzibMjSuFoqIrEChrOPkbJFvGvwEaQrw6UTM0+kD8Jep0WJGmwgaP+On8Zog+j/KtdnI6Ueqw3sEHT+gflQ3oYi3pN/OUNB96myT1Tz9KGdqtcbPyBvR0emCTdAWNTqKfqxdU7NuiBOmtDwe03DfH12KvzSdFV4ZmXR9f0v96F8oIrYU1PI05LufpBTUfNbU5JqhfDPSAifPHSN4CkWSCds5ymNnxPMl9AsqODehyEGhpiaLURzPkep+VUHNqKkdncxzum3QVPuFlamJzdJ0Pk2pHx2UcrGYxhedfKmCkXHru/MTQI8J1GMt6fV6M1M7Pl10bL0ArGbzAbNVAzC+kylporIXLKusisB+GOeWbFWfWry5xZmPn2lE0i9sGItlnT9jQXs/WkHN/h15NWCXKzr/d/Q8HZ8qCurH6POmjgpqNWtqwiJAC9/C7hQuXbcIH7l4FTTNWARkh3eCk+KvFkSz01q9anSjdPFMzaLz/DzkcqYmCwlIEXhEcN4g5EsVflP3N0g/ypsJ8aF0m6l2SMjUaJH0Qz/Kdb+hXqMBu1Rh2HXUoM8Ge1K28whaKJITFiwKnMWy7plpeoEyPzlrEO3HRNPmKR+fx289DTAYDVKg7h51ztbEe1QM5LzxuoZIBBDpNr2qTYbmqUVNPzZdU3OZcE/PlC9D45JlWqBp9mtJjE+uVHFtkq6Fybzzd+RllSVunNYPGZZzo9N5q59WZWrhohb9KJqN0igO2n10pxNYs8j40l477JytlVxaBrygaZrrDS8jJymKxMXNT11NForIriK0wFV0VhW4KdjEY5ojTSU3fzrSj9Jmot9GP1abGpcrOq8PrViQ5cfwCgpuNbVkPMYX7pcOjgOwrKssSX/Q9KOVWfWkErx5vNGM0MkmC7C7iojmz34+j58eNRGnLPamIJ3qiBO5Ul30o1VTq7RNTS0o9WMV/ejgciRDFIrQ/S3XJunZYKyx2Xq6zvj6U09Qo+e1N53gFL+RqZmSfqV+DBduPSdOYg1L8m3Vj85cZkia3YJaUXoA/aLbZ0uBRT/aR60DPoOaFDRFoQhjDGMzViAbkZzxuZtIptqhH0BVFuWPfhSCWne1qTFljKl4DEM9aZ6hevepubtWEAW545Dx/Vn0o7Ok//7nD+C2//tSw1SXWFOLxTQreDaYEfL3kzYH4vTrEVtQCzZTA6yg9oZLr1reJajVQz+KLimy+CryIaENiL+c4Db9ulCHoXFemhhve43w7xuhIGeKZT7UV/6OvARponk4PU+2mpoKauHCLVNzcuqnBX5Q2MHSfKlXXepqjfSpAYKrSI0ir0w/xmIarzH4qavJ7y/SjxO5km3IqVxX476PDtQjUC0UcW6+dg9q5Ccp1tRIJDI80IVYTONURs5DGOP20AOWWISyGdqwuDVf/7eHduG+5w5g+4Fx1+N5QVzgASt4TjQoSHEzv3WjH/1QnfUGtVMpqLkoIEVzgL4G6ce0oPazalp2R5EoXPoZY1XHbxROYjTAem69amoUVHKlCr9H5fs7FrPMBhqR9dOmIxnXqp5TLhRx2EjQGrIgm+L30PGpwvynH7/61a9izZo16OrqwiWXXIJnn302isNWwW00u5Okn+pLi7rFTM0Iaq8ddn6gG1E/isevJeuXhSKAfZdeC/T+tNs96dA0SajK1Dx61ABBxVmqgDFm0UbCtU7ErfohINOPxv+fypd5ZiTK+Y1j1Pa38wpqpMgj0ENIi2++ZJlazxTK/JocnXS3hfKCLAJo1rnEzVIpLdB1olAEqG5TkdFoprbHhX4UVW8N048OmRo3NOaZWvhBzWmSfaPoFYKa6J3J66Re6kdhw+im7gXEntf6N02iSERmYrxGXHFFdCdlat/73vdw66234s4778SvfvUrnHvuuXjve9+LY8eOhX3oKriNZnfaRXHDW+FhP2vYCGq7R6cdd8Alzr/XZ+DptwE758BTiybBtUD05rIBY3G3j4yw19dkWf/olPHfC7vdTW8BcldnjvSjcb7WuffZMjXr/xOlIbqJABDox/ol/YCVqRHoIexNW/UuergPCL6Jx6a8x624QXaLcBKk/PeHduLPvvtCzcnSdF0Bh6AmtHbIm5FaAbTRmtrIRN5x/pzYduJMP/oXihTKDobGEaofxWeqWad5WmN0Znea8aN+dKqpOdG4xPg0Qj9OuYhEAKGm5nDNxWG/tDEanZrnQe1LX/oSbrzxRtxwww0466yzcM899yCbzeKb3/xm2IeuglvztZOk3ylTW9rXhYFsEhWdORbKG3HpB+rI1IrG+4s3SkpY0GqB3p+ChJO9DUGmH/eMGn16awezju8tNlnmitX9RQRR3CIGnkQ8xhc8Oi/RTQSAQD/6EIo40KRUUyNQUIvFNP4dUMA5cMIKDuI033pANCmnH6Wa2lS+hH94bA9+9OKI7XhOEDdRbvTj8ekCFzvRfVurfufXIoswINBMdE84nafccD7psRjLsBxF9Kr7iDK1RunHis7w1J4xX3S9KIxoln7MpuLWxklwLuIlEb/qx1mPTI3aahoIam7KR6CGUEQwZOCS/ulClagtSoQa1IrFIrZt24arrrrKOmAshquuugpPPfVU1esLhQImJydtP4Gej0tNzUnSP+aQqWma5llXa1QoYk2/rlFTM30V7fSj/141ygSXDxhBwj4HyXTZMN9vZMK+yO4zm8/Xmb1KMpLxGF9wZktlgX6UMzXr2gxIHpI0LJTEInKmlpHqdjKcxs6IqM7UrOPLVln7T4iZWkD0o9SALdLYtcy0bUFNFoqY98Ne8ztakE1isWlT5UU/7js+g0PjOWiatXHwA3IWcdrYzdoyNdqklISxMz5qajZDY7uHKEn6Gx0S+uBLI/jIN57Gp+9/yfHvxybzPJCKkyZquaDUgqZp6HGYcu9L/Zgy/marqXm01fgdOCyC048Os+687PgmBEMG2uycmCly1ov6V6NEqEHt+PHjqFQqWLJkie33S5YswZEjR6pev3XrVvT39/OflStXBno+9Uj6Of0o0W1UV3vVQQHJd5V1UhW+1Y8OKX09Vlk8U1tAbvcVHgzp81LQlunHvceNBWzdYLfr+4u9anQtaBEiiFmyHHi4VdZMERO5EnYdMY65Qq6puWRqbmNnCGJNLR7TeBsBIDZgm/SjENQazdR4DSxhpx8pcO44NMFfW2vsUV4QLMgLLN3Pe83MafmCjK8Zcf/89FsAgCtPX+w7UwMsZxEnsYgo6afv06Af68/UDJsse02t2ebrXUeMc/7xSyN4/aj9/H+28xg2feFR/OUPdpjHD8ahn9DtwMj4cd7ocqAfne5v8pesNRneCV6bDq+gJmZqC7tTiGkGxUob0nlJP9aD22+/HRMTE/znwIEDgb6/W/O1SD8yxgx5O40m6bVnE2d5BLVG5qkBloVOLYsbx6CW9LawEUHvv7SvyxoNYmZFx82a2tnL+wEYzhu0cBTKFa5EXDvkHtREBaSbD6Z47eUHk8QiRyfzuPGfnsfx6QIW96axwTynWo4i9MCn4jHHRWJJXxengBZ2p2zBwbLKIvoxgExN+r5k+nHHiBXUahX3rfpc9b1Fi84+c+Mx3J8RjuX8vrliBfc/bzxfH7t0tY9PY4EUkE4jaPIlMVMT1Y+1x84QeE3NwdA43mTzNT3XjAFfeXS37bzv+NEOVHSGX+49DiC4HjUCMUKUFVV0hqNmH6YsYhIh0rFUw3IS3FBW1Mi0ETffRwCeI64sl6EU4jGN19xpIzjv6MfBwUHE43EcPXrU9vujR49i6dKlVa9Pp9Po6+uz/QQJN5ssutl0ZnXt00OzsNse1CwF5GRVcV8ek+EXWZ/N17Ol6l1dPfSj2FxJCw7ttChTO2NZLxIxDTqzFvO3xmbBmBH8vQQFoo+l1TTrTj/KogHKnP77Q7vw7Jsn0JtO4N4bLuY7XPrcxbLuWFOhWlyfSy9d0ux3A+y1Uvo3gJXZ7LdlatVCkUPjOXz32f14/PVRHDw56+jiIM8/k4/xyiFrY1RLpejWeC3+js55eCDDd9xOYg4A+PGLI5jMl7FyYQbvPG3I89gy1lNQk1xFShXLgDiTlCT9PgaEyp9HtMkKSigi9mI++NIIdpvZ5tef2MvrmgdP5mwOOs2KRAhypnZ4IoeyzpCMa3wyuhPE5/2o+Uw6CW6a8X90830EaglFrP5VwE7py+ceFUINaqlUChdccAEeeeQR/jtd1/HII49g06ZNYR66CuWKtRDKN2kmGeeZy3S+zEUivV2JqqzulMU9SMY1TOXLPHshFBts1PQrFMk7FF+9fNlkUIbTnY7bqD7ACmqLe7v47C8Si+w1F691Q92e/oBWA3bZlX6ka9+TTvCeIwJZZU0VykglYvjGdRdyxan8uZ0oFouacV84qa4m021iZsMYs6kfx2aKVYvoZ3/wMm7//su47pvP4u3/7Wc4686H8D//fZftNZZZbcw8L+sY+VLFFhRqbWicHPoJ9P4UUJYPZDzbBxhj+N9PvwkAuPaS1YjXWS861Zyrtv/ErK3WJ34nYqZ2YsbyAvTXfG3ZZMnjnJJNOorQsz2QTfJs7dB4Dv/wmJW1MQa8OTbT8PPshh5p/AytH8sHMp41O3EjQ6benvRjU+pHp5qatZmUIdKPQPVzNe8yNQC49dZb8Y1vfAP/9E//hNdeew2f/OQnMTMzgxtuuCHsQ9tgk+dKC4Omaba62piHzDmViPFhibKziGzp4xdW87X3zehkElpPnxo9TN2phOW1yDM1sgVLCY72xkNHAoS1HvU0ADYbq1r0o9NDudAMtDEN+LsPb8Sl6xZJ/zbG6UOn3aiXnJ9ANM+g9N1aIo4SRqcLyJd0xDTjXBizbNMIr5u1mRULMkjGNeRLOr777H7ba2S62Gq+LmHnkSlbtllrQ8Mbrx36meSN1/BAxnPywIsHJ7Dj0CRSiRh+98L669aDPSn0Z4ygsEcIzLTpimlGEKLvQaSLe3xJ+kWbLKpTBzMklDK1T/3aaQCMjPWW+15AvqTj4rULsXHVAABgz7GZwBqvCT1S6xBR3CsXeot04jFrUCe1YDjd45x+bKL52ikD9No4yybn8po5L2tqv/d7v4cvfvGLuOOOO3Deeedh+/bteOihh6rEI2GjljxXrKsdF0aTOMGtrtaoo4jfTK1Z+nG2QJlagtMF47NFMMZszvXLTLXh4XHK1LyVjwRRKFJ2oR/pAXGqCWzesBTnrRzA//zdc7F5QzU9rWmWa0K+6KDE8hHUVpoqP7mGIcrPiYZa1p+xGkqFulpJ8KT8/icvw2OfvpIf39ZYKw2AFLMnUSQC1BaKUFDtdvDdlDdpwwNd/Po60Y//5ylDIPIb5yyrotf9QNM0XlcTZf2iSETTtKrvISsMhfWCaJMl16mbHRJKNbV3njaEq85cAp0Bz715EjEN+K/XvI1PItgzOi3U1IJZmGX68QA3666tPKX73ksI5cecwA2+6EcpqFV0JjicGPfRoJyptUD9GMkRb7rpJtx0001RHMoVtMuIx7Qq2gswd5ATxuLiZJElws0DsthgnxqX9NfYYTnRj+k66Ed6mLrTCduk6cl8mZ/7UG8aw/12+nFfnZnabNEq8LvRj04U4alLevHAlss9j5FJxjFbrPD2BhF+gtoNb1+LRDyGP9hkF0eIpsbWDjqDqXwZx6YKZgO2IVg5MpGHzoyHfbAnLYzbYciVKvz7lOtgYuB8xRSJaGYmOF2juP/03jEAwHkrB6r+JtPpywcy3JtRNjU+MVPEj18aAVC/QETEEm5eawV70SILMK5PJhnnv/dDPQL2oZj02ayaWuNCkdlimWeNi3rSuPndp+I/XjPq/R+9dDXOGu6zBTXavAZFP/ZKmdrBE9SHmXH9N4RMMm4bW+S0KQym+dpLKFKp+je0h+uoTK1dUItKEOlHelDrztQa5OCJC/fbpyZy7H5raowxrrDrTsV5n8t4rsTraT3pBLqScduUaMBeU/OC6D3n1t4gu2vUC3nEjQg/QW35QAa3XX1GVSN2nxBwSHCxamEWi82d5zHBKovqbSvMWkg2Fed1KXHhKfBF3p6dTubL3FSZ7qXpGn1qv9htKPLefspg1d9E+jEZ1zDYk7Yk/VLz9Y9fHEGxrGPD8j7HAOkXA5LQCICji4T4XfjxfQTETK1SVVOjXshG6EfK0tKJGLpTcZy9oh83vmMtLl23EJ/6tdMBWONT9oxOWw5EAdGPsnMR1dRq0Y9AdS3Vufm6maBWf6ZG1GNPOsE3HaJaPC5400aJjpl8TbsMtwm24miI49LYGRmkgDxwIofJfInvQBuV9NPomVrz1MhRJNtAn1q+pPOJyPZMrVg1kYAW/JGJPE7OFHkzdK1MTZTcl/li5Kx+bDSo8bpdg0HNDX1CXxfP1BZkocE4f5F+PCh5UhLVdmKmiMlcGcuMhM6apybRjxWd8Q3RpesW4ZWRSU+hyIETs3hzbBbxmIZL1i2s+ruYqS3rNwKtRT/a35c2KO84dajmUFAv0M58QnClyTv0XA1kk5yq9eP7CIg2WTqScWf1YyMu/eI4Kfrsn33fWbbXkLJz7+hM6H1qtDla6SNTEzeybjSupT5uzvtRhpsVH/k+is/bUI9F62dNGjpqdEymRuoxt0ytV5hMa2VqzkFtQXcKS02FoOiqIDeK+oWbg7cM4sqd6Ufv3Zn43kZjrDWU0xKJGJ932PSGPDKR4yKRZf1d/KFxA6cfS2VXc+dUk0HNa1Co19iZWhDl5zxTW5Tlaq5jDkFNpI2cJltbQz2Nc+5Kxvj9V9EZersSOGOpQWV70Y+/3GNkaeetHHBcdMQFj747N/UjfY4ldTRbO4FvioTPm3Oo+YrfhR/fR8DelyUrEONN2GSRAMyNgQGM7DwR0zBbrGD/WM527GYhTgMplCs82PvJ1NyyXxHN0I+N2GTJykfAnqm1gnoEOiiocSrBJVOjbGkqX+Y7uiGPm58K7OIiVnSh3GqBssTZYsXV2JYx5iwU8dl8PStQj7GYZkn6Z4ucfqQFnOjHY1MFvGG6LtSiHgF7FsUl/VJQe8cpg+jPJPGOU+vrjSJwqyxPSX8jmZoltz8oFPAX91ULRQ45FPj7HIOa/fvSNM3Wp7VhuJ8HqWkP548ndxv1tMsdqEfAnqkNmyIfN/qRPgfZaDUK3uc4Wx3UxCBrpx/9Zmqk6K04OIo0XlMbc/BzlZGMx7BqkfG9Us08KPWjNQzYmKbAmHFveJ0PwbZRcLmOWQ9q3gteA0IBd0eRidnqoCbW1Foh5wc6iX6skan1CLuo49PemRog7LoEeof71DUo6S/rDIWy7thgWyjrvChrMzSO+6Mf6abNmgF0ICNmanZhzGB3Gsm4hlKF4SlToLBu0Fv5KJ6XF/149dnLsHnD0oZpCa+ZURN851i/os+S2xf5grlqYRbHzN206NRvGS17Z2rWIi82nCd5Zvy24T6LIXDJ1HSd4Zce9TTAvlEjn0wKsjPFCsoVnW8ujtVpYOyGAYdMbdZByCQGNT+N14DQp1auoFg23ks2NG6Efjw+U/u5BoD1Qz3YOzrDKeKgHUWm8yXbPeTnWci4bBTsr2mMfvQaEAq41+3HBd9HwgLTWaSiM8/Bp2Gi8zI1F3muKOkfm/auqQFWUBNrFg0LRQRaz00sIi7iTplarT41WnAoKxTVj3JQi8U0nq39wswSatXTAKFQXXJ36QfQFM/uVTeYcOD4/YKCQKnC+A56sCfFMzUn+pECCGBRa3ahiN1RRDwOAGxY3l+Tet55ZApjM0V0p+K8h0qGeE8vlzI18b0ZYzw4L246qFktIYR8yVso4l/9aPz7UoVZZQPJ0Lgx+tG7VYdACkiioYNrvrY2MNQ24od6BNzvIRGNNl97DQgF3JuvnejHWEzjmWerMrWOCWqkRHO7QWkXdXy6wBcBr5uf00YFB/qxzkwtHtP4bt6NOqBdfyoes1F69dbU6Eazmq+LfJaayIcv6zMWRwp4/uhHa/QFTSxwap9oBhb92Fifmht6UtZMNcCQ82uahsWmfdHoVAGMMZSFHjWRfpRnpVV0xu8HtxrThuV9woBaZ/qRVI+XrFvkel850Y9Jwf+SGrCnCmUeJBZ72DL5wYAT/VgMin60Pg/dt9VCkcZrarJJuYz10r0etFBkulC2FLQ+RCKA+zUV4Xcuo4xJQc7vtOF0s8mSG68JtDmuVYMPCx0T1KxMzVvS/+Zxa3fW69DoShDVkoRGhSK293PZsbsN3fOrfhQbrwFrdEW+pHNHbTEzpUGihPU1Gq/Fc5stWtOrg5b0WvSj/ToxxnhPViNBLRbTbN83NWkTTVco65jMl3FkMo+K6dcnZjsy/WiffybWQywfy7WDPYJAybme+qQZ1NzqaYBzUAPsLimA1ZbQm040XcQn+nEyX+JZk5NQpDH60fr39N6yS3+lgeZrqpXXytRkk4GgvB/FZ1xU2PoBtYUAHvSjsKl0w/HpAm793nY8u+8E/52XnB+wyinVkv5q+hGwnhlFP4aMgqREk0E33FtjhtpvsDvlSZNZoz2sxbUZW51actycg1wa8B4LIYI3XpuLWW86wZVkJPMWg5rouJFKxGyLpRuc+tSCKrIT3MbPTBfKnm4LfiBmUUQLdSXj/LsenSq4+vXJmZoY1MRFkV535rJexGOWPVtFt6g2QqFc4YuPWz0NsN/Tw8JmRFZAEvU41Ncc9QhYn4MxK8t0GgzZCP3o1N9E91EzNlmWU1BrMjXROegA71Hzl6nZs33n4EPPdrGiu9Ycf/LyYXz/hUP46s8sr0uvqdeAWFOzP3NEP8qz3axMTQW1UFHL7UPcMQPVdi8yRGEJoVHvR0CkJrzpR/lGcbvhZPDGa/M4mqZxComyPFG5NCw0J69ZlPVleiuqr0oh0Y+0+5NpWnHsjJPprx+Ii+4qodbBG7Cn8lU9aoSqTE1weBeDH9F+55qNz0Yvj/E3eVDor94aR65UwWBPGqctcc+U6diDPWkb5dMr+T9y5WOT9TTAuO9oESUayjFTy4r0o386Sva4rBKKNJKpkQCshtpwIJuyuc0H13xtCcJoI+l3OKsvoYiwNriVMWhOojiFwmtAKOAlFDHpR+l8KFNT6seQQTW1WpJ+Qq0bn+oDYi2kGVdvPlPNlX6sdhMB/NtkWZma9TkHskmbUa+tpiZkan5EIoBdbt8MFesFcWabCAombmNn/KDfIVMDjId0z+iMmamRm4h9MZIl/U71JQD46KWr0JWM4YPnrwBg0J7dqQSmC2VDAdlrvdZyEVnk+ZnWDnbjc79xVlWGIfs/Ev3YbD2NMJBNYaaYw8nZItag2/rMrupH/xl0Ohm3De2lNpmk0OdXD3Sd4UQNUwUR64Z6cHzayJIDq6kJzx4FEr/0o9s1FZGKx7jyMFesOL7uqHkPHDw5i4rOEI9pnG1y23S4SvrNe32BtFb+xjnL8Ms9x3HNucN+Plrg6LhMzW3XJbuH16IoZB83xpin4q8Was1Uy7tkakQ91VI/UgYqGuKK0vdsKm7b5Ys2UrWMjK33sDj9qOlHP2NnakGkdeyZmiUWOeTQeG0c10715R3k/IBxX/3xu9bbJPVO9VnAarp+u4+evo+/fS2uOH2x/fMIfpYAAlM+EuSZfDVraj7pR6D6utHmKB6zhCJuPZ1OmMxbMxIXdNc+D7GGHFRQMzYw1rXp7UpUUXdu6PIYrkvQNE0QizivI3QPlCqM2+B5+T4CdqGIeM3lWWqEDcv78aOb3u5ZBw4THRPUrJqaC/2YduaF3SBL+is6470ejSzkYgO2E9yFIs7KJBmUqVFGCFiTpoHqzysKRdb5zNRaST/6GTtTC+KiKwatxYKrCG/MXuhNPxId7KdY7kRlA1brALmO1Au5AfsYb7wOJqhRcKAm3No1Nf8bDlmckYxRpmZlrPVka14zEp0gZr1BbszEzbNf6hGwP/deGa8bk0EQTQSIguRjZ1w2hGmzF5Yxq+ld15m1kfQZmKNC5wS1GiIOOVOTJ7hWvV7aXYtBhWY/1QO6Gd0yNeKvZYrAd03NrNVlhUytX1AtyZ93UXeKv7cfOT9gpx8tH8yg6ccEP4aIZhqvCX28NpWyZbSUVY1OFXBw3FgIlkv0oxzUyKfTz+Rfp141xhj31qul1nOD7P8YOP2YsfxDAWdHkYFMEkv60hjsSVfRVF4Q3yMR03hdUqzt1uMqMib1YtaCPVMLrjbUbVPY+hOJAP5qaoB9+rwTxH7LAzyo+cvUAGsdncqXuZdsMxvJMNAxNTXLJsv5Bu1O239fO1OzUzvkJgI0JxRxa74mqmBYcpfnNbVa9GPBLhQBvDM1TdNww+Vr8NrhKZy9fMDHJ7Dv0Bsdw1MLJG12q6kFkanJO2jKbA5P5PiMOZl+pACSL+kolCucfnS730RYVLZVn50ulHm2u6DBQC2rH0clO7Rm0Z+tTT8m4jE8dPM7wVDfcyEGNfHfif+/rqBGcn6fgTUM+hGwNsOA/8ZrwF+fGgBP+rFY1nldEXDI1GqoH+k9kDb6W+l4fjLfKNExQa0gNC87IZ2IIxWP8cW41u7YMic1Hmj6d5pmKbTqQXcNM9IRczGVpfV++9TEsTMEuxFp9UJ3+9Vn1jptG5ymMgfefO1iBUSZbDNBjeTwpy+x032U2bwyMomyzpCIaVgieSf2phN8NtpEroQ80Y8+FkT67kXlK32eTDLecL9PFf04GWxNTW7Alid9E+rJ0AhiTU3M9sVnq+xBuTPGbOIaP2bGIpYvyCCViKFY1kMLan4brwF/hsaAN/1IRgqE/SeopuYtFInHNCRiGso64wyMm/KxHdAx9GOt5mvATkH6ranlS0ZPiCgSaUR9V8suiRqkq4NanX1qLkIRv7SMF2KCMwohLPWj3NMlqh8bxfvPG8bffvg8fHrz6bbfU2ZDD//wQKaqxUFs3p7MlVwXeCf0pMnU2PruaUfdyGRqgkg/5ksVzioEp360W2W5tZ00AnH3L9J/fujHh3YcwXl//TB+tusY/53fHjXxOFRL9kMh+0W3Q4O/H9A5pOIxzzXMi34UqUcA2G/25NaiH4Fqp/7xAOj+sNAxQa1Qqi23FynIWjs68eaczpebVvtZQhHnoDbCg5p9QRJtsrzUYHSTy5J+QlCUlGyN0wgV6wXRtUREEPRjOhHHb563vCrAy5nNcpdGdKLjJnJl3qfmlL3KsEyNhaBGyrImivDijDgSCKQSMd/OHrUgmxq7tTE0AnFzJJpia5pWc1DoE2+MYiJXwo+2j/DfcTl/HZuEW3/tNHxw43JsWr+ornP3Qm+D9CP3bO32blnJujwfgJWp02tk+tGrj9BSQBrf8XgA92dY6Bz60U+mlk4CyEHTgIU1diDkrZcrVTCVLzctjMgKYylkFMs6r4e40Y+6qUxyO/40z9RE9aP1Gb3G7NQDeVcbeFCr0XwdRtG6P5O0UdNutFF/JokDyGEyV+J0t59GcIt+tBaikwFkar1CTU2U8wc1uLGKfnSoqTUKcTMgj3JKxA0qzM01g4LriwfG+e/GfDr0i3jP25biPW9b6vv1ftDdIP14xtJe3PiOtdiwvN/zdV6T4SlT27hqAL/YPYaTsyVM5kueA0IJtFknhmTCwcy4XdBxmZpX4Z52UQuyKV+1IKIrpwqlhs2M+Xt5NF8fnTRmL6USsapCt9ii4FVXm3XoUxMDQBD0I2CnnmIafDmR1AN6aAtlHbpAPwUh6XeDpmm2TNZNii0qIBuhH8WJDzRtvFGRiHE+VtuJpXwM5nsGrExNbjgPYjhk2kUoAtR26qeMd+/xGX5ux3069IcNev4WdtsVtrUQi2n47PvOwm+et9z7/b3oRzNTW7Oom68jB07Meg4IJfC5jeY6d3KGnjdFP7YMftR4FKRqyfkJYq8aKdUaLSp7NV9TPW35QPXsJfHzFErusv5px5pauEEt6CxNfn9R1h9mpgZACmrumRqdCwlF/CjDehzoR8rUFjRFP1p+lEe5SCSYehpgr6mVKjqvcWWTzRNAIqNSFdRMNqLsYpUl3hc7Dk0AEC2yggvqjYDWjHrk/PWA048O6wjvU+zt4tTnW2OzngNCCbKpMakfVabWQtSyyQKsBd/vjd8r9Ko1W1Pr9mi+dqunAcYOjihHtwbsUkXnN6OoflzUnUbCVDYFVVPLhBzURFoqyqAmZjiy7yOBgshErsRpGl/N1w70I9XUGlEO8vMxr4XOgDfHjPpJUI3XgLWgTeRKfAoEAHSlmv/exesmD5qlTM1NKCJuDl48OA7AkvT73bCGBbqPTlncWEN9LXD60WGDKzbfk2POa4cnPQeEElLSTDXaJAW1GQ4SHVNT85WpmYGllpkxgfs/Fkp8h9ToQk51Fac+NR7U+p0X03QijlKl7NqrJi44opAjk4rjS793nnn8YG4F8f2DVj4ClsIyX9I53SWOnQlr51hPpjaZK1kDM30FNZrNZ333VIhvpqaWTsT4BPM9poFukPRjvxA0qWYX04LpTbRL+mX60VsoIm4MXzowgVJF53W/empqYeCac4fBGPCu02tbnzWCbo/xM2JdlYIaZbJuA0IJsvpx76ihnPTrNhQlOiao+amp0YLo98EXXUUGsmZNrQE3EcC6GZ3pR+NmXOaiuksnYpguuNfUpk0lVCoeq6JH3x+w6WjGoxYSFLKpBPKlIl+8ghg7UwtE28VjGpb2OVN4oqlxxdz+NioUOcHpx8aDmqZp6OsyTKt3H6OgFhz9mE7EkU3FMVusYMR0f88k44EIUdyarwFxUKjLJk4MagfHOZUb01rfV9WVjON3L1oZ2vtTpua0ORYdZVYtMoLaKyOTANwHhBLIM7dQ1lHRGfYeN4KanzmLUaNjgpqfTO33L16F6XwZf7Bpta/3FGeqlcrNCkWM9yqUdZQruk2oQm4iyx3oR6D29OtZB+VjWAibfgSEuW1mNsTHziRioQ0mJNpuWX+Xq4hIrKnRZ/dzPr0OfWpUiG8mqAFGoB2bKeKwGXSCopkJA5kkZosVHDHv0UxA045tNTVZ/RijQaFumZp1HUcm8njtyBQAYGF32jYGaD7CzfC7ojPefL24L42ZohHUiJKsNRbIEopUMDKe403pblR8K9ExQY0WfK+a2sqFWXz+Axt8v6doRMuFIg0u5Fkh4MwUK+jPWO8z4tJ4TaDs060BmzKAKMar24Ui4Swgcq9a2PU0ADjNdBl523Cf62vEoEabFF/0o0efmh9HeS/Ii1XQQa0/m8LIRJ4HzUwA9TSgRk3NfMZKNejH7lQcM8UKfrbTaMJudT0tCtAzLmdqYzMF6MzIVhd1p6o2BLWCmigUISrb75zFqNE5Qa3UnJDDCeJMtVITs9QAg8qh+sdssSxMFmZ83IlbUEsJ1IAT6CHvCahu5oUoMjXLVcT4XFEUrc9fNYAf3XQ51njUEET6kR52r00UgdOPxTJvoA+ipgZUF/+DFIoAljrziEA/BgFfNTUH9aOuM36/X7R2IR7bNYpHzaDWajl/FMi69KkR9bioJ41EPIYlfV223ku3AaEEsaa2Z7R9qUegg9SP9OU1OhXZCaL6sdk+NcB5lzWZL/NZaK5CkaQ3/cgztQjoR1HOHbTvI0EeP7PvuKHsWzvo36GhXmiahnNWDHgqxJyEIvXQj4wZnykIM2OC6B5i7NIDph/NoDYSdFBL1K6pOakf88IzsGmd4QRCzhmtlvNHATf6UZ6lF49pNsFTzUxNGEZMU7v9Tu+IGh0T1KxMLbiFXexTC2LUSg936rduSKIeF3anXJtaazn1E00XRaYm0o8ybRT0MSiovWkWrVcvau1DZg0KLXNJv59FvisZA7E404Uyr6c1Y2ZMEHfggz3pwOkiar49PE41tWCer7RnpmZK+h3oR3p2NA24eO1C2986I1OrXkMAODbfk1gE8HYTAcS6vS4oH1Wm1lJYo2eCH/g3VSg3NfWakHVQLnn1qBFqOfWT9VYQRrO1EKVQhLKhN01j1rVtEtSmC2WeHfsJSpqm8Q3HVL7M62nNUo+APVMLmnoErEwtcPrRZmhsD8S0cXRy6eeuJsk4zhrus20y27GnKmhYLv32mprYeE0Qp7v7zdTEmtr6xSqotQzlis4Lo169GPXCqqmVm66pAcJMNYEPJ1pnmQv1KB7TTSgy6+AmEhbEwJkIXShiD2pe9a4oIM6jIrrHL91N99JMocyHgzYrEjHOyXqPIOX8BJLIT5n3WHCZmvvmKB5zpx9pxFI2ZUy4PnOZJezxO0ttLiMrNF+LBuecfhQ2NmJQqzWVnBiuEzNFHiAV/dhCiE4bYcxGmi6UmlY/As4N2COCRZYbakn66f0iEYpE0KfGJf1FY8I2CWnWhFhT84NEPMYdW+qhHwF7r9rJAHrUCOIOPMjGa4J8jkG1VNhd+uVxRuQoUr2Jm+VBzTiPc1ZYBsCtbryOAjTZnjH7eCYn+lGcElBrZBOtmzuPGH1tQ71pz/pyKxFaULvrrrtw2WWXIZvNYmBgIKzD+IJYawpS/dgn1NQKTfapAVYDtji11h/96K1+pMwvCkl/xlZTC1f9mCtVsP/ELHRmyLeH2mDRktsK/C7yPcI8vSAarwniYhVGUOuXHFyCorjTXi79Ho4is0U71X7uigH+t06oqYmbKLFfj7KrISFbX72ofvpx52Gj568dnUQIoQW1YrGID33oQ/jkJz8Z1iH8n4uZqcVjWqCKPN6nZhOKNP7+llDEKah5ZWreNTUrU4tA/ZgS1Y9h0Y/W7Lm3xiyRSFAjVZqBvOP1W8Pt6bIasE8GWVMTdtNDLk4ozUB26IhC0h/38H6ckerH564c4H8b7AD1Yzxm2V2Jsv5RwfeRIA4p9SsUIZp5XZvK+YEQ+9T+6q/+CgBw7733hnUI3+AWWQFSj4B1I5R1xqfHNkNvZjkFJaofDS7cK6il2ihTC9ulHxDpRx37TOXj2jbZOcqZmt9FXjQ1prEzQfhYijvwMDJZefJxcEHNXUXrKRQp2evH64d6sHJhBrliBUv6539QA4zPXihbNnKMMR7Ulggbm+50AoM9KRyfLtZ2FJHWtfVtWk8D2qz5ulAooFCwRo5PTk4G8r40rTXIehoAZJNxaJrBX9PuuhkZezdXwBmLWkVnOGI2FtdTU/u7R97APz65D9/+z5dgw/L+aGtqkdKPZUEk0tp6GiEI+jGIAaEEG/0YovqR0BUQ/ejt/eg/U4vHNPz05neiUmG+xgDNB1iDdI3nfnzWmvcob2x+98KVePjVozhHoGmdIK+d7dp4DbSZUGTr1q3o7+/nPytXBmP8mQ8pU4vFLCn2mDmEsJnshG6Uf3/lKEoVHcem8qjoDImY5ilH5s3XJR0TuRLufmwPJnIlfO2JvQAs+jGS5uso1I+CUORNs/G61T1qBDGIxGOa7/uhe67W1KQgng0oU/Ocp+ZRU8s5sBI96URV7W8+w5L1m447pvJxQTZZFZw+s/kMPHzru2pazMkb1HZVPgJ1BrXbbrsNmqZ5/uzcubPhk7n99tsxMTHBfw4cONDwe4koBiC3dwO5itBCJBe168H7zx3GYE8Kh8Zz+MnLh3k9bWl/l2fTrFhT+7/bDnI3gYd2HMbYdIELTyKR9AuOIqHRj4Kkn/eotSH9WA8VJ7rT0JiUIDK1hdkUUokYMsl44L6PgJFRiZ8zKEl/Mh7j97ybUKTkoH6ckdSPnYis1BokuvM3irSkRnWb/t4OqGuV+9SnPoXrr7/e8zXr1q1r+GTS6TTS6eAfPKumFvyN3tuVBCbyVlBrYiHvSsZx/WVr8MV/fx33PL4Xn3iXcS296mmA6ChSwT8//ZZ5HoaP5L9uO8jnqXVHUFMTB0SG7f04kSvxwL+mTTI1MajVY8kmmhpT83UQNbVMKo57r7/IFBCEs9APZJPITfi3BfOLrkQMM8WKg6Gx6dLvmal1cFCT6MdjDiKReiE6Ma0ZbE8jY0Jdq9zQ0BCGhsIZbhcmqNYURo2HFiNeU2syG/zopavxD4/twWuHJ/G954xM1aueJh7z57uPY3SqgJ50An/+a6fh8w++iu8+u5/v2KIYPZMyd9gVnYXn0m8+tHtHZ6Azg15qFwd2MajVE0Qoi57MB1tTA4DLThkM5H3c0J9JWi79QQa1pOGy72aTVarRfN2poOecAjw1XjeTqYvrWrvaYxFCq6nt378f27dvx/79+1GpVLB9+3Zs374d09PTYR3SFSS3D9Iii0CqIXq+mvU7HMim8OGLVgEAfrlnDIB3jxpgLZ6kcPrt85fjwxetRE86gTfHZvnvo8jUNE3jO8Ww6UeilVcvyraFnB+Q6Mc6sgWqzR6dzHMBRBA1tSggnmeQwYQYCFdDYwf142yElnDtikwqePpRDGrrF7cHK+KG0ILaHXfcgY0bN+LOO+/E9PQ0Nm7ciI0bN+L5558P65CuIKl70EIRoFpRGMRC/vF3rOV1A8A//Uj42KY16E4n8IGN9qnWUdTUAGsxDzuoEVptjyVC9Fqsi340v5sDJw3hSxBmxlFBpEmDmqcGWFSmm1DEaUgob76O6F5vR2S5kMrIWnmPWjOZWlxlarj33nvBGKv6ueKKK8I6pCsoU0uFVVMTEMRCvnwgg/efawUkt5EzBDEDvfyURTjFNBr9/YvtE7yjoB8Ba5ccFv0oilGA1hsZi7DV1Oq43yioBSkSiQpiUAu0pma+l7xp8xoSykVRHZypkcp57+gMZotlTj8uaaL5Xlxj2ln5CLSZpD8shJmpyU2LQWUnf/QuS3BTK1MTd1Efu3QN//9nDffhPNNRQdOCrXd4geiPTszUGqYfpfsoCDPjqEDjZ4Bg77FrL12FTesW4YI1C2y/T3oMCVVCEUPxCgDff+EQNv71w3jx4ASAZoUiYlBr70ytI3L0Yjmc5mvAkmITggqcZyztw19sPgNHJ/M4bYn3TURGrcP9XbjqzMW2v/3+Jauw/cA4ulOJyOpO2ajpx0XtIy/ua1AoItPYc6WeBtgztSBratdeshrXXrK66veeNlkRuue0Kz62aTUmciX826tHcOBEjv++1ubYC4t709A0YPXCbM2etlajI775UGtqIWVqAPDJK9b7et35qwbw33/7HJy3aqDK2/L95w7jsV3HcMbSPpd/HTx4UAvhegPV2UA7ZWqi12IjNTXCXApqC7KN9eY1Ci+hSE71qWEgm8Jf/sZZ+Oz7zsTrR6fxyM6jGOxJ11RRe2FxXxf+9ROXtYVpeC10RFArhko/yjW16FV4mqbhdy9ydl/pSsbxD9deEOn50MOzNAQDXcBw6kglYiiWdfSmE201J6srGUc6EUOhrNe1wMubo7lUUxPpx64AhSJu4N6PKlPzhKZpOH1pL05f2hvI+12wekHtF7UBOuKbtzK14HdvVerHkLKTuYTbf/1MXHPuMC5dtyi0Y2RTcRTLOtYMtoc7v4j+TBLHpgp1iSbSiThvmAfmVqZG9GNMC8/vUwSnH1XztYIDOmIFDtMmS54YG8VD3e7ozyRx+SmDoboOkGx5dRvV0whUc6iHfgTsG6S5JBShAJyNqG5rZWp2+pExZjVfR6T0VWg/dEamZnohRlFTCyNwKlSD3ODbxfNRBAW1eutL3ekEHzszlzK1Uxb34OoNS3HqkmBorlqIuxga50s6mPmrKIwGFNoTHfHN80wtDJusEJqvFWqD6KV28XwUQUEtXWdQE++luVRTi8c03P3R6Oq2SRf1ozjpOar2FYX2Q0cENW5oHIpNVuuFIp2I3zl/BTQcwrtObz8v0pULDUp0WX99Qhmx5zEIM+P5ClI/liT1I7mJZJJxxNrYcFchXHRGUAtRKCI3X6uaWjS4/vK1uP7yta0+DUfc+p7T8K7Th/D2Oo2Eu+dophY14i42WbNKJKKADgtqYdS70omYTbWm6EeFvq4krjx9ce0XSrAJReZQTS1q0DMm19SUSEQB6BD1I42eCUMoommabTFSQhGFRkH3UTY1d8yMWwG3IaFczp/siL26ggs6YgUuhpipAfa6msrUFBoFBTWVpXmDDwmV6MeZgsrUFDokqIVZUwPstJESiig0CmoPmUs9aq0AHxIq0Y+5kqqpKXRIUAs/UyNXeq3t3C0U5g5UpuYPVqZmpx9nCsoiS6FDglqYNTVADGodcTkVQsLZy/sR04DzV80Nj71WIeFikzWrZqkpoEPUj2HaZAFWTU2JRBSawSXrFmH7ne+pGmekYAfvU9Nd+tRUptbR6IhvnzdfhxR0iDZSmZpCs+jrUvW0WiD1Y8VF0q8ytc5GR6zClKmFTT+qxmsFhfDBhSKS+lE59CsAHRLUrEwtJPWjIBRRUFAIF0mXIaFcKKLo245GRwS18DM1gzJS9KOCQvjgLv1yplZSU68VOiColSs6b9IMTShi7gyVUERBIXy42mQpSb8COiCoUeM1EB79uHxBBgAw2JMO5f0VFBQsJFyGhFJNTQlFOhvzfktTFIJaWJnUhasX4J6PXoCzV/SH8v4KCgoW3OhHUj9mVFDraMz7oEaZWiKm8YchaGiahs0bloby3goKCnbQkFDGDP9Heq6pT61bCUU6GvOefgzbIktBQSFaJASVsUhBkqOImnrd2Zj3K33YFlkKCgrRgvrUALtYZLagMjWFjghqKlNTUJhPsGVqZlBjjGFWufQroIOCWljKRwUFhWiRiFXTj4Wy1bqjglpnY97n6RtXDuC1v95cZX6qoKAwN6FphuirojOugCQ5P6D61Dod8/7bj8U0ZFJxZKB2bwoK8wUJM6iVTLcgkvOnE7HQVM4KcwPznn5UUFCYf+BO/VKmpkQiCiqoKSgozDkkTKuskikUmaFZakrO3/EILai9+eab+PjHP461a9cik8lg/fr1uPPOO1EsFsM6pIKCQocgKVllzRbMWWppFdQ6HaHl6jt37oSu6/ja176GU045BTt27MCNN96ImZkZfPGLXwzrsAoKCh0AbpVlZmpq6rUCIbQ7YPPmzdi8eTP/73Xr1mHXrl24++67XYNaoVBAoVDg/z05ORnW6SkoKMxhUAM2qR/V1GsFQqQ1tYmJCSxcuND171u3bkV/fz//WblyZYRnp6CgMFcgDwpVU68VCJEFtd27d+MrX/kK/viP/9j1NbfffjsmJib4z4EDB6I6PQUFhTkE2al/pqhmqSkYqDuo3XbbbdA0zfNn586dtn9z6NAhbN68GR/60Idw4403ur53Op1GX1+f7UdBQUFBhjwoNFdUQhEFA3Vvaz71qU/h+uuv93zNunXr+P8fGRnBlVdeicsuuwxf//rX6z5BBQUFBRnyoFBL0q8ytU5H3XfA0NAQhoaGfL320KFDuPLKK3HBBRfgW9/6FmIx1RanoKDQPOIxOVOj5muVqXU6QtvWHDp0CFdccQVWr16NL37xixgdHeV/W7pUDdRUUFBoHMmYlKkV1NRrBQOhBbWHH34Yu3fvxu7du7FixQrb3xhjLv9KQUFBoTZkoQifeq2EIh2P0PjA66+/Howxxx8FBQWFZiALRfjUa5WpdTxUkUtBQWHOgYQilku/ytQUDKigpqCgMOdAjiLTZi2NN18roUjHQwU1BQWFOYeNqwYAAP/89Fuo6IzbZGWVS3/HQwU1BQWFOYc/2LQaA9kk9ozO4IEXDql5agocKqgpKCjMOfR2JfGJd60HAHz5kdcxlVdCEQUDKqgpKCjMSfzBptUY7EnjwIkcr60poYiCCmoKCgpzEtlUAluuXG/7ncrUFFRQU1BQmLP4yMWrsKy/i/+3Gj2joIKagoLCnEVXMo4//U+nAgDSiRhvylboXCgCWkFBYU7jQxeuwMuHxrF6UXerT0WhDaCCmoKCwpxGMh7D1g+e0+rTUGgTqFxdQUFBQWHeQAU1BQUFBYV5AxXUFBQUFBTmDVRQU1BQUFCYN1BBTUFBQUFh3kAFNQUFBQWFeQMV1BQUFBQU5g3auk+NMWNU++TkZIvPREFBQUGhlaA4QHHBDW0d1KampgAAK1eubPGZKCgoKCi0A6amptDf3+/6d43VCnsthK7rGBkZQW9vLzRNa/h9JicnsXLlShw4cAB9fX0BnuHch7o27lDXxh3q2nhDXR93NHptGGOYmprC8PAwYjH3yllbZ2qxWAwrVqwI7P36+vrUDeYCdW3coa6NO9S18Ya6Pu5o5Np4ZWgEJRRRUFBQUJg3UEFNQUFBQWHeoCOCWjqdxp133ol0Ot3qU2k7qGvjDnVt3KGujTfU9XFH2NemrYUiCgoKCgoK9aAjMjUFBQUFhc6ACmoKCgoKCvMGKqgpKCgoKMwbqKCmoKCgoDBvoIKagoKCgsK8wbwPal/96lexZs0adHV14ZJLLsGzzz7b6lOKHFu3bsVFF12E3t5eLF68GB/4wAewa9cu22vy+Ty2bNmCRYsWoaenB7/927+No0ePtuiMW4cvfOEL0DQNt9xyC/9dp1+bQ4cO4aMf/SgWLVqETCaDs88+G88//zz/O2MMd9xxB5YtW4ZMJoOrrroKb7zxRgvPOBpUKhV87nOfw9q1a5HJZLB+/Xp8/vOftxnudsq1eeKJJ3DNNddgeHgYmqbhgQcesP3dz3U4ceIErr32WvT19WFgYAAf//jHMT09Xf/JsHmM++67j6VSKfbNb36TvfLKK+zGG29kAwMD7OjRo60+tUjx3ve+l33rW99iO3bsYNu3b2e//uu/zlatWsWmp6f5az7xiU+wlStXskceeYQ9//zz7NJLL2WXXXZZC886ejz77LNszZo17JxzzmE333wz/30nX5sTJ06w1atXs+uvv54988wzbO/evezf/u3f2O7du/lrvvCFL7D+/n72wAMPsBdffJG9//3vZ2vXrmW5XK6FZx4+7rrrLrZo0SL24IMPsn379rH777+f9fT0sL/927/lr+mUa/OTn/yEffazn2Xf//73GQD2gx/8wPZ3P9dh8+bN7Nxzz2VPP/00+/nPf85OOeUU9pGPfKTuc5nXQe3iiy9mW7Zs4f9dqVTY8PAw27p1awvPqvU4duwYA8Aef/xxxhhj4+PjLJlMsvvvv5+/5rXXXmMA2FNPPdWq04wUU1NT7NRTT2UPP/wwe9e73sWDWqdfm7/4i79gb3/7213/rus6W7p0Kfsf/+N/8N+Nj4+zdDrNvvvd70Zxii3D+973PvaHf/iHtt998IMfZNdeey1jrHOvjRzU/FyHV199lQFgzz33HH/NT3/6U6ZpGjt06FBdx5+39GOxWMS2bdtw1VVX8d/FYjFcddVVeOqpp1p4Zq3HxMQEAGDhwoUAgG3btqFUKtmu1RlnnIFVq1Z1zLXasmUL3ve+99muAaCuzY9+9CNceOGF+NCHPoTFixdj48aN+MY3vsH/vm/fPhw5csR2ffr7+3HJJZfM++tz2WWX4ZFHHsHrr78OAHjxxRfx5JNP4uqrrwbQ2ddGhJ/r8NRTT2FgYAAXXnghf81VV12FWCyGZ555pq7jtbVLfzM4fvw4KpUKlixZYvv9kiVLsHPnzhadVeuh6zpuueUWXH755diwYQMA4MiRI0ilUhgYGLC9dsmSJThy5EgLzjJa3HffffjVr36F5557rupvnX5t9u7di7vvvhu33nor/st/+S947rnn8Gd/9mdIpVK47rrr+DVwes7m+/W57bbbMDk5iTPOOAPxeByVSgV33XUXrr32WgDo6Gsjws91OHLkCBYvXmz7eyKRwMKFC+u+VvM2qCk4Y8uWLdixYweefPLJVp9KW+DAgQO4+eab8fDDD6Orq6vVp9N20HUdF154If7mb/4GALBx40bs2LED99xzD6677roWn11r8S//8i/49re/je985zt429vehu3bt+OWW27B8PBwx1+bVmLe0o+Dg4OIx+NVKrWjR49i6dKlLTqr1uKmm27Cgw8+iJ/97Ge2OXVLly5FsVjE+Pi47fWdcK22bduGY8eO4fzzz0cikUAikcDjjz+Ov/u7v0MikcCSJUs69toAwLJly3DWWWfZfnfmmWdi//79AMCvQSc+Z5/+9Kdx22234cMf/jDOPvtsfOxjH8Of//mfY+vWrQA6+9qI8HMdli5dimPHjtn+Xi6XceLEibqv1bwNaqlUChdccAEeeeQR/jtd1/HII49g06ZNLTyz6MEYw0033YQf/OAHePTRR7F27Vrb3y+44AIkk0nbtdq1axf2798/76/Vu9/9brz88svYvn07/7nwwgtx7bXX8v/fqdcGAC6//PKq9o/XX38dq1evBgCsXbsWS5cutV2fyclJPPPMM/P++szOzlZNYI7H49B1HUBnXxsRfq7Dpk2bMD4+jm3btvHXPProo9B1HZdcckl9B2xK5tLmuO+++1g6nWb33nsve/XVV9kf/dEfsYGBAXbkyJFWn1qk+OQnP8n6+/vZY489xg4fPsx/Zmdn+Ws+8YlPsFWrVrFHH32UPf/882zTpk1s06ZNLTzr1kFUPzLW2dfm2WefZYlEgt11113sjTfeYN/+9rdZNptl//zP/8xf84UvfIENDAywH/7wh+yll15iv/mbvzkvZesyrrvuOrZ8+XIu6f/+97/PBgcH2Wc+8xn+mk65NlNTU+yFF15gL7zwAgPAvvSlL7EXXniBvfXWW4wxf9dh8+bNbOPGjeyZZ55hTz75JDv11FOVpN8JX/nKV9iqVatYKpViF198MXv66adbfUqRA4Djz7e+9S3+mlwux/7kT/6ELViwgGWzWfZbv/Vb7PDhw6076RZCDmqdfm1+/OMfsw0bNrB0Os3OOOMM9vWvf932d13X2ec+9zm2ZMkSlk6n2bvf/W62a9euFp1tdJicnGQ333wzW7VqFevq6mLr1q1jn/3sZ1mhUOCv6ZRr87Of/cxxjbnuuusYY/6uw9jYGPvIRz7Cenp6WF9fH7vhhhvY1NRU3eei5qkpKCgoKMwbzNuamoKCgoJC50EFNQUFBQWFeQMV1BQUFBQU5g1UUFNQUFBQmDdQQU1BQUFBYd5ABTUFBQUFhXkDFdQUFBQUFOYNVFBTUFBQUJg3UEFNQUFBQWHeQAU1BQUFBYV5AxXUFBQUFBTmDf5/aVYVejxIp5wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ϵ_values = np.random.randn(100)\n", + "plt.plot(ϵ_values)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c2a56d62", + "metadata": {}, + "source": [ + "The first line generates 100 (quasi) independent standard normals and stores\n", + "them in `ϵ_values`.\n", + "\n", + "The next two lines genererate the plot.\n", + "\n", + "We can and will look at various ways to configure and improve this plot below." + ] + }, + { + "cell_type": "markdown", + "id": "c9889d3d", + "metadata": {}, + "source": [ + "### Note: What is a Random Seeds" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "11e485ed", + "metadata": {}, + "outputs": [], + "source": [ + "np.random.seed(100)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4d8223a1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABucElEQVR4nO29eZgd5XXn/627995qtdStllobiEWsQpjVMThWYohj440kDk4McUhMwGOCJxMYJzCZDJFnws8zMeNgm8TgGdvB8cRgm3gJYTWbWAUIkJCQQFJLLanV+3L3+v1Rdd56671v1a17b1Xdvve+n+fRA73dqlu36j3vOed7ztF0XdehUCgUCkUTEKn3CSgUCoVC4RfKqCkUCoWiaVBGTaFQKBRNgzJqCoVCoWgalFFTKBQKRdOgjJpCoVAomgZl1BQKhULRNMTqfQJuFItFHDp0CF1dXdA0rd6no1AoFIo6oes6ZmZmMDQ0hEjE2R9b1Ebt0KFDGB4ervdpKBQKhWKRcODAAaxatcrx54vaqHV1dQEw3kR3d3edz0ahUCgU9WJ6ehrDw8PMLjixqI0ahRy7u7uVUVMoFApF2VSUEoooFAqFomlQRk2hUCgUTYMyagqFQqFoGpRRUygUCkXToIyaQqFQKJoGZdQUCoVC0TQEatS2bt2K97znPejq6sLy5cvx0Y9+FLt27QrykAqFQuGZmXQOB8bn630aCh8J1Kg9/vjjuP766/Hss8/ioYceQi6Xw6//+q9jbm4uyMMqFAqFJ66+53m8/47HcHQmXe9TUfhEoMXXP//5z21f33vvvVi+fDlefPFFvO997yv5/Uwmg0wmw76enp4O8vQUCkWL887YHPJFHYcm01jelar36Sh8INSc2tTUFACgr69P+vOtW7eip6eH/VN9HxUKRZBk8kXjv7lCnc9E4RehGbVisYgbb7wRF198MU4//XTp79xyyy2Ymppi/w4cOBDW6SkUihYkS0bN/K+i8Qmt9+P111+PHTt24Mknn3T8nWQyiWQyGdYpKRSKFkbXdWQLhjHLKqPWNIRi1G644QY8+OCDeOKJJ1xHBigUCkVYkEEDlKfWTARq1HRdx+c//3ncf//9eOyxx7Bu3bogD6dQKBSe4b2zbEHl1JqFQHNq119/Pb7zne/ge9/7Hrq6ujA6OorR0VEsLCwEeViFQqEoC++dZXKt6an970d244qvPYW5TL7ep+IbgRq1u+66C1NTU7j00kuxYsUK9u/73/9+kIdVKBSKsvCeWquGH//5hYN45cAkXjk4We9T8Y3Aw48KhUKxGLGFH1vUqM2aHprMU/3XVw/ju9vexf/6nbMbqoZP9X5UKBQtiV0o0po5NTJqaUmd3veeexdPv30cT7w1FvZp1YQyagqFoiVpdU8tVyiy952WGPWFbMH8b2Pl25RRUygULQnvnbViTo0Xh8jCj2nze/PZxvJilVFTKBQtSabFhSKznFGThR/Je1NGTaFQKBqAVlc/zmUsY5WWvH/y3mQGbzGjjJpCoWhJ7EatsRZuP5gtE37MKE9NoVAoGgde/diKQhE+pyYTiqicmkKhUDQQvHfSmuHHMjk183sLOaV+VCgUikVPqzc0tgtF7O8/XygiXzSaZywoT03RKOi6jmv/zwv43bufxfhctt6no1CEir1OrbEWbj+wSfqF988LR1T4UdEwzGbyeOiNI3j67eO46h+2YUIZNkUL0fLqR85YiUIRPhy5oNSPikaBf6jfPDyNT//jNkzOK8OmaA1aXSjiVqfGf608NUXDQA91RAP6OxN4/ZBh2Kbmc3U+M4UieDI51VGEEN8/n2NTOTVFw0Ahh7Z4FN+79gIs7Uhgx8g0vvnLt+t8ZgpF8GSUp8b+381TU+FHRcNAnloiFsFJA134o/etBwAcmkzX87QUilBo9eJrtzq1jE0ooiT9igaBHupEzLgN2pPGeL1Gu4mbmXyh9TyIsGh5oUjGWSjCh2bTuSKKxcaZjamMWguTEY1aPAqg8RLDzcqf/79Xcd7fPKzKLQKi1UfPzLp4auW+Xswoo9bC0IOcjBnGrD1h/LfREsPNyjN7j2N8LotdozP1PpWmpNW79M+5FF+LXzfSRlcZtRaG5dSixm3QllCe2mKCNh1ZFYIMBN47KxT1lgv1urXJEr9upI2uMmotDMXNWfgxYeTUGk3t1KzkzEU2oz6PQBA3C622eZj1KOkHGmtNUEatheHVj4AVfvRbKKLrjZNkXkzQ59Nqi21YiHk02fiVZkXXdVtHkWzeLgYRPbVGit4oo9bCWDm14MKPmXwBH/rqk7jhey/59pqtAgs/tmC+JwzE69pKm4dMvoiCoGjkvTVRGNJIiuhYvU9AUT+YpD9q99T8jJ+/NTqLNw5PY8/RWd9es1Vg4Udl1AJBrE1rJU+NDz0SmXyBbWzdekEudpSn1sLQzjQZJ0m/scfJF3XfvIORyXl2rFwL7YTnJItGJRSKOmgjrTy1YBA3C9lC4yzctUL3Z3siimhEA2DPo5V6ao1zbZRRa2FET412aYB/3trBiQX2/430YNTC3U/sxRn/5Rd4cvdY1a/R6t0uwkAMN4riiGaGPLWOZAwpM/3Ae2Oip9ZIz64yai2MWHwdj2ps1zbv07Rb3qg1kiy4Fl4+MIGiDrx+aKrq12j1DvJhUCIUaaHrTN1EOpMxpMymC7acmpL0KxoR0ahpmuZ7V5GRScuozTVQsrkWaAGoJdyaq4NROzqTxh9++wU8uutoKMerNyVCkZYyauSpRZlQLG1rjSUYtQbKqSmhSAtjhR+tsGNbIoqZTN63ndkIH37MNM6DUQu0IahlkaxHX8JHdx7Fv795BPliEe8/eXkox6wndF1T8QjSuWJLhXlZ+DERw3zceN9pod8jYIylKuoq/KhoEMSGxgBfq+a/p1YvWXDYdXK0OGQL1R+X99TCMmoUkppeaI15enT/dybjtq9bAfLUOpMxJM3oTFoi6V/SngAALDRQlEUZtRaG1F5Jzqi1+dhVZDaTxxS3QNZjt5cvFPGbdz6Ja//PC6Edk66dX55aWPVTtJDNpBtnAasFuq7dKeOeb6WcGi8Uoec/Iwk/9rYbBl+FHxuIvcdmkYxHsbK3rd6nEjqkcJJ5an7szPjQI1CfnNqhyTRePzSNNw9Ph3ZMWgBqyanxhiys+ikKObWCUSsUdVZ83NmCRo288o5kDCmzpMfmqZn3guGpzanwY6Mwm8njw3c+iY///VMt2cqJ1akFFH6kGjWiHg8GGdKiHt5ssgUfcmo5LnQZmqeWI0+t+cOP/GfTZRq1lgo/Zin8GGXqR5uk37wWSzoo/KiMWkMwMrGAuWwBR6YzLbVLI2Q5tTYf1Y+ipzZfY0FyNfB5vLCMgx/qR5tQJKTQDy1qc9lCSQulZoMXhXSZObWWFIokY0jFSiX9dM8tMcOPylNrEI7NZNj/t0LIRUQsvgb8bZV1cFIwanWIy/PTfcPYieu6buXU/JL0h+ypAfI2Ss0E3QuaBrQno7bvtQJ2oYhzTo15ag2UU2ttozabZv/f7A+xDLFNFmAJRfz01Mx67rpI+m2eWgiLVrZQ9KW9VT2Krxe43F2zhyAz3IYuKfFUmp05iadmk/Sb16KvXYUfbTzxxBP48Ic/jKGhIWiahgceeCDIw1UM76nNtqCnZj3YVp0ay6n50FGE5Pxrl3YAqI9QhDfOYXg8/MPvW/gxpMWWX9SaPXLBj11i6r9WDT+SpybpKEKeWiN16Q/UqM3NzeGss87C1772tSAPUzVHp7nwY6Z5dqY7R6dx58O7y+6uxI4igL/hR/LUNgx0+vaalSLOjAoaPkzjW/ixDkZtMUYufvraYew5OuPLa5GiNBmzOmq0VviR2mRFrTo18/PXdd0yaqan1kh9MQOV9F9++eW4/PLLgzxETRybbU5P7Y5fvIV/f/MI1vR34CNnDTn+nlQo4pP6MZ0r4KjpCZ800IVfvH7EZmDCghenhO6p5f0pvg5rsc0s4vDjc/vG8SfffQlnDffiR9dfXPPr8cpfy1NrnIW7Vua4jiJWQ2Pj/ecK1oQISyjSOOvjoqpTy2QyyGQsQzM9HWxtkS38KNmZ7j8+j/lcHqcMdgd6Hn4zPme8r3HOaMvImuEWm1Ak7o+ndnjKyFem4hFWA1gP9WM9PbWMb+HHcDYDC4s4/PiY2Y/yeJl72iv8ho48lVby1GzF14Knxo+dscKPjROaXVRCka1bt6Knp4f9Gx4eDvR45Yzab3/zGVzxv5/CxFw20PPwG7oBy3lGfF6BaGdCkdoWNQo9ruxtQ0fSP/FJpdg8tTCMms1Tq0UowtWp1SH8OL3IjNpTbx8H4J83xSt/aVPXip6arEs/eeyaBvS2xdnPGqXMY1EZtVtuuQVTU1Ps34EDBwI9Hh9+FHemmXwBh6fSyOSLeHM0vG4UfkAGulxehB7spA/hx31jc5jmQlZUeL1qSTtX0F1nTy2M8KNfObV6CEXyvKe2eMKPUws5vHZwEoB/NXvUIs7w1Forp1Ys6uy54NtkMU8tZ7XPo00u//3FzqIyaslkEt3d3bZ/QZHJFzA5bz24ogHgjdyeo7OBnUcQkEEqlyeUGjUKP1ZwA+8bm8OWrzyOz977PPse89SWtHHeX/NL+n1TP9ZD0p+1jrOYcszP7j3Ocjx+GXhLKMJ7ao2xaNcKXy/Ke2ok46frkIpHbWtDo4QgF5VRC5OxWXtIUXyI+U7lu480llEjAz1XxlNzUz9WcgO/cWgahaKO59+ZwBuHDK+WCq9X9rb53vm/EsIuvrZ5arW0yeI9tZCKrzOLNKf21B5rgngmX/SlpZ1N0i+RtIfF95/fj5v+eXuoalNaFyKakfNOCcXXJBhJxaKIRDRro9sgRi1Qocjs7Cz27NnDvt63bx+2b9+Ovr4+rF69OshDl4XPpwGlnhqfU9jtk4w4DHKFIltMvYYfZerHSm7gI9NWEfu/vHQQG4c2Mk9t1ZI2dJgdG+pTp1ZH9aOPnpqu69A0raZzK8diDT/yRg0wrg0VTFcLv6GjOs16GLU7H9mDgxML6GtP4C9+c2Mox+RFIpqmsWtJnhqFGcnYtSeiWMgVGqarSKCe2gsvvIBNmzZh06ZNAICbbroJmzZtwq233hrkYT0hGjVxZ8p7ao0UfuS7drgZtWJRR96M6djbZFU+eubIjGXUfrR9BLlCkRVeG55a/cKPdVU/+tRRRPa13+QLRVsT5cXiqY1OpfH2sTnb9/wwPrxQpJ6SfjIg9zz9DnaGlLvnRSIAnD0100Nrq2NOvBoCNWqXXnopdF0v+XfvvfcGeVhPlHpq9p0pL3oYm81ivEEUkLPcjecWfuQXSXn40fsNzBexj81m8cjOoxg1Jf1GTs2STNfivVRD6OrHnD+emljjFvS5p4XXn1kkxdfkpZ25qod9z49RPHZJf/2EIvReCkUdf3H/DhRDUBjynhqAki79TChCRq3Bwo8tm1Mjo7aiJwVAEn5csH9dD2/tX148iP/50FsVSWn5RdxtYeJ3pXwoh3Zl6VzR8wNG4Ue6lnc99jbyRR2xiIblXSmbgsovb+2Xu4/hth/tKNmciMz7FA70Stonz5DUeUTQXoSobFssnhoZtYtP7Pe1nVWGiaSidRWK0HlENOCFdyfwLy8dDPyY/Cw1ACVd+ikMTde7njnxamhZo3bUDJmt6zf6EpYIRYScQj3yav/lx6/j7x7ejR+/MuL5b3jj7OqpcYtkPGrlaugGBryHIMmoXfsr6wEA2w9MAgBW9KYQjWhIxCLsGH7t9r7y0Fv49jPv4mN//xR2H3H+bPg8XhjhJf7BL+qourYndE+txKjVP6em6zqeetswau+1GTW/PTVzUQ+5FVSxqLOIyR+az86Xf7YTk/PBRoWs8KPxvslTTZcJP6qc2iKHdvjMqAkd5PmcGhC+AjJXKDJP6//7t7c8L2r8ojrn0hWfdqWJWMQmQEhxXpvXnRmFHy89eRlOXWGVYfDTxCmE4ZdYZMr8fA5OLODjdz2NpwUxAcHnGMOuUwOq9w7Fv2tFT+3tY7M4Mp1BIhbB5jVLfDU+5Anzkv6wRvxY52Ad77pLTsCG5Z04PpfF//r33YEed5ZrkQWA69IvSPrNTYQKPzYIVHhtGTV5Tm3IDKmFHX7kvayDEwv4p+f2e/o73lObzeQdQ4isRi1qvwUqlfDOZfLM+C7vTuET56xkP1u1pJ39P4U6/HowyFitWtKGmXQev/+t5/DT1w7bfidXKIZe7yUatWqNkSjjD95Ts8JggHHv1Hsa/FN7jC4i71m7xFYz5UeYUJZTEwu7X9o/ga885H1DWSn8vdGRjOGW3zgFAPBvr48GcjzCUSiSL5jNjO2eml9dhsKidY2a6amdsMzoIJ/O2UUMlFM7Z80SAOGHH8Wd8p2P7C5bdwaU3nhOgzllLbKISsbPUNPizmQMnckYrjh7JaLmymjz1MzX9PIevECvc/fvn4sPnbkC+aKOO/5tl+13RE8zDKMmejxVe2r5sI2acd5LO5MAjLBpvcNN1O/xohP6ASCQ8CPf0Fj01L7805346sO7WQjUb8g4a5qRArhg/VJENODQVJoJrYJgThCKUE69qBvNjEVJvxV+bIyOKy1p1HRdZ0ZtrempAfYFl3IK56w2jNqR6QwLeYUBeVxL2uNYu7QdY7NZfOvJfR7+zr4QORkRWY0aUUmrLMqnLe82FsNlXUlcdtogAOCMlZZircNHWb+u6yyMubQjgT/dsgEAcFwoqBcNfBhCEb8MaWn4MVgDQ7vzvvYE89bqGYJ8es8YHt11DJoGbDl1AAB8HebJDwlNcMaS907HzMbgYirCL/iuJpqmoT0RY83Ttx+YCOSYgLVGMKPGDQlO5wvMY7U8NYrcKE9t0TKdzrObekVPiu1I+IeYiq+Hetsw2B1+CJKMWm97Al/89ZMBAN98Ym/Z0gLRiDktTLIWWUQlM9XIqA10pdj3/vbKM3HfH12AD5y6vOQ1/TBq6Zw1Xbo9GUN3ymi6Op3O2cKtYk4x7DZZQPWGtKROLeBzJ6+sLRFlYal6iUUy+QL+4oEdAICrzl+Nkwe7AMAxTFgNtvCjaSx101Mh6NmptOfhjpEpfPKup3HF157Cp775LD577/P4xuNvl/wer8AkNq3uBQC8vH+yomNWQolQJBYBpdUzuSIr70gJkn6lflzEkJfWlTL6nnUmjUWRz0fR7qy7LcaGXPo1oNALpMbsTMbwoTNW4LShbsxk8rj7l3td/04c71Kdp+bdqyKRyIDpqQFGDP6C9UttAhQyan4IRfjXaI9H0W12Etd1e52e6KmFIQQQF8CqPTVB/Rh0qyw+5NRlbhLq5and9djb2Ds2h2VdSfzZB09h3/cz/Jgp8EbNegb4e4SMeqUDMh94eQQvvDuBVw5M4pm9x/HwzqPY+rOdJeUnGUE6DwCbzMhQkEaNnhHy1IyuIpYCkt0LMXv40SmVsdhoaaO2rMtYiLtSxodrM2rmDd2diuPE5YZRC1MBOcMlcyMRDVdftBYAsL3MzS6GH526isj6PhLtbGdWflFjnlp3yvX32mn8jA85NRKJtCeM3nSpeJS9Dz5UJHpqYUj6xTxUtYZUNGJBy83TXMiJnod6GLW9x2bx948aXs2tv7kRPeaGBfA3/Mhv6viOOuQF5gpFZswqzS1SF5srzh7CVz+1iRkMcYPJPLU4b9R6AQCvjkwGFi4Xc2oAf20LJcXXtCFNK09t8ULKx+WmUaNwC1+rRkKRnrY4Niw3wh+7www/kqdmLjCkJORbUskQDVFZoxatLfw4ynJq7katw8fdntgRAYAVglxw8dRCrlOr5ZglQpGwPLVYlF3LsI2aruv4iwd2IFso4n0nLcNvnrnC9vMg1I9Js2kv1VHSdebfe6WKXco9nbGyBx85a4itL2nhvK2cmhV+XLe0Az1tcaRzRewaDSYyJKofAUsUks5ZxjzJPLX6tbmrhtY0asxTMxZilkMwP+xsvsh2Z92pOBd+DDOnZngcXea5kRDj2LR7Bw3RiDmGH13Uj5UIRWThRxlMFuxSO+cVMlYdXKF4d5vx+nzRvDgkNZSOIiXqxyqLrwv2hSUsSX9bIso2UmHn1J5++ziefvs4krEI/tsVp5c0cPazTo2v0wQ4TyVHRs1676IxKgc9N/QcpRzOWxZ+jEQ0nD3cCwB4eX8wYhFRKGI7x3zBNnoG4HJqKvy4eKFuIstM+TI9xOQd8Td0ZyqGE03Z/8jkQmgjIkRPjbzKmUzedecoGiKn87XCL6XdziuZqUaeY9nwo49CETdPjVeoiqHOMIUidA2rPSZtOigUGLz6kc+p1Sf8eGDcGCz73hP7sXppe8nPA+koEiWjZn9t3uOXhd1efHcCN31/O1tLeOi5oXteHMJJZBzEWkGLRUShiP0ci5I6NRV+XPSU5NQo/Gh6R6R87ErGEI1oWNKRQL9pAN8OyVubEUIEnckYWyhlDxJBCz79bjmjVov6Udd1qfpRhp/Tr8kwdnA9JSn3YsupZa06ICD4EJ6uW7VddD611qnR5x98Q2PyGricWshNjenzoo2ciK/hR8ETTggesc1Tk3iG9z79Dn748gh+9lppoTTz1OIkmbePdiGc8trMUzPbzfmNLKfGNzV2qlPzUre6GFBGDaWemqV8tJLUG0gsEpJREz01TdNYiO+ISwiSbthBsxOKs/rRHn7h8RpDn07n2QO/3GP4UQwJVgMZ6vYkH34kWT+XUzN/j7y4oA1DJm+VGpBRq9aryJphS1p4gha50NTrtkSUUz+GG36kz4tvgM0TlFDEeG27weTvI1nEgq6N7BrRc9POwo8OnlrO2kjwkFHbNzaHiQCmg4htsgB7U2Mm6Te/164k/YsfMmoU0usQcmqUl+nidoyUVwurswjdeF3cbmq56Q25eWp049F7Exs1Eyz04SYUKbMzO2p6aT1tcbbTc4IGhfpRwDkvDT+aOTWJp7akPRyjxi9alOOruk7NXFz99tSy+SKe3D1WssCmWb8/vk6tPp4a31Sbx6pT87ejCFDOUytdzCmKIduk0T3OjJqDMXYKP/a2J7B+mdEUYrvP3lq+UGTH5YUifFNjsfi6msHB9aQljdrYrOCpJUVPzb7DB4CTBgwF5GsHp0I5RzJqfChmmekNHXXx1OjvSI0oSvwJtzo1r/mvIx5FIoDl/bk1WfbKHAs/lnpqtpyaubj0tCcAWN5PUNCOPh7V2PutvqOIca60sfLLqP3fZ9/Fp/9xG+56zF4MzIecuuskFJEJgHiCGD1TIhRhRs3dU6PrJVvoRaGI2AVfPIekZEO4aZjq1fwVi/DPn0zSb+TU7OFHa5OrjNqiJF8o4rjp0jvVqdHDTLttALhgfR8AI0FcaYeBaphhxdeWYSXv66jLDDHyYgbIU8vIFyY/1I9ea9QAfyX9spwAy6mleaMmemrBfm68SCRhSsRr7dLfycKP/pz7c/uOAwAOTMzbvm+vUyttRhAGtOC2J+sffuSNmswzpHtLFt5fYB6nMK/MoTBfltdmYhGfPTUqvObbgwH2psZpodRASfoXOcfnstB1GAIQcwfPPDUh/Mh7aics68TyriQy+SJeeje4vmzErKSWhIwHhf1EikWdeTH0u06ekaj+4vEqFCHl4/IyIhHjNf0rvp6T5ATc6tSWME8t2PAjv0OnBaMao1Ys6sibyblOnz211w9NAygNSzNJfx2Lr716an5cC/H+TwjqR95LlXko9D1xodd1nW3cSKxlGYzykn6CjNr2/ZO+TsO2NoT2a2wJRYpWKJqEIpySt9r5gGHSckaN8mlLOxKsm7yYQ2DhR04oomkaLj7R6BbuV9fuYlHH795t9IYTx3zQosPn9cp5avzDR8KNcsXXfDcDglRb5ZSKXmvUAH8l/Sz8yOfUZHVqpkHvDTmn1haPIh6VL2Re4I0vvUc/DPLUfA4HJxYAlBosq4tE/dpkzQsejkgy7mP4seDkqZWGH2WRmTQzaqWt2GjhZ+FHFtpzkvSXGvGTB7rQFo9iJpPH28f8E6fJymGMc5C0yRIk/UBjjJ9pWaPGq/U6U06emv2Dv+iEpQCsOU+1cmQmjaffNnrDicZH5qmVE4rQLiyiWTV4jpJ+eqijpQ+U95xaBeHHpH+Sftlu0/LUSnNqzFMLqSlwijNq1RRf894dCYX8EEe8ftjKB4v3Bb+Q1auhMfPUkk6emj/hR13XbR1FAIlQJOPuqc07CEX46Eap+lHe+ky2sYxFIzhzlTHl4gUfI0OybiLGOVLZQaFkw8s3PG6EvFrLGjVa9AGgixoau0j6AeAi01N79eCkzSOoFn5UyuS89XrFoi4VipAhdvLULAFFjP2dk6SfHig3oUi5G9gyahUIRfz01MrVqYXsqS1w6j1xkawE/m+YpN8HT+0NM/QIlBq1hUUQfqTPq81R0u+P+pH3er0IRURjxNcjlswvzFpiIdrY8N06eNzCjwBw3jojj//8vnFP78sLsny0cY7WpBIKGtF5a5rGZP2NoIBsPaMmKB8BmadWqn4EjKGXa5e2o6gD2/bWfqORChMAJuYtA8d3obfl1ExPbXI+Jw2J0A3bnoyW5AlF/BGKkNfrXSiSzReRr3GBnpd5arI6NfM69pqeWrUtq7zCj29JME/N/b3uG5srUdTSecajmmOLpWrYMWIdR/TCeBk33feZfDGULiyEX+rH1w9N4Y//7wuOUzX49+Qk6Z92CT8ac9fonO0/m+fEQuwYXL5KfB3jHOTv9z1rDaP23Dv+GTVZiyz+HHj1cIo7r0pa59WbljNqJLKwGTXOABSLum3sjAh5a0/tqT2vxntq/Jw0MkTxqGbbxXW3xdjDJ46x4P+uw5xCDRiGTszXAe7F15TTcNuV6brOwqCDHowanyepVQEpb5NlfYZkNEvq1ApF6bXwC5v60WGassjv3v0sPnHX07bFhBbWeNTqIO9HTu11zlNzyqml4hFbdCDMEORc2Zyat/DjD144iF+8fgTff/6A9Oe8USttk0XqR+fwI/9ciL1M6Try76HSNlnEOWuWIKIBBycWcGhyQfo7leK0cSBPbcqMGEXMadxEWwPJ+lvOqI2bH1pfBxd+5B7iuWxeqn4kLjZHyz/tg1jk+JxlmPjwIz9LjW/qqmmaq1jEumFjbMEv6vIbkeUUXNSP81m5QQSAifkc8yj4DYITiVgEMVOYU2tTY5mggA8V04JNHl1vW4L9LEgFpD2nZnZ9d1mAc4UiDk+lkS0UcZzz2ukc45zsutZyhIVswSY4EL0w/tyjEY3dA2GGIGUeOI/X3o/0HByekuee6frGIhoi5j3pFn4sFHWbx80/T+J8QLGbCMDnq8ScmiXOkdGZjOF0c3r88z55a+lcqSfJn+PkQpZ9bZuHGC+/0V0stJxRW5DcdEluwZ3N5Jn6sUti1C40xSJvHZmVekuVwHtqfPhxRpJPI8ioHZOIRazQQhTtiShL7spCkKz3nUz9aF6bou68gFA+rb8zwXIH5fCr/6NMKBKPRtjr0wRs8ggppwYEm1fjG9mSAMfNiDoV+Oa40LBfTXx3jk6jqFteK2C/L3hJPyCfMRgkvBTeuU2Wt/AjvZdRJ6Mm8ZDcOooA9s+HD8EtZAu2jR/d2202oyaf2F0u/AhwIUif8mrUDk0s+E4J4UfRe1Thx0WMbKeiaZpNWDEtKb4m+joS2LiiG0Dt3tqYzajJPLVSo8pq1WSeGle/pWkaOhOlc+IItzo1/to47czIqHmpUSPIe6z1wZjjPFIevlYtnS+wvEdoRo0LP8ZjZvG1y/FmHfI2/GdTi+CEh0KPZ6zqtZpdm8fXdd1qaGwuwLSh80MQ5YV0zspTOXlqCY9CEbqWTp6arJEwbzD5AaHia4r/ny/qto2LfNPs1NDYXSgC+G/U6HMWPTX63CliJLa9Y+NnlKR/8SG2gCEoBzUxn2OLriz8CAAXn2h4a097kPbruo67n9iLR3ceLfkZH36ckOTUuiSdFchTOyIpwBZzTR0sr1ZqRNwmX8ejERY+c4qhV1KjRtBuz0mR6YU8t+CIyW6+Vs3WDigRY554kGIRWtBSnFDEzVPjDQbtoAHLU4tHNd+N2mlD3VwX/hw7R1HxFrYCkg/jpRw8F6+SfjIeR6bT0mJhWYs4/jrz75m+n+Y+H3FTZsuxsQJ82QDOynJqAPCetUa7rN1HZ31pbszuUWH9o2tL7100amz8jMqpLT6sHan9QyOjxu/uuhxGYFxUQRH2jpFp3P7TN3HzD18t+ZlT+FHs0M+znHUVkeXU7MqmTmHx4nHr/QjwOzP5TTxaQY0aQZ6Vm1CknDKS/1txR8/L+ue5prKRiH/GwY0FLgrgpaMIH9rjNw9ZW/jRn9qs1w8ZysfThrq5IaDG8fkFmz73Wpoav/juBH7vH7c5qg9lUJ6VPi8Z3sOPxs/zRd2WqyTcPbUiCz12JKJMUMEPChU3enyZCguhcuuLY0Njl7IaYmlnEieaE0L8yKtlHDy1UiOnwo8NgzjEkSADRiqjjkQUMYdc0Xlr+xCLaDg4sYD9x+elv0O8edjYIR+ZzpQ8jPwDxwtFxFlqPMtchCJW+yjjvbl5am7hR6C8ApKFHyswauzBcBCKPLLzCDbe9gt8b9t+x9eg9xiLaCXnzg8KZX0EzfdhqRGDeyhtdWrR8kbUKafGqx/9aA2VKxSxc9QwMKcP9VjzA8momfdlNGLVVtG1nK0i/Pg/fr4Tv9w9hjsf2eP5b+bYJkS+kQT4jiLuKlY+dyULQYqF18b/W6HNGdbNJ24NzBXyaDx86zexQ7/tvEs8NQo/uk+4oHo1P0KQ4gBQdo4x0cjJPTVl1BYhTh8qGRAyamLhNU9HMoZ1/cZoCLExrMiuI9ZulfeudF3H2FwVnpqLURPDj12crF/ELfwIlBd1VNKhnyBjKyrGAON6/I+f70I2X8Qze53DunNcnQ2vzgL4WrVcSXeKRA1tq7zCe2pxFn50Xnxt4024xYJCpHahSPWLydvHZpHNF9GZjGF1X3tJw2IWkufuhWrDj4enFlhd1UNvHPGslivXTQSwFl5ddw8j8/kwmVGja8lviui1s4UiK+npSsWQkoTdxJFM89Lwo0T96Nil330ZPs/Mq/nhqfEhch7RUxO/bnN4D4uRljNqTu53p/mgM6PmkE8jujyO53iLM2qjXB5sNpO37b7tOTXzoZJ4am5Nja3wY9T2X9kEY2vyr3wRsabdym/iYxU0Myao+7psoXv8rWPMm3Breix6ozzWTLV8iew/zPBjiq9TczFGTuHHnFTSX/15vz5iRAs2ruhGJKKVtMHiz5uodvr1g68cthUmP7qrNJcso1zfR8AeEnMz8vzPRqdK67tkoXe+r+Q013eVQof858PnPwH7Jk0WCXIKP7p16ed5j+mp7Tg0XVM+GuDn5olGzN1Ta6RO/S1n1JwSpfSgj0wai7VM+cgj62AhY9eoZdT4XSOfTwME9aNL+JE8teNz2ZJ8jbNQxEX9WMZTc9pp0/iepZ0J6c+lrxl39tS+8fhe9v9uDw5TPkquTY/MU0vYPbUwhCJtCW+9H8uFH23qxxrq60gksnHIUO12CgZLFr2odvr1j14ZAQAMmZPXf/LKIU9/xzxwh24igGjUnK+HzVOTbP5k3XT4cPEMGxIcZ5s7/jVLWmNlSj21domkv5KGxjwre9uwsrcNhaKOl2qcr2atf+5GTDS0Kvy4SDGky/Lwo5hTK++ple9kPjGXtYUJj/BGzVQ+ktx8geuOPeMSflzSnmBKvjEhCT4vSN3dw4/ucuJyOzPKAVKzYC90OHhqrx6ctIUc3WTDbjO3+EGh4u+F6am1J6LsuroJRWxGjbsmMqFIrqBXPYKEF4kAXA1aWgg/chs92lCV27TxvH1sFjtGphGLaPjvnzwTAPCIpFm3DFl9l4imWYIfV6Nm89TccmoyT43PqcWkBkk0Tnw0Q6Z+5Adw8niR9BN+9YGk9a9E0l/Gc7M2uUrSv6jIFXQm8XXKqU1x8XQ3vIQf+dAjYPfUqEZtTV87M1JkKNw8tUhEs8QiggJS7OvW4aJgK+upxZ1v4my+yM6RL+YtRzuT9NsXhW88YXhpw31txs9ddoO0+HVKci98p/4STy1EoQjfpd9dKMLl1KThR832+VTjrRWLOmtkfNqQ0Z2iS7gvxFEjQKnh88KPtxte2Xs39OO9J/ZjfX8HMvki/v2NI2X/VtakWoYl6HD+HNOehSK8p2b12JQJRew5NRehSK5UKMIMY94q1NZ13XNODbDq1Z7YPVZTq7e0R09NLKugn6s2WYsMfgfnFH4k3IQigLdE+i7BqPG1ZRR+7O9MMm+N+j/KZqnxkOJQrFWbd1Q/2s8xXyiCNv3O6kfncAO10olo5T1a+Wta57P/+Dx+9tphAMDn37/B9j5kkDGV5V6sOrV8SR9BL2rEWrELRcw2WVV0FJH1fgSqE7mMz2dZmJGk4WIDb1lDgkrDj7qus1DjFWcPQdM0/OaZKwAAD75aPgRJn3m7i1AEKF+rpuu6zSOSeWpSSX/cCvPOcKOnkpLFXHwm5soIReg1eIFLrqCz3GO58CMA/MqGfkQjGrYfmMRfP/hm1YaNFV8n3IUh4tcq/Cjwta99DWvXrkUqlcL555+P5557LozDlkAPr6aVLuYlRq3MYi2b3yVC+bT1plLyMJe0Jjn/0s4EC+FNmgpIy1OTn4OTAlIcK+HU6kg2ekPErS6FPMqetrhjTZGMdklI8x+e3IuiDlxy0jKcs8YoNHWrY6P8hcyL7ebr1DL2HbOXsFWtMOPgcfSMTSiSLfXUEjGjCJ5EntUoIGnz1NseZ+ckhs5lObXuCtWPO0amsXdsDslYBL+2cRAA8OGzhgAYIqCpeXfjWLGn5nBdxe+PTqVLDICsnIX3APnwo+WpWa8rhh/5aIYsp8Z7hGRU+M/SS/hxuK8d//0TRkj3W0/tw/986K2yfyOD7jPRkHqV9KvejwC+//3v46abbsJtt92Gl156CWeddRY++MEP4uhRb6ooP6Ei0zahWSdQmr8qKxTx8NBT+PF9Jy0DYMngAV5okWRGjcQibjk1wMWoCcXXtECUGDXJ6A0Rt5lqpNSsJJ/GvyZ5apl8AT944SAA4I8vWW/93KXh8ZykDoiw1anR4mLu/L2EA2uFLWjxGCcU8RZ+dBKKaJpWk5dJudu+DuuzsqZSGMeX5tQqNGo/NgUiWzYOsNffMNCFkwe6kCvo+MUbo65/79lTc6j5IsQWWtlCkT1r/PcAh44ihSJrVtCVirNrIvPUaAnhPTWn3rL0u3StMx6eQZFPbl6F/3rFaQCArz6yB19//G1Pf8fDb7x4jBpFa00s6Q2pwo8WX/nKV3DttdfimmuuwcaNG/H1r38d7e3t+Na3vhX0oUtgctZ46YNTqafGdruSbh2AEQYhT+0SZtTSLNnPjFpHgoUfJ0o8NSejZoQf+abGuq6XNPp1Cj/S4hjR4FhgbglFShc1Os/eCvJpgCXaoJzartEZLOQK6G2P48L1S5kRzhac53g5DTkEnNSPdqGIX+pHI8xVsH3NpPEJb0XT9kGUvFCE5qkZr1FLU+Nx7j4jRINF552UhB+9iDyKRR0/ecUIIV9hemeEFYI87Poa5J2X99Tcw4/0jEc0I7QPlIYg5R1FZDm1mDynxkYaJWxfA3wI2nofmqaBL+4Wz0HcYLvx+xeuxZ9fdgoA4Ms/24kn3jrm+W+N9yEXygH2PFpp+FF16QcAZLNZvPjii9iyZYt1wEgEW7ZswTPPPFPy+5lMBtPT07Z/fiIrMiVKPbXacmpHpjOYTucRjWg4f30fIprRtmfM3DlT+LGf99TmstB1a+q1U06NCp55zy+TLyJvGsxy4cdyhdeAewx9ogrlI2Dl+mgBe9UcjnnGyh5ommbbPTo9PG5hKtqIpHNFTMzlbO/DrxEuxF8/+CbO/Kt/w27TG+cHR/LF19VI+nOCJ5GgwuAqjBp51byn1l2SUytVxPH3jqx/Is/esTmMTqfRnojikpOX2X72m6aRe2rPmGvhrhgudqJs+JFbtId6jc2fKBaRdRThw9PTnFBEVjhNnxVtFOYkYWTxfYjTr9nYGY9eGs91l56Aj5jX9VmXRgUiBa75sqh+BOybGlEoQu9nciFXch9OzGXx2994Btfc81zVCl0/CdSojY2NoVAoYGBgwPb9gYEBjI6WhiO2bt2Knp4e9m94eNjX83GqpgdKC51rlfSTSGRdfwfaEzGmWKRdI+U6lnYmsKTDCj+mc0W2iDh6at0UfrQeVt74kHLRqU1WRpJTEHGLoVueWmVGzWqTZVwzmsR8hjkzKhGzhBHzOfl1lY2dIbpSMRbmoUJ3ugZJDw2GK+GXu48hmy9imymx5hc925BQj+pHm6SfE4oA8OT1OXGcGTV+KC61wHKW9PMbqnLeGpWWDPakSnIza/raoWnGguoWyiw3IJQo12GFj8bQ8FqxAJt1FJH0fswWiphZsIQiLOwmCTFSjaa9o4jcOFuDQu2emheRiAx6Zg5MeB8emnERyvHnCJQqMof72tGeiGJ8Losv3Pcy69E6nc7h97/1HLbtG8eju47hid2VeY5BsKjUj7fccgumpqbYvwMHDvj6+qxGTXIjVZpTo4feSSjylhl6PHmgCwAw2GPI1ZlRMz22pR1JJoufnM+ycKamOe9aKfzIS/ppsU/FIyykyE/05rHk/M4PlFtD40k2aLWy8GOHIBR5zTRqZ67qsY7rIPsn5hzG0QOwdcsgUU6pp+aPUaPd/4hZ10jvKRE1rn+cM6IypRrvkQN2IQLz1KI0wDLY8KPVZYLPA1n9K8spIJmSt6O0ZVokorFNllv9oZc2WQA3/dph/AwfjVnR4+6p8Zs63sDRRsDmqUkGqi41w5vzEqGImLMq8dQ8dhNxYtUSYz05WKZNHw9vmGVrIG/oxJ/3tMVx16c3IxGN4Gc7RnHTP7+CmXQO19zzPHuOAeC7Ln1bwyJQo9bf349oNIojR+x1KkeOHMHg4GDJ7yeTSXR3d9v++cmCww0HVJNTcw8/kqd28qBp1EzvatQch0GLTT+nfpyYzzpOveYhocjYbIZ5dbIZY7xR4xdWq0WWm6dmxtBdhCKVemq0YM1n80jnCiznSNN9jfN3XwDnyoSp6HOjAa50PfwUikync8wgHTR3yguCt8MvkrIQ5Hy2AD5SI6tTs8KPfnhq1mdF9262UEQmX2C1S+Jz4XVQKNugOXSXEXOpMsQG1E6UM/C0OUjGo1jRa99IEtI2Wdz/87Wq0obG5mfVT+FH82eFolV7Jr6PlFCAXW7qdTmG+9oBWPefF9Lc+5aplvk8myzndslJy/D3V52DWETDj185hEv+9jG8+O4EulMx/N3vnA0AePjNIzaVdz0I1KglEgls3rwZDz/8MPtesVjEww8/jAsvvDDIQ0vJ5O0LD4+YoylXfE05t2yhKM0V0IJ9kumpreA8tcn5LFvQlnBCkfF5a7GU9X0klnYmEdGMydSUm5MJKMiI8A8b4K3nHNWxyMOP1eXUSHwylzUMWr6oY0l7HCvNxQcovwBaxdfy60OfC11fUtNZ6rbaY/6HJ61FknbK4oaJ9wJkCkhxM8RvHjJO4ccqCsfHZ0vbmfH3+mw67yge8NrUeExyDJ5yGxX+Z25tsgAP4UcuV+XoqUk2dbJQfHcqzp4D/nhW+NHuqfGfYUn4UehM4iUF4AZ5asdmMp6bDLP0i8Nzz18P2RoJGOrWOz+1CdGIhvG5LDoSUXz7D87DFWevxPnr+lDUgfue8zfCVimBhx9vuukm3H333fj2t7+NN998E9dddx3m5uZwzTXXBH3oEqzQROmDw4euACtn5kRnwsrfiA99oahj91G7pzbA4vtptnvubY8jHo2wXfQk76m5GNVoRGPKLpL1y8JytsWL222X6yYCWOot2UJE9XSVdBMxzscSPGw/MAnAmMTMe6TlFkC34msA6BHCxqL60Q9P7RC3Ex0xd8piAbOtE4jkmLOCatYuFLG69PP/LTfxWca4xFOLRjR2nWfSeWvGoHA/kCc+XmY4Jau5lIQfAeuzcu8UQyUYNaofue4oLKc27SQUsd4v34KL6OQbGks8NTGnRvespknaTomeWt7yKKuhpy3O1iuv3pqTnJ+dYxlPjbj8jBX42u9uwsUnLsW9f3AeNq026kuvumANAOD7zx8oOxcxSAI3ar/927+NO+64A7feeivOPvtsbN++HT//+c9LxCNh4CYUAazdP5/odyIS0dCZkLfKOjA+j3SuiGQsgtVmmIB2jaPTaZZYpzxHL6d+dJulxrPS3Km9c3wOgLx7fYRbvPh2R7JEuUiQQhHAmg11xkp7iFlWoM1D33f01ITNiDh6xo82WbyndtTcKYs9/6IRDRThkXlqpLCLmr9kK74WPLVamhofd6gp5CX7Tk1u3cYc8YyXaW7Nws4uYUxZ0bIMq07NSdJPXmeERUcOTy3Ywu9O6l/eEHUkoohGNGv0DOep0bmSEae6Sr5Dv5g64KcAAN479DuhaVrFeTVZOzQeu1FzP6/LTl+B7/7hBax9FwB88LQBLO1IYHQ6jUd2hl+HTIQiFLnhhhvw7rvvIpPJYNu2bTj//PPDOGwJbkIRwPKOyolECCYWETw1yqdtGOhki5bNU5u1Cq8By+OZTudZ54XOMp7iKaYHuPOwcSyxQz/RIRGLlBsQCnCSfklogzUzrlAokohGWJ/LbfsMKfIZXD7NdtxynpqDoEAsxQhi9IyYMzg8lebqk0rFBzKvgjYZ/aYhyOSLTA7NioNZ+NFdHOFEsaizDYhocHixiFOTW1LsHitj1Nj9XIOnVi5XSngNP6biUaYSTueKLE8GOEcqeANDRl/01ApFnf09fXaUz3YzzGJT40qaGTuxaomxYfaqgJSVbvDwhqwaVWYyFsUnz10FoL6CkUWlfgwamXSZh3b/XvsZOvXHe0vIpwGwxffHWI2a8VD0cAsx7brccmoAcMqg4eGwGWTCLDX2niTJfllHBRGnNln8QllpTk3TNPbAUx7mjFW9tt9xy6npul7WU+sRjBqFH/2YIE0cmrSHsw5OzEtDO25dRShkzc+jI2+gRChCA04r9NSm0zkmJOLDjwBsM9WcdvBejdpYGaEILxCSkS8UmeGvtfg6w6UYUvEoi4bweTVrUyfK7kvr9MTRM3z+ijalC9mC7d6UhffEbv+1SvqByhWQsiJ7nqSt+Lq68/rd81YDAJ7YfQz7j3tXZvpJSxm1BSHvIdLFPDVvRo08OjGnxpSPnFEbNI3aQq6Ad8aMkCHtbGPRCFuMaddVLvzIPLVRo0CdeWrCotDJjAQffvSufszmi7bi25l0nokwKu0owr8uYCy0NHeLcMupZbhzKad+JGiB8VIM7RXRUzs4sSAdDmmNnyk9Jm2E+jlDQK8hCkWq9TIp9NiZjJUsnryyMeOw2avUU+t3MGqUn3UU//ACi7INjd09tQwXfgSs547/zDIOmzq7pxazvQ4ZI75FVp+5qcubRc2s8Dpe+uxakn5/1I9A5QrItCSaYD9HuRq0EtYs7cCvbOiHrgP/8tLBql6jVlrKqGVcWsQAvKfmNfwo99ToJltrNjKmY5IR2GGOAuF3thSCPDBu7G7chCKA5akdnFiwt4USw4+S/o9ehCK80eANDHlpxsywyndz/KJFnUTsx3XOqfGG2UkowoeO+dEtfjY0pl3/BrPr/cjEgnSOllsZAX0e3W1xtoDQposfPQOUX8idkIlECN6oOW32lpmeyLFZZ6OWK1ihPafwI3lqTrO4KCcVi2hl1YBlc2qC1ylTQDrlsxKS8KPYJosXBPH38kK24DoTztlTqyX8aHpq4/7k1Pzw1ADggvVLAcgnJIRBSxk1tzo1gDNqHj01J8kz1e2QQpEgNdabh8moWT8n0cUBM5RQzlPraY8zL+et0RlO/egh/Oih+JpvwsqLGKoNPRK8Jynm0wD39lzznDcUdZgOwHtqvOFL+NRRRNd1Nkj2PebgxoMT8645Ndkxp/n+ggn7wulXnRp5UDKjZoUfLUm/GJaiEUfHJNOjCapZjEa0ktAvUS6nxjepLtcHsbz60b5xXdFTWqvmJJSSe2qmQc4JIUazFRrdV3PZgm1IrNN5p0uKr/0IP1bqqTkYNb74ugYPknVP8aklXaW0lFFzki4TTCjiOacmF4qMzRgP+jLRqJlGiB6M/o5ST436OZarkwOAU1YY3tqbozOOjX7dwo9uu2JN4ztBWDdntSIRgt9QnC4zaknqKFK6q7fEMM4LAb+w8kpQv3o/Tszn2PU71xyVMzK5IF0w3Dw18u75QZQL5hQJUchDC1+lRk3WTYTg27w55ZpZ+HE24zi/i3KjS9oTjmOIypVpWP0Sy9/zldSpAXz4UZJT8+CpkVErmrPQFgRvp51TdroJRVKCh+mnUOT4XNa1BpBwa2YMiA2Nqze2sn6ZYdJaRq2M+/0rG/rRnYrhvRv6Pb1el2Sm2nw2X1LHQqwQ8ke8pyZ6PuU8NYBXQE5LO4rwrzPL5TO8hB8BoM88f17SXbunZl17vj2W9XPn8KNTiJWH97L5mie/1I/kpfV3JrHODC/zObWUR6EI3zmmjfMGjN83u/TXGDodl4ydIfjxM+JCTVCOLFfQbepBHisq4Xw/lCuonyujaOUp21GEjIUQfhyVCkVET806freQUwOMz0dsWMzfr7IQNJFiHqbpqTHvuPoluKctzs5zxIO3Jna9KTlH85oZY2hq99SCnF3oRksZtYUyktZfPWUAr9z26/jgaaUtvGTIwo8U8knFIyU7NpL1E7acmqhOq8BT2zk6w4yWo6Q/zasfve0Sh0kyzMXsqZtIpTVqBO3Gl3YkSoy88XPTU5PsPGc9tFLic2o2T80noQjt+Id6U6xW8Mh0GtOm58WLBNwMKd0ztqa5OXsNU8InoUifxODw927G4blIxqLM83USixwv000EKO+pMeWuF0+tbO/H8kIRCgeLi3tCEn5MRCOs3jCdK2AhZ8+btXH3K22a2yXri9VRxJ+GxoQl6y+fVytfp2aco1PHEa8oTy1Eyn2oACqabdQtEYoc47oriK8lLuJ8A1ixO4cXT+1U01PbNTqDWfMcxDZDnZJwntfCz2HJA1NtNxGCjNbpEpGI8XMXT40Vpjt/fo45NZ88NVocV/SksKwziWQsgqIO7D1mKFqprRJgNSSWemr0XricGnkBWSYUofBjdUKRCdfwo3FtphZy3CJfel2XlSnAlk0BECnrqbkMfhXxXKcWs+fUDnMTsJ0l/aXhR03TbGIRChHTtWIGO1NOKGJf6P0IPwKV5dWcPHKCDGwtoUfjdZSnFhpO0uVqcfPU+rtKH3LeU4tFNJtXIXo+XnJqa/s7kIhGMJvJY/fRWQDOObVK1Y8AsHopeWrWA1NtNxGCrgHlo0TaXWqayrXIAoScGmf8aunKwUM1ait62qBpGvPW6Prz3o7bMVlOLRkvUdiJQpFqa+zcDA6Nn6H7FZA/F8vLyPqPC91xZJT11FwmL4gky3yOYt6IxFnz2QLLB3vpKMI/f7wnLY6WYZswrquMNKcmCFz8UD8Clcn6vRZf12rULAOujFrglKtTq5RuyfRrNvxT8pDTrhEwwjW8p1KaUyvvCcWjEZxoysrJsIoiCmlHEaFjhRO0C5SFH6v11K79lfW448qz8AfvXSf9OctRSHb15QqvAWNBIWWkVP3ok6dGAyipGTPlnPgFwV0oYqkfxfBjrkQoUp1BdhOKUHibN1ayTjvlatXK1agBlakfy1Guu4rYtLwtEcUac3P22sgUCkWd1Tp6EYoYr2Ut0qIgiKl1uXZjUvWjKOl3UJxWiuwZdaJc8wl6n7Ua2mojC37RUkbNSbpcLdZMNc5Tc+mDN8h5amJNj6gm9JJTA4BTVnTZvvakfsx589RoF8iHHyccegl6pac9jk9uXuW4K3fPqZVf/DRNY8lzmadWa0jkMOepAVZOg/BaRjDjJfwY0+znXuHO10udGnW3cRpHUq5WzRo74xx+LNf70WvfR4DvoejUUaQ0lHr2cC8AYPuBSdsGo9RTs/7G7qmZdYScbJ8+MxZa5YQiMk/HapPld/ixEk/NfVNP33cqefJKqkzeM2hayqiVU/9Uiqz4mna0soe8u81SuolGrxr1IwCcOmhvCFyifpTUqTl1VBChnNrodJo9hJZQpDpPrRxk7KpVPwKWArJdWghd2+7xkOCp0U6Z4HNqpF7MuUj6u1NxVttGtVCsS38NDY11XZfOUiOoDVve9FqcxAFlPTUXb5Bw6yMK8NOiy9/zrGVY2cnX1vtxMmpuxdd8bpbVEeYLtjo1wAqtLmR5Sb+so4jdGHuZaeiF4T7vrbLKtck6b10ffm3jAP7wV+RRFK+IzZvDpqWMWrmdSqXwbbIoCX2cDf8sNWqapjE1lvjzao1aOU/NtaFxmQeqvzOBtngUum7lkiZrlPSXgy++FmujnArMRSivxotm3FpWeaVY1HFkWvTU7EaN36UnHTy1XKHIoga8pD+dK9jOL85yau4FxzLmsgX2OcuiBmIkwCmPYglF5AXYXtSP7S4hZcD752qcZxlJv2S8FG/UaKHVNLDm2oRjTo28LN5TE7wao/jaOZJQIhTJ+WPUKPw9wc1idKLc+teRjOHu3z8XH9u0qqZzEsfshE1LGbVybbIqhTy1fFFnH+DxWfe6HQpBijtb3vPh80LlOEX01ISFoYvrHEFkPcqJNU1jO8H9ZsyehCKy3b8f0IIgDjYF5INQZdAuW1qnVoNQZGw2g1xBR0SzBBSiUZN5h6Ih5csrOlMxVtu2kC3Yzo95alH3hVzGuK20pPR6ifMCnUJO1HC5vFDEJfxIfUQLRWl+sRJPrVxOLS2p/9o41I1ENILxuSz2HDMEPYlopHQ8jK1OTe6pOdWpLdjq1GThx2Ak/V2pOFs7ynlr5Yqv/UJ5aiFRMJuOAv55ah2JKKthoXBSuTEcZCQGBXl/Kh5lD4pXLw0wdtJkQGW982hRmlrIWTkbj54aYK9VS+cK7MEIKvzIL2xiCNKpwFyESieWcwpUui68UKBSRszC64HuFGLm663stefUZOpH0RjRBoNaLfHF13yospaGxizX5TQOJh4Fv6Y7jWNyCz8uZAtM/OHmqfGLvGw+3xyrU6tM0i/rcmJ1FOG99ChOHTI2fzTHT3bv89/jPVl6rYVssaTInu+A4yYUsRoa+5tTA6xn9OC4e17N70iVE3Qv5QrVP2u10DJGjS8E9GunomnWtGwqvmVjZbrkD/nnf3UDvvhrJ+HKzcMlP6OQnleRCEHeWkcyVrL77G6LsYeMlHus952HrgG8WIS8tJgwJdxPohGNhZhECbhsureM//jBk/E/PnkmfuOMFex75SZRe4EKr/l6w+VdSdZ4GJC3yRLr1EgtS58zb9Ro4xWNaMxbr0ZN5iYSAexDbgHnPDMZtYn5XMl1I8OZiEVc74dEjO+RWBoim2cdRbx7akXdygfyONWibjJDkM+/M26+Tun7pe91CJESvjenGH7kW8m5t8mye5jW5Oval2CmgCzrqfmrKXCCv/b18NZa0qj5sTsiWKusdB6Foo7x+XKeWjs+/4EN6JF4OuT9lJulJkLtsmQ7XU3TSloFVZKktjqBL2BizuomUkmReqU4FWDLpnvLGOhO4bfOHZbK64HqjRq1yFrRa4UcIxGN5TUAIMUXXzsIRXg5P2AtmpmcFZ7jDWV1npqZ+3QJE8tqsUR62+Is90RGjOBLBsrdD271h9WoHwF5OJaffM1z1rDRku3FdyeM15F4pnSdxdAsiWhkbbLambApz4lInIUiabFNVo3hR8B7AXa54mu/4NeVeuTVWsaoMeWPg3S5WvgC7In5LHTdSEJXU8dVtae2wvLUZAyZi+4hMmoVhB9Xm57a/vH5mruJeIXJ+oXEN4WpvOzoRXgj4TWvtnN0Gj/fcZiFuViLLCF0vJLLq9kl/Zr0eJZRszfNXcgVrMJrzgjLGhpn80U2l0+GW40a0enBqEUiGhM1HZ22GzUvIhGCQsayriKVtMnir0tGUFMWuanU4vs5e9go9k+7lLMkmVGzn4e16SiUNjTmhSIu9XZJISTnZ/jRkvUvjpxahEuDKE8tQIL6QEk+PpPOsdDjkvYEy7lUAu2qKw3tXXLSMqxZ2o7LuXAbD4lTDpueRkU5NVv4kQqvgxGJEE5NjWmX79YmywlN0yoWi3z+ey/jc995Cfe/PAKAb5FlF4es4vJqvDSeeWrC8WYz1E1ECD9yQpGE5HV4z+QvHngNl97xGLbtPS4993LhR8B+n7mFpJZ3y/NqYx5EIoRb/WElxdf2BdN+XfnPVXzO1y5tt+WBZaF3krqLRo3fdFjjZcxayATnqbmMnknZPMyCb0IRgJf1e/XUgl/2RWFMmLSQUQvmA+3mPDUv3RXcIA/ISzcRnmVdSTz+Z+/HTb92kvTnKxw8NS+7RDJqk/M5poAMSiRCOI2fmfPQJsuNZAVdRQpFHftMT+j2f30Tk/NZVtZANWoEhX8S0YhtMxN3WHzF8KPNU8vrtr8F5G2yXjkwBQB4as+Y9PzdZqkRsq4ZMpwKsN0aDYiwMJ3MU6ugTRbg3FvQljcX7m1N03DWql72tWxDd+H6pdi8Zgl+57zVtu/bjJpQp0YGbGIuB9KtyNWP1vfSuaLPObXSxuMivBcbtFAE4BpPK08tOIJS/vAF2JXsXGVQqG+lIBOvlSGhU7nMG3CiMxljxva1kUkAwXtqtFAs5MScWvk2WW5Ukpsam80wIcLxuSz++893OXpq9Hk5dX0XJf0z3NgZwD5dWfbZiG2ydF1nSkyaoi4yztSP3sKPbs+FkwJy3KUmU4QJKiQF2JV4aoCzZJy8glhEk0ZKqF4NkN/7y7qS+JfrLsJvnWsXcVmfT5HrKBIxz9nemYX/Ho8xzsUIR89l8kwV6E/40bj/ptN5JlgT4Qd2Bh1+BOrrqQUjYVuEBBV+5FtlxSLed64yPn3BGqxa0u55nptXyFMjoQhrk+UxRLq6rx0T81N49aDhHfRWOSDUK+2S/EuhqMNtsrAXKjFqlD9LxiLI5Iv4p+f2s5+tEDw18mZFY+vUxUTMqdECuZArcEKR0vBjoagjXyhiLlNghbY7Rqak5+8l/NiVLJ9TA5yNGi3kXmoWnVpl8dOkvXtq8lq1clM4zl7dy72Gd2OS4jq+iGIQiirwTZKdakxTsShyhbxtNp0f4cf2RAx9HQmMz2UxMrGA7hWlzydvXMIwatZQVOWpBUZQyh9LKGJ5al52rjJS8SguO33Qd7k8eWqk3vPaJotYJXQC7ws8p1aqlOP/3+viJxJ36PAhg/KPG4e68VvnWh0W4lHNNjIIMOTin9y8Cjf86gbb951muFlTr4XwY1YuFLGVIxSKODhphZmOzmRwdLq024eX0CCfO3ILgzl1FbFqMj2EHx2aGmfyRea1eO056Bh+LCO+OLtM+NEJ8tQyuQLSQoG1KG5x23BRSI4fKlzJebhBClynvBqtf4mos9H1E9brsg7jZ1rGqAWXU6PwY+05taAgT206ncdcJl+RUASwijuJwMOPkvlb9P/RiFZ1yKYaT22opw03X34qC8EO9qRK1LOxaAR3XHkWfvd8ey7G6XjkZXVJ6tRyrJkxZ9SEcgTK7RE7DpV6axMe5pzxuVu38KPT+Blr6nX5TZyTp8YXY8uGa8qwhDPy8KPTxnVJRwJrzY79XqMU/OvZhSL2NlmE23Wk+5Y8tXhU883AWLJ+eV4trBo1QnlqIeBlQGg18HVqXjqW14POZIyFmvZzyeRk1Nu1IHUVEbRQhHlqOWsBtLqJRKuukXPrmi9C+bPBnhT6OhL40oc2AgBOW9Hj+XhOnqFTnVqaCz8muBKEGLe7zuSLGBEWrh0j9rxaOmd1+nBVP3qQ9ANc+FEUilQg6Xfy1OhzTcYinhXDTtOvWTcRl4X7LDOvVomHRNdmJp23GkALQhHCzdukhZ7yXn6EHgkyaiMOnlpQ658T9fTUWiinFpRQxAo/0gfoJRwTNit6U5g5Mot3j1u1TV6VVyRgIdwKev2gTdIA12vfRzeq8dSocP2Tm1dhw/JONpurluNZ4Uczpxa3apgoZyMbYDlvNikmkUhbPIqFXKEkr0b5tHjUGsMjw9601yX82Gn1f9R1HZqm2aYAeNnEOQ0KrTSfBpRXPzq1/AKA957Yjx9tP2QrmC8HGSO6roD1mcWjESRiEfYZu4UfUyz8aBlyvygXfmTrX41jZbxST0+thYxawEKRdJ4tVrKp1/VmRU8b3joyi3eOW7t8ryGY0vBjOJ4aX9PktUWWG9UZNWvxO4tTz3mB1G4lbbIE9SN/T9I9FBc+m4Rp1DL5AjNql5y0DD9/fRSvCwrIcW7mnZtXywtF3BY7avmWzhUxm8mjKxXHLBfG9pRTk4SUja8rUz4Czm3DrGfc+b7+xDmrsH5ZB05f6d3jJgNGId1YRLNtOtoTUcuoSbqJEPQ5U/jRT6NGsn66N0TYtfHRO3RD5dRCIKjCQ17Sz3JqVUr6g4Rqq8hTi0U0z51VhnrbbM1ve0PKqUk9tRp2mgmHXowySCkqKh0rOp6jp2YPPyZjEXZ9p8xdfIlR42reKMT0axsHABgLGe9FuM1R4/EafmxPxJgBPmrm1ehe70hEPW0Uy3pqFdQeOo3isaZeO59PJKJh85q+ikJ/9HpzWXm0hz93t82BmFPzSyQCWGUlTjk11ohZ5dSah6Biyj1t1sNOhrNaSX+QkMfxzphx01fyQCViEazgpnb3toXvqVEeotIWYjxePbVCUcfodGnz4oqP52BERaGIpmlsoaT3WRJ+jFvnPmIKRU4e7ML6/g4Admk/q1Ercx/yxdflFnlRLFJp/tgxp2Zei0rCYkmHBdPv0VKEeG4p4Wvey/QUfgwgp0ZGbWI+V9K0AOCHp4brqdU6ab4aWsioBRV+NBYGq+dcpOo6qiChxZk8tUp3iVSL1ZWKVdUCrBJY8TW3AFI4cKC7diOTKeOpjc1mUCjqiEY0NrqnquNJjKiu65xRK1Ufsl28g6c2nc6z0pGVvW04zQyj8QpIq5uIu8Hx2iYLsELqxwRPzesGjg1/FdWPOe8DQolykn6/vRExZCc+3/zXXoQiLPzo43l2p+JsOK4sBGl5auHm1NLKUwsOcWSEX4h94vo7k4F2sK8Wamp82PRAKpE0A5ZRC1rOD8h39aOcxL5avHpqVM+3vCtZk+TaUj9adWrz2QKry5J1yZ/m5N48tPOlTUl7Iore9jhON+eEvc4pIL00MxaPX+65EAuwj3s8BmF1s5d3iamk9ZmTF+BFKFIN/OQFoPRa8efuWqcWCy6nBvBikdIQJOW2wmiRBfBtspSnFhiZgHJqbXH77KXFJucnaCgp9aerdJdIYpGgRSIAV9PEhR95iX21eDVqo5K5abUcjw8/kpcWjWi2BYZ2+E7hR/p67zHDqBl5To0JHl4zw4+6rrP/r8SoldvBU/9HK6dWWUs455xa5bnSckIRPz0goNQQiN4Y72W6GWcm6V/wP/wIuI+gSYedU4spTy1wgoopa5pmWxz6F6GcHyj1cCr11E42Z7at6vMuaa8WWZssp2bClWC1rSrjqUmUj9WQkByP1I2dwkBXK/zoIBQho2Y2WaZd+elDhlHbPz6Pqfkc/t+LB/HL3WOIRzVcdvqg6/m1xa3J7WWNmuCpjVUcfnTKqVU+TsjKqTnUqfntqYlGrcTIefN4LU/Nf0k/YOXVZLVqYUv6nWoJw6BlJP1BxpS7UjFMmmNZqm2RFTRtZriKzjNR4YP/axsH8PdXnYNz1ywJ4vRsWDk1a1dvCTeqNzRJieckY5Q1LvbfU5sW5PxEmxB+FDcddO77xmYBWAtYT3scw31tODC+gIfePIL/+pM3AAA3bjkJGwa6XM9P0zSsWdqBgxPzTAjiBP18277juPG+l/HsXmOCtNfIhFNHkeo8NafwYzB583g0glhEY4XXperHCoUiAeTUAH6umsSo5YMx+E6whsZ16NLfMkYtyAF5Rqss40ZajMpHYkVPG2fUKnugohENv+Ewr81v2OTrXMEYmVEosjxRTWpEj/PUyFOrJdQJWN5WvqijWNQRiWiYFeT8RKpM+JEWCVqw+OLh04d6cGB8AV+6/zVk8kVsWt2LP37fek/n+H8/ex6mFnJlC+qHuOJeftE8uYzhJMTPlMpJSOHaVlFOzSH8GJBQxHjNKAsdi96O95ya/f4LLPwoFYqYOTXlqTUPrE7NZ5cfsC9QizWnBhiNjd88bAgKkgErGGuBdvW6bixUNHG5LR5lCq9qkIUDZTBRSgVdJ6THExoRpyJRVqPWnbK/jzZzIaafO4UfKSdqM2ore/CzHaPI5ItIxSP4ym+d7VmhumpJO1Z5cL4vWL8UN27ZgOmFPAa6kxjoTuHE5Z2ei5jFz7RdGARbXU6tsi79tWAzaiVCET43Wr74mghKKCK2UQM4gx+Sp5ZqRk/t9ttvx7/+679i+/btSCQSmJycDOpQnggypsxLsxdbM2MevpDYz8JPv0nFotA0YwGcyxRwiAsH1qIslU2QlkEd+mv31KxzzRaK5sIor7cTF8pST83+c37mHm9Ybrn8VKwza9f8JBrRcOMW+RBaL4ifabvQCq2ynJrcC6DPNYiNK+/9lUj6OaGIW05N9CD9Nmok5hqbzWIhW7CtddZ0gXCe+3p6aoG9w2w2iyuvvBLXXXddUIeoCHbDB5RTIxZrTg2w56P8fqD8JBLRWMf2hWzBl+4egDehSKGo44gphqilfACw58Vy5jHFbiKEuNly6ihC8J7aeWv7cPZwLz6+aSV+74I1NZ1zUPCfKa+AnPNR/ZgJ0FPjjVVJ8TX3My+Sfva1z+fZ3WZ1fhFr1cIuvm5KT+2v/uqvAAD33ntvUIeoCCYUCcD95kNJizun1hieGmCEceayBcxl86zwerDbn3Cgm1Dk2IxVeL2sxh6emmZMO84VdJZHmXbKqYmemlinxu3yoxHNVoTelojigesvrulcw4B9ppyqlcKPldWpOYUfg9u48q9ZEn702EMzaE9N0zSsWtKGnaMzODgxjxOXd7KfBbn+yWhKT60aMpkMpqenbf/8gnYMQbjffCd0r3U79YD31Ba7UeNr1agYuhY5P+CtTo3q4QZqLLwmyOPK5Y1kGLWwEovYS4yaWKfGeWqD3alQBj36DX2mC/xIITZ9wQ/1Y3BCkTYXb6zDo1Ak6Jwa4Nytnxn8sLr019FTW1Qr29atW9HT08P+DQ8P+/baQdWwAFZOTdPCKU6uFt4oVFqnFjZ8rdqoT3VjSdbhw82oUaiztmMRluLSuP9GpwyjJrb7Enf/TkIRwJ5PayRk9YeWp1ZF70cH9WMQzzjvKbsJRdyNmnue1A/YXDUh/BikUE5Gw3hqN998MzRNc/23c+fOqk/mlltuwdTUFPt34MCBql+LR9d1tlMJRihiPKx97YnA+yLWwmADhR/5DhSHfO7w4e6p+SPnJ6w8nuGpHZ2R97AsZ9T4BXCVTwY3bGRdRazRM1WEH0uKr4PpKAIIObUq1Y+lOTX/z9OpVq1u89QWe07ti1/8Iq6++mrX31m/3lt9jIxkMolk0v/wHR+mCEYoYnhnizmfBhgPVX9nAmOz2UVv1NrYAliwiqFDEIqQ8nHIJ6MmTts+Mk35Qfvri2EhpzZZQAN7asJMtXSuwHpIliv+5qmXpJ8QDTA/46+9jupHgO8qYpf1hz35mnJ3i75ObdmyZVi2bFlQ5xIYfLf3INzvzWuWYEVPCpefHk5xci0M9qQwNpsNrbNAtVCe4vhsFhNmwfgKn4QiruFHMjo1hjrFY+YKRRSKOmszNdBtX8RLJP0u4cda6+fqheipkTfRkYiWnf3GY+XUHIaEBnBv2/t0Cg2OPXbpF5+5IDaWTv0fWaQqtIbGTah+3L9/P8bHx7F//34UCgVs374dAHDiiSeis7PT/Y99hi5sPKoFEh4c7Enh6Zt/dVF25xdZ0dOGHSPTi95To9qft48ZbaHaE1F0t9V2u3oKPwblqeWLOD6bQVEHIlppkX758CPnqTWoURP7Px4wvYnhvvaKnh0nTy0TYEcRm+ESplvTfMG2eNTV+wojp0b3xtGZDNK5AvPMguy2IoM2FrmCztTEYRGYUbv11lvx7W9/m329adMmAMCjjz6KSy+9NKjDSgljlHkjGDQAOHu4Fw+9cQTr+oNvTFwL5KmRURussfAaKA0Fyhj1O6cW09gxqX/lMomyUtz9N2P4Uez/eHDcMGqUB/JK0iG0FdSQUEAQigje2NLOJLZ+/Az0tsVd79GSnFoAG8u+jgTa4lEs5Ao4PJVmhfhhz1Pjr1eG6yATBoEd6d577110NWp+Fzs2Ip+75ARcfvpgIF0n/ISS72/TqBUfwoHlPDVb4bVf6kcm6S/iyLRc+QiULjal89Sa0VMzvOLhvsreD5sCzm1OCkWrFjDo4mtZCO9T560u+xqlkn7/z5Nq1XYfncXBiXms6+9AsagH2nxCBv/eMrkiQhjDyFjcMSifCLJGrdGIRjSsX9a56D1LWgCpkbEfnlOyjFGjwutYRPOtM0yc8w5JJCKbpu01/Li0IxHawuQ3Yk7tgOmpDVfsqRnXolDUkTcNGZ9fC6qhMVHtZHtR7RiE+hGwPHnKq/Fh2rByatGIxjZmYefVWmKVD2oiriI4xGJcP3Jc8TLhR+oxOeBjcTMvFDnKRCilBlMMaYmhKcrBnbA83Hy0n/CKVsCeU6sEmxdgLthpLhQZhAfkJun3irj+BNWqzhKLGNeXH9QZ5oaoXgrIlujSH3aNhqJ2xBi8H8XQzMA4eGp+59MAu1CEhR+r8NQ2r16C//nbZ+GsVb2+nVvYdAiS/gPjxiZidYVGjc8vZvJFdCStZzwe1QIRJaRccmpeiUc1RDSgSNPnA9pk0/V857hh1BYCvjZOJOMRzGTC99RaxKgFLxRR+IvoqflhaFiXfgdP7ZGdRwEAwz4KMawyAp0JRWQ5tXJd+iMRDR/btMq386oH7Vz4cWohhylzWOaqCq83hbZyBZ2FHYOOxrj1fvSKpmlIxaPMUw3KU1vfb3jz+8x8dNg1agQZ7XTInlpLhB8toUhLvN2mQFw4fBGKcF6TToPJTJ7bN47/9+JBAMDvXehfp/u4zVMzc2rdpeFHsfha9NSagQ5OKEL5tKUdCVvxsldEBaTVTSRYo5aIRWrydnhDFtR6tG6ZIQLbNzaHYlG3WmSFbdSoq0hO5dR8hwlFGjTB3oqIC52fnhpg1M8Q2XwRX7r/NQDAp84bxuY1fTUfSzxmrlDE0Rln9WO54utmoJ2T9FO+Z1WFoUdCrFULug6LPp9qRSIEb1iCDD/GIhoWcgWMTqdDL7wmyGtOl5lf6DfN9+RICHIkhSIY+MWjIxG1TUKoFt5Q8GKRf3hyL3YfncXSjgT+/LJTaj4OD3lcc5k8U3LKjFo8GkGM8wAWe3F8NXRw064pn1ZtqFecqRZkjRr/urUaBrtRC+YzjkcjLK+299gcN2cu3HtKeWoBEuRICkUw8J6aH4XXgOCpmbvHA+Pz+OrDuwEAX/rQqej1uaCG5qKNmPLqRDTiOMmBXzDFOrVmgPKkc9l81cpHgnWBD8lTO3VFF9YsbccHTxus6XVs4ccANy7rWQhyloUfW8VTaxGhiAo/Nhr8Z+VXIXQ0Yqi/+ELdv/rJ60jnirhgfR8+tmmlL8fhIUNKi/jy7qSjgU4lopjJ5KFpaMh5aeUgRet8xsqpVap8JMRO/ZmAhSJdqTge+4+X1ry5ImMcjQTTso+g5gpvH5tDnznjMezmE8pTC5B6qX8U1cN7arWOnOHhxSLjc1n8+5uG4vG/ffSMQArSKfxI4TZZ6JEgQ56IRhZ9cXw1UPgxWyhi35ihzKu08JoQw49hpBj8+EyooXqQXhoArF9mKCD3js0pT60ZqZf6R1E9fE7Nr475gOE5LeQKyOSL2Dk6AQA4cXknTgyoqJk8tSNsjppzpxLeqDUjfH3Xu9RNpMIWWYQ4/bpRUgy0BgVu1Pqt8GO9ro3y1AJECUUajyQnnfarYz5gl9i/8O44AODcNUt8e32n41EFgaxFFkGy/ngTikQAw8BTrlA3pxVUG1oWp18HOdneT8iYBS0EIk/t4MQCqwesl6cmTlMImuZ8egQaZRensNA0jQ1c9LPDR5KT2L/0ruGpbQ7QqIk7crfwI4WmmtVTA+ydYlb0tFVdj0fXlQqZKcS12GtRLU8tWAPT35lAVzIGXQd2js7Yjh0WylMLECUUaUyG+9oRjWg4aaDLt9ekHfJcJo9XDk4BCNaoiYu2rO8j0cY8tebLpxEdXAiy0k4iPDSupt5dMyqFNtZBhx81TWMKyDcOTZnHDtlTi6ucWmCo8GNjcu8178Gx2Yyvk57JC3pp/wSy+SKWdiQCHcMjhplkfR+JZs+pAUA7JwCqVs4PABuHugEAbxyeBtA4rfDIQwvDo1y/rBOvHJxiopzw22TVx1NrCaO2oMKPDcny7hSWu4TrqoGMzDN7jwMAzlmzJFCloeipub0fMmrN2CKL4D21auX8ALBxhWXUdF0PdOq1n1ieWvAGhsQi1EA57GvDPDXV+9F/GiU0oQgeEiq88E7w+TRA4qm5qB9JKNKM3UQIPqdWrfIRADYMdCIW0TA5n8PhqXTDRGPCUj8CVg9IIuz0i1h2ERbN+/RwKKOmIFinfjPOH6TyEbA6igBGmUKnS/PeVgg/8tMXqq1RAwxPh8ow3jg0XbdWUJUSplGjbv3iscMiqTy14GiUXZwieBJc2CcRjeD0lT0BH896xAa73dt9tUL40e6pVW/UAHsI0mqTtbif8WQsvPCjmCtWnloTodSPCoL3gk5f2R34IsgbKNnIGZ62Jq9TA6yi+kQsgmWd7tejHEwscmi6YYQi56xZgvZEFBes928ShBNtiShWciKrsMsd6pVTawmhiKpTUxB82OfctcEvLLwRdatRA7iZXS3gqa1a0oZIjf0teU+NygMWe53aOauX4NXbfj3Qvo886/o7MDJptGhTnlqToOt63XqfKRYffDgwaJEIYPe6yhm1E8zE/rr+2sJyixnKqdWifCRONY3a/vF5jM0as+oWe0cRAKEZNMDq1g/UsU5NeWr+kivoTNIadpdqxeKDH+lyzurgjRrvdS3vcg+3XXrycjz6Hy/1ZcFfrNAie9aq3ppfa0lHAkM9KRyaSmP30VkAKhojsp7Lq7XVOOC0UurlqTW9UVvgCv/UDa8gT23t0nYsK2Nk/DweUN5TA0qT+83GR89eidOGemyLbS1sHOrGoak066252IUiYUM9IIHw842qTi0gSOob0Zo7V6HwBj3Ym9cEn08D7EIRP3tYNiqaZrQ98ysER3k1Qhk1O/wmKfzia3v5TFg0vafGy/mbcUaVojI+cvYQ3hydxtUXrQ3leDZPzaVFlqI6SAFJqGiMnZW9behKxTCTzqPHYeJ6ULDxQKpNlr+oWWoKnjNX9eK7f3hBaMdLxbxL+hWVs3GFvc5wsUv6wyYS0fCNT2/GsdmM69ijIKANRlrl1PxF1agp6snSziSuvmgtetriamMVAKuWtKErGcNMJg9AbV5lXHRif12OS55arqCjUNTZfMSgaXqj1teRwDUXr0WXS3sihSJI/stHTqv3KTQtkYiGU1d047l3jIGvKvy4eOA/i0y+YOsmEyRNv9IP97Xjtg+rRUWhaFY2DllGrRHq1FoF/rPI5IpoT4RzXLWtUSgUDQ2vgAyjUbDCG9GIxupCw8yrqTtAoVA0NKSATMUjNbfeUviLpYAMT9bf9OFHhULR3Gxc0Y0rN6/CqhpG2SiCIRWPYDYTrqemjJpCoWhoIhENf3vlWfU+DYWEenhqKvyoUCgUikCgqQnpEAuwAzNq77zzDj772c9i3bp1aGtrwwknnIDbbrsN2Ww2qEMqFAqFYhHBPLUQW2UFFn7cuXMnisUivvGNb+DEE0/Ejh07cO2112Jubg533HFHUIdVKBQKxSIhVQdPLTCjdtlll+Gyyy5jX69fvx67du3CXXfdpYyaQqFQtADW+Jkm8NRkTE1Noa/PuTt6JpNBJpNhX09PT4dxWgqFQqEIAGv8TBPk1ET27NmDO++8E3/8x3/s+Dtbt25FT08P+zc8PBzW6SkUCoXCZ+rhqVVs1G6++WZomub6b+fOnba/GRkZwWWXXYYrr7wS1157reNr33LLLZiammL/Dhw4UPk7UigUCsWioB6eWsXhxy9+8Yu4+uqrXX9n/fr17P8PHTqE97///bjooovwzW9+0/Xvkskkkkk1nkOhUCiagYbIqS1btgzLli3z9LsjIyN4//vfj82bN+Oee+5BJKLK4hQKhaJVIE8tzEGhgQlFRkZGcOmll2LNmjW44447cOzYMfazwcHBoA6rUCgUikVCQ3hqXnnooYewZ88e7NmzB6tWrbL9TNf1oA6rUCgUikVCU6kfr776aui6Lv2nUCgUiuanIdSPCoVCoVB4oak8NYVCoVC0NuSppVWXfoVCoVA0OklSP6rJ1wqFQqFodJSnplAoFIqmIaU8NYVCoVA0C5ZQRHlqCoVCoWhwLEm/8tQUCoVC0eAoT02hUCgUTYMqvlYoFApF01CPhsbKqCkUCoUiEJSnplAoFIqmgTy1bKGIQjGcvr/KqCkUCoUiEMhTA4BsSN6aMmoKhUKhCATeqIXV1FgZNYVCoVAEQiwaQSyiAQgvr6aMmkKhUCgCI+zxM4FNvlYoFAqF4uTBLixkC9C0cI6njJpCoVAoAuNfrrso1OOp8KNCoVAomgZl1BQKhULRNCijplAoFIqmQRk1hUKhUDQNyqgpFAqFomlQRk2hUCgUTYMyagqFQqFoGhZ1nZquG12dp6en63wmCoVCoagnZAfILjixqI3azMwMAGB4eLjOZ6JQKBSKxcDMzAx6enocf67p5cxeHSkWizh06BC6urqg1dBjZXp6GsPDwzhw4AC6u7t9PMPGR10bZ9S1cUZdG3fU9XGm2muj6zpmZmYwNDSESMQ5c7aoPbVIJIJVq1b59nrd3d3qBnNAXRtn1LVxRl0bd9T1caaaa+PmoRFKKKJQKBSKpkEZNYVCoVA0DS1h1JLJJG677TYkk8l6n8qiQ10bZ9S1cUZdG3fU9XEm6GuzqIUiCoVCoVBUQkt4agqFQqFoDZRRUygUCkXToIyaQqFQKJoGZdQUCoVC0TQoo6ZQKBSKpqHpjdrXvvY1rF27FqlUCueffz6ee+65ep9S6GzduhXvec970NXVheXLl+OjH/0odu3aZfuddDqN66+/HkuXLkVnZyc+8YlP4MiRI3U64/rx5S9/GZqm4cYbb2Tfa/VrMzIygk9/+tNYunQp2tracMYZZ+CFF15gP9d1HbfeeitWrFiBtrY2bNmyBbt3767jGYdDoVDAX/7lX2LdunVoa2vDCSecgL/+67+2NdxtlWvzxBNP4MMf/jCGhoagaRoeeOAB28+9XIfx8XFcddVV6O7uRm9vLz772c9idna28pPRm5j77rtPTyQS+re+9S399ddf16+99lq9t7dXP3LkSL1PLVQ++MEP6vfcc4++Y8cOffv27fpv/MZv6KtXr9ZnZ2fZ73zuc5/Th4eH9Ycfflh/4YUX9AsuuEC/6KKL6njW4fPcc8/pa9eu1c8880z9C1/4Avt+K1+b8fFxfc2aNfrVV1+tb9u2Td+7d6/+i1/8Qt+zZw/7nS9/+ct6T0+P/sADD+ivvPKK/pGPfERft26dvrCwUMczD57bb79dX7p0qf7ggw/q+/bt03/wgx/onZ2d+t/93d+x32mVa/PTn/5U/9KXvqT/8Ic/1AHo999/v+3nXq7DZZddpp911ln6s88+q//yl7/UTzzxRP1Tn/pUxefS1EbtvPPO06+//nr2daFQ0IeGhvStW7fW8azqz9GjR3UA+uOPP67ruq5PTk7q8Xhc/8EPfsB+580339QB6M8880y9TjNUZmZm9A0bNugPPfSQfskllzCj1urX5s///M/19773vY4/LxaL+uDgoP63f/u37HuTk5N6MpnU/+mf/imMU6wbH/rQh/Q/+IM/sH3v4x//uH7VVVfput6610Y0al6uwxtvvKED0J9//nn2Oz/72c90TdP0kZGRio7ftOHHbDaLF198EVu2bGHfi0Qi2LJlC5555pk6nln9mZqaAgD09fUBAF588UXkcjnbtTrllFOwevXqlrlW119/PT70oQ/ZrgGgrs2Pf/xjnHvuubjyyiuxfPlybNq0CXfffTf7+b59+zA6Omq7Pj09PTj//POb/vpcdNFFePjhh/HWW28BAF555RU8+eSTuPzyywG09rXh8XIdnnnmGfT29uLcc89lv7NlyxZEIhFs27atouMt6i79tTA2NoZCoYCBgQHb9wcGBrBz5846nVX9KRaLuPHGG3HxxRfj9NNPBwCMjo4ikUigt7fX9rsDAwMYHR2tw1mGy3333YeXXnoJzz//fMnPWv3a7N27F3fddRduuukm/Of//J/x/PPP4z/8h/+ARCKBz3zmM+wayJ6zZr8+N998M6anp3HKKacgGo2iUCjg9ttvx1VXXQUALX1teLxch9HRUSxfvtz281gshr6+voqvVdMaNYWc66+/Hjt27MCTTz5Z71NZFBw4cABf+MIX8NBDDyGVStX7dBYdxWIR5557Lv7mb/4GALBp0ybs2LEDX//61/GZz3ymzmdXX/75n/8Z3/3ud/G9730Pp512GrZv344bb7wRQ0NDLX9t6knThh/7+/sRjUZLVGpHjhzB4OBgnc6qvtxwww148MEH8eijj9rm1A0ODiKbzWJyctL2+61wrV588UUcPXoU55xzDmKxGGKxGB5//HF89atfRSwWw8DAQMteGwBYsWIFNm7caPveqaeeiv379wMAuwat+Jz92Z/9GW6++Wb8zu/8Ds444wz83u/9Hv70T/8UW7duBdDa14bHy3UYHBzE0aNHbT/P5/MYHx+v+Fo1rVFLJBLYvHkzHn74Yfa9YrGIhx9+GBdeeGEdzyx8dF3HDTfcgPvvvx+PPPII1q1bZ/v55s2bEY/Hbddq165d2L9/f9Nfqw984AN47bXXsH37dvbv3HPPxVVXXcX+v1WvDQBcfPHFJeUfb731FtasWQMAWLduHQYHB23XZ3p6Gtu2bWv66zM/P18ygTkajaJYLAJo7WvD4+U6XHjhhZicnMSLL77IfueRRx5BsVjE+eefX9kBa5K5LHLuu+8+PZlM6vfee6/+xhtv6H/0R3+k9/b26qOjo/U+tVC57rrr9J6eHv2xxx7TDx8+zP7Nz8+z3/nc5z6nr169Wn/kkUf0F154Qb/wwgv1Cy+8sI5nXT949aOut/a1ee655/RYLKbffvvt+u7du/Xvfve7ent7u/6d73yH/c6Xv/xlvbe3V//Rj36kv/rqq/oVV1zRlLJ1kc985jP6ypUrmaT/hz/8od7f36//p//0n9jvtMq1mZmZ0V9++WX95Zdf1gHoX/nKV/SXX35Zf/fdd3Vd93YdLrvsMn3Tpk36tm3b9CeffFLfsGGDkvTLuPPOO/XVq1friURCP++88/Rnn3223qcUOgCk/+655x72OwsLC/qf/Mmf6EuWLNHb29v1j33sY/rhw4frd9J1RDRqrX5tfvKTn+inn366nkwm9VNOOUX/5je/aft5sVjU//Iv/1IfGBjQk8mk/oEPfEDftWtXnc42PKanp/UvfOEL+urVq/VUKqWvX79e/9KXvqRnMhn2O61ybR599FHpGvOZz3xG13Vv1+H48eP6pz71Kb2zs1Pv7u7Wr7nmGn1mZqbic1Hz1BQKhULRNDRtTk2hUCgUrYcyagqFQqFoGpRRUygUCkXToIyaQqFQKJoGZdQUCoVC0TQoo6ZQKBSKpkEZNYVCoVA0DcqoKRQKhaJpUEZNoVAoFE2DMmoKhUKhaBqUUVMoFApF0/D/A93gHTgOwnVbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ϵ_values = np.random.randn(100)\n", + "plt.plot(ϵ_values)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4010760d", + "metadata": {}, + "outputs": [], + "source": [ + "np.random.seed(100)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "3f12df22", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABucElEQVR4nO29eZgd5XXn/627995qtdStllobiEWsQpjVMThWYohj440kDk4McUhMwGOCJxMYJzCZDJFnws8zMeNgm8TgGdvB8cRgm3gJYTWbWAUIkJCQQFJLLanV+3L3+v1Rdd56671v1a17b1Xdvve+n+fRA73dqlu36j3vOed7ztF0XdehUCgUCkUTEKn3CSgUCoVC4RfKqCkUCoWiaVBGTaFQKBRNgzJqCoVCoWgalFFTKBQKRdOgjJpCoVAomgZl1BQKhULRNMTqfQJuFItFHDp0CF1dXdA0rd6no1AoFIo6oes6ZmZmMDQ0hEjE2R9b1Ebt0KFDGB4ervdpKBQKhWKRcODAAaxatcrx54vaqHV1dQEw3kR3d3edz0ahUCgU9WJ6ehrDw8PMLjixqI0ahRy7u7uVUVMoFApF2VSUEoooFAqFomlQRk2hUCgUTYMyagqFQqFoGpRRUygUCkXToIyaQqFQKJoGZdQUCoVC0TQEatS2bt2K97znPejq6sLy5cvx0Y9+FLt27QrykAqFQuGZmXQOB8bn630aCh8J1Kg9/vjjuP766/Hss8/ioYceQi6Xw6//+q9jbm4uyMMqFAqFJ66+53m8/47HcHQmXe9TUfhEoMXXP//5z21f33vvvVi+fDlefPFFvO997yv5/Uwmg0wmw76enp4O8vQUCkWL887YHPJFHYcm01jelar36Sh8INSc2tTUFACgr69P+vOtW7eip6eH/VN9HxUKRZBk8kXjv7lCnc9E4RehGbVisYgbb7wRF198MU4//XTp79xyyy2Ymppi/w4cOBDW6SkUihYkS0bN/K+i8Qmt9+P111+PHTt24Mknn3T8nWQyiWQyGdYpKRSKFkbXdWQLhjHLKqPWNIRi1G644QY8+OCDeOKJJ1xHBigUCkVYkEEDlKfWTARq1HRdx+c//3ncf//9eOyxx7Bu3bogD6dQKBSe4b2zbEHl1JqFQHNq119/Pb7zne/ge9/7Hrq6ujA6OorR0VEsLCwEeViFQqEoC++dZXKt6an970d244qvPYW5TL7ep+IbgRq1u+66C1NTU7j00kuxYsUK9u/73/9+kIdVKBSKsvCeWquGH//5hYN45cAkXjk4We9T8Y3Aw48KhUKxGLGFH1vUqM2aHprMU/3XVw/ju9vexf/6nbMbqoZP9X5UKBQtiV0o0po5NTJqaUmd3veeexdPv30cT7w1FvZp1YQyagqFoiVpdU8tVyiy952WGPWFbMH8b2Pl25RRUygULQnvnbViTo0Xh8jCj2nze/PZxvJilVFTKBQtSabFhSKznFGThR/Je1NGTaFQKBqAVlc/zmUsY5WWvH/y3mQGbzGjjJpCoWhJ7EatsRZuP5gtE37MKE9NoVAoGgde/diKQhE+pyYTiqicmkKhUDQQvHfSmuHHMjk183sLOaV+VCgUikVPqzc0tgtF7O8/XygiXzSaZywoT03RKOi6jmv/zwv43bufxfhctt6no1CEir1OrbEWbj+wSfqF988LR1T4UdEwzGbyeOiNI3j67eO46h+2YUIZNkUL0fLqR85YiUIRPhy5oNSPikaBf6jfPDyNT//jNkzOK8OmaA1aXSjiVqfGf608NUXDQA91RAP6OxN4/ZBh2Kbmc3U+M4UieDI51VGEEN8/n2NTOTVFw0Ahh7Z4FN+79gIs7Uhgx8g0vvnLt+t8ZgpF8GSUp8b+381TU+FHRcNAnloiFsFJA134o/etBwAcmkzX87QUilBo9eJrtzq1jE0ooiT9igaBHupEzLgN2pPGeL1Gu4mbmXyh9TyIsGh5oUjGWSjCh2bTuSKKxcaZjamMWguTEY1aPAqg8RLDzcqf/79Xcd7fPKzKLQKi1UfPzLp4auW+Xswoo9bC0IOcjBnGrD1h/LfREsPNyjN7j2N8LotdozP1PpWmpNW79M+5FF+LXzfSRlcZtRaG5dSixm3QllCe2mKCNh1ZFYIMBN47KxT1lgv1urXJEr9upI2uMmotDMXNWfgxYeTUGk3t1KzkzEU2oz6PQBA3C622eZj1KOkHGmtNUEatheHVj4AVfvRbKKLrjZNkXkzQ59Nqi21YiHk02fiVZkXXdVtHkWzeLgYRPbVGit4oo9bCWDm14MKPmXwBH/rqk7jhey/59pqtAgs/tmC+JwzE69pKm4dMvoiCoGjkvTVRGNJIiuhYvU9AUT+YpD9q99T8jJ+/NTqLNw5PY8/RWd9es1Vg4Udl1AJBrE1rJU+NDz0SmXyBbWzdekEudpSn1sLQzjQZJ0m/scfJF3XfvIORyXl2rFwL7YTnJItGJRSKOmgjrTy1YBA3C9lC4yzctUL3Z3siimhEA2DPo5V6ao1zbZRRa2FET412aYB/3trBiQX2/430YNTC3U/sxRn/5Rd4cvdY1a/R6t0uwkAMN4riiGaGPLWOZAwpM/3Ae2Oip9ZIz64yai2MWHwdj2ps1zbv07Rb3qg1kiy4Fl4+MIGiDrx+aKrq12j1DvJhUCIUaaHrTN1EOpMxpMymC7acmpL0KxoR0ahpmuZ7V5GRScuozTVQsrkWaAGoJdyaq4NROzqTxh9++wU8uutoKMerNyVCkZYyauSpRZlQLG1rjSUYtQbKqSmhSAtjhR+tsGNbIoqZTN63ndkIH37MNM6DUQu0IahlkaxHX8JHdx7Fv795BPliEe8/eXkox6wndF1T8QjSuWJLhXlZ+DERw3zceN9pod8jYIylKuoq/KhoEMSGxgBfq+a/p1YvWXDYdXK0OGQL1R+X99TCMmoUkppeaI15enT/dybjtq9bAfLUOpMxJM3oTFoi6V/SngAALDRQlEUZtRaG1F5Jzqi1+dhVZDaTxxS3QNZjt5cvFPGbdz6Ja//PC6Edk66dX55aWPVTtJDNpBtnAasFuq7dKeOeb6WcGi8Uoec/Iwk/9rYbBl+FHxuIvcdmkYxHsbK3rd6nEjqkcJJ5an7szPjQI1CfnNqhyTRePzSNNw9Ph3ZMWgBqyanxhiys+ikKObWCUSsUdVZ83NmCRo288o5kDCmzpMfmqZn3guGpzanwY6Mwm8njw3c+iY///VMt2cqJ1akFFH6kGjWiHg8GGdKiHt5ssgUfcmo5LnQZmqeWI0+t+cOP/GfTZRq1lgo/Zin8GGXqR5uk37wWSzoo/KiMWkMwMrGAuWwBR6YzLbVLI2Q5tTYf1Y+ipzZfY0FyNfB5vLCMgx/qR5tQJKTQDy1qc9lCSQulZoMXhXSZObWWFIokY0jFSiX9dM8tMcOPylNrEI7NZNj/t0LIRUQsvgb8bZV1cFIwanWIy/PTfcPYieu6buXU/JL0h+ypAfI2Ss0E3QuaBrQno7bvtQJ2oYhzTo15ag2UU2ttozabZv/f7A+xDLFNFmAJRfz01Mx67rpI+m2eWgiLVrZQ9KW9VT2Krxe43F2zhyAz3IYuKfFUmp05iadmk/Sb16KvXYUfbTzxxBP48Ic/jKGhIWiahgceeCDIw1UM76nNtqCnZj3YVp0ay6n50FGE5Pxrl3YAqI9QhDfOYXg8/MPvW/gxpMWWX9SaPXLBj11i6r9WDT+SpybpKEKeWiN16Q/UqM3NzeGss87C1772tSAPUzVHp7nwY6Z5dqY7R6dx58O7y+6uxI4igL/hR/LUNgx0+vaalSLOjAoaPkzjW/ixDkZtMUYufvraYew5OuPLa5GiNBmzOmq0VviR2mRFrTo18/PXdd0yaqan1kh9MQOV9F9++eW4/PLLgzxETRybbU5P7Y5fvIV/f/MI1vR34CNnDTn+nlQo4pP6MZ0r4KjpCZ800IVfvH7EZmDCghenhO6p5f0pvg5rsc0s4vDjc/vG8SfffQlnDffiR9dfXPPr8cpfy1NrnIW7Vua4jiJWQ2Pj/ecK1oQISyjSOOvjoqpTy2QyyGQsQzM9HWxtkS38KNmZ7j8+j/lcHqcMdgd6Hn4zPme8r3HOaMvImuEWm1Ak7o+ndnjKyFem4hFWA1gP9WM9PbWMb+HHcDYDC4s4/PiY2Y/yeJl72iv8ho48lVby1GzF14Knxo+dscKPjROaXVRCka1bt6Knp4f9Gx4eDvR45Yzab3/zGVzxv5/CxFw20PPwG7oBy3lGfF6BaGdCkdoWNQo9ruxtQ0fSP/FJpdg8tTCMms1Tq0UowtWp1SH8OL3IjNpTbx8H4J83xSt/aVPXip6arEs/eeyaBvS2xdnPGqXMY1EZtVtuuQVTU1Ps34EDBwI9Hh9+FHemmXwBh6fSyOSLeHM0vG4UfkAGulxehB7spA/hx31jc5jmQlZUeL1qSTtX0F1nTy2M8KNfObV6CEXyvKe2eMKPUws5vHZwEoB/NXvUIs7w1Forp1Ys6uy54NtkMU8tZ7XPo00u//3FzqIyaslkEt3d3bZ/QZHJFzA5bz24ogHgjdyeo7OBnUcQkEEqlyeUGjUKP1ZwA+8bm8OWrzyOz977PPse89SWtHHeX/NL+n1TP9ZD0p+1jrOYcszP7j3Ocjx+GXhLKMJ7ao2xaNcKXy/Ke2ok46frkIpHbWtDo4QgF5VRC5OxWXtIUXyI+U7lu480llEjAz1XxlNzUz9WcgO/cWgahaKO59+ZwBuHDK+WCq9X9rb53vm/EsIuvrZ5arW0yeI9tZCKrzOLNKf21B5rgngmX/SlpZ1N0i+RtIfF95/fj5v+eXuoalNaFyKakfNOCcXXJBhJxaKIRDRro9sgRi1Qocjs7Cz27NnDvt63bx+2b9+Ovr4+rF69OshDl4XPpwGlnhqfU9jtk4w4DHKFIltMvYYfZerHSm7gI9NWEfu/vHQQG4c2Mk9t1ZI2dJgdG+pTp1ZH9aOPnpqu69A0raZzK8diDT/yRg0wrg0VTFcLv6GjOs16GLU7H9mDgxML6GtP4C9+c2Mox+RFIpqmsWtJnhqFGcnYtSeiWMgVGqarSKCe2gsvvIBNmzZh06ZNAICbbroJmzZtwq233hrkYT0hGjVxZ8p7ao0UfuS7drgZtWJRR96M6djbZFU+eubIjGXUfrR9BLlCkRVeG55a/cKPdVU/+tRRRPa13+QLRVsT5cXiqY1OpfH2sTnb9/wwPrxQpJ6SfjIg9zz9DnaGlLvnRSIAnD0100Nrq2NOvBoCNWqXXnopdF0v+XfvvfcGeVhPlHpq9p0pL3oYm81ivEEUkLPcjecWfuQXSXn40fsNzBexj81m8cjOoxg1Jf1GTs2STNfivVRD6OrHnD+emljjFvS5p4XXn1kkxdfkpZ25qod9z49RPHZJf/2EIvReCkUdf3H/DhRDUBjynhqAki79TChCRq3Bwo8tm1Mjo7aiJwVAEn5csH9dD2/tX148iP/50FsVSWn5RdxtYeJ3pXwoh3Zl6VzR8wNG4Ue6lnc99jbyRR2xiIblXSmbgsovb+2Xu4/hth/tKNmciMz7FA70Stonz5DUeUTQXoSobFssnhoZtYtP7Pe1nVWGiaSidRWK0HlENOCFdyfwLy8dDPyY/Cw1ACVd+ikMTde7njnxamhZo3bUDJmt6zf6EpYIRYScQj3yav/lx6/j7x7ejR+/MuL5b3jj7OqpcYtkPGrlaugGBryHIMmoXfsr6wEA2w9MAgBW9KYQjWhIxCLsGH7t9r7y0Fv49jPv4mN//xR2H3H+bPg8XhjhJf7BL+qourYndE+txKjVP6em6zqeetswau+1GTW/PTVzUQ+5FVSxqLOIyR+az86Xf7YTk/PBRoWs8KPxvslTTZcJP6qc2iKHdvjMqAkd5PmcGhC+AjJXKDJP6//7t7c8L2r8ojrn0hWfdqWJWMQmQEhxXpvXnRmFHy89eRlOXWGVYfDTxCmE4ZdYZMr8fA5OLODjdz2NpwUxAcHnGMOuUwOq9w7Fv2tFT+3tY7M4Mp1BIhbB5jVLfDU+5Anzkv6wRvxY52Ad77pLTsCG5Z04PpfF//r33YEed5ZrkQWA69IvSPrNTYQKPzYIVHhtGTV5Tm3IDKmFHX7kvayDEwv4p+f2e/o73lObzeQdQ4isRi1qvwUqlfDOZfLM+C7vTuET56xkP1u1pJ39P4U6/HowyFitWtKGmXQev/+t5/DT1w7bfidXKIZe7yUatWqNkSjjD95Ts8JggHHv1Hsa/FN7jC4i71m7xFYz5UeYUJZTEwu7X9o/ga885H1DWSn8vdGRjOGW3zgFAPBvr48GcjzCUSiSL5jNjO2eml9dhsKidY2a6amdsMzoIJ/O2UUMlFM7Z80SAOGHH8Wd8p2P7C5bdwaU3nhOgzllLbKISsbPUNPizmQMnckYrjh7JaLmymjz1MzX9PIevECvc/fvn4sPnbkC+aKOO/5tl+13RE8zDKMmejxVe2r5sI2acd5LO5MAjLBpvcNN1O/xohP6ASCQ8CPf0Fj01L7805346sO7WQjUb8g4a5qRArhg/VJENODQVJoJrYJgThCKUE69qBvNjEVJvxV+bIyOKy1p1HRdZ0ZtrempAfYFl3IK56w2jNqR6QwLeYUBeVxL2uNYu7QdY7NZfOvJfR7+zr4QORkRWY0aUUmrLMqnLe82FsNlXUlcdtogAOCMlZZircNHWb+u6yyMubQjgT/dsgEAcFwoqBcNfBhCEb8MaWn4MVgDQ7vzvvYE89bqGYJ8es8YHt11DJoGbDl1AAB8HebJDwlNcMaS907HzMbgYirCL/iuJpqmoT0RY83Ttx+YCOSYgLVGMKPGDQlO5wvMY7U8NYrcKE9t0TKdzrObekVPiu1I+IeYiq+Hetsw2B1+CJKMWm97Al/89ZMBAN98Ym/Z0gLRiDktTLIWWUQlM9XIqA10pdj3/vbKM3HfH12AD5y6vOQ1/TBq6Zw1Xbo9GUN3ymi6Op3O2cKtYk4x7DZZQPWGtKROLeBzJ6+sLRFlYal6iUUy+QL+4oEdAICrzl+Nkwe7AMAxTFgNtvCjaSx101Mh6NmptOfhjpEpfPKup3HF157Cp775LD577/P4xuNvl/wer8AkNq3uBQC8vH+yomNWQolQJBYBpdUzuSIr70gJkn6lflzEkJfWlTL6nnUmjUWRz0fR7qy7LcaGXPo1oNALpMbsTMbwoTNW4LShbsxk8rj7l3td/04c71Kdp+bdqyKRyIDpqQFGDP6C9UttAhQyan4IRfjXaI9H0W12Etd1e52e6KmFIQQQF8CqPTVB/Rh0qyw+5NRlbhLq5and9djb2Ds2h2VdSfzZB09h3/cz/Jgp8EbNegb4e4SMeqUDMh94eQQvvDuBVw5M4pm9x/HwzqPY+rOdJeUnGUE6DwCbzMhQkEaNnhHy1IyuIpYCkt0LMXv40SmVsdhoaaO2rMtYiLtSxodrM2rmDd2diuPE5YZRC1MBOcMlcyMRDVdftBYAsL3MzS6GH526isj6PhLtbGdWflFjnlp3yvX32mn8jA85NRKJtCeM3nSpeJS9Dz5UJHpqYUj6xTxUtYZUNGJBy83TXMiJnod6GLW9x2bx948aXs2tv7kRPeaGBfA3/Mhv6viOOuQF5gpFZswqzS1SF5srzh7CVz+1iRkMcYPJPLU4b9R6AQCvjkwGFi4Xc2oAf20LJcXXtCFNK09t8ULKx+WmUaNwC1+rRkKRnrY4Niw3wh+7www/kqdmLjCkJORbUskQDVFZoxatLfw4ynJq7katw8fdntgRAYAVglxw8dRCrlOr5ZglQpGwPLVYlF3LsI2aruv4iwd2IFso4n0nLcNvnrnC9vMg1I9Js2kv1VHSdebfe6WKXco9nbGyBx85a4itL2nhvK2cmhV+XLe0Az1tcaRzRewaDSYyJKofAUsUks5ZxjzJPLX6tbmrhtY0asxTMxZilkMwP+xsvsh2Z92pOBd+DDOnZngcXea5kRDj2LR7Bw3RiDmGH13Uj5UIRWThRxlMFuxSO+cVMlYdXKF4d5vx+nzRvDgkNZSOIiXqxyqLrwv2hSUsSX9bIso2UmHn1J5++ziefvs4krEI/tsVp5c0cPazTo2v0wQ4TyVHRs1676IxKgc9N/QcpRzOWxZ+jEQ0nD3cCwB4eX8wYhFRKGI7x3zBNnoG4HJqKvy4eKFuIstM+TI9xOQd8Td0ZyqGE03Z/8jkQmgjIkRPjbzKmUzedecoGiKn87XCL6XdziuZqUaeY9nwo49CETdPjVeoiqHOMIUidA2rPSZtOigUGLz6kc+p1Sf8eGDcGCz73hP7sXppe8nPA+koEiWjZn9t3uOXhd1efHcCN31/O1tLeOi5oXteHMJJZBzEWkGLRUShiP0ci5I6NRV+XPSU5NQo/Gh6R6R87ErGEI1oWNKRQL9pAN8OyVubEUIEnckYWyhlDxJBCz79bjmjVov6Udd1qfpRhp/Tr8kwdnA9JSn3YsupZa06ICD4EJ6uW7VddD611qnR5x98Q2PyGricWshNjenzoo2ciK/hR8ETTggesc1Tk3iG9z79Dn748gh+9lppoTTz1OIkmbePdiGc8trMUzPbzfmNLKfGNzV2qlPzUre6GFBGDaWemqV8tJLUG0gsEpJREz01TdNYiO+ISwiSbthBsxOKs/rRHn7h8RpDn07n2QO/3GP4UQwJVgMZ6vYkH34kWT+XUzN/j7y4oA1DJm+VGpBRq9aryJphS1p4gha50NTrtkSUUz+GG36kz4tvgM0TlFDEeG27weTvI1nEgq6N7BrRc9POwo8OnlrO2kjwkFHbNzaHiQCmg4htsgB7U2Mm6Te/164k/YsfMmoU0usQcmqUl+nidoyUVwurswjdeF3cbmq56Q25eWp049F7Exs1Eyz04SYUKbMzO2p6aT1tcbbTc4IGhfpRwDkvDT+aOTWJp7akPRyjxi9alOOruk7NXFz99tSy+SKe3D1WssCmWb8/vk6tPp4a31Sbx6pT87ejCFDOUytdzCmKIduk0T3OjJqDMXYKP/a2J7B+mdEUYrvP3lq+UGTH5YUifFNjsfi6msHB9aQljdrYrOCpJUVPzb7DB4CTBgwF5GsHp0I5RzJqfChmmekNHXXx1OjvSI0oSvwJtzo1r/mvIx5FIoDl/bk1WfbKHAs/lnpqtpyaubj0tCcAWN5PUNCOPh7V2PutvqOIca60sfLLqP3fZ9/Fp/9xG+56zF4MzIecuuskFJEJgHiCGD1TIhRhRs3dU6PrJVvoRaGI2AVfPIekZEO4aZjq1fwVi/DPn0zSb+TU7OFHa5OrjNqiJF8o4rjp0jvVqdHDTLttALhgfR8AI0FcaYeBaphhxdeWYSXv66jLDDHyYgbIU8vIFyY/1I9ea9QAfyX9spwAy6mleaMmemrBfm68SCRhSsRr7dLfycKP/pz7c/uOAwAOTMzbvm+vUyttRhAGtOC2J+sffuSNmswzpHtLFt5fYB6nMK/MoTBfltdmYhGfPTUqvObbgwH2psZpodRASfoXOcfnstB1GAIQcwfPPDUh/Mh7aics68TyriQy+SJeeje4vmzErKSWhIwHhf1EikWdeTH0u06ekaj+4vEqFCHl4/IyIhHjNf0rvp6T5ATc6tSWME8t2PAjv0OnBaMao1Ys6sibyblOnz211w9NAygNSzNJfx2Lr716an5cC/H+TwjqR95LlXko9D1xodd1nW3cSKxlGYzykn6CjNr2/ZO+TsO2NoT2a2wJRYpWKJqEIpySt9r5gGHSckaN8mlLOxKsm7yYQ2DhR04oomkaLj7R6BbuV9fuYlHH795t9IYTx3zQosPn9cp5avzDR8KNcsXXfDcDglRb5ZSKXmvUAH8l/Sz8yOfUZHVqpkHvDTmn1haPIh6VL2Re4I0vvUc/DPLUfA4HJxYAlBosq4tE/dpkzQsejkgy7mP4seDkqZWGH2WRmTQzaqWt2GjhZ+FHFtpzkvSXGvGTB7rQFo9iJpPH28f8E6fJymGMc5C0yRIk/UBjjJ9pWaPGq/U6U06emv2Dv+iEpQCsOU+1cmQmjaffNnrDicZH5qmVE4rQLiyiWTV4jpJ+eqijpQ+U95xaBeHHpH+Sftlu0/LUSnNqzFMLqSlwijNq1RRf894dCYX8EEe8ftjKB4v3Bb+Q1auhMfPUkk6emj/hR13XbR1FAIlQJOPuqc07CEX46Eap+lHe+ky2sYxFIzhzlTHl4gUfI0OybiLGOVLZQaFkw8s3PG6EvFrLGjVa9AGgixoau0j6AeAi01N79eCkzSOoFn5UyuS89XrFoi4VipAhdvLULAFFjP2dk6SfHig3oUi5G9gyahUIRfz01MrVqYXsqS1w6j1xkawE/m+YpN8HT+0NM/QIlBq1hUUQfqTPq81R0u+P+pH3er0IRURjxNcjlswvzFpiIdrY8N06eNzCjwBw3jojj//8vnFP78sLsny0cY7WpBIKGtF5a5rGZP2NoIBsPaMmKB8BmadWqn4EjKGXa5e2o6gD2/bWfqORChMAJuYtA8d3obfl1ExPbXI+Jw2J0A3bnoyW5AlF/BGKkNfrXSiSzReRr3GBnpd5arI6NfM69pqeWrUtq7zCj29JME/N/b3uG5srUdTSecajmmOLpWrYMWIdR/TCeBk33feZfDGULiyEX+rH1w9N4Y//7wuOUzX49+Qk6Z92CT8ac9fonO0/m+fEQuwYXL5KfB3jHOTv9z1rDaP23Dv+GTVZiyz+HHj1cIo7r0pa59WbljNqJLKwGTXOABSLum3sjAh5a0/tqT2vxntq/Jw0MkTxqGbbxXW3xdjDJ46x4P+uw5xCDRiGTszXAe7F15TTcNuV6brOwqCDHowanyepVQEpb5NlfYZkNEvq1ApF6bXwC5v60WGassjv3v0sPnHX07bFhBbWeNTqIO9HTu11zlNzyqml4hFbdCDMEORc2Zyat/DjD144iF+8fgTff/6A9Oe8USttk0XqR+fwI/9ciL1M6Try76HSNlnEOWuWIKIBBycWcGhyQfo7leK0cSBPbcqMGEXMadxEWwPJ+lvOqI2bH1pfBxd+5B7iuWxeqn4kLjZHyz/tg1jk+JxlmPjwIz9LjW/qqmmaq1jEumFjbMEv6vIbkeUUXNSP81m5QQSAifkc8yj4DYITiVgEMVOYU2tTY5mggA8V04JNHl1vW4L9LEgFpD2nZnZ9d1mAc4UiDk+lkS0UcZzz2ukc45zsutZyhIVswSY4EL0w/tyjEY3dA2GGIGUeOI/X3o/0HByekuee6frGIhoi5j3pFn4sFHWbx80/T+J8QLGbCMDnq8ScmiXOkdGZjOF0c3r88z55a+lcqSfJn+PkQpZ9bZuHGC+/0V0stJxRW5DcdEluwZ3N5Jn6sUti1C40xSJvHZmVekuVwHtqfPhxRpJPI8ioHZOIRazQQhTtiShL7spCkKz3nUz9aF6bou68gFA+rb8zwXIH5fCr/6NMKBKPRtjr0wRs8ggppwYEm1fjG9mSAMfNiDoV+Oa40LBfTXx3jk6jqFteK2C/L3hJPyCfMRgkvBTeuU2Wt/AjvZdRJ6Mm8ZDcOooA9s+HD8EtZAu2jR/d2202oyaf2F0u/AhwIUif8mrUDk0s+E4J4UfRe1Thx0WMbKeiaZpNWDEtKb4m+joS2LiiG0Dt3tqYzajJPLVSo8pq1WSeGle/pWkaOhOlc+IItzo1/to47czIqHmpUSPIe6z1wZjjPFIevlYtnS+wvEdoRo0LP8ZjZvG1y/FmHfI2/GdTi+CEh0KPZ6zqtZpdm8fXdd1qaGwuwLSh80MQ5YV0zspTOXlqCY9CEbqWTp6arJEwbzD5AaHia4r/ny/qto2LfNPs1NDYXSgC+G/U6HMWPTX63CliJLa9Y+NnlKR/8SG2gCEoBzUxn2OLriz8CAAXn2h4a097kPbruo67n9iLR3ceLfkZH36ckOTUuiSdFchTOyIpwBZzTR0sr1ZqRNwmX8ejERY+c4qhV1KjRtBuz0mR6YU8t+CIyW6+Vs3WDigRY554kGIRWtBSnFDEzVPjDQbtoAHLU4tHNd+N2mlD3VwX/hw7R1HxFrYCkg/jpRw8F6+SfjIeR6bT0mJhWYs4/jrz75m+n+Y+H3FTZsuxsQJ82QDOynJqAPCetUa7rN1HZ31pbszuUWH9o2tL7100amz8jMqpLT6sHan9QyOjxu/uuhxGYFxUQRH2jpFp3P7TN3HzD18t+ZlT+FHs0M+znHUVkeXU7MqmTmHx4nHr/QjwOzP5TTxaQY0aQZ6Vm1CknDKS/1txR8/L+ue5prKRiH/GwY0FLgrgpaMIH9rjNw9ZW/jRn9qs1w8ZysfThrq5IaDG8fkFmz73Wpoav/juBH7vH7c5qg9lUJ6VPi8Z3sOPxs/zRd2WqyTcPbUiCz12JKJMUMEPChU3enyZCguhcuuLY0Njl7IaYmlnEieaE0L8yKtlHDy1UiOnwo8NgzjEkSADRiqjjkQUMYdc0Xlr+xCLaDg4sYD9x+elv0O8edjYIR+ZzpQ8jPwDxwtFxFlqPMtchCJW+yjjvbl5am7hR6C8ApKFHyswauzBcBCKPLLzCDbe9gt8b9t+x9eg9xiLaCXnzg8KZX0EzfdhqRGDeyhtdWrR8kbUKafGqx/9aA2VKxSxc9QwMKcP9VjzA8momfdlNGLVVtG1nK0i/Pg/fr4Tv9w9hjsf2eP5b+bYJkS+kQT4jiLuKlY+dyULQYqF18b/W6HNGdbNJ24NzBXyaDx86zexQ7/tvEs8NQo/uk+4oHo1P0KQ4gBQdo4x0cjJPTVl1BYhTh8qGRAyamLhNU9HMoZ1/cZoCLExrMiuI9ZulfeudF3H2FwVnpqLURPDj12crF/ELfwIlBd1VNKhnyBjKyrGAON6/I+f70I2X8Qze53DunNcnQ2vzgL4WrVcSXeKRA1tq7zCe2pxFn50Xnxt4024xYJCpHahSPWLydvHZpHNF9GZjGF1X3tJw2IWkufuhWrDj4enFlhd1UNvHPGslivXTQSwFl5ddw8j8/kwmVGja8lviui1s4UiK+npSsWQkoTdxJFM89Lwo0T96Nil330ZPs/Mq/nhqfEhch7RUxO/bnN4D4uRljNqTu53p/mgM6PmkE8jujyO53iLM2qjXB5sNpO37b7tOTXzoZJ4am5Nja3wY9T2X9kEY2vyr3wRsabdym/iYxU0Myao+7psoXv8rWPMm3Breix6ozzWTLV8iew/zPBjiq9TczFGTuHHnFTSX/15vz5iRAs2ruhGJKKVtMHiz5uodvr1g68cthUmP7qrNJcso1zfR8AeEnMz8vzPRqdK67tkoXe+r+Q013eVQof858PnPwH7Jk0WCXIKP7p16ed5j+mp7Tg0XVM+GuDn5olGzN1Ta6RO/S1n1JwSpfSgj0wai7VM+cgj62AhY9eoZdT4XSOfTwME9aNL+JE8teNz2ZJ8jbNQxEX9WMZTc9pp0/iepZ0J6c+lrxl39tS+8fhe9v9uDw5TPkquTY/MU0vYPbUwhCJtCW+9H8uFH23qxxrq60gksnHIUO12CgZLFr2odvr1j14ZAQAMmZPXf/LKIU9/xzxwh24igGjUnK+HzVOTbP5k3XT4cPEMGxIcZ5s7/jVLWmNlSj21domkv5KGxjwre9uwsrcNhaKOl2qcr2atf+5GTDS0Kvy4SDGky/Lwo5hTK++ple9kPjGXtYUJj/BGzVQ+ktx8geuOPeMSflzSnmBKvjEhCT4vSN3dw4/ucuJyOzPKAVKzYC90OHhqrx6ctIUc3WTDbjO3+EGh4u+F6am1J6LsuroJRWxGjbsmMqFIrqBXPYKEF4kAXA1aWgg/chs92lCV27TxvH1sFjtGphGLaPjvnzwTAPCIpFm3DFl9l4imWYIfV6Nm89TccmoyT43PqcWkBkk0Tnw0Q6Z+5Adw8niR9BN+9YGk9a9E0l/Gc7M2uUrSv6jIFXQm8XXKqU1x8XQ3vIQf+dAjYPfUqEZtTV87M1JkKNw8tUhEs8QiggJS7OvW4aJgK+upxZ1v4my+yM6RL+YtRzuT9NsXhW88YXhpw31txs9ddoO0+HVKci98p/4STy1EoQjfpd9dKMLl1KThR832+VTjrRWLOmtkfNqQ0Z2iS7gvxFEjQKnh88KPtxte2Xs39OO9J/ZjfX8HMvki/v2NI2X/VtakWoYl6HD+HNOehSK8p2b12JQJRew5NRehSK5UKMIMY94q1NZ13XNODbDq1Z7YPVZTq7e0R09NLKugn6s2WYsMfgfnFH4k3IQigLdE+i7BqPG1ZRR+7O9MMm+N+j/KZqnxkOJQrFWbd1Q/2s8xXyiCNv3O6kfncAO10olo5T1a+Wta57P/+Dx+9tphAMDn37/B9j5kkDGV5V6sOrV8SR9BL2rEWrELRcw2WVV0FJH1fgSqE7mMz2dZmJGk4WIDb1lDgkrDj7qus1DjFWcPQdM0/OaZKwAAD75aPgRJn3m7i1AEKF+rpuu6zSOSeWpSSX/cCvPOcKOnkpLFXHwm5soIReg1eIFLrqCz3GO58CMA/MqGfkQjGrYfmMRfP/hm1YaNFV8n3IUh4tcq/Cjwta99DWvXrkUqlcL555+P5557LozDlkAPr6aVLuYlRq3MYi2b3yVC+bT1plLyMJe0Jjn/0s4EC+FNmgpIy1OTn4OTAlIcK+HU6kg2ekPErS6FPMqetrhjTZGMdklI8x+e3IuiDlxy0jKcs8YoNHWrY6P8hcyL7ebr1DL2HbOXsFWtMOPgcfSMTSiSLfXUEjGjCJ5EntUoIGnz1NseZ+ckhs5lObXuCtWPO0amsXdsDslYBL+2cRAA8OGzhgAYIqCpeXfjWLGn5nBdxe+PTqVLDICsnIX3APnwo+WpWa8rhh/5aIYsp8Z7hGRU+M/SS/hxuK8d//0TRkj3W0/tw/986K2yfyOD7jPRkHqV9KvejwC+//3v46abbsJtt92Gl156CWeddRY++MEP4uhRb6ooP6Ei0zahWSdQmr8qKxTx8NBT+PF9Jy0DYMngAV5okWRGjcQibjk1wMWoCcXXtECUGDXJ6A0Rt5lqpNSsJJ/GvyZ5apl8AT944SAA4I8vWW/93KXh8ZykDoiw1anR4mLu/L2EA2uFLWjxGCcU8RZ+dBKKaJpWk5dJudu+DuuzsqZSGMeX5tQqNGo/NgUiWzYOsNffMNCFkwe6kCvo+MUbo65/79lTc6j5IsQWWtlCkT1r/PcAh44ihSJrVtCVirNrIvPUaAnhPTWn3rL0u3StMx6eQZFPbl6F/3rFaQCArz6yB19//G1Pf8fDb7x4jBpFa00s6Q2pwo8WX/nKV3DttdfimmuuwcaNG/H1r38d7e3t+Na3vhX0oUtgctZ46YNTqafGdruSbh2AEQYhT+0SZtTSLNnPjFpHgoUfJ0o8NSejZoQf+abGuq6XNPp1Cj/S4hjR4FhgbglFShc1Os/eCvJpgCXaoJzartEZLOQK6G2P48L1S5kRzhac53g5DTkEnNSPdqGIX+pHI8xVsH3NpPEJb0XT9kGUvFCE5qkZr1FLU+Nx7j4jRINF552UhB+9iDyKRR0/ecUIIV9hemeEFYI87Poa5J2X99Tcw4/0jEc0I7QPlIYg5R1FZDm1mDynxkYaJWxfA3wI2nofmqaBL+4Wz0HcYLvx+xeuxZ9fdgoA4Ms/24kn3jrm+W+N9yEXygH2PFpp+FF16QcAZLNZvPjii9iyZYt1wEgEW7ZswTPPPFPy+5lMBtPT07Z/fiIrMiVKPbXacmpHpjOYTucRjWg4f30fIprRtmfM3DlT+LGf99TmstB1a+q1U06NCp55zy+TLyJvGsxy4cdyhdeAewx9ogrlI2Dl+mgBe9UcjnnGyh5ommbbPTo9PG5hKtqIpHNFTMzlbO/DrxEuxF8/+CbO/Kt/w27TG+cHR/LF19VI+nOCJ5GgwuAqjBp51byn1l2SUytVxPH3jqx/Is/esTmMTqfRnojikpOX2X72m6aRe2rPmGvhrhgudqJs+JFbtId6jc2fKBaRdRThw9PTnFBEVjhNnxVtFOYkYWTxfYjTr9nYGY9eGs91l56Aj5jX9VmXRgUiBa75sqh+BOybGlEoQu9nciFXch9OzGXx2994Btfc81zVCl0/CdSojY2NoVAoYGBgwPb9gYEBjI6WhiO2bt2Knp4e9m94eNjX83GqpgdKC51rlfSTSGRdfwfaEzGmWKRdI+U6lnYmsKTDCj+mc0W2iDh6at0UfrQeVt74kHLRqU1WRpJTEHGLoVueWmVGzWqTZVwzmsR8hjkzKhGzhBHzOfl1lY2dIbpSMRbmoUJ3ugZJDw2GK+GXu48hmy9imymx5hc925BQj+pHm6SfE4oA8OT1OXGcGTV+KC61wHKW9PMbqnLeGpWWDPakSnIza/raoWnGguoWyiw3IJQo12GFj8bQ8FqxAJt1FJH0fswWiphZsIQiLOwmCTFSjaa9o4jcOFuDQu2emheRiAx6Zg5MeB8emnERyvHnCJQqMof72tGeiGJ8Losv3Pcy69E6nc7h97/1HLbtG8eju47hid2VeY5BsKjUj7fccgumpqbYvwMHDvj6+qxGTXIjVZpTo4feSSjylhl6PHmgCwAw2GPI1ZlRMz22pR1JJoufnM+ycKamOe9aKfzIS/ppsU/FIyykyE/05rHk/M4PlFtD40k2aLWy8GOHIBR5zTRqZ67qsY7rIPsn5hzG0QOwdcsgUU6pp+aPUaPd/4hZ10jvKRE1rn+cM6IypRrvkQN2IQLz1KI0wDLY8KPVZYLPA1n9K8spIJmSt6O0ZVokorFNllv9oZc2WQA3/dph/AwfjVnR4+6p8Zs63sDRRsDmqUkGqi41w5vzEqGImLMq8dQ8dhNxYtUSYz05WKZNHw9vmGVrIG/oxJ/3tMVx16c3IxGN4Gc7RnHTP7+CmXQO19zzPHuOAeC7Ln1bwyJQo9bf349oNIojR+x1KkeOHMHg4GDJ7yeTSXR3d9v++cmCww0HVJNTcw8/kqd28qBp1EzvatQch0GLTT+nfpyYzzpOveYhocjYbIZ5dbIZY7xR4xdWq0WWm6dmxtBdhCKVemq0YM1n80jnCiznSNN9jfN3XwDnyoSp6HOjAa50PfwUikync8wgHTR3yguCt8MvkrIQ5Hy2AD5SI6tTs8KPfnhq1mdF9262UEQmX2C1S+Jz4XVQKNugOXSXEXOpMsQG1E6UM/C0OUjGo1jRa99IEtI2Wdz/87Wq0obG5mfVT+FH82eFolV7Jr6PlFCAXW7qdTmG+9oBWPefF9Lc+5aplvk8myzndslJy/D3V52DWETDj185hEv+9jG8+O4EulMx/N3vnA0AePjNIzaVdz0I1KglEgls3rwZDz/8MPtesVjEww8/jAsvvDDIQ0vJ5O0LD4+YoylXfE05t2yhKM0V0IJ9kumpreA8tcn5LFvQlnBCkfF5a7GU9X0klnYmEdGMydSUm5MJKMiI8A8b4K3nHNWxyMOP1eXUSHwylzUMWr6oY0l7HCvNxQcovwBaxdfy60OfC11fUtNZ6rbaY/6HJ61FknbK4oaJ9wJkCkhxM8RvHjJO4ccqCsfHZ0vbmfH3+mw67yge8NrUeExyDJ5yGxX+Z25tsgAP4UcuV+XoqUk2dbJQfHcqzp4D/nhW+NHuqfGfYUn4UehM4iUF4AZ5asdmMp6bDLP0i8Nzz18P2RoJGOrWOz+1CdGIhvG5LDoSUXz7D87DFWevxPnr+lDUgfue8zfCVimBhx9vuukm3H333fj2t7+NN998E9dddx3m5uZwzTXXBH3oEqzQROmDw4euACtn5kRnwsrfiA99oahj91G7pzbA4vtptnvubY8jHo2wXfQk76m5GNVoRGPKLpL1y8JytsWL222X6yYCWOot2UJE9XSVdBMxzscSPGw/MAnAmMTMe6TlFkC34msA6BHCxqL60Q9P7RC3Ex0xd8piAbOtE4jkmLOCatYuFLG69PP/LTfxWca4xFOLRjR2nWfSeWvGoHA/kCc+XmY4Jau5lIQfAeuzcu8UQyUYNaofue4oLKc27SQUsd4v34KL6OQbGks8NTGnRvespknaTomeWt7yKKuhpy3O1iuv3pqTnJ+dYxlPjbj8jBX42u9uwsUnLsW9f3AeNq026kuvumANAOD7zx8oOxcxSAI3ar/927+NO+64A7feeivOPvtsbN++HT//+c9LxCNh4CYUAazdP5/odyIS0dCZkLfKOjA+j3SuiGQsgtVmmIB2jaPTaZZYpzxHL6d+dJulxrPS3Km9c3wOgLx7fYRbvPh2R7JEuUiQQhHAmg11xkp7iFlWoM1D33f01ITNiDh6xo82WbyndtTcKYs9/6IRDRThkXlqpLCLmr9kK74WPLVamhofd6gp5CX7Tk1u3cYc8YyXaW7Nws4uYUxZ0bIMq07NSdJPXmeERUcOTy3Ywu9O6l/eEHUkoohGNGv0DOep0bmSEae6Sr5Dv5g64KcAAN479DuhaVrFeTVZOzQeu1FzP6/LTl+B7/7hBax9FwB88LQBLO1IYHQ6jUd2hl+HTIQiFLnhhhvw7rvvIpPJYNu2bTj//PPDOGwJbkIRwPKOyolECCYWETw1yqdtGOhki5bNU5u1Cq8By+OZTudZ54XOMp7iKaYHuPOwcSyxQz/RIRGLlBsQCnCSfklogzUzrlAokohGWJ/LbfsMKfIZXD7NdtxynpqDoEAsxQhi9IyYMzg8lebqk0rFBzKvgjYZ/aYhyOSLTA7NioNZ+NFdHOFEsaizDYhocHixiFOTW1LsHitj1Nj9XIOnVi5XSngNP6biUaYSTueKLE8GOEcqeANDRl/01ApFnf09fXaUz3YzzGJT40qaGTuxaomxYfaqgJSVbvDwhqwaVWYyFsUnz10FoL6CkUWlfgwamXSZh3b/XvsZOvXHe0vIpwGwxffHWI2a8VD0cAsx7brccmoAcMqg4eGwGWTCLDX2niTJfllHBRGnNln8QllpTk3TNPbAUx7mjFW9tt9xy6npul7WU+sRjBqFH/2YIE0cmrSHsw5OzEtDO25dRShkzc+jI2+gRChCA04r9NSm0zkmJOLDjwBsM9WcdvBejdpYGaEILxCSkS8UmeGvtfg6w6UYUvEoi4bweTVrUyfK7kvr9MTRM3z+ijalC9mC7d6UhffEbv+1SvqByhWQsiJ7nqSt+Lq68/rd81YDAJ7YfQz7j3tXZvpJSxm1BSHvIdLFPDVvRo08OjGnxpSPnFEbNI3aQq6Ad8aMkCHtbGPRCFuMaddVLvzIPLVRo0CdeWrCotDJjAQffvSufszmi7bi25l0nokwKu0owr8uYCy0NHeLcMupZbhzKad+JGiB8VIM7RXRUzs4sSAdDmmNnyk9Jm2E+jlDQK8hCkWq9TIp9NiZjJUsnryyMeOw2avUU+t3MGqUn3UU//ACi7INjd09tQwXfgSs547/zDIOmzq7pxazvQ4ZI75FVp+5qcubRc2s8Dpe+uxakn5/1I9A5QrItCSaYD9HuRq0EtYs7cCvbOiHrgP/8tLBql6jVlrKqGVcWsQAvKfmNfwo99ToJltrNjKmY5IR2GGOAuF3thSCPDBu7G7chCKA5akdnFiwt4USw4+S/o9ehCK80eANDHlpxsywyndz/KJFnUTsx3XOqfGG2UkowoeO+dEtfjY0pl3/BrPr/cjEgnSOllsZAX0e3W1xtoDQposfPQOUX8idkIlECN6oOW32lpmeyLFZZ6OWK1ihPafwI3lqTrO4KCcVi2hl1YBlc2qC1ylTQDrlsxKS8KPYJosXBPH38kK24DoTztlTqyX8aHpq4/7k1Pzw1ADggvVLAcgnJIRBSxk1tzo1gDNqHj01J8kz1e2QQpEgNdabh8moWT8n0cUBM5RQzlPraY8zL+et0RlO/egh/Oih+JpvwsqLGKoNPRK8Jynm0wD39lzznDcUdZgOwHtqvOFL+NRRRNd1Nkj2PebgxoMT8645Ndkxp/n+ggn7wulXnRp5UDKjZoUfLUm/GJaiEUfHJNOjCapZjEa0ktAvUS6nxjepLtcHsbz60b5xXdFTWqvmJJSSe2qmQc4JIUazFRrdV3PZgm1IrNN5p0uKr/0IP1bqqTkYNb74ugYPknVP8aklXaW0lFFzki4TTCjiOacmF4qMzRgP+jLRqJlGiB6M/o5ST436OZarkwOAU1YY3tqbozOOjX7dwo9uu2JN4ztBWDdntSIRgt9QnC4zaknqKFK6q7fEMM4LAb+w8kpQv3o/Tszn2PU71xyVMzK5IF0w3Dw18u75QZQL5hQJUchDC1+lRk3WTYTg27w55ZpZ+HE24zi/i3KjS9oTjmOIypVpWP0Sy9/zldSpAXz4UZJT8+CpkVErmrPQFgRvp51TdroJRVKCh+mnUOT4XNa1BpBwa2YMiA2Nqze2sn6ZYdJaRq2M+/0rG/rRnYrhvRv6Pb1el2Sm2nw2X1LHQqwQ8ke8pyZ6PuU8NYBXQE5LO4rwrzPL5TO8hB8BoM88f17SXbunZl17vj2W9XPn8KNTiJWH97L5mie/1I/kpfV3JrHODC/zObWUR6EI3zmmjfMGjN83u/TXGDodl4ydIfjxM+JCTVCOLFfQbepBHisq4Xw/lCuonyujaOUp21GEjIUQfhyVCkVET806freQUwOMz0dsWMzfr7IQNJFiHqbpqTHvuPoluKctzs5zxIO3Jna9KTlH85oZY2hq99SCnF3oRksZtYUyktZfPWUAr9z26/jgaaUtvGTIwo8U8knFIyU7NpL1E7acmqhOq8BT2zk6w4yWo6Q/zasfve0Sh0kyzMXsqZtIpTVqBO3Gl3YkSoy88XPTU5PsPGc9tFLic2o2T80noQjt+Id6U6xW8Mh0GtOm58WLBNwMKd0ztqa5OXsNU8InoUifxODw927G4blIxqLM83USixwv000EKO+pMeWuF0+tbO/H8kIRCgeLi3tCEn5MRCOs3jCdK2AhZ8+btXH3K22a2yXri9VRxJ+GxoQl6y+fVytfp2aco1PHEa8oTy1Eyn2oACqabdQtEYoc47oriK8lLuJ8A1ixO4cXT+1U01PbNTqDWfMcxDZDnZJwntfCz2HJA1NtNxGCjNbpEpGI8XMXT40Vpjt/fo45NZ88NVocV/SksKwziWQsgqIO7D1mKFqprRJgNSSWemr0XricGnkBWSYUofBjdUKRCdfwo3FtphZy3CJfel2XlSnAlk0BECnrqbkMfhXxXKcWs+fUDnMTsJ0l/aXhR03TbGIRChHTtWIGO1NOKGJf6P0IPwKV5dWcPHKCDGwtoUfjdZSnFhpO0uVqcfPU+rtKH3LeU4tFNJtXIXo+XnJqa/s7kIhGMJvJY/fRWQDOObVK1Y8AsHopeWrWA1NtNxGCrgHlo0TaXWqayrXIAoScGmf8aunKwUM1ait62qBpGvPW6Prz3o7bMVlOLRkvUdiJQpFqa+zcDA6Nn6H7FZA/F8vLyPqPC91xZJT11FwmL4gky3yOYt6IxFnz2QLLB3vpKMI/f7wnLY6WYZswrquMNKcmCFz8UD8Clcn6vRZf12rULAOujFrglKtTq5RuyfRrNvxT8pDTrhEwwjW8p1KaUyvvCcWjEZxoysrJsIoiCmlHEaFjhRO0C5SFH6v11K79lfW448qz8AfvXSf9OctRSHb15QqvAWNBIWWkVP3ok6dGAyipGTPlnPgFwV0oYqkfxfBjrkQoUp1BdhOKUHibN1ayTjvlatXK1agBlakfy1Guu4rYtLwtEcUac3P22sgUCkWd1Tp6EYoYr2Ut0qIgiKl1uXZjUvWjKOl3UJxWiuwZdaJc8wl6n7Ua2mojC37RUkbNSbpcLdZMNc5Tc+mDN8h5amJNj6gm9JJTA4BTVnTZvvakfsx589RoF8iHHyccegl6pac9jk9uXuW4K3fPqZVf/DRNY8lzmadWa0jkMOepAVZOg/BaRjDjJfwY0+znXuHO10udGnW3cRpHUq5WzRo74xx+LNf70WvfR4DvoejUUaQ0lHr2cC8AYPuBSdsGo9RTs/7G7qmZdYScbJ8+MxZa5YQiMk/HapPld/ixEk/NfVNP33cqefJKqkzeM2hayqiVU/9Uiqz4mna0soe8u81SuolGrxr1IwCcOmhvCFyifpTUqTl1VBChnNrodJo9hJZQpDpPrRxk7KpVPwKWArJdWghd2+7xkOCp0U6Z4HNqpF7MuUj6u1NxVttGtVCsS38NDY11XZfOUiOoDVve9FqcxAFlPTUXb5Bw6yMK8NOiy9/zrGVY2cnX1vtxMmpuxdd8bpbVEeYLtjo1wAqtLmR5Sb+so4jdGHuZaeiF4T7vrbLKtck6b10ffm3jAP7wV+RRFK+IzZvDpqWMWrmdSqXwbbIoCX2cDf8sNWqapjE1lvjzao1aOU/NtaFxmQeqvzOBtngUum7lkiZrlPSXgy++FmujnArMRSivxotm3FpWeaVY1HFkWvTU7EaN36UnHTy1XKHIoga8pD+dK9jOL85yau4FxzLmsgX2OcuiBmIkwCmPYglF5AXYXtSP7S4hZcD752qcZxlJv2S8FG/UaKHVNLDm2oRjTo28LN5TE7wao/jaOZJQIhTJ+WPUKPw9wc1idKLc+teRjOHu3z8XH9u0qqZzEsfshE1LGbVybbIqhTy1fFFnH+DxWfe6HQpBijtb3vPh80LlOEX01ISFoYvrHEFkPcqJNU1jO8H9ZsyehCKy3b8f0IIgDjYF5INQZdAuW1qnVoNQZGw2g1xBR0SzBBSiUZN5h6Ih5csrOlMxVtu2kC3Yzo95alH3hVzGuK20pPR6ifMCnUJO1HC5vFDEJfxIfUQLRWl+sRJPrVxOLS2p/9o41I1ENILxuSz2HDMEPYlopHQ8jK1OTe6pOdWpLdjq1GThx2Ak/V2pOFs7ynlr5Yqv/UJ5aiFRMJuOAv55ah2JKKthoXBSuTEcZCQGBXl/Kh5lD4pXLw0wdtJkQGW982hRmlrIWTkbj54aYK9VS+cK7MEIKvzIL2xiCNKpwFyESieWcwpUui68UKBSRszC64HuFGLm663stefUZOpH0RjRBoNaLfHF13yospaGxizX5TQOJh4Fv6Y7jWNyCz8uZAtM/OHmqfGLvGw+3xyrU6tM0i/rcmJ1FOG99ChOHTI2fzTHT3bv89/jPVl6rYVssaTInu+A4yYUsRoa+5tTA6xn9OC4e17N70iVE3Qv5QrVP2u10DJGjS8E9GunomnWtGwqvmVjZbrkD/nnf3UDvvhrJ+HKzcMlP6OQnleRCEHeWkcyVrL77G6LsYeMlHus952HrgG8WIS8tJgwJdxPohGNhZhECbhsureM//jBk/E/PnkmfuOMFex75SZRe4EKr/l6w+VdSdZ4GJC3yRLr1EgtS58zb9Ro4xWNaMxbr0ZN5iYSAexDbgHnPDMZtYn5XMl1I8OZiEVc74dEjO+RWBoim2cdRbx7akXdygfyONWibjJDkM+/M26+Tun7pe91CJESvjenGH7kW8m5t8mye5jW5Oval2CmgCzrqfmrKXCCv/b18NZa0qj5sTsiWKusdB6Foo7x+XKeWjs+/4EN6JF4OuT9lJulJkLtsmQ7XU3TSloFVZKktjqBL2BizuomUkmReqU4FWDLpnvLGOhO4bfOHZbK64HqjRq1yFrRa4UcIxGN5TUAIMUXXzsIRXg5P2AtmpmcFZ7jDWV1npqZ+3QJE8tqsUR62+Is90RGjOBLBsrdD271h9WoHwF5OJaffM1z1rDRku3FdyeM15F4pnSdxdAsiWhkbbLambApz4lInIUiabFNVo3hR8B7AXa54mu/4NeVeuTVWsaoMeWPg3S5WvgC7In5LHTdSEJXU8dVtae2wvLUZAyZi+4hMmoVhB9Xm57a/vH5mruJeIXJ+oXEN4WpvOzoRXgj4TWvtnN0Gj/fcZiFuViLLCF0vJLLq9kl/Zr0eJZRszfNXcgVrMJrzgjLGhpn80U2l0+GW40a0enBqEUiGhM1HZ22GzUvIhGCQsayriKVtMnir0tGUFMWuanU4vs5e9go9k+7lLMkmVGzn4e16SiUNjTmhSIu9XZJISTnZ/jRkvUvjpxahEuDKE8tQIL6QEk+PpPOsdDjkvYEy7lUAu2qKw3tXXLSMqxZ2o7LuXAbD4lTDpueRkU5NVv4kQqvgxGJEE5NjWmX79YmywlN0yoWi3z+ey/jc995Cfe/PAKAb5FlF4es4vJqvDSeeWrC8WYz1E1ECD9yQpGE5HV4z+QvHngNl97xGLbtPS4993LhR8B+n7mFpJZ3y/NqYx5EIoRb/WElxdf2BdN+XfnPVXzO1y5tt+WBZaF3krqLRo3fdFjjZcxayATnqbmMnknZPMyCb0IRgJf1e/XUgl/2RWFMmLSQUQvmA+3mPDUv3RXcIA/ISzcRnmVdSTz+Z+/HTb92kvTnKxw8NS+7RDJqk/M5poAMSiRCOI2fmfPQJsuNZAVdRQpFHftMT+j2f30Tk/NZVtZANWoEhX8S0YhtMxN3WHzF8KPNU8vrtr8F5G2yXjkwBQB4as+Y9PzdZqkRsq4ZMpwKsN0aDYiwMJ3MU6ugTRbg3FvQljcX7m1N03DWql72tWxDd+H6pdi8Zgl+57zVtu/bjJpQp0YGbGIuB9KtyNWP1vfSuaLPObXSxuMivBcbtFAE4BpPK08tOIJS/vAF2JXsXGVQqG+lIBOvlSGhU7nMG3CiMxljxva1kUkAwXtqtFAs5MScWvk2WW5Ukpsam80wIcLxuSz++893OXpq9Hk5dX0XJf0z3NgZwD5dWfbZiG2ydF1nSkyaoi4yztSP3sKPbs+FkwJy3KUmU4QJKiQF2JV4aoCzZJy8glhEk0ZKqF4NkN/7y7qS+JfrLsJvnWsXcVmfT5HrKBIxz9nemYX/Ho8xzsUIR89l8kwV6E/40bj/ptN5JlgT4Qd2Bh1+BOrrqQUjYVuEBBV+5FtlxSLed64yPn3BGqxa0u55nptXyFMjoQhrk+UxRLq6rx0T81N49aDhHfRWOSDUK+2S/EuhqMNtsrAXKjFqlD9LxiLI5Iv4p+f2s5+tEDw18mZFY+vUxUTMqdECuZArcEKR0vBjoagjXyhiLlNghbY7Rqak5+8l/NiVLJ9TA5yNGi3kXmoWnVpl8dOkvXtq8lq1clM4zl7dy72Gd2OS4jq+iGIQiirwTZKdakxTsShyhbxtNp0f4cf2RAx9HQmMz2UxMrGA7hWlzydvXMIwatZQVOWpBUZQyh9LKGJ5al52rjJS8SguO33Qd7k8eWqk3vPaJotYJXQC7ws8p1aqlOP/3+viJxJ36PAhg/KPG4e68VvnWh0W4lHNNjIIMOTin9y8Cjf86gbb951muFlTr4XwY1YuFLGVIxSKODhphZmOzmRwdLq024eX0CCfO3ILgzl1FbFqMj2EHx2aGmfyRea1eO056Bh+LCO+OLtM+NEJ8tQyuQLSQoG1KG5x23BRSI4fKlzJebhBClynvBqtf4mos9H1E9brsg7jZ1rGqAWXU6PwY+05taAgT206ncdcJl+RUASwijuJwMOPkvlb9P/RiFZ1yKYaT22opw03X34qC8EO9qRK1LOxaAR3XHkWfvd8ey7G6XjkZXVJ6tRyrJkxZ9SEcgTK7RE7DpV6axMe5pzxuVu38KPT+Blr6nX5TZyTp8YXY8uGa8qwhDPy8KPTxnVJRwJrzY79XqMU/OvZhSL2NlmE23Wk+5Y8tXhU883AWLJ+eV4trBo1QnlqIeBlQGg18HVqXjqW14POZIyFmvZzyeRk1Nu1IHUVEbRQhHlqOWsBtLqJRKuukXPrmi9C+bPBnhT6OhL40oc2AgBOW9Hj+XhOnqFTnVqaCz8muBKEGLe7zuSLGBEWrh0j9rxaOmd1+nBVP3qQ9ANc+FEUilQg6Xfy1OhzTcYinhXDTtOvWTcRl4X7LDOvVomHRNdmJp23GkALQhHCzdukhZ7yXn6EHgkyaiMOnlpQ658T9fTUWiinFpRQxAo/0gfoJRwTNit6U5g5Mot3j1u1TV6VVyRgIdwKev2gTdIA12vfRzeq8dSocP2Tm1dhw/JONpurluNZ4Uczpxa3apgoZyMbYDlvNikmkUhbPIqFXKEkr0b5tHjUGsMjw9601yX82Gn1f9R1HZqm2aYAeNnEOQ0KrTSfBpRXPzq1/AKA957Yjx9tP2QrmC8HGSO6roD1mcWjESRiEfYZu4UfUyz8aBlyvygXfmTrX41jZbxST0+thYxawEKRdJ4tVrKp1/VmRU8b3joyi3eOW7t8ryGY0vBjOJ4aX9PktUWWG9UZNWvxO4tTz3mB1G4lbbIE9SN/T9I9FBc+m4Rp1DL5AjNql5y0DD9/fRSvCwrIcW7mnZtXywtF3BY7avmWzhUxm8mjKxXHLBfG9pRTk4SUja8rUz4Czm3DrGfc+b7+xDmrsH5ZB05f6d3jJgNGId1YRLNtOtoTUcuoSbqJEPQ5U/jRT6NGsn66N0TYtfHRO3RD5dRCIKjCQ17Sz3JqVUr6g4Rqq8hTi0U0z51VhnrbbM1ve0PKqUk9tRp2mgmHXowySCkqKh0rOp6jp2YPPyZjEXZ9p8xdfIlR42reKMT0axsHABgLGe9FuM1R4/EafmxPxJgBPmrm1ehe70hEPW0Uy3pqFdQeOo3isaZeO59PJKJh85q+ikJ/9HpzWXm0hz93t82BmFPzSyQCWGUlTjk11ohZ5dSah6Biyj1t1sNOhrNaSX+QkMfxzphx01fyQCViEazgpnb3toXvqVEeotIWYjxePbVCUcfodGnz4oqP52BERaGIpmlsoaT3WRJ+jFvnPmIKRU4e7ML6/g4Admk/q1Ercx/yxdflFnlRLFJp/tgxp2Zei0rCYkmHBdPv0VKEeG4p4Wvey/QUfgwgp0ZGbWI+V9K0AOCHp4brqdU6ab4aWsioBRV+NBYGq+dcpOo6qiChxZk8tUp3iVSL1ZWKVdUCrBJY8TW3AFI4cKC7diOTKeOpjc1mUCjqiEY0NrqnquNJjKiu65xRK1Ufsl28g6c2nc6z0pGVvW04zQyj8QpIq5uIu8Hx2iYLsELqxwRPzesGjg1/FdWPOe8DQolykn6/vRExZCc+3/zXXoQiLPzo43l2p+JsOK4sBGl5auHm1NLKUwsOcWSEX4h94vo7k4F2sK8Wamp82PRAKpE0A5ZRC1rOD8h39aOcxL5avHpqVM+3vCtZk+TaUj9adWrz2QKry5J1yZ/m5N48tPOlTUl7Iore9jhON+eEvc4pIL00MxaPX+65EAuwj3s8BmF1s5d3iamk9ZmTF+BFKFIN/OQFoPRa8efuWqcWCy6nBvBikdIQJOW2wmiRBfBtspSnFhiZgHJqbXH77KXFJucnaCgp9aerdJdIYpGgRSIAV9PEhR95iX21eDVqo5K5abUcjw8/kpcWjWi2BYZ2+E7hR/p67zHDqBl5To0JHl4zw4+6rrP/r8SoldvBU/9HK6dWWUs455xa5bnSckIRPz0goNQQiN4Y72W6GWcm6V/wP/wIuI+gSYedU4spTy1wgoopa5pmWxz6F6GcHyj1cCr11E42Z7at6vMuaa8WWZssp2bClWC1rSrjqUmUj9WQkByP1I2dwkBXK/zoIBQho2Y2WaZd+elDhlHbPz6Pqfkc/t+LB/HL3WOIRzVcdvqg6/m1xa3J7WWNmuCpjVUcfnTKqVU+TsjKqTnUqfntqYlGrcTIefN4LU/Nf0k/YOXVZLVqYUv6nWoJw6BlJP1BxpS7UjFMmmNZqm2RFTRtZriKzjNR4YP/axsH8PdXnYNz1ywJ4vRsWDk1a1dvCTeqNzRJieckY5Q1LvbfU5sW5PxEmxB+FDcddO77xmYBWAtYT3scw31tODC+gIfePIL/+pM3AAA3bjkJGwa6XM9P0zSsWdqBgxPzTAjiBP18277juPG+l/HsXmOCtNfIhFNHkeo8NafwYzB583g0glhEY4XXperHCoUiAeTUAH6umsSo5YMx+E6whsZ16NLfMkYtyAF5Rqss40ZajMpHYkVPG2fUKnugohENv+Ewr81v2OTrXMEYmVEosjxRTWpEj/PUyFOrJdQJWN5WvqijWNQRiWiYFeT8RKpM+JEWCVqw+OLh04d6cGB8AV+6/zVk8kVsWt2LP37fek/n+H8/ex6mFnJlC+qHuOJeftE8uYzhJMTPlMpJSOHaVlFOzSH8GJBQxHjNKAsdi96O95ya/f4LLPwoFYqYOTXlqTUPrE7NZ5cfsC9QizWnBhiNjd88bAgKkgErGGuBdvW6bixUNHG5LR5lCq9qkIUDZTBRSgVdJ6THExoRpyJRVqPWnbK/jzZzIaafO4UfKSdqM2ore/CzHaPI5ItIxSP4ym+d7VmhumpJO1Z5cL4vWL8UN27ZgOmFPAa6kxjoTuHE5Z2ei5jFz7RdGARbXU6tsi79tWAzaiVCET43Wr74mghKKCK2UQM4gx+Sp5ZqRk/t9ttvx7/+679i+/btSCQSmJycDOpQnggypsxLsxdbM2MevpDYz8JPv0nFotA0YwGcyxRwiAsH1qIslU2QlkEd+mv31KxzzRaK5sIor7cTF8pST83+c37mHm9Ybrn8VKwza9f8JBrRcOMW+RBaL4ifabvQCq2ynJrcC6DPNYiNK+/9lUj6OaGIW05N9CD9Nmok5hqbzWIhW7CtddZ0gXCe+3p6aoG9w2w2iyuvvBLXXXddUIeoCHbDB5RTIxZrTg2w56P8fqD8JBLRWMf2hWzBl+4egDehSKGo44gphqilfACw58Vy5jHFbiKEuNly6ihC8J7aeWv7cPZwLz6+aSV+74I1NZ1zUPCfKa+AnPNR/ZgJ0FPjjVVJ8TX3My+Sfva1z+fZ3WZ1fhFr1cIuvm5KT+2v/uqvAAD33ntvUIeoCCYUCcD95kNJizun1hieGmCEceayBcxl86zwerDbn3Cgm1Dk2IxVeL2sxh6emmZMO84VdJZHmXbKqYmemlinxu3yoxHNVoTelojigesvrulcw4B9ppyqlcKPldWpOYUfg9u48q9ZEn702EMzaE9N0zSsWtKGnaMzODgxjxOXd7KfBbn+yWhKT60aMpkMpqenbf/8gnYMQbjffCd0r3U79YD31Ba7UeNr1agYuhY5P+CtTo3q4QZqLLwmyOPK5Y1kGLWwEovYS4yaWKfGeWqD3alQBj36DX2mC/xIITZ9wQ/1Y3BCkTYXb6zDo1Ak6Jwa4Nytnxn8sLr019FTW1Qr29atW9HT08P+DQ8P+/baQdWwAFZOTdPCKU6uFt4oVFqnFjZ8rdqoT3VjSdbhw82oUaiztmMRluLSuP9GpwyjJrb7Enf/TkIRwJ5PayRk9YeWp1ZF70cH9WMQzzjvKbsJRdyNmnue1A/YXDUh/BikUE5Gw3hqN998MzRNc/23c+fOqk/mlltuwdTUFPt34MCBql+LR9d1tlMJRihiPKx97YnA+yLWwmADhR/5DhSHfO7w4e6p+SPnJ6w8nuGpHZ2R97AsZ9T4BXCVTwY3bGRdRazRM1WEH0uKr4PpKAIIObUq1Y+lOTX/z9OpVq1u89QWe07ti1/8Iq6++mrX31m/3lt9jIxkMolk0v/wHR+mCEYoYnhnizmfBhgPVX9nAmOz2UVv1NrYAliwiqFDEIqQ8nHIJ6MmTts+Mk35Qfvri2EhpzZZQAN7asJMtXSuwHpIliv+5qmXpJ8QDTA/46+9jupHgO8qYpf1hz35mnJ3i75ObdmyZVi2bFlQ5xIYfLf3INzvzWuWYEVPCpefHk5xci0M9qQwNpsNrbNAtVCe4vhsFhNmwfgKn4QiruFHMjo1hjrFY+YKRRSKOmszNdBtX8RLJP0u4cda6+fqheipkTfRkYiWnf3GY+XUHIaEBnBv2/t0Cg2OPXbpF5+5IDaWTv0fWaQqtIbGTah+3L9/P8bHx7F//34UCgVs374dAHDiiSeis7PT/Y99hi5sPKoFEh4c7Enh6Zt/dVF25xdZ0dOGHSPTi95To9qft48ZbaHaE1F0t9V2u3oKPwblqeWLOD6bQVEHIlppkX758CPnqTWoURP7Px4wvYnhvvaKnh0nTy0TYEcRm+ESplvTfMG2eNTV+wojp0b3xtGZDNK5AvPMguy2IoM2FrmCztTEYRGYUbv11lvx7W9/m329adMmAMCjjz6KSy+9NKjDSgljlHkjGDQAOHu4Fw+9cQTr+oNvTFwL5KmRURussfAaKA0Fyhj1O6cW09gxqX/lMomyUtz9N2P4Uez/eHDcMGqUB/JK0iG0FdSQUEAQigje2NLOJLZ+/Az0tsVd79GSnFoAG8u+jgTa4lEs5Ao4PJVmhfhhz1Pjr1eG6yATBoEd6d577110NWp+Fzs2Ip+75ARcfvpgIF0n/ISS72/TqBUfwoHlPDVb4bVf6kcm6S/iyLRc+QiULjal89Sa0VMzvOLhvsreD5sCzm1OCkWrFjDo4mtZCO9T560u+xqlkn7/z5Nq1XYfncXBiXms6+9AsagH2nxCBv/eMrkiQhjDyFjcMSifCLJGrdGIRjSsX9a56D1LWgCpkbEfnlOyjFGjwutYRPOtM0yc8w5JJCKbpu01/Li0IxHawuQ3Yk7tgOmpDVfsqRnXolDUkTcNGZ9fC6qhMVHtZHtR7RiE+hGwPHnKq/Fh2rByatGIxjZmYefVWmKVD2oiriI4xGJcP3Jc8TLhR+oxOeBjcTMvFDnKRCilBlMMaYmhKcrBnbA83Hy0n/CKVsCeU6sEmxdgLthpLhQZhAfkJun3irj+BNWqzhKLGNeXH9QZ5oaoXgrIlujSH3aNhqJ2xBi8H8XQzMA4eGp+59MAu1CEhR+r8NQ2r16C//nbZ+GsVb2+nVvYdAiS/gPjxiZidYVGjc8vZvJFdCStZzwe1QIRJaRccmpeiUc1RDSgSNPnA9pk0/V857hh1BYCvjZOJOMRzGTC99RaxKgFLxRR+IvoqflhaFiXfgdP7ZGdRwEAwz4KMawyAp0JRWQ5tXJd+iMRDR/btMq386oH7Vz4cWohhylzWOaqCq83hbZyBZ2FHYOOxrj1fvSKpmlIxaPMUw3KU1vfb3jz+8x8dNg1agQZ7XTInlpLhB8toUhLvN2mQFw4fBGKcF6TToPJTJ7bN47/9+JBAMDvXehfp/u4zVMzc2rdpeFHsfha9NSagQ5OKEL5tKUdCVvxsldEBaTVTSRYo5aIRWrydnhDFtR6tG6ZIQLbNzaHYlG3WmSFbdSoq0hO5dR8hwlFGjTB3oqIC52fnhpg1M8Q2XwRX7r/NQDAp84bxuY1fTUfSzxmrlDE0Rln9WO54utmoJ2T9FO+Z1WFoUdCrFULug6LPp9qRSIEb1iCDD/GIhoWcgWMTqdDL7wmyGtOl5lf6DfN9+RICHIkhSIY+MWjIxG1TUKoFt5Q8GKRf3hyL3YfncXSjgT+/LJTaj4OD3lcc5k8U3LKjFo8GkGM8wAWe3F8NXRw064pn1ZtqFecqRZkjRr/urUaBrtRC+YzjkcjLK+299gcN2cu3HtKeWoBEuRICkUw8J6aH4XXgOCpmbvHA+Pz+OrDuwEAX/rQqej1uaCG5qKNmPLqRDTiOMmBXzDFOrVmgPKkc9l81cpHgnWBD8lTO3VFF9YsbccHTxus6XVs4ccANy7rWQhyloUfW8VTaxGhiAo/Nhr8Z+VXIXQ0Yqi/+ELdv/rJ60jnirhgfR8+tmmlL8fhIUNKi/jy7qSjgU4lopjJ5KFpaMh5aeUgRet8xsqpVap8JMRO/ZmAhSJdqTge+4+X1ry5ImMcjQTTso+g5gpvH5tDnznjMezmE8pTC5B6qX8U1cN7arWOnOHhxSLjc1n8+5uG4vG/ffSMQArSKfxI4TZZ6JEgQ56IRhZ9cXw1UPgxWyhi35ihzKu08JoQw49hpBj8+EyooXqQXhoArF9mKCD3js0pT60ZqZf6R1E9fE7Nr475gOE5LeQKyOSL2Dk6AQA4cXknTgyoqJk8tSNsjppzpxLeqDUjfH3Xu9RNpMIWWYQ4/bpRUgy0BgVu1Pqt8GO9ro3y1AJECUUajyQnnfarYz5gl9i/8O44AODcNUt8e32n41EFgaxFFkGy/ngTikQAw8BTrlA3pxVUG1oWp18HOdneT8iYBS0EIk/t4MQCqwesl6cmTlMImuZ8egQaZRensNA0jQ1c9LPDR5KT2L/0ruGpbQ7QqIk7crfwI4WmmtVTA+ydYlb0tFVdj0fXlQqZKcS12GtRLU8tWAPT35lAVzIGXQd2js7Yjh0WylMLECUUaUyG+9oRjWg4aaDLt9ekHfJcJo9XDk4BCNaoiYu2rO8j0cY8tebLpxEdXAiy0k4iPDSupt5dMyqFNtZBhx81TWMKyDcOTZnHDtlTi6ucWmCo8GNjcu8178Gx2Yyvk57JC3pp/wSy+SKWdiQCHcMjhplkfR+JZs+pAUA7JwCqVs4PABuHugEAbxyeBtA4rfDIQwvDo1y/rBOvHJxiopzw22TVx1NrCaO2oMKPDcny7hSWu4TrqoGMzDN7jwMAzlmzJFCloeipub0fMmrN2CKL4D21auX8ALBxhWXUdF0PdOq1n1ieWvAGhsQi1EA57GvDPDXV+9F/GiU0oQgeEiq88E7w+TRA4qm5qB9JKNKM3UQIPqdWrfIRADYMdCIW0TA5n8PhqXTDRGPCUj8CVg9IIuz0i1h2ERbN+/RwKKOmIFinfjPOH6TyEbA6igBGmUKnS/PeVgg/8tMXqq1RAwxPh8ow3jg0XbdWUJUSplGjbv3iscMiqTy14GiUXZwieBJc2CcRjeD0lT0BH896xAa73dt9tUL40e6pVW/UAHsI0mqTtbif8WQsvPCjmCtWnloTodSPCoL3gk5f2R34IsgbKNnIGZ62Jq9TA6yi+kQsgmWd7tejHEwscmi6YYQi56xZgvZEFBes928ShBNtiShWciKrsMsd6pVTawmhiKpTUxB82OfctcEvLLwRdatRA7iZXS3gqa1a0oZIjf0teU+NygMWe53aOauX4NXbfj3Qvo886/o7MDJptGhTnlqToOt63XqfKRYffDgwaJEIYPe6yhm1E8zE/rr+2sJyixnKqdWifCRONY3a/vF5jM0as+oWe0cRAKEZNMDq1g/UsU5NeWr+kivoTNIadpdqxeKDH+lyzurgjRrvdS3vcg+3XXrycjz6Hy/1ZcFfrNAie9aq3ppfa0lHAkM9KRyaSmP30VkAKhojsp7Lq7XVOOC0UurlqTW9UVvgCv/UDa8gT23t0nYsK2Nk/DweUN5TA0qT+83GR89eidOGemyLbS1sHOrGoak066252IUiYUM9IIHw842qTi0gSOob0Zo7V6HwBj3Ym9cEn08D7EIRP3tYNiqaZrQ98ysER3k1Qhk1O/wmKfzia3v5TFg0vafGy/mbcUaVojI+cvYQ3hydxtUXrQ3leDZPzaVFlqI6SAFJqGiMnZW9behKxTCTzqPHYeJ6ULDxQKpNlr+oWWoKnjNX9eK7f3hBaMdLxbxL+hWVs3GFvc5wsUv6wyYS0fCNT2/GsdmM69ijIKANRlrl1PxF1agp6snSziSuvmgtetriamMVAKuWtKErGcNMJg9AbV5lXHRif12OS55arqCjUNTZfMSgaXqj1teRwDUXr0WXS3sihSJI/stHTqv3KTQtkYiGU1d047l3jIGvKvy4eOA/i0y+YOsmEyRNv9IP97Xjtg+rRUWhaFY2DllGrRHq1FoF/rPI5IpoT4RzXLWtUSgUDQ2vgAyjUbDCG9GIxupCw8yrqTtAoVA0NKSATMUjNbfeUviLpYAMT9bf9OFHhULR3Gxc0Y0rN6/CqhpG2SiCIRWPYDYTrqemjJpCoWhoIhENf3vlWfU+DYWEenhqKvyoUCgUikCgqQnpEAuwAzNq77zzDj772c9i3bp1aGtrwwknnIDbbrsN2Ww2qEMqFAqFYhHBPLUQW2UFFn7cuXMnisUivvGNb+DEE0/Ejh07cO2112Jubg533HFHUIdVKBQKxSIhVQdPLTCjdtlll+Gyyy5jX69fvx67du3CXXfdpYyaQqFQtADW+Jkm8NRkTE1Noa/PuTt6JpNBJpNhX09PT4dxWgqFQqEIAGv8TBPk1ET27NmDO++8E3/8x3/s+Dtbt25FT08P+zc8PBzW6SkUCoXCZ+rhqVVs1G6++WZomub6b+fOnba/GRkZwWWXXYYrr7wS1157reNr33LLLZiammL/Dhw4UPk7UigUCsWioB6eWsXhxy9+8Yu4+uqrXX9n/fr17P8PHTqE97///bjooovwzW9+0/Xvkskkkkk1nkOhUCiagYbIqS1btgzLli3z9LsjIyN4//vfj82bN+Oee+5BJKLK4hQKhaJVIE8tzEGhgQlFRkZGcOmll2LNmjW44447cOzYMfazwcHBoA6rUCgUikVCQ3hqXnnooYewZ88e7NmzB6tWrbL9TNf1oA6rUCgUikVCU6kfr776aui6Lv2nUCgUiuanIdSPCoVCoVB4oak8NYVCoVC0NuSppVWXfoVCoVA0OklSP6rJ1wqFQqFodJSnplAoFIqmIaU8NYVCoVA0C5ZQRHlqCoVCoWhwLEm/8tQUCoVC0eAoT02hUCgUTYMqvlYoFApF01CPhsbKqCkUCoUiEJSnplAoFIqmgTy1bKGIQjGcvr/KqCkUCoUiEMhTA4BsSN6aMmoKhUKhCATeqIXV1FgZNYVCoVAEQiwaQSyiAQgvr6aMmkKhUCgCI+zxM4FNvlYoFAqF4uTBLixkC9C0cI6njJpCoVAoAuNfrrso1OOp8KNCoVAomgZl1BQKhULRNCijplAoFIqmQRk1hUKhUDQNyqgpFAqFomlQRk2hUCgUTYMyagqFQqFoGhZ1nZquG12dp6en63wmCoVCoagnZAfILjixqI3azMwMAGB4eLjOZ6JQKBSKxcDMzAx6enocf67p5cxeHSkWizh06BC6urqg1dBjZXp6GsPDwzhw4AC6u7t9PMPGR10bZ9S1cUZdG3fU9XGm2muj6zpmZmYwNDSESMQ5c7aoPbVIJIJVq1b59nrd3d3qBnNAXRtn1LVxRl0bd9T1caaaa+PmoRFKKKJQKBSKpkEZNYVCoVA0DS1h1JLJJG677TYkk8l6n8qiQ10bZ9S1cUZdG3fU9XEm6GuzqIUiCoVCoVBUQkt4agqFQqFoDZRRUygUCkXToIyaQqFQKJoGZdQUCoVC0TQoo6ZQKBSKpqHpjdrXvvY1rF27FqlUCueffz6ee+65ep9S6GzduhXvec970NXVheXLl+OjH/0odu3aZfuddDqN66+/HkuXLkVnZyc+8YlP4MiRI3U64/rx5S9/GZqm4cYbb2Tfa/VrMzIygk9/+tNYunQp2tracMYZZ+CFF15gP9d1HbfeeitWrFiBtrY2bNmyBbt3767jGYdDoVDAX/7lX2LdunVoa2vDCSecgL/+67+2NdxtlWvzxBNP4MMf/jCGhoagaRoeeOAB28+9XIfx8XFcddVV6O7uRm9vLz772c9idna28pPRm5j77rtPTyQS+re+9S399ddf16+99lq9t7dXP3LkSL1PLVQ++MEP6vfcc4++Y8cOffv27fpv/MZv6KtXr9ZnZ2fZ73zuc5/Th4eH9Ycfflh/4YUX9AsuuEC/6KKL6njW4fPcc8/pa9eu1c8880z9C1/4Avt+K1+b8fFxfc2aNfrVV1+tb9u2Td+7d6/+i1/8Qt+zZw/7nS9/+ct6T0+P/sADD+ivvPKK/pGPfERft26dvrCwUMczD57bb79dX7p0qf7ggw/q+/bt03/wgx/onZ2d+t/93d+x32mVa/PTn/5U/9KXvqT/8Ic/1AHo999/v+3nXq7DZZddpp911ln6s88+q//yl7/UTzzxRP1Tn/pUxefS1EbtvPPO06+//nr2daFQ0IeGhvStW7fW8azqz9GjR3UA+uOPP67ruq5PTk7q8Xhc/8EPfsB+580339QB6M8880y9TjNUZmZm9A0bNugPPfSQfskllzCj1urX5s///M/19773vY4/LxaL+uDgoP63f/u37HuTk5N6MpnU/+mf/imMU6wbH/rQh/Q/+IM/sH3v4x//uH7VVVfput6610Y0al6uwxtvvKED0J9//nn2Oz/72c90TdP0kZGRio7ftOHHbDaLF198EVu2bGHfi0Qi2LJlC5555pk6nln9mZqaAgD09fUBAF588UXkcjnbtTrllFOwevXqlrlW119/PT70oQ/ZrgGgrs2Pf/xjnHvuubjyyiuxfPlybNq0CXfffTf7+b59+zA6Omq7Pj09PTj//POb/vpcdNFFePjhh/HWW28BAF555RU8+eSTuPzyywG09rXh8XIdnnnmGfT29uLcc89lv7NlyxZEIhFs27atouMt6i79tTA2NoZCoYCBgQHb9wcGBrBz5846nVX9KRaLuPHGG3HxxRfj9NNPBwCMjo4ikUigt7fX9rsDAwMYHR2tw1mGy3333YeXXnoJzz//fMnPWv3a7N27F3fddRduuukm/Of//J/x/PPP4z/8h/+ARCKBz3zmM+wayJ6zZr8+N998M6anp3HKKacgGo2iUCjg9ttvx1VXXQUALX1teLxch9HRUSxfvtz281gshr6+voqvVdMaNYWc66+/Hjt27MCTTz5Z71NZFBw4cABf+MIX8NBDDyGVStX7dBYdxWIR5557Lv7mb/4GALBp0ybs2LEDX//61/GZz3ymzmdXX/75n/8Z3/3ud/G9730Pp512GrZv344bb7wRQ0NDLX9t6knThh/7+/sRjUZLVGpHjhzB4OBgnc6qvtxwww148MEH8eijj9rm1A0ODiKbzWJyctL2+61wrV588UUcPXoU55xzDmKxGGKxGB5//HF89atfRSwWw8DAQMteGwBYsWIFNm7caPveqaeeiv379wMAuwat+Jz92Z/9GW6++Wb8zu/8Ds444wz83u/9Hv70T/8UW7duBdDa14bHy3UYHBzE0aNHbT/P5/MYHx+v+Fo1rVFLJBLYvHkzHn74Yfa9YrGIhx9+GBdeeGEdzyx8dF3HDTfcgPvvvx+PPPII1q1bZ/v55s2bEY/Hbddq165d2L9/f9Nfqw984AN47bXXsH37dvbv3HPPxVVXXcX+v1WvDQBcfPHFJeUfb731FtasWQMAWLduHQYHB23XZ3p6Gtu2bWv66zM/P18ygTkajaJYLAJo7WvD4+U6XHjhhZicnMSLL77IfueRRx5BsVjE+eefX9kBa5K5LHLuu+8+PZlM6vfee6/+xhtv6H/0R3+k9/b26qOjo/U+tVC57rrr9J6eHv2xxx7TDx8+zP7Nz8+z3/nc5z6nr169Wn/kkUf0F154Qb/wwgv1Cy+8sI5nXT949aOut/a1ee655/RYLKbffvvt+u7du/Xvfve7ent7u/6d73yH/c6Xv/xlvbe3V//Rj36kv/rqq/oVV1zRlLJ1kc985jP6ypUrmaT/hz/8od7f36//p//0n9jvtMq1mZmZ0V9++WX95Zdf1gHoX/nKV/SXX35Zf/fdd3Vd93YdLrvsMn3Tpk36tm3b9CeffFLfsGGDkvTLuPPOO/XVq1friURCP++88/Rnn3223qcUOgCk/+655x72OwsLC/qf/Mmf6EuWLNHb29v1j33sY/rhw4frd9J1RDRqrX5tfvKTn+inn366nkwm9VNOOUX/5je/aft5sVjU//Iv/1IfGBjQk8mk/oEPfEDftWtXnc42PKanp/UvfOEL+urVq/VUKqWvX79e/9KXvqRnMhn2O61ybR599FHpGvOZz3xG13Vv1+H48eP6pz71Kb2zs1Pv7u7Wr7nmGn1mZqbic1Hz1BQKhULRNDRtTk2hUCgUrYcyagqFQqFoGpRRUygUCkXToIyaQqFQKJoGZdQUCoVC0TQoo6ZQKBSKpkEZNYVCoVA0DcqoKRQKhaJpUEZNoVAoFE2DMmoKhUKhaBqUUVMoFApF0/D/A93gHTgOwnVbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ϵ_values = np.random.randn(100)\n", + "plt.plot(ϵ_values)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4ed227fb", + "metadata": {}, + "source": [ + "## Alternative Implementations\n", + "\n", + "Let’s try writing some alternative versions of [our first program](#ourfirstprog), which plotted IID draws from the standard normal distribution.\n", + "\n", + "The programs below are less efficient than the original one, and hence\n", + "somewhat artificial.\n", + "\n", + "But they do help us illustrate some important Python syntax and semantics in a familiar setting." + ] + }, + { + "cell_type": "markdown", + "id": "a864e098", + "metadata": {}, + "source": [ + "### A Version with a For Loop\n", + "\n", + "Here’s a version that illustrates `for` loops and Python lists.\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1676245d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwvUlEQVR4nO29eZQdV3Uu/tWde57U3Zpas215Rh4wsh2wsQN2eBAScALxA5sQ58GzE4x5BDs8TFhZjvglfmQl/Hg48ALm/WKwIRgIDgEceQCDbMmyZVvYkjVLltSD1Oq571jn90fVPnXq1HDrztP51uoldfcdqutWnX2+b397b40xxqCgoKCgoNAECNX6ABQUFBQUFMoFFdQUFBQUFJoGKqgpKCgoKDQNVFBTUFBQUGgaqKCmoKCgoNA0UEFNQUFBQaFpoIKagoKCgkLTIFLrA/CDrus4ceIEurq6oGlarQ9HQUFBQaFGYIxhdnYWy5cvRyjkzcfqOqidOHECIyMjtT4MBQUFBYU6wbFjx7By5UrP39d1UOvq6gJg/BHd3d01PhoFBQUFhVphZmYGIyMjPC54oa6DGkmO3d3dKqgpKCgoKORNRSmjiIKCgoJC00AFNQUFBQWFpoEKagoKCgoKTQMV1BQUFBQUmgYqqCkoKCgoNA1UUFNQUFBQaBqooKag0CA4fGoeyUyu1oehoFDXUEFNQaEBsHd0Ftfc/xQ++ciuWh+KgkJdQwU1BYUGwKFT87Z/FRQU3KGCmoJCAyCVNWRHJT8qKPhDBTUFhQYABbNkRq/xkSgo1DdUUFNQaACkskYwW1RMTUHBFyqoKSg0ACympoKagoIfVFBTUGgAkOyYyurQdVbjo1FQqF+ooKag0AAgo4jxf5VXU1DwggpqCgplxkI6i2cPnkaujIxKNIgoCVKhEmCM4ccvncDhBi8bqWhQ27JlCy6//HJ0dXVhaGgI733ve7F3795KvqVCCWCM4djkAhhT8lYp+NLPX8cHvvYsHnv5RNleU2RqyawKagrlx/NHzuDPvvMi7nn0lVofSkmoaFB7+umncfvtt+PZZ5/F448/jkwmg3e84x2Yn2/snUCz4scvn8Rv/e2TeODpg7U+lIbGG2cWbf+WA3ampuRHhfLj0ISxLk/MpWp8JKUhUskX/+lPf2r7/sEHH8TQ0BB27tyJt771rZV8a4UicGB8zvh3Yq7GR9LYICaVKqNMKEqOi2nF1BTKj/HZJIDGl7ermlObnp4GAPT397v+PpVKYWZmxvalUD2kcwYDyOQUEygFtCiUs6ZMNIco+bEyOD61iLf+7ZP4P79sTaVifNZgaI2uBFQtqOm6jjvvvBNXXXUVLrjgAtfHbNmyBT09PfxrZGSkWoenACBjLpxp5a4rCbQolHNxEHfPjb6Trtfj33FoEkcnF/DYyydrfSg1wfiMEdTKqTDUAlULarfffjt2796Nhx9+2PMx99xzD6anp/nXsWPHqnV4CrAYmmJqpaEiTK1J3I9Pvz6BC//qZ3jouSO1PhQHFkxZdzaZqfGR1AZjJD82uBJQlaB2xx134LHHHsOTTz6JlStXej4uHo+ju7vb9qVQPZD8qOqgSgOdv3IGH5v7sYHloV1Hp5DJMbxwZKrWh+LAQjoLAJhJZmt8JLUBMbVMjpW1HKXaqGhQY4zhjjvuwA9+8AM88cQTWLt2bSXfTqFEpLPM/LdxF816QCVaWjVLnRqpAOk6VAPovLYiU2OMYWLWcj028jVWUffj7bffjm9/+9v40Y9+hK6uLoyOjgIAenp60NbWVsm3VigCSn4sDyrRUT/ZJEyNX2N1uHEi+TGZ0ZHO6ohFWqc3xfRixrbRSGZy6IhXNDxUDBX91L761a9ienoa11xzDZYtW8a/HnnkkUq+rUKRIIZWj7voRoJlFKlMTq2RO/Wn6vgaWxBKJVqNrY3P2mvTknW46QiKioZi1ZmiscCloQa+oGsNxhgPOuUMPnam1rhBrZ6vMbH+byaZxUBnvIZHU12MzSRt3zfyNdY6/FohL6w6NbUZKRa2erIKFV83suU6XcdlIwvCeZ1ZbB6mtvv4NH61/5TvY8gkQlBBTaEpUM8LTqMgVYF2VowxW7BsZPmxno0ii2nL9TjbRA7Ijzy4Ax/+xnac9ml/5ZAfGzhvq4KaAkdGWfpLRiVkwnROh6jkN/KCk65n+VFkak2SU0tlc5iYTSGnM4xKEqMIapHFn9fAGycV1BQ4VJus0mHr0VimhUHeZJRTGnpm3yn86843yvZ6+cDLRurwGmtGo8i0IKNOL3j/TQ75sYELsBvTs6lQEWRUnVrJkOvJGGPQNK3E17QvMOV0pt35yC6cmkvhqg0DWNZT+TKbhjGKLDaH/CjmBqd88oQyU2tkNUAxNQUOVadWOsQApLPyMJKUtMCUs0v/9GIaADDls4svJyiY1eM1tpBuPvlRZGpnFtKej6OcWls0DEAZRRSaBCRzZXUGvYHb5NQSDlZVhh1vSpKC5O+LRU5n3OlarUWsnpmaXX5sDqYmBjWvjQtjjMuPq/rbASimptAkEHfP9ZjzaATI0mA5goW8wJTNgFIDR2U9G0WSTWjpt+XUPP6m2VSWf/4j/YYErZiaQk0xk8zgD/5pG77168MlvU5aBbWS4WRq5Qhq9tconwFFrH2rzudNwSxVZ9cXY4w3NAaap6mxaA6Z8pAfiaV1xSPobY8BKK9R5IGnD+ArT+73LSkoJ5RRpAmw88gZbD80iYnZFG65ck3RryP246vHnXQjoBIByOl+LM9nU6lCcT+IDttymGjKhVRWh6i4N09OzQrOXvIjmUQGu+NIRA2eU0758StP7sdsMosbLlhalS4tiqk1AWiXPe5ThxIEYicRFdSKQyVyapVgf0Bt+kmSxM2YkbutF8jmm6bMqXnIj9Sdf7grgUTEMIqUs06Nrtf2WLhsr+kHFdSaACQjzadzmEsVdzMyxmySYz260xoBlch/0Wt2JyKu71EsajGjLV2nasCC9Dk1ZU7Ni6mZ8uNQdxyJMrsfMzmdb5bJWVlpqKDWBBBlpGLZmtzvsZ4WnEZCZeRH4zV4vqMCRd3VY2r1qQbITK155EeRqbnn1KiZ8VBX+eVH8bpqU0xNISjExWlsprhkrGwMUa2yioO8GJRDxqHX7GmLmt+X3yhSNUt/tj7VAApq0bCR45tLZZuirGXGVqeWcZ2cQjVqQ10Ji6mVyShC5zWkAbFwdcKNCmpNAHHhlDsDBIU8tLGeFpxGgrwYlJepGUEtq7OyfD6pGkzTFl2P9bRxIufjUFcCgJHzm0s3fl5NZGrprO7KwGjNGOqOI15m+ZGCWnssUjVTkApqTQC7/FgcU5MXyXqShhoJlTGKGK9B8qPb+xSDarsfGWN1WwtJObXe9iifeN0MZhG5Ns1NgrQxtUh55UcqaE9UKZ8GqKDWFLAFtSKZmrxrVjPVioO8GJSjpRUFHDKKuL1PMRDlx2rk1LI6s00bqKeNk8Uowvw8N4NZxBHUXMwilTSKLFbZ+QiooNYUEBenYnNqDqaWa9yOArWEnEMrR26CNhyJaFhI5JebqVU+wMjXWD1J3BTU2mIRdCcMmbfRg1oqm+NBZYlZHyYHtYV0ljumDaMI5dTKZBSh86qYmkIhEHMj8lj2oFDux/KAghilD5JlZGqJaIgvOuXo/1jtnJp8TdXTNUbyY1s0hC6TqTW6/EgsTdOs9lfTkvxILK0tGkZnPMI3TeWqU6OgWi3nI6CCWlNA3HFPzBbpfpQXnDqTHxlj2HnkjO9MqHoA7Uy5U7EMCzcFsHgkzItjF9PllR+rEtTqOG9LU6/bYxF0m59do9v6iWl2xSPoN/OxMlPj+bTuODRNK7v8SAYcxdQUCoJdfiyOqdXzggMA2w6exvu++mt8+l9fqvWh+IJkvD5zESlHTo0YlcHUTPmxjLImUC350b5Rqqf+jwtpi1E0G1PraY+ix3TOyl1FKAc/bLo+adNUruuh2t1EABXUmgLi4lRsV5F6loYA4PiZRQDAL/ZNlG30SiWQlOz3ZekokrUcZOXcSVe7+Fq+puQyklqCG0Wi4abJqfGg1hblmyyZqVEOfrDbyLmVc9MECO5HFdQUCoHcYb2YriL1nMQHLBkvmdGx6+hUbQ/GB9x+b0pY5QgW9JrxiJVTKw8DrK786DQj1c81Jrr0SH6cLbLlXLEYm0ni2vufwgNPHyjL64lBja5HuVM/r1HroqBWIfejkh8VCoHMXIpxQNZ7nZq4AP/qwOkaHok/UrzeiVpalS/3ZXM/liVXV1umVk/XmMgouuK1sfTvPHIGh07N48cvnSjL61H+uactypUDmalNzFg1agAQF9pkuXUfKRSLgqxbLaig1gSQa8yKqVVzGkXqZ8EB7DvHbQdO1fBI/JHM2OXHckilFlML84R7ueXHasxTq+e8rU1+rJFRhI6hXLk8GjvT0xZFD8mPsvuRF17bmRpQno4vKqgpFAW6+DrNHWYxXUXqecEB7IznxaNTmK+yNBQUxKB628poFCH3o2jpL2P7LaA2lv56krgXBPdjrYwixJbLFUxJfuy2yY9yTs1qkQVYRhGgPNeEVSqhgppCAaAFbqS/HUBxDkhHnVodLTiA/QbL6gw7Dk/W8Gi8QcfZ10GW/vIxtUTEMoqUpadkleepyUGsvno/WoyiVkYRunZmk9mySH+2nJqpHIgdRhhjOHZmAQCwss9YO6JhDSGqsSxHizehU0u1oIJaE4B2wKvMAsvxImrV6tmZBjgX3V/XYV6NMcYXJqpTK2ebLJulvyy5OnvxtbyQLqSzOHxqvuT3IdSzxC1az2vF1OgYcjrjQbYU2I0iTvfjxGwKyYyOkAas6DXWjnLXqi2ojiIKxYAWp5G+Upha/S44gLWIb1zaBQD4dR3m1TI5BppW0ldWo4iVUyuvpd96DZ05P/PbH3oB19z/FA5OzJX8XkB9m5HExbdmOTXhMy1HQCWm2dsW43Vqi5kcv3aOTBosbXlvG2/iDFgBqBwqg9VRJJLnkeVDRYPaL37xC7z73e/G8uXLoWkafvjDH1by7VoWtDitGjCCWjFdRerZmQZYN9jbNw4BAH5zYsZhT641xEWpr4wDPd3aZJWbqbm95n4zmO0bL09Qk7vU1FdOTZAfKagtVjmnJnSJKUdAFZlaVzzCZUUKdkdOG0FtlZm2IJTzGmu63o/z8/O4+OKL8ZWvfKWSb9PyoNxIKTk1h1GkjhYcwJ43PGuoE4wBzx6sLwmSjlHTgO42Y2daFkZF7seo0CarzDk1wHmsCynje7nTe7Go542TVadmGUXSOb1qc+bEYwCA2TIHtVBI42UmZ0wJ8qjJ1FYP2INavIim2dMLGdfrpBZd+ivKCW+88UbceOONlXwLBTjlR+oqQm7IIKhnaQgQzBLREK5cP4B943P41f7TuOGCZTU+MguioaNNMHQwxooekKjrjG8wEpEQ2mLlazgrlxvIixh1pimXYaKerzHL/RhGZywCTTMGhc4kM1WbBSae/3KwRDGoAUZDgMn5NFc4jp428qWr+jtsz7NaZQW7xjI5Hb/9908jHNLwzGfejnDIutYXucrQJEytUKRSKczMzNi+FPwhLnr9HTHB1l8YW0vzvE3I9n29gGvz0TA2r18CoP7yalY7qxCfIKyz0mbTiRKhrU1WmXs/Ana5KZvT+e8rxtTqRA3Qdcb/9rZYGKGQxu+jappFbEGtRKYmjp2hoCb3fzziwdQKNSOdnktjfDaFk9NJB8NcbHX345YtW9DT08O/RkZGan1IdQ9xYYhHQrzepNCuIrSL7jBv5lLyHcenFvHQc0fK2qORbvh4NIzN6wagacCBiXmMThfXwLkSSAq7UloYgNKkQnGhi0dCQpf+8gc18Tjnhdd3GyxZDJxMzT/Y7x2dxcPbj0LXKzsxQtwgEMOuha1/0RbUSgum4tgZklOpVo06jRzNk1MLev9Ozlu5bXkT0PKjZ+655x5MT0/zr2PHjtX6kOoeYl4kHgnxzgCFdhUhNkE71FJ20X/30z347A924z9eGS36NWTwgBEJo6c9inOGDRfk7uPTZXuPUmFJpGHEwiGemC9FKqTAEwlpiIRDtjZGpcIx0FQMakJxe7mYmhxE811jf/mDV3D3o6/g+SNnyvL+XhDt8xTUamHrFzcqpQZTcexMyLwQe4WuInOpLE6bwWiVg6kVJj+Khi25mXotRs9Uz2cZAPF4HPF4vNaH0VCg3VTYXPSGu40eboV2FaEFh5haKfIj3SyUiBaRzOSw+/g0LlnVx2+2IBBzaoDlLpxP109nEc4mIyFe77OQzpWFqdFCU067NX3msXAI6ZxuO86FdPmDGjE1ylel8/wNVCN3psIuVwomiWiIX5O1sPUnbUaR8jA1khwBS4acWshwltbXHuWslFCo/HhGYPJiUJNl3WqhrpiaQuFISbkwCmqFOiBpwemMGxdfKUNCaZE4NecMrP/8zCG8/4Ft+MKPf1PQa4pNfQFLo6+mOy0fPANQCaxK/nwrYemnhU9kbnMpQX4sc1DriOXfOCUzOb45qnTnkQWe97H2+Jb8WEWmVsacmmwSAax+pFOLGRydNE0iAx2O5xZqFBE3HWJOTdx4NU1ObW5uDrt27cKuXbsAAIcOHcKuXbtw9OjRSr5tS8Gaimx8lJb8WBhTS5eRqdHN6VYv99pJw/zzrW1HsK2AriByvQvNZypH54Vygfo+8mMsQ6G0HCgrUXzd4zImZ0HYcZcrr2RdY8bf4GegEZWGcjg9/SCakAjdXH6sJlMT6tRKPOeuQU3IqVGN2mopnwaAm5yCbpymFtxzaqKcKvaUrDQqGtSef/55bNq0CZs2bQIA3HXXXdi0aRPuvffeSr5tS0Hs4A4AQyUyNSuolb4QuwU1Mdh+5vsv22Qu39fMWvkqwJrPVI2ehUEhFkmL/5ZDfqRcWrm69Od0xoMKLXbiIjZXgZyaI2/rs3E6Ob3I/195pmbZ+Qm1kB/L2VFEHDtDEHNq5HyUTSJA4YNCveTHBRdZtxqoaE7tmmuuKUtjTgVvcHnKvBCHi2RqXH6Mkfux+M+NFkc3+ZECXSwcwtHJBfztT/fir95zft5jy5kOOLrhSKMvhwuwXKgEqxJbZBmvWXhhrBvEgNLDg5qYU7P+P72YKanWjiBPk0j5GEVGhU1ZpctL3Maj1MIokhSNIiXLj9bYGQLJj2fmMwhpZlAbcAtqBcqPgvtxTjhfSRcGXA2onFqDwyE/cqNIYUytnEYRX6ZmHtf//C/nAgC+te0wth/y77gv3lw8X1XjoLb1tTF84uEX7TkEz5ya9zEajMk/t2S8pj2nVipDFe3abvKjuOPO6czhaisGTjXAj6lZ12+1cmp2+bG2lv5yGUW6XZja9KK//Gjl1IIaRdzdj265ympABbUGh7yTp5wadRUJCtkoUkqdGt2c8+mcTV6cS2V5/dP7LlmJP7xsBIwBd3//Zd9apKRUtgBYC9BCiYv77uPTeL6IMTZffeoAfrTrBJ5+fcJxnHIA8lscPvi1Z3HN3z3lGZyTklGkXJOJxVIBCjLiccrz6gqRIPeNzeKeR1/G8alF28/lvK3fNTZqC2oVzqm5FAgTUyu1XiwoMjkdWeEeqGRO7fR8in82q92MItHCutaI8qMtpyZtyKoFFdQaHLwvoLnodcQjfBx9IXk1khtLZWqMMduO89SstYsjltYRC6MjHsFnTbZ28NQ8Jn1s27JVHrAWoFKYWjan4+b/8xw++PVnbTmcICBHoFh4ah2nXX70YlXZnI7thydxfGoRe0bdu+ekPNgfUBqDEa8bN0lzXjqvhQS1b/76ML6z/Rh+8MIbtp9bG6f815gY1CouP2acjIIYTrWMIjKbL0R+zOkMv/+/f4UPfG0b3xz6uR+TGUPOjwl1rSIK7VqTzyiimJpCQRCnIhMGza4ihdSqybtov3yH7+vkdIgEYmLOWpz46HhTIu1ORHkw9pPouDYv7KR5b8USgtqJqSSmFzPI5Bie3juR/wkCaCd9Zl6UH+1mlnz5L3EB2O/RCZ8bZKRACTgbEhcC67oJu8qkDqZWQFeRyTljkZuVXkN2P/rKjzM1kB9jbvJjdZiavPFJZvTAwXxsJokXjk7h2YOT2H3CaEYw4xLUuhJRiGnRVf3trgaO0urUrP+7uUqrARXUGhyy/AigqK4i8i46kytO3kqm7TfChMjUzKA2KOwOgzAusVEwgeYzlSI/Hpm0BmCKMmIQ0E5azCeIvR+Nf/2ZmrgbPzDhPoyTmBptWqLhEG8YW0peTax/i7tsEGRXaiFMbWrROCdJ6TNNyzk1X/lRdD9WWn50dr3oqrKln+6buDDXLOh7i5/N1tfGbT8Tg1o4pNkKrd3yaUBhRpFsTrddx245tWoWXgMqqDU85OJcAOiMGxduITVcMlNjDDaNPyhkyWJCcECS/ChKHm0BjA9ysACE4usSmNrh01bHk2f2nQqcR0xlczzQigtKocXX4nMPeAziTGVdAnpZXJWWpGt1KREt/cXLj9QrUv5M6fySPO41XT2T023u3VIYaRAsuOTULEt/dZlaZzyCDvM4gppFxM/miT3eQQ2wJEjA3fkIWBtk+fp6ZMdRRxNxwxlrfT/nklOrZuE1oIJawyMl5JsIxdi+rV20dQEWk8uQGdcpYXEiNyR1PQGsImp/pmYPFoBoFCl+0TlyymJHs6ksdh2bCvQ8UZISmVqKM0p7nZrX5yC+jldQk92PttctgcGkhPpGt515KUYRkr7kYB5U4p6YTdkWykp3819wkbeJqc2lsrycpJIQR7QUWiMnNpx+5fg0xmaS3kFN+N6tRs04Bqf8eOjUPD7z/Vdw58O7bI89I8nSouTsxoCrARXUGhxu8qPVZTv4YiDLj+LPCoG8O7cxNcqpFcrUhCGZ/HllMIoQU4uGDTkvaF5NXGzEm1rO/eVjVGKgOHp6wfV8i9MJCPEydOoX6xtdjSLm4kRScSGtsuixTqbmNCO5SdwnpckLlWZqSR/3I2BnHxU7BuHaKbRGTnZK/uw3o46xM4Qe09YPOEfOENyMIidNt+T4bMp2ncjT521MLV39vo+ACmoND7n4GkAg84UM2kW3RcO8u3wxTE1+T7FWjXJ8NB6H3i/fsVoJZ+tvLIdRhPrfvetCY9Bo0LyauIiIN7U8ENEtVyVCDGpZnfHaIRGW/OjGxMtgFBHlR5v70Viclve2OY7VD+mszuU8+TOl68m+cXIGNXmcUKVzalbuxzqueCTM76NqdBURTRWF1sjJn82jLxzn/+9K+DE1p50fEDbFwvUlupPFz4c2df0dRrC05dQyiqkpFAG5+BooruktLS7RcAgx87WKcZ3Ju/NTtpwaMTVLfuSMK4D7UZQf2wM8zw+6EEQ+tHk1AEO6ceuCIkPMs0y5MDViUm65Kvvr2BcjNwnSjanROStJfsw65Ud770fj/yt6jc8qaFBzyzES5OJr8WciqLyCb66qJT9Ki281W2URW0xEQwW/L53zy9f0AQCX0bsSEdsUasDoyg8YkxJW9rW5vp4bcxdLV07agprx8xFTylxI55A1Py83BlwNqKDW4EhlnPJjnAelwnNqsUgI0bDx/GLkR7oRyDpsZ2pO+ZEvqGnv9+K1Wi4Sa7ENjcdmk0hldURCGi5e2Yvzl3cDAH65Lz9bE3fQM8kMz7l4F1/nZ2qAe1BzMwLReShpTputTs25CaId9/Iek6kFtPRPLzqZK39PztT887bEBFaYi26l5cdFl96PgNXUuBq2fpHlFyo/ktt087oBLBXy1aIphEDy49LuhG2TKMKtS//pOetzFetfqUXWiBAg580NEe/9qIKaQiFwXfQKZGqMMb64RMMh/lrF7JDpPenmOjWXAmMMyUyOL+IiUwvCuORgIT4vldWLmox8+JTB0lb2tSESDuFtZw8CAJ4KkFcTd9CMWcEpKY3HaYvlM4oYz6PzfWDcaet3Y6nlaJWVFOobeeNlYYNAObVC5UfxcbLsSpukRDTMGYTbNUY1aqtNeawWdWqAlY8SWUqlUJr8aPZ5bI/h7ecO8Z/L+TTAkh+9TCKAmFOzzrtoiDrpIj8OdsX5dTybsudU25X8qFAI3IqveZubgExNtO7HwiHEiKllCw8WtJCN9Bk3TTKjYy6VtRoZR0LobrPkJys35r0rdXU/CgtQMYs75dOoTRAFtV+8PpHX7Sbv3OmGT8nF13nmUlEAuGhlDwBgv6v8aH9N4//OnNrxqUVH0t4PIsNv4xsE4zh1nXFJbnmB8qNdjrUHIwpqsXCIm3P8mBoZGarWUURafNcsMa4NL2dqOSEO0yy0RZfodLxuo39Qe+vZg1g/2IH3X7rS8/Xo+hL7kp6eF3NqVg0hXXN97TGbYxRwbxRdDaig1uBwcz/GuTwVbDEQF41YJIQoZ2qFBwtiAH0dUV5vMzGbskmPYrf3IKxDNmAAdimymKBGzsc15sJ5yeo+dMYjOLOQwe7j077PlXMdtJA7mg/nYaG0aF2yysiFHByfc7gB/XOmxu/GZ5O47n89hfd99dc8n5EP4uvKDWwXMzluqS+UqbnlGAl0ncUi1sbJjalRUFszQEyt0sXXlPuxt3M6e7gLALDPo9tLOSF2tC82p9bTFsWV65fwa8UtqG0Y6sTWT12Dmy4b8Xw98T6j45qc88+p9bVHuQGIHJCcfao2WQqFQO79CBRepybmzqJhjS84RRlFhI7nZAc/NZfGxKyz8BoQrfl+neqdbCUU0lxls6A4cto++TcaDuGqDQMA8kuQsixEu9WklPvL1+2cFqMLV/YgpBk1PvJkA3emZg+Wvzk+g2RGx4GJefxk96jvsRNE2Vp+PXI+ahqwtMdgajPJTCCZ1yY/elj6DTOSe6usnM54zoaYWvXkR/tyeNZQJwCjQXO5sJjO4Zu/OuRo9ryYtjZuhbboouuxtz2KtlgYV21YAsA9qAWBuJbQ9SfKj7acmrmJ6euIoZNygSZTc5t+UA2ooNbgcJcfC6tTo92yphmtdMj9WMxMNVEqXNJpBDA7U0vYHl9sRxHA2lkXYxahnNoaoVbn8jX9AIC9Y+7NhQkya6EbWx5kmi/ozpqvM9gZ5zkOWYIUmzkTZPnxkFBE/rVfHAjU3swqBbF6P5LcRIn+jlgEvW2GsYCxYMaFKcn9SMfCGLOZkXjeVrpGT8+lkNUZQhqwsq86QW3RxdIPAGcNGUzt4MR8YAacD99/4Q184cev4u8ff91+DK5GkaDs2Ag4FMQ+evVaDHbF8dvnDRd1jJqmOcqCTnu4H0X5kZgaXSf0XOV+VCgI7vJjYUyNy0Jhows+uR+Lq1OzFnZiahOzScvO3y0xtQB1am45NfG5hcqPjDEcNSf/iqM3aFGYT/m/HsmGpKJOLaRtg0zpuORclQxx5tX6QYMVyD0g01knU6PXJ/cjsU4A2H18BtsOnvY9fvG5Ru9HaxlYzOS4SaQ9FkZMqGMLIkFOCzt6nVkbJnGDFBVzalKwGOWt1BJ8MaxkTi2b0/kxyDm1lX1tSERDSOd0fr2UCmJ98hDfRVf5Mf8mgjHGH0fX71UblmDHZ6/H2zcWF9QAcWNsbEzEQaATcymu7kzOWyyRauJIflxIu9+3lYYKag0ON/cj1TQFrWOiBYdkx5jHLjoIFl2Y2qm5tFV4LcmPQdpkye2nCBQ05Oa7+XB6Po25VBaaBoz0W1Zkqp/K93ok95DdfWohYwvKFCQSPp0/GGO2XMh6U+o6MO7O1BIuTJx+R/nBJZ0Gq/raLw76Hj8gNTSOhHiATgpBjXbeZA2fWsxvRJEDHzXqFYNXPGLVQsr9H4kFLO1J8PNYyZyauCGSDQ2hkIYN5ufy+lh58mr0WckszOooEiqIqYltvIqVG90g9i2dSWa5mSwc0sCYEZQZY3ajCOXUZPejYmqNj9lkBi8F7CNYKqwdt0udWkCjSEaQhQAruJVSp9ZmY2olyo8uvfkAoalxgUyNmM3ynjbbeevgN2U+pmbctCQZnllI8+PXNGGQKS+SdraDWszk+ELR0xbF+kF3p13ShYnLOTD6ez79znOgaUZOcO+ofx5IZPiapln5v7TOc2rtZj0ZLZZBmJrcTos2VmLwshX4y0zNDGrLehL8b87kWFFlG0FAG46QZt8YEs42Jcj94+XJq9FnJUu5NqNIAZZ++kxiQm60HBDz8lTS0BELY5mZYx2dXsRcygp2fe1WTo0bRVROrXnwP773En73K7/CjiImKheKNM+NuOzkA+5wxRo1oDxMrS0WEowiKS4/DkryY5DRM27uR/H7QnNqlE+Te991BGR+lMCnoDa1kLEZdsjdSYHCyFXZF2VajMIhDe2xMJcfD0ryY8qFqVnyso5MTscbZwzTwdvOHsIN5y8FAHz9l/5sTc7Fil1KxJwaYHXWCBTUpCJt+lyJqYUob+shcRNTG+5O8OtQfL4bGGP4h//ch4e3H817fDIWBOej6MolbBg2zSJlcEBmhc9KZmE2o0ibZbjIF8zpfPeWkaXRcQDGNTY5b9y7/Z0xIail+HsnoiG0xcJWTi2VtQ0LVkytwTGTzPDxD3tO+hsOygH/jhOFGUWiEeOm5u7HEpiazSgyl3LtJgIUxtREtgIUP/2adsvyKHtianKHehmcqQ1YTM21SFpw08kbDAqMPW1RaJrGg9rxqUVbUJXNJ4AQgDI5nJhaRFZnSESNKcZ/+tZ1AIAf7TruO/lcds0mhDysLD8WwtRkdkGfq2jnB+CZt6UaKIOpWefP71r+zYkZ/P1/vo6/fuzVvMcnI1/eh5haOeTHE1NJzmxkpmbr0m8yNcYsJ6oX3IaBlgNxQeKmvFl/ewxLTcn95PSiYOc3ZG+RqaWFHLPqKNLg+MXrE3xXfroKnQiseiNBfizQ0i8aRQDwOjWveVd+cDOKjE4ncXreXX4MUqfm1lEEKN4ocmTS6XwELGbiZxRJZnL8fK3mQS3jOsjUMN6Yz5MCLzeJmAtBX0eMN4UltpYVFga3TctiJsedj6v7OxAKadi0qg+Xr+lDJsfwo11WY1sZssHIaleWwzyxF8qpmQumzMLcIMuP9NmQlC2rAbLELebUIiGN93/0y6s9byoi8+lcwWNiFjPuLbIIZw2TgWeu5BE0hwVDj9gj0TgOq6F4XKjjy2cW8RoxUypok7OYyVlMrSOGpd3WPU2u314zqFk5taxtWLCSHxscNHkWsPdLqxTc69T8G+nKcCw4PoWx+SDKKGRcGDfnY4VDGgY6YrbHBxkhI7efKuS5bqBkvczUKIe0mPFeHImliZbz6YW0a9mBpmmeg0LddthyXk38/Nzq1FIZnTdlFqXUqzcY3VH2+bALuahbvGYspmbPqeXL8YjmFzI70MaKriV6Py9LP7kfl/W0QdO0QM21dxw5w//vJh0//uoYHnv5hOtzqT7SK6it7Gs3HJBZHcdKdECKLlXA3tE+JeSNNU2zJMg8ZpGKBTWBqdHmvL8jbjG1mSR3RFKT5E6hZyV16I+GLTd1taCCWhmRzelcegSq0zPOb/SM17wqGQ6jSAlMTbQmk/xIWNIZQ0jqGh7E0i+3n5KfW2hOzZIf7UxNHInilVcj2bArEUW/uUM9I7gfvfJ+svwo2vkJGyQHpM1RKWxaeE/JbI7v/tcusQL0OjM4HjxlX0RFyNeNWFNHQY2Ya1D5UXTiUe6F/gZquebI2wobJ8YYZ2r0fN4dx+NaZIxxpgY4r4VsTscd334Bf/6dF13biNHn7NXKKRyypOHXSyzCPiyNFpp1mRJN10tXwALsqYoFNbrGdB68Bmw5taRDfuyKG8cwm8rWzCQCqKBWVuw8csZ245PkVinoOhN2wM6dPBCscFWWH2MeNURBILq4jPyAFShk6ZEeBwRrkyXfIMW4H6cXMlxGk4NaPBLicpdXoLSCUQQ95g51UWjWHJeDWsQKFu6vIzI1Y/GkAuyUkIeytRYTekoecWGdFOAO+vQslKc7iDV1lvvRDGrtweRH+n0sEuKS1CK39Of47wD3nNqZhQz/nuoZ802ceOPMIsZmrPtM/twWMjmj6TVzDh8FgtnOeWeREs0iMlNza/5M13h3QFs/Z2ouHflLgaUGWEytrz3GO8yI8mNfh52pzSUznk2iqwEV1MqIrSZLo91MpeVHufaHINZzBVnw0zmPXXQJQ0Jpp7dEMIbIJhHAMlMsCt0n8r0moRimdsRsZDzUFXf0+tM0TbD1ezC1JOXCougW5lWRFb1NOsaER+Cl17HJj+biuV9ianJ9XlzYCBBTE/ODxNTOLGRsRbMiHPKjUFNHOUVZfszH1Oj3vW1RRy1dWmZqLhI3zVFb0hnjwdaqVXO/FmWHsWzyWRDyo3LBMxCsldNZ1AOyRKYmD4F1Z2rG38uZWq3kR2HjRIrTQEeMT98Ym0nyXBs3iog5Nb5ZqG7fR0AFtaLxNz95De/4+6dxWJB4/vPVMQDATWYH7ErLj6IjTAxqkXCIL7ZBmFom6y4/ljJ6hha1QUGClLuJANZiwpj7sdLYGvE1+XOLaJNlNTJ2n/pLktuCh1lkZtEKapqmcRMFBTWH/BhxZ6LTwusQiBEcOjWPTE53HRBqvEeIHyPleVYL8mN7LMI3VgdPubMLh1FECL5WR5HC5Ece1NqjPLhz92NOUgNcNk6jgkmE4GX9J8hBTT7PonvQzQ3qNvVaRjmYmq4zblCivLLIwuRaTMqp5ZMfK5dTs8pGzvCcWgyDXXGENGOyB22+uFFEcD/WqpsIoIJaUWCM4Tvbj+L1sTnc9n+fx1wqiwMTczh4ah7RsIb3bloBwLB653NMPf36BLYdyN/WyA202w6HNESkZKxo0c6HtGQUKaVNlpwbGBTY2aCP/Ai4Gz4yOQY6hQkPS38h8uORU9TI2H2eFJlFvKzUcksi6rZBM8DkY7Ts97JRxP46ALCitw0dsTAyOYYjp+d54PFiqKfn08jkGGKREJZ1288tz6tNuOfVHDk12plnreLrQi39JD/2tEUduVLaOEXljZNwjZGyIeZi8+XUdhw+Y/vej6nJzaLF4/Ob+UXd+vePF++AHJ1JIm0OpT1nqfF6xNSyOZ07pi350cxP5WFqlbL0uxlF+jpiiIat+tPXThrMlRtFqCQmbW+1Vm2ooFYETs2l+QW5b3wOdz2yi7O0t6wb4KPNdQbfGVfzqSz+5Fs78JEHtxfVad6tRo1QSFNjyyhi1qmVpfjaeH9xgXKTHyPC/Da3vJposIh7yo/B22SdmjMWtmU9zgALCDeml/wo5NQAS3qxmJq0ufAor5iWXgcw5M8NvDP8nKPrv/Wa9u9X97c7DDjrlpjF3B5mEbH3o3ici+kc76jSwdtkxWzH7AWLNcQc8qM1S81eCyla+qm7u8heufzocm1Mzqc5WyDnqHwfiZuTcVem5m8UAYCR/nbEIyGksjreOFOcA5Jk4pH+dn7NUMByc7kGnakmbiTKCbHVnig/AuAOSPq85To1wLrPmtYo8pWvfAVr1qxBIpHAFVdcge3bt1fjbYtCELcgWa67ExHEwiH8/NUx/P1/Gl23r9s4hGg4xHfwfhLkpLnTNsaGFC5tuM3aIhTS1NhpFCmuTZauWxO021yYmltQA4QF1S2oubSfInBLfwFMjTYjXQl3uYl2lvMemwwxpwZYTM1LfvRyd7rl1ABgg1nsu298zjJzOAKlFNRcpNR8ZhFZfmwTFrEF7n6059TmUlnfbvXUG7JHyKk55EcfpkaLvLg4+o1B2mla+TcMdfLyCvlzEzc8fjk1P0YhOiD9yiT8IJZedAnWd8AKxOI1HpSpiZJvOUH35PSiJSX2myU6S6U0Ar13PBLmnxed66Y0ijzyyCO466678PnPfx4vvPACLr74Yrzzne/E+Ph4/idXGVtfG8NFf/Vz/OSVk76PI0ln06o+3Pd7FwCw5KXrzjU6Y1Mh7Skfs4i4883Xq88NScnBJkJsc5MPsvxYbE5NZFV0U9hzau7syK/ejIo4E2aPQtvzot7P88Isr8FyXwTyMzWTTXD50ficKV8jB5x41D3wzrjk1ACr2Hff+BzftDgkTXlCs4uU6ic/ZnM672zhqFMTLf3muRAdrH7MYXpByKlJc/IcrdhcjCJzLhsOOn9uqgFZ+S9f0yd0l7Efn1hI75ZTC2o9p8/l9SJ7QB4Rcrld0twxkZHTNc6ZWq1yauY1d9Kc+xYNa7y4ellPm+2x/ULtKR03tcVrSqb2pS99Cbfddhs+8pGP4LzzzsMDDzyA9vZ2fOMb33A8NpVKYWZmxvZVTWw7cBqzqSwe/NVh38fR7nf9YCduumwEt165BgBw3rJuLj0SVfdjamIxazE1MG41aoRYHiu0CF5DJDU0LlR+FAMo3RRBmJpfrZrXLDVAaJNVAFOjhbPTk6nlCWqcqZH8aCwmPEh4SKTy5sJrMRIHU7oNCAWcjFU0iRCIWRw5veDIA9lcs3Lvx4zO2U6HmV+MhEM82JOcPp/K4vnDkzZlw+Z+jFjMT3xPuWtNysbUzKAm1AvGXR5HIJPIZav7rc+tSKaWj1HQ57K/aKZm1UZ2SSxMluwBBJp+revMuh4rlFM7YQa1vvYYD7hLJemeNnaAdV9NmPJj0+XU0uk0du7cieuvv956w1AI119/PbZt2+Z4/JYtW9DT08O/RkZGKnl4DtCNt+PIJNeE3UB5CtoN/893nYv7b7oY//jBTfwxAx3GAj7pU6tmY2pFBTVv+bEwpmbWEMlGkQKHhNLNGYuEeI5HDGpyMbZ8rH7yo5uLihx7hbgfyaovLpwiaCH3es0Zqb5MvKEBt/yXu7TqleAnU8LBiXmeD5I/35AwyBUA1rrIj8t72xCLGLPAjp+xT1kWXbP0mdN7iPPUOoRzJJtFPvnILrz/gW22KeE8v9MetQrE0x5GES5xW9fYnNRzUjwueXOWzOTwyvFpAMZw13aPa2FesvS7TUsA8lvPydZfLFM77CI/zkjDNEVWwzv1+zDj2WQW9OdUyv1IHV5ENibmo8Mhzcbk6bOjUVNN5348deoUcrkchoftw+qGh4cxOuocO3/PPfdgenqafx07dqySh+cA3eyMWfZ8N1D+i4JaJBzC+y9dyZP8gKU/+8mP4i7s9SLkR7cBoQQvg4Ib+Dw1R76jMPOKm5SzdkkH+jtieNNIr20hFuErP3qwFaA49yNfOD2YWkc+prbonlMjeOXURKNDJmexIXmHvaLXGkxJ+RvXgC6cS7mIHDAWGwp2ByRbP103EcE1S5/BTDLDWadXUDs2uYDHXzPuj+2CpV5kn3JRPW8S4LD0W+eF7ocuQZL1Mi29dGwKmRzDUFccI/1t3LW6ILsfBaaWzuoOOW8xQE4NMFQYwEgTFDrqiDFma6JtMTV7Tk1UI7hE6WPOofOdiIZc14BSQNcckfyBTiuoDQtphF6zITeBgho5TZuOqRWKeDyO7u5u21c1IcoyP/uNM+gCxo6RaoM2DHa6PgYIJj+KTO3EdDJvoaXjWFz6PhLyWaFFOIwiEecuOgjcdpwd8Qh++RfX4nsf2+z5PD8Z0Y+pFVN8TQtJpwdTa+e2ZH9LPwWjPpmpeZg6xL9NLLrtloKrOJiSmIibvExBKBrWsLy3zfF7QDSLSONsXBg+MUyxYYBocxeD2ne2H+UMQTROTHHTQszW5R2wriW/An+3DYfXdfy8aRK5fE0/NE1De9SsL3TUqdm/JwZBCOJ+BIwp2Es648jkGHabn0tQTMylsJDOmf1C2xxDQP3lR58cJpd7Y56PKRbydSxe5yJTkzd19LfRZr7pcmpLlixBOBzG2Jid9YyNjWHp0qWVfOuiIEocv9p/2tV5dPT0AnRmLIqDHjkiIGhOzX7BFsrW5JlYIgphag6jSNE5Nff8V0c84tvU1M/wIXdasD1PCIZBXKuAtZB4uR+pi4ZXp37Z0i/f1PJNLFvbAWsx6oiFHfWFAHCW6YB89YSRU/YzAo30t/NCexmWWcSdqYlF3fR6p03ZPREN2Y6N/s5Tc2l89/k3+M/3CXLc9ILlfpSZmtjyC3A3irg5U73kRwosm1b1AhBkY0edmv17saUWEKyjCGCUW1xivtcLR8/4PlYGmUSW9xpDaS0TiGnpdyndsCTK/Eyt3NKjfCwAbI3IRabWLzUop80i5XGbzv0Yi8Vw6aWXYuvWrfxnuq5j69at2LzZe+deK4i5hnROt+ULCAcmrHya21BBQn+nNSDTC/IFW2hezV9+dN/hJjM57Dg8abNmW/mO0urUvIZ55kOgnJrL35ivG4mMdFbnj+vycD/6GUUYYw5Lv5OpeQU16/jyFcyS084voNP58OqMAgDrBq0OJSLcGD7lwE7xKcf2oE/H+q8738CpuRT//ujkAt+MiEYRK6gZ7+U5eiYr5NS4UcStTs3++VIApDxtm1dOLQ9TK2SQ5SWr+wAALxyZyvtYEUekLjbdsvzow9TSWd1zY1rJoCZ3senvsDbwiWiYBzM5pyzL+k0X1ADgrrvuwte//nV861vfwmuvvYaPf/zjmJ+fx0c+8pFKv3XBoF0j0Ws3CZLn01wcZyIKkR9pcSmcqfnJj+5M7X8/dQA3PbAN/7rT2m17tTAqtE6NFu5CL2S/psYpj1lq4vMAO8s7PZfCYy+fcARlMVDRzl6Gn1HEmDRtLMLB5UenUcStmbEIYmrWa3ibZPyDWuHyI52zjrh7UHvNHHz74c2r0dceBWPGPZHOWnlCsU6NcomOjZPLIFo3Fh13YXSAJQ9TMOrwaJkmF+aLDkjGGG8B1ZXIHxguNYPazqNnAisDgHMqhBzU3PLGnbEIn8UnDxQlUF1guZ2PxrHYr+P+Dvt7EFvrc8iP9u+bMqf2h3/4h7j//vtx77334k1vehN27dqFn/70pw7zSD2AFtB3X7wcAPDU3gmH7EELxHqffBpgJVb9BoXSjv1NI70AimBqGefiRJAXFcJR8wYTd+/y6JmoT8GrHxZ9WJUfuJ3cLZB4zFID7N1IxFzK3/1sL+749ov491fsM7QoZ9MWdZf9AGtxdGtoTCwtHNJ4YbIsP8o7XLdyhXw27LOG7NeW6+dr/mzNEvd2X4C18RqdSdoCuhvDl6cTy0FNPNaQBnzgzausRr/js7b8cHeb5X7MbxQxfp7TGQ+KnS51ajJTW5C6nlhMzb1Ojc/2E+THU3NpzCSz0DR3s42MC1f0IBLSMDGbwhuSo9QPcr9RCtqLmRwyOd3VYBUKaVzK85IgKyo/+jA1wNr4y5s6OVfddDk1wh133IEjR44glUrhueeewxVXXFGNty0YtGu8bHUfhrvjmEtl8ev9p22PoQax6/IENaLnfv0f6aK8fE0/AMNZVcgO0E9+9KrvoRZI4o0SpIN6EMhNWYPCj6m5mU9sz3UpuqWWRLKVfTZPjRpgLZJurbcs52OES8+JaNi2q/VqaeWWU/NajKgtk/waIt510TKsGWjHtecMef4tve3WNG1xE+OWi5WPu0P6DMXgfc05Q1jR28aD7+tjc7ZJ3uGQZpukDTjlR6u/qPF7cRMRJKe2kCmMqVFAGRPkR2qxNdLXHkgyT0TDOH+5YV4rJK9GTI36jYrX31wy6zlaSWZ0MirVTQRwC2r24LXR7F9JagBBzlX7NYquFOrK/VhriNNn33GeYWQRJUjGGB/gKH+YMmiAJPPp/0jOpktX90HTjFEhfiUAjuP1Kb52W0wB6yYXTSrFyI/ZnM5NBQQvo0g++OXUqCOFzIAIVicJ61hJ8pV7FearUQOsoOZmFPFiWOJu1av5sJhTc+vQL0JsywS4M7UPb16Dpz59LS/29wKxNbEHpHtOzZ+piQH45itWAbBq6vaNzWKaWmSZC6z8mTqMIpLDlj6bWNhuT/fqbuPN1Nzr1MgJOiEwNUolbBjy36CK2LTKkCBfPDoV6PGMMb6hoMAaDYf4dTGbzHpuBmVDiYxKNTMGnOOO5KD259edhYf/9C143yUrbT9vGabWKBCt7e8435BHH391jDOt0/OWXLE2T04tIvR/9JIgaXEb6o7zC76QziLFFF+TDCUyNa/CWD+jyCce2YU3/81WGwOw6m2Kkx/FwETw6ygCuDc1Jlu6M6g5ewvKIIbiZunnLbKkYNRrC2r2vz3uklNz69Avg8wibq9ZCNwckK7yo8Oxan9PKhtY0duGa0x2yFtHjc3xwmuyl7dJsqFs6Y9L8qOXK5UzNfk6lnNqced1IH6/xrxfx12Y2vo8G1QRZBahvpP58JsTM5hNZtEeC9ukYtHdSPeNvDm11g93s1mlmhkD+ZlaIhrGW9YNOGR8Oag1ZU6tkSBand+ybgB97VGcnk/jP81CU8qnGQWy+T8suhC8hoWKhbxnmwtEIT0g5enFIrxkm3nJqQYEm3Ul48UjZ5DTGTcOAIJRpMBF2KpTcwYSvzo1wNnUOKczTC64B7V8zYwBQX50YWpunfUBe7I8SENjr9cRIebVCmW+IkgmF80ifkYRgux+3DTSiy/9wcV48COX8xICYmrHzizwzhO0ENPfnc7pyOZ0LjN6zezzal/mVqeW0xm/1sityuvUPNyPa3lQK42pkVnktZMzgXqO0tpx9YYltvtUbGpMGzf5viHD0B6PNaGaOTXZEOIF+fNruo4ijYaUwNSi4RD+yJRZ/vmXhwBYu918+TTCEt4qyxnUkuaYecCQbM6hNjwFMTUf92M+piYs+F6jZ7I6g+6SD9R1xheHM4K0WrKl36+jiIf5RK5xm1pI88Jgr6DmVXgNWIt5Oqc7grps5yf02oKae/G1m1HEbzHaIDggS+kWYcmPLkwtGlx+1DQNv3/JSm4OAQw7fX9HDIxZNneSZsVrIJm1XKOOVmycqblvONw2ZyIbow1Ru+BaFa9ZqlMjJWQhneNSJzG1QoLa8p4EhrvjyOoML78xlffxW18zGrdff67dGCf2fySFQg5q55n5O6pXlMGDWgVyauGQhqg5JqinLepprJIhl8ooplZjyAn0D29eg2hYw/bDk3jp2FRgOz+BMzUX+YAWNk0z7Ltnm4nXQhyQfsXXXkxtjsuP9vZBgJjEt+rv3Mwip+fTvJUSSSBAflOHF/wt/XnkR4mpiVLvtFTcPpenQz9gLY6AU8ry6qwvyo/y3+6WUwuSCzl7uFxMzbhWD03McxOSG8OXN0ZeJQ8yiFFSc2GaBC6+XtJ0+QEutZDmz2dd+j7aHidsMGgDEw5p/H3ExZOYj64z7ood7IpzaXlsJom5VBYnzXFBGwbtJRR+MIqwLWu/H8ZmkrwrzLUb7YYeG1PzyKlRa65XT8y4GsgqydQAayM50BG8Y4nDKKKYWm2RlpjPcHcC777IsPf/8zOHLDt/wJ0d9X90kx/F/EwopFlMzccBOZvM2H4XpPhaXEwZY1yemVm0XstLfgTczSLiCA+RhRZrFJELdUVwacZjxye3yhLPtZxgdxttIiMaDvG/Xy7ctVpkBZcfRcMEMQiv4ChiVX87/zwKLZEQQUaS+XQOZ8wNiJv8qGma7XOTmZoXSII8araOI9YaClmvt5jOCSpI2PzXClaMMSGnJpVIuMiP9Lm0x6xRLcbYFvP3pnSczOY4a++Ih3lt1fhMihu+lnTGC2Y6FNTyFWE/scdgaReP9Dq6D1kNizOeCsc5S7sQDmk4PZ92nTAwXcGcGmCpPXI+zQ8tUXzdKGCMORxaAPDHV68FAPz7Kyex69gUAGB9QKa2xIepyXmVNUs6EA1rmE/ncHzKWQOz88gkLv7Cz/G/fv46/5lf70dyL4kzzlJZnZtesroV4KxdtMnUQtbrueXVaCAmUB750a9OjZtPPBZ2uamxeK693I9+8iMgmEVSwZia6H6UP4v+jhg6YmHkdIaXTLkqiGwUCYe4Kzafw9EP8UiY12idnDauKy/ZWvzc5JyaF0RDC2BfYEXp1bL025kaYJhI5lzGzgBCRxExqPEhptZjQyHNIUVTcNM04/qhwDI+mxSkx+AmEcIlq3sBAC/mKcLm0uNGZ9mFyNS8DFaJaJibWGQJMqczzm4rFdSo1rCgoCZ8fm6DfasBFdRMiM17ReZzwYoevGVdP3I649JW0Jxav09XETmvEg2HuI3bLa+24/AZ6AzYfsjqiu4rP7oUrToWafMYqFUR7Z5Dgp7uJj+KtT6u8mOBuzP/NlneZQvie7kxNXlSc5A6NUC09bufL9nST/JjPBJytE6LRUJcevrpbqM8JJ+ln/D1Wy7D0/8jv20/H4ihEMN26/0IOBtRB4Hc/URsritKr2nZ0i/kaNI53Sq3kD4bNyeu17Rqa6Za1nyc6ZCMhhEKaXxI7cRsCvuLMIkQzl/eg1g4hNPzac5QZSQzOTyz32izd925zkYTYlNjL6MIIEiQJ+1BTVQhKi0/FhLU4pEQXzvao87BvtWACmomxNyTvLv4k6vX8f93xMIY7vZuZCyC+j+6y4/OhY2knL2jzkGExI5ES7Kv/OjC1OTaK5JA0zknQ+XzrrLOneiYJ1PzN3V4wbf42qejiPFcqzsD4CyfEHOHJHHlZ2rutWrW1Gv783tdzBEifufCZQCAn+w+afaPDLbD7oxHeMFuKaDuD5RD8upEY2vTFDCndrbE1MSAL36uGT+JO6t7bjgspiZcxxSs4nJQs29w6POjyQs0pHZsRmBqATeoIhLRMM5f4V+E/esDp5DM6Fjek8C5y5w5O7Gw2m/6NplFfnPCPhlAbIrt1yy8FCSKkB81zeqEUgvpEVBBjUOUN2LSRfL2jUPcErxusDPw7sOSH72Dmriw0a5R7qoOWNKRqK37uR8TbkxNNj5wpmY3igCWFEkDREWInc7PiDm1gFOEZRQ7T814rpW3AeAoCBclSC82IIMWS6/z5ZAfO+y1WTKuOWcQiWgIxyYXsf3QJJeA/Sz95QRNKqbNiNd1I36fb2gmYaAzbjMS9LrkFxczOQdTC4c0XhqQzumC+9EjpyZcx1RuIR+jFdTsTI3k5CEuP1o5tQ1DzoATBGebz3tj0r1dFkmPbz93yHW9cDeKOO/j85b1AHDKj5U2iQBWbryQoAZYGxMV1GoMsfA6JI3yCIU0fPxt6wFYdSpBQEYRN/nRTYJaYRa4npxOOh5PTE20JFs7bpc6NbcdriSnUaI55cPU3Po/js6ITE2QH/MUSntBnKcm5yhSeRyV7bw9kvG3yee6mKDW6dEqy8u1eNHKHtxw/lL8yW+t9TzGa842JMhHdhwDYOSWquUMW9otMbWs+0ZBXISCyo+APa/mVt5g5NTsxdeAXVr0YtHcxZsT5Ud7sCK081yoydTS9uBHMuzxM4s4QjMRi5AfAQj5OWe+nDHGTSJu0iNgBW8/owhgMbXDpxdsrcSmFt2l8HKCcsVe8/q8QO7iWjgfAaD6jbnqFG4mERF/cPkIzlvenbeRsQi5/6M498rNSUcXzwkXo4gY6MZmkugc7LTcmj6jSZI2pia7+QwHpJzEB/wHhYrux5lkhv9txXYUocfndIZMjvF6OcB//ArgdE7KUq8tqPE6Nf+FgBbHOVl+lAaEEqLhEB740KW+r3njhUvx09+M4t9fOQnACIzVyjcs7TGuq1GeU/OQHyNiUAv+GZ493IVnDxq5XjHgtwkmHrf7KxrWsJgx7j3PnJpg6WeMQdM0K6cmBUAKxFTETzVq9LcQU3v5jWnkdIbOeCRwKkEGBbUJl6D26skZnJxOoi0axuZ1A67PD2IUAYw1ZFlPAienk9hzcgaXmX1iq8HUPnPjRrxl3YCjxi4fujhTq014UUzNhGznd8MFK3oKotRi/8czUv9Ht10/MbXjU4s2xpLJ6ZgQZDXqNO5ffJ2fqc0sGgGJ3irmsYuWIQY1xqwbzC/h7QfbCBkprxa4o4i5eyf3I20gxIS6Vy2UDKuriHW+GGOBDR5uePvGIcQiIf6ZFfMaxYKY2ijPqbnnYm1MrYAFSex+4mYUWUznHA2NASBmvn/GJj+6MzXAut7nBQOI7fij/kxtyAxglENePxQ8lSCDAuSEy7xEmsN49VlLPK9bsfg6mfXvxONmFqlGUFs/2Ik/vnqt50bfC+RglT+fakEFNRN+fRSLhdj/0UsWE3f9wz1xaJpx84qPH59NQVTlyCxiHbObUYQWDMZzOE43X9bmbrTJjx6tspIZq94pYgYOCtjUGaFQphYNW/kVuQFzvo4i7R7F16tMx6AbU8snP3a4DApdSOdKyoV1JaJ461mD/PtKykYyKKc2KufUPGa/AfkDvwjqMhKLhGyvYXW1cRpFAHv/R4upuefUxOOWmxkTOFMzgxmXKU2mNtiVsD2+GJMIQSwPkEH9UC9e2eP5fLoGpxez/B7zDGpkFjluBTXarFWiQ3+pUDm1OkE++bFYUBJdnoDt1iopHglj0HRMnpiybpbRabscyZmaX52a2KYoQ24wKae2mLG5G+27aJIf7UGN3jseCXG5lMwixXYU0TRnjRFgsKN8eTr6OxdMNkAlBtT1hYJaNqfzwJdvwbaMIs7WVpFQ8bmwGy9Yyv9fi6A2m8piLpX1lh+Fv0t2Fvrh4pW92DDUiXecN2xjPqI0LBtFxP8bRhH3nJqtu43M1GLuTJN+Py8ZSroTEdvfXGw+DbDLj3IemJQMkn3dQExdrKv0CgJuTI0mf1SSqRUL5X6sE6R97PGlYMCj/6OXlLVckCAJsnHEYmreOTV32Ua2qGdsTC0i5Py8BoVSjdrSngTvpEHMLZ9U6Ae3WrV0TucMVR5iSWgXnJPEGEOaNbuKdrRikj1fnVpnzGkUsez8xefCrj932NZPr1rojEe4JDQ6nfQsBaHPIBrWCroP2mJhPP7Jt+L//aNL7D/nG5Usb6smBileC5n1lh81zWqFRcHYk6lJLlrZUKJpGjeLAIV155dBQS2Z0R0DZYkRL+1OOJ5HoL9TjIdeKtH5yw3Gt3dsFpmckVs8YHY3qsugRkxNyY+1RUrqIl4ueBVgi4ukiBUuZpFRR1BLQdeZNU3YZQEKhTQu9chMjf7GmWTGVqMmLta8Tk1ianQsw10JXnR8ZiGNTE7nC1cxF7M8KRkAksIomrwNjTM5bhLp74hx5xZtHmjRTERDeet6yIAgGkUsO3/xye+e9iiu2rCk5NcpBqIE6cXw6RwX4nwkuAV6YtdiraAbU5tPZXmglRviisfJ5ceMe/F1m1R8LdepAVYuDCiNqbXHIpyRyGaRUc7UvE0ozm72zsJ9wsq+NnTFI0hndRycmMd3th/DE3vGEdLAr6d6Apnp8o3nqhSU+9FEEKNIMRjoJPnRnan1SPmZ5b3G4uMW1Ia74xibSWF8JmVjWF7HHI+GkM7pPKiRa2xZTwJHTi9gZjHLa9Tk2jyvnBpJK8M9CdCme2ohbcuFJVzqbfKBRoeI8iNJjyHNvsMXIda40cahvyPGd7DTElPL53w0HmNKmsIOnMof5JxPobjj2g04MbWId1+8vKTXKRRLexLYNz6H0ZmkZyca2lgUYhLxA204RLOOm6Vf3PC5seh4NAwkrdzTgkubLON7e/G1m/WfzCKxcIjnXYvFYFccc6ksxmdTvMvQQjrLN1DDPkyNBoV6Tb0WEQppOHdZN7YfnsRDzx3Bd7YfBQD8j3eew4eW1hPef8lKXLiix2YgqiYUUzPhJ+WVggHO1KzdnK5bDVy95McTQh7tpBlILlrZC8CQAMViVM+gJjWDpYWdZJHpxYxrNxFAGA2Scw9qS7vjvOh4ct6qtdE0Z4AMgoRLAbYoZ3rtYsVcHOUtBzrinkEtn0kEsHIwoqxE9UhyY9pCcdmafvz8k2/DWzys3pWC5YBc9JYfOVMrj2xEn6k4kDbmkrclc097LGwre5GfI7sf5ZwNL772cD8CwJBpFlmzpD3wOBUvUP5bZGq0Ae2IhfNugMRrMZ+6QWaR/7vtCDI5hneeP8xrZ+sNFIRLPb9Fv39N3rUOQUGimAXZD27y43w6Cxr5JMuPVk5NNIoY/yc31cRMiu+2wyHN8+IRi18BS36k95hJZoSxM/bFJO5hFBk1jSLD3Qku8U0tpLlU2FZkv7c2lwnR+bqJANaCZZMfO12YWoBZaoSOuH3HD1jMmZh0o0FsleVVCkJBImg3kXygIElSeySk2Rob0MaJPjevDQcvT5EUBzn48kJ8epxUpwZY50GcC1csBru9g9pwT/7rRPx7vXLGBApqgJELvP+mi2vSV7ERoORHEymf/FQpGDB3c6L8SAutYYG2v59fTo2Y2mwqy80ZfnKpnIuYF+RHwJCF3OqHjO+tJL4ILj92J7gD68xCuugaNYJb/8cgbkr6XVZn/NiWdMT4ZoHn1ALWqAGCpV8wihBzXubjaKtn0CI7NpP07ERDFvxC7Px+aJOYmqwG0PVJKobX+8qKA23OPNtkmb+3XJLW49536UqcnE7iA28eKeZPsoEzNcHZzPNpPtIjwa1PphcuWdULwDhH//Shy0qWwZsZKqiZoBu9UpZ+kanRztXNuUQsamLWYGORUIgv1huGOrkOf8xs8+MX1OSpy7QYLDPfYzaV5WxI/rtjUkAkiEGNcGYhU3Q3EYLYfYJA//eThEUJ6o0zRuAZ6HTKj9wyHkB+dOvST5uMFQW2DKoXuDI16byev7wb4ZCGi0e866sKAS3U9BnIGydZfvRaqONSfpeuNTmn1s7bm3kzuiWdcfzVe84v5s9xgNeqzRQX1MS/N19Q2zDUhW/98ZuxojdRksGlFaCCmgm/7hylgBLTo9NJ3ubHsvM7T39fexSJaAjJjI5Rs9VOVmcIaYZza6g7jiOnF3DsDAU175tBHhTKg5p5w4mdTryMIqL8yBiz2ZVpkTkzn87bziofEkJujMBf0+dvjEVCiIQ0ZHWGN8xzIhpFZpNZ5HQWuPAaEDuKWMdCZRXLAshK9Yil3VapCLlU5Wv9klV92HXvb5eNqXH3o1dQk4wiXp+NvMHiuTLPLv3kfnRndOXCoEtXEWoavbRQ+THAZvBtZw/mfYyCyqlx+PVRLAWr+jsQDmmYS2X5Ls6t8JqgaZqtVo0W06GuBCLhEIbNRPcxszu43/HK9T0kx/R1xPjvqKu9p1FEYGozi5b1eqg7jr4Oq06tlBo1wEt+pJya/2dCzz1mMrUlnTFb14/ZZMYyigSSH60iXsYYdJ3hpJnjLLS5a72AFllx/p3bhqgrUb6elHQtUBCSg2jgnJpcp+ZRfC2PnlnwYHTlwpBL/0fLzh9AfiwwqCkEgwpqJuRx8+VCLBLCGrMQeN+YMe7CrUWWCCuvluRBjW4SSk5bTC2//EgmGGIenfEIf+8Jc0HxkobEoEY3bG97FIlo2G4UKbKbCMGto0gqzyw1/lxzMbMs/XHEI2EeDKcXM4EHhAKWjKUzI7Cenk8jndOhacEWq3pEX3vUU2KuFORrQTYjxSJ2ppYvp5bOGp1JqMm2M6dmlx85UyuTm1OGW1Nj0UiVDzb5sUbdN5oRKqiZqBRTA6zpwPvMGU5uA0JFLO+xzCKUwyLZi3aHVk7N+2aggEcmjrmUtcMllkhMzeF+dCm+HpPyBRTUsjrjwbHYm1Pu4QgE71AivyfVBop5tULq1MRGrPPpLM+nDXXFKzaQsdLQNM2W5xH7bVYK8ufmFVSpbCRfTi2V1W1dXmSm1iHIj4yxijM1Cmqn51N8wvpYgG4iBFE1aKvAutOqUGfSRCUaGhNo3tT+8VkAyDv5WBxBIzO1IS4/FsbUsjmds9HOeIRLH6e4/Cjvqp11asTUhswbti0W5u9PC3+x7lH3OjX/Rq8E+fdkzrEFtQKYWiikCbO5snxAa6NKjwSRZZbb5esGebPhpQYQvJmaJT+SlBmLODvD0PvpzLjHKHdYKaY20BFHSDNy05Pzxngpyq8VmlOrVUupZoQKaiYq1dAYsNrxkPzImZpHt3eqhTo+tcibGdPOj+Y/8TyFzw5PrFMT+z62x8NcfqRSg5iHNJQWGh5bu1CrAJnq8MhAUixTc8upLQZwP8rvGQlpnAFTUJtZzBaUUwNEB2SO1wwub1A7P2GZLahV/taXF2oHU5OCUv46NZ2PGJIHhAJ2OVJsIF6pESjhkMZLdsZnUzg1l+KzBZd05i/SF5mpyqmVDxW7su+77z5ceeWVaG9vR29vb6XepmyoVENjwC4/MsY8JygTVgRgagR/+dGq7yHZhprV8i7hXH70l4YAoZmxIK1Q/0diaokiF8s2qfxA/H++G16Uofo7YrzAV2RqZOkP4n4E7GaRkw1eeE0QP7dqBDV5M+LlfiR4G0XMnFpOd3TeFxEOWc2PKc8Vj4Qq2tlCrFWjjd1gZzyQtFuo+1EhGCr2aafTadx00034+Mc/Xqm3KCsq1dAYANYNdiCkGYvrxFwq77DJ5S5GESr6HZIm9foWX4tMTbI398hMzdP9aAWZ0emUeQzW4kid+kmaLJqpuebU/Gep8edG7UGNIBZgF1J8DVjnaT6VbfjCa4JNfqzCIiozNfladcqP7veDaOn3GjtDIIZNTK2Y5syFgJtFZlL8HgjSTQRQRpFKoWKf+Be+8AUAwIMPPliptygrKtXQGDB2Yav623H49AL2j835WvoBa/FZzOS4y1E2ihB8c2pmMEhmc3yHS4s6SZ8ky3kxNXKaAU6jCGCZRSj4FpsbcKtTSwasfRPHxouyT7E5NcA6TwvpHJ9t1/A5tSozNZl9OLvWBGVqVpusBZfO+yLo+iOm5hX8ygVxAjZtyJYFMIkAKqdWKdRV8XUqlUIqZWnhMzMz1XvvCgY1wOgIcPj0AvaNz+W19CeiYSzpjOPUnDXxmhhaT5thzQ4il4q5iPmUfYcrs0SvfIdo6XfrJkKTdy33aKk5Nev9UgFbb4nOMZGpubkf3UabuIHMBXOpbMP3fSQsrXJOLRq2CuON793ztgSvDUdckMLnfXJqgNU9hDO1CjkfCaKtnzcMD8jUugvoKKIQHHVlFNmyZQt6enr418hI6f3ZgqLSQe1s0wG5b3zWt00WYYWwgC7pjPHgpWmaja35GkU4U7MGGZIcI793vtEz2ZzOF4rhHqdRhFB0nRp3P1qW7SANjQF7foXs/ID1N56ZT3N7d1CmRudpeiHDHW2NztRE+bQa7kfAfj3IDls5qHnNmOPyY0bnTN6rSwixds7UKuR8JIhBbWzauenzg2gUq0QpUauioDN59913Q9M03689e/YUfTD33HMPpqen+dexY8eKfq1CUUmjCGDZ+veNzeXNqQH2BVTe+dmCWsCcGl/Uufxof2/HLlqy9E/MpaAzIxm/pMN6fzKKEIptk+XqfkwHlR+tz2zAhamJY3yCjlUhJnDw1BwYMxbWASmANxqWdMZA/oVqLaJi93mvSRAEr5yaaHia9+jQT6DPjXLFlWZqZNwan00GGg4qojOu5MdKoKBP/FOf+hRuvfVW38esW7eu6IOJx+OIx0ubV1UsKmkUASwH5GsnZ/jC7WXpB6Sg1m1nCMO23IhP70dhMZgrUH6MSkxtzOyUMNQVt40PIaMIoXSm5hwSmk/SFN9zwCWndtxsnxWLhAJvWogJUBnG8p5Ew4/6iIRDGOpKYHQmWRX5EbB/Nl5tsghB2mQtpPyNIu0yU6twTk1kanRfBGVqkXAI7bEwFtI5ZRQpIwoKaoODgxgcbM6mmpU0igDGiHNNs4+29xsfYWdq9kAflKmJXfrJ0i8bRQhedmtiaqMe0kqfxNRKrVNLCjm1Yiz9bkyNusB7yVtuoPNEXWAaXXokLO2hoFadRVRk2X6W/pDmHYB4blhgal7yYztnalV2PwqtsoJ0EyF0JSJYSOeUpb+MqNh27ejRo9i1axeOHj2KXC6HXbt2YdeuXZibm6vUWwbC5HwaP37pBGdmBK9pwOVCWyyMlX3WwtgVj/jWsog5NdlKLlrqgzU01jHHXWPG3yfn1Lzdj8Z52XlkEoARnEX0Skyt2PNHQS2d03nLoaAdRRI2puYMaoRCus/TeSKpuNHt/ARacGvB1LzytoDx2XgxYerHKtZbBjWKVIupzaetBgeF9Af9vU0rce6ybpy3rDv/gxUCoWJX9r333otNmzbh85//PObm5rBp0yZs2rQJzz//fKXeMhD+n//Ygz/7zov48UsnbT+vZEcRAkmQgLfzkWCXH+03yaCNqfnIj7xNVk6YAmwytYQcjPzdj1tfGwcAXHfukO1xDqNIiXVqgGFsAYJb+u1MzSk/EoKaRABnAFzR4M5HAi24VcupCUEtKl9jwvd+qoW4OZvPa+k3fk6lKJVmap3xiO3660pEChp1c/eNG/Efn/itih9nK6FiV/aDDz4Ixpjj65prrqnUWwbC7hPTAMDbTxEqLT8CwFnCcL9Cgpo8w2s4YL2Rrfia73CNm0fOX/gxtYMTczh4ah6RkIbfOmuJ7XEOo0iR50/8OyivFrihsVh83eksviYUxNSkhWlZk8iPV21YgmhYwyWr+qryfrag5lOn5tfpha7jdFbHYiYYUyNUmqkB9k1mIdKjQmXQUtsDXWc4ODEPALZeiEDljSIAbBNre3xMIoCRG+qIhTGfzmFlX7vtd4Va+sUdLu0II+EQf33Af/L1E3sMlnbFun7Hjro7YcioObMWqVimpmkan+q9KM3DyttRxHzPWDhk6+2YiIZtNX1BOvQT5EWzWXJqv33eMHZ/4Z01sfTLG7C4JD96gVSDlNBEwNvSL3fur/wSN9hpDO4FGnc0UTOhpYLaielF7jwkOQ4wgh3JFRVlasOC/OgjtwDGIv+//uBinJhKYtWAT1DzlR+dbbLExbqnLcqDmnMXbeQ30lmdS49v3zjsepy9bVFuxijFmtweM4NaJodjkwsYn00hpAGr+tvzPM+4jPs7Yo68TE9blCfxg/Z9BJyy1fImWqyqFdAAe5DxK772Z2oko+ueA0IJchCrdJ0aoJhavaGlgtoBk6UB4MYJwN60t5I98TYUID8CwA0XLHP9eV97jHdq8JUfqfg6I3RiEBbr7rYoTpiuRq8FJ5XVseOwYRK5XsqnEXrbraBWiosrIdSqPXfoNADgstX96Gn3P1cXrezBb521BG89y+nMFYNaIfKjLGM1i/xYbYj5UIdRRPi+M0BOzdbQ2CunVgOmJm4yFVOrPVorqI1bzktx2GBKsJHLN1450RmPYHlPAiemk77dRPIhFDK6ipyY9rdmJ6JO2UZcrEW26JCGhAngWZ1h/WAHVg90uL5Pf0eMbxhKCWpirRpJntdudA+kIhLRMP6/j17h+jvxPBfL1LoTkYICooIFP6NINChTE3s/5nM/OqZhV5epBa1RU6gcWqo3y4EJK6jNCfJjKmcs+JrmZCzlxgZTgswnP+bDf7l4OVb0tuH85d5WYGKdOgOmFp0dFsRaNYf8GLGfh+vOdUqPBNEsUkoRKUmXk/Np/PqAwdTeHiCo+UEMaoW4H8Xz1Cz5tFrA19IvGkX8cmq2Lv3B6tQI1XAVKvmxvtBSQW2/jalZ8iMxtXgkVPGuEe++aBn62qO4csNASa/zl79zLp75zLXo82ndJLKvSWobJMmPhHyzrq7zCS5iV5Fi3Y+AtQBu3TOGdFbHit423jOzWNiYWkHuR2txXKGCWtEQmZqXGQnIx9SEOjVemuLVUaT67kdxxqGSH2uPltJUxJzavMjUqEatgtIj4abLRvD+S1eWJXjmew0xqFk980RZzVrw5QUnHNKgmaPquxMRXLra2wJOXUWiYa2kgYzUJ/DxV8cAGCyt1PNUNFMTztOyJqlRqwX8mFpQ96Po8KXr2EsRkBlctZmakh9rj5ZhatMLGduI93khp1bq2JRCUa0egpqmOXJltpyaD1PTNI0vQtecM+QbrEh+zGe9zwcaITNrthIrVXoE7H9jIZb+eCTEO74o+bF42Bsa+9Wp5TeKiPAygMhux2owteW9bQiHNHTFIw3f9LoZ0DJM7cApe3uuecH9yGvUqsDUqo1ENMyZKCDl1ATm4rZwxCIhpLK6o4uIjP4OY0FKlLiAiLv6RDSEzetLk2gBiakVsGvXNA0dsTBmklksb5IWWbWAKEfLRpFwSOM1jn4s2u2+9CodceTUquB+7O+I4WsfuhRdiait2bdCbdB8q7gHyPm4xqz5EuVHi6k13+kQLdWaZl8MenyYGgC87exBrF3SkZcxEVMrdXyGOMH6qvVLytLktVj3o/F447kr+lRQKxaiTOgWnOhnfp+Npmk2ebw9FvYMHrL8WI06NcAwUr15bX9V3kvBHy3D1PabzseLVvbi8OkFpLJG49xIOFTxZsa1hPg3tUfti4FdfnQuEl/+4CYA+eVSqr/LVySdD2JQDGLlD4JSgtpdv302dh49U7WWUs0I+5BQ53UUi4SwmMnlnUgeFzrD+PVWFJlaJKQ1pfqi4I+WCWoHxg2TyEUre/BvL50AYCSde9pCVWlmXCuITE1OmvsZRYDgub/1g5346Z2/VXIn+7aYdQyVCGqF1pq979KVeN+lK8tyHK0Km/sx7Nw0XnPOIHYdm7I1JnBDPBLCrPl/v0Gv0XAIsXAI6ZyO9li44WfgKRSOlglqB02mdu6ybkTDGjI5hoV0Fj1t0ao0M64VxEXFEdSEOrVSd7Qbl5Y+OoN29RuXdpXNRl+s+1GhPLAXXzsDzD98YBMYYwGcvNbr5JO522JhpBd11fm+RdF8q7gL0lkdRyaNhqPrBzv5xU55NTKKNGNQE/8meYebL6dWbVy+ph+d8Qg+tHl12V5zuDuOaFjDQEesKeXleoefpZ8QhE3Zr2P/YEXdRqrhfFSoP7TEVubI6XnkdIaOWBjD3XF0xCKYWshwB2SrMDU5FyEGtXowyVyxbgCv/NU7yioZ9bbH8C8fvUKxtBrBb/J1IZCNIn4gc4piaq2JlvjUqT3W+qFOw6ptMhaLqTWzUcS7wLUrEcWnfvtsMPgn36uJSuRArlhXemmAQnEQ3Y+lbBptTC3PtUrBTDG11kR9rGQVBnUS2TBoJKNpAafuBNWYpVYrxH1yagDwZ9edVc3DUWgxiPJjKUzN5uLNY9On96yXjZpCddESnzrVqK03HVadUk6tqeVHYTHw6myuoFAptMciaIuGoTNWUrNrUR7Px8AUU2tttEZQI/lx0BidQhc7tcpqZkt/3MfSr6BQacQiIfzzrZdB10sbSySaTPLJjzynpphaS6LpP3XGGJcf15vyIy3uC61gFFFMTaHGuHL9kpJfw87UArofq9RNRKG+0HyruISxmRTmUlmEQxofcklGkblWMIoopqbQBBDvTb/ia8Dqmi92z1doHTT9KkfS4+r+di4vkiyxkLbXqTWj/JiwJdib/uNWaFLEI8GZ2p9cvQ4retvxXy5eVunDUqhDNP0qd/FILx7507dgMWN15SfGMpci92MTy49R0dLffExUoTUQ82kiIKOvI4Y/umJVpQ9JoU7R9EGtMx5x1CmRUWQhLcuPzRfUCtnhKijUK8TruNRpEArNjeZbxQPAy9Ifa8Kcmug4K7Shr4JCvcCeU1PXsYI3WjKotfOg1gryo9gmq/mCtkJroJA2WQqtjeZbxQOAcku8Ti3TvEYRvzZZCgqNgkIaGiu0NppvFQ8A3iaL5MdcizA1tRgoNCjiiqkpBETzreIBYFn6TfkxYwa1JkxA25iaMoooNCjiPtMmFBREVCyoHT58GB/96Eexdu1atLW1Yf369fj85z+PdDpdqbcMDGfxtSk/1sFMsXLDthgoS79Cg0K8NxVTU/BDxbY8e/bsga7r+Kd/+ids2LABu3fvxm233Yb5+Xncf//9lXrbQOBtstI5MMYs+bEOZoqVG1SnFouE6mIQqIJCMaB7MxzSmjJNoFA+VCyo3XDDDbjhhhv49+vWrcPevXvx1a9+tW6CWk5nSGV1Lj82I1Mb6kogHNKwsq+t1oeioFA0yNLfHgtXZOaeQvOgquL09PQ0+vv7PX+fSqWQSqX49zMzMxU5jnZBkptPZTlTSzQhUxvsiuP7H78SAx2xWh+KgkLRiEst7hQUvFC1VXz//v348pe/jP/23/6b52O2bNmCnp4e/jUyMlKRYwmFNGv8TCpnGUWasPgaAN400ouR/vZaH4aCQtHoTBjBrKctWuMjUah3FBzU7r77bmia5vu1Z88e23OOHz+OG264ATfddBNuu+02z9e+5557MD09zb+OHTtW+F8UENb062xTNzRWUGgGvGllL/7s7Rvw2XedW+tDUahzFMzlP/WpT+HWW2/1fcy6dev4/0+cOIFrr70WV155Jb72ta/5Pi8ejyMer864iI54GKfmgOnFDHRmvr8KagoKdYlQSMOn3nFOrQ9DoQFQcFAbHBzE4OBgoMceP34c1157LS699FJ885vfRChUP0GDtPkz81aJQbPKjwoKCgqtgoplXY8fP45rrrkGq1evxv3334+JiQn+u6VLl1bqbQODatXOLGT4z5T8qKCgoNDYqFhQe/zxx7F//37s378fK1eutP2OMVaptw0MsvVPzhtuy0hIQzikrMIKCgoKjYyKUZNbb70VjDHXr3oAyY+T8wZTUyxNQUFBofHRsiu5JT8aOTVlElFQUFBofLTsSt7OmRoFNWUSUVBQUGh0tGxQo9lixNSU/KigoKDQ+GjZlZw61ltMrWVPhYKCgkLToGVXcrlOTTE1BQUFhcZHy67kZOmfNweFKqamoKCg0Pho2ZW8Qxo0qIwiCgoKCo2P1g1qcXvduZIfFRQUFBofLbuSU50aQcmPCgoKCo2Pll3JFVNTUFBQaD607EouT9BVOTUFBQWFxkfLBrV22SgSbdlToaCgoNA0aNmV3CE/hlv2VCgoKCg0DVp2JY9HQrZRM4qpKSgoKDQ+WnYl1zTNVqumcmoKCgoKjY+WDWqAXYJUln4FBQWFxkdLr+QqqCkoKCg0F1p6JRflR1WnpqCgoND4aOmVXDE1BQUFheZCS6/k7TExqCmjiIKCgkKjo6WDmtj/UcmPCgoKCo2Pll7JlfyooKCg0Fxo6ZVcGUUUFBQUmgstvZLbmZrKqSkoKCg0Olo7qMWU/KigoKDQTGjplVxkakp+VFBQUGh8tPRKLrofFVNTUFBQaHy09Epuq1OLqpyagoKCQqOjpYOarU5NzVNTUFBQaHhUdCV/z3veg1WrViGRSGDZsmX40Ic+hBMnTlTyLQuCzSii5qkpKCgoNDwqupJfe+21+O53v4u9e/fi+9//Pg4cOID3v//9lXzLgmAziiimpqCgoNDwiOR/SPH45Cc/yf+/evVq3H333Xjve9+LTCaDaDRaybcOhK6E8edrmgpqCgoKCs2AigY1EZOTk3jooYdw5ZVXega0VCqFVCrFv5+ZmanoMQ11xXHzFavQ3xFDKKRV9L0UFBQUFCqPitOTz3zmM+jo6MDAwACOHj2KH/3oR56P3bJlC3p6evjXyMhIRY9N0zTc93sX4lPvOKei76OgoKCgUB0UHNTuvvtuaJrm+7Vnzx7++E9/+tN48cUX8fOf/xzhcBgf/vCHwRhzfe177rkH09PT/OvYsWPF/2UKCgoKCi0HjXlFGA9MTEzg9OnTvo9Zt24dYrGY4+dvvPEGRkZG8Otf/xqbN2/O+14zMzPo6enB9PQ0uru7CzlMBQUFBYUmQtB4UHBObXBwEIODg0UdlK7rAGDLmykoKCgoKJQLFTOKPPfcc9ixYweuvvpq9PX14cCBA/jc5z6H9evXB2JpCgoKCgoKhaJiRpH29nY8+uijuO6663DOOefgox/9KC666CI8/fTTiMfjlXpbBQUFBYUWRsWY2oUXXognnniiUi+voKCgoKDggKo4VlBQUFBoGlSt+LoYkDGz0kXYCgoKCgr1DYoD+Qz7dR3UZmdnAaDiRdgKCgoKCo2B2dlZ9PT0eP6+4Dq1akLXdZw4cQJdXV3QtOLbWM3MzGBkZATHjh1T9W4S1Lnxhjo33lDnxh/q/Hij2HPDGMPs7CyWL1+OUMg7c1bXTC0UCmHlypVle73u7m51gXlAnRtvqHPjDXVu/KHOjzeKOTd+DI2gjCIKCgoKCk0DFdQUFBQUFJoGLRHU4vE4Pv/5z6uibxeoc+MNdW68oc6NP9T58Ualz01dG0UUFBQUFBQKQUswNQUFBQWF1oAKagoKCgoKTQMV1BQUFBQUmgYqqCkoKCgoNA1UUFNQUFBQaBo0fVD7yle+gjVr1iCRSOCKK67A9u3ba31IVceWLVtw+eWXo6urC0NDQ3jve9+LvXv32h6TTCZx++23Y2BgAJ2dnXjf+96HsbGxGh1x7fDFL34Rmqbhzjvv5D9r9XNz/Phx/Nf/+l8xMDCAtrY2XHjhhXj++ef57xljuPfee7Fs2TK0tbXh+uuvx759+2p4xNVBLpfD5z73OaxduxZtbW1Yv349/vqv/9rWcLdVzs0vfvELvPvd78by5cuhaRp++MMf2n4f5DxMTk7i5ptvRnd3N3p7e/HRj34Uc3NzhR8Ma2I8/PDDLBaLsW984xvsN7/5DbvttttYb28vGxsbq/WhVRXvfOc72Te/+U22e/dutmvXLvY7v/M7bNWqVWxubo4/5mMf+xgbGRlhW7duZc8//zx7y1vewq688soaHnX1sX37drZmzRp20UUXsU984hP85618biYnJ9nq1avZrbfeyp577jl28OBB9rOf/Yzt37+fP+aLX/wi6+npYT/84Q/ZSy+9xN7znvewtWvXssXFxRoeeeVx3333sYGBAfbYY4+xQ4cOse9973uss7OT/cM//AN/TKucm5/85Cfss5/9LHv00UcZAPaDH/zA9vsg5+GGG25gF198MXv22WfZL3/5S7Zhwwb2wQ9+sOBjaeqg9uY3v5ndfvvt/PtcLseWL1/OtmzZUsOjqj3Gx8cZAPb0008zxhibmppi0WiUfe973+OPee211xgAtm3btlodZlUxOzvLzjrrLPb444+zt73tbTyotfq5+cxnPsOuvvpqz9/rus6WLl3K/u7v/o7/bGpqisXjcfad73ynGodYM7zrXe9if/zHf2z72e///u+zm2++mTHWuudGDmpBzsOrr77KALAdO3bwx/zHf/wH0zSNHT9+vKD3b1r5MZ1OY+fOnbj++uv5z0KhEK6//nps27athkdWe0xPTwMA+vv7AQA7d+5EJpOxnauNGzdi1apVLXOubr/9drzrXe+ynQNAnZt/+7d/w2WXXYabbroJQ0ND2LRpE77+9a/z3x86dAijo6O289PT04Mrrrii6c/PlVdeia1bt+L1118HALz00kt45plncOONNwJo7XMjIsh52LZtG3p7e3HZZZfxx1x//fUIhUJ47rnnCnq/uu7SXwpOnTqFXC6H4eFh28+Hh4exZ8+eGh1V7aHrOu68805cddVVuOCCCwAAo6OjiMVi6O3ttT12eHgYo6OjNTjK6uLhhx/GCy+8gB07djh+1+rn5uDBg/jqV7+Ku+66C3/5l3+JHTt24M///M8Ri8Vwyy238HPgdp81+/m5++67MTMzg40bNyIcDiOXy+G+++7DzTffDAAtfW5EBDkPo6OjGBoasv0+Eomgv7+/4HPVtEFNwR233347du/ejWeeeabWh1IXOHbsGD7xiU/g8ccfRyKRqPXh1B10Xcdll12Gv/mbvwEAbNq0Cbt378YDDzyAW265pcZHV1t897vfxUMPPYRvf/vbOP/887Fr1y7ceeedWL58ecufm1qiaeXHJUuWIBwOO1xqY2NjWLp0aY2Oqra444478Nhjj+HJJ5+0zalbunQp0uk0pqambI9vhXO1c+dOjI+P45JLLkEkEkEkEsHTTz+Nf/zHf0QkEsHw8HDLnhsAWLZsGc477zzbz84991wcPXoUAPg5aMX77NOf/jTuvvtufOADH8CFF16ID33oQ/jkJz+JLVu2AGjtcyMiyHlYunQpxsfHbb/PZrOYnJws+Fw1bVCLxWK49NJLsXXrVv4zXdexdetWbN68uYZHVn0wxnDHHXfgBz/4AZ544gmsXbvW9vtLL70U0WjUdq727t2Lo0ePNv25uu666/DKK69g165d/Ouyyy7DzTffzP/fqucGAK666ipH+cfrr7+O1atXAwDWrl2LpUuX2s7PzMwMnnvuuaY/PwsLC44JzOFwGLquA2jtcyMiyHnYvHkzpqamsHPnTv6YJ554Arqu44orrijsDUuyudQ5Hn74YRaPx9mDDz7IXn31Vfanf/qnrLe3l42Ojtb60KqKj3/846ynp4c99dRT7OTJk/xrYWGBP+ZjH/sYW7VqFXviiSfY888/zzZv3sw2b95cw6OuHUT3I2OtfW62b9/OIpEIu++++9i+ffvYQw89xNrb29m//Mu/8Md88YtfZL29vexHP/oRe/nll9nv/u7vNqVtXcYtt9zCVqxYwS39jz76KFuyZAn7i7/4C/6YVjk3s7Oz7MUXX2QvvvgiA8C+9KUvsRdffJEdOXKEMRbsPNxwww1s06ZN7LnnnmPPPPMMO+uss5Sl3w1f/vKX2apVq1gsFmNvfvOb2bPPPlvrQ6o6ALh+ffOb3+SPWVxcZP/9v/931tfXx9rb29nv/d7vsZMnT9buoGsIOai1+rn58Y9/zC644AIWj8fZxo0b2de+9jXb73VdZ5/73OfY8PAwi8fj7LrrrmN79+6t0dFWDzMzM+wTn/gEW7VqFUskEmzdunXss5/9LEulUvwxrXJunnzySdc15pZbbmGMBTsPp0+fZh/84AdZZ2cn6+7uZh/5yEfY7Oxswcei5qkpKCgoKDQNmjanpqCgoKDQelBBTUFBQUGhaaCCmoKCgoJC00AFNQUFBQWFpoEKagoKCgoKTQMV1BQUFBQUmgYqqCkoKCgoNA1UUFNQUFBQaBqooKagoKCg0DRQQU1BQUFBoWmggpqCgoKCQtPg/weE7XimHIH+BQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts_length = 100\n", + "ϵ_values = [] # empty list\n", + "\n", + "for i in range(ts_length):\n", + " e = np.random.randn()\n", + " ϵ_values.append(e)\n", + "\n", + "plt.plot(ϵ_values)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "093877de", + "metadata": {}, + "source": [ + "In brief,\n", + "\n", + "- The first line sets the desired length of the time series. \n", + "- The next line creates an empty *list* called `ϵ_values` that will store the $ \\epsilon_t $ values as we generate them. \n", + "- The statement `# empty list` is a *comment*, and is ignored by Python’s interpreter. \n", + "- The next three lines are the `for` loop, which repeatedly draws a new random number $ \\epsilon_t $ and appends it to the end of the list `ϵ_values`. \n", + "- The last two lines generate the plot and display it to the user. \n", + "\n", + "\n", + "Let’s study some parts of this program in more detail.\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "85eba02a", + "metadata": {}, + "source": [ + "### Lists\n", + "\n", + "\n", + "\n", + "Consider the statement `ϵ_values = []`, which creates an empty list.\n", + "\n", + "Lists are a *native Python data structure* used to group a collection of objects.\n", + "\n", + "Items in lists are ordered, and duplicates are allowed in lists.\n", + "\n", + "For example, try" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ee1f60d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = [10, 'foo', False]\n", + "type(x)" + ] + }, + { + "cell_type": "markdown", + "id": "abb82775", + "metadata": {}, + "source": [ + "The first element of `x` is an [integer](https://en.wikipedia.org/wiki/Integer_%28computer_science%29), the next is a [string](https://en.wikipedia.org/wiki/String_%28computer_science%29), and the third is a [Boolean value](https://en.wikipedia.org/wiki/Boolean_data_type).\n", + "\n", + "When adding a value to a list, we can use the syntax `list_name.append(some_value)`" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "dc1b46c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[10, 'foo', False]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2ce1d842", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[10, 'foo', False, 2.5]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.append(2.5)\n", + "x" + ] + }, + { + "cell_type": "markdown", + "id": "2621e155", + "metadata": {}, + "source": [ + "Here `append()` is what’s called a *method*, which is a function “attached to” an object—in this case, the list `x`.\n", + "\n", + "We’ll learn all about methods [later on](https://python-programming.quantecon.org/oop_intro.html), but just to give you some idea,\n", + "\n", + "- Python objects such as lists, strings, etc. all have methods that are used to manipulate the data contained in the object. \n", + "- String objects have [string methods](https://docs.python.org/3/library/stdtypes.html#string-methods), list objects have [list methods](https://docs.python.org/3/tutorial/datastructures.html#more-on-lists), etc. \n", + "\n", + "\n", + "Another useful list method is `pop()`" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "20b510ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[10, 'foo', False, 2.5]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e0f4985c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.5" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.pop()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "7840fbbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[10, 'foo', False]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "markdown", + "id": "5bc40e53", + "metadata": {}, + "source": [ + "Lists in Python are zero-based (as in C, Java or Go), so the first element is referenced by `x[0]`" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "537085ff", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x[0] # first element of x" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7137175e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'foo'" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x[1] # second element of x" + ] + }, + { + "cell_type": "markdown", + "id": "8e4c3bb9", + "metadata": {}, + "source": [ + "### The For Loop\n", + "\n", + "\n", + "\n", + "Now let’s consider the `for` loop from [the program above](#firstloopprog), which was" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "4c9df0ed", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(ts_length):\n", + " e = np.random.randn()\n", + " ϵ_values.append(e)" + ] + }, + { + "cell_type": "markdown", + "id": "e9a328dd", + "metadata": {}, + "source": [ + "Python executes the two indented lines `ts_length` times before moving on.\n", + "\n", + "These two lines are called a `code block`, since they comprise the “block” of code that we are looping over.\n", + "\n", + "Unlike most other languages, Python knows the extent of the code block *only from indentation*.\n", + "\n", + "In our program, indentation decreases after line `ϵ_values.append(e)`, telling Python that this line marks the lower limit of the code block.\n", + "\n", + "More on indentation below—for now, let’s look at another example of a `for` loop" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "3989d19d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The plural of dog is dogs\n", + "The plural of cat is cats\n", + "The plural of bird is birds\n" + ] + } + ], + "source": [ + "animals = ['dog', 'cat', 'bird']\n", + "for animal in animals:\n", + " print(\"The plural of \" + animal + \" is \" + animal + \"s\")" + ] + }, + { + "cell_type": "markdown", + "id": "6f6c25df", + "metadata": {}, + "source": [ + "This example helps to clarify how the `for` loop works: When we execute a\n", + "loop of the form" + ] + }, + { + "cell_type": "markdown", + "id": "dbbce3d9", + "metadata": { + "hide-output": false + }, + "source": [ + "```python3\n", + "for variable_name in sequence:\n", + " \n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "24e8c514", + "metadata": {}, + "source": [ + "The Python interpreter performs the following:\n", + "\n", + "- For each element of the `sequence`, it “binds” the name `variable_name` to that element and then executes the code block. \n", + "\n", + "\n", + "The `sequence` object can in fact be a very general object, as we’ll see\n", + "soon enough." + ] + }, + { + "cell_type": "markdown", + "id": "cd045b26", + "metadata": {}, + "source": [ + "### A Comment on Indentation\n", + "\n", + "\n", + "\n", + "In discussing the `for` loop, we explained that the code blocks being looped over are delimited by indentation.\n", + "\n", + "In fact, in Python, **all** code blocks (i.e., those occurring inside loops, if clauses, function definitions, etc.) are delimited by indentation.\n", + "\n", + "Thus, unlike most other languages, whitespace in Python code affects the output of the program.\n", + "\n", + "Once you get used to it, this is a good thing: It\n", + "\n", + "- forces clean, consistent indentation, improving readability \n", + "- removes clutter, such as the brackets or end statements used in other languages \n", + "\n", + "\n", + "On the other hand, it takes a bit of care to get right, so please remember:\n", + "\n", + "- The line before the start of a code block always ends in a colon \n", + " - `for i in range(10):` \n", + " - `if x > y:` \n", + " - `while x < 100:` \n", + " - etc., etc. \n", + "- All lines in a code block **must have the same amount of indentation**. \n", + "- The Python standard is 4 spaces, and that’s what you should use. " + ] + }, + { + "cell_type": "markdown", + "id": "e210f170", + "metadata": {}, + "source": [ + "### While Loops\n", + "\n", + "\n", + "\n", + "The `for` loop is the most common technique for iteration in Python.\n", + "\n", + "But, for the purpose of illustration, let’s modify [the program above](#firstloopprog) to use a `while` loop instead.\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "2c9effd1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqPElEQVR4nO29eZxcZZn3/Tu1V/XenU53OumsLCGsYYsBVNDIosPo6OOMDiqiD44MzIj4OAM64vjMi+F99XF0eBlcPgrMjIj6jqDiggjIoiEbBAghIQlZOmvvW3V3bed+/zh13ec+p845daq6llNV9/fzyYdQXak6ferUue7fdf2u61YYYwwSiUQikdQBvmofgEQikUgkpUIGNYlEIpHUDTKoSSQSiaRukEFNIpFIJHWDDGoSiUQiqRtkUJNIJBJJ3SCDmkQikUjqhkC1D8AJVVVx7NgxtLS0QFGUah+ORCKRSKoEYwxTU1Po6+uDz2evxzwd1I4dO4b+/v5qH4ZEIpFIPMLAwACWLFli+3NPB7WWlhYA2i/R2tpa5aORSCQSSbWYnJxEf38/jwt2eDqoUcqxtbVVBjWJRCKR5C1FSaOIRCKRSOoGGdQkEolEUjfIoCaRSCSSukEGNYlEIpHUDTKoSSQSiaRukEFNIpFIJHWDDGoCjDHsG5xGRpWbgUskEkktIoOawL/+fi82fOMZ/HDzoWofikQikUiKQAa1LIdG4vj2H/YDAPacmKry0UgkEomkGGRQy3LXr15HMqMCAKYT6SofjUQikUiKQQY1AH/cN4zf7TrJ/396TgY1iUQiqUUaPqilMyr+9y93AQD6O6MApFKTSCSSWqXhg9qPthzGnpNTaI8F8b+uPB2ADGoSiURSqzR0UEumVXzjiTcAAJ9712lY0iGVmkQikdQyDR3URuIJjM2kEPAp+PDFS9EcDgIA4jKoSSQSSU3S0EEtmdbcjuGADwG/D01hPwBgShpFJBKJpCZp6KCWoKAW1IJZS1apJdIqD3gSiUQiqR3KGtTuu+8+nHPOOXzn6vXr1+M3v/lNOd+yIChwhfzaaSClBsgUpEQikdQiZQ1qS5Yswd13343t27dj27ZteMc73oH3vve9eO2118r5tq4hpRYKaKch4PchEtT+Ls0iEolEUnsEyvni1157reH/77rrLtx333144YUXcOaZZ5bzrV2RSGcAaDU1ojkcxFwqIYOaRCKR1CBlDWoimUwGP/3pTxGPx7F+/XrL5yQSCSQSCf7/k5OTZT2mpEmpAUBLJIDhaRnUJBKJpBYpu1Hk1VdfRXNzM8LhMD796U/jkUcewZo1ayyfu3HjRrS1tfE//f39ZT02q6BGdTUZ1CQSiaT2KHtQO/3007Fjxw5s3rwZN910E66//nrs2rXL8rl33HEHJiYm+J+BgYGyHltCsPQTzWFNvMr5jxKJRFJ7lD39GAqFcMoppwAALrjgAmzduhXf+ta38J3vfCfnueFwGOFwuNyHxNGVmu56pAZsqdQkEomk9qh4n5qqqoa6WTWxVmpagJOWfolEIqk9yqrU7rjjDlxzzTVYunQppqam8NBDD+EPf/gDHn/88XK+rWuSWfejWFNrjminRE4VkUgkktqjrEFtcHAQH/vYx3D8+HG0tbXhnHPOweOPP453vetd5Xxb19CmoGG/0dIPyPSjRCKR1CJlDWrf//73y/ny8yaRojFZMv0okUgk9UBDz34kpRby57ofp2RQk0gkkpqjsYOaRZ9acySbfpQ1NYlEkoUxhnuf3odn3xiq9qFI8tDQQU13P4qWftl83Ug8+KeD+Obv36j2YUg8zmvHJvG1x/fgn3/pjbm1EnsqNibLi5gHGgOQG4U2ELPJDL7yy9egMuCjb1mGrubK9UhKagtyQ0/OyvuC12lopWadfpSW/kbhzeFpqEz7+5zcP0/iANXfE6lMlY9Eko+GDmrWU/qzY7KkUqt79g1O87+nMzKoSeyhBfBcWgY1r9PQQc1SqWWDWjyRBmOsKsclqQz7h+L876mM/Kwl9tC9IpVhyKjyWvEyjR3UrCz92fRjWmW85iapT/YPCUpNlZ+1xJ5kRldoczIF6WkaOqjpzde6+zEW9ENRtL/Lulp9s9+QfpSrb4k9dK8AZFDzOg0d1KyUms+noCmkpyAl9UlGZXhzWEw/SqUmsScpXB/SVORtGjuoWUzpB6RZpBE4OjbLP39ASzdLJHaI18psUio1L9PQQc3K/QhIW38jINbTAKnUJM6I9XWZfvQ2DR3UrNyPANAklVrdI9r5AVlTkzgjKrWEtPV7GhnUkBvUWsKyplbvmJWadD9KnDDU1FLyWvEyDR3UrGY/AnJSfyNgDmrJtFRqEnuSMv1YMzR0UMubfpQ1tbqFGq9JlUulJnFCTDlKpeZtGjqoJTI26ceITD/WM6PxJEbjSQDAqT3NAGRNTeKMVGq1Q8MGNcaYtPQ3KJR6XNweRUt2/zzpfpQ4YQhq0ijiaRo2qImFX7v0o7T01yc0SWTVwmYE/dr4GNmnJnFCGkVqh8YNasLKy65PTaYf6xNSaqd0NyPg0z57OaVf4oRMP9YODRvUxGZKcUwWoJsHZPqxPtnHlVoTAlmlJqf0S5wQ7xdyTzVv07BBjTsf/T4oNME4S5O09Nc15Hxc1d2MYHZBI92PEieMNTV5rXiZhg1qCRuTCGDcU01SX8ylMhgYmwGgBbWATyo1SX7kmKzaoWGDml2PGqBb+mWfWv1xcCQOxoC2aBALmkMIkFKTQU3igKyp1Q4yqDkoNVlTqz94Pa27CYqiCO5HmVKS2CPdj7VDwwY1uwn9gHGgsSqt3nXF/kG9ngaAux9l+lHihFRqtUPDBjU36UcAmJEXcF0xEk8AAHrbIgCgKzVp6Zc4II0itUNZg9rGjRtx0UUXoaWlBQsXLsT73vc+7Nmzp5xv6Rq7EVmApt7IQCDravVFPKEtUkiNB2TztcQFxvSjXOh6mbIGtWeeeQY333wzXnjhBTzxxBNIpVK48sorEY/Hy/m2rkikrCf0A4CiKEIKMlXR45KUl5mktkhpCmmfu55+lKtviT1ib5rsU/M2gfxPKZ7f/va3hv9/4IEHsHDhQmzfvh1ve9vbyvnWeaGVl7nxmmgOBzAxm8J0Ql7A9UQ8qX2esZB26evpR6nUJPZIo0jtUNagZmZiYgIA0NnZafnzRCKBRCLB/39ycrJsx+JUUwOkrb9emck6WpvCmlKj5uuUdD9KbFBVZjASzUql5mkqZhRRVRW33norLr30Upx11lmWz9m4cSPa2tr4n/7+/rIdj5P7EYBMP9YpZqUm+9Qk+UiaUtOypuZtKhbUbr75ZuzcuRMPP/yw7XPuuOMOTExM8D8DAwNlO558Sk3vVZMXcD3Ba2pcqck+NYkzMqjVFhVJP95yyy147LHH8Oyzz2LJkiW2zwuHwwiHw5U4pPxBjacfpVKrJ8j9yJWa7FOT5CFpsvBLS7+3KatSY4zhlltuwSOPPIKnnnoKK1asKOfbFYQ++zHX/QgAzSE5VaQe0d2PRku/dD9K7DAHtWRalUMZPExZldrNN9+Mhx56CD//+c/R0tKCEydOAADa2toQjUbL+dZ5sdv1miCl5jSpnzGWM+Ff4l1UlWGGamrm9KNUahIbaAHsUwCKZYm0imjIekEsqS5lVWr33XcfJiYmcPnll2PRokX8z49//ONyvq0rkg7N10D+Sf1fenQnLvu/n8bEjExP1gqia60pJ/0olZrEGloA0z0BkHU1L1NWpcaYd1e/1EBpq9TCzpb+X716HKPxJHYdn8T6VV3lOUhJSYlnU4+KAkSC2ucelBNFJHmgoBYLBTCTzCCtMsylZVDzKo07+zFf83XEvqY2l8pgNJ4EAMymZM2tVpihEVmhAE8bk1KTsx8ldiQz2QVw0IdIUEs5ygZs79KwQY0bRYL5LP25QevExBz/+2xSXty1Aim1mFAL0Y0iUqlJrKF7Rcjv4wpfph+9S8MHNacxWYB1UDsuBDVy00m8D5lEmoTaCE0UkX1qEjvE9h9dqcmg5lUaNqjpF6qNpd9hTNbxiVn+dzkyp3Yg049Bqfmk+1HijHVQk4sgr9LwQS2vUcRioohRqVUmqKkqw5Ovn8T4TLIi71ePcKUW0pVaQM5+lOTBMv0ojSKepWGDGs1+zD8mK9eyLyq1SgW1X7x8DJ98cBvu+tXrFXm/eoQrtbCu1GSfmiQfBqWWzezI7We8S0Wn9HsJt7Mf51Iq0hmVr+gB4Pi4aBSpTE3tiV0ntfcWVKKkMCyVmhyTJckDOaXDAR+oS0mmH71Lwyo18UK1QjQTxE0pyEqnHzMqw/P7hrVjkcaUorFyP8qBxpJ8JIWRetL96H0aNqjRztd2Si0U8HG1NjRtVEeVNoq8enQCE7NaGnRG7hpQNLxPLZxbU5PpR4kdYlYnLN2Pnqdhg1o+pQYAKxY0AQD2D8X5Y3OpDMaE0VizFVBqz74xxP/uRqntPDqB//O7PbLdwIRln5pPDjSWOCMOaqCampzU710aNqiRUrOb0g8Aq7opqE3zx8w1rUqkH5/bqwc1N+/3r0+8gXue2sfrcBINK6VGSl2OyZLYkTBY+mX60es0bFDLN9AYAFZ1NwMA9g/qSk1MPQLlV2pTcym8eHic/7/dgGWR4ekEAPBRXhINJ6WWUZmnZ5WWizdOTmHT/pFqH4anEZ3S1Kcm+1O9S+MGtTwTRQBg1UItqO0TlVrW+Zi9F2KmzLMf/7R/BBmVoaspBEBbNeabU0j1N7thzI2KU58a0JgOyE88sBUf+f5mDE0lqn0oniVpodQS0v3oWRo2qNHqy272IwCckg1qbw5O81X8iUktqC3piAEof/qRUo9XntnDH5vJs0qczAYzp73gGhGnPjWg8RyQjDEcG59FRmUyqDkgLoB5TU0qNc/SkEFNVRlflTsptWVdMfgULTjQl/7YuJZ+pHpbudOPz+3VrPzvXN3DU2VODkjGGFdqU1KpGXDqUwMaT6nNpjJ800vZKmJPUhh+Lmc/ep+GDGpJIX3nVFMLB/xY2qkpMkpB0oT+ldl6WzmV2qGROA6NzCDoV7B+VRevBTndgOLJDDLZO5XVMOZGxqlPDWi87WfE9LS8VuwxuB+5UaSxrpVaoiGDWkKw4zq5HwHBLJK19R/jQS2r1Mq4Yns2q9LOX9qBpnCAu/aclNrkrN5uMDUnd+UWsXI/KooCv68xt58RA5nsf7RHnBPL+9Tk7EfP0pBBLSkENXGlbgWZRfYPklLT0o8rFzTz18qUyQ7+XLY/7W2ndQOAK6U2IQQ1aRQxYqXUgMbtVRODmhtXbaMit56pLRozqAl2ftoB2Q6xV202qTder1rYxJ9TribnzQdGAQCXnbIAgK4wnN7PENTkjYrDGLPcTw0Q91RrMKUmLHpkTc0eQ59aQKYfvU5DBjWasO00TYTQe9WmufOxKeRHd3MYFA/LYRaZSaZ5gCK1yJWa6/SjvFERCUFR5yg1Pqm/sW5UUqm5Q3c/+qVSqwEaMqi5GZFFUFA7NjHHU5C9bREoioJY9gIvh1lkcFJzW8ZCfj6Dklx7bpWarKnpiJ9RLGRUaqWY1L9vcBoj07VlizcEtQptoVSLJIT7BQW1hByT5VkaM6il84/IIjqaQrzx+Y/7NePGorYoACDKg0wZglq2haC7Jcwfi2WDm6NSMznaGnFKhhWkRCJBHzeGEPOd1L9vcArv/tZz+Jv/3D6/g6wwUqm5w6r5Wio179KQQS2RZy81M6TWnt9LQS0CQE9jzZZhqsjglJbqXCgEtaYQKUN3Sk1l5Ws5YIzV1I3QqkeNoPRjsUrtFy8fRzKj4o2TU8UfYBUwBjV5k7YjaTEmSwY179KQQc3NiCwRMoXszaYfzUGtnOnHhS0R/ljMhTIUa2pA+cwin///XsEF/9cTGBidKcvrlxrufAznqvOgj7afKU6p/e61EwC0Jn21hswmBqNIDS1QKo1oLNMnilQ3/Tg+k8RvXj3OJyNJdBo6qDmNyBIhpUYsatfSj3y4aYXSj03h/EHUHNTKZRZ54c0RzKVUvH58siyvX2p4j5qDUivG/XhgOI7dJzSFxhgwXUMuQmNNrXaOu9IYxmRR+jGdqWpq/5u/34ubfvgifv7Ssaodg1dpyKDGp267VWqmoNabk34sR1DLph9bhZpaiGpq7tKPQHmUGmOMB91aaRuw61EDRKNI4avvx7MqjZiYqR1zjqypuSMhNF9HstcPY8bJRJXmyJiWITkyPpvnmY1Hgwa1wmpqNNiY6MsaRcqZfqRZk2L60Y1SMwe1cjggJ2fTfPVaK0GN6pDmHjVAMIoUUVP77U5jUJusIcepMf1YnTRWLWz5YzCKCOayaqYgx2fkThx2NGRQE8feuKGvPWp4Lim1crof9aBmodQcUkXmm2o5LvqhaX2j1FrphaObtqVS483Xhd2kTkzMYcfAOACgM+uQnZytjfMBeCP9+D8f3IpL7n7K00pRdEsH/QrfdipRRbOIPrS8dhZRlaKsQe3ZZ5/Ftddei76+PiiKgkcffbScb+eaQpWa36dgxQLNLNIU8qM1ogWXGK+plcP9mA1qrRbuR4dVNV3sVIsrx/YzZGIBaieocaVmUVMLFul+/N0uTaVdsKwDy7u0wde1pNTiVU4/HhiO4+k9Qzg+MWfYXd5LqCrjtVaaQKQ7IKuo1GjPRA8vBqpFWYNaPB7Hueeei3vvvbecb1Mwejohf58aQVM9qPEaAKJlSj8m0yrftdrgfgznV2oU1BZnzSzlCDqDwt5b04nauIlzpWblfixSqVHq8eoze9EaDQLINep4makqN1//ftdJ/Vg8ujiy2tEjUuWhxnJ7KWdyl60l5JprrsE111zj+vmJRAKJhH7DnJwsj7OukIkiBJlF+rLBAihfTW04O5ki6FfQEQu6fr9EOsNXj4s7otgxMJ6TftxzYgr3//EAPv32VVi+oMnqZfJCJhagdr5UTkotUMSU/tF4ks/mvOrMXrx6dAKAsfnd64jXRjKtIpVReYAvlP1D02iNBA1u3Xw8IQQ1ry4GxMkhZCzT5z9WJ6jNpVS+MJfpx1w8VVPbuHEj2tra+J/+/v6yvA9txe42/QgAV67pQVdTCFed2csfoyBT6oub2/mbw4aBy/rsR+sbJ9VzFAXoy9b9zErq/j8ewMNbB3DDA1tzTCVuEXdJrpVCNSkR84gsQKipFRDUfv/6SWRUhjMWtWJpVwytUe11vXpztsJ8HRW7/czIdALXfPM5/PX3XnD9b0bjSWw7NMr/36tpW6sdPcrZyuMGwyg8mX7MwVNB7Y477sDExAT/MzAwUJb3SWYKs/QDwFmL27DtnzbgI29Zxh+LlGn242B2cHJ3a8TweFMeYwpd7C3hAFojmsIzKykKmAeG4/jsj3cU1Swsph9r5Us1kyD3o1X6sfAxWaQyrs4ucuh8e/XmbCajspyUY7E9dgdH4khmVOwbmna9DdNTuwchPtWrBpuEME2EFpj6nmrVqamNzyb532slU1JJPBXUwuEwWltbDX/KQaHN14R5mxo3Ez6KQVRqhvcL6/upWdmg6YbaGg2iJWtmMQedkbj+hXhq9yD+9fdvFH58k3Wm1AocaMwYw7aDmsp4++naXnd6Ta1Wzod+nDytXeQCZWhKu6YY0yZduOGJrMmGnISlXAxsPzSKv/zOJuzMpoTnA79XCAvgas9/FHshZfoxF08FtUqRsLhQi6Fcsx+tnI+ArtQYs3ZekVJriwbRnFUO5qAzGtde+yNvWQoAuOepffjtzuMFHp9QU6sRo4jep2Zl6S9s65mDIzMYm0khFPBhzSJt4VVrSo1Sj0G/wtsRinXSDQm7E4zG8we1uVQGz76hzVGlDXBLmbZ99KVj2HJgFL9+tbDr2gpefxcWwPqorOoEtXHhXM2l1Ibb3DYfDRnUkgVa+u0ol/txyGKYMQBEg/oN2coBOSkGtaxT0rySG5nWbjr/87KVuOHS5QCAf/zvVw21g/zHV4NKLWGv1PjsR5eps5cOjwEAzl7cxq8hL9fUJmZStv2LTeEAv1aKvY6HhethxEVQ+9P+YcymMuhtjeCSVV0ASmuwod+jFJZ7qzmxpNQSVbL050wNqpHvYKUoa1Cbnp7Gjh07sGPHDgDAgQMHsGPHDhw+fLicb5uXRAFbzzjBlVrJa2q500QAwOdThFRR7nvSDbU1EuS9dOLqey6V4V/4zuYQvvDuMxAO+DAxm8KJibmc17NiLpWpye1tdPejvVJzG9hfzAa1tf3t/DFdqXnrBpNMq9jwr8/g6n991lDvorR0czjAr6lKKTWqR25YsxBtUar9lm4xQJmTUgz7tVoAV9vSbx7FJnvVjJQ1qG3btg1r167F2rVrAQC33XYb1q5dizvvvLOcb5uXUim1cln6By2miejvad+rZkw/ZoOacJOlVXTQr6AlHEDQ7+MtCscm3M2QI5VG5cVUhtXEhol6n5pV83VhfWovHR4HAJy/rIM/5tU+teHpBIamEjg2MYcxod4VF4JaUzj/TFHH9xCVWp6NUlWV4fevDwIA3rWmFy2R0tci6ftYiuvSMahVq6ZmusZqJeVdKcrap3b55Zd7chVf6EQRO6LBchlFcocZE01hP4anrfdUo4u9NRoQ0o9CUMvecLqa9FaBvvYIDgzHcczlYFQ6tr62KI5NzIIx7T0iwfmp3nLjqNR87mc/ziTTfCr/2qXt/HFSxl4LaqJyGplOYkHWfESLneZwgNdqi23AHp52n358+cg4hqYSaA4H8JaVndh6QFO9pbwx6+nH+X8vExmroEZGkeq7HwFvOCAHJ+cAJTe7VA0asqZGaYlCmq+tKEefWkZlGJ7OnSaiv6f97te02m2LBvkKeDqp7/FFNxwyBgD6Lt5ugxoptZ7WMJpDuSlOr8LdjxZKjfrU3LgfXzkygYzKsKgtws8dAD2Nlki7trVXgnEhVTUSz23FaI7MX6kVkn7c9OYIAOCtpy5AOOAvSy1ytoRKjfe0CjW1cJWNIhMmVVvtmloqo+Kabz2Hd3/r+aL3JCwlDRnUSm8UKV1daTSeREZlUBRgQXMo5+dOu1+L6Uey9DMGzGS/fKPZYNklvK6efnRXUxP3ebNKcXqRVEafwGCl1ArpU6PUo6jSAPBFBOCt8yGmHMWAY0w/Fm/pZ4xheEpQg3mCGtVuV3Zr02zKUYukraBKkn7M5Nbfqz370dw2YXYgj8aT+O6z+w0u5XIyNZfGSDyJ4ekEX5BXk8YMapnc1VcxUFBTWWm+QICe3utqCnEFIcLnP1ooNT39GEQ44ONpNSrC00q9S1Bqi9s1Neg6/SiYWHgvnMdz+mJ6eL59amQSOX9ph+HxUMDH3aleqnGIQW1EuOEY0o9hUtyFK494MmPYT3A0z03NvKUS1SKnS6hwZ0uYfrSuqekbhVYDUrV0TOZF1H+9cAhf/fVufO/ZNytyPKIhZzhPTbUSNGRQo5RCeJ51oJjw70vlgNSVkHVu2kmpic3XiqLkKCk9/ajX6gpNPw4K7Qa8bufx9COdq6BfsVTnbvvUGGO2Sg3Qbf3Fjh8rB2NxMf0oBDVRqTlcU/kQTSJA/vSj2QRFCyOgdAqXfo96NYpQn9qSbJbFrHKPZ9XwwGhlNhAVFevQlAxqVaFUSi3g9/HXmCnRBT40ae98BET3o71So/qOeaqIU/rx+Li7VMWQ0Bhu1+DtNZx61AAx/eisFI6MzWJ4OoGgX8GZfW05P/diA7ZRqYm7K+TW1IqpjQ6ZVub50o+0KKLBx0F/6RUudz+WRKnpY7IIGmhc7T61xR3WO3GMZT+DE5OVST+KSs18PVSDxgxqRY7JsiLKe9VKc2M3f+nNONU/JoQ+NQBoDhvnP9INR0w/9mXTj1OJtKubilhTa7HohfMiTs5HQEw/Ot+kKPW4pq/N0u3pxVFZdjU1o1Ir3sVLSm1J9gY7NpO0nSfKGLPc0b2UCldV9RaTQgYK2MFran5vKDVVZTz9uKRD28PPPLR8NPuZD1YoqIlKTaYfqwQfUjpPpQaUvlfNqUdNez9rpaaqjN+ouFIL26Uf9aAWCwX49jZuUpCDwk2pxWZqiddw6lEDBKWWp6bGU49C07UIt/V76HyMzVinH6361IpZnNBN7PSeFgCae9cuOE0l0vwGKC7aSqlwxfpe+Wpqzs3XqYyK7YdGyzK+aiqR5oOgl9goNVq8DE4lihpYXiiiIpbpxyqhb89eOqXmNqjNpTLYdnDUtig+mCf92GTzflNzaZABk1a+upLSbhY097HL5Kqkulq+FGRGZTyFVYs1NTul5rb5msZjiU3XIl5swB63ST/SjbA5EuCDsoupqdFNbFG7bhyyS0HStd0SDvDvDVBahSt+L0pi6XcyitikHx/800F84L5NePBPB+f9/mbo2ooG/dwdbU7/U/oxrTJXY8vmi3iepfuxSiRLNCYLEIcauwtq3/z9XvyPb2/Cf794xPLnlJNe2GptFInxOX3GC5lWuZGgj/9ezdydmFVqVFNrMgZMqqsdzaPURuIJqEybrN7VXDuWfqcJ/YC7PrW5VAavHdM2rbVXat4blSWmHK3Sj+LsRytHbT6GstfUguYwT2vbmUUoAHabhgqUUuHOljioWS2Aw3nSjweG4wC0LXlKDfUdavNdc7eXUlVmSDmfrEAKUjwPZuNQNSjrRBGvUqqJIoA+ZNit+/FQ9kLf/OYo/vLC3E1QB22GGRNNfKNQ4/uZTSIADFNFzHMfRdza+mml3dkUht+n8N4sL0w0cMJpLzXAvk/tnif34sFNBzGbzGAurSKjMixoDvO0jxkvDjUWm6/HZlJIZ1QE/D6efhRVU1FGkexNbEFzGJ1NIRwcmeEZATN217Y+Kst43n71ynE8sesENr7/HIOyc2JG2DGjJBNFLO4V0TxBjc5jORZ7Vr2o4mJgci5l2Kfu5OQczlqca2oqJUalVv2g1nBKTVUZd7mVJKhZFNmn5lJ45ci4ZUM2XfC7jk/m/IwxZjvMmLBTalZBjU8VSaR5GiLk9/FaGLGIHJB5GrCHzHbsedRiKklepWbTp/bQlsMYnk4inszwdPH7z1+cs68e0Wpzc64WybSa89lQjU10P/Ip/fOoqXW3hHmriF3Ka8imXYUWA+bF0T1P7cWjO47hhQMjro9HXFymVTbvCRe6U9p98zUFs3J8L2hEVltMmO8qvI9ZJVfCASkGNS+4HxtOqSWFi7wUNbVYMNf9+MVHduIXLx/Dw596C96yssvwfPri7j05hUQ6Y0iBTs6l+QViNfdRfD+zUWTS5HwEhJraXJrXUzqbQjk3ZbfpR/NMylpJP+ZTanZ9apRS/o9PXIzTeloQDfkNiwYz9LNC0mi/3XkCQ9MJfFTYUb1UUD3Np2gLnInZFEbjSXS3hPl12BQK8Jt0PJmBqjL4fNZB2woKaguaw7zGY9eAbV4UEXZGEbohF9IDan5uMqtMi8Wp+dpuFwCqMZcjgyEuXlsjuYuBMdO0kZOT5Q8yomIdn0khlVF5nboaNJxSE3tLSqHUrNyPpMIoty5CTsG0yrD35LThZ7SPWkskYDsgOGZj6XdMPyZSls5Hwm360XxTqhWjSD6lZtenRl/Wld1N6G2LOAY0oHDDQyKdwWcefglfenRnWUYajQn1F3IbjkwnkMqofPHUIig1wH1tGDBb9MP82rI1itgFNYvzNpfK8NRpIWlEs4FqvqOsLINawLnkQIu8cgQ1Oift4nxXYfun0bhxYXDS5fi7+WCuXY5U2SzSeEEto12IiqJPZ58PVu5Hmm9nZXUXUwXmFGQ+5yMA254i6/SjvpKzarwmyP14cnLOcVSR2KNmfH1vpNvscN+npv/ujDF+Q3S7A0Gh1vQ3TkzzG0I5etto1d4RC3ETx0g8aRhc3BQOIBL0gb4KhQw1nk7omQWqqQH2RhG7Hkyr8yZawwsJTOYhCPPdU83Z0m99XDSLsRzpR6uNgDMq44uRMdO5P1mB+Y/mc1xtW3/DBTXRzWRXGykEs/txci7FL2arlZqYqtt1zBTULBpTzVAKzbyfmjgii2gWal5Wcx+JhS2a8SOVYY6FXnO9r5rN14dHZvCLl4+5GiSdr0/NKv0orj6jboNagUaRnccm+N/L0chLN7iOphBfzIxMJ/h1GQ74EPRr34Nitp+hm1dTyI9oyM/fI5/70Xx9W523QUNQc39Mc6bjn+/UD76jh8XO1xmVWfailbWmRkotFkQs5Iefz3fNTg2a0d2oAFxv/jsfzIuOaptFGi6ocTdTiXK+ZBShVIR4EZmDWkZlhptGblCz30eNoBSaeedrcZgxIVr6reY+EgG/D73ZFgKnuprZvUaW4um5yu9+/cVHX8Xf/+glbD4wmve57vvU9N9BTC0VrtTc3cx2HtWDWiFpP7dQ+rEjFjSoKFoQiXMXi9l+hnqSSHnRtWV3UxsURqyJtFictyFBYRQyONhsoJqvrZ9PFAnmKjUgN+AyxirmflQUJWffRFrInLFIa4YfrIBqylFqMqhVFj2dUJpNLc01NbEuZU5DmVduu45PGjr+aWLFsq4m2/ejFXVS2E4F0PdYMqQfhaDjlH4EgEVt+etqeg+dMf2YVpnrFNH+oWls/PXr8x7hc3RMO043fTj53Y/aalc8n3PC1Bm/yzS1OHHejevOENRKvNEsoKcf22Mh3ps4Ek8aJvQTVKstJKiJdn4Ajn1qibReI+tutulTs1Vqxacf56uAkxaLYNFgZj62RFrlaexkRi25Atfdj9q5bjZN9RnlQa2V//98U7D5MKthqdQqTCmniQBCn1q2P8ZJqVFQo2nx04k0BsZmAGhfvmfeGAIAbDhjof37CWpDvBHq7kf9RiWmB63mPorkG2wstht0N2sBMBbygzK45j2drBgYncGHvvsCvvPsm/j+8wfyPt8JmlTuJsUTz+N+tJooQue2kPmghonzeY4rlVHxenYHbWB+N99EOoObf/gi7n16n+HxMcEcpKcfk9zY0yQENd6ALSid5/YO4WuP77YN0KKdn94H0IKpWbmTqgv6FbTHjIYbWgyItdlBwbVXyE3ZvDiYt1KzqKkpisLvH+bPzfy557sO/uuFQ7jloRddj9QyL15bTA5IWsisWNDEj3mwzA5I+nzoXiBrahUmUeqgZlJqxw1BzXijp/9vjQT5rDxKQf5p/zBmkhn0tkZwtkOzZCig7wwg3oAs3Y9CUBsWLP1W5LP1W7UbiOmPfKmWkekErv/BFn7BvyqolEJRVcbt6m5SPBTU7CeK5M5+LNQkAmjBkZR7PuPH3pPTBmU4n/Tjc28M41evHse/PbnXEEzGhPoLKbVRwShiUGoWTf1f+eUu3Pv0fmyxSfGKdn5Av7ZSGZaTgiVl3t0czqllU9p2KqHv0i4q8ELqYmYD1XxVit2gBrouzK+fs5DNc33e94f9eOyV43jliLvvwwSpb1NQo+A5KixkerLf03JPFaHPh8oS1R6V1XBBrVS7XhPm9OPxCT0o2F3gLZEA1mTTAzR66XevnQQAXHlmT14Di9Wsvkmrmppw0zo8qinCrmbrel0+W79du4GbBux4Io1PPLAVbw7H+ZfwtWOTRdfhppP6UFc36TL6bGz71Cym9FP60a1JhHDrgBRNIsD8lNof9w8D0G7A4ip5XHA/UsAZjicM1yHRbKqpqSrD4RHtmrFryjenHyNBP38dcwqSO2ctxr+Ju7RPZ6/pfEaRVEbFvsHpnGvIvDiYt6XfZpsqu/mP5iCWT6nRQtdt+jl3eymjyjUEtawhp9y9avRdWZxdGFd7VFbjBbWspb9USo27Hy2VmvGCprRPcySANX1aUNt1fBIZleH3r2tB7V1revK+J3eqCatquomKSi0S9PMvI9Uz7NKPfKixzQ3Mrsco36gsxhhueehFvHxkAh2xIH7yN+sR8CmYmE3lbfa2Y0IY/eSmR46CfyF9auSiixS4PZHbbVReO2oOasXffP+4b5j/ndLZgMnSLzgTpy3Sj+bdHwanEvyGblf4N6cfAQiGFOO/sWu8BrTrlL6PtDjLF9S++uvXseEbz/CUPZGbfiy9pZ+O2erYzGl4p8UNY7pxzI1ST2VU/nxK4ZrTjxTUOmIh9GTr5OWeKkJKjbbCkUaRCkMfQKmUWjRoHFt1wjH9qKd9zqSgdmwSOwbGMDydREskgHUrjBNIrOCpoux7MsYs04+AnoIkzHMfCUo/2iu13BuY+Pp2QW1gdBZP7xlCwKfgBx+/CGcsasWp2dTrayb3p1vEeYZulBoF/6Y8A40N6cf5KrU8QY3SrxQ0i00/Dk7N4Q2hiZ8UOWB0P9JiZnwmxa8VUcmb3Y9icLSrkehKTb+meAP2tI1Ss+nB1Oc/prOvLbgfLQI+DTbYN2gcYJDjfpy3pd96+Dk1YOdVag7px0R2nijgbocEcaHUwvdM1L9/qYzK076iUiv3vmp0jmgmqjSKVBieTqiQUhPTI3raJ4jVi1qhKNoq6kdbBgAA71i90NVx8fmPCX2VR46rVnNQE25cVnMfCUodjMSTlitj+kJ1xIxBsTlP+pH643paI1i7VNuyhQK6Wa24hRxgTu9LiI2pMTujSNbdmDIYRcjKXWBQczEqK6My3ni/tr8j+37FBbVN+41zEQ+P6IsSrtSaQmiPhXghnwKfuODRB2Vng9po/qBmtvQD9g7IoTyDunmv2pw2dFmcSmJl6afzZa7d5dbU3Ac1xhiefWPIcFO2V2rzN4qICzI36WdazLVEAtyRK2ZK6OeKoi1ue9uyvWolCmrPvDGEN05O5TxOx047cY/PpEqyQWuxNFxQo5VbKbadAYzN11NC4zWQa3Wnfc1astt9LM9a9x956SgA4Mo1va7es8mk1Gh16/cpOb1YYt3Eau4j0RoN8N/FKgU5ZVGHEf/fbqqIlYI8q89YTywUccU6nWe7FFEB5VNqjIGvnOmLWqhSa3MxKmv/0DTmUiqaQn6ehi62pvb8Xi31SDdZCljiZp0dsRD8PgWd2QXJoWytrDlkodSy19SRMT04Wo3wYozxNNOC5tz0o3lUVr5B3aLCHZ5OQiyVWZ0besysiOlxSikXcl437R/Bx36wBV/42av8MTu3dNhmo1A7x7MVYvnAalGz69gk7n16H6/10ucpukfFPRPHBBOJ36egp5VqavMPavc+vQ/X/2AL/uY/t+f8jBYOva0R3h4zYrNTQyVovKBmU/gtFtH9SMGgJRLgY4fEm724MSMAbhbJqAwhvw9vP73b1XvGTKOyzA2ZIqJSs3M+ApqT0SkFScqjJWJUguLQZCusgtqZWXdnKdKP03kMGTQjU1Hs62PkfgR0swgFw4Jrai72BqP+tDV9rXwRUkxQY4zhT1ml9mfn9AHQFdbEbIoHBroJ0udvqdTCRvdjPqU2OZfmN3xDTa3ZOv04ZFF/E9Ft/emcm7BV+pE+H3MQmeE1J+04ClFqh7K/8x5Bjdhlduwm9ZuDmNP8R/G5sxa/48bfvI6vPb4HP99xDIBxRBZhGIUnTJABIAS1+QWY7z9/AF97fA8A6wklCSFVT7Xb4anqOSAbLqjxlVeBNys7KMAk0ipvCO5ri/JgIqZHzGqHVukAcMkpXYYA5ESTqVF2wqJHjRCVlV3jNeFk67dTavnSj1ZfxDOE1OtIEfl3Uanl29iSCutNoYCtSg369GshbVJqhVj6AXe7X+88qgXzsxa38RV/MTW1QyMzODo+i6BfwfvPXwxAD1i0am8JB3gfnnk243xqapSiawkb3bBdNkaRfHNNxcWAeQqGVWASx9IZHs9+3h3ZQF6IUYSuq2Pjs1BVhkz2D2DhfrTpU8sxhzkENbElZ9aipkaf4XN7NTMMpd3bo/r3WLT0877EbEDvFZRasU7jH205jH95bJd+nKlMzmtRYA8HfVy1V7Ou1nBBLSFMiigFYnrqzWzxWtvaPrehlO9hlZ30IQY1t6lHIFep0cajVrtlizcuO+cj0Zd1S1k1YE8J9UDj6+s9RlbY7R5Aqddi1Nr4jPuaWr7Ga0BPVQH6/Mdi049uRmWRUjurr01o3i+8BvF81vW4dmkHVvdq19KJybnshHvjqh0wpgkBU1ALGdOPA6PiZJx0zs2bm0RMQcpqTzVV1WeK2o2AEyf1U7qTrpmERcCnmqc57W1WaoW4SulaTWWY5v4UgqlZqdkZpKjEQJmaaYehBEallvs70u/yx33DUFXGXb/G75J+vY3OWCu1mWSmqJ00fv3qcXzhES0Ve926pfzx3Ckq5Cj382usmg7IigS1e++9F8uXL0ckEsG6deuwZcuWSrytJaXuU4sEfbwA/+aQ5sRa1BbJsdpqf8+6zrI/O7OvFT5F+wI4TRExY66pvXxkHABwXn97znPFIGTXo0aQrf/EpEX6cVYvUhtf39n9yLefN02RWDOPupqYfsy3Q4CVfd2MOAaLDDfFNF8D+YcaqyrDa9ketbOXtPH0dTFGkT9l+9MuO2UBOmL61PYjY7N8C5IO4byb08/G9KPeJpLOqDnmAvPKm9v5TdeU1VDjsZkkV8BdFrNHAf06mpxLcVW3tFOziDvX1MzpR+3/56PUAODo+IxjUCPD1Lhp/zJKw1NAcXI/xvMENbomhqeT2HNyik/RabOoqU3NpXKUWjTk5wq4UAdkRmX46q9fB2NaQPvf7z2L/8xuvmYk6OPp5WpOFSl7UPvxj3+M2267DV/+8pfx4osv4txzz8VVV12FwcHBcr+1JUkbi26xKIrCV9v7eVCL6lMShIuabrDkQFzYEsG3PrQW/37d+ZYqyw6z+/HlAe0mee6S9pznNpuMIk50NGnHLAYNQpyGYvX6drUtu1YD7oA8VrgDclxMPyZz0yEi9AV0Su0qiiL0qhmVWsFBLU/z9YGROOLJDCJBH1YuaOLXTqH9VKrKuPPx0lO6oCgK+rNBYGB0xjD3kTCnn41KTU9pH5/QtiAKBXxcvZtTgrpSM76mlfuR/m1nU8h2MSkaRej5PKg5pB/NfWG0GOlwqKnZjaQSg9qRsVn+mfgstqmy22aHvu+92fPmlH6cMRhFco9JdHI+v3fYcc/E6bm0vpARvucUXE9MFBZknt07hCNjs2iLBvGlP1sDv08fDZbb4J6r1Oo6/fiNb3wDN954I2644QasWbMG3/72txGLxfCDH/yg3G9tid3Ym/lArsE3h7Q0YK9BqYmmhty61LXn9uHqsxYV9H6iUptLZfB61h5+bn/ueK1C0o9ON2T6cprrdvkmiljtHgAAZ/Zpx2reqcANYvN1Js8wZXJHxmwm9BM0VYR61Yo2iuRxP3KTyKJWBPw+vU+tQKW26/gkxmZSaAr5cU52MbO0U1Pah0dnuIIQFzLmz9+qpjaTzHCTyJL2KF9smVfedkpNdD/SYsOucV9EbIUgVdFvo9RSGb2/Swwa6YzKjR16+tH4bzftH8GZX34c/7HpYM4xTBqU2qzhXmGux1LQNO80TWk+GhDulPYzph9znydeE8/tG+bXfbvwXRIXz2P8M9d/TsG1UAfkQ5sPAwA+cP4SvrCzyiowxvRevqCP9yxWc1RWWYNaMpnE9u3bsWHDBv0NfT5s2LABmzZtynl+IpHA5OSk4U/Jj6kMQY0+bPry2qYfLWbuFQMptdlkBq8dm0RaZVjQHOK9ZiKtBqOIc/qRVoBW0zBsa2p50o/chmyj1A6MxAved0rsUwPc9QLlO+fkgEzxmpr231KPyaI5ijTfM1KkUYSmiLxlZRc3gpCyOTw6w1ft7Yb0o3XjPKDXHKcTaW7nX9IZs00nkbvNXKej9GIyrU+/sGvcF9En9adzlZrJnCCeK7EXVJzQr6cfjQue7YdGkUyrhikshCH9ODZrOyIL0AOHWanRwpVS+a7Tj6ZFjRigAWDLgRFep7JyP86mMrwWKfaSUgtFIb1qxydm8dRuLZP21+v6+eMxi2s1mVG5yzYc8AvXS/n3cbOjrEFteHgYmUwGPT3G0U89PT04ceJEzvM3btyItrY2/qe/vz/nOfOl1FP6ASAWNN4wF7VFLY0iZkt/sehKLYOXB8YBaPU0K3dfIenHVsegZldTcx6TZZd+XNAcRk9rGIyBK023mI/PTVBzqqkBuXuqFe9+tK+ppTIqfv3qcQDAhuw4tKjNuKV8bD2oBcf1q/QJNGJQE+c+Eo7pR67U9J0j+juitkGNbqBmo0g05Oe/Ezlb7Xa8FuGW/kSKP59+H5UZdyUXNwLNqIyn6Sgw+BT99cwTRSjQjlmk2M3pR6dtqnSlZn0tklJzujanRfej6fMXA3R7LIi5lMr3DhQXKuL3m8w94udMDdiF1NR+vHUAGZXh4hWdOGVhC3/cPLwdMC4awgEfV+51q9QK5Y477sDExAT/MzAwUPL3mONOndIrNUJUaqILbpqn8Iw3+ELhQ5QTaW4SsaqnAbo7CsiffuRKzfRFTQsz50ph6ScoBVnoZBFxcgLgPCqL73pt03hNUM0klTHX1ArtU9N+z3gyk1O7eW7vEMZmUljQHMYlqxZkX9+63ykf1BO5qruZP2ZVU+twSD82WTRfpzKMp9GXdMR4ytBcU6MGbgo8IuYG7HyN14B+3sbiKX5DFF9bbHI2B4BJ01DgWCjAPzdzrZL6Fs0GD8BsFJl1XACL2+yI0OKPlJqTkcloFDF+/mKAvvw0rX+VjkdM5QeFFDa14ogLGV5TcxnU0hkVP96q3XdFxyMgpB+F8y8uGsIBH1/k1G1NbcGCBfD7/Th58qTh8ZMnT6K3N9fCHg6H0draavhTaqiPpxBjRj7Eek1rJICmcCBHwaQzKr8Y5p1+FIbP7sgqtXMtnI9AYX1qpDLELUAAY8Cybb5OWO9+bafUANEs4l6pzaUy+hY42S+Qm16gZgdLPyAotZyaWmFKTTzf5uOiJtprz13EHZdWNwo3iNPYCVGpjVm4H8X0c1PID59gfogJv+frJ7TPo7/TWqmlMyr/Hq1YkLuhLXdAZoNTvsZrQE8/Hp+YRUZlUBStNYYWLuLN03yu6DyTgtAGJPtz/h1gr9QYY8aamph+tAhqtFiYmE3xNhBx1+teQanZGZmME0Wsm8hjoQAuO9U4lEHsUwP07yTVGTstjCLUgP3c3iF89Pub8fRua6PeH/YM4fjEHDqbQrj6LOM9mjJSYqpUN4lodUdKR1dzVFZZg1ooFMIFF1yAJ598kj+mqiqefPJJrF+/vpxvbUlGZdh9XJsWQNM8SoFYd6EVmtkoIgaGeacfszfoY+OzfMVsr9S09wr5fXmDKQUexowFbrpphAO+nC84/Z7ijEVCnCruqNQKCGqk0vw+hTeXOik1N5Z+QNhTbZ7ux4Dfx9PDk4Ym8TTfXui95y3mj/M+tQKMIowxroLEG9jijigURbsh7ss6ccVVe3s0yPunzOdDNK0czPZb9nfEeDpJ7Ds6MjaLtMoQDvj4ZyBidgYO5Wm8BnT1QWuprqYwgn6f5Wac5nNF55nMFrGQPvU/R6kldaVmmMua0Lcz0l4rw6dnWNXU2oXvCi3cxF2v+7JbOaUyzHaqiVOfGh1nNOTHZacsMPzM3B5jnudq5X48PjGLrz++Bx/7wRY8t3cY//zL1yyD7Q83HwIA/I8LluQOcXZIP9L5bo8Gqz4qq+zpx9tuuw3f+9738OCDD+L111/HTTfdhHg8jhtuuKHcb53DwZE4ZlOandpqhVksYvqRVmhmowj9NxL0cVVQLKTU6Mu0ckFTzoVOrOxuQl9bBG87rTvvPm3hgJ/f2MQbMqV3zA5GQLsp80ZTkzIR0zlW/5aU2t7BKdeWdn2qQtCwCaodlG6ym/tI6OlHY59aoUYRQJj/KKSefv/6ScymMljeFcO5S3SXakSYIeh26sNMMsNXwWJQCwf8WJS9iYlbkBA+n8L/32phReeIbu79glFE3CPrQLbZf3lXk0HtEWQW+c6z+/GzF4/geLbv0TGomTIA9FyrzTjzKTUtqNG/Mym1rDpKZZjhuqFrNRTQe60oDWs1fSjg9/HPmVKQ4uuJrlC763PGMFHEOv0YC/nR2xbBKQv1NLPZdCVmBwI+xRDkegWl9v8+vQ+MaQvCQyMz2HZozPA6R8Zm8IfsVj4fvtiYegSsjSL0udDn5PMpVR+VVfag9ld/9Vf4+te/jjvvvBPnnXceduzYgd/+9rc55pFKQPbx1b2thobb+SKmH2mFpu/ma1RqYo2rWMw3aLvUo3ZsATz7D1fgex+7wNVrWzkg7UZkAcbdr832ZXqNlnDA8nwv6YiisymEVIbx0VH5EJu589XztJ9lx2S5NIrk1tQKD2pWtn5KPf75eYsNiwtaRDDmfk4hBaxwwJfTqtBvqnF1NBmvN7rhWO3WYNxfzY+OWNCQfqSgeyB7s7dbGL7nnF5Eg37sH4rjtp+8zA0MTulHbbGnnxeaPGK1xYvZVEOLBwpq0ZC+ODM/VwwkYj+mmCYnF/GBYU3t2k0f0hVp9jsubC0VEDIjdg7IaRfpR1pUkVoL+JScz1xcoHSYhpYvaA7xRWdzOIB7PrwW71+rZQr+e/sRw+t8//kDYEx7L6vPVrf0i7sL5I4drHavWkWMIrfccgsOHTqERCKBzZs3Y926dZV42xzIZSeOpyoFogmht9WcfjQqNavAUPD7mepDVpNERAL+3D4bO5yDmnVApsftlJqVSgO0gHjhMm3rFXLz5WNc6NVpchHU3IzJAoT0Y8bofixGqZlt/aPxJJ7NroDfe16f4bli0HTrgKTUY5fFrgtm44Z5qyC6EVsFefFm2d8Rg6IoPBAlMyr/PA+SUrMJau9Y3YNNd7wDn7/qdK64gn6FZzGsUBTFoNZ0pWaVfjQGfzJjiZ+ZnVITA4lo8jAEtQ4Katrvadf+Q/VKWmSYv+PiXmdWmCeKiEpdVJ2AHtTaY7lDy1uEhXKn6fMO+H34xKUr8PbTuvHY312Ga8/twwcuWAIA+NUrx/k5G4sn8XB2C6xPvW2l5fHqQU0/p1ypCalKPiqrSlNF5n+HrSFoD6tS1tMAY/pxEU8/Go0ifNuZEgS1QpRaoVhtcqlPE7E+drtRWVZbZZi5aHknfrfrJLYdHAXevirv8U1Q+jEW4mrDqaZGK/P86UejUiu2+RrQDTeb3xzBpacswK9ePY60ynD24jaDWxHQFGLQryCV0WqS7S5en4YFW234Kga1aNCfozQpNWhVXxUf6882cocDfrRFg5iYTWFoKoH2WIjf7FcsyHU+Eu2xEG6+4hTc+NaV+N2uE2gOB/I6UFujQR6wySkZtlBqOe7HWaNSi4X8XDmYg5qo1ESziOjSpc0uKf1oH9SMDkjKytB5bIkEcGIyd+oJIV63KtMWDvT76vVB7bXedlo33nden+V3vcWg1HK/a//0Z2sM/3/x8k4s6YjiyNgsHn/tBN573mL8x6ZDmE1lcGZfK9566oKc1wD09OOM0CguNl4TXN1XSak1VlDLph/PKHFQE51ji9rNNbUUGGOGXa/nC82bZExLjZyxqCX/P3KJlVKzm/tI6GlA45fXyc5PXLhcU2rbDo1BVZlljUZEXFE35VkJa8fktk+NjCLzm/0I6GahBzcdwo+2DHBlbVZpRCTgRyqTdm3r1+c6WgS1Lj3QdFgsJij9aFVTiwnnaEmH/jrdLWEe1E7taRGCWnPOa5gJBXx8W5x8iNdXT6uDUstTU4uGAlw5mIchi47DcQul1hoJYEk2/UjpdLv0Y4fJEDNt6kPVR8jZpR+Nj88l9aAmplIB7Tx+80NrLV+nkF5UQKt7vf/8Jfi3J/fiv188iivX9OLB7ISVv3n7KtusjtVEkQR3P3pHqXmqT62cDE0lMDiVgKIAq3tLFwQAO6Wm9/0k0mpJg5qiKFx5nNHXWrI5lkCe9KNNPdBuqoiTnZ84a3EbIkEfxmdSfHamE+PCpHJ6Xzd9anknighKjTFWtKUfAD5/9en4X1eehtN6mpHMqBifScGnaCPRrIhY3CycIKVm1Xco1tTaLYIe1Uqsps+IbQ+kVgAYHJCJdIbvt7fcQakVg5h+7CalZrEZ51zSHNSoTy2rboK6UjPPjTQotbhz+pGwU2q8Vy1uNIrQteZU82WM5Vy3ogKaNaUfnRDLAlYLHSs+kN2q6Pm9Q7jnqb0YjSfR3xnFu8/KbbUiLIOaMMyYkEqtQlA9bUVXU95Ve6EYamrZVbq2f5empiaFHbHt6lKFv6cf04k0zhOcdKXAaqoIrVgprWbGrnZgtVWGmaDfh7X9Hdj05gi2HhzDqT3OC45xIaXpxihCfWrmOqQZsaYmpqyKSj9GgrjlHafilnecit0nJvH4zpNY2d3E7dVmogWOytLt/LnGCzH9aLVq//DFS7GkI2aYREKI17EYHEWzyMDoDFSm9bmZ5z7OF/H64kYRcj86GkW0z5jOX1Sw9GdUhnRGRcDvgypMHwGM6UejUcQYrO0WjRRARk3uR1rQOu1gkUir3GXq9ylaS4xwbGKfWj5E048bpQYAy7qacNHyDmw9OIZ//8N+AMCn3rqS7wJvRZSnH6361PRzRPXQoXluTlosDaPUKKidUWKTCABEQ9ppbIkE+I3W51MMN3urYcbzgQJzKetpgHGwLKGPyMpjFLFxPzoFNQC4aLl7s4g41DVfUBNXw/mUmj4mSzXcNItRaiKre1vxmQ2n2qo0QL9ZWO0bZgU1NVs103c1hfjq3qqWGQn68a41PflrakL6UZwqQnWmFd1Nrs1HbrE0ilCfmoWl39wLKqbsxJssLVLMiwar9GNhSo2moJiMItmMBv3X6voUH6PgKB6f2SjihKGm5lKpAdqwYqKrKYQPXug8lpCOZc6hTw0Qr5fqzH9smKBWLpMIoJsQFpncXaLpgu+lViKV+Ofn9uH0nhZccbr7fdjcoKcf9S/dZJ6A3GLTL5bP/UhcuLwTgLugNi4YRfK5H+dS+mo4b/O10KdGta2AT5l3T6Eb+KR+l0FtzGKuI6EoCldrhdzgAOMNdEmnkH4UlNpBoUet1IjXSbepT83KKELKlzdfUyAI+g03WVqkxE22+VGDUYSyEdpiSVwQ2I3U05Wa9jrm2a5Ow765Kzfk585co8NTbyTPh7jYdKvUAODd5yziv9sNly7Pu4CLmjYnBnQFLf5bmtZkHq1WKRonqB0rj50fANat7MJbT12AG99qtMKK6YepRGmV2mffdRoe/+zbDNMDSkExln679OO4S6V2/rIO+BRtUsXxidwNSg2vKfSp5XM/ijexWJ4vbDBAY7LUedn5i6HQSf1W00REKHVY6LVBgb8tGjTVt/SgdmDYfjzWfCF3bXssyJWWlVGE/m4ekyYqNZ9P4QYPUhPi/mWAvVIDjDXHfDW1cZ5+NC5c7QxU2mO6gYmn9SzSj+a5slaY+9Tc0hoJ4ovvOQPXnNWL6y9Znvf5zunHXKU2k8wUvANHKWiIoDaXynATQjmUWls0iP/85Loc+S4GNbMzyqsU43602jtOfI18Qa05HOCLjW0Hxxyfa9mnlqcPKGaac2hF0Ke7Hym4hCsU1Ard/ZrcdnazPN99di+6mkK21mw7aLxXf6cx/WYMatr3qBxBjRZNPcLg44hFapbOE1dqpvQj1aH0UVlaUDMrNbs+NcAU1Ap0P7qpqcWFoQBWnz8FjnyLMfF9gNw+tXx8bP1y3PeRC1zV+t2mH5vCAX4tVcMB2RBBbc+JKahMyxs7jeopNeL2M6V0P5YTfV8rq5paPku/8cvrxtJPXLjMXQpSfM18Y7Lc2vkB8AK5ln4svketGPj2MwVOFLFTan+xdgm2/dMGXJRN67plZbaHzjxHVHSzHcwqNbvG6/lAzdliW0LE4tzM2ig1rrCzNW7unKT0o0mp0dBnIPdaFetqtkotG0Cm5tJIZdQc92OLg6VfHApgZRSaLcAo0mpQaqUxolkRsexTs3YJ8xRkgZuTlgJv32FLxC5hkkipi9tOGJRaidOP5YJmSE5apB/ttsyx+/K6ab4mLlreiQf+dBBbHZRaKqPyNG57LMQbpWkSuvmzpZV7k4sUDu9TE3ZTqHT60WxVtyIptIc4rcqLuc7feuoC/O6zb8uZSkKN0OKGmCvKUFN7x+qF+H8+cI7BmWk50Dhbx+kW0lypjKoPAQ46K7XmcADTibR1+jHmPv3Ymh0QrTJN9U2a0vQ0Es9q92u+4AoFLPfUEwca50McvVdITa1QYhYTRfiYLNM56m4J48BwvCp1NW/fYUvE62U0iTghpuVKbekvF2L6kQJFvqBGXyrzbs9u04+A7oDcfWISk3Mpy/cSA21rJMBvVirTvlzmG0BBSo361FRmWfwuJ4XU1Chl5vcprs5rISiKgtMsWipo8jo1prfHgiWv5QKaA/UvLzKm8CMWN3wK/uIsyem5dI5jkE8Vyf5bqqktbo9iz8kpxLODoYN+JedaFZvP7Ywifp+C9lgIo/EkxuKpgpqvZ4QAa7X5ZiF9agtbwnjrqQvQEgmUdSGmB7VcpWZO1XcLjtlK0xDpx3KaRJxo4TMA0yV3P5YL+lKnsz09KUG52KlMShsdHZvl8+u0lbP9tjNmFrZGsKwrBsaAFw9Zq7VxobYX8GvDfEmQWI0icrvrNSD2qVVeqRXSpzYyTc7HYN46Yanw+fR9soDyOB/tMKstQD9PrZEgv9FOzaX54zyomeY/klLraYvwIb/jM0nMJDM8YNNiaomL9COgZyFG40nb5mura1MctG31+RdiFPH5FPznJ9fh36+7oKyZKPE46XtuVVMDqmvrr/ugpqpM71GrsFJrFeY/1kpNLRr081TcxGzKsMq0M7n0d2r7eMWTGe7ME40mbtUp1dUe2nzYsk7GTSLZG4miKGimDVMTuQGBVubu0o/Up6bX1Ky2HCkHdhPlrSClVs40kxWiKiqHScQOK6UmTnvRd5hPcXVDgcB8XmkbopZwgE9bGZ1J8mtVnIDvxigC6CngsZlkTomh1VVNTVdqc0U2X1cKOk5V2FFizsZURSnrajRg131QOzw6g3gyg1DAh5UV/DIC+sU9NpPkF4FdCs8riNPSJ2Z1g4sW7Kwvl3DAj77sJBXatHRCUFVut/m59txFAIDf7TqJK7/xTM7uvHyYsbDzr5MDsrD0I/WpVU+pmYPavsEp/PrV44bH8tn5y0X1g5qg1ITgJe6IwB8PklIz19RIHfn5wmgsnjKkHknptMd0Feik1EQH5LRp4Soamcx75elDAWyMIin36cdKIX4f6FzzMVm2Sk0GtZJzbHwWsZAfq3tbHEfAlAMKajQrD8i/BYoX4JtczqZ4nSyfwYXMBYeyzbnjLkZkmbn89IX4z09ejP7OKI5NzOGGB7bi8z99GWo2NWRWagAcHZBup4kAuvsxLTRfV6qmZmfp/+yPX8bf/vBFvHJknD82mp2nV+mgJrqGy+F8tMNKxVIdJyoqtdm0boPnln5j+nGGNzQHuMIaF5SaeK0qisJTkHY1NUBXaicm5pDMGpd4TS1snP8qMp3Qj8WqpqabXrxzvwj4fVy1UtC1VWqtMv1YNi45ZQF2/vNVuP/jF1X8vWkVSUEtGvRXPLAWgzj/0W1QW9ZFQU1TaoXY+UXeemo3Hr/1bbjxrSvgU4Cfbj+CF94cAaAHNXHyhNNUkXgBKRy9T02tuKXfSo0AwNHsdUM1YSC/nb9cGJRaBWtqfJPQtIVSC/r5tTASTyCTXfzYpR/13jA/Tz+OzaRsJ99ct24ZzlnSxifeWEFK7fDoDH+MUuI0/xXI7VUTF1xmpaaq+sLKS0oNQE4Atq+pVW+qiPfvsCVA22K8cv1phJ7vrw07PyE6ILnzMU9wWpa90dGXuxDno5lYKIAvvmcN3neeNkn8uX3DhtcUt7N3mioipnjyYdWnVs2JIowx/vu+md3qBdCH51oNMy4n3QalVtrp/E6Ym68NOyiEfLxee1Ko3dgZRUSlRtvyjM0kbRdg11+yHL+45TKDScYMzX+k6745HOAGHp9Pr/maF116KlSoqWV/L/E68FJNDchNlds5hUnZj8+kuLKuFA0R1KqF2SDh9WkiRKtFUMtn9iClRrMBC+lRs+Oy7ESM5/eaglpMVGpZ95tDUHNTUxP71OYEI0IlsKqpxJMZrjz2D+pb8owKu15XEprIv6A5XNG2FLPaSmb0eZ7RoJ+bMajJV5zXqdfUTEot5OcKyy796Baa/3hkTA9qIna2frH5mjc1ZwMd/VdRKpctcEvMpNRo0LRZqbXHgjxVWempIt46Y3WGWZm1eNz5SLRFdYWZb5oIQTW1wyPzV2oEbWG/89gExuJJ3iwrGkWoR85SqfFtZwoxisxvL7VioAkYYt1IdI+KSo1b+isc1NYu7UBbNIirzuyp6Puad76eExp/NfcjKTUtqIkWeL1PzWjpjwkDi8dmUkWnygE9DTyc/VzMC1c7W7+YfoyZaqpierWSwyLcoAdg7fjtlJqiKFXrVauNu2yNkhPUPO58JESjCN3sW13W1Eay/TpuJ/Q7sbA1gtN7WrDn5BT+uH9YH5AsGkWySs3aNp0xPMcJPf2oVtwoYmVbnxAmyB8enUEinUE44K+aUutti2D7P22oeE2YlAqpLVpwkCKj7xilH8UalF6PMzZfN4UCyMQ0uTcWT/KWj6KUmulzsFNq5pqalTOXtx6k3E/orzQxU6rUrqYGaCnro+OzGKywrV8qtTIiFooB7/eoEWJNTR9m7PyFb4kE+Y320Ei8JEoNAC7NqrU/7hs2DDMmnNyP4iiifPD0ozDQOFpho8isjVLLqIwr4Gr1qQGoisnJbKIxt1vQoomUmliDsldqfkNNTV+AFf79NI8qs1vI5qYf9QBrTj8X0nhdaXKMIhZT+gm+WWiFHZAyqJURcaNQoIZqahZ9am5Sp0sFB2SpghpNmn9u77CefoxZ9KnN19Lv05Vaolo1NSG1JgY1ANg/FIeqMr5bc6WVWrWgwDSX1qZYUGoukr25UgaB+vdEc0+uUYSUe4DXwsZnUvOrqTXlCWo216ehpmYKFPq+cN67X5gDMO9Ts/iukK1f1tTqDLHZuibdjwn3acRlnaUPautWdiLoV3BkbBYDY7M5r+nkfuRTGQoak1WFPjWL9ONkTlCbxsRsiptH2gvcYqRWoc+AMc0kkqPUTBkEUd1ETLMfxa2IKBiNzdMo0moaLpCTfrQIaowxw3Blc0rPy0pNrP+pKuO9edZKrTq2fhnUyowYyGrHKCLu2O2+HWEpt/XHeU1ovkEtFgrg/KXasOOMMFCXcFJq0wVY+vUxWWrFjSKWNTVTUHtzKM7t/C2RgOOUi3qC6mKAloI0t1uYr0uxDmWn1JpCulFkYjZl2f/oFkVReCoTME7MF49PHPZt3pFdV+oU1LxbUxPTj2JDudXeg9UyijTGN6OKiF+6mkk/Gpqv3e8usJxs/cOlU2oAcja7FF/Tbi83xliBlv7q76eWVhnfTofOH/VI7R+arppJpJoE/QofPpxIZXLTj6bry5h+1E0mojqKhf3cQasy4Mh4bgagEDoE1ZzjfrSw9NO1qiha4DIPCi5kQn+loW19ZlMZQ/+ZeUwWUL2hxjKolZkWQ/qxttyPWk3NnaUf0B2Qh0dnhEbp+d+ALzu1m/89EvQZFBQPaqZCfDKj8snrbhpYefpRrcJ+aiH9a0jvTefv/KXtALSgRnb+aphEqoWiKAaziNnE46jUeI+b5mil8YtNIU3p0rWTzCqOooOa8HmYXcJWi664YGBSFIUHaBoUrKcfvbcIpvaT2WSGp+n9PsXSRMTTj9L9WF8YlFqNpB9p9ZtIq7zI6yr92KmlH49NzPKbTymU2tmL2/jNwhwkaSVsrqmJU/tdTen36bMfK72fWsjv42pkzhTUzu1vh6JolvA3Tk4BaKygBoi7X2dy0o+5NTX9Oo3w9GPGEFTo35oHAxR7rYoOSPN33GoD3WnBJCIeD6B9/nyYsYfmPhK0QJxN6krNSqUBulFkeFofYVYJZFArM7WYfmwJ586sc7O7wILmEJpCfr4iVpTSmGP8PgWXrNJSkOYbURNvbrV2l0WCPldWdFJqhin9FUr/GNRI0ph+7G4Joz+7YeXWg6MAGi+o8TRiKnfaSyzkNxg1DOlH3uOmGupUNMZKTBv6TU7lQhCVmvk73iJsP0XETa0mQb+Pt5TMpjIF7Xpdaej8zqT0mppVPQ3Q0uRKdmfwkXjl1FrZgtpdd92FSy65BLFYDO3t7eV6G89jSD/WiFLz+ZScIOYmqCmKws0igPb7lmojy7eepgW1rmaThVpwP4rbe1D9xE2PGmDsU+M3zkDlbipmq7RYk1zZrZ1T2jy10nMfq42o1MypYUVRDAsnS6NIShWGGevPNacNi53eQfMfAXv3o7jo4tem8NyIYBYx7+DtJcQdJeYcetQAra+xK3utVjIFWbaglkwm8cEPfhA33XRTud6iJjC4H2ukpgbkpmLcqkyy9QPGyR/z5QPnL8Gn374K/+vK0w2P041BZabZiQWYRAC9Ty1tGJNVuUSGuQF7clZvNF/V3QxAH4LbSEYRQL9pzqUyvJcvItzwxe+YlaV/Lq2rHzEVLboW55MmFxWfOTOhDwfQ3Y/ibgH8uIX5j142inBLfyrt2KNG6A3YlQtqZZMOX/nKVwAADzzwgOt/k0gkkEjov/zk5KTDs2sDMZDVSvoRME5XaDKleJwgswhQmnoaEQn6cfs1q3Mej4X8UBStj2k6keY5/2mLlbkTlH6cSaZ5+jRSwZuKeVL7hDASjJQaUem5j9XG2iiifzZaFkFzMNoqNYttiMRgNJ9xbmI62LxwbbEwMlkNBRA/fy8bRcThy1R7dtpvbmFrGLuOV9YB6ama2saNG9HW1sb/9Pf3V/uQ5k1rDRpFAFODcwEKc5mQfixlULNDUYTtPYQbx0wid2XuBFn6xdpHJdOPpCrI1i2mH0mpEY2m1MRJ/VbbAhmUmo2lf8ZkzgCM9dl5KbUmJ6OIXlOj9LjV3Ecx/ezl9GOsgPQjINj66yH9WAx33HEHJiYm+J+BgYFqH9K8qUX3I2AOau6Pu1xKzQndAamnH61uHE4EfHpNDdCMA1RnqwR8qki2pkLHYRXUGs0oIjanz1pM2xDrvVELpTZXbqXmok8treq7X1vV98Ra1WwNDDSedWEUAaozVaSgoHb77bdDURTHP7t37y76YMLhMFpbWw1/ah1aqRWSwvMCxQa1pZ2VD2q6A1KsW7if+wjoSo2IBHwV3fZDrKmRSgv6FUSDfixoDhk+g4YLasLu11bTXsRMghi0xAn/8TIqNfo8FCXXmBQL+nm7Bg2jFkdkEVZKrVJ9koUgGloSNnupiZCtv5Lpx4Kkw+c+9zl8/OMfd3zOypUr53M8dUd/Rww+BQZXYC3QWmTTeF97FEG/glSGoa0EjdduaA7nKrV4gSmcgEmVVdpOLdaNxNQjBdZV3c3YMTAOoAGDmjDD0aqmls/9qDLdeGOn1OYT1JZ0RPG+8/qwsDWSs3D1+RSs7G7GvsFp7D4+hUVtUZ5FEI9VHJU1a6EqvYLYpzbHa2r5jSKVVGoFnbXu7m50d3fnf6KE09sWwS//znlLeC8ipmMKSc34fQr6O2J4czheufQjn9qQq9QKdT8STl/UchC1UGrieV/Z3YQdA+MIB3yeTEuVEwr4ibQw+1GYwiKeJ6tNQgF9ir9YYxUXB/O5VhVFwTc/tNb25+csbsO+wWm8cmQCV6xeyOt7VkYRg1Lz4Ocs9qm5GSfXnU0/VtL9WLaa2uHDh7Fjxw4cPnwYmUwGO3bswI4dOzA9PV2ut/QsZ/a1oac1Uu3DKIhi048AsDJbA6KBpuVGD2q5ln736UfjCruSdn7AOKnfam4m1dW0htbaSWOXAqOlP7eHsDWPUQQAn5spLnJKlX7Mx9lL2gAArx4dB2DtzBUt/V42ilCgzaiMK063Sk3sIy0nZdO3d955Jx588EH+/2vXaiuZp59+Gpdffnm53lZSIuYT1D5/1ek4a3Errj6rt9SHZUmTlW2abzvjNv1oDGKVXiWLlm6roHZaTwsAbTfwRsNgFCF1YGMUEQOBoigIBXxIplVezzI0X5co/ZiPc7JB7ZUjEwCsswji5z/r4Sn94jHROXVWalpQS6ZVTM6mS9q7akfZgtoDDzxQUI+axFsY0o8FNo2f3tuC03tbSn1ItrRYzH8sVKkFTLWQStr5AT1VNpvM8PqPeKO94vRu/P07T83ZsaARCAv1xryWflMgCGeDGik18aYcC/kR8vuQzKhlDWprFrXBp2hq5eTknGAUsW6+nqnwmLZCCPp9CPgUpFXGt5dyUmqRoB+tkQAm59IYnJqr7aAmqW3mo9QqDTnaxKG106b5evkwux8rrtQsamriZxDw+3Dbu06r6DF5BWOfmmZOMDRfR63dj4B2w51CWk8/Cj9XFAW9bREcHp3habJyEA35cVpPC3afmMLLA+OW1yZdb+MzKd7870WjCKAd69Rcmiu1cJ5U/eeuPB0Bv1Ixg5M3z5qk6tRSUKONGcWgxjeEdJl+9PsUPpkE8IZRpFJGG69jZekXFx12zdeAHhDJKGJOR3/9g+di3+A0Tu0pb2bhnCVt2H1iCq8enbBOP2aPe1QY/OtFSz+gHZcW1LTrNF9W4/pLllfgqHQ81Xwt8Q5t80g/VhpK41iNInLrfgT07WeA6ln6EyZLv8Sm+Vq44dN2RNFgbi8omUVozzSzcr94RSf+et3S8hy4wNlL2gFodTWn5msKvuGAz7N9rTGuKt0ptUrj7SW4pGq01tAgZj5RJGm1Z1UBQc2vIHvPtN0jqlyISk1NanJxPlMu6gkx/WjVfN3fGcUNly7Hko5Yzr81K+5qmS/OWUxmkXFhSr84fDkb1KZza39eg2ZSjvGamgxqkhog4PehJRzAVCJtGG7sRWj1Lc5t5OnHAuoSmgMy96ZZCcjNN5vMYC5dug1W6wH6LMhAAxiVtKIo+PK1Z9r8W+MNt5BFTilZvagFQb/CAwFgNDFRENMNLd79ztGu45RRqPR3JR/eCrEST3HzO07Be8/rw6kLK+dkLAZSalNz+g3DvLuwG8RetWoZRebSsqZmhgKTGBDcKmmzUqtWUAsH/AZHsE8xplDN++l50flI5JpxvBVGvLsckFSdT799VbUPwRW0M/ShkRnEE2nemwQUNkRanCpS6fRjRLD0k1VaBjUNCkzktgv6FVe7mQO59R63uzaUg7MXt2Pn0cnscRg3JTWbQrycfjQrM6nUJJIS098ZQ39nFGmVYcuBUcwIk0UKSeOI8x8ruZcaIN2PTlDAp/RyITdRs4qIVXGnDGrCBnIVo/l686rzEcgNuF5Tat46GomkSC5ZqTUl/2n/MKazhfiQ34dQAV84sVet0s3XkaBeUxG3nZHkphALueGbA2A1g8XZi/WgZm4tMAcKLys18zmsdPtLPmRQk9QFl5zSBQD4474Ry21G3CBOFanWmCxSIwGf4ukbWyXJCUwFnBdRRVhZ/ivJ6b0tfJFlTovnph+9Wxkyn/9Kz0nNh7eORiIpkktWaUpt1/FJHBmbAVD4jUGs01T6i2q+cYvbzjQ65s+iELUlqohCFzmlJuj3Yc0ibY9IsyvX/Dt52ygilZpEUna6W8I4rUebZP/71wcBFL7TuOh+rHT60XxTk6lHnfkYE8SA6AX1Q3W1fDU1L6v0nPSjVGoSSXkgtfb7XScBzC/9WC2jCCEbr3XmUxczKrXqB7UrTl8IAFizyNgmU9PpR6nUJJLycOkpWlCjXXYLvYkFqmgUMTvIpFLTMbdXFFtTq6adn7hi9UJs/sI78VnTcOqg32fIFHhaqZnTj1KpSSTl4eIVnRB9AIVMEwGq23zt8ymGG7AMajqB7HYnREFKTUw/ekCpAUBPa8SyXioqUi8HNfOxSaUmkZSJtmiQD44FilBqvuoZRQBjIJVBzYgY8AurqQnpRw8HCsA0YcTDxxoNmiaKSKUmkZSPS1d18b83F1hTMyi1KvQzie8pg5oRMTgVsuAQg6GX61RA7gamXsUccEMup7tUCm8djUQyT8gsAhSebjIqtcrfVCIyqNkinptatfTnw/g7ejcAiwE3FPDB57EtcmRQk9QVFy7vsG1wzUegipZ+QAY1J8QUVyGpOa9Z+p2I1opSE65Tr43IAmRQk9QZkaAfFyztAFC4Ld4wJitUhZqacAOWln4j4iKjsNmP+nMLTUdXmmiNGEXE4Ou1xmtATumX1CH/eM1q/GTbAN59Vm9B/44cdopSnTqBNIrYIyquwtKPtaPUxEDmZaOIeJxeG5EFyKAmqUPO62/Hef3tBf+7YPYGGA36qzKiSlQjMqgZiRTpDBTTlrVUU/NyAJbpR4mkRghmlVq19ocSp5i0xWRQEymFUcTLgQKQ6cdSIYOaRJKFJopUa3sSaem3R0xzFTv70etKLVoj6ceQ38eHHHgx/ei9I5JIqgS5H6vVTEo3CL9P8XyjcKURFUFhY7JqSKmJ7kcPbxKqKAo/l1KpSSQeJpjtU6vW2B9SanLbmVwMSq2AOo6hpub1oJb9/EN+n2EOqRehACyVmkTiYUipVSv1IwY1iZGSKDWvpx+zn7+XU48EHWtDKbWDBw/ik5/8JFasWIFoNIpVq1bhy1/+MpLJZLneUiKZF9SnVq3VJxlFZI9aLsUbRfTPstBm/EpDwczLJhGCjtFrcx+BMlr6d+/eDVVV8Z3vfAennHIKdu7ciRtvvBHxeBxf//rXy/W2EknRUJ9atYwilPaUSi2XYo0i4YAPq3tbEE+m0dkUKsehlYxaUmr0GXhtQj9QxqB29dVX4+qrr+b/v3LlSuzZswf33XefDGoST0I3k2ptJnnOkjYEfArWreisyvt7mWL71BRFwS//7jKojBkmxngRqdRKQ0W/vRMTE+jstP/CJhIJJBIJ/v+Tk5OVOCyJBABw9Zm9eHlgAh9dv6wq73/h8k68+s9X1cRKvdKI5pBClbTXgxlxxqJWhPw+nCtsn+RV9Jqa985txYLavn37cM899ziqtI0bN+IrX/lKpQ5JIjGwsDWC//OX51b1GGRAs8a49Ux9nqNV3c148c531UQ7h+5+9N6xFhxmb7/9diiK4vhn9+7dhn9z9OhRXH311fjgBz+IG2+80fa177jjDkxMTPA/AwMDhf9GEomk7qCbZyjgg99jW52UkuZwoCbaOdqzE29aIt4z3xR8RJ/73Ofw8Y9/3PE5K1eu5H8/duwYrrjiClxyySX47ne/6/jvwuEwwuFwoYckkUjqnHCgutNeJEY+cekKxEIB/MXaJdU+lBwKDmrd3d3o7u529dyjR4/iiiuuwAUXXID7778fPp/38q8SicT7cLedB40JjcjK7mZ84d1nVPswLCmbdjx69Cguv/xyLFu2DF//+tcxNDTEf9bbW9iWIBKJpLHRnYHeS3dJvEXZrpAnnngC+/btw759+7BkiVGiMsbK9bYSiaQOOa+/HVed2YPLT19Y7UOReByFeTjCTE5Ooq2tDRMTE2htba324UgkEomkSriNBzJBLZFIJJK6QQY1iUQikdQNMqhJJBKJpG6QQU0ikUgkdYMMahKJRCKpG2RQk0gkEkndIIOaRCKRSOoGT7fnUwud3IJGIpFIGhuKA/laqz0d1KampgAA/f39VT4SiUQikXiBqakptLW12f7c0xNFVFXFsWPH0NLSMq/tGCYnJ9Hf34+BgQE5mcSEPDf2yHNjjzw3zsjzY0+x54YxhqmpKfT19TkOx/e0UvP5fDlzI+dDa2urvMBskOfGHnlu7JHnxhl5fuwp5tw4KTRCGkUkEolEUjfIoCaRSCSSuqEhglo4HMaXv/xluau2BfLc2CPPjT3y3Dgjz4895T43njaKSCQSiURSCA2h1CQSiUTSGMigJpFIJJK6QQY1iUQikdQNMqhJJBKJpG6QQU0ikUgkdUPdB7V7770Xy5cvRyQSwbp167Bly5ZqH1LF2bhxIy666CK0tLRg4cKFeN/73oc9e/YYnjM3N4ebb74ZXV1daG5uxgc+8AGcPHmySkdcPe6++24oioJbb72VP9bo5+bo0aP4yEc+gq6uLkSjUZx99tnYtm0b/zljDHfeeScWLVqEaDSKDRs2YO/evVU84sqQyWTwpS99CStWrEA0GsWqVavwL//yL4aBu41ybp599llce+216Ovrg6IoePTRRw0/d3MeRkdHcd1116G1tRXt7e345Cc/ienp6cIPhtUxDz/8MAuFQuwHP/gBe+2119iNN97I2tvb2cmTJ6t9aBXlqquuYvfffz/buXMn27FjB3v3u9/Nli5dyqanp/lzPv3pT7P+/n725JNPsm3btrG3vOUt7JJLLqniUVeeLVu2sOXLl7NzzjmHfeYzn+GPN/K5GR0dZcuWLWMf//jH2ebNm9mbb77JHn/8cbZv3z7+nLvvvpu1tbWxRx99lL388svsz//8z9mKFSvY7OxsFY+8/Nx1112sq6uLPfbYY+zAgQPspz/9KWtubmbf+ta3+HMa5dz8+te/Zl/84hfZz372MwaAPfLII4afuzkPV199NTv33HPZCy+8wJ577jl2yimnsA9/+MMFH0tdB7WLL76Y3Xzzzfz/M5kM6+vrYxs3bqziUVWfwcFBBoA988wzjDHGxsfHWTAYZD/96U/5c15//XUGgG3atKlah1lRpqam2KmnnsqeeOIJ9va3v50HtUY/N//4j//ILrvsMtufq6rKent72de+9jX+2Pj4OAuHw+xHP/pRJQ6xarznPe9hn/jEJwyPvf/972fXXXcdY6xxz405qLk5D7t27WIA2NatW/lzfvOb3zBFUdjRo0cLev+6TT8mk0ls374dGzZs4I/5fD5s2LABmzZtquKRVZ+JiQkAQGdnJwBg+/btSKVShnO1evVqLF26tGHO1c0334z3vOc9hnMAyHPzi1/8AhdeeCE++MEPYuHChVi7di2+973v8Z8fOHAAJ06cMJyftrY2rFu3ru7PzyWXXIInn3wSb7zxBgDg5ZdfxvPPP49rrrkGQGOfGxE352HTpk1ob2/HhRdeyJ+zYcMG+Hw+bN68uaD38/SU/vkwPDyMTCaDnp4ew+M9PT3YvXt3lY6q+qiqiltvvRWXXnopzjrrLADAiRMnEAqF0N7ebnhuT08PTpw4UYWjrCwPP/wwXnzxRWzdujXnZ41+bt58803cd999uO222/CFL3wBW7duxd///d8jFArh+uuv5+fA6ntW7+fn9ttvx+TkJFavXg2/349MJoO77roL1113HQA09LkRcXMeTpw4gYULFxp+HggE0NnZWfC5qtugJrHm5ptvxs6dO/H8889X+1A8wcDAAD7zmc/giSeeQCQSqfbheA5VVXHhhRfiq1/9KgBg7dq12LlzJ7797W/j+uuvr/LRVZef/OQn+OEPf4iHHnoIZ555Jnbs2IFbb70VfX19DX9uqkndph8XLFgAv9+f41I7efIkent7q3RU1eWWW27BY489hqefftqwT11vby+SySTGx8cNz2+Ec7V9+3YMDg7i/PPPRyAQQCAQwDPPPIN/+7d/QyAQQE9PT8OeGwBYtGgR1qxZY3jsjDPOwOHDhwGAn4NG/J59/vOfx+23344PfehDOPvss/HRj34Un/3sZ7Fx40YAjX1uRNych97eXgwODhp+nk6nMTo6WvC5qtugFgqFcMEFF+DJJ5/kj6mqiieffBLr16+v4pFVHsYYbrnlFjzyyCN46qmnsGLFCsPPL7jgAgSDQcO52rNnDw4fPlz35+qd73wnXn31VezYsYP/ufDCC3HdddfxvzfquQGASy+9NKf944033sCyZcsAACtWrEBvb6/h/ExOTmLz5s11f35mZmZydmD2+/1QVRVAY58bETfnYf369RgfH8f27dv5c5566imoqop169YV9obzsrl4nIcffpiFw2H2wAMPsF27drFPfepTrL29nZ04caLah1ZRbrrpJtbW1sb+8Ic/sOPHj/M/MzMz/Dmf/vSn2dKlS9lTTz3Ftm3bxtavX8/Wr19fxaOuHqL7kbHGPjdbtmxhgUCA3XXXXWzv3r3shz/8IYvFYuy//uu/+HPuvvtu1t7ezn7+85+zV155hb33ve+tS9u6meuvv54tXryYW/p/9rOfsQULFrB/+Id/4M9plHMzNTXFXnrpJfbSSy8xAOwb3/gGe+mll9ihQ4cYY+7Ow9VXX83Wrl3LNm/ezJ5//nl26qmnSku/Fffccw9bunQpC4VC7OKLL2YvvPBCtQ+p4gCw/HP//ffz58zOzrK//du/ZR0dHSwWi7G/+Iu/YMePH6/eQVcRc1Br9HPzy1/+kp111lksHA6z1atXs+9+97uGn6uqyr70pS+xnp4eFg6H2Tvf+U62Z8+eKh1t5ZicnGSf+cxn2NKlS1kkEmErV65kX/ziF1kikeDPaZRz8/TTT1veY66//nrGmLvzMDIywj784Q+z5uZm1traym644QY2NTVV8LHI/dQkEolEUjfUbU1NIpFIJI2HDGoSiUQiqRtkUJNIJBJJ3SCDmkQikUjqBhnUJBKJRFI3yKAmkUgkkrpBBjWJRCKR1A0yqEkkEomkbpBBTSKRSCR1gwxqEolEIqkbZFCTSCQSSd3w/wMnDwWE/UmPTwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts_length = 100\n", + "ϵ_values = []\n", + "i = 0\n", + "while i < ts_length:\n", + " e = np.random.randn()\n", + " ϵ_values.append(e)\n", + " i = i + 1\n", + "plt.plot(ϵ_values)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "bae1c9a2", + "metadata": {}, + "source": [ + "A while loop will keep executing the code block delimited by indentation until the condition (`i < ts_length`) is satisfied.\n", + "\n", + "In this case, the program will keep adding values to the list `ϵ_values` until `i` equals `ts_length`:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "7f9acae6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "i == ts_length #the ending condition for the while loop" + ] + }, + { + "cell_type": "markdown", + "id": "f6a4977e", + "metadata": {}, + "source": [ + "Note that\n", + "\n", + "- the code block for the `while` loop is again delimited only by indentation. \n", + "- the statement `i = i + 1` can be replaced by `i += 1`. " + ] + }, + { + "cell_type": "markdown", + "id": "9fe1230f", + "metadata": {}, + "source": [ + "## Another Application\n", + "\n", + "Let’s do one more application before we turn to exercises.\n", + "\n", + "In this application, we plot the balance of a bank account over time.\n", + "\n", + "There are no withdraws over the time period, the last date of which is denoted\n", + "by $ T $.\n", + "\n", + "The initial balance is $ b_0 $ and the interest rate is $ r $.\n", + "\n", + "The balance updates from period $ t $ to $ t+1 $ according to $ b_{t+1} = (1 + r) b_t $.\n", + "\n", + "In the code below, we generate and plot the sequence $ b_0, b_1, \\ldots, b_T $.\n", + "\n", + "Instead of using a Python list to store this sequence, we will use a NumPy\n", + "array." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f3463484", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAETCAYAAABTM4NXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA05UlEQVR4nO3deVxVdf7H8ddlB4GLiGwKiIq7aO5kaeVCmGWpk6WVjk3WDDap/aaytLKa0amZmmzKZrTUmtQZnbS00kwTx3JFEVdURFHZXGKX9Z7fH+QtCkxkuSzv5+NxHw/vOYdzP3znDu/OOd/FZBiGgYiISANlZ+sCREREqkNBJiIiDZqCTEREGjQFmYiINGgKMhERadAUZCIi0qApyEREpEFTkImISIPmYOsCfspisZCSkoKHhwcmk8nW5YiIiI0YhkFOTg6BgYHY2VV+3VXvgiwlJYWgoCBblyEiIvXEmTNnaN26daX7qxRkCxYsYMGCBZw6dQqArl278vzzzxMVFQXALbfcQkxMTLmfefTRR3n33Xev+TM8PDyshXt6elalPBERaUSys7MJCgqy5kJlqhRkrVu3Zt68eYSFhWEYBkuXLmXUqFHs27ePrl27AvDII4/w0ksvWX/Gzc2tSoVfuZ3o6empIBMRkV98zFSlILvzzjvLvf/jH//IggUL2LFjhzXI3Nzc8Pf3r2KZIiIi1+e6ey2WlpayYsUK8vLyiIiIsG7/6KOP8PHxoVu3bsycOZP8/PyrnqewsJDs7OxyLxERkWtV5c4eBw4cICIigoKCAtzd3Vm9ejVdunQBYPz48YSEhBAYGEh8fDxPP/00CQkJfPzxx5Web+7cucyZM+f6fwMREWnSTFVdj6yoqIjk5GSysrJYtWoVixYtIiYmxhpmP7Z582aGDBnCiRMnaNeuXYXnKywspLCw0Pr+ysO9rKysqz4jKy0tpbi4uCqlSxPm6OiIvb29rcsQkSrIzs7GbDb/Yh5UOch+aujQobRr145//OMfP9uXl5eHu7s769evJzIy8prO90uFG4ZBWloamZmZ1SlbmiAvLy/8/f01PlGkgbjWIKv2ODKLxVLuiurH4uLiAAgICKjux1hdCTFfX1/c3Nz0R0l+kWEY5Ofnk5GRAdTs91FEbK9KQTZz5kyioqIIDg4mJyeHZcuWsWXLFjZs2EBiYiLLli1jxIgRtGjRgvj4eKZPn86gQYMIDw+vkWJLS0utIdaiRYsaOac0Da6urgBkZGTg6+ur24witSgl8zLfnLjAr/rUzeQWVQqyjIwMHnroIVJTUzGbzYSHh7NhwwaGDRvGmTNn+Oqrr/jb3/5GXl4eQUFBjBkzhlmzZtVYsVeeiVV1bJoI/PC9KS4uVpCJ1JL07ALGL9zBqYv5WAyDcX2Da/0zqxRk7733XqX7goKCfjarR23R7US5HvreiNSu8zmF3P99iAV5u3JzWMs6+VzNfi8iItV2MbeQCYt2cPJ8HoFmF5b9ZgCBXq518tkKsjpyyy23MG3atFr/nBdffJGePXtW6WdMJhNr1qyp888VkcYhM7+IB97bxbH0XPw8nVn2yACCvOvuEZCCTERErlvW5WIefG8XR1Kz8XEvC7E2Ps3qtAYFmYiIXJecgmImvr+LA+ey8G7mxLJH+tOupXud16Egq0MlJSVMnToVs9mMj48Ps2fP5sfj0T/88EP69OmDh4cH/v7+jB8/3jr2CWDLli2YTCY2bdpEnz59cHNz48YbbyQhIaHSz0xMTKRt27ZMnTqVq419T01NJSoqCldXV9q2bcuqVavK7X/66afp0KEDbm5utG3bltmzZ191ZpXdu3czbNgwfHx8MJvNDB48mL1795Y7xmQysWjRIu655x7c3NwICwvj008/LXfMoUOHGDlyJJ6ennh4eHDzzTeTmJho3b9o0SI6d+6Mi4sLnTp14p133qm0JhGpOXmFJUxespu4M5l4uTnyr4f708Hv6sut1JYGH2SGYZBfVGKTV1UnRVm6dCkODg7s2rWLN998k9dff51FixZZ9xcXF/Pyyy+zf/9+1qxZw6lTp5g0adLPzvPcc8/x17/+lT179uDg4MDkyZMr/Lz4+Hhuuukmxo8fz9///ver9tqbPXs2Y8aMYf/+/UyYMIH77ruPI0eOWPd7eHiwZMkSDh8+zJtvvsnChQt54403Kj1fTk4OEydOZNu2bezYsYOwsDBGjBhBTk5OuePmzJnDvffeS3x8PCNGjGDChAlcunQJgHPnzjFo0CCcnZ3ZvHkzsbGxTJ48mZKSEqBsgurnn3+eP/7xjxw5coQ//elPzJ49m6VLl1Zal4hUX35RCQ8v3c3uU9/h4eLAvx7uT5dA2y27Ve0pqmra1aYkKSgoICkpidDQUFxcXICyBu3y/AZblMrhlyJxc7q2EQy33HILGRkZHDp0yBoozzzzDJ9++imHDx+u8Gf27NlD3759ycnJwd3dnS1btnDrrbfy1VdfMWTIEAA+//xz7rjjDi5fvoyLiwsvvvgia9as4Z133mHkyJE899xzPPnkk1etzWQy8dhjj7FgwQLrtgEDBtCrV69Kr3D+8pe/sGLFCvbs2QNg/dwrs7n8lMViwcvLi2XLljFy5Ejr586aNYuXX34Z+GFKsy+++ILbb7+dZ599lhUrVpCQkICjo+PPztm+fXtefvll7r//fuu2V155hc8//5xvv/32Z8dX9P0RkarJLyq7Ettx8hLuzg58+HA/bghuXiufda1TVDX4K7KGZMCAAeWuiiIiIjh+/DilpaUAxMbGcueddxIcHIyHhweDBw8GIDk5udx5fjxTypXpln58CzI5OZlhw4bx/PPP/2KI/biWn77/8RXZv//9bwYOHIi/vz/u7u7MmjXrZ3X9WHp6Oo888ghhYWGYzWY8PT3Jzc296u/SrFkzPD09rb9LXFwcN998c4UhlpeXR2JiIg8//DDu7u7W1yuvvFLu1qOI1JyfhtjSybUXYlVR7bkWbc3V0Z7DL13bhMS18dk1JS8vj8jISCIjI/noo49o2bIlycnJREZGUlRUVO7YH/9hvxKMFovFuq1ly5YEBgayfPlyJk+eXO2Vtrdv386ECROYM2cOkZGRmM1mVqxYwV//+tdKf2bixIlcvHiRN998k5CQEJydnYmIiLjq73Ll97nyu1yZVqoiubm5ACxcuJD+/fuX26dZO0RqXkUh1jvE9iEGjSDITCbTNd/es7WdO3eWe3/l2ZG9vT1Hjx7l4sWLzJs3j6CgsvnJrty2qypXV1fWrVvHiBEjiIyM5Msvv8TD4+oPYXfs2MFDDz1U7v0NN9wAwLfffktISAjPPfecdf/p06ever5vvvmGd955hxEjRgBw5swZLly4UKXfIzw8nKVLl1JcXPyzwPPz8yMwMJCTJ08yYcKEKp1XRKqmPocY6NZinUpOTmbGjBkkJCSwfPly3nrrLZ544gkAgoODcXJy4q233uLkyZN8+umn1mdH16NZs2Z89tlnODg4EBUVZb2CqczKlSt5//33OXbsGC+88AK7du1i6tSpAISFhZGcnMyKFStITExk/vz5rF69+qrnCwsL48MPP+TIkSPs3LmTCRMmXPUKqyJTp04lOzub++67jz179nD8+HE+/PBDay/NOXPmMHfuXObPn8+xY8c4cOAAixcv5vXXX6/S54hI5ep7iIGCrE499NBDXL58mX79+hEdHc0TTzzBlClTgLLbgUuWLGHlypV06dKFefPm8Ze//KVan3el44RhGNxxxx3k5eVVeuycOXNYsWIF4eHhfPDBByxfvty6WOpdd93F9OnTmTp1Kj179uTbb79l9uzZV/3s9957j++++45evXrx4IMP8vvf/x5fX98q1d+iRQs2b95Mbm4ugwcPpnfv3ixcuNB6dfab3/yGRYsWsXjxYrp3787gwYNZsmQJoaGhVfocEalYQwgxaAS9FkWulb4/Itcur7Csi70tQ6zOFtYUEZHGJaegmF8v3s2e09/V6yuxKxRkIiJilXW5mEmLd7EvORMPFwc+fLg/PYO8bF3WVSnIREQEKJvF/sH3yuZOvDLtVLdWZluX9YsUZCIiwqW8IiYs2smR1Gy8mznZfNqpqlCQiYg0cedzCnlg0U4S0nO+X4rFdhMAX48GGWQ/nsVC5FrpeyPycxnZBdy/cAeJ5/Osi2LaYimW6mhQQebk5ISdnR0pKSm0bNkSJyenq87oLgJlKyQUFRVx/vx57OzscHJysnVJIvXCuczLTFi4g1MX8wk0u9hkUcya0KCCzM7OjtDQUFJTU0lJSbF1OdLAuLm5ERwcjJ2d5gEQSbqQxwOLdnIu8zKtm7uy/JEBBHm72bqs69KgggzKrsqCg4MpKSmxzhov8kvs7e1xcHDQFbwIkJCWwwPv7eR8TiFtWzbjo9/0J8BctSnk6pMGF2RQNlGwo6Njhct7iIhI5Q6czeLB93eSmV9MJ38P/vWb/vi4O9u6rGppkEEmIiJVt+fUJX69eDc5hSX0CPJi6a/74uXW8J8ZK8hERJqAbccv8MgHe7hcXEr/UG/em9QXd+fGEQGN47cQEZFKfXU4nd99tJeiUguDO7Tk3Qd64+rUeBagVZCJiDRia/ad48mV+ym1GER29WP+/Tfg7NB4QgwUZCIijdbSb0/xwqeHABh9QyteHRuOg33jG36iIBMRaWQMw2D+phO88dUxACbd2IbnR3bBzq5xDj9RkImINCIWi8FL6w6z5NtTAEwf2oHfD2nfqMdQKshERBqJ4lILT6+K5+N95wB48c4uTBoYauOqap+CTESkESgoLmXqsn18dSQdezsTf/lVOPfc0NrWZdWJKj31W7BgAeHh4Xh6euLp6UlERARffPGFdX9BQQHR0dG0aNECd3d3xowZQ3p6eo0XLSIiP8guKFvV+asj6Tg72PGPB3o3mRCDKgZZ69atmTdvHrGxsezZs4fbbruNUaNGcehQWa+Y6dOns3btWlauXElMTAwpKSmMHj26VgoXEZGyZVjG/WMHO05ewt3ZgaWT+zG0i5+ty6pTJsMwjOqcwNvbm9dee42xY8fSsmVLli1bxtixYwE4evQonTt3Zvv27QwYMOCazpednY3ZbCYrKwtPz4axOqmIiC0kXcjjofd3cubSZXzcnVny6750a2W2dVk15lrz4LoHFJSWlrJixQry8vKIiIggNjaW4uJihg4daj2mU6dOBAcHs3379krPU1hYSHZ2drmXiIhcXfzZTMYu+JYzly4T0sKN//42olGFWFVUOcgOHDiAu7s7zs7OPPbYY6xevZouXbqQlpaGk5MTXl5e5Y738/MjLS2t0vPNnTsXs9lsfQUFBVX5lxARaUr+d/w89/9zBxfziujWypNVj91ISIuGtyBmTalykHXs2JG4uDh27tzJb3/7WyZOnMjhw4evu4CZM2eSlZVlfZ05c+a6zyUi0th9uj+FyUt2k1dUysD2LVj+yABaejTsZViqq8rd752cnGjfvj0AvXv3Zvfu3bz55puMGzeOoqIiMjMzy12Vpaen4+/vX+n5nJ2dcXZu2v8jiIhci8XfJDFnbdmFwx3hAbx+b49GN2/i9aj2pFsWi4XCwkJ69+6No6MjmzZtsu5LSEggOTmZiIiI6n6MiEiTZbEY/OnzI9YQm3RjG966r/FN/nu9qnRFNnPmTKKioggODiYnJ4dly5axZcsWNmzYgNls5uGHH2bGjBl4e3vj6enJ448/TkRExDX3WBQRkfIKS0r5v5XxrN2fAsAfIjvyu1vaNeopp6qqSkGWkZHBQw89RGpqKmazmfDwcDZs2MCwYcMAeOONN7Czs2PMmDEUFhYSGRnJO++8UyuFi4g0dlmXi5nywR52Jl3Cwc7Eq2PDGd2r6Qx0vlbVHkdW0zSOTEQEUjIvM2nxLo6l5+Lu7MC7D/TmpjAfW5dVp641DzTXoohIPXMkNZtJi3eRnl2In6cziyf1o0ug/sO+MgoyEZF65JsTF3j0w1hyC0sI83VnyeR+tPJytXVZ9ZqCTESknlgVe5Zn/htPicWgf6g3/3ywD2Y3R1uXVe8pyEREbMwwDN7YeIz5m08AMDI8gL9qjNg1U5CJiNhQYUkpT6+KZ01cWff66Fvb8eSwjtjZqXv9tVKQiYjYSGZ+EVM+jGVX0iXs7Uz86Z5ujOsbbOuyGhwFmYiIDZy6kMfkJbs5eSEPD2cH3nmgFzeHtbR1WQ2SgkxEpI7Fnr7EIx/EcimviFZerrw/qS8d/T1sXVaDpSATEalDn8Sd4w+r4ikqsdC9lZn3JvbB19PF1mU1aAoyEZE6YBgGb3x1nPmbjgMwtLMf8+/viZuT/gxXl1pQRKSWFRSX8n8r97MuPhWARwe15anbO2Gvnok1QkEmIlKLMnIKeOSDWPafycTBzsSf7unOvX2DbF1Wo6IgExGpJYdTsvnN0t2kZBXg5ebIggm9iWjXwtZlNToKMhGRWrDxcDpPrNhHflEpbVs24/2JfWnj08zWZTVKCjIRkRpkGAbvxpzk1Q1HMQy4qb0Pb4/vpTkTa5GCTESkhhQUl/L0f+P55Pvppib0D+bFu7riaG9n48oaNwWZiEgNSMsqYMqHe4g/m4WDnYkX7urKgwNCbF1Wk6AgExGppn3J3zHlw1jO5xTS3M2Rtyf04sZ2TWs1Z1tSkImIVMN/Y88yc/UBikosdPTzYOFDfQhu4WbrspoUBZmIyHUotRj8ef1R/rn1JADDuvjxxrieuDvrz2pdU4uLiFRRZn4Rjy/fx/+OXwDg8dvaM31oB60hZiMKMhGRKjiSms2UD/dw5tJlXB3teXVsOHf2CLR1WU2agkxE5Bqti0/hDyvjuVxcSpC3K/94oA9dAj1tXVaTpyATEfkFpRaD1zYk8G5MIgA3h/kw/74baN7MycaVCSjIRESuKjO/iN+viGPrsfNA2cz1f4jsiIMGOdcbCjIRkUocSc3m0Q9jSb6Uj4ujHa+O7cFdeh5W7yjIREQqsHrfWWZ+fICCYgutm7vyzwf1PKy+UpCJiPxIUYmFVz47zAfbTwMwqENL3hzXU8/D6jEFmYjI99KyCvjdR7HsTc4E4PdDwnhiSJhWcq7nFGQiIsD2xIs8vnwvF3KL8HRx4I1xPRnS2c/WZck1UJCJSJNmGAYL/3eSP69PoNRi0Mnfg3882JuQFloEs6FQkIlIk5V1uZinVu1nw6F0AO65oRV/uqc7rk72Nq5MqqJKAyHmzp1L37598fDwwNfXl7vvvpuEhIRyx9xyyy2YTKZyr8cee6xGixYRqa6D57K4861tbDiUjqO9iZdGdeX1e3soxBqgKl2RxcTEEB0dTd++fSkpKeHZZ59l+PDhHD58mGbNfrgMf+SRR3jppZes793ctKSBiNQPhmGwfNcZXlx7iKISC628XHl7Qi96BnnZujS5TlUKsvXr15d7v2TJEnx9fYmNjWXQoEHW7W5ubvj7+9dMhSIiNSS/qIRZqw/y8b5zANzWyZfX7+2Bl5u61jdk1ZpjJSsrCwBvb+9y2z/66CN8fHzo1q0bM2fOJD8/vzofIyJSbScycrn77W/4eN857Ezw1O0dWfRQH4VYI3DdnT0sFgvTpk1j4MCBdOvWzbp9/PjxhISEEBgYSHx8PE8//TQJCQl8/PHHFZ6nsLCQwsJC6/vs7OzrLUlEpEJr9p3j2dUHyC8qpaWHM2/dfwMD2rawdVlSQ647yKKjozl48CDbtm0rt33KlCnWf3fv3p2AgACGDBlCYmIi7dq1+9l55s6dy5w5c663DBGRSl0uKuXFTw/x7z1nAIho24I37++Jr4eLjSuTmmQyDMOo6g9NnTqVTz75hK1btxIaGnrVY/Py8nB3d2f9+vVERkb+bH9FV2RBQUFkZWXh6al5zUTk+hxPzyF62V6OpediMsHvbwvj95qlo0HJzs7GbDb/Yh5U6YrMMAwef/xxVq9ezZYtW34xxADi4uIACAgIqHC/s7Mzzs7OVSlDRKRShmGwMvYsz39ykIJiCy09nHlzXE9ubO9j69KkllQpyKKjo1m2bBmffPIJHh4epKWlAWA2m3F1dSUxMZFly5YxYsQIWrRoQXx8PNOnT2fQoEGEh4fXyi8gInJFXmEJs9f80Cvx5jAfXr+3Jy099B/LjVmVbi2aTBVfki9evJhJkyZx5swZHnjgAQ4ePEheXh5BQUHcc889zJo165pvE17rpaSIyI8dTslm6vK9nDyfh50Jnhzekd8OboedbiU2WLV2a/FqgoKCiImJqcopRUSqxTAMlnx7irmfH6Wo1IK/pwvz77+BfqHev/zD0ihorkURabAu5hbyh1XxbD6aAcDQzr68OrYH3lo7rElRkIlIg/TNiQtM/3ccGTmFODnY8dyIzjwUEVLpIxBpvBRkItKgFJdaeH3jMd6NScQwoL2vO2/dfwOdA/RMvalSkIlIg3H6Yh6/XxHH/jOZANzfL5jnR3bRjPVNnIJMROo9wzBYFXuWFz89RF5RKZ4uDvx5TDhR3SsenypNi4JMROq1zPwinl19gM8PlI1b7RfqzRvjetLKy9XGlUl9oSATkXrr2xMXmPGf/aRlF+BgZ2LG8A48OqidppmSchRkIlLvFJaU8pcNCSz8XxIAbX2a8bf7ehLe2su2hUm9pCATkXrlWHoOT6yI40hq2ZJO4/sHM+uOzrg56c+VVEzfDBGpFywWg/e/SeLVDQkUlVjwbubEn8eEM6yLn61Lk3pOQSYiNnf2u3z+b+V+dpy8BMCtHVvy57HhWjdMromCTERsxjAM/rv3HHM+PUROYQluTvbMuqML9/cL0gwdcs0UZCJiExdzC3l29QE2HEoHoHdIc16/twchLZrZuDJpaBRkIlLnNh5OZ+bH8VzILcLR3sS0oR14bLC61cv1UZCJSJ3Jyi9mztpD1oUvO/i588a4nnQNNNu4MmnIFGQiUie+Tsjgmf/Gk55diJ0JHhnUlulDO+DiqHkSpXoUZCJSq7ILivnjuiP8e88ZoGxw82u/6kHvkOY2rkwaCwWZiNSabccv8NSq/aRkFWAywa9vDOUPkR01W73UKAWZiNS4nIJi5n5xlGU7kwEI9nbjtbHh9G/bwsaVSWOkIBORGrUlIYNnPz5ASlYBAA9FhPD07Z1o5qw/N1I79M0SkRqRlV/My58dZlXsWaDsKuzPY8KJaKerMKldCjIRqbYvD6Xx3JqDnM8ptD4L+7/IDproV+qEvmUict0u5RXxwqeHWLs/BYC2LZvx2thweod427gyaUoUZCJSZYZh8ElcCi+tO8ylvCLsTPDo4HY8MSRM48KkzinIRKRKzn6Xz3OrDxJz7DwAnfw9eHVsuBa9FJtRkInINSm1GCz99hR/+TKB/KJSnBzseGJIGFMGtcXR3s7W5UkTpiATkV+UkJbD0/+NJ+5MJgD92ngzd0x32rV0t21hIijIROQqCopLefvrEyzYkkiJxcDD2YFnRnTi/r7B2GmmeqknFGQiUqFtxy8wa80BTl3MB2BYFz9eHtUNf7NWbZb6RUEmIuVczC3klc+OsPr7pVb8PJ158c6u3N7NX6s2S72kIBMRoKxL/co9Z/nTF0fIzC/GZIKJEW14cngHPFwcbV2eSKUUZCLCiYwcnl19kF1JlwDoEuDJn0Z3p2eQl20LE7kGVeozO3fuXPr27YuHhwe+vr7cfffdJCQklDumoKCA6OhoWrRogbu7O2PGjCE9Pb1GixaRmpFfVMKf1x8l6s3/sSvpEq6O9sy6ozOfTh2oEJMGo0pBFhMTQ3R0NDt27GDjxo0UFxczfPhw8vLyrMdMnz6dtWvXsnLlSmJiYkhJSWH06NE1XriIVM/Gw+kMe30rC7YkUlxqMKSTLxtnDOI3N7fFQePCpAExGYZhXO8Pnz9/Hl9fX2JiYhg0aBBZWVm0bNmSZcuWMXbsWACOHj1K586d2b59OwMGDPjFc2ZnZ2M2m8nKysLT0/N6SxORSpy5lM+ctYf46kgGAK28XHnxrq4M6+Jn48pEyrvWPKjWM7KsrCwAvL3LJgiNjY2luLiYoUOHWo/p1KkTwcHB1xxkIlI7ikosLPzfSd7afJyCYguO9iYeubktU29rr1nqpUG77m+vxWJh2rRpDBw4kG7dugGQlpaGk5MTXl5e5Y718/MjLS2twvMUFhZSWFhofZ+dnX29JYlIJbYeO8+Law9x8nzZY4ABbb155e5utPf1sHFlItV33UEWHR3NwYMH2bZtW7UKmDt3LnPmzKnWOUSkYme/y+eVdUdYf6jsPyR93J2YdUcXRvUM1JgwaTSuK8imTp3KunXr2Lp1K61bt7Zu9/f3p6ioiMzMzHJXZenp6fj7+1d4rpkzZzJjxgzr++zsbIKCgq6nLBH5XkFxKQu3nuTtLScoKLZgb2diYkQbpg0Lw1NjwqSRqVKQGYbB448/zurVq9myZQuhoaHl9vfu3RtHR0c2bdrEmDFjAEhISCA5OZmIiIgKz+ns7Iyzs/N1li8iP7X5aDpz1h7m9PdTS/UP9WbOqK508lfnKWmcqhRk0dHRLFu2jE8++QQPDw/rcy+z2Yyrqytms5mHH36YGTNm4O3tjaenJ48//jgRERHq6CFSy5Iu5PHKusNsOlrWG9HP05lnR3Tmrh66jSiNW5W631f2f4bFixczadIkoGxA9JNPPsny5cspLCwkMjKSd955p9Jbiz+l7vciVZNTUMzfN5/g/W+SKC41cLAz8fBNoTw+JAx3Z/VGlIbrWvOgWuPIaoOCTOTaWCwGq/ae5dX1CVzILev5O7hDS2aP7EJ7X60TJg1fnYwjExHb2Jv8HXM+PcT+s2VjOUN9mjF7ZGdu66RBzdL0KMhEGpDUrMu8uj7BusSKu7MDvx/Snkk3huLkoGmlpGlSkIk0APlFJbwbc5J/bk2koNgCwK96t+YPt3fE10MLXUrTpiATqccsFoOP953jtQ1HSc8uew7Wt01zZo/sQnhrL9sWJ1JPKMhE6qldSZd45bPDxH//HCzI25WZUZ2J0krNIuUoyETqmVMX8nh1w1E+P1A2TtPd2YGpt7Vn0o1tcHG0t3F1IvWPgkyknvgur4j5m4/zrx2nKS41sDPBuL7BzBjWgZYemv1GpDIKMhEbKyguZem3p/j71yfIKSgBysaDzRzRSdNKiVwDBZmIjVgsBmvjU3h1fQLnMi8D0Mnfg+fu6MzNYS1tXJ1Iw6EgE7GBb09cYO4XRzlwrqwjh7+nC08O78DoXq2xt1NHDpGqUJCJ1KFDKVn8eX0CW4+dB6CZkz2/vaUdD9/UFlcndeQQuR4KMpE6cOZSPn/9MoE1cSkAONiZmNA/mKm3hakjh0g1KchEatGlvCLe+lFPRIA7ewTyf8M7ENKimY2rE2kcFGQitSC3sIRF/zvJov8lkVtY1hPxpvY+PH17J7q3Ntu4OpHGRUEmUoMKikv5147TvLMlkUt5RQB0DfTkmahO6okoUksUZCI1oKTUwqrYs7y56TipWQUAtPVpxozhHRjRLQA79UQUqTUKMpFqsFgMPjuQyusbj5F0IQ+AALML04aGMaZXaxzstbSKSG1TkIlcB8Mw+PJwOm9sPMbRtBwAvJs58btb2vHAgBDNiShShxRkIlVgGAZbjp3njY3HrLPSezg78PDNoTx8UygeLo42rlCk6VGQiVyjbxMv8NcvjxF7+jsA3JzsmXRjG6YMaouXm5ONqxNpuhRkIr9g58mL/O2r42w/eREAZwc7HooI4dHB7fBx12BmEVtTkIlUYlfSJf721TG+TSwLMEd7E+P7BfO7W9vj5+li4+pE5AoFmchP7D51iTc2lg+we/sE8btb29PKy9XG1YnITynIRL63+1TZFdg3J34IsF/1CSJaASZSrynIpEkzDIPtiReZv/k4O05eAn4IsN/d0o7Wzd1sXKGI/BIFmTRJhmEQc+w8b20+Ye2F6GhvYmzv1kTf2l4BJtKAKMikSTEMg01HMnhr83H2fz8OzMnBjvv6BvHo4Ha6hSjSACnIpEkotRisP5jG21+f4HBqNgAujnZM6B/ClEFt1QtRpAFTkEmjVlRiYU3cOd7dksjJ7+dCdHOy58GIEB65ua3GgYk0AgoyaZQuF5Xy793J/HPrSVK+n43e7OrIpBvbMOnGNjRvppk4RBoLBZk0KlmXi/nXjtO8vy2Ji9+vB9bSw5lHbg5lfP8Q3J31lRdpbPT/amkU0rMLeG9bEst2JltXZG7d3JXHBrdjbO/Wmo1epBGr8mJJW7du5c477yQwMBCTycSaNWvK7Z80aRImk6nc6/bbb6+pekXKOZGRy1Or9nPTnzfzz60nyS0soYOfO6/f24Ov/+8WLaki0gRU+YosLy+PHj16MHnyZEaPHl3hMbfffjuLFy+2vnd21gN1qVn7kr/j3ZhEvjycjmGUbevbpjmPDW7HrR19tSKzSBNS5SCLiooiKirqqsc4Ozvj7+9/3UWJVMRiMdh0NIOFW0+y69Ql6/ahnf347S1t6R3ibcPqRMRWauUZ2ZYtW/D19aV58+bcdtttvPLKK7Ro0aI2PkqagILiUlbvO8fC/53k5PmyLvSO9iZG9WzFo4PaEubnYeMKRcSWajzIbr/9dkaPHk1oaCiJiYk8++yzREVFsX37duztf/6sorCwkMLCQuv77Ozsmi5JGqjv8or4cMdpPth+igu5ZT0QPVwcmNA/hEk3tsHfrEHMIlILQXbfffdZ/929e3fCw8Np164dW7ZsYciQIT87fu7cucyZM6emy5AGLPF8Lou/SWJV7FkKii0AtPJy5dcD23Bfv2B1oReRcmr9L0Lbtm3x8fHhxIkTFQbZzJkzmTFjhvV9dnY2QUFBtV2W1DNXZqFftC2JzUczrNu7BnoyZVBbRnQPwNG+yp1sRaQJqPUgO3v2LBcvXiQgIKDC/c7OzurV2IQVlpTyaVwK721L4mhaDgAmEwzp5MfDN4UyoK03JpN6IIpI5aocZLm5uZw4ccL6Pikpibi4OLy9vfH29mbOnDmMGTMGf39/EhMTeeqpp2jfvj2RkZE1Wrg0bOdzCvlo52n+tSOZC7llz0hdHe35VZ/W/HpgKKE+zWxcoYg0FFUOsj179nDrrbda31+5LThx4kQWLFhAfHw8S5cuJTMzk8DAQIYPH87LL7+sqy4B4MDZLBZ/k8S6+FSKSsuef/l7ujBpYBvu7xuM2c3RxhWKSENjMowrw0nrh+zsbMxmM1lZWXh6etq6HKkBxaUWNhxKY/E3p6yLWAL0CvZi0sBQorr56/mXiPzMteaBun9JrbmQW8iKXcl8tDOZ1O9noHe0N3FH9wB+PTCUHkFeti1QRBoFBZnUKMMwiDuTyQfbT/PZj24f+rg7Mb5/CA/0D8ZXi1iKSA1SkEmNKCguZV18Kh9sP0X82Szr9h5BXkyMCGFE9wBN3isitUJBJtWSfDGfj3adZuWes1z6fv0vJ3s7RvYI4KGINvTU7UMRqWUKMqmyUovB5qMZ/GvHabYeP2+dfT7Q7MIDESGM6xNEC3f1UhWRuqEgk2uWkVPAf3afYfmuM5zLvGzdfnOYDw8MCGFIJ18c1PtQROqYgkyuymIx2H7yIst2JvPl4TSKS8suv7zcHLm3TxDj+wXTRoOXRcSGFGRSoQu5hayKPcuKXcmcuphv3d4r2IsHBqjzhojUHwoysTKMH66+Nhz64erL3dmBu28IZHy/ELoEapC6iNQvCjIhI7uAVXvP8p/dZ8pdffVobWZ8/2Du7BGIm5O+KiJSP+mvUxNVUmph6/HzLN91hs1HMyi1lF19NXOy5+4bWnF/v2C6tTLbuEoRkV+mIGtiki/mszL2DCv3nCUtu8C6vXdIc8b1DeKO7gE008KVItKA6C9WE3C5qJQvDqaycs9Ztp+8aN3e3M2RMb1aM65vEGF+HjasUETk+inIGqkrcx7+Z89Z1u1PIaewBChbtPKm9j6M6xvEsC5+ODuo56GINGwKskYmI7uA1fvOsSr2LMczcq3bg7xd+VXvIMb0bk0rL1cbVigiUrMUZI1AQXEpGw+n89+9Z9l67Dzf99vAxdGOEd0C+FWfIPqHemNnZ7JtoSIitUBB1kAZhsHe5Ez+u/csa/enkFNQYt3XO6Q5Y3q1ZmSPADxdtOKyiDRuCrIGJvliPqv3nWNN3DmSLuRZtweaXRjdqzWje7WibUt3G1YoIlK3FGQNQFZ+MesOpLB67zn2nP7Out3V0Z6obv6M6d2aiLYtdOtQRJokBVk9VVhSypaE86zZd45NRzKsKy2bTDCwnQ/33NCK27v5a8yXiDR5+itYj1gsBjuTLvFJ3Dk+P5BK9o+ee3Xy9+CeG1oxqmcr/M0uNqxSRKR+UZDZmGEYHEnN4ZO4c3y6P4XUrB9m2/DzdOauHoHcc0NrTdYrIlIJBZmNJF3IY+3+FNbuTyk33svDxYER3QIYdUMg/UNbYK/nXiIiV6Ugq0MpmZf5LD6VT/encOBclnW7k4MdQzr5MqpnK27p2FLrfImIVIGCrJadzylk/cFU1u5PZdepS9bt9nYmBrb34a4egQzv6qfxXiIi10lBVgsu5hay/lAa6/ansjPponWmDYB+bby5s2cgI7r508Ld2XZFiog0EgqyGvJdXhEbDqXx2YFUvk28aF3fC6BHkBcjuwcwskcAAWbNcygiUpMUZNVwIbeQLw+l88XBn4dX91Zm7ggP4I7uAQR5u9mwShGRxk1BVkUZOQVsOJTOFwdS2XGy/G3DzgGejAwPYGR4ACEtmtmuSBGRJkRBdg3OZV5mw8E01h9KY/epSxg/Cq/urcxEdfcnqlsAoT4KLxGRuqYgq8TJ87msP5TGhoNp7D+bVW5fjyAvRnQrC6/gFrptKCJiSwqy7xmGwaGUbL48VHbldSz9h0HKJhP0DfEmsps/kV39aN1c4SUiUl9UOci2bt3Ka6+9RmxsLKmpqaxevZq7777but8wDF544QUWLlxIZmYmAwcOZMGCBYSFhdVk3TWipNTCrlOX+PJQOhsPp3Mu87J1n4OdiYh2Lbi9mz/Du/jT0kNd5UVE6qMqB1leXh49evRg8uTJjB49+mf7X331VebPn8/SpUsJDQ1l9uzZREZGcvjwYVxcbD/ZbX5RCf87foEvD6Wz6Wg6mfnF1n0ujnYM7tCS4V38GdrZD7ObBimLiNR3VQ6yqKgooqKiKtxnGAZ/+9vfmDVrFqNGjQLggw8+wM/PjzVr1nDfffdVr9rrlJFdwKajGWw8nM62ExcoKrFY9zV3c2RoZz+Gd/XnpvY+uDppeigRkYakRp+RJSUlkZaWxtChQ63bzGYz/fv3Z/v27XUWZIZhkJCew1eH09l4JIP9ZzLL7Q/ydmVY57LnXb1DmuNgb1cndYmISM2r0SBLS0sDwM/Pr9x2Pz8/676fKiwspLCw0Po+Ozu72nUcOJfFXX//pty2nkFeDOvix7AufoT5umMyaVZ5EZHGwOa9FufOncucOXNq9JzdAs20bu5KRz8PhnbxY0gnX3w9bf98TkREal6NBpm/vz8A6enpBAQEWLenp6fTs2fPCn9m5syZzJgxw/o+OzuboKCgatVhZ2ci5g+3ai0vEZEmoEYfDoWGhuLv78+mTZus27Kzs9m5cycREREV/oyzszOenp7lXjVBISYi0jRU+YosNzeXEydOWN8nJSURFxeHt7c3wcHBTJs2jVdeeYWwsDBr9/vAwMByY81ERERqSpWDbM+ePdx6663W91duC06cOJElS5bw1FNPkZeXx5QpU8jMzOSmm25i/fr19WIMmYiIND4mw/jxFLi2l52djdlsJisrq8ZuM4qISMNzrXmgAVQiItKgKchERKRBU5CJiEiDZvMB0T915ZFdTczwISIiDdeVHPilrhz1LshycnIAqj0oWkREGoecnBzMZnOl++tdr0WLxUJKSgoeHh7Vmg/xygwhZ86cUe/HH1G7VE5tUzG1S+XUNhWrqXYxDIOcnBwCAwOxs6v8SVi9uyKzs7OjdevWNXa+mpwtpDFRu1RObVMxtUvl1DYVq4l2udqV2BXq7CEiIg2agkxERBq0Rhtkzs7OvPDCCzg7O9u6lHpF7VI5tU3F1C6VU9tUrK7bpd519hAREamKRntFJiIiTYOCTEREGjQFmYiINGgKMhERadAaZZC9/fbbtGnTBhcXF/r378+uXbtsXVKd27p1K3feeSeBgYGYTCbWrFlTbr9hGDz//PMEBATg6urK0KFDOX78uG2KrUNz586lb9++eHh44Ovry913301CQkK5YwoKCoiOjqZFixa4u7szZswY0tPTbVRx3VmwYAHh4eHWQawRERF88cUX1v1NtV1+at68eZhMJqZNm2bd1lTb5sUXX8RkMpV7derUybq/rtql0QXZv//9b2bMmMELL7zA3r176dGjB5GRkWRkZNi6tDqVl5dHjx49ePvttyvc/+qrrzJ//nzeffdddu7cSbNmzYiMjKSgoKCOK61bMTExREdHs2PHDjZu3EhxcTHDhw8nLy/Pesz06dNZu3YtK1euJCYmhpSUFEaPHm3DqutG69atmTdvHrGxsezZs4fbbruNUaNGcejQIaDptsuP7d69m3/84x+Eh4eX296U26Zr166kpqZaX9u2bbPuq7N2MRqZfv36GdHR0db3paWlRmBgoDF37lwbVmVbgLF69Wrre4vFYvj7+xuvvfaadVtmZqbh7OxsLF++3AYV2k5GRoYBGDExMYZhlLWDo6OjsXLlSusxR44cMQBj+/bttirTZpo3b24sWrRI7WIYRk5OjhEWFmZs3LjRGDx4sPHEE08YhtG0vzMvvPCC0aNHjwr31WW7NKorsqKiImJjYxk6dKh1m52dHUOHDmX79u02rKx+SUpKIi0trVw7mc1m+vfv3+TaKSsrCwBvb28AYmNjKS4uLtc2nTp1Ijg4uEm1TWlpKStWrCAvL4+IiAi1CxAdHc0dd9xRrg1A35njx48TGBhI27ZtmTBhAsnJyUDdtku9mzS4Oi5cuEBpaSl+fn7ltvv5+XH06FEbVVX/pKWlAVTYTlf2NQUWi4Vp06YxcOBAunXrBpS1jZOTE15eXuWObSptc+DAASIiIigoKMDd3Z3Vq1fTpUsX4uLimnS7rFixgr1797J79+6f7WvK35n+/fuzZMkSOnbsSGpqKnPmzOHmm2/m4MGDddoujSrIRKoiOjqagwcPlrun39R17NiRuLg4srKyWLVqFRMnTiQmJsbWZdnUmTNneOKJJ9i4cSMuLi62LqdeiYqKsv47PDyc/v37ExISwn/+8x9cXV3rrI5GdWvRx8cHe3v7n/WKSU9Px9/f30ZV1T9X2qIpt9PUqVNZt24dX3/9dbllg/z9/SkqKiIzM7Pc8U2lbZycnGjfvj29e/dm7ty59OjRgzfffLNJt0tsbCwZGRn06tULBwcHHBwciImJYf78+Tg4OODn59dk2+anvLy86NChAydOnKjT70yjCjInJyd69+7Npk2brNssFgubNm0iIiLChpXVL6Ghofj7+5drp+zsbHbu3Nno28kwDKZOncrq1avZvHkzoaGh5fb37t0bR0fHcm2TkJBAcnJyo2+bilgsFgoLC5t0uwwZMoQDBw4QFxdnffXp04cJEyZY/91U2+ancnNzSUxMJCAgoG6/MzXadaQeWLFiheHs7GwsWbLEOHz4sDFlyhTDy8vLSEtLs3VpdSonJ8fYt2+fsW/fPgMwXn/9dWPfvn3G6dOnDcMwjHnz5hleXl7GJ598YsTHxxujRo0yQkNDjcuXL9u48tr129/+1jCbzcaWLVuM1NRU6ys/P996zGOPPWYEBwcbmzdvNvbs2WNEREQYERERNqy6bjzzzDNGTEyMkZSUZMTHxxvPPPOMYTKZjC+//NIwjKbbLhX5ca9Fw2i6bfPkk08aW7ZsMZKSkoxvvvnGGDp0qOHj42NkZGQYhlF37dLogswwDOOtt94ygoODDScnJ6Nfv37Gjh07bF1Snfv6668N4GeviRMnGoZR1gV/9uzZhp+fn+Hs7GwMGTLESEhIsG3RdaCiNgGMxYsXW4+5fPmy8bvf/c5o3ry54ebmZtxzzz1Gamqq7YquI5MnTzZCQkIMJycno2XLlsaQIUOsIWYYTbddKvLTIGuqbTNu3DgjICDAcHJyMlq1amWMGzfOOHHihHV/XbWLlnEREZEGrVE9IxMRkaZHQSYiIg2agkxERBo0BZmIiDRoCjIREWnQFGQiItKgKchERKRBU5CJiEiDpiATEZEGTUEmIiINmoJMREQaNAWZiIg0aP8Pyy7FCIM4e6oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "r = 0.025 # interest rate\n", + "T = 50 # end date\n", + "b = np.empty(T+1) # an empty NumPy array, to store all b_t\n", + "b[0] = 10 # initial balance\n", + "\n", + "for t in range(T):\n", + " b[t+1] = (1 + r) * b[t]\n", + "\n", + "plt.plot(b, label='bank balance')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9278f1b9", + "metadata": {}, + "source": [ + "The statement `b = np.empty(T+1)` allocates storage in memory for `T+1`\n", + "(floating point) numbers.\n", + "\n", + "These numbers are filled in by the `for` loop.\n", + "\n", + "Allocating memory at the start is more efficient than using a Python list and\n", + "`append`, since the latter must repeatedly ask for storage space from the\n", + "operating system.\n", + "\n", + "Notice that we added a legend to the plot — a feature you will be asked to\n", + "use in the exercises." + ] + }, + { + "cell_type": "markdown", + "id": "0e323dec", + "metadata": {}, + "source": [ + "## Exercises\n", + "\n", + "Now we turn to exercises. It is important that you complete them before\n", + "continuing, since they present new concepts we will need." + ] + }, + { + "cell_type": "markdown", + "id": "bf406a06", + "metadata": {}, + "source": [ + "## Exercise 3.1\n", + "\n", + "Your first task is to simulate and plot the correlated time series\n", + "\n", + "$$\n", + "x_{t+1} = \\alpha \\, x_t + \\epsilon_{t+1}\n", + "\\quad \\text{where} \\quad\n", + "x_0 = 0\n", + "\\quad \\text{and} \\quad t = 0,\\ldots,T\n", + "$$\n", + "\n", + "The sequence of shocks $ \\{\\epsilon_t\\} $ is assumed to be IID and standard normal.\n", + "\n", + "In your solution, restrict your import statements to" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "4da50a38", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "53e448a3", + "metadata": {}, + "source": [ + "Set $ T=200 $ and $ \\alpha = 0.9 $." + ] + }, + { + "cell_type": "markdown", + "id": "8eeda2bc", + "metadata": {}, + "source": [ + "## Solution to[ Exercise 3.1](https://python-programming.quantecon.org/#pbe_ex1)\n", + "\n", + "Here’s one solution." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "4578e185", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcAklEQVR4nO2dd3hc1bX23zOjqdKod0uyLeOCKy7gGFODg01MQhoB4twAl1ASc4HAzQXnCRDSTAIXuBAukAbcQIDkCyUhoRgbbIpxt8E2lrslq1ptRm36/v44s/ecqZoZzZmm9XsePbambp2Zc9Zea71rLYkxxkAQBEEQOYAm3QsgCIIgiGRBRo0gCILIGcioEQRBEDkDGTWCIAgiZyCjRhAEQeQMZNQIgiCInIGMGkEQBJEz5KV7AdHwer1oa2uDxWKBJEnpXg5BEASRJhhjGBgYQG1tLTSayP5YRhu1trY21NfXp3sZBEEQRIbQ0tKCurq6iPdntFGzWCwA5D+isLAwzashCIIg0oXNZkN9fb2wC5HIaKPGQ46FhYVk1AiCIIhRU1EkFCEIgiByBjJqBEEQRM5ARo0gCILIGcioEQRBEDkDGTWCIAgiZyCjRhAEQeQMZNQIIkdp7R9Bu3Uk3csgiJSS0XVqBEEkxpDDjS88tBEjLg8unF6JO1fMwPTq6EWrBJELkKdGEDnIqQEHhp0eMAZsONCFX/7rs3QviSBSAhk1gshBBh3ugN9PDTjStBKCSC1k1AgiBxl2egJ+t4640rQSgkgtZNQIIgcZcsqeWoFBTpvbyKgR4wQyagSRgwz5wo81RUYAwIDDDbfHm84lEURKIKNGEDnIsEMOP9YUm8RtNrs70sMJImcgo0YQOQgPPxYa80QIkvJqxHiAjBpB5CA8/FhgyEORSQeAjBoxPlDNqHk8Htx9992YPHkyTCYTpkyZgp/97GdgjKn1lgRB+BjyqR/N+jwUklEjxhGqdRT51a9+hSeeeALPPvssZs2ahe3bt+Paa69FUVERbrnlFrXeliAIAMM+Ty3foEWRST7N+4ed6VwSQaQE1YzaRx99hMsuuwwrV64EAEyaNAkvvPACtm7dqtZbEgThY9AnFMlXhB9J1k+MB1QLP5599tlYv349Dh48CADYs2cPPvjgA1xyySURn+NwOGCz2QJ+CIKIn2GfUCRfr0WxSQ+Awo/E+EA1T+2uu+6CzWbDjBkzoNVq4fF48Itf/AKrVq2K+Jy1a9fivvvuU2tJBDFuUObUisyUUyPGD6p5an/5y1/w/PPP489//jN27tyJZ599Fg8++CCeffbZiM9Zs2YNrFar+GlpaVFreQSR0wyJnBqpH4nxhWqe2g9/+EPcdddduPLKKwEAc+bMwYkTJ7B27VpcffXVYZ9jMBhgMBjUWhJBjBuGFEIRUj8S4wnVPLXh4WFoNIEvr9Vq4fVSqx6CUJthZfjRZ9T6h8moEbmPap7al770JfziF79AQ0MDZs2ahV27duGhhx7Cv//7v6v1lgRB+BgKkPSTp0aMH1Qzao899hjuvvtufP/730dXVxdqa2tx44034p577lHrLQmC8DEk1I95KDbJ0RGS9BPjAdWMmsViwSOPPIJHHnlErbcgCCIMHi+D3SUbsnxDHjxeuYsPeWrEeEA1o0YQRHrgXhoAmPVaSOJ2D1weL3RaavlK5C707SaIHIOPncnTSDDkaYT6ESBvjch9yKgRRI7BPTWzXgtJkqDVSLDQ+BlinEBGjSByDGXhNYdq1YjxAhk1gsgxhhTNjDnF1CqLGCeQUSOIHEPZzJhDnfqJ8QIZNYLIMQYdPKfm99SoAJsYL5BRI4gcg7fIChd+7BmkQaFEbkNGjSByDGWLLM7k8nwAQFPHQFrWRBCpgowaQeQYXCiiDD/OqysGAOw52Z+GFRFE6iCjRhA5BheKFCg8tdkTiqCRgHarHZ02e9jnNfcM47XdrWCMpWSdBKEGZNQIIsfwF1/7PbV8Qx6mVloAAHta+sM+79aXduHWF3fjoyM9qq+RINSCjBpB5Bj+OjVtwO3z6osAhA9B9g45sdtn7I52D6m6PoJQEzJqBJFjhOsoAgDz6osBAJ+ctIY858PD3eBRx64I4UmCyAbIqBFEjiEk/fogo+YTi+xq7se3f78FP3hpt8iffXi4Wzyuy+ZIzUIJQgXIqBFEjuEvvg4MP06vtsCQp8Ggw40PDnfjlV2t2HykB4wxvH/Ib9Q6B8hTI7IXMmoEkWP41Y+BnppOq8G5U8sBAHUlJgDA81uacbxnGK39I+JxneSpEVkMDQkliByDhx9NQZ4aAPzvqoXoHXKid8iJLz76Pt7a1yE6+Jfl69Ez5MQp8tSILIY8NYLIMewuLwDAqAs1avo8DaqLjJhZW4gz6ovh9jK8sLUZAHD12ZMAAN2DTrg83pStlyCSiapGrbW1Fd/+9rdRVlYGk8mEOXPmYPv27Wq+JUGMexxu2VMz5EU/vb/9uYkA5AnZ91w6EzdfeBp0WgkAcGqAQpBEdqJa+LGvrw9Lly7FhRdeiDfeeAMVFRU4dOgQSkpK1HpLgiAAOKJ4akq+vmACNBIwrcqC2RPkGraKAgParHZ0DThQW2xSfa0EkWxUM2q/+tWvUF9fj6efflrcNnnyZLXejiAIAF4vg9MXOhzNU5MkCV9bUBdwW2WhEW1RWmkRRKajWvjx73//OxYtWoTLL78clZWVmD9/Pn73u99FfY7D4YDNZgv4IQgidpyKXJhhFE8tHFWFBgBUgE1kL6oZtaNHj+KJJ57A1KlT8dZbb+F73/sebrnlFjz77LMRn7N27VoUFRWJn/r6erWWRxA5id3lEf83juKphaOq0AiAZP1E9qKaUfN6vViwYAF++ctfYv78+bjhhhtw/fXX48knn4z4nDVr1sBqtYqflpYWtZZHEDmJwy17alqNhDxt/Kd3pcXnqZGsn8hSVDNqNTU1mDlzZsBtp59+OpqbmyM+x2AwoLCwMOCHIIjY4Z5aIl4aIOfUAPLUiOxFNaO2dOlSNDU1Bdx28OBBTJw4Ua23JIhxD/fUEsmnAcrwI3lqRHaimlH7wQ9+gI8//hi//OUvcfjwYfz5z3/Gb3/7W6xevVqttySIcQ/31EZTPkaChx+pTo3IVlQzameeeSZeeeUVvPDCC5g9ezZ+9rOf4ZFHHsGqVavUekuCGPdwT220GrVIcE+tZ8gJp5u6ihDZh6q9Hy+99FJceumlar4FQRAKeOF1op5aiVmHYrMO/cMufNraj4UTS5O5PIJQHer9SBA5hAg/JuipSZKEpafJnfw3Huwe5dEEkXmQUSOIHEIIRRL01ADg/KkVAIBNB08lZU0EkUrIqBFEDjFWoQgAnDtN9tQ+OdmP/mFnUtZFEKmCjBpB5BBjFYoAQE2RCdOqCuBlwAeHKQRJZBdk1Agih4h17MxonEchSCJLIaNGEDlEtAGh8XDuNNmofXy0d8xrIohUQkaNIHKIZHlqZ9QVAwCae4dhHXaNdVkEkTLIqBFEDmEXdWpj89SKzDo0lJoBAPvarGNeF0GkCjJqBJFDcE/NqBv7qT17gtxQfC8ZNSKLIKNGEDmEv05tbJ4aAMyqLQIAfNpKw3qJ7IGMGkHkEGL0TBI8tTkTZKO2r5U8NSJ7IKNGEDlEMjqKcGbVyuHHo91DGLCTWITIDsioEUSWY7O78PPX9+PTk1Y4hKc29vBjWYEBtUVy1/79bRSCJLIDMmoEkeW88Wk7fv/BMTy64ZBiSGhyTu3ZvhDk3jYbGGO49cVd+Lc/bIHHy5Ly+gSRbMioEUSW02GVB3r2DjkVo2fG7qkBwLz6YgDAvz5tx0dHevDa7ja8f6gbJ/uGk/L6BJFsyKgRRJbTMyQbNduIC/YkSvoB4PKFddDnabDjRB/WvPypuH3Q4U7K6xNEsiGjRhBZTvegz6jZXUn31CoLjbjyzHoAcncRzrDTk5TXJ4hkQ0aNILKc7kF5PIxVBU8NAG46fwp0WingNvLUiEyFjBpBZDncU7O7vBiwy8YmWZ4aANQWm/C986egxKxDoTEPADBERo3IUFJm1O6//35IkoTbbrstVW9JEOOCnkH/IM8+31DPZNSpKbn94unYdc/FOHNSKQAyakTmkhKjtm3bNjz11FOYO3duKt6OIMYNTrcX1hF/YTTzKe2TUacWDrOBe2qUUyMyE9WN2uDgIFatWoXf/e53KCkpUfvtCGJc0TvkDHt7sj01ToFBNpbkqRGZiupGbfXq1Vi5ciWWLVs26mMdDgdsNlvAD0EQkeH5tGAMKnlq+XrZUxt0klEjMpM8NV/8xRdfxM6dO7Ft27aYHr927Vrcd999ai6JIHKKiEZNJU/NH34ko0ZkJqp5ai0tLbj11lvx/PPPw2g0xvScNWvWwGq1ip+Wlha1lkcQWc2BDhvea+oScv5g1A4/DlNOjchQVPPUduzYga6uLixYsEDc5vF4sGnTJvzmN7+Bw+GAVhsYIjEYDDAYDGotiSByhhv+bweae4fxzUV1IfcZ8jSQJCnMs8ZOvs9Tozo1IlNRzahddNFF+PTTTwNuu/baazFjxgzceeedIQaNIIjYsLs8orvHW/s6Q+5Xy0sDgAIefgzKqdldHtUUlwQRD6oZNYvFgtmzZwfclp+fj7KyspDbCYKInQ6rXfyfy/nz9VoMOZM3diYSZi4UUYQfH1t/CP+z/hBeuvFzWDixVLX3JohYoI4iBJFltPWPhNzWWFEg/p+ssTPhyBc5Nb+ntuVYL9xehk0Hu1V7X4KIFVXVj8G89957qXw7gshJWsMatXx82moFkNwWWcEUhFE/8lq5o91Dqr0vQcQKeWoEkWW0K8KPnMnl+eL/yWxmHEw4oUi/rzXXka5B1d6XIGKFjBpBZBmjhh9V9NR48fWQ0wPm68nV6zNqx7qH4KWJ2ESaIaNGEFkGDz+eOcnfdq4xZZ6abDA9XgaH24sRpwd23wy3EZcH7bZQL5IgUgkZNYLIMrin9pX5EwAA1YVGlBXoxf1qempc/QjIeTU+FYBz9BSFIIn0klKhCEEQY4MxhrZ+2RtaOqUcf7h6ESosBhQadeIxatapaTUSTDotRlweDDk8GHC4Au4/0jWIc6dWqPb+BDEaZNQIIovoH3ZhxCXXiFUXGTHJF3ZkjCFPI8HtZaoXQecb8jDi8mDQ4UbfUJBRO0UKSCK9UPiRILKINqsceiwv0AcYL0mSUGiSvTU1PTVA0f/RGSb82E3hRyK9kFEjiCyChx5ri00h9xUa5cBLKjw1QJb1c6NWXSg3LT/SRZ4akV7IqBFEFsFFIrVFoUatKEWempD1Ozwi/LjQp8TssNmp2TGRVsioEUQWwY1aTXHoOCcRflTdU/NNv1aEHyeWmlGaLyswW3zNlgkiHZBRI4gsos3XTSScp8YVkKp7aopWWdyolebrUWmRx0Z1DYQfXEoQqYCMGkFkEbwrf0m+PuS+C2dUosSsw+ca1e2U7w8/ukXfx2KzHpW+vFoXFWATaYQk/QSRRQzYZaNmMYaeut9YWIevL5ig2oBQjl8o4kH/sLye0nwdKgrIUyPSD3lqGcrmIz0451cbsPHgqXQvJafpHnTg7X0dcHu86V5KTAzaZRGGxRB+P6q2QQMCJf2Bnpps1E6RUSPSCBm1DOXNve042TeCh9YdTPdScpqf/mM/bvjTDmw40JXupcTEADdqig4iqUYp6ecd+kvN/pwaGTUinZBRy1B6fWGdPS39ONQ5kObV5A5eL8PD6w7ivSbZiB3yjUsJ1/k+FWuJFy6XLwgTfkwVZp9R6x92iWnbJWY9KoRQhHJqRPogo5ah9A35OzX8vx0n07iS7KdrwI5NvjDuR0d68D/rD+Ge1/YBADp8HTpSWVt1qHMA3/rdx5j/s3U4HsdgTa+XiXWGy6mlCh5+PNknS/e1GgkWYx4qLbJQhDw1Ip2QUctQehVG7eVdrVmT88lEfvTyp/jOH7diw4FO7DnZD0Ae3yJ3xJA9Yh7WU5utx3pxyf+8j4+O9MA64sKulr6Ynzvo9K+xIEJOLRVw9ePJPnlDUGzSQaORVJP004w2Ih7IqGUovP5HkuSd7+ajPWleUXbCGMP2E7Lh2HSwG3ta+gHI88B2N/eLxw2kyFN7bXcr3IqLdG9QQ+BocJGITiupXosWDW5Qh3no0VdewMOPw05P0jzf+984gIU/XydmyBHEaKh6ZqxduxZnnnkmLBYLKisr8ZWvfAVNTU1qvmVOwBgTntpZk+Sao4+OkFFTYnd58MBbB7DjRG/Ux3XaHEJ2vvVYLz45aRX3bTvuf+5gijy1Zl+3DbNeDuH1BzUEjoZSJJIKlWMkyn3Gi1NilkUr+YY85Pv+rmSFIN9r6kLfsAvbj0f/nAmCo6pR27hxI1avXo2PP/4Y69atg8vlwsUXX4yhIWp6Go0RlwcOtxxu/OKcGgDAx+SpBfBeUxcef/cIfvzqvqiP+6zDJv6/v92GDkVh8HaFQeT1X2rDW0jNrSsCEBhmHo1B3+yydIYeAWBalQVXnVUvfi82+wvBk12Azb1BytMRsaKqUXvzzTdxzTXXYNasWZg3bx6eeeYZNDc3Y8eOHWq+bdbD8zx6rQafn1EJAPjkpBVDQSEdxliAoGQ8wbvVH+iwRfV2mjoiK0d3KcKPqRCKeLxMhNHm1RUDQMjolmjY7OkXiXB++dU5uG3ZVGg1EhZP9ncwSXYBNv/Ok1EjYiWlgXmrVQ79lJaGb+PjcDhgs9kCfsYj3FCV5OtQX2rGhGITPF6GHScCRQX3/WM/Fv58HT7xiR/GE6cG5YscY8C245HFFgfa5e+QVhMaruNeAJAaoUiHzQ6Xh0GnlTCjxgIAIUM2o8FDpOn21AC5yPu2ZdOw9yfL8d1zG8XtFUkuwB7yiWOoSwkRKykzal6vF7fddhuWLl2K2bNnh33M2rVrUVRUJH7q6+vDPi7X4SGpEl9YZ7Gvl19wCPLjoz3wMuCz9vFn/Lts/ovc1mORQ7MHfJ7aF06vErfNbygOeVwqjBoPPU4oNqHc59HE46n55fzpK7wOxqQPnAiQTAWkx8tgd8lheG4kB+wuVdWQA3YXXtl1EnaXZ/QHExlJyoza6tWrsXfvXrz44osRH7NmzRpYrVbx09LSkqrlZRTKzucA8LnGMgDAlmP+HBBjTEiqUyVHzyS4pwYEHhclTrcXh33F1d9ZMlHcvtKXp1SSivAjF4nUl5rFhiUeoxat72OmkMwC7CFFCcOpAQdaeoex8Ofv4Ad/2T3m147E7X/Zgx+8tAfPfXxCtfcg1CUlRu3mm2/G66+/jnfffRd1dXURH2cwGFBYWBjwMx4RnprPqC3xGbU9Lf0Y8YXMrCMucSEej0MZleGtva3WsMfgaPcg3F4GizEPS6aU4cLpFZjfUIzls6pDHjvocIMxdeuhTiqNmu+z7Rtyxfy+gxmUU4tEMguwhx1+b6lrwI5tx3vhdHsDFKzJZE9LP9bt7wQA1d6DUB9VjRpjDDfffDNeeeUVbNiwAZMnT1bz7XIGnlMr9e3m60pMqLAY4PYy7G+XT7aWXn/dTrCAZDxwyucJ5GkkeBlC8o0AcKBdDj3OqLZAkiQ8fe1ZeOX7S1FbbIJOG5hj83gZRlQOOQlPrcQsZPBOj1e0mhoNWwbl1CKRzP6Pyo1K37BLeN1qfd//W9Fn9SC1pstaVDVqq1evxnPPPYc///nPsFgs6OjoQEdHB0ZGqJAyGr3DgZ6aJEmY55OA72mRjRpvUQSMP0/N7fGix2f4l55WDgDYFiYEyS+C06osAbdrNRJqi+Uhm0adBlxDonatGjdqDaVmmHRaUUDdN+TE2/s6xHojkYk5tWB4p/6OJEj6h52BnwffuAzHuAmIh90t/aKVGgAcPTVEXXyyFFWN2hNPPAGr1YoLLrgANTU14uell15S822zHq6IKzX7L15zJhQDAD5t9XlqCqM23nJqPUNOMAZoJODC6RUA5Bq0YLi3UO2rnVIywWfUaotMwvOxqXwcW3w50PpSEyRJEjnTjQdP4YY/7cANf9oe9fk8p5bOZsajUVdiBiA3O7aNsfYveLO229cNZsiZ/FDx+z6D9sU51TDptHB6vDjROzzKs4hMRPXwY7ifa665Rs23zXqCc2qAv1iXy/e5SAQYf54aN1blBQbMmiAfl3AK0G6fmCS4AwYgh3QBoLrIKDwfNY/jiNMj1t1QKl/4edHyB4e6AcjewYmeyI0J+PoKM9ioFRjyUF4g/13NPcOwuzzY09KfkGJRmVMDIBoSMAahikwWn/g2iwsnlmJqVQEA4GCUGkcic6HejyqSqPQ4WP0IAHN8Ru1o9xAG7C4hDwfGX06NG4cKiwEzquXQYrvVHlKILoxaQahRm1iWD0A2blx4oWb4kYeLLYY8FJlkI1qaL/+r7GyyyWfgwjGQBTk1wH9sj/cM4cG3mnDZ4x/iH5+0xf06Q87In0eyNyCf+oQhc+uKMLVS/k4d7IweDiYyEzJqKrGvzYq5972NpzYeASCrt2Itkg6uUwPkC/OEYhMYA/a12QI8tfESfmSMweH2CLl4pcUAi1EnPJ9gb617UD6O3HNQctVZDVh94RR8/4LThJFQs1XWiR7ZqNWVmkXfRu6p8XUCchjsX5+249qnt4a00Mqk4utoTCyTP48TPcP42FdDeCyOETucIUfk3Flwvm0sdA3Y0WGzQ5KAmTWFmMY9tS7y1LIRMmoqsfVYLwYdbqz3TVS+4f924Mu/+XDU+VmMsbCeGgDMmeAPQY7H8OMdf9mDs36xXuRWeE3U6b7uHMq8GmNM1LKF89RK8/X44fIZmFSeLzw1NTv1H/eFFSeXm/1rMIca2w8Od+P7z+/Eu02n8M9P2wPuG8gCoQgATPJ5ake6BoW3k8jGK5rhimbw4mWvL/R4WkUB8g15QlhEw3mzEzJqKsFDYV02OxhjOOBrrNs0yoky6HDD5ZHDliVBF7259bJRe/fAqQD5+Xgxau8f7oZ1xIW/7WwFoDRqcj2j0qgNONxw+nIw4YyakgKeU1PR4+WeCr/gA/7u9hyTThug7AtW32VD8TXg99Q2HjwlPgPbSPxeMP9eh29xlrzPitek8RA/z6kd6x6CixSQWQcZNZXgTYk7bQ7YRtwisd1hjS515spHk04b0oJofn0JAIjZarzWatCufuFwuvF4/eN4+IWSF/rO9Bm1z9r9G4YeX0gvXx96HIMRnpqKRo17apPKFUZN4YlbDHm46PTKgOcoDZzL4xXfocw3avLf2KMInybmqcl/P1eqKom1ti8WuKfGIyETik3I12vh8rC4JpMTmQEZNZXgtWYjLg8OKWLzbdboNXq9EUKPALB4cinOm1Yhfj/Nl9B2e5lQhnGGHG7sbO7LGWPXN+yEJ0h4E+ypHe4aEAYvmvIxGIsvR8VHu6jB8W45pzZZYdSUn3FjRT6+tbgBFmOeqF9TCoCUXmR+hufUJpWZQ25LRN7PPTXlRoCTTHHUJwqRCCDXhfI6xkxqpLz9eC+e/vBYzpzTakFGTSWUSrw9ipY7o3lqvUPySVRsDs2baDQSHrniDNQUyR7KdF+YBAgNQf78n/vxtf/9CO981hX/4jOQ7sHQiwvvXsEVjC4PEwXM3b6LUVmYzUEwBcKoJedCua/Nipv+tEOsxe7yiM2MMvyonEM2paIAZ08px6c/WY4bzpO73gcYNd//TTotdNrMPm2LzXqh8OQk5Kn5/ubJCiPJQ7bJMmpdA3Z0DTigkYCZNUXidj7EVY1C70T5r799gvv+sV9cT5TG7YG3DuDcX2/AkVOk2MzssyOL4eFHAAGqx/ZRjFqHNXLBMCDv7n/3nUW4cHoFvnP2JP8FOeiiwbsvHOvOjS95uLZL3FOTJAlTKmQD39wrh4uiyfmD4eG8ZBVfP7+lGW/u68D/23ESgNydn7HAGi4gUCjSWOE3dvnCyPovqLYsKLxWMjHIW0vMU5P//knl+dDnaaDVSJhVKxueZBmbI13y92ViWX5AmJr/X+3WabHi8niFgra1bwTNPcM48xfr8ZsNhwAA//ykHS29I/jxK3vHvSdHRk0lAjw1n1oPANpHCT/y+2uKwxs1AJg9oQhPX3sWFjSUhPUyXB6vECbYRnJDRMKNlDKfVKEILXKPjG8mTnE5fwzhx2QLRdp9g0C51y1EIuV+OT8Q6I1zowzIeUAgUAyRDc2MlUwsCwwZjkX9WJqvx/9+awEe/9YCEaWIVsMWD34BT6ARNuvl42zPEE+tvd8uwu9dA3ZsPtqN7kEH3tzXAcCfQ958tAd/3xN/TWAukR1nSJahlOUDwPEef6F0p9UBr5dBE0bRBUBMRq4pCk2Oh6PAmAfYAo3aiZ4hoaAca6uiTIF7audPqwCDHIbiFx7AL7rgxz0RTy1ZdWrcG+/1iX6ESCToQh+YU1MYtTAbFdH3McPzaRxuJAqNebDZ3bCNyNMIlEZ9NLgYJF+fh2Uz5Xl4fKZgcLeRROGRjMnlBQG3m3ShG4t0omyLd2rAAUOevL6eQSccbk9AOcov/vkZLp1bG1Y1Oh7IjjMkyxhxeUKEGxynx4veYWfEi217v3xBrI3iqSnJDxN+PKTohGBNQEqdifAC5epCI3586cyQ+3muhXvIPT6jVhGm8DoYS5Jzap02btS4pxYqEgHkvM3nGkthG3EHhB+5sQ43mTvTa9Q4Cxpkpe4XZlbjbztPwu0b+DmaElUJz5uZDf7n8FxXsj21yRWBn40//JgZkv7m3kCjlufLq/YMOoWXlqeRoNVI6Bpw4GTfcIi3PF4go6YCynxaONr77ZGNmjU+Ty3cBVnZ3ieR+qB00D/sxMdHe/H5GZXQ54VGxUW/xwjhRO6pce+IG8GyGDy1giS2ybK7POLz5/8eD1OjBsi5wBeu/5z4v1iP7zNViiFEM+Ms8dQumF6BDXecj7oSM17ZdRJeJkcN4jFqXCii/JvzwxybsXDU99k0Bm04uKc2kkZPrXvQgXtf24dvnlkf0Bava8CBPJ8X5vR4xferNF+P0nw9DnQM4Gj30Lg1apRTU4HgHoQcfqJEyqsxxtDmC12Fq80Jh2jxpDjJlSUE2eKpPfBWE256bgde290a9v5u4XmFN1JcdNGfUPhR9n6SUafWqRi5wuvqRDeRitCLjCRJISE57pkovZFOm0/NGYPnmQlIkoTGigLo8zQo9Ckh491g8Y2aMsycLzy1sYcf3R4vmnsie9FAeoUi6/Z34p+ftuOht5tCPDXlaB/e0KE0Xy/+jqOnxm99HRk1FQju2cfhHQt4zoUx5lPGyfmvniEnnG4vJAmoiqB+DGa08KPa41SSBQ8DRZopFrOnxo2a6OQfh6Tf6U64CTVHWbLBp5PzzzvYUxttPcpWUPyiFqwqzAYSUZcyxkT4NV8ZfvQdm+EkeGon+0bg9jIYdZoQtbFRl35JP7+O7GuzBQwtPTXoEJscAGjyTRMoLzCIMPbRcSztJ6OmAlyswBvtAoA+TyM6X/CL3O/fP4Zzf/2ukH7zfFp5gSFsCC4c/ILBwzFujxdHu7Mvp8aNVluEkofRPDXeUqxvyIkRp0fs5GMqvvYdQ8aA4THuzIOHY/Imy2a9NqQtViRE3kgp/hEDRrMvpFTo84TjES053F64fRsMZbF5vs9rS4anpmxdFizcygRPjRs1t5cFpBR6Bh3oGVIYtQBPzd/ia7xCRk0FePhROXG5utAoxB8dvvDjvja5iHKrb2ozL9CtLYrNSwNCC4eP9wwL5SOQPTk1brS4HF6JctJ1uSW858XHuPQNu8Rr6fM0MakFDXka0XJsrMcruLh+f5ts1GqKjDEr//hn6nB7Rf/HFsXU7GwjkTZkSg/JrFN6aslTJYp8WpiwsBCKjNF4DjoS9/7DpTEkCfAyeQPG4XPfygr0Ck+NjBqRRLhAoLrIIGTb1YVGVPvEH9wb4Rdq3gWgPU45P+AXOfALxmFfPo3H1h1uL+wuD/624yRu+tMOLH94E/4V1P093TjdXnHMwhWn9w77J12X5Uf31KwjLpHXKs/Xx2RIJElCvW9iM58snijBnhrfuMTzmSpzSENODwbsLrFrry+N/XUyBeGpxbFh4F6qUacRSj8gfGg2Ufxy/jBGTTd2T63LZseZP38H33t+R0LPV5YFAbInFu77L6ISBQYheOmw2cfdnEUOGTUV4F/GErNetHKqKjIKD4zv5vnjjpwaChCJ1MYoEgGUNU3yBYPnpM6oLwa/nu9tteKOv+7Bm/s60NQ5gOe3nBjLn5d0lKGUDps9pMcjD02W5usj1t4o2zJ95tu5VsSYlwQgemq+13Qq5ueEI8RTa/d7arGiz9NAr/X3f2zplTc7pfn6rJH0K0lEiMNFMvn6QE87XGg2Xlp6h/Hfbzfhw8NyzVtwjRrg99TGklPb12bDiMsjIjHx0hukoq4vMYnrSThK8/UoNuvFRnq8hiDJqKkA9zpKzHoh+KguNKBaYdQYY+j1yc6tIy70DDnR5vPUYq1RA/ySfr5z5TVRUyryxQ452Pto64/eqivVKFtgebwspCWWf9hn5BM6T6sRho13cJkYR6ju/OmyUdvY1DWmNkPcU+OS64Md8iYjHqMGBIbZmrM49AgAhSYuFInHU+MikUCjlh+mhi9eHl53EI9tOCwu+lPChB+58bSPwVPj3+O+YZdotB0P/UGeWn2pOaCLTjC8qw731o6SUVOHxx9/HJMmTYLRaMTixYuxdetWtd8y7fBYeEm+DjN8AyxPrykUX0inxwvriEso9QB5oCIPvcUVfgyS9CtHnPCLCVdO8S97a/9IRvWHCzZiwSUP/P5oJzTg79DBh4jGoxRc0lgGQ54GbVZ7QFI+XrindlqlvPt3+nJi1XF8poD/4j3o8Ih+ltlq1PyeWvzhR3NQXZuy3CHR7zAX3SxpLMMtnz8NZ9QXhzwmGerHU4om3OEaco8GDznz8p76UnOApxace+c1mTycekzFvFqH1Y4/bT4ek8e86eApHOocCJkPqBaqGrWXXnoJt99+O+69917s3LkT8+bNw/Lly9HVlRud4yPBv4wlZj1+sGwaXv7+2bjsjAkw5GlFv78TPcNiPhYghyBFTi0OT81fOBxa6Ms9F36RnldfDI0k57C495MJhBq1QE9yNOUjhx9bnqOMxwgYdVp8rrEMAPBeU2LfT4+XiVElXOnKieczBfwy9mFHDnhqXNI/Sh/Sva1WIU/nQpDgYnNu7BlDwPkTD/w8+68V03H7xdPD5l15XnMsQhHl9zreETYuj1eEa9d8cQbm1RfjGwvrAjZ2syYUBTxHeGq+lmtHVWpm3jfkxOfWrsfdr+3DyztPRn2s3eXBd/64FV94eFPKyotUNWoPPfQQrr/+elx77bWYOXMmnnzySZjNZvzxj39U820DGHF68NDbTdh0cGy5knjoV+TUjDotFjSUiFwQ32nxSdicpg6bCF3VJuCpDTrcsNldQnwyqdwffuSeWn2JSYRDW8OoDNNF8C62TbG2Q50D2HBANjKjyfN5ATbfwIebwxWNC6ePLa/WM+iAx8ug1UiYVm0JuC/e8KOy/2OzL6eWvUZtdEn/sNONbzz5Eb7x5EewuzyiQ785yKiZFErIRNqaebwMnT4DEy0ikgyhSIBRs8UX8u/3pTAkCbhkdg1eW70UUyoKAo1abeDGiRfmC0/Nt8HdcaIXv3rzABzusYtrnG4vbnrOL3zh6Y5IXjNX7VoMeTGXtIwV1Yya0+nEjh07sGzZMv+baTRYtmwZNm/eHPY5DocDNpst4GesPLXpCB7dcBj3/n1fUj7UWIg26LNCGLWBgNtf3tkKL5OfM1qYTYly9Az30iosBhQY8oSnxnd8VUVGIUJpyyCjFslT293Sjy8++r5ItM8J2pkGUxJ0vOPJqQHAYp+nxsUd8cLXXVFgCMn/xRNSBgJzR0LOn4WF14A/pxZNKNJlc8Dukr2TAx0DCk8tMPyo0UhhpxjESrdi4xHtPDMnQdKvDD/G66lxEVmxSRcgjuLT3gGIMTyALC7i14K6ksBz/Jf/OoAn3juC9UmYrbhufye2KIQvDrcHLo8XX/7Nh/jus9tDHs/H5TSUmeNqZj0WVDNq3d3d8Hg8qKqqCri9qqoKHR0dYZ+zdu1aFBUViZ/6+voxr+O6cyajwmLAse4h/OGDY2N+vdEYcXpEWCTcoE/+peRhFv4585zYt85qiKu7Ng8/Djk9Iuw22de5ojBIKVddaBTx+da+DDJqvpOf58B4Tu2v21vg8jCcUV+Ml274HL40rzbq6yh3giadNq7NAeAXotjsrhAFZixwT7u6yCjq5gD5AlkY58gYHn602V042Zfd4UdLDJJ+ZX55T0t/2BZZHPMYZP1841FpMUQ9z4wKTy3ROrPuMYQflSkMJcrv9JSKfDElvUxRvsLP8e5BJ+wujzAsPN8+FoLz3Ta7Gyf7RvBpqxXvfNYZIqw5kYZOOBmlflyzZg2sVqv4aWlpGfNrWow6/OiLMwAAj60/POo8s7HCd1g6rRS2+SwPP3KjNl1RoK3TSvi3JRPjej/le+xrlT2MSeXyF6goyKhWFfo9tUwKP3JPbW5dMQD5wsMYE2HHW5dNFV5UNJSeWkNp/DtDvglhLLFOLLw+rrrQiFJFPVE8hdcc7qkd7hqEy8Og12pibp2WaRQqJP0HOmyi36KSwEnx/WK0TH6YBshj8dR444PqUcLBSoFKpIkbo6GMQJwasOPUgANv7euIacMkUhhB0QelUKS6yCg2YsqeoMVmHYw6+dJ+omdYhPdPJmEjy71tHp61jrgC6uk6g8KsLWnohKOaUSsvL4dWq0VnZ2fA7Z2dnaiurg77HIPBgMLCwoCfZPCVMyZg0cQSjLg8eGHr2A1lNPgXqDRC4S/fafHc19Qqi9jFXzq3Nu4Ll0FR0/ThEbnuhueSgr2D6iIjJpRkrlGbx3tj9tuxv92GdqsdJp0WS2IwaEDgJOlEQnU6rUZ0vwgufI0F7gVUFxkD1hJv6BHw59QOtMubn7oSU9bOx+LHtMNmx4pH3scVvw1NPyj7pX5y0oq9vqL1yjDng3kMrbL4ZzRa3tqoyN0lYjxHnIEzzrpsDvzk7/tw45924O194SNVSvi0iWBPra7EhHn1xVh2eiXMev8kdeUmSpIksXndfsIfKlR2+k8UbtT4dcQ64oJVUU+n7EkJyLMdgRzx1PR6PRYuXIj169eL27xeL9avX48lS5ao9bZhkSQJy2fJhlTtRp/8Qw1ukMoJDomV5etx/vRKmHRa3HBeY9zvJ0mSKBzmfQZ5+FFZkKzXalBq1mOCT4WXiTk1njPrGrDjrX3yZuicqeUBF5hoKHe18ebTxGsoekjGS6fCqJUowo/xikQAv3T9M5+gKFvzaQBEl34O98SVKDcRR04N4v1D3QCAS2aHboCVytB46VB8RtHQaiQR2ktELBIsfuoacAgDE0vO1t/AIfDY5Wk1ePX7Z+P3V58JwB8yLw/y6LjR3qbIfyXHU5MNGM/b2YI8tQ6bHduO9+Jr//sh9rfZ/OHHFIbOVR3OdPvtt+Pqq6/GokWLcNZZZ+GRRx7B0NAQrr32WjXfNix8p3AiTOgjmXQN+MQClvAnTWXQ7SVmPX688nQMOT0BRigebjy/Ee985veIhaemeL3KQgM0GgkTiuXjkCme2rDTLXbcM2oKodNKcHkYXtjaDAC4aEZlzK+l3NVOjFP5KF4jX4/m3uFRZ+KFQ3hqhUYUGPLE35KIUSvQB4orsjWfBvg9NSUOtzdgs8I9E0AO/3oYw7z64oCJ4Jxwk8FjpU3Ugo7+mZj0Wjjc3oTEIqeCjNqRU4Oi5i2WTh98UxVObKaMAHGjFvw43sBh2/E+cVtr3wi8XhbSvDke+PexTuGpKc+VLpsdGz7rxM7mfvx20xGc5MrdXPDUAOCKK67Agw8+iHvuuQdnnHEGdu/ejTfffDNEPJIK+IX+eM+QqoXH3FOrKgwvUgj21EoL9AHdMBJh0cQSzG8oFr/zESdKo8Y9R/5l7x92ZURvuO4B+eQ16jQoNOaJJtDce7swDqOmFGck7qkFTtCOB55PqCqUc2ii72cC4cdgKXs2GzWdNvQyE2wowh3vr54RXhg0lq4isebUAH8j5UQ8Nf795QXSyrXGsrHujZBTC+ay+bWYPaEQK+fWBNzOQ97KzavT441bsBIM30jU+XqlWkdcAZ1POqx24Z29ta8TTo8XOq2UUAg+UVQXitx88804ceIEHA4HtmzZgsWLF6v9lmGRhQPyTiORXXisdCkubOGoDDJ2peboX9pYkCQJN/pClw2lZtG3Tql+rPKdXBajTuTaMiEEeWqQe7YGSJKEZ649C2sumYEljWVYfeGUuHKMAZ5agjtDEX6MM6fGGBPqR+4F8I1EImsJlrLXZ7FRC4c9qLwmeFyTViNFVLuK/o8J5Lra4/DUjGPo/8iN2oyaQgSn1o93j76x7het9qJvds+eUo7X/+NczG8oCbg90pDhlr5h/GNPW0idbKzw8CN/fY+XBRjOzgGHyN3xzUBdiTml+eDsmA2fBIw6LWoKjWiz2nGseyisW58M/Lv18J6axZAHo04jZP/JWsfyWdV44BtzMaXSH64pMvk/XmWOr7bYBFvHAFr7RzC1KrBIONWIFli+MEqFxYAbz5+CG8+fEvdrlZj1mF5lgdvrjXlyeLjXABD3xsdmd4uLH/cC7rtsNrYe64lZ6KIkWMqejcNBlTzwjbnY1dKP/7f9JJye0JAeN2rfWFiH32w4jMvOqBVtn4LJF4NC4zM2Xi8T52csnsNYZqrx73V1kRFl+YaAHNuAw43eIWfEvw+ILOmPlUgdbF7Y2oyXd7aisTwfG/7zgrhfl4cfKywG6LUaOD3eAM/z6KnBkG5FqY4yjBujBgATy/LRZrXjRM8QFk4sGf0JCcDDj+FUW4DsVVVajKL1UbKMmiRJuHxRYF2fMvyo3JnWlZhwwGfU0o2YaD1KC6xY0GgkvH7LOZCAgHEl8ZBo+JFfLGU5tXwxPKO+OGxfwVgILgfho3GylcsX1ePyRfVYt78TpwYcIS2u+EX8rMml2HXPF4RIIxyJemo9Q064PAwaafQ+ooCiq8gYcmoVBQZUWgwhwpHjPUNRjVpfjOHHSARP+phaWYBDXYP4++42AHKz47b+EdQWm+DxMjz94TEMOty49aKpUctPeKsrizEPhSYdugcdQuEI+MVqSlK9IcuoOjW14fVbx1UUi3ChSFUEoQgQeEKp5TECQeHHIE8NyIzwo7JgORnotJqEDRrgv4jEG35UikSSgbJOqrxAH9KtPlvh9VPB3o9yskW+IS/qZ5gviq/jM2pc+VhhMYTN8wVjGkP/x25FE25lymFaFZ9MHf0a1DdGTy24ZIH3NXUrauS2HOtB75AT1zy9FT//52d45J1DYop2JPiIq0KjTnSKUXpm/OWV5USp9tTGlVGb6BNQnEhCZX04XIoJzcG5MyXKAspwXUeShVGnFTtepdHIpK4ifmFNZhQWJ5pT43L+ZP0dSiOWS/k07v04FEbN42WKYuPRz4d84anFZ2zahUgkttC0yWeAhxMJPw4qjJrFH1pfNKkUQPRrkMvjFR5Roptek14rog56rSZASMbZcrQX//nXPaJ8AvCPbYq0Lu5hW4x5UcVt50+vFA2WuXAtVYwrozapTF1PrXvQAcbkWVrRBCD8S15k0sW0YxwL8+qKYTHmYVqlP3fm99TSP1etcxRhTaoR4cc4c2rBIpGxojRqqazxURsemlUKRWwjLrHDj8UzMYucWnyemhCJxPhd43lN+xiEIuUFBlHGM7OmUFyDosn6lc2Mx6KK5nnD2mJjgLfEC7bf3NeBDQe6IEnAstNllfGek5Envyt7d+Ybohu1SWVm3HfZLFx1Vr2oo00V48qocU/t2KlBfO+5Hfjus9vCtuxJFJFPsxii1oLw8KOaoUfO89cvxkd3fT6gZVa0riJ7W634jxd2JfW4RKMjyWG7sSLCj3Hm1NqT7qn5w4/ZLOcPRvRUdPpzaly+bjHmxbTJy0+wowjvoclrrGJda7zqR8ZYgADqotMrUVdiwjcW1gmvJZqsnzeIqCiI3p9yNPjmdUKJKcDbv3XZNEiS33hePLMKX1tQBwD45GR/xNfjykeTTgtdmDIkpTiuodSMS+fWYu3X5kIfJT+qBuPMqMkfrM3uxht7O/DOZ11Y8T+bsF5RuDwWuNcRSSTC4Tu3VIxikFs/Bb4PDz922Owhg/v+tPkE/rGnDS9sa1Z9bcDoatFUwz2F/hFXXPWMnUnODebrczP8KDw1RUgvWqFxOJRTweOBd9SI1aglqn7sG3aJfpGVhQbMbyjBB3d+Hl+aVyvGwkST9X/ka3d31uTSuN43GF6TOqHYhIoCAyaX56O8wIDLzqjFjGp/C8LrzmnEXF+LugPtAxGnfQ8oRCJAoBcpScBURTRoYopDjkrGlVEz6/NE6M+s12JBQzGGnR48+PbBpLx+V4wX6AumV2BefTGuPKshKe8bLxUFBui0UsBsKU6nT+gy1rzjvz5tx/NbTkQ1DCNOj8gdVCXJGIwVnuP0eFlMQw2f33ICq/+8U0xISJZRM+m0or4plzw1UxihSLzy9YIEu/TzyMSEGJWkfvVjfMaT56orLIaQFm/1vF7W4Rb592A2H5WN2tlTyuN632AunVuL0yoL8OV5E6DRSHh19VK8/YPzUGjUYbHPYM6ZUIQzJ5VgQrEJZfl6uL0sYhuvaEatyKQLCL2nswQlNyRVcXDR6VV4fU8bnvj2QlQXGbDsoU1o6R0GY2zM835iFT1UFhrx2uqlY3qvsaDRyBX+zb3DaOsfCajp4mGT46Oos6Jxsm8YN/95J7wMmFiaj3Omhj85eR7KrNfCkiHqPqNOC7Nei2GnB31Dzqh5A6+X4VdvHAgwfskKo2o0EupKTOi0OdJeS5hMwnpqUeYPhkNI+uPMqcXrqZkS9NRa++VzJ1ytpFGnRZFJh/5huRNHcCnLiNODXc1ya6slU+Kvb1Ry1uRSvHP7+eJ35Xf5+vMacWrQgZvOmyKue3PrivBu0yl80tKPBQ2hJU88/Fjgi/woX6/YpBPXPaNOEyCGSzXjylMDgLVfm4Mdd38B50wtFzHnQYd71FHzscDl/On8QGMlkgKSG7UTY2gn9n+bT4jE/0PrmiK+TnBbqUwhVgXk0e6hEG8uWUIRAHjxhiX4+81LU5J7TRXGvFCjFqkjfSQSaZM15Ct4Bvw55dHwT7+Ob/QMN56R3sccJVe340Sf6Bc6SUVvZ0KxCY9/awHm1PkHjc7z1VR+EkEswj01LtdX1sEWm/Ui2pLI2KdkMu6MGgCRuDTr88QF42T/2IURoxVeZxLh5qp5vEyERIacnpDOALEw5HCLZsSSBOxs7sfGg6fCPjbT8mkcLisfzajt9O2o60pMMOo0qCsxjUmtFsyEYlNA7iMX4N6Psvi6X3hqsR07nlMbcrpj3njx73mRSRcyPDfi++gTCz9yVXFdhK42pijttz46IsvrlzSWpdwwzPPNM/ykNbxR430fw4UfS8w6LGwogU4rYelpYwubjpXMiPmkkQnFJvQOOdHaNxIwHj0RMk2eHo1wCsi+YWfAAMPm3qG4p0f/bedJDNjdmFyej8/PqMQfPjiG/33vCC6YHtqYONOUjxz/+Jnosv5dzf0AgJVza3Dd0snQaTUZ5XFmIgZfTs0eJqdWHKenxphsHE1hBokGwyMS8bRPG2v4MbirB8ccpaib59PGGnpMhGnVcpj7RM8QPF4Worzk4UeLITT8WGLWY2ZtIXbdc3HYwa6pZFx6akomJGkStNfLxImTaRfpcPC5asrwY0grnwTyaq9/0g4A+LfPTcQ3fW27DkboUpBphdecWMOPPPexoKEElYXGhFsajSdMYTrfx5tTU4poYm2VFa+cn78PEL+kXwhSInlqUV73uK9+bfaEsW2wE6G60CjGJXUETbAG/OHHgnBCEZ/AqsCQl/aNHRm1kvC5pXg52j2EAYcbRp0GUyrSJ2eNFT5XTdkq61SQEjIRBeSRLlkFeOakUmHc+4ddcLhDT+BM9Wz9BdiRjdqgwy1aCs1PsL/jeMQvFJHDj26PV+SgYs2paTSSyEvFKhbxi0Riz1MJTy1eozZKTs0ffgxdOzd04WbQqY1WI4njE65O1RZF/ZhoOy81IKOm8NTa+kfw5t6OhAQSu33tZeZMKBpT78FUoQw/8r832KjF23nFOuwSObnGinwUmvJE/jL4tYHk13YlC3//x8jhxz0t/WBM/v5kQw41UzAp1I/dgw5c+duPcaBjQK5zqgodCBoJc5yy/niVj0BidWrDTv9oq4hCkQiv6/Z4RX1bvj49mSFeE9ncG7qh9efUwoUf1a+5jZXMv/qqTJ3i4n7bS7tx03M7sMnXC+3Dw90ibDEau1vkUFTwXKNMpUYxvNA6Ip+E3PBweX28ntqRbl+tVqER+b4wBB8pE244YUeGCkV4cfyBCPU6ALD9OP+8i1OxpJzBqMip/W7TUWw/0QeLIQ+PXHEGpoSZch2J/CjeTjhO9kf3nsKvNX5PjUc+LIa8iIKUSEIRZY/JWPKEatBQKh8fPkVEicip+Tw1s14r8m5F5KllDvxLfqRrENuP9wIAPmnpx95WK1b9fgtueWFXxOcyxnC8ewheLxOigURHjaQao04ramR4yx5u1Bb4xvLE66kdPSUbwUZF+JU3du6yBRo1xpi4LdPCj8tOr4RWI2Fncz8OhckHtvQO4/cfHAUw9gLZ8Yay9yPPPd32hWm47IwJcb2OOc5WWa0J5NSiCToiMZqcX37d8MaSz4fTaqSoo3fUpEF4aqHpGFF87dv0SpIkvDXy1DKIOl9uacjpEbVVh7oGhVw7WtPfDQe6cMGD7+GGP23HgQ754pctRg0A5kyQ5eLbfMacdxbns+aCR7WPBu+qEWDUfOrJUwOBx7Fv2AWnr0VXZZQxPemgstCIz8+Q1ZovbmsJuM/l8eKWF3dhwO7GgoZiXL6oLh1LzFqU3g/P0RQnUAbBe2PG0tR4RFGeEldOzbfWAYcbV/52M577+ARcnug1a6OJRACFsQwKP3Kv06zXpk1s0VAqn7vRPTX/5zWzphA6rRTQIivdjHujVmjKCxnIeKhrUAy7G4xy0vAebe981gWPl6Gq0JDU4lu14TOWPj7qM2o+T62h1CyMUTzeGm/E2ljuDyNxgxUcfuRhmvICfcobnsbClWfKys2Xd54MELm8ta8Du5r7YTHm4X+unK/6lIVcQykU4WHvwoSMmnzORjs/OfwCbRmls3ww5QV6Ifr6+GgvfvzqXlz03xvR1BF55thoIhFA2Sg5cO08HGlOoySee2otYYzaYJBQBAB+f/UifHjn5zMqL67KGXn8+HFcd911mDx5MkwmE6ZMmYJ7770XTmf8xbxqI0lSyK7qyKlB7GvzGzWvN7xwJLiB9hn1xWmXs8YDN2pbj/XA41V0FrcYRJimPY5SBx5+nFKpNGrhw49HfdLlVM9aipXzp1WgutCIvmEX3j3QJW4/1Ckb7pVzanKq0XCqUApFBrhRS0DpF9xVxDriwr/9YQseXX8o5LF8RtjptfEVsudpNXjztvPwz1vOwY9Xno7yAj2ae4fxt50nAx734eFusUlri8lTC59T40rOdIlEAKDel1PrHXIKz4wT3PsRkA10pgmlVDFqBw4cgNfrxVNPPYV9+/bh4YcfxpNPPokf/ehHarzdmOG7KqNOA0OeBk63N6BVTKRamODWWtkiEuHMqi2ExZAHm92Nz9ptAYMN+c6Lj1QZDbfHK3JzjeVhcmpB4cejYUKVmUSeVoMLZ8hzoD5r9+/M+Q6WDFpiKIUiNt9FsyiBfIzo/+g7N5/58DjeP9SN/1l/CKcGHHC6vaI+cqeinjBedFoNZtUW4bvnNuK6cxoBBNZz/mNPG1b9fgv+8697APjTFTUxGLWQnJovHGk2pM9Tsxh1ol6wRZFX83oZBp2BdWqZiiqrW7FiBVasWCF+b2xsRFNTE5544gk8+OCDarzlmOC7qiWNZegacAgvjTPocIeMbwEgTsrLF9bBpNfiW4vT03U/UfK0Gpw5uRQbDnRh06FTYr5SRYFBiDc6wxRhhuNk3wicHi8MeZqAXWqk8KNfVBK74i3V8PzLSUUNY4tPcJBLnfNTibL4msvxY21bpSRfDAr1YNjpxjMfHQMgt3p7bXcrth3vxVv7OvHUvy0UIq4FY1Sq8knOvAOKy+PFg283AZBTFoB/ykW0NESk4msuFDGn0VMD5A1b75ATzb3DmOnzbuWWZPL9iXxeqSRlCQGr1YrS0ujzgRwOB2w2W8BPKvjqggmYWlmAG86bgqmVoRfZwQgjSHhO4Jyp5fjpZbMz/sMOx+ca5c/k9T1yJxCdVgoYIxGus0A4jvrk/JPL8wMGpPI2WyFGrZvn3zLTUwOU5R7+/EIzeWpjgueTbHa3EAolklNTemovbWtB37BLpAMef/cw3tonz0h8auMRHOzyFcmPMZJSGmTU/rK9RUQnugcdcHu8/oYCUcRPkVSVQwqhSDppCFOrxkOPOm36lJmxkpLVHT58GI899hhuvPHGqI9bu3YtioqKxE99fX0qlocFDSVYd/v5WDKlLOyYj4EIyWjuqSVyUmYKPK/GZyiVF8hTu7mnFmv4MZycH/CHH3sGHaKvJGMMx7LAU+MeJ/fU7C6PaO1FnlpicKPGvwsaCQn1CswXxddu/OED2Uv74fIZ0Gs1AUXzO5vlIvn6UlPcfUyDKS2QjVrPoNwj9bH1h8V9jAHHuodEp5TKKLWXkYqvuZFLZ04N8NeqKadzc3FMpk3UCEdcRu2uu+6CJElRfw4cOBDwnNbWVqxYsQKXX345rr/++qivv2bNGlitVvHT0tIS9fFqcFoCnlo2emicOROKsGJWtfidn/jVcYYfuQcTPPG2LN8AjQR4GdAz5PC9pgNDTg+0GimjjQMPP7Zb7QHtnPL12oyqy8kmeE6NU2jSJXSR5Iaww+YQn8u/LZmIL8yqAiDXTc2s8QtDEsmnBcPDjz1DDpwacKDDZodWI6HcZ+x4Hr7QmBcyHFRJpDZZmeKpKb/3nHc+kz3f86dVpGVN8RDXluCOO+7ANddcE/UxjY2N4v9tbW248MILcfbZZ+O3v/3tqK9vMBhgMKS3u4Qy/KjXauD0eCPKhrlQpMiU2YnTaEiShP9dtQAPv3MQj204LPoY1hTJu7UOqz2mAaqtEdoQaTUSygoMODXgQJfNgUqLUYhEGkrNGSnn51RaDKLBa+eAQ+TT6tM8LyqbCb7YJ7oh5G2yDvvEICVmHQoMebj5wtNwvHsI//H5qegedODHr+4FkCSj5mtWYHd5ccyn3pXzzwZ0DzrxqW9ky2jNBEwROpX4c2rpNWrVQVEaxhg2+BTAy06vStu6YiWuq3FFRQUqKmKz1K2trbjwwguxcOFCPP3009BoMvfipaSh1IyaIiOGnR5Mr7Jg6/HesJ6a18uE5DWbw4+A3CD2joun49qlk4UHwsMnDrdcTzTaWJCTUUZ7VFpko8ZLBo74LgiTMzifBsjHpbbYhBM9wzjZO0zKxySg02qQp5Hg9oUfCxPcEPIQXZvvwsvHvJxeU4h/3nIuAHlO20//sR9Oj1c0FBgL+Xot9D51NA/XVxUZfWUrVmHUooUeAYWkP6T4mqsf07tJ5spnHqXZ325Du9UOk06blpE48aLK0WttbcUFF1yAiRMn4sEHH8SpU/4hkdXV1VGemX7ytBq8/P2z4fYwPPCWrGwKl1MbdLpFB5JsDj8qUY7+MOrkEFvfsAvtVntUo8YYE50UwnVsqLQYsA9+Wb+/SDuzjRogG+kTPcNo7R8RRi2TQ6bZgFGnFdGPRIeqBsvew80uKzbr8ehVZ6Ct356UUS6SJKEsX492qx37fQrp6kKDCNnva/N5aqN0yInY+9HJ69Qyw1PrHXLC4fZg/Weyl7b0tPKoYdVMQRWjtm7dOhw+fBiHDx9GXV1gG6FEOuCnGh564/UY4Tw1my+fps/TZMUHnQjVRSb0DbvQYbPj9JrIhau2Ebe4SIX31Hyyfp/IIhvk/BweTj3ZN+JXPsbRP5AIRWnUEt0QBncBilTsvGJ2TUKvH4lSbtR8nlpNkUnk2vwikehGjasfnW5vwDDOIWdmSPqLzTrhkXbZHFgvQo+hg34zEVVigtdccw0YY2F/sgmLaMUTOoLEn0/LDS8tHNW+MErnKApInmsqL9CH7S7OwzHHeobg9viLYjO18FoJnzvX2jciilEbyshTGwtKsUjCObWg71k8E63HAo9mHO7yqwGDc2ijTZ1Qrl0pFuF9LNOdU5MkSZT0tPQNY7/PA116WnY0785ehUMKKIjSX846hhY/2UJ1jLVqozVxXTRJroV7ZVcrBuxutFvtsBjyRGFnJiM8tX5FTi2OprhEKCZFZGOsOTVOuPCjGnCvzOWRN+jVRYaQAZmjNeg25GkgSXIZwIjTIxo7ZEpODZCN9YmeYew43geXh8Go06Rs4zBWskO9kSZ4+HEgXPgxR0Qi0agu9CsgozHaVOHzp1Xg8oV1YAxYt1+WBq/9+pysyEXyFmr722witxpPp3ciFGW4PnH1Y3BOLTX9B0vzA72wRDw1SZICOqtwMiWnBvjzarxp++TygoCmCpkMGbUoxOKp5XT4sUg+OUf11GLoTP6TL88SwpBVixtw6dzaJK1SXbinxgt6Z08oTNsAx1whIPyY4PkT7KmlyosoKwj0yqrDGrXRDWy4psY8p5YJ3y8eftxxQu6bmQ2pAk76/dwMxhKDUCQbvI1EqS6KzVPjbaSiDWDMN+Th+esX4/1D3fhKnAMh00l1oRFajQSPl8FizMMjV8xP95KyHqWnluim0KTTihCeTiuJgbdqU5YfZNSKjDDptKKeEUBMnUvCKSAzpaMI4DfMvJVZPFPJ0w15alEoMMgnXDhPjQ84TDQnkA3wEMRonlq0GjUlNUUmfHNRfUYXXAeTp9Vg9oQi5GkkPHbV/LAdZ4j4MCYhp6bRSDD7XqemyJSy0Jiy7MVizINZnwdJkkQerciki0kNbdaF9n/kHUXy09ilnxM8H20KeWq5QdSc2jgIP9b48hT9wy4M2F1hJxUACqFIjkrd/3TdWbCNuCiXliRMScipAbKgYsjpSamAQRl+rFaEGSsLDWjtHxk1n8YJ1yorU7r0A6FGTTn4N9PJni1zGoiWUxsP4cdCo06cuFyGH8ygwy1G1mSLOipeCo06MmhJJBk5NcAvqEiV8hEIFIooL/y84Ho05SMnuKmxy+MVob50S/qBQIMNAJOzyFMjoxYFkVNzuENq7MaD+hEAZtTIUwuUgzKVcJFIkUkX0ZMjCCVJ89R8Hs2EFCkfgcDwo1IQwj200VpkcYKFIsrcWiZ4ahUWA3h70+pCY0ixeyZDRi0K/IP0eJnoFsAZD+pHAJhRLdeSHegIP9uO97ubRAXJRIwkI6cG+M/PaFOmk02hMQ86rXy1V3oz506tgFGnibmLvVEXbNT888oyIees02pQ4RPfZJPyEaCcWlTMer/CqsNmx7DTjVm1cg853lEkl8OPADCjWvbU+DylYN7e1wEAOH96drTQIdIPv6DnaaQAry1eLl9UB4fHi4tmpO67J0kSSvP16LQ5UKUIPy6bWYW9P1mOPG1sBol7anZf+HEog/JpnOoiI7oGHFln1NK/JchgJEkSu8EfvLQbKx/9AP/Y0wZgHHlqvvDjgfaBkBDsiNODTYfkZtXLZ2X+SAoiM+BGrSjBWWqcyxfV47XVS0fttZhseNixLshDjNWgAX7jxT20EWdmjJ1RwjvnTAszODmTyZxtQYZiMeRhwO7G7pZ+APKo+Evn1ihyarl9CBvLC5CnkTDgcKO1fyRAMLHx4CnYXV5MKDYFDGQkiGhwoUi25qPvumQGNh3sxjlTE++FGFynlikDQpXctmwqGivy8dX52VNXCpBRG5UCYx5g9f9+oGMAGw50iS9jrocf9XkanFZZgAMdAzjQPhBg1N7eL4cel8+qpqGZRMzwkGO29k09e0o5zp4ytua+5qBBoaJFVgYJMqZWWXDHxdPTvYy4ofDjKIRT9P332wcV92fOl1AteF5t+4k+7G+zweNl8HqZmLNEoUciHnj3j+BaqPFEsKfG/x1LjpGQIaM2Ckop6xdmVkGrkcQspQJDXlxx9Gxluk8B+eTGI/jio+/jxW3NsNldIq84r744jasjso3zp1fg11+fix+vnJnupaSNEKPmE4pkkqeWreT+FXmMFCg8sUvn1uC/L58npLyp6gyeboJHuO9vswmDZtTl7pBUQh10Wg2+eWY96sfxBHF/8bUcdszEnFq2QtuCUbAodk4LGkpQX2rGyrk12HTwFCaVZ5fUNVHOqC/GW7edh5d3ncRTG4/COuIaF0NSCUItTDqufgwMP2ZCM+Nsh47gKPDwY3mBXnSh12k1uOj08ZVHml5twbRKObdmHXGNm5IGglAD4akFCUUyYexMtkPhx1HgQpEz6kvGvcKv2CwfCzJqBDE2gns/DomcGhm1saK6UXM4HDjjjDMgSRJ2796t9tslnZVzq3Hu1HJcf+7kdC8l7XADRkaNIMZGia+HZGvfCHac6BOeWiZ1FMlWVDdq//Vf/4Xa2uyYchyO0yot+NN1i7G4sWz0B+c4SqMmis9zvE6PINSgsTwfX5xTDbeX4Yb/247XP2kHkL21e5mEqkbtjTfewNtvv40HH3xQzbchUkSRL/xoG3GJcTPZ2hWCINKJJEn49TfmYWplAXqGnBh2erBoYgkumVOT7qVlPaptCzo7O3H99dfj1Vdfhdkcm3TX4XDA4XCI32228J3hifTAPTUv8w8GpfAjQSRGgSEPv796ER54qwnnnFaOby6qT9kE71xGFU+NMYZrrrkGN910ExYtWhTz89auXYuioiLxU19fr8byiAQx5GlF377m3mEAZNQIYixMLMvHb761AFee1UAGLUnEZdTuuusuSJIU9efAgQN47LHHMDAwgDVr1sS1mDVr1sBqtYqflpaWuJ5PqE+xSU5wN/cMASCjRhBEZhFX+PGOO+7ANddcE/UxjY2N2LBhAzZv3gyDIXAK7KJFi7Bq1So8++yzYZ9rMBhCnkNkFkUmHTpsdvRRTo0giAwkLqNWUVGBiorRJ7s++uij+PnPfy5+b2trw/Lly/HSSy9h8eLF8a+SyBiCPTPy1AiCyCRUEYo0NDQE/F5QUAAAmDJlCurq6tR4SyJFcAWk+J2MGkEQGQR1FCHigjw1giAymZRU+k2aNAmMsVS8FaEywUYs1yd/EwSRXZCnRsRFscKo6bQSDTUkCCKjIKNGxIUyp1Zk0o37Js8EQWQWZNSIuFCGH0nOTxBEpkFGjYgLpVEjkQhBEJkGGTUiLgI8NerQTxBEhkFGjYgL8tQIgshkyKgRcVFs1ov/k1EjCCLTIKNGxIVyiCEZNYIgMg0yakRc5Gk1KDDIho2MGkEQmQYZNSJuuDGjbiIEQWQaZNSIuCnJl41akUk/yiMJgiBSCxk1Im6+e04jLppRiaWnlaV7KQRBEAFQ/IiIm6/Mn4CvzJ+Q7mUQBEGEQJ4aQRAEkTOQUSMIgiByBjJqBEEQRM5ARo0gCILIGcioEQRBEDkDGTWCIAgiZyCjRhAEQeQMGV2nxhgDANhstjSvhCAIgkgn3A5wuxCJjDZqAwMDAID6+vo0r4QgCILIBAYGBlBUVBTxfomNZvbSiNfrRVtbGywWCyRJSvh1bDYb6uvr0dLSgsLCwiSuUB1ovepC61UXWq+6jNf1MsYwMDCA2tpaaDSRM2cZ7alpNBrU1dUl7fUKCwuz4kvAofWqC61XXWi96jIe1xvNQ+OQUIQgCILIGcioEQRBEDnDuDBqBoMB9957LwwGQ7qXEhO0XnWh9aoLrVddaL3RyWihCEEQBEHEw7jw1AiCIIjxARk1giAIImcgo0YQBEHkDGTUCIIgiJyBjBpBEASRM+S8UXv88ccxadIkGI1GLF68GFu3bk33kgAAa9euxZlnngmLxYLKykp85StfQVNTU8BjLrjgAkiSFPBz0003pWW9P/nJT0LWMmPGDHG/3W7H6tWrUVZWhoKCAnz9619HZ2dnWtYKAJMmTQpZryRJWL16NYD0H9tNmzbhS1/6EmprayFJEl599dWA+xljuOeee1BTUwOTyYRly5bh0KFDAY/p7e3FqlWrUFhYiOLiYlx33XUYHBxM+XpdLhfuvPNOzJkzB/n5+aitrcV3vvMdtLW1BbxGuM/k/vvvT/l6AeCaa64JWcuKFSsCHpMpxxdA2O+yJEl44IEHxGNSeXxjuX7Fck1obm7GypUrYTabUVlZiR/+8Idwu91jWltOG7WXXnoJt99+O+69917s3LkT8+bNw/Lly9HV1ZXupWHjxo1YvXo1Pv74Y6xbtw4ulwsXX3wxhoaGAh53/fXXo729Xfz8+te/TtOKgVmzZgWs5YMPPhD3/eAHP8A//vEP/PWvf8XGjRvR1taGr33ta2lb67Zt2wLWum7dOgDA5ZdfLh6TzmM7NDSEefPm4fHHHw97/69//Ws8+uijePLJJ7Flyxbk5+dj+fLlsNvt4jGrVq3Cvn37sG7dOrz++uvYtGkTbrjhhpSvd3h4GDt37sTdd9+NnTt34uWXX0ZTUxO+/OUvhzz2pz/9acAx/4//+I+Ur5ezYsWKgLW88MILAfdnyvEFELDO9vZ2/PGPf4QkSfj6178e8LhUHd9Yrl+jXRM8Hg9WrlwJp9OJjz76CM8++yyeeeYZ3HPPPWNbHMthzjrrLLZ69Wrxu8fjYbW1tWzt2rVpXFV4urq6GAC2ceNGcdv555/Pbr311vQtSsG9997L5s2bF/a+/v5+ptPp2F//+ldx22effcYAsM2bN6dohdG59dZb2ZQpU5jX62WMZdaxBcBeeeUV8bvX62XV1dXsgQceELf19/czg8HAXnjhBcYYY/v372cA2LZt28Rj3njjDSZJEmttbU3pesOxdetWBoCdOHFC3DZx4kT28MMPq7q2cIRb79VXX80uu+yyiM/J9ON72WWXsc9//vMBt6Xr+DIWev2K5Zrwr3/9i2k0GtbR0SEe88QTT7DCwkLmcDgSXkvOempOpxM7duzAsmXLxG0ajQbLli3D5s2b07iy8FitVgBAaWlpwO3PP/88ysvLMXv2bKxZswbDw8PpWB4A4NChQ6itrUVjYyNWrVqF5uZmAMCOHTvgcrkCjvWMGTPQ0NCQEcfa6XTiueeew7//+78HTHvIpGOr5NixY+jo6Ag4nkVFRVi8eLE4nps3b0ZxcTEWLVokHrNs2TJoNBps2bIl5WsOxmq1QpIkFBcXB9x+//33o6ysDPPnz8cDDzww5lDTWHjvvfdQWVmJ6dOn43vf+x56enrEfZl8fDs7O/HPf/4T1113Xch96Tq+wdevWK4Jmzdvxpw5c1BVVSUes3z5cthsNuzbty/htWR0l/6x0N3dDY/HE3DAAKCqqgoHDhxI06rC4/V6cdttt2Hp0qWYPXu2uP1b3/oWJk6ciNraWnzyySe488470dTUhJdffjnla1y8eDGeeeYZTJ8+He3t7bjvvvtw7rnnYu/evejo6IBerw+5gFVVVaGjoyPlaw3m1VdfRX9/P6655hpxWyYd22D4MQv33eX3dXR0oLKyMuD+vLw8lJaWpv2Y2+123HnnnbjqqqsCurLfcsstWLBgAUpLS/HRRx9hzZo1aG9vx0MPPZTyNa5YsQJf+9rXMHnyZBw5cgQ/+tGPcMkll2Dz5s3QarUZfXyfffZZWCyWkPB+uo5vuOtXLNeEjo6OsN9xfl+i5KxRyyZWr16NvXv3BuSoAATE7+fMmYOamhpcdNFFOHLkCKZMmZLSNV5yySXi/3PnzsXixYsxceJE/OUvf4HJZErpWuLlD3/4Ay655BLU1taK2zLp2OYSLpcL3/zmN8EYwxNPPBFw3+233y7+P3fuXOj1etx4441Yu3ZtyvsYXnnlleL/c+bMwdy5czFlyhS89957uOiii1K6lnj54x//iFWrVsFoNAbcnq7jG+n6lS5yNvxYXl4OrVYborbp7OxEdXV1mlYVys0334zXX38d77777qiz4xYvXgwAOHz4cCqWFpXi4mJMmzYNhw8fRnV1NZxOJ/r7+wMekwnH+sSJE3jnnXfw3e9+N+rjMunY8mMW7btbXV0dInhyu93o7e1N2zHnBu3EiRNYt27dqLOzFi9eDLfbjePHj6dmgVFobGxEeXm5+Pwz8fgCwPvvv4+mpqZRv89Aao5vpOtXLNeE6urqsN9xfl+i5KxR0+v1WLhwIdavXy9u83q9WL9+PZYsWZLGlckwxnDzzTfjlVdewYYNGzB58uRRn7N7924AQE1NjcqrG53BwUEcOXIENTU1WLhwIXQ6XcCxbmpqQnNzc9qP9dNPP43KykqsXLky6uMy6dhOnjwZ1dXVAcfTZrNhy5Yt4nguWbIE/f392LFjh3jMhg0b4PV6hYFOJdygHTp0CO+88w7KyspGfc7u3buh0WhCwnzp4OTJk+jp6RGff6YdX84f/vAHLFy4EPPmzRv1sWoe39GuX7FcE5YsWYJPP/00YPPAN0MzZ84c0+JylhdffJEZDAb2zDPPsP3797MbbriBFRcXB6ht0sX3vvc9VlRUxN577z3W3t4ufoaHhxljjB0+fJj99Kc/Zdu3b2fHjh1jr732GmtsbGTnnXdeWtZ7xx13sPfee48dO3aMffjhh2zZsmWsvLycdXV1McYYu+mmm1hDQwPbsGED2759O1uyZAlbsmRJWtbK8Xg8rKGhgd15550Bt2fCsR0YGGC7du1iu3btYgDYQw89xHbt2iXUgvfffz8rLi5mr732Gvvkk0/YZZddxiZPnsxGRkbEa6xYsYLNnz+fbdmyhX3wwQds6tSp7Kqrrkr5ep1OJ/vyl7/M6urq2O7duwO+z1zF9tFHH7GHH36Y7d69mx05coQ999xzrKKign3nO99J+XoHBgbYf/7nf7LNmzezY8eOsXfeeYctWLCATZ06ldntdvEamXJ8OVarlZnNZvbEE0+EPD/Vx3e06xdjo18T3G43mz17Nrv44ovZ7t272ZtvvskqKirYmjVrxrS2nDZqjDH22GOPsYaGBqbX69lZZ53FPv7443QviTEmy3bD/Tz99NOMMcaam5vZeeedx0pLS5nBYGCnnXYa++EPf8isVmta1nvFFVewmpoaptfr2YQJE9gVV1zBDh8+LO4fGRlh3//+91lJSQkzm83sq1/9Kmtvb0/LWjlvvfUWA8CampoCbs+EY/vuu++G/fyvvvpqxpgs67/77rtZVVUVMxgM7KKLLgr5O3p6ethVV13FCgoKWGFhIbv22mvZwMBAytd77NixiN/nd999lzHG2I4dO9jixYtZUVERMxqN7PTTT2e//OUvA4xIqtY7PDzMLr74YlZRUcF0Oh2bOHEiu/7660M2u5lyfDlPPfUUM5lMrL+/P+T5qT6+o12/GIvtmnD8+HF2ySWXMJPJxMrLy9kdd9zBXC7XmNZG89QIgiCInCFnc2oEQRDE+IOMGkEQBJEzkFEjCIIgcgYyagRBEETOQEaNIAiCyBnIqBEEQRA5Axk1giAIImcgo0YQBEHkDGTUCIIgiJyBjBpBEASRM5BRIwiCIHKG/w+YShjm1U9c1gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "α = 0.9\n", + "T = 200\n", + "x = np.empty(T+1)\n", + "x[0] = 0\n", + "\n", + "for t in range(T):\n", + " x[t+1] = α * x[t] + np.random.randn()\n", + "\n", + "plt.plot(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b1ee91d3", + "metadata": {}, + "source": [ + "## Exercise 3.2\n", + "\n", + "Starting with your solution to exercise 1, plot three simulated time series,\n", + "one for each of the cases $ \\alpha=0 $, $ \\alpha=0.8 $ and $ \\alpha=0.98 $.\n", + "\n", + "Use a `for` loop to step through the $ \\alpha $ values.\n", + "\n", + "If you can, add a legend, to help distinguish between the three time series.\n", + "\n", + "Hints:\n", + "\n", + "- If you call the `plot()` function multiple times before calling `show()`, all of the lines you produce will end up on the same figure. \n", + "- For the legend, noted that the expression `'foo' + str(42)` evaluates to `'foo42'`. " + ] + }, + { + "cell_type": "markdown", + "id": "682f5011", + "metadata": {}, + "source": [ + "## Solution to[ Exercise 3.2](https://python-programming.quantecon.org/#pbe_ex2)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "c74097b2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAESCAYAAABuJtVqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5FElEQVR4nOydd5hkVZ3+P7dyVXdV5zjdk3NghjgMGUGSAVBZxICyiGFlV38YZ3URMbAq6poVA6AsK6IICEoOAjMMTITJsXs65+7q6spV9/fHueeG6uo0093DwH2fp5/urrrhVN17z3u+7zcpqqqq2LBhw4YNG29ROI71AGzYsGHDho1jCZsIbdiwYcPGWxo2EdqwYcOGjbc0bCK0YcOGDRtvadhEaMOGDRs23tKwidCGDRs2bLylYROhDRs2bNh4S8N1rAcw2chms7S2thIMBlEU5VgPx4YNGzZsHCOoqsrg4CC1tbU4HCPbfW86ImxtbaW+vv5YD8OGDRs2bLxB0NTURF1d3Yjvv+mIMBgMAuKDh0KhYzwaGzZs2LBxrBAOh6mvr9d5YSS86YhQyqGhUMgmQhs2bNiwMaabzA6WsWHDhg0bb2nYRGjDhg0bNt7SsInQhg0bNmy8pWEToQ0bNmzYeEvDJkIbNmzYsPGWhk2ENmzYsGHjLQ2bCG3YsGFjDKiqyt6+vaSz6WM9FBtTAJsIbdiwYWMM/GnPn3jvw+/l7h13H+uh2JgC2ERow4YNG2Ngf/9+AJ5reu6YjsPG1MAmQhs2bNgYAwOJAQC2d28nmooe49HYmGzYRGjDhg0bY2AgKYgwrabZ1rUNEH7DO7ffyaaOTcdyaDYmAVNKhLNnz0ZRlGE/n/70p/Nuf9dddw3b1ufzTeUQbdiwYWNM9Cf69b9fbX8VgI0dG/nBph/wzZe/eYxGZWOyMKVFt1999VUymYz+//bt23n729/OVVddNeI+oVCIPXv26P/bPQVt2LBxrCGlURAECLC7dzcAHUMdx2RMNiYPU0qEFRUVlv//+7//m3nz5nHuueeOuI+iKFRXV4/7HIlEgkQiof8fDocnPlAbNmzYGAVmIny9+3WiqSgH+g8AMJgaJJFJ4HV6j9XwbBwlps1HmEwmueeee/jXf/3XUa28SCTCrFmzqK+v5/LLL2fHjh2jHve2226jqKhI/7Gb8tqwYWMykcqmiKQiABS6C0lnhZ9QEiFAX7zvWA3PxiRg2ojwwQcfpL+/n49+9KMjbrNo0SJ+97vf8dBDD3HPPfeQzWY544wzaG5uHnGftWvXMjAwoP80NTVNweht2LDxVsVgclD/++y6swHhJzQTYU+sZ9rHZWPyMG2NeX/7299y6aWXUltbO+I2a9asYc2aNfr/Z5xxBkuWLOFXv/oV3/jGN/Lu4/V68XptScKGDRtTAxkoE/QEOb3mdP5x6B/849A/GEwZBNkTt4nweMa0EGFjYyNPPfUUDzzwwIT2c7vdnHjiiezfv3+KRmbDhg0boyOcEHEHxd5iTq06FYDmiFWlsi3C4xvTIo3eeeedVFZW8o53vGNC+2UyGV5//XVqamqmaGQ2bNiwMTqkRVjkKaIuWEdVoGrYNr3x3mkelY3JxJQTYTab5c477+QjH/kILpfVAL322mtZu3at/v+tt97KE088wcGDB9m8eTMf+tCHaGxs5GMf+9hUD9OGDRs28kJGjBZ5i1AUhVOrT9XfcyhiCrWl0eMbU06ETz31FIcPH+Zf//Vfh713+PBh2tra9P/7+vq44YYbWLJkCZdddhnhcJh169axdOnSqR6mDRs2bOSFbhF6iwAsRLisbBlgW4THO6bcR3jRRRehqmre95577jnL/z/84Q/54Q9/ONVDsmHDho1xw2wRArqfEAQpvt79uu0jPM5h1xq1YcOGjVGQS4R1wToum3MZ59Wdx8lVJwO2RXi8Y9rSJ2zYsGHjeIQsuF3sLQZE9avvnPMdwCizZluExzdsi9CGDRs2RoG0CEOe0LD3Sn2lAPQl+siq2Wkdl43Jg02ENmzYsDEKJBFKi9CMEl8JAFk1a+lQYeP4gk2ENmzYsDEKcn2EZrgdbv313pjtJzxeYROhDRs2bIyC3PSJXJT5ygA7l/B4hk2ENmzYsDECUpkU0XQUyC+NguEntCNHj1/YRGjDhg0bI0BGjCooFLoL825T5tcsQjty9LiFTYQ2bNiwMQKkfzDoCeJ0OPNuY1uExz9sIrRhw4aNETBaxKhEub8cgM5o53QMycYUwCZCGzZs2BgBjeFGwCC7fKgrrAOgadBuCn68wiZCGzZs2BgBG9o3AOil1PJhVmgWAIcHD0/LmGxMPmwitGHDho08UFWVV9peAWB1zeoRt6sP1QPQHetmKDU0LWOzMbmwidCGDRs28uBQ+BBdsS48Dg8rK1aOuF3IE6LEKyrM2PLo8QmbCG3YsGEjD6Q1eGLlifhcvlG3lVah9CnaOL5gE6ENGzZs5MEr7YIIT6s5bcxtZwU1P2HY9hMej7CJ0IYNGzZykFWzBhFWj02EM0MzATtg5niFTYQ2bNiwkYNwIqznEC4rWzbm9jODGhHaFuFxCZsIbdiwYSMHkVQEAK/Ti9vpHnN7mUJh+wiPT9hEaMOGDRs5kGkQBe6CcW0vg2V64j12CsVxCJsIbdiwYSMHsuPEeInQnEJhy6PHH2witGHDho0cRJJCGh2p40Q+SKvQDpg5/mAToQ0bNmzkYCgt5M2AOzDufcp9oh6pDLKxcfxgSonwlltuQVEUy8/ixYtH3ef+++9n8eLF+Hw+VqxYwd///vepHKINGzZsDMNQcmI+QoBCj7AeZaCNjeMHU24RLlu2jLa2Nv3nxRdfHHHbdevWcc0113D99dezZcsWrrjiCq644gq2b98+1cO0YcOGDR0TDZYxbytlVRvHD6acCF0uF9XV1fpPefnI7Ux+9KMfcckll/CFL3yBJUuW8I1vfIOTTjqJn/70p1M9TBs2bNjQcSREKP2JMtDGxvGDKSfCffv2UVtby9y5c/ngBz/I4cMjO5LXr1/PhRdeaHnt4osvZv369SPuk0gkCIfDlh8bNmzYOBpIIpxIsIxtER6/mFIiXL16NXfddRePPfYYv/jFLzh06BBnn302g4ODebdvb2+nqqrK8lpVVRXt7e0jnuO2226jqKhI/6mvr5/Uz2DDho23HqSfbyLBMpI07TzC4w9TSoSXXnopV111FSeccAIXX3wxf//73+nv7+dPf/rTpJ1j7dq1DAwM6D9NTXYbFBs2bBwdoikhb07IIvRoFqEdLHPcwTWdJysuLmbhwoXs378/7/vV1dV0dHRYXuvo6KC6unrEY3q9Xrxe76SO04YNG29tyPSJCQXLuMS2tkV4/GFa8wgjkQgHDhygpqYm7/tr1qzh6aeftrz25JNPsmbNmukYng0bNmwAhp/PTp94a2BKifDzn/88zz//PA0NDaxbt44rr7wSp9PJNddcA8C1117L2rVr9e0/85nP8Nhjj/H973+f3bt3c8stt7Bx40ZuvPHGqRzmmxJ98T6ebHyS55qeO9ZDsWHjuMNES6yZt5U5iDaOH0ypNNrc3Mw111xDT08PFRUVnHXWWbz88stUVFQAcPjwYRwOg4vPOOMM7r33Xr761a/yn//5nyxYsIAHH3yQ5cuXT+Uw33S4f+/9fGP9N1BRAfjZBT/jnLpzjvGobEwKUnFwj94t3cbR40hKrMltbYvw+MOUEuEf//jHUd9/7rnnhr121VVXcdVVV03RiN4aeObwM6ioFLgLGEoN8T+b/4cza8/E6XAe66HZOBo8/1147r/hIw/D7LOO9Wje1JAW4USiRqVFGE1HyWQz9vN2HMGuNTrNyGQz/N/u/2N/nzVgaG/fXvb07pmUc3RGOwH4r9P/i6AnyL6+fTx04CFUVZ2U49s4Buhvgme/BWoGdvz1WI/mTY+j8RGCnVR/vMEmwmnGhrYNfHvDt/n2K9/WX0tn03z0sY/y4X98WA/bPhpIIpxfPJ+PrfgYAF9b9zXOve9cbll3C/v69h31OWxMM57/jvG3v+TYjeMtgFQ2RTKbBCYmjXocHlwOIbLZkaPHF2winGZ0REV6SMtgi/5aJBlhMDlILB3jUPjQER33heYX2Ne3j0QmQX+iH4CqQBUfWPwBzqs/D4fioC/Rx1/2/YX3PPweO4jmeELPAdh6r/F/KnbsxvIWgHkxOhFpVFEUw09oV5c5rmAT4TQjnBQl4LpiXbpUKXOWAA4NTJwIWyOt/NvT/8a/P/PvujXocXgo8hbhc/n4ydt+woYPbOC3F/2WpWVLAXit67Wj/Sg2pgv7nhSSqIQdlTilkMEuXqcXt8M9oX31Mmt2wMxxBZsIpxmSCFPZlP63WUY5EiJsHxIl6FoiLfr+lYFKFEXRt/G5fJxWcxrn1p0LvHF7pqWzaT746Ae54YkbyKrZYz2cNwYGcqol2RbhlOJICm5L6IW3J8HFYWP6YBPhNCOcMIqCd0W7AOtD0zDQMPFjJo1jvtr+KgBVBVV5ty3yFgEwkDy2RDiYHMw7WbREWnit+zVebnuZF1tGbtn1lkK4VfwunSd+2/6nKcXREKFtER6fsIlwmmEmra6YIEKLRXgEPsJ8RFgZqMy7bcgTAo6tRRhJRrjkL5fwgUc/QCqTsrzXHevW/7531725u741Edb8yeULxG/bIpxSHJVF6LELbx+PsIlwmmEmLTnpmx+axoFGMtnMsP1Gw2DS6Oaxq3cXIAJl8kFahOZxTDcODRwinAxzYOAAf91vTQUwE+FLrS8dkVT8psOARoRl88XvpC27TSWkNWdbhG8d2EQ4zRjLIkxmk7QNtU3smCa5VfrV3sgWofzcAL9+/dckM0n9fzMRAvxx9+hFGd70yGZgULsfdIvQJsKpQDQV5enGp+mL9wFH5yMciQh/8/pv+Pzznyeejh/5QG1MOmwinGbk9RHmJN/u7NnJX/f9ddxklc+6G4kIdYswcewsQvm5QQT6/Pcr/637RntiPYBh0W7p3DLt43tDIdIhIkYdLiiZI16ziXBKcOeOO/nsc5/ljtfuAI6OCPPVG42n4/xs6894vOFxHtr/0NEN1sakwibCacZY0ijAf730X9y87mZ+uuWnEz6mxFjS6GBqkHQ2Pa7jTzakRVjiFYnh9++9n3c9+C6ea3pO/05WVa4CjIjYtyykLBqsAa+W3G37CKcETYMiOlfeg5Mtje7o2aE/c3fvvHvCLhAbUwebCKcRqqrmlUZzHxppIY43anIiFqGURsHqW5xOyInmmiXX8J2zv8PCkoUAvNL+iv7eivIVAPQl+oil38ITvwyUCdWCTO628winBP3xfsv/sr/gRDBasIxZ3WgabOLZpmcnfHwbUwObCKcK3fsgnbS8FEvHLFaYnPRlGkFdYZ1l++ZIs75KHQ35ZM4Kf0XebV0Oly7fHCs/oVwAVPgruGzuZVy1UBRZbxps0r+T2aHZ+up6mFWYiMCfroXX/zx9gz5W0IlwhkGEtkU4JehL9Fn+lx3nJ4LRLMJtndsAY5H6+52/n/DxbUwNbCKcCjS8CD89BR69yfJyruUmfWVy9Xhe/XkEPUEunHkhqypWAaI26ViQx3Upos5hqa8Ut3PkihjHOpdQfm5J1vXBegCaB5vpiQsfYXmgnJoC0cB5WPBQ40uw8yF44fvTNOJjCCmNFpmIMB2DrF1sYLIxKRahO79FqKoqW7u2AvCFU74AiOpOx8o9YcMKmwinAodeEL+7rN0kJGH5nKKfXDQdJZqK6g/NnKI5/PPqf/KD837Amto1ALzc9vKYp5PHXVgqJMaR/IMSxzpyVFp95YFywCDCpsEmemO94j1fOdUF1UA+i1CTdAcnFl17XMJsEXpMdS/fynLxFCHXIjR3kxgvZG3SXIuwIdxAf6Ifr9PL22a+DY/DQ0bN2D7wNwhsIpwKdGwXv3MkSylhVhVU4Xf5ASETSmm0wF2Ay+FCURROrzkdgFfaXiGrZlFVld/v+D1fffGrfP75z7Ota5t+XOnrO6H8BP34o0G3CI8BEWayGd3qq/QLiaimsAan4iSRSZBWxQq51F+qW4TDJgtZ0DjWB+nE9Az8WMFMhNo9A9i5hJOMeDo+zBc9kYLbEiNFjW7t3ArAsrJleJweagtrAeH+sHHsMaWNed+y6NgBwMuZQb7z0JUsKF7AxXMuRkHU/gx5QqiqyuHBw3RFu/JWslhRsYKAK0Bfoo89vXuIpWN8b+P39Pc3tG3gj+/8I5WBSv0BvmbJNUTTUd3nNhKOZVJ9b7yXrJrFoTgo9ZUC4Ha4qS6opiUiJv0Sbwluh3tkadQ8yQy2Q8msaRn7McGAiQgdDkGG6ZidQjHJkB1bXIqLikAFbUNtFHmKJnwcnQjTViLc1LEJgBMrTwSgLlhHQ7hBdKGpOYqB25gU2BbhZCMRgT5RDeVvrjT7+/fzj4Z/8NlnP8u61nWAIMJyv5AFu2Pd+kNjJkK3w81JVScBsLlzM9u7hZW5pHQJS0qX0J/o5zPPfEbvNgEwKziLb531LT31YCRIafRY5BLKQJlSX6mlg7eURwHK/GUAujRqJsJX219lY/igccBIx1QO99gik4aIZg0XzRC/3ZpVaBPhpEISYbGvmJvX3My1S6/llKpTJnwc+QwPJYf07jKpTIrnmp8DYHXNagBmFIrraVuEbwzYRDjZ6Nyp/zmgWAMaZOBLyBOiIiACRbpihkWYK8WcUCGkzte6XmNnrzjuBTMv4Mdv+zGlvlL29O3h/j33A2IlaiaW0XAsg2WkfzA3qnU0IpTSaCwd41NPfYpPdTxNXHbWGHwT+1gi7aBmRTJ9gZYOIyMZRyLCZ74JP18Dg2/iBcIUQCdCbzFnzTiLL5z6hVEDzkaC9Cum1TSJjJDt17etZyAxQJmvjNOqTwOM+93cl9TGsYNNhJMN6R8E+h3i650VEtJdQ7gBgJA3pBOBxUeYE6UmfX6vd7/Orh5RQ3RJ2RKqC6q5dM6lgJGbZM4PHAtS8jkWPkIZMSotYgkzEcr3dGk00oaqqrQPtZPIJIirGTqdGum/mS3CqAgcIlAmZFEwLMKRfISv/Uksxrb939SP700EGTFa7C0+quP4XX7dBXLjMzfy131/5e+H/g7AxbMv1her0iKU7oCx0BcXLpKpgKqqljKHb0XYRDjZ0PyDAAPa5HVy1cmWTUKekJ5L1DHUMWK1++XlywERTSmLT8vGupJcZZHtoCc47iEey2CZzpiQcqVFLGEhQp8gwqpAFQoKyWyS3ngvHVGD9DpcGhG+mSNHpdVnzmcbK5dQpgDs+Gv+923khYwYLfGVHNVxHIqD+SWiOPqGtg3cvO5m/nHoHwD64hWEjxDGL42ufWEtV/3tKta3rj+q8eXDDU/ewEV/vohI8q1bKNwmwsmGiQj7neLrPanyJMsmQU9QJ8LGcCMqwpeQS4RF3iJmh2YDoKJS6a/UraVZQUGEMlAm5B2/RSi3PSbSaHRsaVR+RrfTrW/XPtRu8Yd2SIvwzSwByonJnY8I81SXyWYgrl3Ttq3Qe3D4NjbyYrIsQoA/XPoHfvX2X3H98usBUQh/RuEMVlas1LeRFmFvvHdcTXx39+5GReWX23551OMzozPayYa2DfTEezg4YLpfVBWGukfe8U0GmwgnE6qqE2HW4SKsWYQnVp6oyyVgtQilpedQHHpKhRmy1BgIWVRiZmimZbsjkUaPZbBMLhHKFTIYPkKA6kIjYKZjyCC9TmkRRt7EPsJkHovQM4pFGM9Z2Ox4cEqG9WaEtAgngwgL3AWcUXsGnz35s3zzzG9S4i3humXXoSjGHBD0BHVlZiyrMJ1N0xsXMvnmzs1sbN941GOUMB9LFrwH4IXb4XvzYM9jk3auNzJsIpxM9B8WuYMON4OVi8lqN351QbW+AgRhkVUHxAQv64oGXAHLgyKxosIgQimLgvCfuR2GM39CRHgMpdHcZHqJAneBnk5h9h+aUygs0qhTy/x5U1uEmtVnTqTXfYR5LMKYNSGcHQ9MzbjehJAW4dFKo7m4fP7lPH/181y9+Oph7+l+wjECZnpiPbpqBKJ12WTh1Y5XjfPETUTYsln8bnhh0s41ITz/XXjhB9MWDDelRHjbbbdx6qmnEgwGqays5IorrmDPntEdvnfddReKolh+fD7fVA5z8iBl0YrFDPiLAfA73HicHuYXz9c3M0eNSoyUvCsDZkCkTkg4HU6LnHhEPsLkgN6/cLogySxfLdTrll3H6TWnW9I/ZOJx02CThQgn2yJUVZXvP7GHv2x6A4WzS/nT4iOUUaP5LMJ+8Vu7vrS//paSt44Gk2kR5iLfAheM2sJjWYRy8RhwiTliXeu6vEW9x4Kqqvz6tV/zfNPz+mtmi1BanYARqNVzYMLnOWqoKqz7CTz9dYj1T8spp5QIn3/+eT796U/z8ssv8+STT5JKpbjooosYGhr9IoZCIdra2vSfxsbGqRzm5EESYdUy+r1i5V7sECQ+r3ievlnIE8Ln8umEBCO3fFlYspCQJ4Tb4daDZyTM8uhELEK5bVbNHtEDdaQYSAzofj4Z7GPGR5d/lF9f9GuLRDy3aC4ABwcO5vcRDnVBJnXUY2vsifKTZ/Zz6yM7x954uiCtPouPcJQ8QjlpFNdDuSi3p6/s32R4+WAPn/vTNvqjkxPtaE6fmC7MCI4vclTe93OL5upzRmukdcLn29mzkx9v+TFf+OcXGEoN0Rnt1CPZIUcajWp/9+yf8HmOGrE+oypX8czRt50kTGllmcces+rLd911F5WVlWzatIlzzjlnxP0URaG6unpc50gkEiQSRpmtcPjYNZzVUyeqltHf/jIkoFiTLy1EqAWrVAWqdHlypAK/bqeb3178W2Lp2DArUgbSmI85HvhcPnxOH/FMnMcaHmNlxUq9FdJUYm/fXgBqC2oti4DRMK9IfG8H+w9arFc9ahQg0mkknB8hwvGU/ltV1RFX8dOKvD7CUfIIpTTqKxZk2L0XWjbCwoumdJjHAr96/gDP7unipFnFfHD10VcWkl3pJ1saHQ3SIjwcPjzqdtKvXh4oJ6NmGEgM0BppZUHJggmdTxamiKVjPHbosWExCRZpVKv5S98hUdjBOY1FyPobUQGloNLqFphCTKuPcGBATPqlpaWjbheJRJg1axb19fVcfvnl7NixY8Rtb7vtNoqKivSf+vr6EbedcpgswgHtxilCTNi50ihYewaO1gR0celivTSTGWaLcNzSaGIQ9jymj+HW9bfy0cc+qif/TiV29+4GxOcZL+YWC4uwK9ZleVB7nE7SMgBpEuTRaFI0SVVV4+9jDhk16sljEebLI5TSqL8YZmgpOy2bpmp0xxT9MbFwOdw7ORV25IJ0Oi1Cs9oxGiQRVvorj6oijczhBfjLvr/wjwaR1iGL9OsWYTZrLKqyaeifZkWur5F3z6jh0ooC9vXtm5ZTThsRZrNZPvvZz3LmmWeyfPnyEbdbtGgRv/vd73jooYe45557yGaznHHGGTQ357/wa9euZWBgQP9pahq7f9+UIBmFXk1Pr1rOgCbdFalisp5XPI+qQBWzQ7P1eoTmLhFHUuBXplAAOLLj3P/578L/Xc1Kl7VB747ukRcbk4UjIcICd4FeYQZEP0WnqpJRFHpKtEXPJATMxFIG+Q0l3iCtcSaaRyilUX8xzNBSdlo2CXZ/k2EwLq5Rc+/Rd+GIpWPEM3Fgei1CuThuibSMmkKhF6EIlOtEOGFp9I8fpOslo23Z692v81zTczgVJ9csvgYwWYTxflHRSGKa/YTZvgaa3S6alcyEYh+OBtNGhJ/+9KfZvn07f/zjH0fdbs2aNVx77bWsWrWKc889lwceeICKigp+9atf5d3e6/USCoUsP8cEXbvEzVNQAcEq+jVjpVibhDxOD3+78m/c/677ddnNTISjWYQjodxryIHd4fGVV6P9dQC+61vAs//yLG+f9XZAhGVPNY6ECMFYOQNU+SuoyAjS6izWPv8kJNXHTFZg5I1ChMl8wTKj5BHKVby/BKqWg9MjXtNq344Lz30HHvl/b3jyHNSk7Ka+o7cIZcSo2+HWA1KmA8W+Ysp8IlXo4MBB/u+Vw3zmj1tIZawBbGaLUAaPTYgIk1HY/YhOdOZUrq+f8XXOqz8PMAXLRHut+0+zn7C3dx9pRcGBMqwC1VRhWojwxhtv5JFHHuHZZ5+lrq5u7B1McLvdnHjiiezffwycthOBSRYF6EfczEVpY1L1u/z4XEYE7Hil0ZEQGSpAzXgB6Bv0jG+nvgYAXENdlPvLdcl1c8fUEmEyk+Rgv5CAjoYIK32lVKYFaXUUahL7oX9CSqzoiYfh4f+YcPd6sxw6lHijSKMyWMY0OY+aR9gvfvuKweWFai3ieLwBM/EwPPdt2Pi7N3wyfkSzCJsmQRo1R4xOt29YWoX7+/fzs2f389DWVrY29Vu20RtZByomXJoNEGldQJemUl296GrmFs3lv07/Ly6ff7lOxgOJAVLZlOEflJgGIlRVlT29e0hlUrT3i4VbuUu0pZsOTCkRqqrKjTfeyF//+leeeeYZ5syZM+FjZDIZXn/9dWpq3uC9SnQiFLLvgNZXrzg9ckSjuW/gkRDhoZ4h4m1XEe+4lL6BcVjCmTQMaNJxRESiyQ4XWzu3TmkqxYH+A6TVNEXeIovUOR6YA42qvCVUaRZhh5RGdz4IvzwLOnbCozfRs/UP/PWZL/OdDf9NU3h8UnksaSxY3ngWoalBrCRFcx5hckhYcGZpFCbuJ9TUAgB6J2BFTjMyWZUhbeHSF00d9fXSq8r4io9yZBOHvLcP9B/QF2M9EWskrLkIhW4RDk3AItSIsFsjwrPrzuahKx7iXxb9CyAC7ZyKeK831mtEjEpMAxH+49A/eN/f3sfPt/2cDi2op3qarEGYYiL89Kc/zT333MO9995LMBikvb2d9vZ2YjFjNXvttdeydu1a/f9bb72VJ554goMHD7J582Y+9KEP0djYyMc+9rGpHOoRY0/7IF//2w5SrdokolmEA1lxMxenRg5COVqL8FD3EOnB5aR6z+VA1zjqBIZbhPMb9GLVi4oWEHC4GUwNsv/ZWyc8hvFCl0VLFk941W0mwkp3kCrNyu4MVcNVd0NhFfTsgzvOo33nA1xaX8vNxX7u2f2//Gzbz8Z1DrNFGE2+0YjQnFCfYxG2bYP/ngVPfNVEhJqfS/oJ24wmzqPCvN1E5NRphrQGJY7WKpSSYYl3+vyDEvLe3te/T7/vzCkh5qoyFQGDCAcSA+OvDaoFu3RrJR9z5UZzb9CeeI8hjfq0yO5p8BHu7xdku61zK+3a560yFSGZakwpEf7iF79gYGCA8847j5qaGv3nvvvu07c5fPgwbW2Gj6evr48bbriBJUuWcNlllxEOh1m3bh1Lly7Nd4pjjjv+eZA7XzpEtu018YKURjXne9EoncSP1kd4qNuwCg52jSMfUJNFARjqBFXFdf9HWDkkUk42739kwmMYLyQRLipdNOF9LT5CVyGV0iKMdcCyK+DfXoZZZ0EmwV6Pm5jDgaL5uF7vej3fIYfBHCzzhrEI8wbL5OQRNq6DbAoOPGORRhPpDOkiLao4PE4Zrf0142/zvfIGg0x1kThaItR9cKaF6XRBSqMH+g4QTwlFptdEhLKRtVNxUuItocBdoEe2jlse7W8kg4i0hvzFLGRZw55Yj2ER1omWUYSbR+52MkmQeZyNAw20a6xUXTR7Ss9pxpQKsOo4HO7PPfec5f8f/vCH/PCHP5yiEU0+BmIpZikdeNOD4PRChaj+MqCVTitKjExQIU9Iz+c7Eie9QYQq74ncS/L1MJ4VV4y8g3lyiw9A1x7Y83dOLA6x3u9ncybM+1UVpsBP0jgoVqXmNJLxoshbRJmvjJ54D5VOPxnpI5S1RwOl8OG/wgvfpy+8F/o3siyZZLvXy+HBwwwkBsbMW4y9IX2EeYpu5+YRarIXvQfBL1b1aW8RF/3wn8xxdHEXiDJV47mubccHEeYuVJr6ji5y1OyDGxNb/0+0uLrqLnHfHSWkRdgebQdHHLI++oYMIpRjK/OV6S2cagtr6U/00xppHd/Csv8wfU4HWUXBAbr1Z4b0EwqLUCPCsvkiDzXWJ+6v6pGj/Y8Wkgg74900uAUtVRVOnzvMrjV6lIgm06xQNBmpejm4RNBKf2oQgOJEdMTKJ4qi6KvQiVqEqqpySLMC5ymtfM51P8o/vjj6Trn5QM2vALDIXSz+dTC8XuUkQZKW2S86EVw651JKfaWc6KtkZkpMhAcHDhqLLZcHzl9L37xzAZiVSlOfEt/7eFJDrMEyk2cRPru7k8e2H2FUa76E+tw8QkmE6TgMCr9Rb7aAxp4o67vcxnu5BblzkYpB12793+wbOFhmcJKlUVm5pdI/DovwlTvg0POw78mjOqdEkbdIlyodHjGOpsgh/n7w7/ztwN/0IhRmktZTKMbrJ+w/rAfKlCjuvA28pUXYG+81gmUCZYIMYcr9hH29hvy6SSupOdFYgqPBNJYLeBMh2ismJLefoWSGcx3apFErIjBTmRRRrT1ScTYrovEKyoYdJpnOcuaMM+ne323pLDEedEeSDCbSKAqcWJaBCDjGKqKdu8pv2gBAYWgmZA8Tcyhim0lY6eZCdpk/0pv7S6d9iS+c+gUcW++lOJXEBXqPQvMx9b5y3hKWJ/pocrvZ3rOdM2acMerxo1OQPpHKZPnkPZvIZFW23FxO0DfBjufj8RHmSXYeUAVxJvCQ8YRwJsPCJyyDaPKhcyeoGTKqglNRobdhfFbkMcDgFEmj47IIZe3WSeyDOa94Ht2xbpy+dtR0Eetit/PSC9bPaJYzawuEn3A0adRSHamvUQ+UqVDz2z66jzBm8hEGSgQRNr865UTYb6ojPKj5MqeTCG2LcKLo3gc/Wgl3vxsQ0YYnSItQI0LZ509RVYLZLOQhqEdea2X51x5nVeA6Xnz/i5YC2uOBlEVnFPtZVCJueGcmLqpCjIRhRCgswkBIrDCjikNYGM9/F35yih5ZerSIJCNEUkLmk103jgQOxQHJIbwqzFOEZbSjx2rt6TUjS+ayPCEkpu3d28c8dixlkN9kWYThWIpEOks6qw6LBBwT2azJR5gnajSlRYpKi9CE/qxROivh0ybQsar4a4Eyr6qLyaoKjnQUOnfBIzeJ328gyIWK0yHu+6PNJZQWodlnPyKkbDiJRLiqYhUAruDruENbUZWUiBDVCA+sJD1aLmFntJOz/3g2X3v8E/CtWnj1NxDr1YmwbIT5wSqNmi1CLVBtigNm+tPD5e1xXY9Jgk2EE8Vja0VB2OZXIBEhGk+x3GElQhmOHVK1Lzg+vP7phoO9JDNZXjnUi9s5QUsBONQtiGVOeQEzC00+rdGafEoilEEU3UJ2aU6I1WDUoYiJ9dXfiCjMwy8PP4aqTthxLq3BkCd0RBV0LND8ZkvdIl1kZ4+1SLZeM7KgZmJEaJZGJylq1CzhDcQmWBg8HQPZeidfP0I1KwqO50qeviLCCWOyG/JqE2hkjOo7mn9wS3Y+rWjqxYOfhI2/FQujNxDC2vc6v0IsEJp6Y+OKR8gHVVXH7yNMxYxCBpNIhJfPvxwAZ8F+3KXrAPj0qk/zv+/4X92nbi5Sr5dZGxxebeullpfoT/Tzt46XiaSj8OTXACOHsCKV/z7MDZZJAQeyiWmRRtVMmn6sfnmn4sgb1DNVsIlwItj7BOw3+QZ69lGebCKoxIjjgXLhuNatEvn15mmAK62O3Ai48eKgZhHOLS+g1mc6Rr4+dSDIWK5m60+1vPWnnWJlHVUcQi6Vk6aMQjTj8f+E78wSOXvjRHv06GRRC7TPt9Qj/Co7enbQFG7ir/v+iqqq+ndf4i9lcTKJAyF9mZv65oNVGj2KYJmOnXDv+6Fjp+Xa9sdSRJNp/rqleXwdE8yLDXNxZPNCwuTT0+Ertpx3wKnJ3GNZhNqiaHe2nqas5iuT6RT5znMMkEhnUFVVl0YXVQdRFBHx2zM0QYtbQzgZJqmlOo058ZpbWoUnjwjrg/UsKT4ZRVFxuAcg6+Ki2RdR7i/n7kvv5nvnfk/P+QOoDwn1qGmwadgCYFevsN7TqLzs9+kLxy6tG05FMn9gkcUijPXyk5Jirtj8LR5PaZ95ColwqHMH6RwJvtxfkdeXOVWwiXC8aHgJHr7R+lrXXuanxQ2ymzl6hXZZwLdIumDzWIRS3sl1/I97OBoRzi4voMJrIsKR2ipJX5LZAa6hKSUmvqRDIbX/KeONfIEzh/4JmSQ0vjTuscqq95NKhH4hm+zs3snHn/w4N6+7mRdbXtQtwuJAOQFVZX5WPEz/bPnnqIedtFqjT3wV9v4DNt9NOGa1CP/vlSb+333b+OXz4whEMUeMOkyPqdMNsiFzl9bbUzG97y+2nLdH0XLjxiJCbZLvpIRGNSdopGe/KMZwDNEdSXDqN5/is/dt1Z+ZskIPNSERWHGkxbdlj8tibzEe5xjVmcyJ5pPcMHZ1+aX636nIMvxOoQKEPCEumX2JpVNEXWEdCgrRdNTaMQLY1WPI2C8GjH16CsR9UJaMGVWYTJAWYftQO6loL48UigXXcwNigUSsd3jptUlCX+urw16bTv8g2EQ4Pmz/C9z9TmEpVSyG5e8DINu1h6WqIMKtmTn66ky3COWE1XtA+BZNkPJbruN/vGgPi0T9GcV+CjFWedmR0jWkLFoyGwqtE11LxvBFxLKmAgD5iFBKQhMIr9cDZY7CP6hDI4iFBbU4FSd9iT69Ev/BgYNGsIz2IF2qGQo/2PiDvFKSxKQEy/Q1inw+gKFuq2UWTXK4R1ybrsFxdPrIFygjIa1C6burNXUm8ZcQNsmwHdli8cdYHTqiggh71SCHc4kwk5z+DgQ52N02SDie5p97u/SE+qDXxawyQRgN3SPc92NgQqkTUZNFONg23B/fuB4e/dzYEbp5sKDwdLJp8VlS/SeNKqV7nB5qCkRqQdOgUTkpk82wp89ofP6C36f3te9yi1KMFemMIPShHks92bnFcyn2FjOYHOT3oQBdLrGI39q9HbQYgqnyE/Z3iFzfoGLEbtpE+EbEhjuET2bZe+BjT0PdKQBkOvdwqkPIRpsz84yyT3Iydmorsidvhp+eaiFDKb8dqUXYGRarusqQD1/WmASikcH8O2jSF6VzRSUWDV1qiCiFuLSbMGq2LnKJMJ00VsUTmBiPNmLUAo0gfL5ivUWTRPNgM2FNhi7RJoqPhiOsqlhFJBVh7QtrSWfzf9+xyUif2HIPul8v1mshpP5oSpfv4ulxSK/5kuklJDnKkmgz14gcVhgmjbaktdJ75g4dr/9Z5MNJZDP6tRZEaApSkIE6XXtg31Ow6e6xxz4FiCTEZ+qLpvSFRNDnZna5+C4aeo7MItRTJ8aTTG+2iPLV5Hziq8K/vmvihSlSaSexpo8Sa72KzNBC+qKjL5ClPGruZdgYbiSWjuF3+vBls3S6XOwtFJZgl+aDq8hkYOu98L258ILRjcLtcHPRLNG38ufFxfrrzZFmuss0/+RRyqNNvVG+9OfX2NdhnaP6esTcVOct0aNXpzNQBmwiHBvZrNFw99wvgbcQykVDTEfrJpYpghDWZ5fqq7iuIfGAeDCv5lWLFTV0FNJoNqvqk0FVyIvLJIcORUZYjUoZrWKxhQibtNW/xyFIO+owafW5RGgOuJiARSj9c5NJhHgKWFpqrTa0u3c3qkZERVr3b1d8gNvOvo1CdyFbu7Zyx2t35D3sUUujmbRGhBqiPVaLMJaiVyPCRGocRJgvmV5CFtPW8kApmS0WOKBZhMb4G5NaGxtpEcbD8MDHRSBMtzaxxfr1tjt9BNmuziaDQxSHWHix2KZtK9z3Ifjbf0x7Wx4wAmQA9nWKiTToMyzCxp4jtAhNnR3GhNlHCBA2RW0mItC6RfydL5CmrxE2/EpslwfRVIZsvJ70wMmAQt8YfuSZQRHwZrYIN7WLeWpRwQxOi4v54YXFF5AsnklXRqhG5ZkMbPm92KHZKklelhUyc9Jh9ddtk8Xtj5II79/UzH0bm/jDy9ZF9MBAAwDF/go9KMi2CN9o6DskJiWXz/CtaUExzkgbDkXlQLaGLkoY0FZxOzrEg7AlsUyQZ7nW/d1UGzCaOHJptDeaJJ1VURQoL/SKZrvyuJHh/kjACHioWGyRRiURuhziIYiNZhFaiHD0rtpm5AbLqKrK/zy1lz9vmnhzUT2IxB3gXxb9C0tKl/DhpR8G0GWhkCeES+ZCZpLU+cr56ulfBeBXr/2KLZ1bhh02aim6fQTBMk0v6wnt4oB9FkLqNxNhehzFzfMl00ucmlN3t3iWEebut1qE+2OaRSctwu69oGqfb8cD2liFlT+gBkjjokGt4RO+78G1D+qVkth0lxbJirUg90CzmOBHCtKaJJjri0rrL+hzM1tKo0dpEU5YGgWrn7D5FeN7zReh+8w34B9fhD99OG+BjXhOM+jenOCfbFa1XFdJhIcHD+vv//fTwr+/yF3MuVFxrZ4myob3/ZxkNkWl6mRGOmOk3JjH2XuIE5/8JtWmbjnn158PwFa3RoxHSYTdEUHOFtl3qJu+pFZ8JFjL+xa+jwUlCzi37tyjOtdEYRPhWJCRc1XL9GAYQjMsK/V1Wa3QtnaBezUC6U+Xw/n/CSVa1w3TZGEOlplo6HeHJouWFXhwOx0WIoxFDSK8e10DN967mZ7BGHRp0mjFYigwiFD6g5wIIhzVIjQ/+ImBcVWhUVV1mI9wd/sg//PUPm5+aPvEw971ru2FBNQ5VIS/zMpi0VMxpk3Upb5SIelJUo8P8I657+Cdc99JVs1y24bbLIfMZlXiqSwOXzOKu+fILEIZRVik5YPGeq1Ro2ZpdFwW4Sg+wvkXGhYgQPFMWPwOcU/OPsty3n1R7T5NDopjSokcYLskQsM/6NKu//poHQSroUJbxJknzbBpAfPMt8QE//r9Y3+mI8XuR5lx+CH930xW3DOFPpchjZp8hN2xbh4+8DCpESo6AfzPpv/hmkeuYU+vWDyNyyLM7cpgXvg0rjP+zkeEslLPgWfg718YfugcIsyNLP7sfVs55ZtP6cUDZN6x7K7SFUkQ1dSpeSkHbxuK4gC292znnl1CqTjPVWKd8CNGx3rCLTiAyyLie1yOlwtnXQjA1rSmMh2lEiA/k6Voevc++rUE+uJABe+e924eePcDzAzNPKpzTRQ2EY4F6YepXmG85nBAuRF5uT4rJDpJhOFUPwDJhOYjlKt6bXJTVaONTFqbhCeCTk0WrQxqvQ1NRJiIGlbnj57exyOvtfH/7vibWM07PUJG8wTAK3xHkggdqvAxRRXFmGRlNwOJXMlnHPJof6KfREaTcbXyaq+3iAcrmsxYrKZxwSSN/uaFQzz6ehvPbrdOeMXeYnGNvJosqAUvfOakzwCwt2+v6LumIZbK4PC2Epj9cwIzf0MsldYn23FDFk0oma2NM8LQkDE5D8SSeg3Jsa53OpM1on/NyfQatrcN8nqtEU5PcT2s+gCsbYL5F1qjVbM+VFnHdrDdkMhBNJPu3KVP8L2EWFIj7ouhZEb4Tcvz1LIcMFU06dlnHHsqkM3Cn6/nor23UIZV9g/6XMwsFZ9tIJbSJ9ofb/4xX3nxKzx04KFhhwOR53v3jrvZ3rOdrV1bgQlWldFaFlk+s4UI8xSiMG+76c5hz04slWsRWu/prU39JNNZdrSK70D3EWoWYXNfFKdPEPPCaIzybJZTfcJPvq5VjO38QE7RjkiHETCjfbaPJl1cEUvzxVnv0hP9dww1k4Sj7lHZp30mSzBapIN+LSr6WHT/kLCJcCzIivzSLyNhmiBe1ohQBkfEMsIqi8U1otKJUJBUIp21TLQTlUeNQBmv5bgAqZggxXgqo8srTs0ZTdkCw6rVLJeDWa2wbVYjQrcfTvlX8dpo0igIv8cYkNZgqa9UD0/f0WJMaJ2Dw0O58+FwT5THd7RbiPDVBuGL7Rl0EHQH9W31vnKyjYwWQFMZqMTn9JFRM7SboiijyQyeshdQlCwOTx+KK2wk1T//PbjrnWMXEZApMkV1+kSpmoIrDvdGSWvXfDSL8I5/HuCErz9Ba6c26eYpQPCZP27hAxvnkyyeJ6xDeX9peVfW3FSFlAwEGWw3ArbkZL79AX0S7FWDLK0J4XGJaaE7khCLIiUnn8vczWJAsw6PIFJyXEgOQjqGgkqtYrXIQj4XAY+LKu05kPKoLD22rctoK5VIZ/jNCwc52BXhqcNPkVatCzBzcMZfNjVz472bLQFUgGERSleH9BGm4tC80ThXf86CMZsxiFCmaOSQZSyniENfNMnBrogu2ctr2q1VKKorFA3Ow8kwA4kBdnQ2oDjjqFkn88Li2BdVnqwfr8BdwGlFOQXvsynjGddUgZL6NXzjEzs58byvUR+sp9RXSiqbZoPfJxZnR5FGI/2eloIVkU76tWT/Y9EPUsImwrHQNgIRapLRrmw9vYhVtLQIU6ogpqhOhNqqXpvEc8PzwxMMmOnQUieq8liE6biWQGsK0V+giMlKrTCt7t/1P/y16t/ZpIrPkc2KVI/oO26HVR/UxhsRkaISR2AR5osY3dFqyLfys4yFL/x5G5/4wybScfFZ+9IeDmhFxzvCcWpMler1laUkQq0wgENxUBcUE4hcSQM0h1txhYxJ0+FrFfJoJgUv/gAaXrAEFuxqC/PZP26xBmjIa+ArMvoBmojQ/DlH8xG+sK+baDJDe7fYd1dPhid3GgsQVVVp7osxSICXL30MPvSXYceQCzIpc8b06jLt0K1ZhCvfL37vfcywCNUQM8sClBeIybpnKCmKmUuFQEamSvJLJ40JPk+u7KTAdNwqxbowk7VbZ+ekUMj+feacuke2tfHNR3fxvcf38FjDYwB6pDQYFmEmq/LNR3fyyGttPLUrZ+EniVB2YZCfvXUzZBKkERO6YyjHIhzqFv5DxWHEGeQU2ZAWYaFXjOkf29u44AfP8/WHdwr/YEwSobiPAu6ALuc2DTaxXSssn03U4NfShC6cdZEoSwicNeMsPAV55N9IJz9/bj+PvqwFBAbK9PqyiqJw2ZzLALgvpC00x9sDMQ/6tRgKizQa6aBPswhle6ljAZsIR8Ngh+jbpzj0PoM6lr+XgeB87ki/U39pIJYikUqiOoSvKh73k8pkh0mjuT6oCVuEmhUlV8LmhyoTN8hBbrNAESvkRMkC4yD1p/GI/3JA3PSZtJj8opmYRiCar9BcXUYGXBRqpDZCCsUjBx/hjtfuIKtmOTAg/Aoy7ymTVdnZZox3vBZh20AcUFG0tIJtnaZcuXDcUpexxKcRkWy9ZLJWpG/FTIR/2X8fimKQk9PbSk8kye5t64w0BtMK/lfPH+DBra38xRzsI6+BN6QXLXcl8vtQR7MI5aIoq0UXvnA4ztoHjPZI0WRGJ9K+PLlmqqrqx5hVJqzJQbdWMq2/yQh0kUTYcwB1SPiK+ggyqyxAeVDcV91yMTXzdPH7RG2BJC3CcAt6uki+KkSTgcRoRChIwwiYEfe+zOM90H+AZEYs5PZqIfutg1282i4WNTevuRkAn9Onh+1va+7XUxd2t+eQu5RGpZtE+ggPPg8YsQLuTNQaHSq3K6gEafWYFq9g+Ahri8XiVpSNg51tQp2QApK5Zq05heJgWFvgxKvxasFppVUncM6McwDRvYWC4R3f1Ug7P3l6P10d2jXN2ebqRVcD8E+/jyaX86iCoqRFaA5Gyw62GT5CmwjfoJCyaNn84UELpXN5cM1f+Gv2bP2lgViKg31iwlRVBbI+sfrJkUZzLcKJplBI66Ii5BMav+mhU5NDlm1mlgZY6BQ3eSRolUbMEloqrVmEqaiQ2KQ1ZZZH5Qp45mrxO480msgkuPmlm/nJlp/wVONTPLj/QUCsSEFMVubAgPFahIPxFD6SOLV8qI0txn5dgwmqC0azCA0i1KPttPyrodQQTzYLX5IzoaXF+Nq49ZGd/PEvfzYGYJJStzWL41nKeknLxRcSq2qOkAg1cpPXMYaXnqGkLqWbJ8J8SdfRZEbfdq5Wi7PXqU1uu/4mLBNPEOpXiwVeaohIk/CDhx0hzllYQZluEWrf8cXfgusegzP+XTtxi7jvBozQ/SmTRk0WYaXSr//tdCj43cICm6UFzDT2REWZPY2U02qaff1CCpbqQXf2VbJqluVly7lywZV888xv8t1zvovLIUj1ud3GgmdXm4msTLmWVOVYhLv+BsDfMqcT1XztmK1CuV2w2vBb5xChvCdqi/2W1/tjSct11q8Jxr3cEG6gPS4WnJcltQWeJwiBUr551je565K7uGDmBdauMprCFetrJ5bKUKZo33PASoSzi2ZzZu2ZqIrCn4LBI7YI4yljARdJJCEZ5frHr+fygQ10aO4afQF7DGAT4WjIFyhjglnrdgb28XrkIfZ2i5tezQQAhyC9HGk0t/HrRIlQBstUBb2iELBqOp5mwbRLP2LQy3zNIuwrmDPieZMpLaFeaygs5b3/fW6rEdkpyaBesxDySKO7enbpgSjffPmbNIYbKXAX6BLL9hbrhDmmRTjYjvr0N3Al+pirCGk24y3ixSaDELIqhNxGsMMwH6FpMpXRaDL/6oF9DxBNR8gkKgglRM6c09fGqw29nOIwRVhqk9lALKV3/ujXJqi2gRiJIW2S9Ib0BrneZH/ejxQfRRrVk/DlvaJ6UVVDNeg2TYT9eZKu5eLG5VD0QJKthdpirUXzY5UvAJdX+DMBd7tIJ6mbMZOQzy1ScjD8UfiKYNYao8JIOiZk34E8FvFkw3TcSoyFRaHXpbcZMluE4WTY4v/b3SPShmSR+iGtZdq59SI8//L5l3P+zPP17Z/dY0RS7jYpF4IEtedAqkNDXdCxAzp3kFVcPJE5hS5Vu+fMPkDpUgjVjkiEUhqdkUuE0ZQl+KnbtBBaVibG8ULzCySzwiL8SFq6claAolDkLeLkKs1XWL5I+HvrTtNzoSM9wlotRRtPHqvxmsXXAPBgsIDsEV5nc17k59Xf0/29ObzS/goNJPW2S7ZF+EaFzL2rXJr37ahGaAGPE1/NXziQ+SMvNIualmpGPJyDFotwkqRRU1WZ3AfKoRGh3GaBL0wBcVKqk273DMu25son8YRGhNr+GY1Mntmyh79vOwzphHjwwbAIB5qGlZkyByjICjvvmPMOvevETs0/6NFu/s6xLMInvorywu18XHmQZY4GANr8C9kuj6MFdvgwHmC9A7dPq6qSRxptGmwinU1zz04RWp7qPYuQIpJ5HZ4eKpQ2TjIToTaxmYl8IJoikc5w6Y9eYMfBZuOc2so7oAVNuXISlJPpbN60EVVV9dW/vI5RLa1Fkp7ZIsxLhNqkGfK7qdAkzq3qIphhBE7owR5aWo8vK8514iKRi1imE2HOtXF5oUBbcISbhdQqMWUWoXFcszQqZVEwiPBAZ0T3D0rs6t1FOpPVa5GmVPG73Fs8LGClczCuRzQDtA7EjTQGKYv6ikVBClmU4j6Rw9pUfCoDFNJFsXjdkm6iEaHFIrRaVoY0aiXCwXjaQiI9pmty4awLcSpOtvdsJ+ZI4VRV9sZP4vlFX4Wr/8AwFM2A/9gi/Mra+GVgT6luEQ7vm3rGjDPwqNDvdNIycGSl9vpMUbAXOzayN0897SLpyjgGsIlwNMhajpX5m+bKm7eqyIniFg/Qrn6xuhYWoUZyOUQ4pjQ62AFP3aJbXF/+y2t89M5XyGbVYVVlcqUKp2bRSR/hQoeYoBvUavqT1gnZfN5MRvMRavsn3OKmXOg8wJ9fvoi77hG5ejhcQlZxekQNyr5DlmO+1iVWpObV3VWLrmJXW5jP37+NR14TD97quaWWceZFOgF7RGDDaY7dLNf6Pj7eW0k6q1JT5GNxtZhYlIwh++jnNkmjh7qHeK2532IRPt7wOK1DrRS4ikgNnEShp4hCrZfftwpvo1YxTaqaNfxaszFR9seSdIYT9EdT+GWZO5OPsEQRi5TcyQ3yB8zEUhk9stSZ0YhQk9qk9WmeCPtjw6uPSIsw5HNRoRFa11ASTv83YyOZG1hqVQgWzRP/lxeKe6E7Xw9FaRUOtMCAqajCNBGh2ynuYXOT43mVBTgdCuF4mgM9VnLb1buL5r4YqYz4XrOKloz/6u/gB0stZP7PvYLsTqgr0i2z3e3aQlMm0xeUi2CSC78u/tc6q6/znAkwukUYrDERYU6wjDaXzK8spMjvtliG5oLiZjleyQap8RpqVSgZ4HPJ/2Bj2bvzWnYAlMwSizWtqEYmLO7rMmVki9DtcLNAFQuPnf1HllQvFxQhItQ7utjnsbae8zu9lsLi0w2bCEdCNmMkH1cszruJDG0uL4qhKOJBa40JK1LVCuhapVFNnsklwtwE7g2/hBd/COt+SiqT5Y+vNvHcni5a+mN5qspYHyhXVgTqSN9bfUY86PvUGRZfQyarWs+rpU/IpPSYU1hTVcFX2Oj38CN6aXE5xUrS6Ybak8R+h9dbzv9atyDCr6z+CrUFtVww8wIWly7mZ8/u58+bmmnpF8e/aJkIuOkcrQD1wedE+DywTGngNIeQf7alZ+NxOvjcRYuo0roPpJPGajLXR6jGB/jAr1/mvb9YhzNbgsvhIpVN8ePNPwbg5JJ3guom4HExJy2Wql1eQdAZLRJQTmyvNffr5+mPGtVigtoEK6JGDSIMeJyUFQ7vapDPT2i+Pm7tOhgWoTiPeSIcyGsRakTodzOjREwsB7uGYOnlEBJSqPRxZYqtROgoENaALo3muzaanEq4xSqNxsOWIs6TBrM0qvQxp1w8V0GvYRF6XU7mVYjXd7QLN4C0Lvb27uVAl3EMxSGua7D7oEgf6DAaOz+7R1zj8xZV6vmUujwqI0alxbTy/TBbk5wVJw/FReHzLrVYvBbpgJ0PibJreYkwvzRaXujh8c+ew0M3nqlbvWYi7I+mRAAe8JsXDrLvoBEAl4wLtWNcReO1CFIR4apSIqXRQH4CXaKVYNw92DD2sfNABiAtdYjF016NCOu1/oil/hGIe5pgE+FI6GuAdFyUVpNJ0jmQSfHBQlP6AuJBk9KoIMKxLMKcCU0G6fQftshfQ8n0qFVlADzZOOlMVt+uMt4ADCdCcwhzeaEHNatZhJokF3EI8o56xJjTisJvikJC3gHhMwJRcV9Dx1AH7UPtOBQH59Sdw+Pve5z/Of9/AIPw3rWylh+9fxXnLhASW0c4PlwmTCeF5LrzYf0ll5JlifYQzV6+hqduOpf3nVynR85Ghnx63lOlDBPXigako/20DcRJZVT2tg/pOVitQ614nV6WFV4CgN/j5ARNslqvVe7f618ljjU43CIcMBMhUeOc2mRZQoSQz02Rf3jj5XwWodkX5M5KIhSfbyAnfB6E36W5L8q533uW374orGXDInTrk3lLf4z+hAof+CNc8h2YL6z7dX0h6wA0a6B8JGkUTBZhjjSqZqamzJrJv1vGIIsqxYRslkYBFleLz7KvR0iSK8pX4Hf5iWfibGozJG7FKZ6LUEy7jpqln85k+edeIf2ft6iCJTWCsPSAGSmNSqJQFHjXjyBYQ3bVB9nSoy2gpEW462/wp2vh3quNfMPRiFCbS3xuJ9VFPsoLvRQHxH1zOKd8nLznGnqGSA8uxaOpCKmYuK/HVRlJk0bd8W5CDOFWtIXZCJbkEpf4fncNHUFZRAwf4TKlAYB9HjHf/EffAB8bSvKFU4dX25lO2EQ4EqQsWr5QT1TOhUyC9fiHO5BdqiCScF4f4RjBMnKVOthq8Q8MJdJ5qspYpdEACQZiKZ0IiyJCutmftRKhnDB9boc4lmqVRgcQD+whtzHhPBgspLVAkyBnCSnI3JdQWoMLSxYO60Qvq6pcc2o9l6+aoRcDSKSz1jzKdBJ+egr8YDHsEkQYL6gz3ncHuOn9lzFTSw2QuZSdgwn+/K4/87cr/4ZX78QgJqVkxPAt7e+MUOQ2chrfPe/dkBXXqtgR5+LBDhRV5bmCAF8tnskDQREoQLyf7v4B3aIFYcmL71k1WmH5zNJohJDfRXEeIhzLIvSqGhFKaTSfjzCW4tk9XTT2RPnx0/tIprMmH6GLIr+b+lJBHDvbwiKA4vRPgsNBPJXhl6+ZyNjp0ZWLUi1qNG/hZ2kRDjRbLUKA+ADbWwaGTdxHBZM06lBUlhSK7yWXCCXpHx4QZFbmK2OBli60s9toLKxoqU2F0retWfqbD/czGE9TEnCzsq5YJ1Y9hUJahAWGD00tncvvTvs791Z9Xl/Y6D5CGV8Q6YBOrYl1aGwiDHiMz1USENehsde6wJALlJb+OKFshvcPDhLKZBiMrASGzy95oUmjgWSPLotGFb/wA+fBEo9QWXbFOiZeFhFD0VjqaCQN7NcswmWJBJ+hVES1HkPYRDgSukb3D6azadpSm8E5BK7hDSvLtckwko8INQKV4d8Wi3Cox5BSwq2W4ruRRGZ4VRlzIjcQUOK09Mc0a1XFq4WP71Pr8hJh0OempMCNKivLaBZhX1aM+ZBb3LAFGWEV3ufSjlF/GqAIH6G0ljT/4AnlOcUHMCbVEm2S9bmdhLTJrNPsJxxoEvmJkQ4hiwXKOLjgI8b71SssC5OqIkGE7eEEAXeAkMdk5WjfSTZmTKb7OiNEh4ww7XjPmfoktCC9lxMTCW7sFp/x4RJ40ZXSq4HsPSAiDqU8B3Cwe4gC4jg1adwcNVrC4IgWobnMWjojgmfMwUs+VXwnw4JlTFGjA9EU7QNiYh+IpXhuT6d+L4U0H9qyGvEd7Gy1LtY2NvSxJWIKVw+U64nUUsrti6bIZlVSmSwHuiJiAizSLMK2bZBJAIqerznQ38N7fr6OD/zm5WGfdyxsbepna1P/8DdypP8L6rLMKPbr0rrEYs2C64gIwirxlbCwRPhCD0dkjcwsilNr4aQTobAgpSx67sIKnA5Ftwj3dAyKdBT5TJo6t7y4v5tbH93FVx8UyehOh2JYhPlgtghzfPtSGpVzAqDfN405Cwu5GGrpi1GuhPl8bz//aOwDVaQQjUsa1T5HYWaACvoB6CM04uYl6SKcqkpvJq4XKp8I5P27VGmg0e0ipSgEsllRBDynP+qxwJQT4c9+9jNmz56Nz+dj9erVvPLKK6Nuf//997N48WJ8Ph8rVqzg73//+1QPMT86Td0a8uCpw09x2P1TfFV/I6H2DHt/RkhIDJFEyuojVFX9Rq3RJnGLRShbPgFEexgYNB6YoURaD2CQ8pU+UWhJ7gESuoN/jjeCEh8gi4NDarWVCKXl4HNRHDBJo5pF2J0JkAUaNYsw0SciRTe4/Nz2910kXIVGhQ2tzuLePiFBLSu3Fh/IZlXdR1A5tEeXPKV/z+In1FbeWXcBO9U5PFF5PU0hU8RjzUrLsfVj5Au60YjQkTCI8EBnhEhYTAKp8DLufTGuB/DMjovFT+3AbJL9oufkAHv1SaOpUciPJ9YX6yR+sCuiy6JZxQluvyGNKoOE/G6KAoaPUFHgUscGah++RpSXiiZZ89/P8P/u26pfHy9JyrW6mt3axCoDY3ItwrZ+43M/tLVVt65D2iS6rFZMbjtyiLBzME4UH/0OzcI3WTpSkstkVQbjab7xyE4u+P7zvLCv2/AzyhqjwRrdAm5rbyeZydLcFxP1UseJZDrLB3/9Mtfc8fJwWS+nYs2iwBAvffltXLaixvL6Es2CC2spK2Yi7NVy6/xe49g6EWqLuOe0tInzF4tJeVZZAW6nQjyVpW0gZsjAsqg68PJB63O/pCZo+Ahz4fSKlKQ8FmEyndWDpPwegwiLtfsmVzHqGUoQT2XojiQoI4wC9KhB5mt5o+OSRgNlgIKTLAscwq/alQ3mtfYOdQ/x952DzNH8ebt6dw3bRmIwnuKvW5oNxUM7Xl80hZckC5QWXRZdkEwJAjItLo4VppQI77vvPm666Sa+9rWvsXnzZlauXMnFF19MZ2f+FcW6deu45ppruP7669myZQtXXHEFV1xxBdu3b8+7/ZRCT53IbxEe6BerTGfgIAOp4dXmqzQJ0ZI+oWYhHddv1Oq8RLjDcpx4r1HXMZJI69vKFb++spRSBwn2aER4ckCMa6igngQeCxHqloPfTUnArQfLDGnFnjtTAdpdTuIOBy4VBgYFGe0aaORX/zzAXze3mORRQYTdMeFHyW2qGY6n9CTv0keuF61oeg7oJGaJHJUtgQpmc1niW/x48Bya3bMJq5rUOowIvcOPIaGlT7jSxmJib+cgzU1LiDZdywrvJwD0vMD6qJCwtmTnkY0LyydBp/6gdrWJCXVFXRG1fnEdDnYNEVSEVZZyFQqm04ihSIlS7IVivxsFMfFWBX18xPUEwdYXYPcjbGseoGswwdO7O3Urfb7SglNR6VODdGpS24BuERpEmMmqHOgyPtuTuzpo6RNjkUS9VCNCaRFKgpKE2uvVKvKYwua9Lqde6qs3mtT3feVQL9SuMtIvQBT81hYc/f1Gm6JxWSUaBmIpUeQ7lWFfZ07CtrbQS6vaVJWv1x/iPigOuMEp9i/xGkSYcolnaFGt+ExunOhLk0gn7QNxdrWFURQ4W/NdOx0K9SXinjvcEzVaFxUbXRFePSQk9w+unsm7V9Zy09sXWojwlayppGGwWtwbnuFRo+aC22aLsCQwXEkAce3aB8T9Xu0Sn7eHIhZWCSLM991vbxlgg5m4nS5UzR+4UBEk350NWopdyGf2/o1NDGZ9LNGaI7/WuYPn93blLUx/10sN/L/7tvGtR3cJt80d58KvzmFwKMoCpRmXkuU1rXPPgqR2L5sswqFEmk2NvWQnWvT+KDGlRPiDH/yAG264geuuu46lS5fyy1/+kkAgwO9+97u82//oRz/ikksu4Qtf+AJLlizhG9/4BieddBI//elPp3KYw5FJ09R3gP1u94gWYVtEPJAOd5imIbE6VpMGAZRqCemReNpaODk5lIcITdJoh5X0M6ZK/0OJtL6t7iORK0stiMWrpNjb1g/Aco9Y7ca0YrthizSa1o7jpsRkEcqo0dakT5dFa/CTTdSAqpB1RFBcg/x2z7e5MXFA1Hk5JHInJRGW+a25SFLerfSmUWRZtr5DVGp5bvkswqirGBAPfSSR5Tfpy2jzzYOFl1iOXa2RaV80NdzvpuVCerMxXIjP2x9NEU2q+JIr+NBppgkdlZqIWIRsVxZwQpXIqUs5uvTvdrCnGTdp3n3wVh6LfYB3OF7mcG9UtwjjzkLLeQGq3HEqHQO84v03vuW5i5ICD8Vok31fA22az3EwntbKyAk/Cog6trLUXX9MyJS5fer2aKXDXA6FZDrLo6+L+9KwCAVJ7e+K8Ol7N3PirU/S1BvVE/MHZUeCnGjBkgKxf+9QUvdJ7e+MCB/S9U/AwksBaPDMZ0uXINehAcNFMJEiEeb7f2+71XcmLcJGVXu28rU4QtTFXFIdQnGKa1HiK9F9hA53PyWFGSqKxOQawORfjHSwsVGMe8WMIt0/CkaJuobuIb2KzoC3mk2NfcRTGV3Kvf6sOfz4mhNZPaeMHpO8eG/6ArZmtTqtQc2C1SzCeGSAx7aLayWleZdD0fNigWG+ZakgdUUStGr3zdyAlmbjLuFiTS7ObemUymT50G838MHfbND3A0hr9VUXaSlWvWpIXyDdva6B5V97nIe3tfLA5hai+FiiEdfj+zbzkd+9wvef2EMumvrEeP6yuZnkY18VEnrbNsrC21mm3ddbNYVsQVK77iaL8JuP7uS9v1ivS9XThSkjwmQyyaZNm7jwwguNkzkcXHjhhaxfvz7vPuvXr7dsD3DxxRePuD1AIpEgHA5bfo4WP3/m11xRU85/VpQTL6zNu41sNgsQ17o/f3jlRfprZT5BBuF4WrQEkv0Lk5FxSqNazl/YWAEPmSzCYURo7jrfIQhJFttOl4mVaV6LUJNGMRFhJpuhKebVibDOVwOqm0xSTJau4Ou0Z1/i+YE9HPIFoHsPmbZteo1H+dklpH9wid9UcizSKQoCkN8ijDiLAUGEg/EUP868h7tO+N9hUW1Ffrc+eaw/2KP3awP0qFEwRXVqWD6jiJNmGj6yOqWbQLIHHC7uWnsDN51/BgCqs5uslkQeSDdzVt0t7GgVcv3pjp2ks6puEcYd2jV2uog5xYRX4RyiPrqDCiXM+Y6t+NwOPb+QvkZaB4zPLiXtxdoKfZc6S3+vPypKbclVuMz1k77GD51ubAuGYlAV8lJW4CGTVXn0tTYGE2k2NvbqE164RJO3ZTFoDaWaLCeIUGy7X1qf/hJ4/71ww7N8PX4N7QmxoIkPGkQYnkCRCLMFs7djkEgize9ePMQtD+8grFmZ+1XNNzmCRQjCT6hIi9BXQsgTokirOFRT0Y/HI77rQNbIp1UjHXRo10BW4pGYpSXqd3a26hWbbnq8h/f+Yh23PrKTZCZLeaFX9xkHPE5SipsXM8vo89TydPYknsloaUYl2vXRiNCZivDlvwifej7/IGCR1MHwTfdEkjRrhDbTK8Z1zqolekm9XGl0V1uY/miKdFYVVr2GuEc8SzKloZeQvkD6v1cOE0tl+Owft9AejhPBzyxNGu1JiGtw17oGPQhOQvoCT0xvxbPlTv31hUObONMh5rZ2zec+QzYBNs1dUp0ZpgxMMaaMCLu7u8lkMlRVWWWyqqoq2tvb8+7T3t4+oe0BbrvtNoqKivSf+vr6EbcdLy6sqMUN7PK6+Y9H78i7TceQdWXqcrg4vWa1/n+lJo1GNDlBl0f7Grml87N8yPkk1UUiok8nwkza8E3Wirwk55Dx4EcSGQbjKdykTUSo3TAFFWS1yym71M/MiBWYUjmcCM0VSEoCRrAMwKaOTexyb2a3Ftm1QOtSnk2IVa2n9EV92/31wpfWt+X3ZNUsCsqwmoGyt9pCjyGdEenQLcJ8RDjoECSWzGRpHcgfKQjCEpDy6HV3vso7f/KiMbE6XajaAiSkRC1BLivri6kr8et1Ndc4NEm69iT8BYXMCtWiqg5wpOn0i7GEitazMZjmriLxf50i/EqSZIcUYyKNaOMvdw4y2yOuUaljEJ/TQTFaFKDJIgTDGlqiNVjdrRr3cn8spQfKFPmNMmgSX7xkEe8w+c3kd6Uoii6PSnSEE3pifseCD8C1D8NZn7VsI4Oa2gZi+vfZ0D2k57DhcMCMk9jZlSCsiu81OdSv7z8xi9DYdk/HIL987gC3PrKTu9Y14NDySPer2oJ0lL6HS2tCKC7x3ZZ6xfMXcgopszDYidslJu0CUzUkJR0n3C/IQVbikZDEGOsUvuFMQSXP7Be+23s3CPI4bU6JXupNURQKvS4+lPoKX6q9i0EC3JF5B7sW/zuc+yVxUI0I3UqGWCxKPJXR85HN/kEYLo0aRGhYhDWaNEqgnIC2f640uqmxz/L3xoZeVtzyOM9EBDmHtPuxRw3SE0nSNWjEGUiFMqp6qU4Lwo6p4vuKJjP87iVrQQ1Z+OHTTlG/twWxEDk58SrnO7YC0KfVdS3SrkPEbRTDkPdC3hzWKcRxHzW6du1aBgYG9J+mpqaxdxoDC1ddztvqRSWOdX1/4Nl91oaU5q7rEjUFNSwqFYQTdAcpDeTo9ZIIdz/C4vRuPu58hBrNIkpmskLW69kvIvE8hTBT5On5ogbhDiXSzA5vZKf3OlY1/Fa8qHc9CJJyCmINKHFudP6V+kFR7sw1Q5BqOJ7WneFhk8RaVugF1QWqeKC/9M8vES19koeC4jMsrj+NiqCXbFxILw6P8WD9rFM82D17HgFEVRdZwFhCrhrnOo06jkQ69e7ieztMqz/pI1SMybuhW6sG4svvM5FBAiDIfo9JXstqVmFIiXLuQqMe6YoZRSiKwqr6YgB9tcrcc7Vz+VCT4gFt0PqlbfGLzzWoLXLqFEHsMpl+SDGIdsAhJMlSBinKiM/ky8YocUbxKtqCpL9Rl0NB1odVWayt0HdmDStvIJrSLbOyQo8e0AKCGAMeF7dftZKVdUV4nA4W1xjf3+o5YrzScm4fiOu+xpJQgfjMbmtVD2kRyq4NIJpImyMYRZpOgkHEvllTI2czuf346X28+6cvjlhK0CKNdgzytFb4urLASaEivp/9Wc0i7GscMXF/6Qw/ikMcq0CrjORICQJVvG04XVoyfdoqHcoyY7lEKO/PTJ9mMbmrh536tNmllv9lov/hfjGRx/HyQu11UCakdnOj5UJi9AwldUk/lwiLc4hQWnw9Q0mdCCscsiJMhe7XTaSzlmAlMxFubOzjdy8dYjCe5tsdqw3fK0Ia7Y4kWHdA3NdzyguoCnlxKOArLKJa60WYVYZAEffPXS81WKx/6cuW5fD+J3UlACco+wkqMcLuClJOTY3SiPCVLmO+0IkwXw7rFGLKiLC8vByn00lHh9Vy6ujooLq6Ou8+1dXVE9oewOv1EgqFLD+TgVvf9nEKlVkozhjfffmXlvf6E/3EM9bgjNrCWqoLqvnuOd/l++d9X5em9AlBPgBaY9SZji5qPFEKlRhzlDaxnVYUWa1arudrFSQNrXwokWZp9FXcSoYFO38qAmukNOoNkdGI8OPOR/m8+37x+nlrKazTKolkjYhVc5i9sMwU0HLWuuMmyw2YU7qQRVVBMglrpB7AfoeTPoL0SFk0xz8IIuACoB7TtY10sGJGMQAHugy5WPbw61ONRruyvU6hd7hFCPCNK5bzo/ev4qSZ4nj7O00ReS5xnFmBNEtN5LCyTmwriFDlDIeW6zVHEGHA4ySbEpPcQTVDBtjoEwuXiLaqFxahqluEg6pBJh2qlkKR7rL4tWaqJmkv1sdAn/W7rqSfUiVCWnUYciBipS0nh/ICL8V+QzaTErvf4+SBfzuTV796oaVE18fOnss916/mixeLhVrnYFyXRs0+MTPk65ZFCpqfUP9bfM/SIlRMEZ5mf/SfNzXzWvMAG00Tshlm0uwIJ9ilVXP5+GojiOLl7FLSiltEqza8kPc4xYXiM6mqk8NdmvUSEYufIbUZxakFEmWscl5WszIrCnMtQvG5PFp/vwMJoXScMstQPE6dYyXCAkmEJom+I5ygqTfKXS8dIpZWSToFwRYqMXoiCWJJQQjDpFG/9drMNUmjrVq0cJHar524XD83WHMJN5u+9z3tYZ7eJeaUDkp5PHuK/l4PQXoiCV7cJ+7Ji5ZW8ci/n80j/342c2qrCGZV/Bq/Ku4Bgj4Xg4k06w8YQTgyurnSI+7V4rkn05Q1FqBNNRfoRQ060zV0qUX8o9mnv5/bgHi6MGVE6PF4OPnkk3n66af117LZLE8//TRr1qzJu8+aNWss2wM8+eSTI24/lXA5XLxn7gcB6Ehaw4WlNZhNF6BmxEWU/fAunXMpa2rX6NaLXsFFWoQ9Rq2+svBOfuL5BU95Pk+y4WVi+8UD/lx8vki+BUIpayReWUoL0lHT8MhNFovQ4xdk+y9eEcXJ2Z+D876Mz+3Qi1xLedScPiElymzGePDUrHioPA4Pc4rmsKg6SDY+nAgVbzcPps+gRzt+XiLUrI/qjMmKjnRSEfRSW+RDVeF1WbFFswh7VGPlLJ3/+aRRgLqSAJevmsEJGrmZJ+uY5rebVZDSc83KCz16ovmqmcUsUFqoVPrJOH1afiSiak9K+FAOZWLs9rj1KvmRbBwVBb+SpIyw7iMc0IiwbSDG7qg4V72rz+jjCMzItlrG7gwftvwvA2UOqjUk8OjBQBmTNZZrEcroWxDRjrl5iz63k7MWlOvk2D4QN0g1Z/KXkNLovg5r8Io5SnWfRpJhxMTuThvbmq08Kf2NJHflk1GX1YY4s158jrjqpo0ydtdeId587jt5j9OfFBO+mi5gS1M/qqrS2SOIqivRiKqVVyvNiHE0q+L6OjQ3R65FWF/qR1GgIiuIY1tELKS+d9VKrl0zi6tPqdfTNiQKtXvU2moszm3/2MUtf9vJw9taSGj3pLQIJyqNdkUSNGtBKYXpfvFmQQUel/GcR7RjtvbHaB2I43QIF0JWFRajtFx/n75YP76wCJO8tF/MOWfOL6ci6GVpbQhfQQgFqNQsTYdrgDPnie/PfI9IH2GhVtz8UxefxHqW6++3zDhX//va2Nc5N/FDntofJpNVUVX1zWcRAtx00038+te/5u6772bXrl186lOfYmhoiOuuuw6Aa6+9lrVr1+rbf+Yzn+Gxxx7j+9//Prt37+aWW25h48aN3HjjjVM5zBFxZv0qAJKOZpJp48GWRKimilGSwo9j7pAOxgMxmCuNmnq4BVtf5GxlM05Fxbvzz2QPiSotv2+dQb9L3GRlWYMIh5JpqrImq6rpZVHLEMBbiMsnyMMlrdXF7wCE70JGEUoiHEyY0yc8okNC1iDCTHQu5YP/wS8u/AUF7gKuP2sO7z1hGQWahZXRyjk5PF08kDmTXk0+LHMPt8glEZalTCSgrcIleek1PLVSVl0Zgwj172sEaVRifqXYx+xolxLrHN8QJ9QV840rlvPja07U/Ton1BXrsmis+lRLZQ23tpLdF+1ng8+wsCKpIaI+4cuuV7p0i7A/I7Z5cEsrrZpFGEp0WHoZ1mSMKGCAKm1x4CDLScpeLnRsAmC3KnxbVSEvXk3SlCRUWuChyDRJSotwLMjiAwe7h/RKKPnqoMpzgFEjUsK8yJDW4qCW2hIyBSSZyU1aJ10jTG75wv3PWVjB3EKx36BGtPsW3AAONzS+CIeGW4V9cY0IMwVsPtxPdyTJYERIpNH0EJG0ILTirDjfrqz4jj0xIdnnEqHX5aS2yK9L4E3ZchZXB5lTXsCtly/nO+87AUdOZ5F8qkVHOM62JrHQO9g9JCq4AIUIy3ykYJliU7BModdFTbGPgMdJMp2lQVsUeROy4o2YLwq84hgyYGbzYfGdLKkJcsY8I9Dsw2tmcd6iCjaoi+muOouIt5r96gw2NvbSOhDH43Rwqkn2LQiK77FKC3Dx+wdZpSkwe7T7QPYcdJNG0eag0tJyhrRepH2E6NMKvqsZL0l8RPHRF02xrbmfWMropdn1ZvIRXn311dx+++3cfPPNrFq1iq1bt/LYY4/pATGHDx+mrc2Qis444wzuvfde7rjjDlauXMmf//xnHnzwQZYvXz7SKaYUp9YtRM16UBxpXm0xQoVlxGg2VYwv+jZOqTqFS2dfatlXPhDJdJZEOmMQoQmB1+7GpeWXFR14iIJoExlV4dXMAp5pETd0hdqr56BF4mlqVPEwR0/6BHpkKQgnfO45yo08piLNvzXcInTjcCiUF3otATOZeC21vhWcViMspNpiP7f/yypOqloFwAcWfRgFB4ozwXZnBR1aHlpZdLj81TeUxEGWUMJEhFppqxPqxQP2Wo5F2JmXCPNbhBILNCI0T9atipYg7RST2YcrDnBGUb/pe3Hz7pCQq90LjL50AF7Evs2xDn7nNfJJ09k0ES2auE7p0n2EvRkfqqryl83NtKmaZRxutViEVUlrWbKZSifnObbwD8+XecB7Cx9yCUVktzZJh/xu3fqTzWXLCq3SaPV4iTBkrVLjdzstJb3MKMmJWJTEaP5u90lpVCOqkGIiQm0izmRVfaLvHswvd+XzHZ6zoAJvRrM4NaJ1FNfBSaLtEZvusmyvqiq7e42C95sb+0QEoupG0e6l1pjw9YeyWcKqnyZVXN+CpLjncokQRMDMDI0Im9Vy3nnCcFXEjHxEeKBrSC/N19ovIjABCpWoJo0a7dzMCJnu9yK/G6/LyQ1nz9VfcypZHBr5y/ZYUh6ViwvpHzx5ZgknmSTdd5xQwy8+eDJ//Pgayj7+EE9f8jRRfGxvEQrTybNKLBZqQVDsW5vSAo4KIiyq0qrvaGXo5H1V4jACwPCGOOGia/lt5jLuqfoCqkvWYrZG6D63u9NSa7c3mpxQUYajxZQHy9x44400NjaSSCTYsGEDq1cbkZXPPfccd911l2X7q666ij179pBIJNi+fTuXXXbZVA9xRLidTjwZYfmsb35df71Ni+RU00UE1eXcecmdzC6abdnX/ECIMmvDJ3bFVKTYnRREsF2dQ4QA9+8RN5VHyehNM4fCwn8EoJy/Fq75o9jZ4RYVP8z5ikUzwWucU8pl0ncjCVGSS2XIq+cSAmTjtZQVDJ8YbjnjFn52wc/4ynnXUBcUPiyHp5smrc9fWdf+Yfv0RpNU0Yczm0In78QApGK6r25bc7+ImtW6i7enjoAItQezuS9GNCkCg16Pige4Jtsu/LN/uBLu+5CxUybNiVkRMerNIUK/QyzYepKt9PutVUTCmnRdp3RR4Rar1+60j9dbBtjfGaHHoa2+B5os3crLk9Zgrnc4X+Z37ttZ5GgmrAbYna2nPXQCD2VE+kaR362T3s5WcY/Ul/gt0mh1aHxEWJkz0Y9kDcJw36EMuDnQFdGTnSUpFpeKz2pOUZH3mTlZXFqEkUTaUsFETtqztby9Ao+Tk2eV6DmE0iIM+dywTARf0PiSHjSTzCS54Ykb+NHmHwGgpkpp6Y/plV/8DkESzUMiwjGYzdKlFtOpJb+XK/04FPLe77PKAszQooP73NV8+PTZI35nkJ8IzbmfLX1RBrLSIhTSqPyOfDkWocvp0MlQ3vufOHeufh3nFyRRUAFFL+snzz+USJPNqro/8JTZpZyzoByPy8HyGSGW1oTwe5ycPrcMxemirNC4h1wOhc9eaHS1AAgViQVrdUaM1eMNs0hrgXawa4hkOqv7B2v92ud1F4DTxclzKnnbZ37DR677FBktQlUSofS3Pr+3y7IgUlUjtmA6cNxHjU41yj2zAdjeZfgJdR9hqpiCEVbUTodCgTmcOY9FKCF9FQCvZEUC//rGCEmvsCqqtQgst1b5vU8txFdYDIsugc/tgU+9JEpkmc9RaS0EUJQjjcoiuFJ+qQx69cLbICzCfBNlZaCSc+rOQVEU5hSJNj4OTxdNLnHusu4D0N9E71CSL/35Ne7dcJi+oSSzHJpVVDpHlJsCiHSyfEYRFzle5e6hfyO86yntLArtyeGT+0jBMhKlBR59Aj/YNcS6Az280i+k0epsO7RuFRv2HTIiD9u2oiTCojpKTtWakLMSVVVIqwkUZxJ3tpwCLR0jViQCuOqULsq1VW53ystj28W9sWCB9v2HWyBrrHTL4oIIZXunVY6DOBSVpzInclbiR1yS/A6vXHCfHnZe5HfrMqjsqXfm/HJLsvV4LUK306HnH4LRgDcfSgusMvTJs0pwOxWiyQwbDvUSjqf0iNcV8zTrVRkujUr/F0DXYJy9HYOceOsT3PyQUUFJFnd418paFlcH+djZc0WEq+b/lhZh0OeCulNF7dfBNugVFt727u1saN+A2+HmI0s/wkz+BYA/bRTfdYlHLGjSWc1/lc3STZFeBaaCfkoLvDhzZE6ABUVZirTP9bbVJ1sk6XwoHGOx1tIfoz8trkFQidEdSej+xFyLEIznU7o2Ah4XX7xE3FsnlWvfbaAUnOK8BSYifGF/tyj44HNx4ZIqZpUV8NT/O5d7rl+tuwYk9NrFwLeuXM7quVZff0mRIKxqTRpV3APUFPkIel2ksyqHuod0i7DaqxGYz3CTzCkvIORzm4hQLAYuWS6eo8O9UWvxfUZWEKYCNhGOgdlBoWk3RrTqMaqq5xCqqaK8N6+E9GmFY2m2d1tDtpsQN0DSFeR/0u/VX38lu1hf7bdpfqYZDrGynaHJom1KhXEjB6uhQpNAzRZhhSGLgpUI0xmj44M8V0XQkEZd+FFTpSMGUkjMCRlE2KfVKC3LZGjb+hiX/+xF7tvYxNf/toPOwQT1imYVlcwxEmgjnRT5XHzFez/zHG2kXxT9AfEXE04ND5Efy0cIZj/hID9/bj+HNfnLNXDYKJuXjhstgw4+p32Yc4Z1GQl4fGS1IgKZ6EyWOb5IUCuRldBqydYp3RRpQRiDql90eQDmzp0HyvB7w6N1g+/wWXsB/lD9AGEKKPA49dQFkBah8bnnVxZSW+zP8RGOv6GpObCmfISIURgujVaFfLx7pVAAPvPHLTy9q0N73cucOiEThxiiViNlGf0XNUUvdg0m2HCol1RGpXP/ZvjTR6Brrx5QNrM0wGOfPYf/93at4o9uEWoWlM8l0jxmaLVntc4njWERYHRq9al8/tTPc8nS2YBQBgBqc/z30iLsQlg5FUp/XlkUYJGvHxBRzNeeuyzvNpZje61yZq5l3TmYoFcLsCskRk/ElD7hzkeEbv1YEu87uY57rl/NF87UfHimqkCGNJrhf18W38t7T6rTZc6ZZQGL71FiQWUhnzpvHt++cgVXnzpz2PulQR9Dqle3CDOOfhRFYWG1UZxcEmGVJELv8HiBeFaoW2pWzFUyRqA/ltIX5xLTGTBjE+EYWKElk/elD/Hppz/N5Q9dzoEBUWc0my4elQjl6vDG/9vMY3uNyKpetZDNqnjYwzPO5onMycTwElM9vJpdxEfWzAZgY0yQ5YV+UcxaJnB3OkdIJ/GYidBaI9VMhOaVl5xkK4I+XRr1q/WAQ082HwlSDnZ4uxjK9ANQnsnw6EubaeoVk1AinSWazDBTJ8LZRm3BSAe0bGKWKizdYMerAKiBMku/RACvy2EpPzUSpJ/wT68289L+Hto1HyGJMDRtMDaUHccPPS9+zzmXXAQ8TuKt76cg/AGijZ+gpqCWQrc4fjooVsx1SheFmiQYVgN6Xc4ZpYVGWa08aPQa5d2aSk4nUiSkqCK/m5DfOpmaZdBztFqYZqIar0UIViIcTRotDngwGw3lhV5uvXwZC6sK6RxM8P/uEzmqCyqDzKgS37FPSbGsShCKtAiHLBZhQq/8c3bkMdj5IGz5/fCygRJaC6ZB3SLUvgdZ47ZBEGFDuAGAmUExgf/7BQs4f5ERsj+nuM5y2FA2S6daTJ8iiKRCGRiRCFeXCvnXUVKvR9KOBnMKQ2mBZ5gcrapGmk2BEqdnyLAIfaNZhDmLwLMWlFOqaBHjBcZnLdSCZQ52RfR8zA+uHk5suVAUhS9dspgPjLBtWYGHIfy6RRjPisX5QpOfcECTRitcGoH5RiFCzSJcPkNso6pYq0JhE+EbCqfXLUNVHWSUIf7Z/E8ODRxiQOtmoKaKWaGtaPJBSnmNPVGiijEBdailPBh4D8y7AOXcLxCmkKsS/8X7k18l5SnmqlPEg/t4RuT4nK9uAFTqNSLsdo0wwZr9kKNIo7LkWdDrwqWFW1cGvSAd2Elx/tGkM4B5xSJJ2OFrIZEVD2VZJos71oXbqfD2pUaVoFlmIpTNfSMdsPV/9W3cqpYH5i/Vq/FLjOUflJAW4XrNP3TJiXP1zhwcNpXqG+qBVAwOa+Q497xhxyrwuMjGZ9DbsQpwUhLw6NJoVEtVqVO68GlBHYME9Lqp9SUBCOUvzwfQ4JpLEnFNWpZcr/v5Qn63ZdITRGhMwGcvFKv/miIfbqdCRdBrCaoYC1YiHPn6Oh2KxRKtCHoo8Lr45YdO1ppCKyyqCnLDOXOZUW1c5+Xlgj11i9CURhCOp3W/oiutWeSRLt1HGPS6YPsDoqHtj1bBa/cBUFJazsr6YsMXOlsWexdEeFhLQZELM7fTwc8+eBJnzS+nrsTPqXXzLJ+tMKvSrxQRLBfXp1wJU1mQ/zt0D4hjF9UuyPt+LszSaEnAbVmk+NxaagMmH6EpanRm8hBs/4vlePIa5GvlpTcLNpUdlK6aP77aRCarctqcUt13fjTwuZ3E8FGlFSNIqkNEU1EWaYW+97RHNIswTdRzmBToxdgtQ05JIgxQFfIS8Lj0hV5Dz7EjwvE/QW9RLK4uJZuowOnrwKk4CbqL6E/2oqoOyv3lfPycuSPua56859ZWgsYFmYIq3nPJxbDyOkpVlZCvi+1xcZwlZQXUlQRYXB3k+faVRFUvFZlOTnAc0uXFAe8IFqFZGi23SqNG+kRalzCKTX6gyqCXZO8aygp8dLeeChjW1UhYXr6cgDNIFMPaLclkqFT6WVId4p0n1PDkTiGhzXD2iw2K6oSPDkTfwdf/Qi7S3tJhr41HFgV0Bz7AlSfO4JZ3L4N7ZosUBpOvjmg3HH5ZVPIJ1g6rtQlGXldSSzUoDngoTGsVg9w+sij4lBSkpOViSJT1pX7Ru08GifpLIGZE1PZSxG3uT+OOdnDxwguo7hUTbshv7V9YZPrf43Rw+pwyfSz3fWINIZ9rmL9nNFSZfEFjWfwlBR49fULK5HMrCnn5Py9AAX0RBTBEgAKinFQpXtMtwpzUCBnO79cqkzDURTieIDDnR9y2CR7cvWHYpHTxyYu46JwzjM9ZvxocLhGI1NdI46CQAKVFCMKX9ofrT0NVYf/APsvxgtksBEooLK5A63ZFnX+E2qjyXi2Zk//9HBTmWITye/O7nZw4s5h1B3qIaPdJUBFEKPMrL913M2zZB2ULoEb09JRl3upK8sjfWuS1hQhl1xAtQOcdK0ZWJSaKhCNAoariyLjJOlO0D7WzqFqQ3d6OQRZUFeIpfYk/eJ6ioijIdXmk0QEtKFDN+KnTunuUFnjoj6b0whkS05lUb1uEYyDoc+NNLkdVFeLtV9Cy+0Nk0wVkhubyn5ctHTWAw1xd4+xlxoO0fPEi3rVSK/2kKLoVAzBTS/R+2+JKEnh4NisCON7t3qjnM0X8VqlHh5RGcyJGwZBY+qNJI1DGFIJfEfSipktoa3gbyUSQIr9br74/EtwON6dWnm2cwxXAjZCaTqgr4qz5xgMqSy4RrDF8hFvvFdGjoTqGSg3/y4BWp9Prcujy3HgtwtPnlPHFSxZxx4dP5odXrxLXp2T28A2Hug1ZdO65kIdMcmXvkoBbl0YjmTgDLmsBcBndWBxwC+IOGZVhqLT6l3qzBdwTXc0dmXdRXRzQLYciv9vyWYv8bj1PcPXcUktI+0kzS5hfObHVvjnCdCwfsPRVup3WJH2302EhQQBvmYgaXhERVvdgHosQjBB7H9okF+1mKNOK09dGY6KNg263CFoyL0y8ISvZewqgVhSzzm77o24RzgpZC48rioLDoejFLiSC2SzeghLKiwsZ0qop1frytPEC6NWIsHTiRFgS8OiF5RdVB/W2TkMYPsJkJssGrRB2kVbMmk4jMO8T587lFx88Kb9kKX3epcZiXOYRSqyZN7zAxZEi5RJzky8txt8ebddbPx3ujdLWH8PhE5/hFZ8vrzSqq2mZgE7uckGW24B4OuuN2kQ4DizyXk1k738R7z0Vn1pP4uBazihcyxWrZoy6n3mymFVjlIsiaH0wzUQoK96/TWsQ+lhG5PFdrLxMnWYRxgtGOK9s/5Onh6KMFuwaTBgWocn3JB9YGUx5Ql3RuCyNi2YbHTdKPWJ1WEkfJ9QVU1bo1XwAKhVaoV6C1YaPcEirPXrqv1Iw6yT9OE1xLVze79Yn47EiRiUcDoV/O2++tYN5PiKMdkO7lhIz8/S8x8rNsSs2E2EyQtHpH0F1+cFdwHrf2foEJyc8WSYPGHZNGmIePQq0MujV2yXNrSjA5XToEcchv5t3nlDLVy5bwrevXDHm5x8LZml0pPJqEtInVlbgHfNecJ357wCENv6IEBHiqSypTHbEJrF+xCSnDnUTdxrVdXZ6PTD7bLjEVD3GmUcNOO3jAHSu+yGJTAKX4qJ2hE4xhZ5CQh4xKTtV8Ksq/lAp1SEf/YjrWe0ZgQj7GsTvfPdQvnPlWISnzCpBUeD8RZXM0CZ+qRwUafl2A7EUHiWNM6XlaPYe0I8R9Lm5dEXNsNQKANpE9wqqT9BfMvsoywo8Y6o6E0FGiwwPpLVi+UMdlBV69QXVqw19KC5BdDu9HlTP8EVaWFbCyvh1IpT3ofQRygpIIxVgmArYRDgOfOysuayZXc8Pr17J67dczL5vvpvffuS0MSeHr75jCecvquDJ/3eONbUhaJU2zURYr0khJ84soTjg5tnsKtIOH/W0E5INYIMjWIRLL4fVn4Tz1w57qzKo9TIbTOg+QrPvqTwncOKEuuH6fj68ffZZepm5Io8RfLBK2//sBRWEiOLVJj5BhKYOI4FyOO0TltSF1pTmQ/G69ICO8VqEeTGSRSi7jo8wyeVahMUBj06EQ6khHBf+F8pX2+Errfy25mvIHElZvs3iI6xaajnW/rCY3IW/zcE7V9Tw8I1ncpMWMXnVKfWcMquEhVVBPC4HN5wzV783jgbjDZYBwyIsD44dJMKqD0DFEhzxfj7tEp0HBuPpYRahhM8kjTp8RpGBXR6PsL4WXAgrrhKRtzI4xowV74P5b6fBIWTruuCMYcXezZAkWZBVURB+x+qQT6+TWu6MDt8pmxHyPYxfGjX7CAs8nLOwgq3/dRH/ccF8arUJXvoIi5zGRL+yzOQT77UW+c+LaC9o/kuqjQWSmYhPn1s2Idl8LKjavV+YFveuTCNbVC1eb+mP4XALIux1Oul0D1/AGNJogBnFUhoVRCrjAuZWiGtiS6NvMFy4tIr/+/jpXHliHU6HMu6b68SZJdx53WnCWW0hQqtuv8Akb0mfgNOh8LGz5uAPltB/6c/1skxdaghvYIRVXqAULv2O3sLJDJkn1Bs1+suZaxl6XU6LhXjCKEFAZvg9XpxxWdRbEKFfSTJPa4J6/VlzeP8S7bi+YhH+bibCsz4rZFzTqrYxqkXVeZ36anO8PsK8MBOddOBHe2BAm4CL8rfuGi6NeijQruNgylqD0zw+3SIMmRYs5QtBMVX6z4rjSEvc4VA4oa4Yr0uc85Z3L+PPnzpjXJGyE4HZRziWNCotwrG2A0TqydtvBeBfnY+xWDlMOJayRI2aIS1CJZPE7TOKDOz0eqBUC255z6/hy4eHBX6JHRV45w847BX3yizv6BJgTYF45oo0yePCVQupDHnp12raljryEGG4FTJJ4Y8sGmHxmYOg17gP5EKiKOBGURTd0onIknSKYYWeWmGqotJjWIQjol2zBktmg79Yf9mc13z63OG+9qOBorlbyrU6xLLC1kI9GCerW4QAO7MxciGl0YUVlVy4RChDub5qWVPVjhp9M8Ic0RmyEqFFGjWt+m982wJe/cqFlJ/6XtZW/Jy/Z07jR+n3HhEplAY8OB0KqmrUrMztgG0O9V45TiIEqMxcRnpoLgydRViTfZxaNZXyQi//eZZ2LLkAKJsHniAUz4RTrhevVS1D1SyqfRHxYBR4XHpk43il0bwwE+FMUbGF7n2Q0pzzofxSc640WhJwE3SLh34oaXXsm8dXJ69hkem4wRoRMAOkVYeeG5cbXj/VKC3wcPaCck6bXTqs20IuZKUXcx/HUbHg7bDoHbiVDN93/4LBaMySR2iGT8QVkgEUn1GLdY/HTaZ0tvhHUYb5ui0onkmjVthgpjK61TqjUFyLoNZKKFhcRnWRjwHEZysiMnwnKYsWzxyWYzoSzD663DZKUgqUFmGBqRLP8lLT9zQeizCPLCrOb9yHk+kfBHBotYyrtWhnmU+9WAtQU5xRFIfxOXamByz7Z9Us4aSQRv9w3dv0RWCuRC/vt96hpF7FaKphE+F0YRSLcEaxn6U1IRZUFuaPDgOGCmbyb6nPck/m7UckE4p6otYec7mJtVI+rQx6J5SbNqNwFrHDH2fbvjK9Woe59ZDeTFVKwv4S+PQG+PjzRoCPt5CeoPCjvR4TD3Ch16VPxua2QhNGYZUgXhCJ82D4BwsqwZ3/s+ZahEUBt54+MdwiNK5JvbyGBZVQPEv8LqrTy2AJv5QgfbOFNh1QFIU/XL+a+z5xOg6HQme0k++9+j0O9g+ffK88aQa/+vDJfPbChXmOlPfg8M4fElaCLHM0Etr8C90iNC8UqkJe/IpY7Te4XeBIo2Td+LNZYg4HjeS3IvOh0Suu3ezU6PtIizAom/L6QswsDTDkFPeFLx0evtMEI0bBKo3mTvBVIR+Kgl7arSjTR7EWcb0oZBp/vF9vRzYipEVYYyVCGdRUXuhlXsXk+QcB/IVCTanXYh+kNCotQsXdb9l+lywIriGSipBVxfcvfbYwXKKfrRFhJqvqbpyphk2E0wV/KXiLxKRoSoAFQVJ/+/ez+Mdnzh4WjSdRaFppHqlMKIlO9krLXbFK62Sl1qx2/McV+0USabrQ9jV3Eh/UouHMPrOiGULKNeG1s37OexNf44DWh6/Q5+Lj58zlJ9ecyAdPHzspeEQ4HPC+38G7f2pUJUlrss0okpeZCAMeJ16XU68sM5SyWoTmayLDwnE4RPm7G18VXS20wuQDqrEoktdkuiHl/T/v/TO/3/l7rn/ieloj1hZRXpeTi5dV589hGwnBKu4tvBaAUNPTukVojkA+ZVapHjW60ysmwZJMKYuT4rUdWvHs8aBRERPrzMjoxHFW3VlU+cu5YCgqpE53gIDHxSUnC9lV0WrcWjDBiFEQ35mUs3MT8D0uB4urQ/Q7S0iXL8FBlnMcr+F0KNT7cqTZsazCNlHQgJpVlpdPnlXCB1fP5BuXL5tU/yDAbC3g71yNYKU0KvMUHZos6tGMuJ1R6/0kZVG/y4/HaXw3uQuGkoBHd9tMl5/QJsLpgtsHn3gePv5sXpnF6VBGJEGwSh7BI5QJJWHJyNDcMlrLZ4gVn7mT+/iOa0zmJZUascgcJzCIMCdIKBfBqllsUo38xwKvi6DPzbtW1o7YJWHcWHiR6FxgyrkCxiBCayg8oFuEkZRVSjNbhBar3hs0fDgBs0UoMN0WYS46osJy745186mnPkU0lcdXNtFjFghy8Q616hbh7DKD/E+eVWIQoUd8rzPTAZZorcF29Vr7f46EaCpKU0pYcnN6m0fddm7RXJ467+dcMxgRpb80kigo1u6HWP/wnSYYMSpx4/nzee9JdXojXTPuuf40HvvsObgWXwLABc4tLKgsxJPMOf9oRJgY1Bt850qjHpeDb125gksnMX9QwukThDcHsbgZSg0RSUYo9LqoK/GjaIEypyQzOFSVruQAXdEufX8ZMVrktQbi5RY7D/pcfPvKFfz2I6dQWzw9C0U7oX46MYGVZS7M0tKRRlBW5ky6uQWErztzNhcuqTKiHseJty2p5K9bWvjwmlksii2A7idFAnvjOiFL6kQ4+sOZ6y87Kr/gSAjk+E1GCJQBa6NUaT2b0yfM0Lt4BL35Q93BIEJT0+GKY2QRSnTHjH6XBwcO8s+Wf3LJ7EuO6pjxArG48Mc7SSREQMhMk0V48sxiPVhGWoRL0ipLpUXYvYPxYEfPDjJkqU6nqeppgXTC0k9y+MA0n5W54olMOcpnER6BNArwHxeMXIWmrNAr/N4LL4EXf8h5zm10raoeLoXmI8JsFu5+p15Rh8IqCFYN326q4BVEGIiHCXlDhJNh2ofame+Zz6KqIJ094vudk0zQobg44PGwqWMTl8wR95O0CIs8OUSYI42GtJSR6YRtER4nsFiERyiN5k66uRahoijMLAtMWFI5aWYJL335bXzy3HlGjuD+p+HOy+APV4joOxjTIsyt9zhSZ4+jgq9ItK2SKB6ZCM2BD/K7KtSCnnItQpn/Ka3qvNB9hCZp9BhbhJIIfU5xb/TGxvBNjQNKQTkx1YOCij8qFkELqwqpLxW+8MWVXpyKkCUatBD7E9JDrEgIctzRs4NkZmxJbGvnVgBWpbKgZqBneAswC7Qi3pZEb2mtm6r+6DgCaXTcqDsV/CUUMcTH5vQY55fEnC9ydKDJIEGAle+f/HGNBlnIv/01qgKCgKU8uqg6qKdOVCcTnB8VrocHDzyo7y5TJ3Itwtx56KhSpY4QNhEeJyiYBIswl2hyo0YnBbKuZ8d2QIX+w4Y/YwyLMOBxWazA3CoZkwJFsVqFo0mjbmMsuRbhUGrI0lNvZV0Rf/nUGr5/lbWVkwVzzkF1+VifNarMVI2zl+BUQRKhbKklJ6ujQcjvoUVrLRbUqqUU+z08fdN5PHzjmXhVrS+hotDrFNd4RbyTOak0pe4giUyC17tfz39wE7Z0bgFglUe7np1jSKr5LEItkneYNBrp1KxERQQ8TTYcTph/ofh772N6Q2rdh53PIhww5b1+pV1PV5k2VK0QZRzjA1Rrz4GRSxjUUyeqMhmuHBQ+9HUt6/RtdIswhwg9Loc+p3mcjpEVlSmETYTHCazBMkfnIwTBB6EpIcLK4a/JGp9jWIRgHeOUSKNg9ROOQoT5pFHpI8yqWWIy4AZhTZ88q3T0DgUL3o6ytplHHW/TXxorhWEqkVWz9MaFBTi3WJTp0it/HAWCPpdOhEVJMQkGPCKIxOV0QErIpYe1hUYwDXWJNhTg5Arh89rUsWnMsW/rEgusVcWaFNk1RpBNYhRpNNciPPyy+F25dPQUjqPBXK0RdPOrhjRaJ+r80rPfcOZL9GsJ9MWzRD7udMPp0om6Wiu+LX3MFy+rJhQc0t5LM9Ph49TqU1FReXD/g2TVLBvaRIH7XCIEI5fQ3HllOmET4XECaREqypFLhmaSCfnceRuRHjUKR/JZKKO8Z8BstRZMFRFaLMKJSaN+lx+n1mcwVx4dF5xuvQtBaYFn0hPmJ4JwIkxaW6TI3pJy1X40CPlcNKsi4Ko8JYjQci21gJzDmiw6N53AqaYhUMYpM0Tt2o3tG0c9R8NAA+FkGJ/Tx8Jq0aVl3BahN49FmOsjlEQ4Qvm9SUGFViigZz9ISXrmatHZPd4PrZut28tKSMVHEUF9tKhfDUB1VHyX0trzuBRSiMVEVSYD3hBXzr8SgHt33cunn/40Tx1+Cqfi5LI5lw07rIwcParCGUcBmwiPE8iJpNDjwnGEBFZpkuFyUycmDWarT65uQaSM5KsZmQPzGMfq9n3EkBahyz88eMYEn8tsEYoHVVEUI3I0eQRECHr1mOlOps+FlEWLvEVUBARxyYTno0FxwJBGyzPCYrDkZKaEJX3YJa7vrJRWnH7+2zmlRtwzW7u2ksqO0BFCex9EBxR3lSY1j2UR5pVGi7UxRUWwjYRs2TVzzejHPBqUa4XFIx0w0CL+DtaKwgQAOx+2bi9Lqr0BiLCqX0TpSiLsjfeSyqZQUKhIZ8AX4u2z3k65v5y+RB8vtryIgsI3z/omp1afOuywsszasfAPgk2Exw1kysTRyJlmGS5fl+pJgb9U5GkBnPkZo1zWOGRRsI5xyqRR2dG7qC5v1wkJh0PRu4aby9HJXMIjsggx+tJVHgP/oKqqfPLJT3LdY9fRGdWq//jK9Ui+ybAIa4v9ukVYnRXnsFqEgggPuWXqhCadL3g784vnU+QtIpaOsbNn54jn0ANlKlcZnSr6GkV90JGQL1jGW4QsbqD7CRMRw689awqJ0KflFYOR1xoohaXvFn/vetgqj0ppdBQVY8pRJ6zv6n4RANc+1M53XvkOn3vucwCUuwtF3RlfET6Xjwfe/QDfPPObXDn/Sr57znd559x35j1smW4RHhsitNMnjhOcUFfMJcuqOWP+kZdN8rgclATc9EVTUxMoAyKJ/Iz/gJ59sOAiOPQCvHJg3ERojqKckqhRMCzCcdSPLPA6iaUylsi2o7UIZTDAsbAIe+O9vNQqIg9P0STFMn8ZIa133GQEy8wo9tOsWYS1Wusws79VTvoNHq1OaCqNqjhQ5r0Nh+Lg5MqTeabpGTa2b2RlRf7go8awKIa9qGSRKJHncEE2JVJ1Rrqu+SxCh0P8H++HfY/Da38SVo+aEYQzzhqjR4zyBTBkyrn1l4jnxukVATOdO0FavG8EaTRQCuWLqO4XUa0N4QYawg362/Vu7bvV7qcSXwmXz7+cy+dfPuphS7UUipAtjdoYDR6Xg19++GSuXTP7qI4jk99LpkoaBbjwa3D1PSKna/UnhIP95I+Oc3zTYBHOPF1MnPPOH3NTWXC6xpTYq+cSHqFF6NWI8Fgk08twd0APXijzl+kBDJNhEVYGvXQ4NIuQXpxkCLiHS6OtHjH91KdSqDNO0fMsJUFv7BjZT9gTF1GW5f5yEYEpCauvceSByUCg3IaxUh599jZoeAFeuF38P5X+QYmyecbf3iLhPvAGYf4F4jUpj2azRpH4UVJ+pgWzz6QyY7W8L593Odcvv54vlWvfWZ5ehKNB1iuVnSemG7ZF+BZDRdDLno7BqZNGc1E2D254ZtybW4NlpiiMes458OUmo87pKLj9qpXs6xxkcbXxYMtcwtwya+OFTwuQORbl1aRPB+D1LpGiUO43pNFwIoyqqkdVnsvhUHCFakhEXXiVNDNd/daqSamoSJ3QcglnptI4Fhp9LU+pEkS4pXMLmWwGZ55KTNK/WebXFJLiWaISTH8jkKdtE+S3CEFYYX0NMGgtCTY9RGhKvg+UGH8veRfs+bv4OX+tKFCRTYm2VDn9TKcd534Jf8OLFGeG6Hc6mReazdfO+Bpuhxue+2+xTZ7u9KPhXSfUMq+i0NTJYnphW4RvMVSNUPH9jQIzOUxZ1CiMiwRBJMhfeaJVHtMLbycH8+0yJk6oK8LpUDhpZsmY2+7p3UNbpO2IzpMPZiJMq8I3V+4v1y3CtJommj76Mmu1JQW0qoKk5nlyUhNScT11otThIRgoF70HNSwsWUjQHWQoNcTuvuEBMLF0TF+ElPs1mbtEy/UbzSLUfYQ5RChTKEC0ylr+XtFCa9E7Rv+Qk4FyExH6TbV352sBM+2viZxGKYuGZog0hmOJYDV89O+ckHHgUlW+UvM2QYJgKgwwvn6mEg6HwvIZRccsinpKztrQ0MD111/PnDlz8Pv9zJs3j6997Wskk6NXizjvvPNQFMXy88lPfnIqhviWxUfOmMU7TqjhilUjdLk/xqgr8VPodVFT5MN7DFMLRoNsxZTbgWK8+M/LlrDl5rezYozmx03hJq559Bo+/cynj+g8+WAmQolyfzk+lw+vU1jjkxUwIyNHZzu7rW+monrqxMyypfD5fZZ6nk6Hk5OqTgLyp1H0xIQs6nV6dZlaT3rvH40IpUWYK42aFiSVy0SB9pt2DGuXNiWwWIQm/39hhVFH9MCzRjL9sZZFJQor+F7p6Tza3Mqp5p6T4yyn+EbDlCwtdu/eTTab5Ve/+hXz589n+/bt3HDDDQwNDXH77bePuu8NN9zArbcaFRMCgaPvym3DwAl1xfzsAycd62GMiAKvi7//x9l43Y5Jr54/WSjxiYmzL56nLNc4oCjKuIICnm9+nlQ2xcH+g2TVLA7l6BcG+YiwzCcm4CJPEZ2xTgYSA3pH9yPFjBI/TWolsIM5jg7rm6mYnjoxMzQzb+TuKVWn8Hzz82zs2MhHln3E8p6URcv95cY9Iol0VItwJGm02Phbi4qcNpTM0gJ90sO6sTD/AmERHnjaKG92LCNGcxCoWETg9Qx0m0rbhWWnGZsIueSSS7jkEqNw79y5c9mzZw+/+MUvxiTCQCBAdfX4IgwBEokEiYSR/xMOH30elI1jC3OB5jcipBxnLlg9FZDRnRk1QzgRptgs4R0hRrIIAULekCDCSYgcrSv2s1MVk/YCtcH6ZipGsyaN1gXzR2XKgJnNHZuHLQKkRSgJHBjbIkwnjRSFYcEyJouw/rQRPtEUwekWJN6z3yqNAsy7AF78IRx4xqgkcywjRnNRrvWp7N5rvKb3Hj2+iHDatKeBgQFKS0vH3O5///d/KS8vZ/ny5axdu5ZodHR/xW233UZRUZH+U1//xlkx2XhzQgZoyAl5KpDMJC2yYG/i6IthA7QNiRW732WU6JKfZzIjR2eU+NmRnQ3AvExOAel0jFbNIpSd43OxuHQxAVeAcDLMvr59lvdkxKgeKAOGjzDcak2MlzCXjsslQvMCo254sveUQ8qjuRZh/WrwFMJQF+z5h3jtjSKNgjFuWQ4um7Wl0dGwf/9+fvKTn4xpDX7gAx9g1qxZ1NbW8tprr/GlL32JPXv28MADD4y4z9q1a7npppv0/8Ph8LjIMJPJkEqNXLnCxrGHx+PB4Xjj+QmnwyLc3LmZeCau/98X74OJxR8MQzqbpism+sOdVn0azzc/j0NxUOIVFtFkJtXPKPazSxXWS1mmG4Z6oEAjrlSMVq26Tm1BfgnW5XCxrHwZr7a/yt6+vSwqNfpUmqVRHQUVoiB0KirSDMxpCWDIop7C4cEm0iL0FRsFIKYTJ38Ewi2wOCc4x+WB2WfD3n+I6jNg9Skea5TOFcFFibAYn8zlhHHnDb9RMCEi/PKXv8x3vvOdUbfZtWsXixcv1v9vaWnhkksu4aqrruKGG24Ydd+Pf/zj+t8rVqygpqaGCy64gAMHDjBvXv4b1Ov14vWOPx9LVVXa29vp7+8f9z42jg0cDgdz5szB43ljRbhKSU5aJlOBdS3rLP8fqT/SjO5YN1k1i0txsbpmNc83P0+pr1RPT5AW4WSUWasu8hEhwKFslfARtm+DeaLYeDY5RJtmEY7mi6zwi1xEWRjc/DkghwgVRciGXbtFKsRIRJgvmrFyifg9/0KRYD/dWHSp+MmHcz4vJN1gLcw6Y3pSOsYLt09LWzkkGgXL73ac5RTfSJgQEX7uc5/jox/96KjbzJ07V/+7tbWV888/nzPOOIM77rhjwoNbvVrUtdu/f/+IRDhRSBKsrKwkEJh47z0b04NsNktrayttbW3MnDnzDXWd5AQcS8eIpqIE3JPv03yx9UUA3A43qWxqGBkcCaQsWlVQxaqKVQDMDBo+p8mURn1uJxVBLzvis5lDB7S9phNhV3KAtKLgRKEykKdbiQZdgs5ZcOQlQhCTctfu/H7CkZLpQQTI/PtmCB3j/Lx8qDsFrn3oWI9iZJQv0Ihwr1HU4DiTRWGCRFhRUUFFRcW4tm1paeH888/n5JNP5s477zwiiWvr1q0A1NRMzhebyWR0EiwrO/JSZTamBxUVFbS2tpJOp3G73zgrzIA7gN/lJ5aO0RPrmXQi3NWzi319+3A5XJxTdw5PH356UixCGShTFahiRcUKfnnhL5lbZCxcJ5MIQcijO1tn807nBhH9qKFNSzupchficow8BemWd44vNm+wDIyeSziaRQjDLUgb40P5Qtj3hPATysIHb8QFxRiYEh2gpaWF8847j5kzZ3L77bfT1dVFe3s77e3tlm0WL17MK6+8AsCBAwf4xje+waZNm2hoaODhhx/m2muv5ZxzzuGEE06YlHFJn6CdknF8QEqimZxyTm8ElPpEYEN3/Oj8hLF0jA///cP8aPOP9Nf+su8vAFw480Jmh2YD0Jc4ciJMZVJsbN9I86Ao0VVdIPw3Z844k5pCY5EZ8mj1RieLCEv87FBni3/aDCJs1UrT1XiKR91ffse5FmHeYBkQPisQnSNye/nJgtoTTPS2MQZkwfPuvUbqxHHmH4QpIsInn3yS/fv38/TTT1NXV0dNTY3+I5FKpdizZ48eFerxeHjqqae46KKLWLx4MZ/73Od473vfy9/+9rdJH98bSWazMTLeyNdJynI9sR529exiU8cmS8f68WJXzy62dm3l7h1361LrowcfBeC9C9+r5ywejTR65447ue7x6/j5tp8DBhHmYjILbwO876Q6EuVaweie/aKrA9CaEc/8DO/oUeSS6HpjxmdXVXVkaXTJu0Wx6qYNcPA563uysHXh+BQtG+OEOYVClqg71iXgjgBTEjX60Y9+dExf4uzZsy0TR319Pc8///xUDMeGjUmHlOUawg185cWvEE1HOaH8BG454xYWlIw/sk8GpqSyKbZ2bqV9qJ1IKkJ9sJ7Tqk+jKyqiPI9GGn2pReQjyia8IxHhZEaNApy/uJLzF18Ot1ejRtr5+vNfwldcT1IV6Q01uUSWg3w+wkgqQiKTsLxvfIAZcMp1sOGX8Oy3YO55RrJ+RHyPetsjG5MDSYT9TdChtc06zpLpwa41asPGEUFaIy+2vKjX5nyt+zW+8uJXJnQcc73SDW0bdFn0PQveI1IbjrKKTSKT4PVuUVzb4xBS86zQrLzb6lGjibGjRhOZBL/f8XuaBpvGHkTpHDqcTv7S9k/+d9f/sk4RRFYbqBp1N7nY6I336otmaQ0WuAssuZA6zrpJNFxuftVqFcr0g0KbCCcVhRWiLB0qtGh5r8dhsIxNhDZsHAGkNbKtUzRwlX3zdvXumlB+oTlV4eEDD7OtaxsuxcUV868Ajr6c286enaSyKUp9pdz3zvu49YxbOb0mfwi+HiyTI422Rlq5f+/9JDNGreBfbfsV39v4PYtvc0QEa+gxdZ9ocQhSqy0YfcKUPsJ0Nq1/TzJQZpgsqp+rCpZdIf5uftV4fUizCG0inHzkpn7YRGjjzYKf/exnzJ49G5/Px+rVq/Wgpsne53iFnIhlB4czZ5zJklKRj/Zy28vjPo6ZCGWy+3n15+nHL9X8aL2J3iPyQW7p3ALAiZUnMr9kPlcuuHLEmqVSGk1kEsTTRjL/d175Dreuv5UnGp8AIJ6Oc//e+wGGVX3Ji1Atfc7hrZRqR6gqI+Fxegh6RIFzKY/K4KRhEaNmlMwRv2VHdxAdHMCWRqcCuURoR43aeDPgvvvu46abbuJrX/samzdvZuXKlVx88cV0dnZO6j7HM3In4iWlSzi9VlhaL7eOnwjztXJ638L36X9LizCdTR9RI+AtHQYRjoUCd4HeTkeSMgjJF+Bg/0EAHj34KP2JfgAODx7WfY8jIlRLX076lKKqVBeO3f09N4WiOzpCoIwZsgzZgEm2lURoW4STj9qTjAWG02ut3Xqc4C1PhKqqEk2mj8nPkazwX3nlFc477zz8fj+LFy9m48aN3HHHHbz73e+etO/kBz/4ATfccAPXXXcdS5cu5Ze//CWBQIDf/e53k7rP8YzcQI3FpYt1yXF92/pxX1vpj3MqRsmxNbVr9Pd9Lp/uC5uoPJpVs2zpEkR4UuXYHUcURWFescin29srCil3x7p1qbd1qBVVVbln1z36PulsmtZI6/CDmRGsGWYRVmQyeMbRxVzKozJq9sCAqFs6UrFuwOjQIHv4peIgA4BsIpx8OByw8GLxd7A6bzeRNzre8h3qY6kMS29+/Jice+etFxPwjP8SvPzyy5x//vnceuut/PrXv+aLX/wit956Kzt27ODPf/6zZdtvf/vbfPvb3x79/Dt3MnOmtZp9Mplk06ZNrF27Vn/N4XBw4YUXsn79+rzHOZJ9jneYibDEW0JVoIpibzEeh4fOaCeHwocsyeojQVqE71v4Pta3rufGE28cJl2W+kppibTQG+8VbYvGiUMDhxhIDOBz+lhctnjsHRCW7e7e3ezs3ckFsy5gV88u/b3WSCv7+vexv38/PqePMn8ZLZEWGsINo48rNIM+zUdY5iujJ97DnFTa6KgwCnILnO/o3gHA8vLlI++kW4TNIp9Q+gedHmuBbRuTh+XvhS1/gOoVx3okR4S3PBEeT7jpppu46qqr+MIXvgDANddcwzXXXMPll1/OiSdapa9PfvKT/Mu//Muox6utHa7ld3d3k8lkqKqyRvRVVVWxe/fwbuFHus/xDrM0urh0MYqi4HP5OLHqRDa0bWB96/pxEaH0EZ5SdQpfPf2rebcp8ZbQEmmZsEW4v1/0iVtUusjoID4GFpcKwtzdu9vyG6Al0sL+vv36dhWBCkGEAw2cU3fOyAcNGRbh1fOvoPrZ77IqkRBFsseAOak+mUmyr1/4JJeWLR3lfDNEMehMQpCg2T94HForxwXmnQ/XP2kUNTjO8JYnQr/byc5bLz5m5x4vmpubWb9+vaWDh8vlQlVVvv71rw/bvrS0dFxtr2wcGQLuAAFXgGg6arG2Tq46mQ1tG9jZs3Ncx5EWoazqkg965OgEq8tI4pTFq8cDSTDSEtzVa1iEXdEu9vTtAWBu8VxLLuWoKKymV/MRlmUVrowMAQq4xi6WryfVx3vZ17ePdDZNsbd4xK4VgCj4HKwRHR36m+xk+unCdPdynES85YlQUZQJyZPHCrt2iQnppJMMX8+ePXs47bTTWLFiuBxxpNJoeXk5TqeTjg5rV/GOjo4RGyYfyT5vBpT7yzk8eFiPFgWYVyR8bDKwZCxIi1BGR+bDkVaXkUQ4kYa+C0sWoqDQFeuiO9ZtkUZVVNa3Cql7btFc3VprCDfwjfXfYEfPDu685M7h+X0uD31un/gsiSHxmts/LuvMHCyzo0fIosvKlo1ddaioXhDhwGGIa5G5dsSojRHwlg+WOV4wMDCA0+nUJ4De3l5uv/32EeumfvKTn2Tr1q2j/uSTRj0eDyeffDJPP/20/lo2m+Xpp59mzZo1w7Y/0n3eDPjgkg+yuno1Z884W39NyqGHwoeGBcy82v4qF/zpAp5oeEJ/TbcI83VF0KDLg7EeYrLL+jggiVP2GxwPAu4As4tm6+Ntjoj6pNKqlBbinKI5eh3U17te5097/8SOnh0jWsJ9WtulkpgWtDIO/yBYW15JIhxVFpWQnRD6m+yIURtjwibC4wSrVq0ik8nw3e9+l927d3PNNdcwe/Zsdu7cSWPj8Gr7paWlzJ8/f9Qflyu/JXzTTTfx61//mrvvvptdu3bxqU99iqGhIa677jp9m5/+9KdccMEFE9rnzYYPLPkAv7n4NxR6CvXXZoVm4VScDKWG6IxaU0eeanyKzlinno+XyWb0lIjxWIT37LqHNfeuGXeeokxxkPuPF9JP+OD+BwERySpfk5hbNJdZRaJCjbmB8EjFBHq1maZkUPtO8lWFyQNzvVEZKLOsbNnYO5pTKIZsIrQxOmwiPE4wf/58br31Vn70ox9x4oknUltbyxNPPMGMGTO45JJLJvVcV199Nbfffjs333wzq1atYuvWrTz22GOWYJju7m4OHDgwoX3eCnA73dQHxSR8cMAqjzaGxYKlZbAFwJIXOBoRLi8zIiQzaoanGp8a11ikNDpRIlxaKiyuda2iOfCSsiWWBrpep5eaghpCnpBurUrkI8JUNsUgWTGWAS3VYoIWYUe0Qw/+WVY+DiI0p1DYyfQ2xoBNhMcR/uu//ovu7m5isRh33nknZWVlbNq0SfcfTiZuvPFGGhsbSSQSbNiwQW+SLHHLLbfQ0NAwoX3eKphTJCqb5BKhDCppiQgilDmEfpd/1KjO02pO4/H3Ps7a00R6irSMzNjYvpFPPvVJDg0c0l/rTQhptHSMLg+5MBNNdUE1n1z5SWaYqsDMDs3Wu9pLeVQiHxH2x/sBkURf1NMgXhwnEZb6xdhT2RQZNUOpr5SqMWqUAqJbPQiL0JZGbYwBmwht2JhkSCLc37+f6x+/nmv/cS3RVFRPPO9L9DGUGiKcEkQ4WsSoRG1hre6L3NO3h1Qmpb83lBriS//8Ei+1vMRf9/1Vf10S0ESCZUCkcnz+lM9z85qbefTKR1lcuthChOa0kLNmnIVDcei1VvMRoYx2Lc5mcUa0nqTekS1gMwKuAEvLlqKgsKhkEV889Yvja89VZEujNsaPN364pA0bxxkkUTx68FE9uOXJxidRMYJnmgebdYtwNFnUjLpgHSFPiHAyzN7+vbqv7Bdbf0FnTEz2shuEqqo6AeXKl2NBURQ+suwjltfMRDineI7+98dWfIyrF1/N041Ps61rW34ilBJtJmu8uPKacY/l/97xf8TSMQrcBeP/EDJYJj4ACa2MXeFbS6a3MX7YRGjDxiRDEqE5wvPhAw9btmmJtOg1OsdjEYIghWVly1jftp5tndu4a/tdbO/eTuuQUeLs8KAoND2YGtSPX+wtPuLPImH2EZotQkVRCHlCwyrAmGEQYUa8sOgdcOKHxn1uh+KYGAkCeAuFT3CoE1SNgAvsPEIb+WFLozZsTDKkNGrGK+3WThwtkZZxJdPnQvrvfrntlzzW8BjNkWayapYTKk4AhEWoqqoui/pdfnwu35F8DAuKvcW65bqgeHjjYVkEO59FKNM4Sh0eIVm++8fTU+HlktuM6jUuH/iKpv6cNo5L2BahDRuTjEJPIZWBSjqjndQU1NA21Ka/51JcpNU0LZEWPehjvNIoGBGkUvb85MpPcvGsi6kL1rH63tXE0jF64j0G+UxQFh0JiqJw21m30RxpZm7x8DJakgh7471kshk9mMY81pJl74VTviistenAivdB3Snw7G1QtdQur2ZjRNgWoQ0bU4CzZ5yN1+nlm2d+01JEe2WlCCppGWwZVzJ9LswRnTMKZ/DxFR9nfsl8fC4fNVqj26bBJiOHcALJ9GPh3Ppz+eCSD+Z9r8RXgoJCRs3o55bQpdFA5fSRoD6w2fCeX8GZn5ne89o4rmAToQ0bU4Cb19zMc//yHKfVnMb84vn662fWnglAc6R5XOXVclEVqNItyRtPvBG300i7kK2JDocPH1F5taOB2+HW8xVz5VG9ws0E8xlt2Jgu2ERow8YUwKE49IozMrUA4IwZZwDCRyijRifiI1QUhdvPvZ2vn/F13jHnHZb3ZgZF7lzTYNOkS6PjwUgBM5KUp3MsNmxMBDYR2rAxxVhVuQoQ9ToXFC9AQSGWjukRnhOxCOXx3rPgPcPy6WRFm8ODh3V5cjIiRseLcp8WMBPPbxFO51hs2JgI7GAZGzamGOfVn8dJlSdxTt05eJweKgIVdEY79QLWE7EIR4NuEYab9Eo10ylH5osczWQzNA+Kwt2jdpW3YeMYYsoswtmzZ///9u48qskr/x/4O4kkBGUpi0BUFqGKC6JgyeC0jlYO4PEoVrSIzBHXakWrYqnQM7jAsQh6sB11cOxx6dSlakdr68xoFZeOQwRFqa0LFb6IVbaqJWxCQnJ/f/jLU1LCKtnM53VOziH3uc+TD5ec58Nzn3ufCx6Pp/XavHlzh/s0NTUhPj4eTk5O6NevH6Kiotos7UMMY+fOnfDy8oK1tTWkUiny8/M7rK9SqZCSkgJvb2+IxWL4+PggLS2tzQoMlshOaIfPJn+Ghf4LAfyWsNT/f35bd68I26NJND/X/2yU7khdifBR/SMo1AqIBKKO1xAkxIj02jWampqKiooK7rVixYoO669evRrffPMNjh07hkuXLqG8vBwzZszQZ4hEhyNHjiAhIQHr16/H9evXERAQgPDwcFRXV7e7T0ZGBrKzs7Fjxw7cuXMHGRkZyMzMxPbt2w0YuXmIGxGnNZK0t64INV2j8mY51+1qyO5IzT3C1olQ87zV1s8nJcTU6DUR2traws3NjXv17dv+0yHkcjn27NmDrKwsvPnmmwgKCsK+ffuQm5uLK1e6tuxMjzAGKBqM8+rB1VJ+fj4mTJgAsVgMPz8/XLt2Dbt378a0adN6rUmysrKwePFizJ8/H8OHD8euXbtgY2ODvXv3trtPbm4uIiMjMWXKFHh5eWHmzJkICwvr9ErSEk0YNAEbQjZw7zUJ5EXZWNlwV2WalS6McUXYerCMJhG2fhoNIaZGr/cIN2/ejLS0NHh4eGDOnDlYvXp1u2vgFRQUQKlUIjQ0lCvz8/ODh4cHZDIZ/vCHP+jcr7m5Gc3Nzdz72tra7gWpbAQ+MlKXzYflgLDrj466cuUKJk6ciNTUVHz66af44IMPkJqailu3buHLL7/UqtvTFeoVCgUKCgqQnJzMlfH5fISGhkImk7V7rHHjxmH37t346aefMGTIEHz//fe4fPkysrKyuvz7WZK3Xn0LTmIn1CnquATSGyYOmohjPx3j3hv7HuH/1TxPhK2fT0qIqdFbInzvvfcQGBgIR0dH5ObmIjk5GRUVFe2eGCsrKyEUCuHg4KBV7urqisrKynY/Jz09HRs3buzN0E1WQkICZs2ahcTERABATEwMYmJiEBkZiTFjxmjVXbp0Kd5+++0Oj6drhfrHjx9DpVK1WUfQ1dUVd+/ebfdYSUlJqK2thZ+fHwQCAVQqFTZt2oTYWN0TsAkwfuD4Xj9m4muJKKgq4K7EDDpqVEci1CwLRVeExJR1KxEmJSUhIyOjwzp37tyBn58fEhISuLJRo0ZBKBRiyZIlSE9Ph0gk6lm0OiQnJ2t9Vm1tLQYNGtT1A1jZPL8yMwbNcxC74OHDh5DJZNi6dStX1qdPHzDGdP4j4OjoCEdHw3WLHT16FAcPHsShQ4cwYsQIFBYWYtWqVZBIJIiLi+v8AKRXiPuIkR2ajbjTcbAT2vXa/ceusBc9f5ZnnaIOaqYGDzzqGiVmoVuJcM2aNZg3b16HdQYP1v2Fl0qlaGlpwf379zF06NA2293c3KBQKFBTU6N1VVhVVQU3N7d2P08kEr1YYuXxutU9aSyaxXcDAwO5sqKiIgQHB8Pf379N/Z52jTo7O0MgELQZrdvZ3yExMRFJSUmYPXs2AMDf3x9lZWVIT0+nRGhgkn4SnHrrFAQ8QdfW7usl/ayeP0CAgaFB2YBnLc9Qr6wHn8eHp52nweIgpLu6lQhdXFzg4tKzpUwKCwvB5/PRv7/uxTGDgoJgZWWFnJwcREVFAXh+on/w4AFCQkJ69JkvE7lcDoHgtxPb06dPsXXrVgQEBOis39OuUaFQiKCgIOTk5GD69OkAALVajZycHCxfvrzdYzU2NoLP1x57JRAIoFar29mD6JNI0Hu9Lt35zD78PmhRt6BeUY+yuucDdgbZDoJQIDR4PIR0lV7uEcpkMuTl5WHixImwtbWFTCbD6tWr8ec//xmvvPL85v2jR48wadIk/OMf/0BwcDDs7e2xcOFCJCQkwNHREXZ2dlixYgVCQkLaHShjSUaPHg2VSoXMzEzMmjULK1euhJeXF27fvo2ysjJ4emr/x/0iXaMJCQmIi4vD2LFjERwcjI8//hgNDQ2YP38+V2fHjh04ceIEcnJyAABTp07Fpk2b4OHhgREjRuDGjRvIysrCggULev5LE7PC4/Fga2WLX5t/RZ2y7reBMjqWpSLElOglEYpEInzxxRfYsGEDmpub4e3tjdWrV2vdy1MqlSgqKkJjYyNXtm3bNvD5fERFRaG5uRnh4eH429/+po8QzY6vry9SU1PxySef4KOPPsLs2bNx6NAhhIWFISIigus67Q3R0dH45ZdfsG7dOlRWVmL06NE4ffq01gCax48fo6SkhHu/fft2pKSkYNmyZaiuroZEIsGSJUuwbt26XouLmL5+wn74tflX1Cvqcb/2PgC6P0hMH4+9ZI/+qK2thb29PeRyOezstAcKNDU1obS0FN7e3rC2fvHFSol+0d/L/ESfisbtJ7exc9JOnCw+iW/LvkVScFK7yzcRok8d5YPW6KHbhJBeY2v1/HFxdYo6yBVyAL+NJiXEVFEiJIT0Gs3SU/WKem6ZKXshJUJi2igREkJ6jWYKRZ2yDvJmuiIk5oESISGk12hW0qhX1FPXKDEblAgJIb1G0zVa01yDBmUDAOoaJaaPEiEhpNdoukYf1T/iynprvUVC9IUSISGk12iSniYR2gptaR1CYvIoERJCeo3mirCioQIAdYsS80CJkBDSazT3CFvULQBooAwxD5QICSG9RjOhXoMSITEHlAiJTjt37oSXlxesra0hlUqRn5/fYf26ujqsWrUKnp6eEIvFGDduHK5evapVR6VSISUlBd7e3hCLxfDx8UFaWhpesqf8WTTNFaEGdY0Sc0CJkLRx5MgRJCQkYP369bh+/ToCAgIQHh6O6urqdvdZtGgRzp49i88//xw//PADwsLCEBoaikePfhs9mJGRgezsbOzYsQN37txBRkYGMjMzsX37dkP8WsQAfj9C1E5kuIWBCekpi0+EjDE0KhuN8urJlVB+fj4mTJgAsVgMPz8/XLt2Dbt378a0adN6rU2ysrKwePFizJ8/H8OHD8euXbtgY2ODvXv36qz/7Nkz/POf/0RmZibGjx8PX19fbNiwAb6+vsjOzubq5ebmIjIyElOmTIGXlxdmzpyJsLCwTq82ifnQDJbRoK5RYg70sgyTOXnW8gzSQ1KjfHbenDzYWNl0uf6VK1cwceJEpKam4tNPP8UHH3yA1NRU3Lp1C19++aVW3Z6uUK9QKFBQUIDk5GSujM/nIzQ0FDKZTOdxWlpaoFKp2qwQIRaLcfnyZe79uHHjsHv3bvz0008YMmQIvv/+e1y+fBlZWVld+v2J6Wu9OC9AXaPEPFh8IjQnCQkJmDVrFhITEwEAMTExiImJQWRkJMaMGaNVt6cr1D9+/BgqlUpr7UEAcHV1xd27d3Uex9bWFiEhIUhLS8OwYcPg6uqKw4cPQyaTwdfXl6uXlJSE2tpa+Pn5QSAQQKVSYdOmTYiNpSV6XhatF+cF6IqQmAeLT4TiPmLkzckz2md31cOHDyGTybB161aurE+fPmCMYePGjW3qv8gK9T3x+eefY8GCBRgwYAAEAgECAwMRExODgoICrs7Ro0dx8OBBHDp0CCNGjEBhYSFWrVoFiUSCuLg4g8VK9EuzOC9AiZCYB4tPhDwer1vdk8aiWYE+MDCQKysqKkJwcDD8/f3b1O9p16izszMEAgGqqqq0yquqquDm5tbusXx8fHDp0iU0NDSgtrYW7u7uiI6OxuDBv61OnpiYiKSkJMyePRsA4O/vj7KyMqSnp1MifIm0HjBDiZCYA4tPhOZCLpdDIBCAx+MBAJ4+fYqtW7ciICBAZ/2edo0KhUIEBQUhJycH06dPBwCo1Wrk5ORg+fLlncbZt29f9O3bF7/++ivOnDmDzMxMbltjYyP4fO3xWQKBAGq1utPjEvPRei4h3SMk5oASoZkYPXo0VCoVMjMzMWvWLKxcuRJeXl64ffs2ysrK4OnpqVX/RbpGExISEBcXh7FjxyI4OBgff/wxGhoaMH/+fK7Ojh07cOLECeTk5AAAzpw5A8YYhg4diuLiYiQmJsLPz09rn6lTp2LTpk3w8PDAiBEjcOPGDWRlZWHBggU9ipOYptZzCWn6BDEHFj99wlz4+voiNTUVn3zyCcaMGQOJRIJvv/0WAwYMQERERK9+VnR0NLZu3Yp169Zh9OjRKCwsxOnTp7UG0Dx+/BglJSXce7lcjvj4ePj5+WHu3Ll4/fXXcebMGVhZWXF1tm/fjpkzZ2LZsmUYNmwY3n//fSxZsgRpaWm9Gj8xrtZTKOiKkJgDHnvJHutRW1sLe3t7yOVy2Nlp/zfa1NSE0tJSeHt7txnqT0wP/b3MU0Z+Bg7cOQCbPjbIizXOQDRCgI7zQWt0RUgI6VWarlEaKEPMBSVCQkiv0nSNUiIk5oISISGkV9kJn3dBUSIk5kIvifDixYvg8Xg6X79fkaC1CRMmtKm/dOlSfYRICNGTNwa+gdcHvI45fnOMHQohXaKX6RPjxo1DRUWFVllKSgpycnIwduzYDvddvHgxUlNTufc2Nr0/2Z3mrZmHl2wcl8VwFjsjOzS784qEmAi9JEKhUKj1FBKlUomTJ09ixYoV3ITw9tjY2HT4BJMXjYvP56O8vBwuLi4QCoWdxkOMgzGGX375BTweT2sKBiGE9DaDTKj/+uuv8eTJE63J1e05ePAgDhw4ADc3N0ydOhUpKSkdXhU2NzejubmZe19bW9tuXT6fD29vb1RUVKC8vLx7vwQxOB6Ph4EDB0IgEBg7FELIS8wgiXDPnj0IDw/HwIEDO6w3Z84ceHp6QiKR4ObNm1i7di2Kiopw/PjxdvdJT0/X+dDp9giFQnh4eHBLBxHTZWVlRUmQEKJ33ZpQn5SUhIyMjA7r3LlzB35+ftz7hw8fwtPTE0ePHkVUVFS3gjt//jwmTZqE4uJi+Pj46Kyj64pw0KBBnU6gJIQQ8nLr6oT6bl0RrlmzBvPmzeuwTuvVBgBg3759cHJy6tEK6lLp8wVzO0qEIpEIIpGo28cmhBBCgG4mQhcXF7i4uHS5PmMM+/btw9y5c3s04KGwsBAA4O7u3u19CSGEkK7Q64T68+fPo7S0FIsWLWqz7dGjR/Dz80N+fj4AoKSkBGlpaSgoKMD9+/fx9ddfY+7cuRg/fjxGjRqlzzAJIYRYML0OltmzZw/GjRundc9QQ6lUoqioCI2NjQCeD2I5d+4ct+TPoEGDEBUVhb/85S/d+kzNLc+ORo8SQgh5+WnyQGdDYV661ScePnyIQYMGGTsMQgghJuLnn3/ucNbCS5cI1Wo1ysvLYWtr+0KT5TWjT3/++WezGH1K8eoXxatfFK9+WWq8jDHU1dVBIpGAz2//TuBLt0I9n8/vdL5id9jZ2ZnFF0eD4tUvile/KF79ssR47e07f/g7rT5BCCHEolEiJIQQYtEoEbZDJBJh/fr1ZjNZn+LVL4pXvyhe/aJ4O/bSDZYhhBBCuoOuCAkhhFg0SoSEEEIsGiVCQgghFo0SISGEEItGiZAQQohFo0Sow86dO+Hl5QVra2tIpVJuhQxjS09Px2uvvQZbW1v0798f06dPR1FRkVadCRMmgMfjab2WLl1qlHg3bNjQJpbWD2BvampCfHw8nJyc0K9fP0RFRaGqqsoosQKAl5dXm3h5PB7i4+MBGL9tv/vuO0ydOhUSiQQ8Hg9fffWV1nbGGNatWwd3d3eIxWKEhobi3r17WnWePn2K2NhY2NnZwcHBAQsXLkR9fb3B41UqlVi7di38/f3Rt29fSCQSzJ07F+Xl5VrH0PU32bx5s8HjBYB58+a1iSUiIkKrjqm0LwCd32Uej4ctW7ZwdQzZvl05f3XlnPDgwQNMmTIFNjY26N+/PxITE9HS0vJCsVEi/J0jR44gISEB69evx/Xr1xEQEIDw8HBUV1cbOzRcunQJ8fHxuHLlCs6ePQulUomwsDA0NDRo1Vu8eDEqKiq4V2ZmppEiBkaMGKEVy+XLl7ltq1evxjfffINjx47h0qVLKC8vx4wZM4wW69WrV7ViPXv2LABg1qxZXB1jtm1DQwMCAgKwc+dOndszMzPx17/+Fbt27UJeXh769u2L8PBwNDU1cXViY2Nx69YtnD17FqdOncJ3332Hd955x+DxNjY24vr160hJScH169dx/PhxFBUV6VzAOzU1VavNV6xYYfB4NSIiIrRiOXz4sNZ2U2lfAFpxVlRUYO/eveDxeIiKitKqZ6j27cr5q7NzgkqlwpQpU6BQKJCbm4vPPvsM+/fvx7p1614sOEa0BAcHs/j4eO69SqViEomEpaenGzEq3aqrqxkAdunSJa7sT3/6E1u5cqXxgmpl/fr1LCAgQOe2mpoaZmVlxY4dO8aV3blzhwFgMpnMQBF2bOXKlczHx4ep1WrGmGm1LQB24sQJ7r1arWZubm5sy5YtXFlNTQ0TiUTs8OHDjDHGbt++zQCwq1evcnX+85//MB6Pxx49emTQeHXJz89nAFhZWRlX5unpybZt26bX2HTRFW9cXByLjIxsdx9Tb9/IyEj25ptvapUZq30Za3v+6so54d///jfj8/mssrKSq5Odnc3s7OxYc3Nzj2OhK8JWFAoFCgoKEBoaypXx+XyEhoZCJpMZMTLd5HI5AMDR0VGr/ODBg3B2dsbIkSORnJzMrfloDPfu3YNEIsHgwYMRGxuLBw8eAAAKCgqgVCq12trPzw8eHh4m0dYKhQIHDhzAggULtFYxMaW2ba20tBSVlZVa7Wlvbw+pVMq1p0wmg4ODA8aOHcvVCQ0NBZ/PR15ensFj/j25XA4ejwcHBwet8s2bN8PJyQljxozBli1bXrgb7EVcvHgR/fv3x9ChQ/Huu+/iyZMn3DZTbt+qqir861//wsKFC9tsM1b7/v781ZVzgkwmg7+/P1xdXbk64eHhqK2txa1bt3ocy0u3+sSLePz4MVQqlVYjA4Crqyvu3r1rpKh0U6vVWLVqFf74xz9i5MiRXPmcOXPg6ekJiUSCmzdvYu3atSgqKsLx48cNHqNUKsX+/fsxdOhQVFRUYOPGjXjjjTfw448/orKyEkKhsM1Jz9XVFZWVlQaP9fe++uor1NTUYN68eVyZKbXt72naTNd3V7OtsrIS/fv319rep08fODo6Gr3Nm5qasHbtWsTExGitNvDee+8hMDAQjo6OyM3NRXJyMioqKpCVlWXwGCMiIjBjxgx4e3ujpKQEH374ISZPngyZTAaBQGDS7fvZZ5/B1ta2za0HY7WvrvNXV84JlZWVOr/jmm09RYnQTMXHx+PHH3/UuucGQOt+hL+/P9zd3TFp0iSUlJTAx8fHoDFOnjyZ+3nUqFGQSqXw9PTE0aNHIRaLDRpLd+3ZsweTJ0+GRCLhykypbV8mSqUSb7/9NhhjyM7O1tqWkJDA/Txq1CgIhUIsWbIE6enpBn9u5uzZs7mf/f39MWrUKPj4+ODixYuYNGmSQWPprr179yI2NhbW1tZa5cZq3/bOX8ZCXaOtODs7QyAQtBmlVFVVBTc3NyNF1dby5ctx6tQpXLhwodO1F6VSKQCguLjYEKF1yMHBAUOGDEFxcTHc3NygUChQU1OjVccU2rqsrAznzp3DokWLOqxnSm2rabOOvrtubm5tBn21tLTg6dOnRmtzTRIsKyvD2bNnO117TiqVoqWlBffv3zdMgB0YPHgwnJ2dub+/KbYvAPz3v/9FUVFRp99nwDDt2975qyvnBDc3N53fcc22nqJE2IpQKERQUBBycnK4MrVajZycHISEhBgxsucYY1i+fDlOnDiB8+fPw9vbu9N9CgsLAQDu7u56jq5z9fX1KCkpgbu7O4KCgmBlZaXV1kVFRXjw4IHR23rfvn3o378/pkyZ0mE9U2pbb29vuLm5abVnbW0t8vLyuPYMCQlBTU0NCgoKuDrnz5+HWq3mkrohaZLgvXv3cO7cOTg5OXW6T2FhIfh8fpsuSGN4+PAhnjx5wv39Ta19Nfbs2YOgoCAEBAR0Wlef7dvZ+asr54SQkBD88MMPWv9waP6BGj58+AsFR1r54osvmEgkYvv372e3b99m77zzDnNwcNAapWQs7777LrO3t2cXL15kFRUV3KuxsZExxlhxcTFLTU1l165dY6WlpezkyZNs8ODBbPz48UaJd82aNezixYustLSU/e9//2OhoaHM2dmZVVdXM8YYW7p0KfPw8GDnz59n165dYyEhISwkJMQosWqoVCrm4eHB1q5dq1VuCm1bV1fHbty4wW7cuMEAsKysLHbjxg1ulOXmzZuZg4MDO3nyJLt58yaLjIxk3t7e7NmzZ9wxIiIi2JgxY1heXh67fPkye/XVV1lMTIzB41UoFGzatGls4MCBrLCwUOv7rBn9l5uby7Zt28YKCwtZSUkJO3DgAHNxcWFz5841eLx1dXXs/fffZzKZjJWWlrJz586xwMBA9uqrr7KmpibuGKbSvhpyuZzZ2Niw7OzsNvsbun07O38x1vk5oaWlhY0cOZKFhYWxwsJCdvr0aebi4sKSk5NfKDZKhDps376deXh4MKFQyIKDg9mVK1eMHRJj7PkQaV2vffv2McYYe/DgARs/fjxzdHRkIpGI+fr6ssTERCaXy40Sb3R0NHN3d2dCoZANGDCARUdHs+LiYm77s2fP2LJly9grr7zCbGxs2FtvvcUqKiqMEqvGmTNnGABWVFSkVW4KbXvhwgWdf/+4uDjG2PMpFCkpKczV1ZWJRCI2adKkNr/HkydPWExMDOvXrx+zs7Nj8+fPZ3V1dQaPt7S0tN3v84ULFxhjjBUUFDCpVMrs7e2ZtbU1GzZsGPvoo4+0Eo+h4m1sbGRhYWHMxcWFWVlZMU9PT7Z48eI2/yCbSvtq/P3vf2disZjV1NS02d/Q7dvZ+Yuxrp0T7t+/zyZPnszEYjFzdnZma9asYUql8oVio/UICSGEWDS6R0gIIcSiUSIkhBBi0SgREkIIsWiUCAkhhFg0SoSEEEIsGiVCQgghFo0SISGEEItGiZAQQohFo0RICCHEolEiJIQQYtEoERJCCLFo/w/bR6y+yE4tbAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "α_values = [0.0, 0.8, 0.98]\n", + "T = 200\n", + "x = np.empty(T+1)\n", + "\n", + "for α in α_values:\n", + " x[0] = 0\n", + " for t in range(T):\n", + " x[t+1] = α * x[t] + np.random.randn()\n", + " plt.plot(x, label=f'$\\\\alpha = {α}$')\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6cd8434a", + "metadata": {}, + "source": [ + "Note: `f'\\$\\\\alpha = {α}\\$'` in the solution is an application of [f-String](https://docs.python.org/3/tutorial/inputoutput.html#tut-f-strings), which allows you to use `{}` to contain an expression.\n", + "\n", + "The contained expression will be evaluated, and the result will be placed into the string." + ] + }, + { + "cell_type": "markdown", + "id": "710b5d7c", + "metadata": {}, + "source": [ + "## Exercise 3.3\n", + "\n", + "Similar to the previous exercises, plot the time series\n", + "\n", + "$$\n", + "x_{t+1} = \\alpha \\, |x_t| + \\epsilon_{t+1}\n", + "\\quad \\text{where} \\quad\n", + "x_0 = 0\n", + "\\quad \\text{and} \\quad t = 0,\\ldots,T\n", + "$$\n", + "\n", + "Use $ T=200 $, $ \\alpha = 0.9 $ and $ \\{\\epsilon_t\\} $ as before.\n", + "\n", + "Search online for a function that can be used to compute the absolute value $ |x_t| $." + ] + }, + { + "cell_type": "markdown", + "id": "1cd2da19", + "metadata": {}, + "source": [ + "## Solution to[ Exercise 3.3](https://python-programming.quantecon.org/#pbe_ex3)\n", + "\n", + "Here’s one solution:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "8996551f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmNUlEQVR4nO2deZxcVbXvf6fm6u7qeU46SWcOZIAEiAFRhghBVBzwIuY+AREVgxPqw/iu4vAkqDzkyvMBKtMVEfQqoqgohEkggQwECJChM3Y6PaU73VU91HzeH+fsffY5NZ2qrrnX9/PpT9LVNZw6dWqvvdb6rbUkWZZlEARBEEQZYCn0ARAEQRBEtiCjRhAEQZQNZNQIgiCIsoGMGkEQBFE2kFEjCIIgygYyagRBEETZQEaNIAiCKBtshT6AZESjURw/fhwejweSJBX6cAiCIIgCIcsyfD4f2tvbYbEk9seK2qgdP34cHR0dhT4MgiAIokjo7u7GzJkzE/69qI2ax+MBoLyJ6urqAh8NQRAEUSi8Xi86Ojq4XUhEURs1FnKsrq4mo0YQBEGkTEWRUIQgCIIoG8ioEQRBEGUDGTWCIAiibCCjRhAEQZQNZNQIgiCIsoGMGkEQBFE2kFErQWRZxt4+HyJRGlpOEAQhQkatBPn99mO4+I4XcNdzXYU+FIIgiKKCjFoJ8kbPiPLvsdHCHghBEESRQUatAHQN+LDujhfw661HMnp874gfANAzMpnNwyIIgih5yKjlmWhUxjf/8Cb29PnwyKtHM3oOZsyOk1EjCILQQUYtz/xh5zFsP3ISAHBkaAKynL7YgxmzkxMhTATDWT0+giCIUiZnRi0SieDb3/42Ojs74Xa7MW/ePPzgBz/IaBEvFwLhCG79+x7++1ggjKHxIP/96bf78dzegaTPMRYIw+vXDNlxNRRJEARB5LBL/49+9CPcddddePDBB3Hqqadi+/btuOaaa1BTU4MvfelLuXrZoubYyUkMjQdR4bCi2mVHn9ePI0MTaKxy4uR4EJ9/aAckCdj+H+9Djdse9zl6DSHHnpFJzG+uysfhEwRBFD0589RefvllXHbZZbj00ksxZ84cXH755bjooovw6quv5uoli55h1StrrHJiblMlAODI0DgAYE+fD+GojFBExu6exKrG46N6z4zyagRBEBo5M2pnn302Nm/ejH379gEAXn/9dbz44ou45JJLEj4mEAjA6/XqfsqJoTHFqNVXOjC7QTFqh4cmAAD7B3z8fru6RxI+h9GIkVEjCILQyFn48Zvf/Ca8Xi8WL14Mq9WKSCSCH/7wh1i/fn3Cx2zatAnf+973cnVIBYd5ag2VDsxuqACgeWp7+zSj9noaRq3nJBk1giAIRs48td/97nf4zW9+g4cffhg7d+7Egw8+iNtuuw0PPvhgwsds3LgRo6Oj/Ke7uztXh1cQhscDABRPbQ43aoqntq9f76klEtQwYciiFmWkOdWqEQRBaOTMU/vGN76Bb37zm/jEJz4BAFi2bBmOHDmCTZs24aqrror7GKfTCafTmatDKjhM6VhfpYUfjwyNQ5Zl7Osf4/cb8AXQ5/WjrcbNb/va717H6GQQo5MhAMCZnXXY2+/D8VEyagRBEIyceWoTExOwWPRPb7VaEY1Gc/WSRc9JIfw4q17x1E5OhNA1MIbRyRAsEjBPFZCIIcjxQBh/2HkMT78zgG2HlRq3M2bXAwD6Rv3U2JggCEIlZ0btgx/8IH74wx/ir3/9Kw4fPozHHnsMt99+Oz7ykY/k6iWLHu6pVTpR6bShyaN4pf98ux8AMKexEmd1NgAAdnVrCkjmnYmc1lELq0VCKCJj0BfI9aETBEGUBDkzanfeeScuv/xyfOELX8CSJUvw9a9/HZ/73Ofwgx/8IFcvWfSIQhEAPK/2lGrUFrV4cFpHDQDgTbVpMRBr1CQJmFHnRmu1CwDl1QiCIBg5y6l5PB7ccccduOOOO3L1EiXH8Lgm6QeAOQ2V2Hb4JJfwL2jxYGadYuhE78to1Jo9TtitFsyodaNnZBLHRyaxanZdHt4BQRBEcUO9H/OELMtC+FExap9+dycaqxz8PgtbquBxKfsMn9AKixm1Zo8Tcxoq8OHTZgAA2mvJUyMIghDJmadG6BkPRhAMKyKZBtWQLWmrxuYbz8P/eWov9veP4T0LmzCsFmjHM2pL2qrx4KfP4re31yrqSCrAJgiCUCCjlieYsXLZLahwaKe9psKO71+2lP8eUg3fWCCMSFSG1SLBqxo1Yz/IGXVk1AiCIEQo/JgnhtTC64bK5HV4HpdmuMZUb200gVFjntox6ipCEAQBgIxa3jg5oXhqdZXxu+8zHDYLnDblY/H6FWOWyKjNoPAjQRCEDjJqeUJrZpy6Ywrz1nwmPTWvPwyfP7aWjSAIYrpBRi1PGGvUklHNFZDJPbUqp43f1jtKw0IJgiDIqOUJY41aMoyyfmbUquMMDmXeGnXrJwiCIKOWN4w1asng4cdAck8NAGZQrRpBEASHjFqeSCv86NZ7aokk/QCJRQiCIETIqOWJtDw1p2K8vJMhyLKseWoVScKPZNQIgiDIqOULNiC0oSq9nNpkKIJQRBktE89To64iBEEQGmTU8oAsyxjwKkat2eNKeX+WU/P6w9xLs1okVDqsMffVjBqpHwmCIMio5QHvZBgBtf0Vm6GWDI8g6RdFIpIkxdx3ptoqq8/rx6/+dRBdA2Mx9yEIgpgukFHLA/0+xYuqrbDDZY/1toyI4cfRicQiEQBoqnLCbbciEpXxv//6Djb8ZmeWjpogCKL0IKOWB/q9ilFrNuGlAWJHkVDSGjUAsFgk/PSK03DZae0AgEMnxiHL8lQPmSAIoiQho5YHWD6tpTp1Pg0QO4qEMZJEzs9Yt7QVP758OQAgGIliZIJaZhEEMT0ho5YHWPjRjEgE0Lwyrz+UtEZNxGmzok6V/LPXIwiCmG6QUcsDmqdmNvwo5NS4UUs9+o55gv3q6xEEQUw3yKjlgUxzahPBCO9EkspTA0SjRp4aQRDTEzJqeWDAl15OjXlqgNYpxJxRU4zmABk1giCmKWTU8gD31EwaNbvVApdd+WjYVOv0PDUKPxIEMT0ho5ZjxG4iZnNqgBaCPDo8AQCorUjdXquZwo8EQUxzyKjlmJGJEIIR891EGCwEGVQ7kaycVZfyMS3q8/f7yFMjCGJ6QkYtx7B8Wl2FHU5b6m4iDOapAcCKmTWmDCILP1JOjSCI6QoZtRzDQoFmRSKMakEscsHiFlOP4UbNF0A0Sl1FCIKYfpBRyzHpikQY1YKndsHiZlOPaaxyQJKASFTm89sIgiCmE2TUcgwLP5qtUWOwnFqTx4lT26tNPcZmtaCxSs2rUQiSIIhpSE6NWk9PD/793/8dDQ0NcLvdWLZsGbZv357Llyw6Bnj4MT2jxnJoFyxqhsUSO3ImEbxWjVplEQQxDUndeylDTp48iXPOOQfnn38+/v73v6OpqQn79+9HXV1qFV85wcKADZXpGbVPrZkDiyThqrPnpPW4Fo8Lu+GlWjWCIKYlOTNqP/rRj9DR0YH777+f39bZ2Zn0MYFAAIGAthh7vd5cHV7e8PnDAPRdQszQ5HHiq+9bmPbrUa0aQRDTmZyFH//85z/jjDPOwMc//nE0Nzfj9NNPxy9/+cukj9m0aRNqamr4T0dHR64OL2/4/EpDYlGin0tY+JGMGkEQ05GcGbWDBw/irrvuwoIFC/CPf/wD119/Pb70pS/hwQcfTPiYjRs3YnR0lP90d3fn6vDyBvPUqtP01DKlho+tCefl9QiCIIqJnK200WgUZ5xxBm655RYAwOmnn47du3fj7rvvxlVXXRX3MU6nE05nermnYkcLP+bHU3PZlQLvQCial9cjCIIoJnLmqbW1teGUU07R3bZkyRIcPXo0Vy9ZlGjhx/x4aqwRciAcycvrERqRqIw/7DiGo0MThT4Ugpi25MyonXPOOdi7d6/utn379mH27Nm5esmiIxyJYjyoGJe8GTW1FZc/REYt3/xr/yC+9vvX8d2/vFXoQyGIaUvOjNpXv/pVbN26Fbfccgu6urrw8MMP4xe/+AU2bNiQq5csOsYCWl4r3+FHP4Uf807fqCLO6VHHBREEkX9yZtTOPPNMPPbYY/jtb3+LpUuX4gc/+AHuuOMOrF+/PlcvWXSwfJrTZoHDlp/mLU41/EieWv7xqqHm4QlqUUYQhSKnMbEPfOAD+MAHPpDLlyhqvHmW8wOCp0Y5tbzDNjEjE0HIsgxJMt8JhiCI7EC9H3NIvuX8gOIVAhR+LATeSWUTE4rIPJdKEER+IaOWQzLtJjIVNEk/Lar5xifUBp6kKQkEURDIqOWQfHcTAcTwI3lq+UYseD9JeTWCKAhk1HJIQTw1NfwYDEdpUGieYTlUADg5EUpyT4IgcgUZtRyS78JrQPPUACBA3lpeEcOPI+SpEURBIKOWQ/LdIgvQhCIAyfrzDROKAJRTI4hCQUYth3gLEH60WS2wqUNFSdafX3xC+HGYwo8EURDIqOWQQghFAGpqXAiiURm+AIUfCaLQkFHLIYUQigBaU2Py1PLHeDAMWdDlkFCEIAoDGbUcwjy1fBZfA4DTRv0f841xft3IRBC/29aNax/Yhu5h6tpPEPmCjFoOKYRQBBA8NRKK5A0xnwYodWr/uXk/Nu8ZwOV3v4x9/b4CHRlBTC/IqOWQwoUfafxMvvEZPLXu4Un0jCjd+vu9AXz6gW2IUN0gQeQcMmo5pNBCEQo/5g8m569xK5/1qPp7Q6UDAHDs5KRuFBFBELmBjFqOiETlvA8IZbBaNZp+nT+YpzarvkJ3+4qOWl5iMUlNjokyJBqV8X/+uRe/3nqk0IcCgIxazhjziwNCCxN+JEl//mAtsmbUumERJs4sbvXArX4eE0Hy1Ijy4y9vHMedz3Th23/aXRSt+cio5Qi2yDlsFq5GzBck6c8/fMyQ24a6Cge/fXFbNdwO5fOfpBwnUYbc9+Ih/v/xIti4kVHLEYWYpcZw2Ugokm9YTq3aZUdthZZDXdLqQQUzahR+JMqM146exOvHRvnvRsFUISCjliMKJRIBACcJRfKOVyjfYJ6aw2ZBZ2MlDwdPkFEjyoxf/euQ7nevv/BNB8io5YhCyfkBqlPLB68dPYnrH9rBC6vZl7nabUOtatQWtlTBZrVonhp9HkSZsfPoSd3v3kny1MoWXyD/Y2cY1FEk99z30mH8fXcf/rDzGAB9oX2dGn5c3FoNAKhwKNcAhR+JcoOVqbB1TpxUUSjIqOWI0Qktx5JvSCiSXbYfHsbvtnfrbjuqemg9J5UCa7El2rsXNMJps+CiU1oAgMKPRFkiyzLGVaPWXuMGoG3mC0n+3YhpAmtoWyso4fJFriT9oxMh/G13L96/rI0XGU8HvvLoLhw7OYlVs+swr6kKAHjY8fioYtTYDtXjsuOiU1tx6bI22KzK5oKFH0nST5QTk6EImIK/rdaFvf0+Cj+WM6yjRF1FATw1W248tV+9eBAb//gm7v3Xwaw+bzETjcroHfUDAPq9yr9jgTCG1SGgx0eU20RJPwBu0ADNqFGOkygnWOhRkoDWahcACj+WNSfVeVp1BfXUsruIHh5SvJN9/WNZfd5ixusP8Z6NLKQsdt3vGZmELMuaUCROuNntoPAjUX6MB5TrudJhQ7UauSkG9SOFHzPkmT39eOKNXuzr9+Fr71uE8xc36/6uhR8LkVPLjVBkQPVUDg+NZ/V5i5kTY9qwT+Z9i0YtGI6iz+vn5zquUaOcGlGGsHxaldPG63GLIfxIRi0DjgyN49MPbOe/P7LtaIxRGymop5YbSf+ALwBAEUnIsgxJklI8ovRhYUZAM2pHDfPR3j7u5f+viqN2pfAjUY6wkHul08o9tWIQilD4MQMG1cWdMRJnyjELPxbCU+OS/izn1JinNhGMYHAskOLe5cHwuPY+43lqALB5zwAAYHZDBayWWEPvViX9peipbTs8jJU/eAp/ef14oQ+FKDL0npoafiwCTy1vRu3WW2+FJEn4yle+kq+XzBnGItp4Rm2kgOpHJ/fUshd+HAuE+dQBADg6ND2mOYvhxxFm1FQZP3NU//lWHwBg+czauM9RyuHHZ/cMYHg8iJ9t3g9ZLnyzWqJ4YH0eK502rU6tCHJqeTFq27Ztwz333IPly5fn4+VyDjMWbKQI88oY4UiUu+YFUT8yoUgWPTXmpTEOTxOjliz8eEqbUlzNDN+KmTVxn0PrKFL4XWy6sOt4/8AY3u71prg3MZ1g6sdKpyAUmQ7qx7GxMaxfvx6//OUvUVdXl+uXywssN9Jao8hYRyZDul3siPDBFqKey5WDjiL9Xn248eg0EYuIRs2rfs4s/Li6s0F33xUdtXGfw13CDY19ws778V0UgiQ0WPjRI4Qfp0VD4w0bNuDSSy/F2rVrU943EAjA6/XqfooRZtTaVKMWDEd1IUkmEql22XT1SvkiF0KRAd/09NROjOlzaoO+AALhKCwScOYcbZNmkYBT26vjPkcphx/Fad2P7+rh5Q0EMeYXPTUt/FjoMHVOV9xHHnkEO3fuxKZNm0zdf9OmTaipqeE/HR0duTy8jPGHFQ+oodIJu1UJQYp5tUJ2EwFy01FkQPXUKlWv48jw9DBqoqc2MhFC90nlfbfVuDGrQZtyvbDFw3s8GinlhsZeYefd7w1g2+HhAh4NUUyMsTo1p41PIwlF5IL3nM2ZUevu7saXv/xl/OY3v4HL5TL1mI0bN2J0dJT/dHd3p35QAfCrO26X3YIat2K4xLwaM3CFyKcBgFPtKBKMRLO2s2bdNFbOVryTI9Mw/Dg6GeL5tI56N2bWakZteYJ8GlDaxdcsnMQ2b9NFIESkRlM/WlHpsPKJ74UWi+TMqO3YsQMDAwNYuXIlbDYbbDYbnn/+efzsZz+DzWZDJBL7BXc6naiurtb9FCMsrOeyW7nh0ntqTM5fWE8NyJ5YhNWonTG7HoDyfkfjqD7LDVH96PWHcGxYUT7OrKtAtdvGPddE+TRA69LvL3KjNhmMxGxWWE6tRW2DJIYjienNWFCT9EuSVDRikZwZtQsvvBBvvvkmdu3axX/OOOMMrF+/Hrt27YLVak39JEUKq/9SjJpiuESjphVeF8ZTE41atkIBzFOb01iBJo8TAHDviwdjavbKiWhU1nngsgzs7fcBAGbUuiFJEpbOqIHVImHN3IZET6Pl1EKRgucbkvGtx97Ee3/yHJ7c3cdvY0aM5Y/HyagRKuOC+hHQuul4CywWyVlHEY/Hg6VLl+puq6ysRENDQ8ztpQYzFC67FTWq4RIXv0Ln1KwWCXarhFBEzpqnxoxXS7ULy2bU4Jk9A/jZM114+NVubNl4AewFEMTkGrHvo8NqQTAS5bL2GbXKqI1fXXUGBn0BzFW798eDhR8jURnBSJQXxxcbj73WAwD4/EM7cPjWSyHLMg8/tta4AZzku3OCYEKRKmbU3MVRq1Z+K1EemAxpOTUt/Cjm1ArXTYSRbVk/89SaPU789IrT8N0PngJAUQcWOtyQK1jo0eOyob5S2aAcOqGE59pVo+Zx2ZMaNEATigCAP1i8g1srheN849gIJkMRbtTJUyOMjBk8NY+zzMOP8Xjuuedwxx135PMlc4I+pxYv/MiEIoXx1ADAqYa8NvxmJ9bd8cKU5P1iN5Hmahdq3HZcfU4nF6SUoqrPDEwk0lDp4PWGLHo4o85t+nnsVgsv1J8o4gLsukrter3nhYPcS7NIQGOV8jfWmZ0gxI4igOipFfYaJ08tA5hU3q0LP8YTihTQU1Nr1d7u9WJPnw/7pzAuhnUTqXRYeagB0MJq5dCo9/FdPfh/z3XpbmN9HxuqnDFF9MxzMUspKCBFr/7vb/aiT50jV+W0oUrdhZNQhGCwDQ5rkaUVYBfWU6Mu/RngF8KPDpuygx2djCfpL6CnZtPvVyJTECgMCPk0EbfdihGEMFnEITWzfOfxtzA6GcKly9owu6ESgBZ+rK/Uf46NVQ6dGMcMFQ4rfP5wUXcVEefvRWWlNRaghFgrncr7pfAjwTCGHzX1I3lqJYde/Visnpp+0Z2KN8XzadVO3e1M1Vfq4cdoVOZ9HZl3AsQPPwJaPi0dSuFcBcJaBAIADg4yo2bjHnq6Ru34yCT+7zP7yRiWGcFwFEH1eqlSS1aKpakxGbUMYLttp82aovi6cJ6aseiaLViZwLqJNHv0npqrBBZqM0wIxy+O1OFGrUpv1GZkYtSKfPwMU2YCSmE5ABwcVEQx1S47342nG3781mNv4rZ/7sMfdx7L4tEShUbcpDAvXhs/Q0at5GC5B7fDirpK5YNkhciTwQg3IIX01Pb0+XS/T8VTY30fW4yeWgk36hURv6AnhLq7oXFt0OtUPTXeKqtIJfFi6cfMOqVTClN6Vuk8NfOf9ehECC/uPwFAC2ET5QHb3DhtFt7floUfe0YmC1qPSUYtA3j40WZBreqpsU79zGOzWSSdqKLQTC38GN9TY2GqUheK6IzamL4rP6BMWsiaUcvSufr1lsPY+Mc3EM1SGzRRJDJTVXYeUruLeFw27qmlE0b859t9CKvHV+jdO5FdmPLRI0x6XzmrFjaLhNeOjuCJN3oLdWhk1DIhIBRfM28sEpXh9YfRO6q0UWr2OCFJsVOQ88X/W78SK2bWYG6TInqYSnNj5qkZc2rlEn4UvQ+xQwpTcXlcdp3XnUn40ZXlTv23/XMffvtqN3YfH83K8zFPzW6VuCCI5UwUo6YKRYLhpLtwfyiC9b/aiht/t0s3qqbQMm8iuxi7iQDA3KYqbDh/PgDgO4/vLli3ITJqGTAp1Km57FbusYxOhHgeolM1JoXi/cva8PgN78aiFg+AqfWAZDm1GPVjkYQfp9q0eUznqWlfRLYQV7u0IYhAZkatIovnKhCOcGFLjzqFe6rwLjk2K2+DxvC47DzqEJWTb2K2HBjCS11D+OPOHrzYdYLfTp5aecFqGCsNkyk2nD8fS9qqcXIihC/+diffGOUTMmoZwMJtzJjVCq2yWB6is7GwRo3hsk+9swjLhzR7jOrHwhdf//n141j0H3/HX17PfIDlhJDnEoUioqemDz+mV6MGaEYtG57akBAiPW5Qaz6+qyejcDB7jNNuiWPUbHDbtS7sycQiWw4Oxb290Io4Iruw6IYxxeKwWfCfnzgNlQ4rth4cxs1/3p33/BoZtTSRZVlXpwZoPR5HJjVPbW5j8tZJ+YLVq2Wa9xoLhPki1hynTm0qz50Nntzdi3BUxu1P7cs4vzSWQCjCdqPVbhuaqpSFvsppi6lbM0M2Q7U6ozaieWo/fnIPvvzILvwhA6UhEzc5bVb+XhketQs725UnE4tsVY3aded24twFjbhqzWwAha9dIrKLFn6Mrddc2OLBnZ88HZIE/PbVbrx1PL/DnsmopUkoIoOtnawVldj/kXtqBQ4/MvjA0AzDAIm6iQCAqwjCj/vUTimHTozj+X2DGT2HuEifGAtClmWEI1HuVXlcdnTUV+B/vX8Jfnz58oxypdkMP4ohUpbDBYCXDijhvt4Rf8xjUiFu1IweORsAmUos4vWHsLtHyfF9+t2d+PW1q/GxVTP539LhyNA4/uNPb5bF/LZwJIpn9vTrIgKlDtsIVrniK7wvWNyC5TNrAQC9o+lfj1OBjFqa+IXcFPPUWLjm4OA4V4zNLZLwo9M+NU8tUTcRoPAFxcFwFIdPaPO/7nvpUEbPIy42wUgU3smwzntjCq/r3jMX71/WltFrVPA6takvbKJR61EN2IDXj2511luyNkXdwxPY/E5/TEhI7GdaX+mAaLfZ+2e78kThx22HhhGVgTkNFWirUfKOmdYuPfzqUTy09SgefvVoWo8rRr77l7fw6Qe246uP7ir0oWQNcUBoIqoK1IWGjFqasEGPFkkZRwIAZ85RBmf+YecxBMNR2K1SRmKCXMC79WcoFGHdRIx5FqDwRu3w0DjCURlOmwUWCfjX/hM4MJh+j0vjIj04FuChR5fdkpWxOtlUP4plB71q+HH7kZP8tmRKw688ugvXPrg9JiTEcq6s7qhBCLEyTy1VV5EtB5TQ45p52mw5JrAZD0YQjpiPFrDzz/pvlipPvd2Ph7Yqhvkfb/XjhQyjCcUGb5HlSFy2xMPVefZQyailiThLjYWhzl3QCAA4pirRZjdU8oLEQqN5apmFHweTeWoFbmi8Tx3YeUp7Nc7qVDYWO4TF3SxGQzPoC/BwmSdBeCVdKrJ4roYET23AF0AgHMG2w8P8tkSemizL2KcW5bMyDUZAaP0GAI1CXk3z1JJ3Fdl6SDFq7xIGpop1TL40ZP3sPJVyLu7keBA3/eENAFoD7O/95a2CKAKzjbHvYzwyba02VYpj5S0h/IYvP6AYMdZaCCge5SOgeWqZ5tSYp2bsJgII4ocC5dRYPm1hsweLW6sBAAcGpu6pnRA8NXFRngrZVD+K4UcA6B8N6Ix5IkMwOhmCT32vxibUYu0loPfM2eKUyqgdUkVSS2fU8NvsVgt/7+nk1djxjJZwKcAfX+vB8HgQC5qr8JcvvhsNlQ4cGBzHX9/MXKkLAHv7fDgyNJ76jjnEzPejgoer87s+kFFLE557MHTBP3dBE/9/seTTAFHSP7WcmrGbCFD48ON+1VNb0FKFec2K2nR/BkbNuJMUB59my1Nj5yobu1bWvovRNejThRMTGY9jQk2b8XrQNmtqnljw1KpNhB8jUZnP3DOO6dHyaul7aqVs1P57h6JC/dTZc9BY5cQVZ3YAAF7YdyLZw5IyFgjjsp+/iMvv3lLQVlSsc1Ky/rZsEzRBnlpxw7wSl0OfID13fiP/f1F5alMUiiTq0A+IRq0w4ZR93Kh5MF+dPt2VkVHTL+iDPs1Tq86Sp8auiXd6fbrw4P0vHcL/fWZ/Ws/FcmpWtXDsb2/26QrQE4X5jp3UlITGjQivU7PF8dRihCKx15KYNzGqZLXhkeYNFDOypVrftrtnFO/0euGwWvCh5e0AgHeraYoXu05kbJD6RifhD0Ux6AsUdLYdM2rJyluqKKdWGvjDWucFkbPnNfLi1LlNxVGjBmiLVKZtspJ6aixPVIDwYyAcwWFV7r2wpQrzVU+t++RE2gaceR6z69kctYBQeJ0doza/uQpzGysRjETxzJ4BAIp68wdPvI3b/rmPl06YgYUfF6rdYv6sFp6fPqsWQGKlYTJPTQs/6hW9lQ4rN57JJP1jqiG1W6WYWX6JFJBdA2P49p9268b9aMdX2uFH5qW979QWPkh45aw6uOwWDPoCPHSeLroRV+OFOzfsteuSGLUKHq6m8GNRYyy8ZtRU2HHde+bivEVNWNFRE++hBYEdZ6ZtsrQWWUlyagUIPx4+MYFIVIbHaUNrtQuN6ngYWdZGppiF7STnNCrd6UVPzePMTvhRkiSsW9oKAHhydx8Apa6ROVh9Jo1aNCrzkTgrZirXGRMefPbcuQCAsWA4biF697DmqSUKPxo9tSrBqPOddzyjxiXetpg6Pj480uB13fviQfx66xH815bDMc/HIiI+f3jKbdDyTTQq843G5WqdHqB8X5hSWmwhlg7DQuhZHHeVb9hx1CcJPzJJP4UfixyxnsfIxkuW4IFrzuILQzEwlTZZE8HE3USAwubUDrN6wKZKSJIESZK4t9aVpqyfLdJzhInXTFCRLU8NAK9xe27vICaCYQwLixKbhJCKkckQX+RPFQQZC1uqcMGSZgCALIMfv4jeU9NfD36DUIR16hc99GRCEbYJqIpzvlgI15hTY8djHJME6EtQxkqsGfKR4QkMjwfhtFnwbiEtAWhK6ZcyNGojwjUzXCCjNhmM8O88G70Vj0xn8E0VMmppYuz7WOzwnFoGnhq7GCVJCUMZKWz4UZtpx+B5tf7YRTIZLKc2WzVqAz4/Dz9Wu7PjqQHAqe3VmFnnxmQoguf3DurCR/0mPTUm569x2zG7voLfvn71bDhtVh76iyfrF41a4pya8viVs+rwvz+8FLd8ZBm/TzKhiOapxZ6vRJ4ae8974xg1MVxeaiFI1lVlSVt1TI3jOaqR23pwKCNp/7BwzYwUyKgxD9FuTT5ei+rUSgTjjrbYYV5jJkKRgNC5PV5rqEJ6apGocmziopGxp6Z+6Ra2KI8f8AV4f8VsemqSJOF9p7QAAF45NKwLH5nNqbGGy41VDnQ2VkKSlHKBj6ycoR5vfKWhLMs6oUhMTi2sv64lScK/v2s2ls3UvMHKJINCx3i4Np6nFj+nxton9YxMxhhh8fhKTSzCjNrSGdUxf1vSWo0atx0TwQgXOqWDaMgKlVMTlY/JWsZp6kfKqRU1YjfzUkDLqaW/K+RNbhO8V2bUwlEZoTS6RWSDUEQJwdks2pdqfkv6CkhZlrnn0VFfAbfdClnWlJXZkvQzmHc16AvojZrJ2VPM2DZUOdFRX4G71q/Er689ixuORErDkxMhLrkHEntqxlyxSLI2WWMB5fXihh/5MWmPGw+EdSpNo3BCNGqjkyG83j2SUWF9IWAz7pa2x+bWLRaJj4M6MDiGff0+rL39edNTJsRrplA5NWZMUzX2TtVWLVeUxspcREwrTy2sD0kZcTm02/PtrbG8ktUieGpq+PHQiXHTLZn8oSgXa1Q5bTyXxJSV2fTUAKBJzVEN+gI4OS7m1JJ7apGojFcODuGoKvZgdWTrlrZh1ex6fj9mhI2yftFLA2LVsGauax5+jBNOGkswigSI76kZhTFGr8UvbMJOjAXwyV9uxfpfbS36psCyLGN3j1IzKBahi7DN1/7+MfzptR50DYzpBqomQww/FsqosVyeODg3HpVJhEW5JLvf2GkAy02VTk5NE4rIspxWh3lxHEk8HFal52JUVvJq1Vn2apLBjJbdqr2fGbVu2K0SQhEZ/b6Aqf6b4gLttlsxs86tK+DOvlFTjNHgWEC3QKUSivztzV588bev8d8bquLvkjVRht5TO2YYJhobfky+gQHMSfrje2paTm08EIbVIqHfIOMX82qhSFSneHyn18e9zJ6Tk1igejqZEIpEs9LLMxHHTk5idDIEu1XiJRdG2OZr/4CP13iabfhcFOHH8dQ1aoAQfgxFEI3KsFjSn26RCeSppQkvvi6R8KMYOkw3BGkUDxiRJKlgeTUWfrQKXxSLReI9KntHzE2E5nOhHFZYLBI6BPEFgKwb6kbVGA36AroFytiL0YjRKDVWxZZYANrxGnNUTM7PNgHGz8vYJiseVUnUbCz8mCynduzkJM6/7TlcfvfLMeNIRKNmNLjv9GrdUnpMfq7x2Hn0JJZ99x+45/kDGT9HKlg+bVGrB44E35sFzFMbGOP3H5k053UNF0H4kcn5k3UTAbTrRU4xLT3blMbKXETwxq9FJNtPhnic6Rq1VDk1QFMfFir8aNx1t6sjT46bnOFkbMzKwo+MXHlqY4GwboE+MRZMmpdkwhjGnARda+LlrwB9s20gdZuseLBz5A9FY8K7Yp1aomPqHfVjwBfA7h4vXutW8mNMnCOGH43XkmjUpjKb67WjI/CHtOL3XMDyacsShB4BYEGz4sEdHBznBmJkwqynpt1veLyw6sdUnprLbuENKfIZgsypUdu0aRPOPPNMeDweNDc348Mf/jD27t2by5dMi2hUxsOvHI0rKU5EqeXU7FaJX1iBNA1PIJQ8/AgUrqlxSF3kbYaQRlttep4aazDMFuyOOr2nlm2hSJXTxg2HsU+lsVGxSFD1TC9d3oZf/I9VuEQt5DaSyFNjw0TnqcNrja3NtJ6miT9rccrxuOHzTl6nFnsON7+jGJZ3z2+CJCn9LNlECGO+TxTRHJ+Cp8beo1iEnm1YD85T4ohEGC3VzhiP1kzZQjQq67x7s4YwG4wFwrj0Z//CVx55zbSnppuWnsf1IadG7fnnn8eGDRuwdetWPPXUUwiFQrjoooswPl7YDtOM7UdO4luPvYlvP77b9GP4lz9O3VYxIklSxgXYARO790KFHyNM/Wg1GDXVUzO7o9c8NVZ0bDRq2fXUJEni3ppxp50sr8a8uBaPCxed2powL+RJUOh8XB0mylq4GTc4fJ5aks/aabPyGYLGHFByTy3WqLHPp7OxgitCmWo1majpeAZTvRlMZNLr9eds/Av7DGcZwtgikiRxsQgjEI6mFHN5/SGIzVWGJ4J5a2q8+Z1+vHXciz/tOo5u1etP5akBqael54KcGrUnn3wSV199NU499VSsWLECDzzwAI4ePYodO3bk8mVNwxaVdNz4Sb6jLZ3ILcuJpdsqK5VQBJj6FIBMCUWZpN8QflQ9NbM7evZlY5OpxRFC2RoQaqTJkA9jXe2TKSBD6mdhtyVPtjMD4gvE99Q6G5inlkgoknyzxs7PYcPok7Eko0iSbQxaa9xoVwU97P0n23xNxVNj43ZkeWrPk4yTJtpHAcCC5tj+sKk8L9b3keVFg+FoTjaTx05O4NoHtvGhrwDw9DtayPbNYyMAkvd9ZBRC1p/XlXl0VIk319fXx/17IBCA1+vV/eQS9kVOZ0FO1iarWMncU9OmISeCe2rB/NapsRyT1Rh+TNNTmzBI0Wvcdv7/bIceGcYp4otalRxLsgJs5qk5UhjZeJ6aPxThC2JnU4Kcmsmw+rwE0xCSdRQRZ6otbtUrAlurXWhVxT1M5p+s+w0zzpkwGdLOydEEIciJYBgv7BvMqO5SlmUu5EjWPgrQ8moiqUKQbPPdUu3iIpRc5NX++VY/Nu8ZwENbjwBQjOdzQh6SeYupDDcgKCDzWIqRN6MWjUbxla98Beeccw6WLl0a9z6bNm1CTU0N/+no6MjpMbEQRHpGrbRyaoBg1NL11FKoHwEtDJvv8GM4woQiRqOm5tRMLn5GoYgkSVwsku3QI0M0ahZJ27UnK8BmObVURo3XhAk5NWbg3XYrNyCp2mQlgndtMRi1ZDk1QCtBuOGC+RCrSlprXLyvKOvWnzT8OOrPOOQmDmjtPhnfqP2ff+7Dp+57FY9u687o+dmakio0x8KPFkm7ZsV82R93HsPLhv6QI0InD2ZQcpFXY9cGM7KvHBqK20s0VZ0aoNWq5bNTf96M2oYNG7B792488sgjCe+zceNGjI6O8p/u7vQvrHRgnkg6IodS6/0IaAtVuiFCM+FHt5qDKZykX38Js9q0E2NBU+FWtoMUe1uyvFqu6u5EOX5thYMvaknDj6wuL4XRiVd8zUQzbbWumLpFQPEwjG2yEpHIqCXLqQHA9z+0FN+4eBHev7SNe3t2q4SGSgda1QkQrKyBbRzF75gkKT/BcDRmSKpZxO95Ik/tX/sHASTvSvP77d34zIPbY8Q4zGty2iwp14eVs+owo9aNS5a1oZUZNdWIHB+ZxI2/ex2fe2iHrl6PCzQqHdyg5MJTY9cae39Pv90PADF1n9Myp8a44YYb8MQTT+DZZ5/FzJkzE97P6XSiurpa95NL2K5qMhQxvfvTvvwllFOzZzZTjXtqJoQi6SorGdGojF3dI2mrJ7Xej3pPrbbCzj+beHO6jLAdZKWwGLO8UT48tboKO/dUzAhFUuX4uKRfCGWx8ob2GrfuumXXsljqkeq6ZkbtgDDeR5ZlbtQSnbPzFzdjw/nzYbFIXO7e7HHBYpH4os4+L7ZBEscdtXhcPBfZm6FYRNx4HRuO9eRHJ0K8XVeyDcbPn+3C0+/0429v9upuF6XuqZoc1LjteOmbF+Dnn1zJc6rMM2Kv7fOHdblL5pXVVdi5QclFrRpbF1lZyPP7FEO/4fz5/D4OmxZSTgbLqZWNUZNlGTfccAMee+wxPPPMM+js7Mzly6VNUF0oorK280+FVnxdOp4aE7WkHX40k1NTL+ytB4fxwTtfjAmZpOKpd/rx4Z+/hE1/fyetxyUSikiSpNWqmVj8xg3hRwCYq9aAGQUd2UJ83roKBy8YTyZe0HJqyRdL0VNjGzXuqdW4dNct89zFzU6q65qpJ0+MBTCqLrL+kNYBJFnXdsap7cpmlRkzo1FnxyWOO2qvdaFN9RQyLcCeTBF+3HlU6y2ZaL5dKBLl6r/th/W9KM1K3Y3UMqOmns8RYUPy9nFNVyA2EmavcTIHnho3aupxsPD1exY28g1ZfYpmxoxkTbBzRU6N2oYNG/DQQw/h4YcfhsfjQV9fH/r6+jA5mRvlUbqIX2az4TMzRarFxlSFIskWOva3p9/px5s9o3jstZ60XoOFecQCWzMkkvQDQq2aibzaeJzw40dXzsRN6xbjy2sXpHVMZtF5apUOLGlTRANdg2N8tIyRYDh+sbkR1iYrGInyz495am21btitFl7bx64Hdk1bpNi6PyNVThsPl3YNKvWdTGnJJgak4gPL27Fqdh3+/V2zAIDn+QZ8fkSjMvf66ysc/Hhm1FVgRhqfazwmUoQftx0e5v83tvFiHDs5yQ34dkOD5ZMmRSJGall+bJIVYmuG6u3e+EaNhR9P5iCnxjb7Xn8Ik8EIv47qKhzcyzajfASS9wvNFTldme+66y6Mjo7ivPPOQ1tbG/959NFHc/mypglGtIvcbL5JS6iXjqeWeU4ttXjAmDtIVkAcD/YFNjv5mZGo+BrQFJBmZNvxPLVKpw3XnzePd9/INqJRq69woNnjwuJWD2Q58URks+HHSoeNCzGYWIQZgXbVGBlrC0VFr5ndtzGvxvs+xpl6HY/WGhf+cP3Z+MjpSiqiyeOEJCnRkuGJoJZTc1h5iUJ7rSttZasR8fofmQjF5MREIzXgC8SdHn7oxJjw/3FeMA5ozYbT9dSqDeFHUfzxluip8e74+Qk/hiIyv3bsVgkVDiuWql52vUnDzTY5ZSPpl2U57s/VV1+dy5c1jc5TM5HTiUZl/oUzsyMtFpg3lX7vRzNCEf3fBtM0amyn2T8aSEvVFo7T+5HBFm8zrbLGeU4tf5+nTiiiLg7vXdgEAHhhXwqjlkIoYrFIvFsFk/X3CZ4aoOVYefjRpEiEwYQeLK/G82kmQo/xsFstaKhUzkm/168bg8PyTTNrtXq2TMOPE4bveLeQVwuGo3i9e4T/Ho7KcQUph07oPTxxHI7ZRr9GWPiRGTPRqInhR607voN7d7n01ADNo61xK+HGi5e2wuO04fxFzaaei3lqE+Vi1Iod8cMzk28S78OKdUsBPv06U0/NRO9HxglfejtH9gUORqJpKbkS9X4EtMXbTKssLfyYv8/TZbfyMCGTZr9HNWr/2j8Y17ibzakBsTt/5rEyY+8yKFa1FlnmloN5iTy1KQhrmCik3+vn3zOnzcpDnfOaqrTNSqY5tZC+JlEMQe4+PopAOIq6CjvfdDDBxoDPj4/8v5fw6y2HcfiEYsiZQ7pdCFkOT2SYU6vQf15ivdqJsQBXhZ4UcnbMU8plTg3QWoqxYzy1vQav33wRPnPuXFPPVeksY0l/MZKupybeJ1U9TzHhylChqPV+TFKnZtjdD43HD9skQswfpBOCZIt8vJwakx4fGUrd4288hRQ9VzSqIUi2AJ4xpw4uuwUDvgD2xOlFGoyYy6kBygBRABgaC2A8EOYqtlZD+NHPjRprkWXWU1PCsofUBd6XhXPYKohFxFrQH35kGW7/txVYM6+Bl1p0x1EumoF9f5lRFnNzXarqcemMmpgSi1cODuO1oyP42TNd/D2fPa8BALBN8NRGTDb6NWI0aiOGkOJbx70YC4RxUH3tzqZKwVPLsVFTRTG1QquzdEbIsIhW2agfix3RUzMjFGHhC7fdmrfZQNmA59Qy7dKfRvgxFJFNNWdliF/KVIMyRSJc/Rj7ObBk9sET4ym9PxZ+rMizUWPTj9kC67RZ8a65ykL5giqhFuFtskwYtSY23mYswBduj9PGlZHG1mZmcqciLFTI1HGap5Z5XZ9YgD0phB87Gyvx0ZUzIUkSZjUoRu2EaqwZj+/qwQMvHUr6/OFIlH/fmfpUDEey/KOiRlX+3idI6wFlXNCrhxTP7PJVSj7wrZ5RnkcW68jSocYYflTPK7u23z7uxfbDw4hEZcysc2NGrZt7+Dnx1IR18YhaUmCm0DoeVeXcUaQYEXckZkJzvPC6hPJpQKyn5g9FsE39kiTDlFAkzrlIRywi5g/6Rs0/LpGkH1AWFSZm2GFQqBlh4ceqPObUAOBHly/H4xvOwcpZtfy2CxcreYr/3nEsJgRpVigCaEKUE74gL2tgilBA9NSiun/N5tT47ls9d1PNqQGip+ZHolZ0NW476tTFlXnhsizjf/73G/juX95OWpcoblpZ6E6MXPiE3pUthhKDMaGPJlvwz5nfiBUzaxCOynjgpcMABCFHmuHHGjfrDqIYKJYnO62jFgCwq3sEr6jGdHWnsvGpy2FOLaTLqU3qjjFdtPAjGbW8IHacMNO7UPTUSgmjpP+2f+zFx+/egj+lkN+bERCwc+GyWzBb3UkPJmn3JCLLsq4mpy8NqTYrvo4XfgSAM+fUAQC2HxmO+3eGsaFxvqh22bGio1anFrzs9BmodFixf2AML3UN6e7PFlNHiobGgCZEOSF4akw5CGg5UhaOE4UZZmBGjdWnGScdZEJrjZbHCsTpKMJgilTmQYwLkvNk4Wtm1CRJ84zEyIVm1OyaUVON5JhhNl2lw4qmKieuP28eAOC/thyGzx8y3ffRCPOCfIEwIlEZo+rzfOi0dgDAs3sG8I+3+gAAq+fW615jMhTJejPxZDm1dKkqtzq1YieQpqc2WaKemtNQfL1PTfAb62yMmOkHuKClCk6bBRcuaeG7bbMKSK8/rPMW08upJfbUAGDVbOXLbyyQFQmGo/x5KvMcfoxHtcvOw1oPvKwPp6UVflQ9tUFfgHtq7fE8NUNDb7NlKuIGYDIU0fo+xmlmbBYefvQGkhpZtnE6oi62YueUE0k2U5PChlRrwi16aurkbpctpsGyse9hZ1MlJEnCRae0Ym5TJbz+MH7zytGM1Y/MyMqychxso7dmbgNWzqpFOCrjoKo0XaOGqKucNh6ezHZeTTRqbMNSG2d8kBmMXn0+IKOmYianNlminppRws08qb19yQuezUy+nllXge3/sRZ3fuJ0Lew1lvxL5vWH0Ds6yTsoMPqStIkywiYvx5P0A5qn9uax0YQbFjEvU1kkG5VPnT0HALB5zwD3RoD0hCKpPDWj555u6zeX3cLVfxPBMA/PTUX9yAuwBfVjvAiB0VMTGzcn20yx73eFwxrzfQA0T63aZUNztV796DN4anPUY7BYJHz+vYq3du+LhxBWN2jpqh/tVgu//obHgzwnXVNhx6fWzOH3a69x8WbbkiTx3F22+z/GK/2ZuqcWztvst2lt1NLNqZWqp+bi89SU98uM2r7+saQXmpnJ14ASsrFYJL6Ypgo/XnHPVlxw2/M4KBSyAvHDj0Nj8dWUmqQ/vlGbVV+BxiongpEo3uwZjXsftgt12iyw5WBuWibMa6rC2fMaIMtazz0gs5yaIhRRc2o18XJqscXXZhAnGk8EItostSl4uyzkNzQe5PV18a67OaqndvgE89Q0g5PMU5sQ2tvFG2zLGzK7bFwlyowae39MQMJyXQDw/mVtcFgt/JqvcFgzaqHH1IzHTk6CfSVr3Q5csqwVDarxWj23QReuZvnFbHfqD8YZu1OTpqFmsAhIVE6/o1GmFMc3uUDoPLU0JP2l5qmJardwJIqhcZYAD+PYycR5rHRVcZqnltyoHRgcw2Qogi0Hh3TPb0z07zx6Emf88Gl8/4m3Y56Dhx8TLPKSJOGM2WpeLUEIki10+Zbzp2L5zFoAwP5+zeibnacGCJ6aTzNq7bWip6avW+SeWhpdctxCWEk0CJlSJzSiZrVgycKPrMZM7AqS7LrzBzVPLV7bOB5+dNrR4lGM2smJEPyhCH9/X79oER66djWuUr1pQLl2WJ5LeR+ZLf4sBMk80EqHFQ6bBU6blTcS/vDpM3SPYa+VbU8t3iy5ugw9Nbfdil9+6gw8/JnVCfPf2WZaG7WgIBQxU3w9UYJjZwB9uGl4PAjROdsbpyaKYUbSL9JUldqohSNR7iGzDg4LVXm71x/WbS7e6B6BLANbDw7FPE8yST9jsdpTMdGYEbZYVeRZ+ZiKheqsrX392mejdRQxIxRRFrvxYIS/91bBU3MZcko8p5ZGP1MWLpsMijm1zI2a2Iia5bCShR+Pj04iEI6YDj9ykZfDBrcjdhK8qH6srbDzIZyDvgA/nroKB969oDHGW2aqVSD9fBqDhfcODzFhhvY8n353J/b/8BLedYZRV6FXTWaLYLzwY4bqR4tFwvtOacHZ82PPW66Y3kZNrFMzoX4Ud3ulhFMIPxoHUe7tN2HUTC52jR61PipZGEgI+ezuUXJ6HfVuvkiKYhGWmzsyNBErcU/S+5FRzTvWxw/PTBSgm4gZ2FRk1rFDlmXumZrx1KqcNu7lsAWqPV5OLaz31NJpKOB2sEa1kax4aoDemxSPU6Sh0oEqpw2yrBRh68OPiRd3njqwW7hHOqmrU9PUj5Ik6WrV2PWT6P1dsLiF/z/T3BN73H71M68xCDPiGQQtp5bl8GMWc2qFYFobtXS79PO4fIkZNbFOzbibTeSphSPaOBGzYammKsUbSOapTQRi8xi1FQ60xJlYzcKkk6FIzKyxcJIu/Qw22ytRjUyhuomkYn5zFSRJyS8NjQV0Y5FS9X4EFK9HP4jUrssDa56aKhRJM6cGiJ5aOCt1aoBeoQnEj4hIkoRZ9aoCcmhcp35MKhThG1Jb3EnwovoR0ArMh8eDWs4wgVGb1VDBp5dn6qnNVzcyrO2WGSNSxzv1T91TG/D5uUAlnlGrIaNWGuh6P8Yxas8aFGhcQVVy4Ucth8K8KLbjT2TUxBqedD21obFgwlZZ8ToL1FXYdcW3jEFh5y0OSwTE8GPiY2OLkFG9xhgrUDeRVLgdVq5y2z8wpstxmPHUAP0kAFH5CGjTyqfmqbH2R5Gs9H4E4nlq8Y9nTqMqFhma0IUfk0r6hdSBMacWDGtjeph3z7vgjwcFo514YV+3tBUAMp7ssGKm0gWHbZzNGLVsdOp/qesE1t3xAs764Wac95NnMR4IxwhFrEKT7FJgWhs10VMzGrV3er245oFt+NIju/htk+qCXGrqR7bjHQuEuVE7Q5W8Hxgci7szE7stmF1I2e42HNUXVYsYO6UD+kGZA4JHxjw1QBMPMEIpJP2AODAzefgx391EzMBCkPv7fTqjZjYvIXpq7TV6D4gv6kGjUUvHU9PaH2Wj96NynKnDjwAwq14xHN3DE7rwoy8QTqhi1nJqVq2hs3qb6MmzAnJmME6MBTRBURKjfcMF8/GfnzgNnzk3s0HIrLUbw0wHj2x06r/7+QO81+jJiRB6R/0xA5Nr3HZTI4WKhWlt1JL1fmRteA4NjsXcp5SmXgNKLZlFUvIGbJTF8pm18LhsCEdl3qRVhC10DqvFdJ9Lh83Cd5iJQpDxjFptgqGH4nMcNjQnTtaln8HDjwk9teLMqQFKUTugeGrsOrVIyY24iGjU2oxhPYcxp5a+UISJa0YmQnxTlMyTMUOMp5bAyLYKdWS+gH5BT5TPjeepsffNNj0VDitX0zKjJoqMknVMcdqsuOy0GdzTS5fmahePVgDm1IbZ6NRvVE7G2wBmWnhdKKatURNzRkCspJ8pirx+bfc3UaJCEbfDijmNyu6WDaFsqXby3ETPSKw6MJOQFKCXk8cjXmeBugo775cnKrmGhCLuRJ5aspwa8xwShR/jDQgtFpintq/fx3fO6ajHkoUfmUfGi69NTGMwwr4DovBoqjPpjDm1REa2mU/KDug8NSBxXo1FWSoc1pjel744OTOmLGSbWyavzyXLZmrempnwYzY69Rubj8drRl5K+TRgGhs1Y9zYGLYQPQa2+/OXqKQfAJa0KhNr2UXb5HEKE6Jj21NlsnsHNFm/UWXJiFcPWFthR60hPzARDOu8usQ5tdThx7FgOG6OrxADQs3CZP1dA2O8RZbZMDCgdeoH4ggwBDk+MLXwI5v15bZbp1zALnpqkpTYyDYLbcC8Bs8i0WZKjLK4DMXXXi4S0RZv5gWx3ofVU8wXmmG5EII0I6FPp1O/LMu45W/v4Lt/fkunJGZdfdi5Fo0aM/LkqZUIxjySsdpd3P2wBbpUO4oAwBK1ZovRVOXki11vnE4eZruJGGkxtBgykij8WGcIPw4ZWm0dHhrXfRl5l34T4UdZVjzE323rxi9eOMD/XqhmxmZg06VPjAX59WdG+chI5qm5bEahSHpF9oD2HWCq1KmKRADF4LCwn9NmSZjHYe9NVOxpYe/4C/yErvhaeZ+RqIxQJBrXU6tX88O96nWcD4Ws6KmZ8Y6YN6k0dU6u3v777j784oWDeODlwzykGo5EeT6UdZxhpQ02i8TPaW2GBeWFYtoaNWN/M2NOTdz9ME+tVLv0A8Bi1VNjNHmcvCC3N46nlklBLqC1O0rUnDi++tGhjdJQzzsLI7VUO2G1SPCHojpZP+v9mMxTc9osvI3WyEQI33rsTdzytz0xn2exSfoBJSTKvAO2QUjUEiweupyaWaFIWsXXqqemHlu21HFso5XsO9asdvzwh6K8C81cNbyeKKcmjo0Sc+JiQ+Z4nhrbR2XDaKdimc5TS23UPC4bz7Ema5XlD0Xww7++w39nzZG9QliehXRZiYTDZuE5UmPNXLEzbY2a0VOLMWoTolFTvjiTwdL11BYbPTWPk6vNeuPMocokJAUgropRhBkS5hWwUSDG+VDMU2utdqFDlbezEGQ0KoNFE5MZNUmS+EJ1dHiCN5xlebuxIs6pAdp1xsJjmebUWmsSCUWMObX022SxzUe2Fn12TSYdd+SwciPKrlPNs01+3bntVtULVG73hyIY4y2yYnNqjHxsfBqqnFjc6oHVIpkqDbBYJG78ekYmdeVHIve+eAg9I1o05oAqfmPfA4/Txt8783ztVguq3cptmbb+KhTT1qgZ3XV/MHFOzRh+LDWhCADMqHXz8IrLbkGV08Z38HHDjxkKRdgCmtBTUw3JolbFyNa47bBaJD4famQiCFmW+eLUWOXkX3AmFgkL+bFUeRz2nsWcHDMSXChSpJ8n81aYGCKdnNqs+gp8cEU7rju3M8ZYGTtqZBJ+ZHlIJmLJ1qLP8mqpFMZN1U7d73NVo5bIUxMl/ZIk8XMQCCUKP+oXcs8Upnqnw0OfWY1/fOXcmI1IIlhXkWsf2Ibzb3sO++N0CHpmzwAAZQ0AgAOqpyZOA2Dnm+XYHDYLL9Gpryoto1acW9Q8kDL8OBEbfmSLQKlJ+gHFa1nSWo1XDw+j2eOCJEk819I76ocsy7ocRiYLHaDl1BJNIWaLy7vmNmDZjBosaVPComw3GFaHTg6pRq2hyoFKpw3P7xvkLb1E1WoyTw3QFtsjQkkAMxLjQSYUKc6vAWtFJe6ezSJJEu688vS4f3M5tJyaLMsZeeXGPGT2jJpLPZbk77WpysnDaIpnoyh5E3lqfsOG1GW3YDIUUcKPgVijVu1SNlvsWstX8XFjlVMXOk6FMRf9+rFRLGjRR2XY5u1dcxvwh53HNE+NGTW3YNRY+NFqweffOw9NHic+sKxtCu8o/xTntzkPaB0EbPD6wwirSWO2cIg5tQGDUStGYYEZFrd58OrhYR6aalGnDQfCSqPjBuHLxENSaRpwHn70xRpKQDAkDhu+9f4l/HY2EmQyFMHJ8RBP+DdWOXlo6S21xo71fQSSS/oBbaE6ksxTK0L1I6B1/uBGzUQzY3PPq7xfWVY++0xyasZoRbbCjzPrFOOUykg2CzVd1S4bv+72D4zB5w/FeFZa+JFFK6wAlC78vjjqR4tFQl2FnV+H+cipZYIxNNgdp3k3M+intlfjDzu1nBrzypQ2aspnz74bTpsFy2bW6MQrpcK0DT+ynJqoMmIffiQq66Stg0b1Ywl6agBw+qxaANqQQ6fNyneFxrxapuFHlsQPReS4IzFYvVA8QyL2sjvBPTUnlqoJ9LePexGNyrzvI5C8TRagLVR6T81o1IpzwWKbJ28GnloyxEiDPxTh3WPSq1PTn7NseTIXLG7G+tWz8KULFyS9X7OQM/S47Fg+swZzmyoxOhnCnc90xdzfmA8Xa9W8CXo7igajGMVEQKxRizdKalIwaoDizY5OhjTlqNuhhbr9WvixVCndI58izKhVOe08aczrViZDEMuaBnx+hCJRnsspRaEIAHxweTvuWr8S33r/Yn6bJutXjFr38AR+8MTbPM+WrlFTYvHKF83YhBjQPLV451AsJtVyag7Ma6qE02bBWCCMI8MTCKuemmSiw4YnXvjRz8KPxdtRBNCMTyZCkWTYrZoqdDIUyTD8mBtPzWW34ocfWYb3GMasGBGFMNVuG+xWC779gVMAAPe/dAjP7OnX1bAZ8+FOoVYtnvoR0OfVitVTW7esFR31bnxs5UwAwLGTsZ4aM+hNHidPDxwcHOOKyWq3nRu1TELdxUbpHvkUET0RvmtTu5YbK/RPjAX5rh4oXU/NZrXgkmVtujAja83DjNj3/vI27n3xEH71r0MAMssftgjNibsGxnQe26QQfjSiiUX04Ueb1cJzb7t7RrUO/SZaRrHdt5gz9U6GEI5EeW1isXpqzPCLeY5swT7XMTX0DqQpFInJqeVX9i16aqw11fmLmnH+oiaEIjI+/cB2nPG/n8YudWafccCv2OSbqR+N3pho1PIlFEmX8xc141//8wJ8cvUsAPE9NXadux1WzG1UQvkHB8d1NX5s8ogoFClVSvfI0yQYjmLrwSGe+GWemkM0aqo4giVd22tckCQlHMkksVaLlFa9ULHD1GbHR/zw+kN4Yd8gAM0IpOupAZoC8qWuE7jkP1/ANfe/yv82kaQptDjJd0hQPwLA0hmaUTPToZ8RbzHy+kO6uW7FmlOr4OpHtnvO3nVn3JkD6eXUjJ9fvj0ZFuYGoOu3+KOPLceHVrSjrsKOYDiK5/cOIhqVYxonaOFHzVMzdg2pE41akW58GKzspXd0EqFIFJNBRQQUjkR59yS33Yp5zUrq4cDgGEYmlY1jrdvO1aBMNJPNDVS+yfmR//znP8ecOXPgcrmwevVqvPrqq6kflAO+/8Rb+MQvtuLrv39dVXxpizbbtT7w8mFccc8Wrg5q8jh5K5qjaviqwm4tqY7VqWCy/r7RSTz9dn9M+7BM+t2xEMfvdxxDKCLj9WOjvGnyRDJPrULrjM42Fg2qnHhpu5JX23181FTfR0a8xdY7Geaet90q5bynX6YYPbVshoTYc4tFu+ksZMaNQL4X/eZqffhRu92Fn115Oq4/bx4ApXemqHTWPLVYoxYTfiyBnBqjyeOE02ZBVAZePjCE077/T3zrsTd1EQqX3eCpTWjqR3Y9sGJz8tQS8Oijj+LGG2/EzTffjJ07d2LFihW4+OKLMTAwkMuXjWF/vw8Pv3IUAPDYaz2498VD3FNTjJpyGh5+5SheOTSM32w9AkDJ8bDY/RFVVVRqA0JT0cY8tVE//vpGb8zf0+0oAmjhR9ELYLUyE0lyakwowiY+WyTN0DGxyO4eLw+XpRN+FPH6Q0XdIouhFV+ru+csLjRscWehdptFSqt3o8tmhbi3y/ei31QVG34UYbL2ff0+XRcb9r5FoYhxQCijFHJqDEmSMEP11n75wkEEwlHsPDLCjRrrpTlPHWbaNTimCz8aUypk1BJw++2347rrrsM111yDU045BXfffTcqKipw33335fJlY/jRk3sQlbXiw1v+9g6fIeS0WWMW2Dd6RgEoFzU3asxTKzejpnpq+/t9eGG/EnoUF6uMwo/VsYWjz+zpB6CFH+OqH9VFZOvBIQCKSpMJQRa0VMFulTA6GeJF2GYW4bjhx8kQb2ZczDtwttCwcGs2Q0JGLzDdz9likXQLYb4X/doKOz8f1XHaOC1UjdqhE+N8U+C0aWOU2GZtLBDm4qWkRq2IrxMGK4d46YAyiWMsEOY6AbcaYWKNsg+fGOelStVCnRqDwo9xCAaD2LFjB9auXau9mMWCtWvXYsuWLXEfEwgE4PV6dT9TZevBITz9zgCsFgn/de1ZWDajBlEZeP3YCAB9To3BXPDaCjuP3bM6p1IViSRidn0FJEnJI4YiMhY0V/G6MCDT8KNm1Ngm4JWDw/D5Q1pjWXvi8CNbhFbNrtMdR4c6KoeFMk15anEWI68/LHhqxft5Go8tq+FHuz78mG49IqD3cvO96EuSxDec8Trot9e4UOVU5gW+oX7XxfPJFnGxcbbRMIs5tUznpOUTNi2drV8TwTAmQvrrvLXaxecossbGtW5HzMaePLU4nDhxApFIBC0tLbrbW1pa0NfXF/cxmzZtQk1NDf/p6OiY8nH0e/2odtlw5VkdmNdUpUnY1Sa+Yk7NSH2Fg8fumadWit1EktFc7cJd61fh0+d04qOnz8AtH12Gzkat71wmnppo1C46pQVzGysRjsp4ft+gZtTieGrGGVKiUQO0LyYzSGZyanHDj5Ohou/7CMRea9kqvgYEo6aKBTL5nEUjEe8855pG1ajF88YlSeKDVu97UVHyMgUtoL1/Njon3rw0XU6tyMOPANChemqM8WAkpguSJElYZOg4Ulth55MbGKXsqRXVJ7Vx40bceOON/Hev1ztlw3bZaTPw3oVNfPfCRkqIF3Mi76u20oEGNRbH1I/FvLPPlHVLW7FuaSv//em3+/n/M5P0a/mOc+Y3orHKiYMvHsJTwvPGO4/GQlKjUWMKrTE1dGifgvqR1agVc1jJeF1m01NzGYQiUzVqhTiPnzizA+FIFGfPb4j794XNHrx2dASvH1PSCRefql3jLI/erUrgm+K0phJ7HharQlaEeWqMYFjrayleSwtbPdh+5CT/vcZtx4ky8tRydiU2NjbCarWiv79fd3t/fz9aW1vjPsbpdMLpNN/3zCziPCBWGMyKqx1WvafWWOXgNVJ1FXaeh2OUW/gxHnObpuap1Vc60FjlhHcyhHcvaOR5sT29WrNVV5ywZr0u3GPThUEBobYqoCzEqQqvAb0H0exxYsAXQCgi87BTMW9SjMeW1ZyaQdKfSZhZ9HIL4clcedYsXHnWrIR/X9iq90jed4oWNWLX3zE1BCcWczPaql04f1ET6iocRauQFTEaNQAYGlfyZmJ4UfTU7FZJNw2cUcpGLWdH7nA4sGrVKmzevJnfFo1GsXnzZqxZsyZXL5sSY/dtp13z1CwS8LFVM7X7VjiwqNWjE06UajeRdOhsFHJqGagfJUnCQ585C49+7l1oq3HzjcHBE4qqscJh5Ql7ETH8uHJ2Xcx92O6aiTzMCEXExbajvoIbQjbtu6jDj3nIqTH1YyafMzO6Dmts6K4YYKIIAFg+s0Y3WZt9j4fUxgDNcYyaxSLh/mvOwu1XnJbbA80SLOcswjZv4sZ9oWDUatwOZWpBDqMC+SanR37jjTfil7/8JR588EG88847uP766zE+Po5rrrkmly+blAbDGAWHVVM/Lmzx4F2dWiijtsKBCoeN90oEpqOnltn7XdxajdNnKeFDJjVmY0oSeUdVThsXf6yaVRfzdyZmYAWiZoQiVQ4b35TUVzq457anTxEhNVdnPzKQLSpyuNBUZDH8WKz5JnHxFkOPQKwwppivA7M0VjnxtfctxI3vW8g3iGzenfidE419jVrjV05CkZxejVdccQUGBwfxne98B319fTjttNPw5JNPxohH8gmbEcRwqrPFAGDFzFpeDwVoXt2SNg9X3E0HT61BXfx9/nBGi52R1mqXboxHotowSZLQWOVEn9ePVXNijRrPqal1RWaEIhaLhCqHDb5AGA2VDlS77BiZCOENNc8yr7EqxTMUDuO1lk2hiHF+ViabF/Y5FmtestnjxIxaN/q8/hijZtycih1KSpkvqo2gH93WrbSb8ymemvh+G9TxNifGAjw1Yzwf2fjeF4qcX4033HADbrjhhly/jGmM4UeH1YIrzuzA8EQQ1507F00eJ659dydGJ0Nc8LC4tRp/e1NRbE4HoyZJEs5d0IjN7wxgfvPUF32b1YLWapcpsc3G9y/G7p5RncfMiAk/mvDUAMWT8AXCaKhy8O4TTP3YKXilxUZMniMHdWrM652Sp1akRk2SJDz46TMxMhGKuY5dhnBrvPBjKcOELTynZriWFrVW4URXgE/OLqc6teK8GnOIMfzotFvQUV+BWz6yjN/Gun0z4kmBy53/e+VKjAfDWWvkOqPWbcqoXXbaDFx22oy4f9OEIiz8aO6L53HZ0DuqKF+N9UZzG4vYqOUhp8aYSk6tWMOPADC/2RP3dqNQqRzCjyLMi+Y5NcO1tLDFg5e6hlCjGjWrRYLDauFt8ko5/Fi6R54hRtm4mR3JYkFFVcxquWxisUhZ7UwuKrMybU3lNho1kw1+2Re3scqhM2rVLluM515M5FLSHxtuyjz8WOzNfuNh3DCUS/iRwbxnNsLJ+HlfdtoMzG+uwqXLtanWovdaykat9K7GKeKwWXi+CDDXSWFmnZs/Zrp4atlmhs6oZXYOXUJrI8B8+PHad89FXcUxnLeoGS91neC3z22qKurm1Ebjn80u/cadeybhRyZGqK0o3o1BIso9/Mi+Y8xTM65bp3XU4ukb36u7ze2w8m4+pax+nHZGDVBUQsyomfHUJEnCKW3VeOXQcNw+c0RqxHq/zI2avhei2Qa8YnG56KkVc+gRiDU0uWhonOi1zHDZaTNwfGQS/3bG1Dv/5BvRM7VI0M0YLAdYqQofO2PiOydeE+SplRj1lQ6uZjSbS7jpksV44vVeXLC4OZeHVrboPLUMw1VGr9qspyYibkrmFrFIBNCaBrNO67mQ9DMy6f1YX+nA/7r0lNR3LELERb6hymmqkL+UMHZAMRNhEsUiJBQpMcQ8itPkh7dyVh1WxqmdIsyh89QyDOEa+9OlMyqFITa/7SxiOT/D7ciNUTOq3UpZwp0J4vsvt9AjEDuv0IynJp6TUr4eSvfIp0CDYNRK2c0uJcRuDpl6ajFdD6boqXUWefgR0O+wczH5mlHKi1gmuMvcqBnzsWY8tXIJP5bukU8BnadWhO19yhGX3cr76001p8bIJGQk5tRKwqg5crPQGHfu0+17IApFyk35CMSGH800JheviVIWipTukU8BMSlcyjuSUoOFICunqH5kZBJ+ZJ3XZ9a5S6KQ3p2jPEc26tRKGbFOrdxq1IDYnqZmNpLl4qlNy5xag85TK90Pr9R419wGvHFsRFfMng7G3WYmQpHTZtbiSxcuwMpZtRkdQ77J1e55uocfLRYJDpsFwXC0TMOPBqFImjk1EoqUGPWUUysIN61bhM+/d27GdU3GLhBmi69FLBYJN75vYUavXwj0OTUKP2YTFzNq1eUXfjS2LjOnfiyP4uvSPfIpUE+eWkGQJGlKhbox4ccyk2HHQx8Syt77tVslXU5yOn4PWMectpryM2pGoYipnFqZqB+npacm9n8s5R3JdCMm/FjCIRKzVOQo/ChJSg0c684y3XJqgNI8+82eUSxtr0l95xIjpk7NTE6tTIQi09KoNVU50VbjgkWSMu5DSOSfbEj6Sw1XDhcal2jUpmH48QPL2/GB5e2FPoycECMUSbf4uoQ3+9NyRbdZLXhK7XtWbp0Eyhlj+NFqskt/KVORo5waALgd2vOVcriJiCWT4mtSP5Y4xToDikhMbPix/Dckujq1bBs1XQ5l+nlq5UyFM311ay6vtXxSukdOTDvsVovOs54WQhEx/JhFoQhgMGrTMKdWzogevttuNTWNQoyEZLN7Tb6hK5koKcT+j9NBKJIrST+gN5gUfiwvbFYLN1Jmmwywa81htRT1SKZU0JVMlBRiCHJaeGo5fL8UfixvWF7N7AxI9t0q5XwaQEaNKDF0Rq2EQyRmYbvsXOyeyVMrb1heLW1PrcSvhdI+emLaIeZ+7NNA/cgWmlzkOFyUUytr0vXUWDF6pg3HiwWSABIlhdgqazqUY7A6SnsOds+5apZMFAesVs2sUVvS5sEXzpuHZTNKuxidjBpRUogKrekRflTeby46PLDFzmaRpoXoZrrBPC6XSc9LkiT8z3WLc3lIeYGuZKKkEPMDtmkQfpzTUAmX3YJFLZ6sPzdb9CifVp5UcU9ten2+5KkRJYUYfpwOnlpDlRNbvnlhTNujbMB28E6T4SmitGCh6+nWCnB6vVui5HHp6rbK36gBQF1l5pMNksHCj+SplSesqbGZDv3lBF3NREkhqvSmQ+/HXEJGrbxprFKGn9ZX2gt8JPklJ1fz4cOHce2116KzsxNutxvz5s3DzTffjGAwmIuXI6YROk9tGqgfc4mb59Sm105+uvDv75qNb71/Ma4+u7PQh5JXchJ+3LNnD6LRKO655x7Mnz8fu3fvxnXXXYfx8XHcdtttuXhJYpow3ST9uYTlWozTD4jyoL7Sgc++Z16hDyPv5MSorVu3DuvWreO/z507F3v37sVdd91FRo2YEnpJPy3GU2HNvAZcdEoLLl3eVuhDIYiskTehyOjoKOrr65PeJxAIIBAI8N+9Xm+uD4soMaZb78dcUuW04RefOqPQh0EQWSUvW92uri7ceeed+NznPpf0fps2bUJNTQ3/6ejoyMfhESXEdCu+JggiPdIyat/85jchSVLSnz179uge09PTg3Xr1uHjH/84rrvuuqTPv3HjRoyOjvKf7u7u9N8RUda4cjiKhSCI0iet8OPXvvY1XH311UnvM3fuXP7/48eP4/zzz8fZZ5+NX/ziFymf3+l0wul0pnNIxDSDhCIEQSQjLaPW1NSEpqYmU/ft6enB+eefj1WrVuH++++HhWqKiCwg9rGbDl36CYJIj5wIRXp6enDeeedh9uzZuO222zA4OMj/1tramouXJKYJ4uRrK+XUCIIwkBOj9tRTT6GrqwtdXV2YOXOm7m+yLOfiJYlpAhVfEwSRjJzEb66++mrIshz3hyCmgn7yNYUfCYLQQ6sCUVK4dL0fyVMjCEIPGTWipJiOXfoJgjAPGTWipCBJP0EQySCjRpQUrLO8JJGknyCIWGhIKFFSNHmc+B/vmo1qtw0W8tQIgjBARo0oOX7w4aWFPgSCIIoUit8QBEEQZQMZNYIgCKJsIKNGEARBlA1k1AiCIIiygYwaQRAEUTaQUSMIgiDKBjJqBEEQRNlQ1HVqrKu/1+st8JEQBEEQhYTZgVTTXoraqPl8PgBAR0dHgY+EIAiCKAZ8Ph9qamoS/l2Si3jIWTQaxfHjx+HxeCBJmbdE8nq96OjoQHd3N6qrq7N4hLmBjje30PHmFjre3DJdj1eWZfh8PrS3t8OSpO9rUXtqFoslZnL2VKiuri6Ji4BBx5tb6HhzCx1vbpmOx5vMQ2OQUIQgCIIoG8ioEQRBEGXDtDBqTqcTN998M5xOZ6EPxRR0vLmFjje30PHmFjre5BS1UIQgCIIg0mFaeGoEQRDE9ICMGkEQBFE2kFEjCIIgygYyagRBEETZQEaNIAiCKBvK3qj9/Oc/x5w5c+ByubB69Wq8+uqrhT4kAMCmTZtw5plnwuPxoLm5GR/+8Iexd+9e3X3OO+88SJKk+/n85z9fkOP97ne/G3Msixcv5n/3+/3YsGEDGhoaUFVVhY997GPo7+8vyLECwJw5c2KOV5IkbNiwAUDhz+0LL7yAD37wg2hvb4ckSfjTn/6k+7ssy/jOd76DtrY2uN1urF27Fvv379fdZ3h4GOvXr0d1dTVqa2tx7bXXYmxsLO/HGwqFcNNNN2HZsmWorKxEe3s7PvWpT+H48eO654j3mdx66615P14AuPrqq2OOZd26dbr7FMv5BRD3WpYkCT/5yU/4ffJ5fs2sX2bWhKNHj+LSSy9FRUUFmpub8Y1vfAPhcHhKx1bWRu3RRx/FjTfeiJtvvhk7d+7EihUrcPHFF2NgYKDQh4bnn38eGzZswNatW/HUU08hFArhoosuwvj4uO5+1113HXp7e/nPj3/84wIdMXDqqafqjuXFF1/kf/vqV7+Kv/zlL/j973+P559/HsePH8dHP/rRgh3rtm3bdMf61FNPAQA+/vGP8/sU8tyOj49jxYoV+PnPfx737z/+8Y/xs5/9DHfffTdeeeUVVFZW4uKLL4bf7+f3Wb9+Pd566y089dRTeOKJJ/DCCy/gs5/9bN6Pd2JiAjt37sS3v/1t7Ny5E3/84x+xd+9efOhDH4q57/e//33dOf/iF7+Y9+NlrFu3Tncsv/3tb3V/L5bzC0B3nL29vbjvvvsgSRI+9rGP6e6Xr/NrZv1KtSZEIhFceumlCAaDePnll/Hggw/igQcewHe+852pHZxcxpx11lnyhg0b+O+RSERub2+XN23aVMCjis/AwIAMQH7++ef5be9973vlL3/5y4U7KIGbb75ZXrFiRdy/jYyMyHa7Xf7973/Pb3vnnXdkAPKWLVvydITJ+fKXvyzPmzdPjkajsiwX17kFID/22GP892g0Kre2tso/+clP+G0jIyOy0+mUf/vb38qyLMtvv/22DEDetm0bv8/f//53WZIkuaenJ6/HG49XX31VBiAfOXKE3zZ79mz5pz/9aU6PLR7xjveqq66SL7vssoSPKfbze9lll8kXXHCB7rZCnV9Zjl2/zKwJf/vb32SLxSL39fXx+9x1111ydXW1HAgEMj6WsvXUgsEgduzYgbVr1/LbLBYL1q5diy1bthTwyOIzOjoKAKivr9fd/pvf/AaNjY1YunQpNm7ciImJiUIcHgBg//79aG9vx9y5c7F+/XocPXoUALBjxw6EQiHduV68eDFmzZpVFOc6GAzioYcewqc//WndtIdiOrcihw4dQl9fn+581tTUYPXq1fx8btmyBbW1tTjjjDP4fdauXQuLxYJXXnkl78dsZHR0FJIkoba2Vnf7rbfeioaGBpx++un4yU9+MuVQ01R47rnn0NzcjEWLFuH666/H0NAQ/1sxn9/+/n789a9/xbXXXhvzt0KdX+P6ZWZN2LJlC5YtW4aWlhZ+n4svvhherxdvvfVWxsdS1F36p8KJEycQiUR0JwwAWlpasGfPngIdVXyi0Si+8pWv4JxzzsHSpUv57Z/85Ccxe/ZstLe344033sBNN92EvXv34o9//GPej3H16tV44IEHsGjRIvT29uJ73/sezj33XOzevRt9fX1wOBwxC1hLSwv6+vryfqxG/vSnP2FkZARXX301v62Yzq0Rds7iXbvsb319fWhubtb93Wazob6+vuDn3O/346abbsKVV16p68r+pS99CStXrkR9fT1efvllbNy4Eb29vbj99tvzfozr1q3DRz/6UXR2duLAgQP41re+hUsuuQRbtmyB1Wot6vP74IMPwuPxxIT3C3V+461fZtaEvr6+uNc4+1umlK1RKyU2bNiA3bt363JUAHTx+2XLlqGtrQ0XXnghDhw4gHnz5uX1GC+55BL+/+XLl2P16tWYPXs2fve738Htduf1WNLl3nvvxSWXXIL29nZ+WzGd23IiFArh3/7t3yDLMu666y7d32688Ub+/+XLl8PhcOBzn/scNm3alPc+hp/4xCf4/5ctW4bly5dj3rx5eO6553DhhRfm9VjS5b777sP69evhcrl0txfq/CZavwpF2YYfGxsbYbVaY9Q2/f39aG1tLdBRxXLDDTfgiSeewLPPPptydtzq1asBAF1dXfk4tKTU1tZi4cKF6OrqQmtrK4LBIEZGRnT3KYZzfeTIETz99NP4zGc+k/R+xXRu2TlLdu22trbGCJ7C4TCGh4cLds6ZQTty5AieeuqplLOzVq9ejXA4jMOHD+fnAJMwd+5cNDY28s+/GM8vAPzrX//C3r17U17PQH7Ob6L1y8ya0NraGvcaZ3/LlLI1ag6HA6tWrcLmzZv5bdFoFJs3b8aaNWsKeGQKsizjhhtuwGOPPYZnnnkGnZ2dKR+za9cuAEBbW1uOjy41Y2NjOHDgANra2rBq1SrY7Xbdud67dy+OHj1a8HN9//33o7m5GZdeemnS+xXTue3s7ERra6vufHq9Xrzyyiv8fK5ZswYjIyPYsWMHv88zzzyDaDTKDXQ+YQZt//79ePrpp9HQ0JDyMbt27YLFYokJ8xWCY8eOYWhoiH/+xXZ+Gffeey9WrVqFFStWpLxvLs9vqvXLzJqwZs0avPnmm7rNA9sMnXLKKVM6uLLlkUcekZ1Op/zAAw/Ib7/9tvzZz35Wrq2t1altCsX1118v19TUyM8995zc29vLfyYmJmRZluWuri75+9//vrx9+3b50KFD8uOPPy7PnTtXfs973lOQ4/3a174mP/fcc/KhQ4fkl156SV67dq3c2NgoDwwMyLIsy5///OflWbNmyc8884y8fft2ec2aNfKaNWsKcqyMSCQiz5o1S77pppt0txfDufX5fPJrr70mv/baazIA+fbbb5dfe+01rha89dZb5draWvnxxx+X33jjDfmyyy6TOzs75cnJSf4c69atk08//XT5lVdekV988UV5wYIF8pVXXpn34w0Gg/KHPvQheebMmfKuXbt01zNTsb388svyT3/6U3nXrl3ygQMH5IceekhuamqSP/WpT+X9eH0+n/z1r39d3rJli3zo0CH56aeflleuXCkvWLBA9vv9/DmK5fwyRkdH5YqKCvmuu+6KeXy+z2+q9UuWU68J4XBYXrp0qXzRRRfJu3btkp988km5qalJ3rhx45SOrayNmizL8p133inPmjVLdjgc8llnnSVv3bq10Icky7Ii2433c//998uyLMtHjx6V3/Oe98j19fWy0+mU58+fL3/jG9+QR0dHC3K8V1xxhdzW1iY7HA55xowZ8hVXXCF3dXXxv09OTspf+MIX5Lq6OrmiokL+yEc+Ivf29hbkWBn/+Mc/ZADy3r17dbcXw7l99tln437+V111lSzLiqz/29/+ttzS0iI7nU75wgsvjHkfQ0ND8pVXXilXVVXJ1dXV8jXXXCP7fL68H++hQ4cSXs/PPvusLMuyvGPHDnn16tVyTU2N7HK55CVLlsi33HKLzojk63gnJibkiy66SG5qapLtdrs8e/Zs+brrrovZ7BbL+WXcc889stvtlkdGRmIen+/zm2r9kmVza8Lhw4flSy65RHa73XJjY6P8ta99TQ6FQlM6NpqnRhAEQZQNZZtTIwiCIKYfZNQIgiCIsoGMGkEQBFE2kFEjCIIgygYyagRBEETZQEaNIAiCKBvIqBEEQRBlAxk1giAIomwgo0YQBEGUDWTUCIIgiLKBjBpBEARRNvx/t5HhrFZfxB4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "α = 0.9\n", + "T = 200\n", + "x = np.empty(T+1)\n", + "x[0] = 0\n", + "\n", + "for t in range(T):\n", + " x[t+1] = α * np.abs(x[t]) + np.random.randn()\n", + "\n", + "plt.plot(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "97ff965f", + "metadata": {}, + "source": [ + "## Exercise 3.4\n", + "\n", + "One important aspect of essentially all programming languages is branching and\n", + "conditions.\n", + "\n", + "In Python, conditions are usually implemented with if–else syntax.\n", + "\n", + "Here’s an example, that prints -1 for each negative number in an array and 1\n", + "for each nonnegative number" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "6080e122", + "metadata": {}, + "outputs": [], + "source": [ + "numbers = [-9, 2.3, -11, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "165fb094", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-1\n", + "1\n", + "-1\n", + "1\n" + ] + } + ], + "source": [ + "for x in numbers:\n", + " if x < 0:\n", + " print(-1)\n", + " else:\n", + " print(1)" + ] + }, + { + "cell_type": "markdown", + "id": "e5a8f5fd", + "metadata": {}, + "source": [ + "Now, write a new solution to Exercise 3 that does not use an existing function\n", + "to compute the absolute value.\n", + "\n", + "Replace this existing function with an if–else condition." + ] + }, + { + "cell_type": "markdown", + "id": "4cadf82a", + "metadata": {}, + "source": [ + "## Solution to[ Exercise 3.4](https://python-programming.quantecon.org/#pbe_ex4)\n", + "\n", + "Here’s one way:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "da4679e0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABs0ElEQVR4nO2deZwc1XXvf9X7bD37Ko12QIBALAIFsDGLzGJswHYIxuQZbALYFt5w/AhJDI7znkVsP9uxw8MrizcgToyxSQxPLBKbEEJIgAQICbSPZkazr73f90fVuXWrurq7eqnunu77/Xzmg+jpmaqprrrnnnN+5xyFMcYgkUgkEkkF4Cr1CUgkEolEUiikUZNIJBJJxSCNmkQikUgqBmnUJBKJRFIxSKMmkUgkkopBGjWJRCKRVAzSqEkkEomkYvCU+gTSkUgk0NfXh4aGBiiKUurTkUgkEkmJYIxhcnISPT09cLlS+2NlbdT6+vrQ29tb6tOQSCQSSZlw8OBBzJ8/P+X3y9qoNTQ0AFD/iGAwWOKzkUgkEkmpmJiYQG9vL7cLqXDUqB0+fBi33XYb/vznP2NmZgbLli3Dfffdh1WrVtn6eQo5BoNBadQkEolEkjEV5ZhRGx0dxTnnnIPzzz8ff/7zn9He3o7du3ejubnZqUNKJBKJpMpxzKj9y7/8C3p7e3Hffffx1xYvXuzU4SQSiUQicU7S/8c//hGrVq3CVVddhY6ODpx66qn42c9+lvZnwuEwJiYmDF8SiUQikdjFMaP23nvv4Z577sExxxyDJ554Ap/73OfwxS9+EQ888EDKn1m3bh0aGxv5l1Q+SiQSiSQbFKfmqfl8PqxatQovvvgif+2LX/witmzZgk2bNln+TDgcRjgc5v9Papfx8XEpFJFIJJIqZmJiAo2NjRntgWOeWnd3N0444QTDa8cffzwOHDiQ8mf8fj9XOkrFo0QikUiyxTGjds4552DXrl2G19555x0sXLjQqUPOCfrHQxidjpT6NCQSiaQiccyofeUrX8FLL72Eb33rW9izZw9++9vf4qc//SnWrl3r1CHLnplIDB/83kZc+X9fKPWpSCQSSUXimFE744wz8Mgjj+DBBx/EihUr8M///M/4wQ9+gGuvvdapQ5Y9/eMhTIZj2D88g3jCkVSmRCKRVDWOdhT58Ic/jA9/+MNOHmJOMRWO8X+HonHU+cu6S5lEIpHMOeTomSIyFdKN2mw0XsIzkUgkkspEGrUiMil4arMRadQkEomk0EijVkQmBU8tHJNGTSKRSAqNNGpFZCoU5f+ejSRKeCYSiURSmUijVkREoYjMqUkkEknhkUatiExKoyaRSCSOIo1aETGoH6VQRCKRSAqONGpFRApFJBKJxFmkUSsiU1LSL5FIJI4ijRpUA/PEzn7MRGKZ35wHsvi6tNz68HZ86t6XkZAtyiSSikUaNQD3vrAXN/9qK37+3F5HjyOFIqVjcCKE3287jGffOYqByVCpT0cikTiENGoAth8cAwAcHJlx9DhTYb1OLSTDj0XltUPj/N8y9CuRVC7SqAF4Z2ASADAhFEc7waQMP5aM1w+N8X/Lay+RVC5Vb9RmIjEc0Dy0iVnncmqMMUNOLRSVHUWKieiphaRRk0gqlqo3ansGp8A03YCTnlo4lkBMEChIb6F4MMaMnppsUSaRVCxVb9R29U/yfztp1MTQIyCNWjE5ODKLsRmh76a89hJJxSKNmmjUHAw/ijVqgBSKFJPXBC8NkOFHiaSSkUZtQDdqk6GoYzVMkyYvUHoLxeN1k1GT114iqVyq3qi9Ixi1BAOmHSrAnjKFH6W3UDx2HJ4AACiK+v/y2ksklUtVG7WxmQgGJsIAALdLXfHGZ53Jq02GzTk1KVYoFofGVHVrb3MtAFmnJpFUMlVt1HYPTgEA5jXVoLnWB8C5vBp5arU+NwDpLRSLRIKhf1ztILKkvQ6ADD9KJJVMVRu1oUnVS+tuDKCxxgPAOQUk5dTaG/wApLdQLIamwojGGVwKsKhVGjWJpNKpaqNGisQ6vwfBGi8AYMKh8CMdq71eM2pyYS0KfZqX1hkMoCGgblyk8lQiqVw8pT6BUjKtGZp6v34ZJkLOhB8pp8Y9NWnUikLf2CwA1RsPeNXQr7z2EknlUt1GTdux1/rccGlCEcc8tZDRqEViCSQSjB9X4gxk1HqaalDDjZoU6UgklYoMP0ILPwaczamZw48AEJLTrx2nb0wNP85rqkGNJtKR+UyJRGUyFMWrB0bBWOXMGKxqozYjhB/1nJpD4UfNU2tr0I2aXFydxxh+VG93qTyVSFS+8cc38bH/+yKe3zNU6lMpGFUdfpwKq4tbnZBTc6pOjcKPwYAXfo8L4VhC5naKwJFxPfyY0Haj8rpLJCq7BtTGBIdGZ0t8JoWjqj01XSjiRtBpST8dK+DhYTDpMTjPYS382NNUowtFpIcskQAAbz4RrqC1qLqNWkTMqTkt6Vd/b73fwwULcqaas4RjcQxNqQ+tKBSRmwmJBIgnGIa15yMcq5y1qKqNmmWdmkOSfj386BFUeHJxdRLqJBLwutBc69WFIvK6S0rATCSG1w6OlY0oY3gqDOrfXkkb7Ko2amKdWqODxdeMMS4UqQ944JdhsKJwmOT8jTVQFEVuJiQl5Z/++CauuPsFPLu7PEQZg1pHJUCNalQKVW7UdKGIk5J+ceq1Gn5UL7tcXJ3liJBPAyBzapKSsueo2mt2r/bfUjMwEeL/lp5ahTBlEIp4+WuFnqkmTr2u80mhSLEg5WN3YwAA+HUPa4XvEkkxGZ2OAADGHRxGnA3SU6swGGM8/Fjn9/C+gIwlj4nJlykhzOlyCWEw6TE4CpVs0IaFrjtQWYnxXNiwaxAvVFBt0lxgdEY1ak4prLNlcEI3atJTqwDEkGCd3wO/x82LcwudVyORCBnOgFThFYVoXH1QvW71cw0IRu2lvcM4838/iat/sgkPbzmAeBV5bjORGG765Vbc8MCWitqhlzPxBMOYtq44VQubLYOTevixku6DqjVq02FjSBAAl/UX+qajsTPUODkgexAWhYjmjfk86m3udin833/c3ofByTA27x3Bbf/5Bta/OVCy8yw2Q5MRROIJhKIJjM2UxwI71xmfieKXm/ZxiXzS92ejINGjU2VD2TIwIYYfK2ctqmKjpu5MarxuPvVal/UX2KgJhdd0TEAKRZyGPDWfW28aTdf+4MiM4b1HhV1rpTM2G+H/ppCYJD9++/IB3PHoTvzsub2W3xevc7mEH8V7vpKiRlVr1MQaNYIrIB0KP5KnJoUixSFiCj8CglEbNRq1mSrKb44K3tnodHkssHOdkWnV66EyEjMkEgHKVSgiPbU5D3UTqffreZaWOrXZ8PB0YXevZEDNOTUpFHGWaFyN9xiMmrahoNBLZ7D65tuNCV7DmPTUCgIJLUZTrB3iRiLdpnnr/lE8uv1wVsemiEQ2JBIMR0WjVkH3f9UaNStPra3eBwAYnnLIqPmNKjzpqTlLREt+Ux4NMIpFAGBhSx2A6tpgiHm0UZlTKwgktEi1IRaNXTqj9oXfvoovPbQdbxwat3Xc371yECfc8Tie2NmfxdkCIzMRLpQDpKeWE3fddRcURcGXv/zlYh0yLdMWRq2VGzXrZG+uUAxdz6nJ4utiQJ6azxB+NN7y81vUwuxqCj8ajZr01AoBGYXUnpr++mQ4Zqm2nQrH0Ke1dtuyb8TWcf+w/TCicYaX99p7PyHK+YHK2mAXxaht2bIFP/nJT3DyyScX43C2EFtkEa1a+HGo0OFHU05NSvqLA5f0ewShiM/oqfU21wKoLqM2KsOPBYee5ZHpiGVvxxHTdZ6y6DF7YFjP8756YDTjMaPxBLYdGAOArFWsJOdXtEdDempZMDU1hWuvvRY/+9nP0Nzc7PThbEOFubXCIueUp2bOqdHCSgpMiTOQpN9KKAKom4yWOvUzn42WR/K+GIglKzL8WBjIKETiCUxbbJDGTIIcq7KhA4Iid9uBMSQSDH98rQ+DWjureIIZ6sne7Jvgm7Hx2ew2JyQS6Q4GDOdfCThu1NauXYvLLrsMa9asyfjecDiMiYkJw5dTWHlqbfWaUETIqQ1PhfHdJ3YZdlHZYvbU2rXjDFSRjLwURLik3zqn1lbv4xsM6alJ8kGMuoxY5OTNnpqVrP/AyDT/9+GxWfzLE2/jiw9uw02/2grGGG54YAtW/fOTfJySGKLM1lMjkcj8ltqk85/rOGrUHnroIbz66qtYt26drfevW7cOjY2N/Ku3t9excxNnqRHkqY0I4cf/2HoI//bMHvz8+fdyPtYk7yiiCkW6tQa7R8ZCZTOGohLRw4/Wnlp7g5976lIoIskH0dMZnk6O9JhzbZk8NQD46bPqmrP94Bj+/pE3sGHXUUyGY9hxWBWRiHm0sSzLkOh+b9UiFdJTs8HBgwfxpS99Cb/5zW8QCARs/cztt9+O8fFx/nXw4EGnTs9aKKLl1EZmIjyRSwYun9o1c/E1NdidjcbLpmVOJRKNWQhFfKKnJhi1CtqpZkL0zqRQpDCIvROtrim9Rjksq/XkwIha40YRHXG/++DL+lo4FY6BMYZX9ut5t2w9NfLMaORWPMFyKg0oRxwzalu3bsXg4CBOO+00eDweeDwebNy4ET/84Q/h8XgQjycvIn6/H8Fg0PDlFJTPEuvUmmu9UBT1ZqKbkPJhtJNhjGXd4V2ceg2oITDaIfWNyRCkU5h7PwJGT62t3o8ar/qZVFP4UdzVp1LrSbJDzHVZlQSRR9zTqEZpLMOPw2r48dIVXfy1689exHvSEuOzUbx7dMoQURqbsRaopD5f9dkgoya+NtdxzKhdeOGFeOONN7B9+3b+tWrVKlx77bXYvn073G535l/iIFZ1ah63C821xlq1aZNRu+GBV7DmexuzikGbGxoDQHeT6q3ReBRJ4Qmbej8C5pxa9YUf4wlmiA6Mz0blGJ4CEE7jqSUSjHvHi9rUHJY5QhNPMBwaVdeCj58+Hy5F3QR/Zc2xuOncpQB0L298Noo3j0wCAE7sUTf+sQSzFKikgtavoGDUKiWv5sn8ltxoaGjAihUrDK/V1dWhtbU16fVSYCUUAdQY88h0RFNANnCVJH3gz75zFLEEw47D41i1qCXjcRhjSepHAOhurMGOwxO8LkVSeHRPzVrS39YgCkWqQ/04GYoawloJpnoNTdpmTpIbBk9tOlkUQvuGBS11eAHDmDC1yuobm0UsweBzu3DGohb88jOr0VTrRWOtF19ZcwyuO2sh7n7mXdz7wl5MzMYw6lOPsbC1FrsHpxCJJTA2E0laz1IR0jZ8NV43fG4XIvGE9NTmOjyn5jMZNU0sQrVqoqcWi+vjat4ZsDe9NhxL8CJg8Ybr0fJqR1L0ipPkT9RC/WgQitT7+f9XS/iRwmD1fg/qNIMuxSL5Y/DUTEZNvObUtcjsqVGD7fktNXC7FLzvmDasmNcIAFAUBa31fh4qHJ+N8tBjc60PTdrr2eTVaJMe8Lrh18KbldIqyzFPzYoNGzYU83BpsQo/ArpYhGrVSCUZjsUNO5l3BiZtHcc89ZrgCkjpqTkG7yiSQv3YJqgfaRq2y6WgkqEwGC2Q05FZjM5EsBh1pTytOU9I8NRGTEaNG6A6L7/u5pwaKR8XaBJ7Kxpr9IbrNHmiudaH5lofBifDWYnOdKPmgt/jxiRiFTMotIo9NRKKWHtqlFOjfFg4mjDEnO0aNfPUa4IUkH3SU3MMq+Jrv5B0b6/3o1bYaFSDApJ28811XjTX0Q5fikXyQVUO6jFdc/iRrm9zrY/PbDSrH/fbMWq1gqemfY4UolSPY9+okWcZ8OrDkStlUGhRPbVyQpf0GwUr3FPTak3IKIVicR6HBrIwaiHr3F2P9NQchTGWdvQMoApFAl4XV7zOROJJnnulQbPUmmp8XHggx8/kR8SUizKHH8VQYVDztlKFH9N7arpRo89ODD9mU55BnqXf44Jfi2RUiqdW2U9wChhjwuiZFDk1s/rR5KkNTaliklatO0gqJjU5vygSAXRPrX88VBVhr2IjdiC3qlOr87n5v2u8bsxE4lWhgCQD1lTrhaKtjLJWLT/MqsFkT03zjmu9wiBio1CENre02bVCNGoM6v3dUudDk+DBZXvOqqdGIfjKuP+rMvwYiia4Gsm8M28T+j8mBJlsOJZIunntiEUop1ZvMmqdwQAURW3lVOj5bRLjjCkxp0aeeK+wI+ZikSro/0g1ak21XjTnELaSJGNWDU6GYob7j3vHQvjRbID6NaNGm10reOgyFDVsTki5mk0Ymc5ZzalVlqdWpUZNN07m+VrkeQ1PRzAjvC8UjSd96OYQ5M6+cTz99oDhtVThR6/bhY4G9ViyVq3wiCEhUdJ/fHcDvnvVSnz3qpX8tWrq/yjmd2gxlJ5aftB6Uutzw8VDumJhtGqAgjWCUEQwavEEw8AEGbXMntqESf3YmIf60e9xw++RntqcJxzT65fcprAfdfoYnorw0CP9TLKnZjRqN/1yKz5z/yt48d0h/ppVjRpBN7AUixQeyqcpCgyfsaIo+MvT53O5NKBPaghVhVFTF77GmtJ5ansGJ3HJD57FQy8fKOpxnSIs1Hzx5g2CUSOvrKlGDz+K68nwVBixBIPbpaC9IXU6g342wXRRU7MQfsym/2PIUigiPbU5i7hLMUOe2lQ4liTNnTTFwUWjNjIdwWHNON2z4V3++lSKIm8A6GkiBaQUixQaUqN53S6eO0pFja96WmWNCp4ajd0phqd2cGQGL703DABY871n8Xb/JP7+kTccP65dhqbCuOH+LXjqrYHMbzYh5qf4NbUwao01XjT4PXr/R03WT/m0jgZ/0iZbJOB181AhoG7WggEPN6TjOdWpuXRPrULUv1Vp1GhHIt4gRDDg4eGq/aZxMxQyoKLV947qoyL2DOr5ted2D/Fx7OYO/SILWtTaoN2D9gq5JfaJ0mfsznyL1/KcWmU81OkYF3JqjVw156ynxhjDdfe+jE/89CXc/KtX+OuZRFbF5PEd/Xjq7UHc98K+rH9WXE+aNaMmjpqZEIyay6Xw/o8bdh0FoBu1rjT5NELs1dhUo4p9ePG1zZlqjDHhnKWnVhGEBTmrGUVRuJhg//C04Xu0ICxqU43R8HSE/649JsN0z8Y9ANS2RIC1p3ZKrxoC235wLKe/Q5KaiMXYmVTo/R8rXygitoejBXLSorluIXlnYArvDanP0hM7dU+oI02ordhQlCWXqRl8PfG6EdTSDOJkawoLUj3Zp85aCAC4+5k9iMUT6Ndy6ulEIoRo1MiA0u+1uzkRjZfoqVVK78cqNWraLsWbHH4EdFn/ftN8I9oJdQUDXFE3OKHWs5FRe/8xbQDUh3doKow3j6iDTjuCyQ/wqQvUSeC7+icM+TtJ/kSEvGkmqkkoIt77QQvRghM8pYmnuhsDECPB5eQZHNaaCVt1z88E5af8HhffvE4Jz7OYUwOA/3HWQrTU+bB/eAaPbDuMI5pIpCuYWiRCiA2IKSfaJIQf7XTqNwvl/NJTm/uEo6nDj4AeFjFPu6abM+Bzo1MzUqRa2nNUNWqXrujGyvmNiCcY7tnwLrYdGINLAT54fGfScTqDAXQ3BpBgwBva4D9JYbAaO5OKaur/KIbKSCI+GY452qn/6bcGAQCfP38Z1n/lA7j7k6dp51I+17sgnprHxUt3qA4tkWCG8CMA1Po8uPncJQDUQaB25PyEIfyoGTMylpF4wlZXHLoH3C4FXreLK8ClpzaHSRd+BIC2OvLUzOFH9UYNeNzoCmrF05pRe1fz1JZ11OOKU+YBAH7x/F4AwNlL29ARtL5hT13QBADYdmAslz9FkgKrvo+p4OrHCnmo00FiAJ/HxRW5jOmDbAvN6HQErx5Qh1lesLwDyzrq+fiVcBnVRXFPbdaetyMiKgkpd07hx8lwjNfEil7WNasXwO1SsHtwij/72ebUWjSjVutz84iEHSUrF4lozwatg9JTm8OISVIrWlIM8OSemteFLi3Z2z8ewkwkxnd6yzrq8eGV3RBFTJef0pPyXE7pbQIAbD84mvI9kuyh8KPPjqdWRepHyjX6PS6Dms6pEOTGd44iwYDlXQ2Yp3XL0OuiymMRjcQSGJhUn/UEQ1ZzyQCTp8bDj+r1nBDWDLEmNhjw4iStrISaGWftqWm9OxVFEQqw7Rg13QiL/y2nTUY+VKlRo8Ru+vBj3BSS0Y2aG11a+LF/PMRVkC11qky6oyGAc5apuTWfx4VLhEm2Ziivtu3AWNY7RElqsgk/1lZJTs2segOQsmt8oXhhj1qzef7yDv6a7hmUx/UemAgZZsxlG4I0emqqUSPV87gp9Chy1tJWw//b8dSMOTV9Bp4+fiazAlIsQQD0zyNUJp9HvlSnUYum99RIKGJG3HV1CuFHEoksa6/n773mzAUAgA+f1M1zF1as6GmEx6VgcDIsmxsXkIjFgNBUVIv6MRpnfPGmDZ0uFnHmb6fwvPhsiMKEctjI0cRpIluvVfTUyKiRUCSdUTtbMGqKAnQ05BZ+BPTmDuaeklbodbpa+LHCPLWqbGisK8BS5NRSGDW6Qf0eN99VDQhGbWmH/uB+6KRuPPaF92Gp8DBbUeNzY1lHPd7un8Tb/RNpG5pK7MMHhNrIqVWL+lH0jGhBIwl6LgIJOxydVNXBYqcM2kwyphpan6e0zbwPj+Vp1KL6elLvpzIJ1biIHVzMrFrYAq9bQTTO0Fbvt3WvGoUi+r95Ls9GbjRkUn9LT60CyCQUoTo1M4acmuCp7dI6iyzrMBqwFfMa+YKZDjJk/eNhG2cvsYPVLLVUkPqx0uepiTksyjUGHQ4/DmnDdtvqRaOmfyblEII8bPbUbHg7ImQMAh53kqRf99SSN8o1PjdO7VXTD3byaYC+CQH0OjVAb5hup+ZQ7CYCCOHgCvHUqtKohXIMP1KOLeB18/DjwHgYW/erIg9SMmZLp0lJKckf7qllkVOr9NEzopyfWoelGlpZCGLCBAqjpyYatdIvpObeq9l6raKn1mAyLunCj4CeV5tnM0LTmCKnZlX0nfJ8qUO/xygUqRRPrUrDj9l5am6XYhCNBDy6UYvEExiZjiDgdWFFTyNyoYsbSGnUCkVE6P2YiWpRP4ajyfe9LhQpfE5tZDoCxgCXoiuKAVWt5/O4EIklysKoUfjRpajqx1xzagGPLhSZsiEUAYAb3r8Y47NR/NWqXlvHaqxNLr4G9I5FdkozpKdWgYg7KytqfG7e3xEw7ojo53welyH3dtqCZlsxcSu6GjUlpfTUCgb1fsymTq1awo9iJx2axOyEpzao5dNa65Mb9eoLaemvORm1xVr7u2xDscacmno9pyNxxBMM43yWmrVRCwa8+MblJ+KEnqCtY5E4xO1SDIaScmrmpuvW52tUP8ohoRVApjo1wNhs1SwcoZugUyioPmNRS87nw0OZ0qgVjEhOHUUqW/1o1ci7kOHHnz77Lm59eDuPaljl04hyqVVLJBg3asd3q4bFrhKUMWYokwh43YZhwFPhWEZPLVs6ggF8ec0xuOPDJ8Aj3NtW7blSYa5TK9SQ0NHpCK756Ut4ZNuhvH5PvsjwYwpa6328KNKcY6OboSsYwM4+tbfjmYtzN2o0Vy2Vp8YYw1f//TVEEww//MQpGUepSERPzb6kv5jhx+lwDPuHZ2zv0AuBVfixkEKRf3t6DyZCMXzmfYuxYl6jpfKRKJcuFkPTYURiCSgKcFxnAx7DEVs5NcYYPvHTl5BgjBsUv0dtDkyhVSeMGgB8ec2xSa/lIhShz0D31PL7LNa/NYBN7w3jrf4JXLqiO2kAc7Gock8tjVET8motphwb/VynpljyuJScRSKAnlMbm4latmradnAMv992GH96rQ99Mu9mi+yKr9UFoZhCkf/5n6/jQz98jouMioFVhEL31PLzUhlj3EugiMNRzVNrt/LUvOURfqQate5ggEdn7Bj4idkYNu8dwZZ9o/x30HVt8Ot5tXSS/kKSjVCEqzVNnlq+n8XwlBpqHZuJ4vEd/Xn9rnyoTqMWTc4tmBFDjq11qT01QJXu08KYC8EaD0/aWoUg/7DtMP93vzRqtiChiK02WdrnGUswXgrgNNQr9PVDY0U5HmBdn8lzanl6arPROO9xSBGHoclk5SNRLuHHg1o0prel1pBfDEXjGEyTDpgM69eLIjr0DIteE/fUUuTUCoW5Pi4dIZOmwF8gT214Si9J+u3m0k01r06jZjP8SLQkGTX15z50UheWtNXhhvctzut8FEXR695MRisaT+BPr/Xx/0/3oEl0eJ1aFsXXQG5ikXiC4aZfvoLbf/+67Z+hxe6AabyRk1jd9+RB5Ft8PR3Wr9uANo7pKM+pJZfIlEv4kSZxLGip1b3WUAw3/2orzr7raRwatf58xNyV2QPmsn6Hwo9WmDuZpENvaKwJRbTPIhJP5DWtYViY9v3yvhHs1up3i02VGjVjotQKCj8GvC6ecyHoZljW0YCn//Y8fGRl6obFdklVq7Zx11HD8D+pkLRHNuFHn8cFj6bOyyUEuePwOP7fmwN48OWDtjv9U1jqYDGNmkV9ZqGEIuI8QCpNOao1CU6fUytt+JE2FQtaanl+cXQ6gk3vDSOWYEnDfwmrMB95PpRjm5iNcs/JaaOmj7zJ/Dma1z8xYpXPJoOEQRQdeWJnaUKQVW3U7Hhq9X5PUpjSiQSo2HaLODA8g399ajcA8K7/0qjZQy++tieqqTN1V8+GV4S82Mh05oaykZg+9ypXT+2Pr/Xhu0/syqp3oqX6UVtspyNxxOK5L2iih8DDj1Npwo9l0m+QG7XWWm54+idC3NNPVb9nVQ9GmwUKBYrtt4rpqWW6J8x1aoECdXihnNoxnWpnJfr8i02VGrXM4UdKbjcEvIYPHdBvhkKihx/V3c5rB8dw0Q824o3D46j1uXHV6WpxJk3alqQnkkXvRyC/MNzW/SP838M2HmTxGAdGZnJq6nvnozvwb8/swTsD1p6EFXTfi9ekQZCg28nHpMLgqZFQZDKNUKRMwo+GnFogOS+eSk1o6amZ+mmSgKTO57YVMciHBs2QMhujc8wdlTxuF68jzEfWPzytft7U79apfqKZqEqjlqlNFgCsWtSCj546D7ecv6wonpq5Vu2RbYcRiiawcn4j/vyl9/N2OlIoYo9sej8CenFstg8iYwyv7NM9taGpzJsOKsgF1HvxqI2fEZmNxHlIenDS/v1gpX70uvXwej6L0HTEaNTCsTj/fenCj5EShh/DsTiOaM/bgpZaXsAsksrQW+WuaF2oNxk1p7009di6YTIb3E3vDuMbf9zJPTTeAUXYnNPomlxrZRljfEO3pF0tYrczBscJqtKoZZqnBqi72e9ffQo+fvr8JI8unYeXKxR+1EM36kJ3xSnzsLC1ThZoZ0k2OTVAX3jsDFkUOTQ6yztnAHaNmvEY2ebVRENmxzMkUnXSKcRMtSlBKDI6E+UDdr1uxXJRLwf14+HRWTCm1im21vng87i4EpZIlWtM56lRTm3H4XEAKMrkDUVRkvpOEj98ajfuf3EfNuwaBJA8Tw0Ar5fc0Tee0/EnZmOIaSKTJZqnNiY9teKhJ8zt/fni+3xCM9hC0mlSP9JiRbm9Tm0oqTRq9ohmIekHkNXkYJFXhNAjYFSApcJs1LLNq4neuh0jSqQKuxeiVm3G5Lns1BbH9nq/5fMizlQrFaJIhM7RbIBTeWpWOTWzp0b51eO6GgpzwhlI1f+R8rcj0+p9p3cU0e+DFdoU7h2HJ3I69pAWemzwe9CpeebjWT5LhaI6jZqNNlki4o7GnF8rFOSpDU6GkEgwHp+mFkP0/elI3FbXgGonm3lqgDA5OMvdpRh6BIChycxGxmw4DwzPpninNQPCMewYUSLVfV+IWjVzOI4WxzaL0KN6DqVXP4r5NIKuBZHqmlg9g2SozWHM5UUyanymmskQJ7ScLW2mzJJ+ALwZO3mX2SJuwmmDKHNqRcSOUEREfJ9TrV86GvxQFNXDGJmJJHlqtT4PDy8MlIlYZGwmYkvtVwrCuebUsswDbD84BkAfO1QMT02sVRwuqKeWR04tbDROr+xTPVgrkYh6DqVXP4qeGmGeUp8yp5Ym/EgdRYjjuorTCo2Oaz7nWNxo1KwaW5+keWq7+idzakBA92FrvV8P5c9GSzLZvOqMmtiANF1OTUTc2Tpl1LxuF6+N6xubxYi2uIrtusopr5ZIMFz6r8/hou9vLFoXjmzQc2r2QsWNOXpqZNRXzm8CkF1OjVRy2ebUBiYKm1MLFqAAe9rUDJrKHFL1RC0H9aOlUUsKP6bIqZk8U0XRQ931ZqPWWSxPzboshRpMJ3lqwn3Q21KDYMCDSDyB3YPZF00PTdN65eMbxHiC2SoGLzRVZ9SicQbaPNgPP7os/11oaATN20cmwZj6oIgzk1J1HSkFU5EYjoyHMDQV4aHScoIbtSwl/dnm1ChfMb9ZFQPYqc2hY1AeI1tPTfTUhwoQfixEV5FUi9fFJ3ZZvq7n1EoXfjwwooZ9RaNG12KppuBLlWc0/73i4FWxTKIrGHC8RRaht+cynltcW/AmTEZNvA8URRHyatmHIEVPLeB1801Lts9TIag6oyY+RLbDj17nPTVAN1qUZG+u9RnGS3BPLQsZt1OInTdKFTtPRzSmPsj+LIUi2f4tdB3mN6sLo51wIC0uFPLpnwjZ7kQCmD21/MOPlK89OJpdbk+E6tRI0ASoHsoibUaZmXJQP9J17G7SR0idv7wDrXU+XH2GWheaylMjw0FqSXFdEMfPFEskAghCEbNRM3tqsWShCJCfWIQiBtQSLdcSmUJQhUZNf4hyyqnZ9O5yoZMbNfWmMjdSJk8u3wnZrx8aw9d+91peYUxxTEupVE7piGTpqeXyEMYTeii7t0X11IanIxn759ExFrXV8ZBVNoIPsYQgm5xmqk46x2odIPLp1Uc5NSq8BYCLT+xM+f5ST1tOJBivoxKHAF++sgev/OMafPAE1cNM1VGEPDWqyRKvKRVCA8UTiQCpB4WKRi0hNO02b9BPzEPWT9EaWrMK1VM0F6rWqPmzkOaLH77dPFwukKf21hHNqJkawZr7Q27dP4r/9dibhm4Odvj++nfwu62HDI2Ss0UcqGnnxh2ZjhQ1aZx18TUPP9o3EqJ3RZ5aPMGw/dAYvvDgNlzwfzbgkh88m/Q7KW/XVOPlORy7x2WMGcLPM5E4RqYj+MGT7+CdDEYp1XSKY7Wcz7tHp3jYNlumTYs8AFy8wjr0CJRe/TgVifGpAmYZv1jzNRWOcaNg+HnNcCzrUI24uEY0lMhTs5NTEzf1ZqNGkYO3jkxk3TJtiAvb1I13U01uJTKFoPqMmsWgxEyI77Wbh8uFTkG2DxinbwOiUVN3Rf/61G78/Pm9ePrtQdvHSCQYT+Kn2oXaQQw/ZhJXPPXWAE775/X4ybPv5Xy8bMlaKCJ4anY7lYsd/Rv8Hi78+Kc/7sSfXuvDe0en8Xb/JDbvNdayiZ3bGzUJud0d7WQ4xo9LTZh/9tx7+MGTu/Htx3el/dlU4cd5TTWo87kRjTPsH562dR5mSChyam8zggEPVs5vxAndqVV/hRp3kisUXQh4XZYphQbTBGsz9Bp5puI1rROEIscWSSQCCNMBUnhqEyHjvEZzedKi1jrU+z0IRRN492h294GeU9M8tVoSXhVfHV19Rs1CzpoJj0vhDYUdFYoEA4b/bzOFH6lmbVQLOY1oLn82Pft2DUzy92fr4YmI4cdMUnAKp76RYw1MLpBRs7t5od16glkX1lpBhj3gdcHlUnhN1muH1L+TJNbmECFXP9Z49W4eNo0ayfkbAh6+ydmw6ygAYO9Q+j6QqcKPiqLgGG3x3dVvv5ekCC3yPU01eO5/XoDf3vgXaSMhpVY/ZhoJ4/foYgfzZ5MQVH3vO6YNfo8LJ2vqV0CtjVxzfAdO6W0qSU7NbISp08fEbNSwIfKYohgul6J3FsnyWaXweRv31GT4sWiYR5nbQVEU7qE5KhRpNBo1s6fWaCqSJWVWNjPAqH4IKJxRy3Tj0nvtTOUtFNmGH/0eN0/6280R0nWnAbFtQvmFz+3Cecs7ABjFHIwx/vubar1Z5x5I+dgZDPA5fxSuPjQ6mzbEm67pAOXVMoUwU0H3Ur3fg8Zar8FbsaLU4UcKi1GYzIpUOSqxfOGE7iBe/foH8Z2/PNnwnp9fdwb+sPYcxxsZi6TOqamfe4LpG6xU6x8VYWezAY3GE/x6JuXUKi38uG7dOpxxxhloaGhAR0cHrrzySuzalT5E4jR2xs5Ywcc0OOipdQbNRs34wIlFsowxbtyyUc5tETpgZOrmnY7ZqP2cGuXfilmzQm2ysllUmrIMmZCnRsawrUH/vE5Z0IQeTVUnikBC0QQXsTTW5GLUVE+tM+hPuj/CsQTvjE+MTkdw4y9fwRM7+9P2PKUwWa5GbUYTitT57W36Sl18TZ9xOrl9qk4rdB973Qr8Hhfq/B5HWudli65+tM6pAfr9k2pzftJ81VPbmYVYZFTLByuKriLmz1KlGbWNGzdi7dq1eOmll7B+/XpEo1FcdNFFmJ7OLW5fCLJtkUVwT83BnFow4DE0VBULrwG9MDTB1AeLdmTZGLVSeGqkjCuWp8YY09WPWRi1bGvV6BrQ5Gzx8zp7aSvftYrhR7pWbpeiejV5eGrm+wMADpomNT/99iDWvzmAnz/3Xtqep/kYNcYY917MhcepMPd+jMYTuPlXr+Dv/tP+9PB80D211EYtledD93F9mRgzItX0a6NRU++fVEaNPLWdfRO2c8t0X/mEETaN1Eu1BDk1e3dgjjz++OOG/7///vvR0dGBrVu34txzz3Xy0CnhQpEsPS4/99ScM2qKoqCrMYC9Q6rRbzPtxP0eF3xuFyLxBAYmQvxmtTut+dDoDPoE5Vw+nlM2dWrF9tRiwsNot/cjkL2snzYTtBERPaezlrTyui8roxYMqAti7p5awHLROTQ6i9MX6v9PUuuR6UjaKAXlfvYNzyAci2e16ZuNxrmSMFPYkTCHHx/achBP7BwAAHzj8hMdfc4A/Xo3pfPUaJq06bOhnGu9xfy1UpJSKCKEpA+PqZse2oiZWdJejxqvGzORON4bmubqznTQ8yZuIKsmpzY+rrq0LS3WrXPC4TAmJiYMX4Um5/Ajz6k5e8nE4lVzTk1RFB4SEQtl7ebUXj0wpv0e9f+L5qlRTq1IRk1s22W3Sz8gyJBtPogz5vCj9nkFvC6csqCJGzmxlRVJ9ylM08iLvu1dG3Hwpjn8CCS33KJjj85EBfVj8oLW0eBHMOBBPMHwXpbKN/pcFQVJo1tSIRZfxxMM9z6/l38v1/vy/+3sxx6bLZ50o5Y6pxbknpop/Mg9teJ0CrELeckzpinmoqf2hlZY3dtsPQ7HLYhF7IYg6VgeQWmca4eeQlA0o5ZIJPDlL38Z55xzDlasWGH5nnXr1qGxsZF/9fb2Fvw8cg4/asbMSUk/YFRAWi1a9KAdEoya3Wm11EG+s0E9xkweObWshCJh3VMrRq2aWGtlV9IPZN/UmDYTtOulXe25x7TD73Ebwo/jM1F8/J4X8S+Pvw1ADyVn66mRYarxudEihB9pEOfBEWNXEMrnjc6k99QUReHnT5ECu1B4udbrhstl73qLxdeP7+g3HNPcHNkOewYncdOvtuJLD2239X7aXKQb4JnK8yEjbm5cXGpEL3lG2OgajNqhMQDAwlbrTi8AsEIzam8csmfUKH/tcQmeWjV0FFm7di127NiBhx56KOV7br/9doyPj/OvgwcPFvw8su3QT9D7HffUNAWkz+2yfGhoMTwk7Mjt5tRoEaYFML/woyAUybAbI08tnmB5jYu3C+XTFAU8xm+HxiyT27Om8OPqxS34w9pz8J2rVgIAVyeOTEew4Z1BbN0/yr3lxhyNmiiAETc9HzxB7d5hzqlR6JMxZOx52qFtdrKZ0QbonpXd0CNg7P34wIv7DN/L5b48rA0lHbQx+gfQP+N0Ro2etSShSKg8w49+j4uXHlF6IJFgEKPUNDF9UWut+cc5tLkx30upiCWSa0LF4uvdA5NZ5f3zpShG7ZZbbsFjjz2GZ555BvPnz0/5Pr/fj2AwaPgqNGE+IC87jytg0ePNCchTa633WSahuVHLIfxIuS0yaoUMP6bzwMTuI5Nh53du4oDQbBL52XbqJ8NOnpqiKDilt4n/HhJyROIJvHXEGBbzuY1DKe3WqYkLiFhC8MHjrY2aVfutVPlkUm/amQknIsr57UKGNcH0kgT++yLJ9+Uj2w7hP7ceSvn7JrNUAo/ZyKmlGuUymcPfWwwUReHlJfR8xlM8lwtT9OQE9DXGbv0r99TE8KN2XWejcVzzs824+AfP2g4N54ujnwpjDF/4whfwyCOPYMOGDVi8eLGTh7NFrjm1a1er2fcPHNde8HMS6W5UY93tKYYrUvL60Jhg1GyGEelGpxlXM5E4EglmO2Rk+F3C4hFLMMxE4il36qIBnArF0OFwPSrl1LLJpwHZt/aZjajHSZV0r/GptW+z0Ti2HzQOE6VFPVdPzeNyYWlHHeY11eCYznos71Yvat9YCLF4ghfWWjU8TnVdKCd4NItxNoBuhLLy1ITnj4zE/OYaHBqdTfLUovEEvvLwawCAVYuaLUNn2SqBx23Uqc01Tw1Q77mpcIxvJK1afAHAwpbUnlqqvzsVlFPzCuHHBr8HiqJGB4amwvB7ajCvKfUxC4mjn8ratWvx29/+Fo8++igaGhrQ398PAGhsbERNjXWi0mnS1eqk45IVXbgkTS+7QnHece34xBm9uChFM1i64Q4LO/KQzQJWMn5iPdVMNJ7TjjNkMqTjs9HURk1YpHLJl2RLtmNnCD0PkGVOLY333lLnw+GxWZ6f+NRZC7F3aBo3f2AJAKNRY4wZPMt4giEaTxiiA1EhKV/r82Dj186D26WAMXBl7JHxEJ/mbO5m4nO7Um5iyKhlG36cyrJGDUjeVNZ43ehpUo2aOYIgdh158d1hS6NGnm40zgxGPRUkNU/rqaXMqanHKrecGgDUahusWSHkb8al6L1KraC8vd2NFqkfRU/Npd2TxB0fOSHl5q/QOBp+vOeeezA+Po7zzjsP3d3d/Ovhhx928rBpyVUoUiwCXjfu+vjJuGB5CqOm3XDi3K5sPbXmWh+PvecagjSLTFI9AIkEM3h1xQg/5u6pZZlTo/BjGqNGeS/KK16+sge/umE1b6tERi2eYIZieMYY/vLHL+Lcbz9jaGAc4zk19QP0aCFWl0vBPE3RRiHIUDSe9Dmli1BwT60I4UdFUQzlFt1NAf7z5nsyKhi1V/YZPV5CNDwhG623MrXJAvQ6NXOPVDpWQzl6atq9mC78OK+5Jm2pC+9cZFORyzdaLuvf2Vrnw0UnpJ7YUGgcNWqMMcuv66+/3snDpiWXNlnlBEn6RbIVitT6PNyrylUsMhO1Z9RCsbhhx1aMAmzdU8surNqYpWLLrH60osXUv3OBKewT8Lq48RWPe2h0FtsOjGFwMoxva4pJIP0CQoNKD2kKyGzyaYAe8i6GUAQwPoPdjQH+82ZvXlSzbt47bPm7RNl9puchFI1zwVLajiLkqaWqUytnT027BvF4slFblEb5CIg5NXvNvc0bLeKW85dhcVsd/vNzZxe1SH1urux5UO6eWibIUxOxKxQhj67W59ZrWnIMB86akvmpDIF5gbJjRGPxBK7+ySbc9h+5dZfItu8j0VSr16nZKT2Y1RbGTOFHwu9xJeVK1drD5D55Ymf/3287jFcPqB6KVaEr0aPlY6lA2yqflu6+bxfCj9mUXnBJvy9bo6afS3djDeq18KXZU4sIRu3Q6GxSLR5g9KYyRS7Eri7pQoipPDU9p1ZedWqAvsGaTeOpLUyjfAT0NSbBrEU7Zki8ZA75/u3Fx+GZvz0v5aBYp6g+o8ZnSs3NPz1oES6xK5On5HHA6+Y7upw9NR7KTN+4dCZizkdkPt7eoWls3juCh185mJMUWFQ/ZgOFoiKxhK1rSoa9No2nJg56XdBSa7ljtRo/s0UzalRC8h1trEwszUgd8joowW/pqaULP2q51lA0kVVfUL1FVrat50yemmYUpyJmoYhxYd70XrK3JnpqmZoki3L+dB5EkH8uEUPXejpWOXpqNV6T+tHC08rkqQW8bh6etDOeShcvlUfLsLm5sudBrnVq5ULQIo5vX9Kf7KnlmlOjnWCX5h3Y9dTsyITFxfiAxa48E7oYKLtFts7n5g+mnZ51dsKPYlcYc+iR0MUi+jFf1np0fu4DywCoAzwBUT6dfP+alZQjFirGdLmUWp+HG+hsZP1TuYYfvaJRq0FtqpyaaWDlS+8mGzWjp5Z+Q8K7uqTJpwFqOLa1zodonOEj//Y8fvH8XozPRrFDG6WUyeMpBfT50WYyZmHU0hVeE2Lz9EzoZSblsaaWx1kUkbkefrRKbEe0VkOZ0HNqbj1/YSO8AACDkyHDMchAdmvF4qmMmtlTs2NERcXeviy7W4jnVpOlN64oSlbdxek46WoXxfBjb0ajph5zcDKEvUPTUBR1XhegL+w81GOxK6YNDzdq2nUUPYpMhj4XBWQuQhHAHH4MCOFH40YoYhJ+WI1FERffdJu8eILxGrV0+TQ6v8e++D58+ORuMAZ894ld+PVL+xGJJXBcZwOWF3FWml3M6kfKiYkOqR1jzCcU2DBqVnVqpaSKjdrc/NOtwo+APbGI2FWe8h92JPZv909g9beewtf+Q60VSiQYXzhoXE5qo5Z9Tk301PblMInZjtQ+Fdn0rBNzlKkwhx/THZOu4Za9av5seVeQN7WmhSPdSB1eX6Sp1oa0ZsZL2/Wdeab7no6XnVHLNadmVD+mEi+ZPTWrsKpB/WjxLGx85yj+xy82Y9k//Df++bE3AWT21ADVg/zRNafipHmNmI3G8X/+nxoG/thp88qqQz9BUQMScpGnVufzYGVvExa31WUMPwLGe3IqHMOR8dmU743lMObJScrjLIpIrl36ywUroQhgz6jpi7AnZVLeijcOjYMx4E0t7CLWxWXrqdlRP4phs71D2YcfQzbCgqlo4g2GM4cfzV36rcjFU3tZU/iduaiZhxlpYY9aNI9N9XvoOi4Tqt0zG7XsC7Ap3JttCzmDpD9Yk1rSry2a9P2xmUhSZELMqZk9tbeOTODT972M53YPgTG9G086Ob+IoihYe/5SAKp4wqUAV546z9bPFptUdWoet4Lff+5srP/KubYmVwQFkcy1P3sJ531nA5+6bsaqTVYpmZsrex6Qp+bkXDQnSVUbkymvxhjjBkYMP9rxnKgmjnbDovfVlcFTS8qp2Qo/6l7C/lw8NR5+zD6Rn83IDDvhR3HmmV1P7QUtZ7R6SStfKHj4MY0IJsmoaR7NMZ36+JBMYfc2kvVnkVOL5DyjUP0ban1uBGs8XCiSKqfWoU2wSDDj55NIMMN9bN7g/f7VQ0gwtTfnaQua+OvpOvSbueiELu7xnrOsLWmgb7mgt8kydhRxKwrcLiVjUToR5BGLCHb0TSAcSxgUuSJWDY1LSXmcRREho5bNnK1yIuB1G3bbtOhl8tTCsQRvbFojSvpt5NQoFEWqutmIvjOnHNSrB0bxj394w1AobPX77Xhqw4XKqfmy/4yzaWos5ihT0d7gh8/tgs/jQm+LdRcdLumfjeHgyAz2DE7B7VJwzrI2brwSTF2gdPl06r6glAeh67iotY43ds7kqbVzT82+Ucv1mSIj2NUYgKIoQp7XlFPTjFqtz83zhuLGZzoSMzTtFZ+FeILhj6/1AQA+877F+J+XLOffs3PvEy6Xgm9esQLLuxrw5TXH2P65YpNUfE1GLUtlIl3nd49O899hlcsErEfPlJK5ubLnQUQLlcxVowboi5dL0cNbpPhijOH53UNJD6xYu1Pr1XNqUzZyamTUpsIxtUOIEMY8vjuIgNeFyVAMv37pAH723HuGn6UFis7TjmcoCkX6xkNZy/rthAVTkU1TYzthzhqfGz+7bhXuve6MlDknPeQZxYZ3jgIATlugNkYW8xSRWCLtrpjOfTIcQzzB+IDQtnofL73IGH7MwVPLNU9NKQCqr6tLERKPGSYTqOcnzqgzK2rFcozNe4cxMBFGMODBece14y+WtPKZhasXt2Z1vucsa8PjXz4Xpy+0ngdZDqQKP2Zt1LR7SZyE/trBMcv38tpJ6amVBtr1zWmjpu2iGgJevlCGhAnCf/2LzfjWf79l+BlKHPvcLnjcrpQLiBVk1BhTa4hmhPZQvS21eP62C/DXf7EAQPLoD+r72JHFZABzv8JsZf35CEXsNjWOxnUDk+k4Hzi2nasYrRDDhht3DQIAzjuuA4Bx9ysad8s6NSFHNBmK8pxaa70fzZrhzJRLbs9BKJLvOKcuLS+bSSjidbsM43wIs1ETQ/GPblO9tA+d1M09w/W3fgD/9slTcfkpPVmd71yAC0UiJBRRr122Ro3upXf6daO24/C4ZYeRdHneUjB3V/YcybUvYDlBu6hgjYfnc2hn9vgOtWn0+jcHDF0hzGNSsgo/TuoLyMRsNEn111bvx6m9zQD0GiCCPDXKQdjJqVHYjBa9bIdW8vBoTkIRe02NxYUz30atPU3qtXnj0Bie3T0EQDWEgHH3K7Yms8qNeN0u/pkMToYNXnKzZgwy5tS4pD8LoQhvaJDddSAxQq/WXFcUioj3Li2aPsGoiSFqczd50fg/9fYAALXnpnjcD5/cUzZqvULCc2raNUiwXMOPutdPTEfieG9oKum9Uv1YYni3iTntqXn5f0lxNhuNIxSN8954AxNhXrALGAuvAfBCV3tCEX3XPhmKJf0uIPWk2xlu1LTBpBlyaowxjGoL1kqt6W+2YhF6oGtz8dRs5tRoSoFLyX+DdEJ3EFedPh8Jpm662hv8OFGbPuxyKbwmTWxNlkppRjvs97TP3utWEAx40EKemk31Y3aeWm7hx+vOXoQb378Y15zZC0D31BLMGELU254phmnixKTJqNGGIxJLcOO8vLvwsxnLEXom6f4kg5N9+NE6VP7aweS8WjRN7WQpmLsre45UgqdGC1dDwMNDX6FoHFv2jRgWgxf26J0XxBo1ACkLXc3E4gmMzBg9tRmLXFJqo0bhR9UbmY3GeWLZionZGI/Rn7qwCUD2sv5QJHOuKxV269TEvGK+9UqKouBbHzsJ79dClBcu7zD8TtoBi6rTVPkL2vDQUFISYVDPyUxdPyinNhOJ2xZSRHIMPy5uq8M/XHYCOjQvXtyEiJstsTbPTviRPMdR7b51KfZq0ioBvU5NUz+y3FpYmUuH6LO1EovE0nS5KQXlcRZFJDLH1Y+AvosKBrwGo/asJjKgv+35PUP8Z8whw1TyaTMjMxFDl/3JUEzoeagvkI0pclFkNEmOLb5mBYkb6v0eLG1XpeiHx1IXflpBO/VcppSLog2njmGF1+3CT//HKnz/6pX4u0uXm76nLkgzgneYaiYaGeVdWi6Ehs5ef84ifOqshfjL01NPngfUVmG0gA3bDEFyTy3Pa+FyKajzJed6xfl4luFH02dF9zp5my11/pwG4c5FakzpCBKKuLLceJmbPLz/GDUc/tqhsaT3putHWgrm7sqeA4yxChGKUE7Ny/NGs5E4ntPyMdefvQiA2iOPbjguP9dqt+y2yRLzaYCavzB7fYC+mE6EoqZ2Wurvb6r18WtublgrQjvwljofN8DhNOrHXf2T+MKD2wyh1vyEIvbq1PIpG0hFjc+Nj546P6l+ijw1WqjS7YhpMdqlqdZ6NBHG0vZ6fPOKFehpSj+cV1H0EJ9V5w4zjDFd0l+AnXqtxX0p5tRoPp0o6Tc33SXRFN1LrXX269HmOrUmoYhYfJ0N5h6zFyxXhUt7BpNzatGErFMrGWK373JJaubC+49pR0udD+cd184X7v0jM3i7fxKKAtx07hI01ngxGY7hdS1cYDZEqWZXmTHnViZmdaMmhovIqDFmzHFMC++lMR/p8mq0kDbX+bioIZxm6ONDWw7gT6/14d+3HOSviZ1TsoX+jqlwLKk9k0jItElwEm7UtGN603gddP7UXqw7gxGzosXCcKRCHAtTiC499Rb3ZUTwBFrqUkv6eX5Z+/yHufqzeowaHz0TjYMxZii+zgZzt5VjtQJ+q/IaWadWQgwP4Bz21M5a2oqt/7gGHz65hz/IbxxSjdeStjq01ftx9lK1Bue5d1TvzTwmhUv6I7G0s7PMRk0NPyYLRXweFw8diSFIkvTX+t2oD5A4JbUXJO6u6TNKZ9TIoxKLhfXu+dl/xmLYJZ23lo/CMlto2OmMLU9Nvcb0kVIbs2ywMhypED+bQjxTVqUm0ZhQp2aRUyP1I+VtafI13bvipIRKhzZyTBPbxHKsU2sQcmqKAizQmiBH4wyxeAI7Do/jtv94HQMToZRDQkvF3F3Zc0Ds9j2XhSIAuJCAPDXamVN4iSThG99R6570zvVGST9j1i22NuwaxLcffxv9pn5vxvCj0UsRh2wS9N46n4cfM934GTH8qBu11N4k/S5xAdY7nmRvcNwuhYde0olFuFimCD1EdaFIzPD/Vph32JRTywYrw5GKcLSwzxSfqWaVUxOEIqMzEb4Zo3uAaiFJKDRcheFHMeQ+E4nxurJsjZrP4+K/q63ebxCOhGIJPPDiPjz8ykH86bW+sgs/lt+UOwcho+ZxKRWTOKYbj6TLVA/2geNUo7b94BjGZiJJ4ccarxuKohVUh2NJobrr79tiebzJUIyPsTC3h2qs8eLw2KzBw6HcSJ3fXr9JHjKq03Nw4TQDOymUOTxt4anlKFxoqvVhIhRLW6sWyiPEmS2kdKTPMN2OONmo5eKpZWHUBOVjIbrW08bn9UNjePrtQdxywTI9pyYIRaJxholQTA2za54aKTwpp0aTv9uqKPzodinwe1wIxxKYicRz9tQA1eufjcbR3RgweOGhaJxvJKbDcSkUKSXijq9SMIe/qMFwd2MNjutsQIIBz+4eSupTqCiKoIDM3IaKBAeip2Y2anqNl74YitJ3Ozk1yuO0CDm1SJrc1qQWyrTy1HI1OHZq1fI1nNmQHH60b9QyCUOssFIYPvXWAD77q628hpCIFHiUEwlFfvbcXjyy7TDueHQH//w9LgUBr5uHucnokvqRPDX6/HWvv3rCj4DQKisa58XXuXhR5J11BtWyEDFnyWsB4/G0g2tLQXmcRZGY682MrTAvqp3Czvw8zVvbuOuo3tpKWOizaZW1RJPXi8XX5jowc5f4aDzBF706n0fIqWUWirTU+bjwIJ36cUoIPzLGEI3reYRcDY6dWjU7HfoLBW3CQlwokianJoSJ/B4X7/mYDW31yZ7az5/bi8d39uPPWscaQn+mCnMdqH6S6B8PJW1GzUIWHn4MUk6NJP3VJxQBxE79cZ7vyiUyRc8Beft0r4djcUOBe7rBtaWgclZ3G1RCjZoZ86LaLYzEoBDkxneOYiac7F3VpZhfZcUSbeyGVZsswuzhiMXC4mSAdEaNC0Xq7QlFaEGLxBOYDMcM+cFAjnJ7q9ygGTsd+guFOaeW1lMTjFhPU01OIUFdKKKHdGmjstfUJqnQQ3frTN71inmNXChCz61ZyEL3QDv31NRzEhs6VxN6/8dYzsXXgC6aot6cNK5rNpLgG6xILCHbZJUSsd6lUjB7I12Cp7ZqYQtqfW4MTYW5tN9g1HzJNUGAUVBDLGnTjFpIbGhsXIDMBdi6sEGBz+PSPTVtERqdjiSJQGihaqnzGyT9qRSaouhkeCpSkPZVjZqCML360dhL00l8po4i6UJJYvgxl3waYB1+JIWhubtLoYfumjueKBDTBurCbBayTIaM4Uc6Jz0/W6Xhx0g85+JrAFhzfCfa6v1cdEb3eigW5xvbcCwhGxqXkkoovDZj9tTE4YU+jwvHdDYAAC9OFo0ghR/N42fEMTXEYh5+jPIOH2KXEEDw1DSBxXTYmNtqEDy1sZkIzvmXp/HXP9/Mfz4SS2BwUlVb9jQFDAulVV4tHIsbXh+eCgseVO7tq6hT//hMaqFEMXNqtFjQ5+JNc/8ajVr2+TTAWv04kdFTK1T40WjUQtGEUKem/t00cWB4OoJILJHUNHs2qrb4ok1AtYUfeVeRqG7UcvHUPrl6Abb8w4U4sacRgO6Nh6Lm8GN5qR/L4yyKRCX0fTQjegpiw1diqeZhkaMjiid4p35TOHDa1Di3we/B4lb194xMRzAwoYZ1lnXUG36OunHQAjiTVBunSfrDMewdmsZMJI7XDo1zL6x/PIQEUx+e9nq/4XOy8h7NpQFDU5GC5LrIOI/ayKkVw1OjxZwW73TF12JOjbr/ZwvlrGYiapPsRILxbu0HRmYMHWMKHn40GbVwLJ6UU2sVcn60gXIpulGLJRgGtXvU53YlGcpKR+wqkus8NULcGNYIHiCFH8PxRNmpH6vq067InJrwt3Q0BJISwpQLI8TwY61FTRAgtrby4sd/fTq8bhea69TFktazzqA/qempOadG4TvyHuoF9SO1NqKddr3fg0OjamhrfrOaCxIXynAsgQbT325WUQ5Ph7n3mE/7KrEWKhWUh8zUILgQ+HibrMw5tYDXBZ/bhUg8kbOn1uD3wOtWEI0zDE9H0BDw8E1RNM5weHSWF+MWWv1YZxKKhKIJvrDSdRBLDkan9XtMvLcpmtBa7ytIqcFcQjQ++Uj6zVBOLRRL6OHHaEKqH0tJJYYfRU+hyyKHQqpFq/enapUlFkz/xZJWnL6wGXU+D8Tn4pgOs4nRE8sksCBPh4xdQ0AXpohNaEmQcJAbNXXBVBRFr1Wz4amJObV8woLUgeJomunPdM3Maj0noB0wb5OVZvFQFIV/Dt05emqKouiGYyqS1DBYnKnF69QKFIalJtYULjN4alppg5jzo41Hc61Pq5VTf8/hUd2oVRuU656JxHnxdSGUiTynZpD06+rHdBGEYlI5q7sNxLlMlYK4eHcFrYxaak+tXmiVJTJtoZR0uRRDGMccegSSp0aPCvJ89Xh6X0VxsCMJEg5pC9H8Zt3D4ApIC1n/pKndlphTM3c7yQY7DX0pHGdW6zmBefRMpgXqfcta0VLn4/PocoErDKfDmJg13h/7hKGthWxmDKhqx2e/dj7uvvY0AFpOLWYKP9bpkn6qiWyuUz0y8ibI6682kQggCkX0MU6FaDZBdWrjs1EesYnEyq9OrUrDj87vrouFmDvqtDBqi1rreOcQwDr8aJb0m3NhRLDGy8OGlkZNmBrNGOO7aJLIk/pxMhQzLJSkUtONWi3/nt/jxiRitjy1oWmhc0oeajwalDkyHUEiwSwXBLpm9QHnHyEPDz9m7v0IAN+/+hTEEiwvibUoFjHnJ8VJ5IVWPwJqn8G+cfVeCMfiCMTV3+01hR9Hp6MY0cKPVI8X8LowG43ze6kaPTUxp0YedCE8NboPxPmKUv1YYiKVKOkXDI+VhDvgdWOe0FWixkIoYjZqvLO+yQsRc2jpjFo0zjATieueGhk1Qf0oempURCvm1Ajy1KyEIkk5NdFTyyMcRotmPMFSyvq5UStKTs3YUSTT/asoSt41Q2Leyhx+3Ds8g1FNeVhooQhBC6jYlNfHPTXdizRvnOhzP0Q5tSrq+0jog0LzK742Q5+J2DHIUKcm1Y/Fh3YUc7lDvxmDp5aiLknMq9V6k3NqyZJ+vV+jSIPglRxjYdRqvG6+8IzPRpNyaqJRE43FUJKnZhF+1HaExonH6u/gOZapCFdl5aNK9HlcvKnx8HQYB0dmsHX/iOE9U0UUimRTfF0o6JoOTUW4d07tqTa/N4wz/veTuOGBLQWX9BPi524OP5I6MxRNoE8zXnS+9DzoObVqDj/G8yq+NkMbBvEZNHQUkZ5a8anEnJqofrTKqQF64TRgForonQdEKKdmzkuRAKG51mu5WIgihbGZKN9F85yaZijiguQaUI1RJJbgEwHE8KMuFInj8795Fau/9SRfyCj8uFBT4g1PR3iIzlwYni1tWiHv0FQEn7l/C/7yx5twcET1JBljRfXUqC6N5y6KsCMW81bkqa2Yp9YrhbXapOd2DxVc/UjwlkzReFLxdZ3Pze8Lqr9s4uFH9eeOaOHLzmD1GbUa3iYrhrhmcHIpvjZDOTWx1CUS19WP5bKuVpVRq8Tejx63PsdsXrO1hHupJhZxKcbFpy5DTq3OZ+2pWSkfCbEAW1SmAaqXSM8WLTqAunD2jc2CaTVqYlsjP1/cEnizbwLROONTnclbohq60ZkIfy3fidRtWoirb2wWe45OgTFgZ98EANVDoER5UTw10y67GItHi1ALRqHiJe31vLE1oIYDdfVjYZ8po4euLZraa+J07nePqvk9usdo4aXP57jOYEHPay5A0RixS39BcmqaNy42tQ5H9Tq1cim+rlKhSHlc/ELxrY+dhKGpiCF3JkLhR3XcjH5zpxoFkyqnRvVmSy1Cj0ST6KlREl9bgFwuBfU+DybDMe5tAaqHJYYexXMUFzfKl5HnQGGx+S21XAxD9Un5dvoggcHrh8a5yIZm1onXq7YIHUXM+bFihHn0vFWEi3oaa7z4z8+fjf7xED76f19U+21qn0Ghw4/kcUXiep9BMZfYUufDkfEQL7sgo2ZuRmCV+610xPBjrvPUrKBrm+SpkeEsE0+tqoxaJY6eAYArTpmX9vsnz29EZ9DP290Q9Snq1CiEZ86pffTUedg9MIVrVy9IeSxSYB4ZDwmemi4wqQ+oRk18MIanIlwk0ttSCxEuFInHuUdJ+TgyLk01XrTU+gzGsVBGbduBUf4aSdl54bXPXZS5fOa2WMXYEbc3qH//4ESY5y4bAh50N9bwCdOAPl260OFH8ffR9faajJoIVz8KxnVZR0PFbWDtQOOoZqOFLb72pxSKlNe6WlVGrVI9tUw0BLx4/rYL4DbF1WtT1qlZN+s9eX4Tfv03q9Mei0Qe7x2d4mq9ZmEBsspBDU+HLUUigL64zUTiPHxMnhottvUBD1rrVaNGea986tQA3VN588gEf42k7MUUiQDJi0Ux7t95Termon9C35xQvtSt1SxOhWNc5OOoUbMYjmpWNdI9Js4XPL47dZi8kvG7KQebKGzxtWbUYkKbtFA0zkO9cvRMCSBJv79MdhTFxOt2JXkVoqRf7IIvdhTJFjJKO7SpAB6XwhsZA9aGYGQ6wkN7okgE0MNa4mwz7qlpoa9gwIMFLWpe7ci4KjbJp04N0MeVUD4HSA4/FqNGDdAl/UQxFo+OBj+8bgXxBMPuQVWMERT+XsqvOuWpedyupL/T6KkZBSDNJkk/AJzQXX35NMAoLHKi+FpENHDpGm0Xk/I4iyIRrcA2WflABibBVPEDMZ2i+NoOJFZ564gq5miqNfbea7AwBNE4w6Z3hwEAx5sWIlosxeT0OPfUSIHoxXFdqduB5YKVunNgIoyZSKyoykcgudi6GJ0bXC6FT83eP6x6v0FhAgD97cPcUyt8btFc9C0aNXNRdZNQfE1Uq1Gj3GMklhAmXxfOU0uFrFMrAeFYecV+S40ochBDkDMphCJ2IE+LvGLz5GXRECiKbjipJdUpptZOfgsZsTmn1hDw4NhOY6gp34nUbSnqm/YNzejhxyK0yAKS79di9dgzC4/E4nvanMw60FGEMHt/YvhRzKmpDZjV94oLr3mDVC3QtYjEE44UX6eiXIQiVbW6V2tOLRUul8KNiijr522ycmjWa14Im025D9Go1fs9BuOxpL3OMLkZEMOPyZ7ahJBTW95lXMAKJRQhKPS2b3iaC2uKl1MzhR+LtCkz5zdpeCoA1AfMn1PhzynJU/OI4Uf98xHvMfqZrmAg6d6rFmh9i8QSec1TM5PRqMmcWvGRRi0ZUda/s28cs5E4ZsK559Tq/B7jgmP21ITwYzDgNRiPU3ubk34ffVbiGJiJWTUHKHpqi9vqDA9VLl6mSJspZ3P20jYAqlhEDz8Wp4eouS1WsYpcSSxCWHlqhBPPlNlQitehNcU9RgtvtYpEAP06ReMJ3lGkkMXXVnhcStmM+Kmq1T1agb0f84U8pyffHMRlP3we//CHN4TwY26LtuitmaXXomgkWOM1LE6nLGhK+l08p2YKP05H4rx+LBjwwudxGSYS5Ft8HazxcCPZVu/noax9Q9NFVz+aPbNihc/NxfxiTq3B9Lc7kVMzj7NJJemnvo8A8METOnHqgiZ86qxFBT+fuYLoqRWy+Dpd9KNcQo9AEYza3XffjUWLFiEQCGD16tV4+eWXnT5kSipxnlq+kOF66T1VqLHz8EReQhHAGLYSFxzAaAiCAY9hNMipvU1Jv8tv6alFuZzf49KHiYp5tXxzaoqicC+yt6UGi9pUr0UNPxZXKJIcfizOAiJ+jj63y+A5mT01J8KP4u90KcZaK/G+EQ3csZ0NeOTz5+D85R0FP5+5At0vsQTjNWTuAmyE0j1T5SISARw2ag8//DBuvfVW3HnnnXj11VexcuVKXHzxxRgcHHTysCmJFHj2UyVARmb3oKpW7Bub1SX9OS7a4mLYYjJqhvBjjZe3Ywp4XVjelRwyIg9AbIA8KTREbgh4eNjjOMGo5ZtTA/SFc0FLLRZr/TP3Ds1wo18sTy0p/FikBUT0uIM1HkN4iWbjEc6oH/W/0+ydip50kynEXe2Im3ZSNZtrVHMhnVGrGk/te9/7Hm688UZ8+tOfxgknnIAf//jHqK2txb333mv5/nA4jImJCcNXvrywZwjX/PQl/NOfdsqcmgXkbVAR7WQ4xpPLhQg/mhecer8pp6btsk+a12gpgCBVnVBGBwC8zZZoJI8TjGK+OTVAF4v0NtdigdbpZGgqjKOT6rUqmqdm7ihSpAWkuzHAvaOgSRiS5Kk5on7U7z+zYVcUhQtBmmurUxCSCnEDQOpU58OP5bOmOnYmkUgEW7duxZo1a/SDuVxYs2YNNm3aZPkz69atQ2NjI//q7e3N+zwmQ1Fsem8YbxwaR0STt0qjppPOcOVqGMQC6qScmsFT8+DiE7tw9tJW3HzuUsvflcqrptEiDYLHIBq1QnhqFA49Y3ELGmu8vMHzHs2rLV74sfh1anQcmvzQUJNa8AM4pX4UPDWL308bompVOaZCfGao5V0hJP3pPuNilZnYwbGnY2hoCPF4HJ2dnYbXOzs70d/fb/kzt99+O8bHx/nXwYMH8z6PBm2HORGKIhKjdjvSqBGpFma/x5Vzv7j5LalzamLYKhjworelFr+98S+w5gTjfcLPI4UH8J7WsqpRWGx7m2txxqJmnLagybLIO1u+8sFj8co/rsEHjm2HogjFyForrqIJRcydNYq4gJDXHTRdT/P/OyIUEX6nleKTRg71pphOUa24XAq/ZwrpqbmE/LWZcvLUyqr3o9/vh99f2PlHFDaZDMV42EZ6ajqpFuZ8Fux06sd6k/oxE6kWy9cPqW24aGED1Ifu328+CwAKIi9WFMVQRzevuQa7B6d4KNTc8NkpzPdrMTdl85tr8PK+5M/KnFNz4plKl1MDgG9esQIfO20+zj2mveDHnuv4PC7EIvGCemqAmlcLW0yhr4qcWltbG9xuNwYGBgyvDwwMoKury6nDJkE79onZKKIx41h4SWrjlU/4riHgxVlLWrGkvS6pGNsQfrThTaXaGe7sU43aImEAKqAaIqfqZXpMf0vpwo/FW0AWaJsGcwPh4qgfU+fUAHUixMUndhVlUsJcg+6ZUAE9NcC4LoifSTmpHx17Kn0+H04//XQ89dRTuPLKKwEAiUQCTz31FG655RanDpsE7TCnI3HuIjvxAM5VzINA+et5eiG/vXE1Eix55EVdgTw1UnUtaq21/L4TmA10qTqKFNNT++TqBZiNxHHNmcZxQ8Uwapk8NUlqyHOm8GMhRs8Axs+ksdbL59mVk6fm6FN566234rrrrsOqVatw5pln4gc/+AGmp6fx6U9/2snDGhAfPpKBywdER1yYPS6FF2vmqx5UFAVW97loLM2KOisyhbUWttal/X4hMRu1YnlqZi+lmO2IOhoCuP1Dxye9LgpF3C7FkZyKIafmKZ9Fcy5A9ww3agWKXoiy/sYa0aiVz5rq6FN59dVX4+jRo7jjjjvQ39+PU045BY8//niSeMRJvG4Xarxu/uECMqcmIi7MJ85rxGsHxwA4ly/ye9zweVyIxBII1mQffmyu9Rq6iywspqfWXBqjVoou/ZkQNyRORT6kp5Y7tMZR/tddIE/KbNSIqlA/Erfccgv279+PcDiMzZs3Y/Xq9EMmncC8eEqjpiNK+s9cpPderPE6t2CfPK8RjTVeXvuVDrP6sbtRNyydQX9B6tHsYs6plSr8WA45Yb9Hn3fmlFEzqh9L/zfPJcz3TKE8tZoURq1qwo/lQkPAi4GJMP9/adR0RG/jtAXNcLv2IZ5gjir7HrzpLxCOJWx5OuacWndjgE+jLmboEQA6G/xwu9TBmT63q2j3USmFIqlQFAUNAQ9GZ6KOyPkBo6dWDoZ8LmG+NwsVshY/kybRUyujz6d8zsRBzCo7+YDoiN5Gb0stL7Z10gPyul22Q3dmL6CrMcD/vbjIRk0sRi6WnB+wmKdWBkYN0PNqThl30ViWgyGfS5jvmUIpRGn4rqIY9QrlMnYGqBKj1mASJEijpiMatfnNNehuJKNWvEU7HWajJoYAF7YVL59GkFikWKFHQBViiGuGp0zk09TNxbHwo8yp5YxT4qKAttGo8boNm5lyyPMS5XMmDiJKxz0uRda1CHQE/fB7XJjXVIPGGi83GuVi1MxeAHlKALCoyJ4aAPQ0qccvlkiEEBf1cvFayFNzou8jkLlOTZIa83NTKEk/jQOq8bozdnwpFVWSU9P/TJlPMxIMePFfX3w/an1uKIqCK0/twc6+cVxQJqM7rHJqRCmMGikgi+mpAeqiTp0cysVrobB+MXJq5bRozgXMm4BCGTUSigTMnlqZRA+AKjFqovy4XBaEcmJZRz3/9wXLO3HB8uKVXGTC61agKLo02RB+LKKcn+jVmjU32SgcLyRejwvQtE7lcg+TtyrVj+WH+XoVuvi6xmcOP5bPpqMqjJr01OYuiqI2UaUOIgtaanHzB5YgGPAW3VsCgA+d3I0dfeP46Knzi3pc0VMplwWEctVFqVOTz21WOBV+rDGEH6usTVY5IebUZGx+7uH3uBGKJhDwuuByKbj90uQOF8UiGPDif115UtGPK4Z3ymUBKab6UT632ZFUBlLAhsZAeXtqVXGniJJ+2fdx7kEPT10RC63LjXJcQBpkTq1sMW80XIVqk+UT1I9iQ+My2nSUz5k4iMypzW1oI1JTJorMUmAIP5aJenfN8Z04sSeIj6zsceT3iy2Z5HObHT7TJqBQQo5Te5sQ8LqwekmLSShSHvckUDXhR5lTm8v4pafGF3WPy7nROtlybGcD/uuL73fs9xtyNtKoZUVSTq1Anu6KeY144xsXw+t24fEd+rBnWadWZMTia2nU5h4U3qpmT40WjWpa3EVPTT632ZGkfizgRoh+t3HTUR4bLaBKjJoYfpQJ57kHFfcWszVVuUHhpHLJpxWDcl005wJOqR9THaOc6tTK50wcRJT0S2nw3IM2Ik5ODih3vFXoqXnc+iSAavq7C4FTdWoi/jIULwFVYtRqfW7+oUpPbe5BrXnKpXVXKRBzatUELZzSqGWHWeXttKdWTutq+ZyJg9CYDEBK+uciXChSxeHHavTUAD2vVk6L5lygGJ5aOZaZAFVi1AA9ryYTznMPLumv6vBj9eXUAMFT81TX350vTs1TMxzD0GS7fNbV8jkThyFPTSac5x6kfpSeWvV6atX2d+dL0jw1B8pA/GIdYRmFxavmTpGe2txlSbvajV9svFxtVGtOzSdzajlRzZ5a1cRzqADb567e3f5c5XMfWIoPndSNRSXoyl8u+DzVqQKc31yLt/sn0dNYk/nNEo7YUURRCjf52nCMMi25qBqj1iA9tTmLy6VgcVvxZ6eVE9xTK6PFoxh896qT8d7QNFbMC5b6VOYU4jpXyMJrEX+Z1qlVjVGjRXFeUyDDOyWS8oMWjXLp0F8smmp9OG2Br9SnMecQPXonlI+AOfxYPputqjFqN75/CVYvbsEpvU2lPhWJJGtI/VdOi4ekfCmGUXO5FHjdCqJxVlbhx6rZ9vk8Lqxa1FJWCU2JxC6+KlU/SnLDEH50UFzk4wKm8rkvy+dMJBJJSnRJf/nsiCXli68Inhqgy/rLKYIgjZpEMgegRaOcdsSS8qVYs87KMYJQPmcikUhSwhcPqd6V2KAYOTUAmNesllp0BctHgFc1QhGJZC5z3nEd+ONrfbjcoSnTksqiGJJ+APjxX5+OI+Oz6G0pnxpSadQkkjnAso56/PGW95X6NCRzBDH3Wqip11a0N/jR3uB37PfngoxlSCQSSYXhFzonOemplSPSqEkkEkmFIU41cDKnVo5IoyaRSCQVRrEk/eWINGoSiURSYbhdCijq6K6yMpDq+mslEomkClAURej2IT01iUQikcxxyKg5MXamnJFGTSKRSCoQqlWTnppEIpFI5jzUVURK+iUSiUQy5yFPTaofJRKJRDLnoa4i0qhJJBKJZM7j86hdRaRRk0gkEsmcx8fHFUmjljf79u3DDTfcgMWLF6OmpgZLly7FnXfeiUgk4sThJBKJRGKCcmrVJul3pEv/22+/jUQigZ/85CdYtmwZduzYgRtvvBHT09P47ne/68QhJRKJRCLgrdLia0eM2iWXXIJLLrmE//+SJUuwa9cu3HPPPdKoSSQSSRGQnprDjI+Po6WlJe17wuEwwuEw//+JiQmnT0sikUgqkmr11IoiFNmzZw9+9KMf4eabb077vnXr1qGxsZF/9fb2FuP0JBKJpOLgdWqy+Do1f/d3fwdFUdJ+vf3224afOXz4MC655BJcddVVuPHGG9P+/ttvvx3j4+P86+DBg9n/RRKJRCLhvR+rTdKfVfjxq1/9Kq6//vq071myZAn/d19fH84//3ycffbZ+OlPf5rx9/v9fvj95TUaXCKRSOYivEu/Wxq1lLS3t6O9vd3Wew8fPozzzz8fp59+Ou677z64qmymj0QikZQSmn7tqrLwoyNCkcOHD+O8887DwoUL8d3vfhdHjx7l3+vq6nLikBKJRCIR8LnVjiLVJhRxxKitX78ee/bswZ49ezB//nzD9xhjThxSIpFIJAJ+L4UfqytK5shfe/3114MxZvklkUgkEue5fGUPzj22HVeeMq/Up1JUilanJpFIJJLicXx3EL/8zJmlPo2iU11+qUQikUgqGmnUJBKJRFIxSKMmkUgkkopBGjWJRCKRVAzSqEkkEomkYpBGTSKRSCQVgzRqEolEIqkYyrpOjYq15Vw1iUQiqW7IDmRq4lHWRm1ychIA5Fw1iUQikQBQ7UJjY2PK7yusjHtXJRIJ9PX1oaGhAUoenaYnJibQ29uLgwcPIhgMFvAMnUGer7PI83UWeb7OUq3nyxjD5OQkenp60k59KWtPzeVyJTVEzodgMDgnbgJCnq+zyPN1Fnm+zlKN55vOQyOkUEQikUgkFYM0ahKJRCKpGKrCqPn9ftx5553w+/2lPhVbyPN1Fnm+ziLP11nk+aanrIUiEolEIpFkQ1V4ahKJRCKpDqRRk0gkEknFII2aRCKRSCoGadQkEolEUjFIoyaRSCSSiqHijdrdd9+NRYsWIRAIYPXq1Xj55ZdLfUoAgHXr1uGMM85AQ0MDOjo6cOWVV2LXrl2G95x33nlQFMXw9dnPfrYk5/uNb3wj6VyWL1/Ovx8KhbB27Vq0traivr4eH//4xzEwMFCScwWARYsWJZ2voihYu3YtgNJf22effRYf+chH0NPTA0VR8Ic//MHwfcYY7rjjDnR3d6OmpgZr1qzB7t27De8ZGRnBtddei2AwiKamJtxwww2Ympoq+vlGo1HcdtttOOmkk1BXV4eenh586lOfQl9fn+F3WH0md911V9HPFwCuv/76pHO55JJLDO8pl+sLwPJeVhQF3/nOd/h7inl97axfdtaEAwcO4LLLLkNtbS06Ojrwta99DbFYLK9zq2ij9vDDD+PWW2/FnXfeiVdffRUrV67ExRdfjMHBwVKfGjZu3Ii1a9fipZdewvr16xGNRnHRRRdhenra8L4bb7wRR44c4V/f/va3S3TGwIknnmg4l+eff55/7ytf+Qr+9Kc/4Xe/+x02btyIvr4+fOxjHyvZuW7ZssVwruvXrwcAXHXVVfw9pby209PTWLlyJe6++27L73/729/GD3/4Q/z4xz/G5s2bUVdXh4svvhihUIi/59prr8XOnTuxfv16PPbYY3j22Wdx0003Ff18Z2Zm8Oqrr+LrX/86Xn31Vfz+97/Hrl27cPnllye995vf/Kbhmn/hC18o+vkSl1xyieFcHnzwQcP3y+X6AjCc55EjR3DvvfdCURR8/OMfN7yvWNfXzvqVaU2Ix+O47LLLEIlE8OKLL+KBBx7A/fffjzvuuCO/k2MVzJlnnsnWrl3L/z8ej7Oenh62bt26Ep6VNYODgwwA27hxI3/tAx/4APvSl75UupMSuPPOO9nKlSstvzc2Nsa8Xi/73e9+x1976623GAC2adOmIp1her70pS+xpUuXskQiwRgrr2sLgD3yyCP8/xOJBOvq6mLf+c53+GtjY2PM7/ezBx98kDHG2JtvvskAsC1btvD3/PnPf2aKorDDhw8X9XytePnllxkAtn//fv7awoUL2fe//31Hz80Kq/O97rrr2BVXXJHyZ8r9+l5xxRXsggsuMLxWquvLWPL6ZWdN+O///m/mcrlYf38/f88999zDgsEgC4fDOZ9LxXpqkUgEW7duxZo1a/hrLpcLa9aswaZNm0p4ZtaMj48DAFpaWgyv/+Y3v0FbWxtWrFiB22+/HTMzM6U4PQDA7t270dPTgyVLluDaa6/FgQMHAABbt25FNBo1XOvly5djwYIFZXGtI5EIfv3rX+Mzn/mMYdpDOV1bkb1796K/v99wPRsbG7F69Wp+PTdt2oSmpiasWrWKv2fNmjVwuVzYvHlz0c/ZzPj4OBRFQVNTk+H1u+66C62trTj11FPxne98J+9QUz5s2LABHR0dOO644/C5z30Ow8PD/HvlfH0HBgbwX//1X7jhhhuSvleq62tev+ysCZs2bcJJJ52Ezs5O/p6LL74YExMT2LlzZ87nUtZd+vNhaGgI8XjccMEAoLOzE2+//XaJzsqaRCKBL3/5yzjnnHOwYsUK/vonP/lJLFy4ED09PXj99ddx2223YdeuXfj9739f9HNcvXo17r//fhx33HE4cuQI/umf/gnvf//7sWPHDvT398Pn8yUtYJ2dnejv7y/6uZr5wx/+gLGxMVx//fX8tXK6tmbomlndu/S9/v5+dHR0GL7v8XjQ0tJS8mseCoVw22234ZprrjF0Zf/iF7+I0047DS0tLXjxxRdx++2348iRI/je975X9HO85JJL8LGPfQyLFy/Gu+++i7//+7/HpZdeik2bNsHtdpf19X3ggQfQ0NCQFN4v1fW1Wr/srAn9/f2W9zh9L1cq1qjNJdauXYsdO3YYclQADPH7k046Cd3d3bjwwgvx7rvvYunSpUU9x0svvZT/++STT8bq1auxcOFC/Pu//ztqamqKei7Z8otf/AKXXnopenp6+GvldG0riWg0ir/6q78CYwz33HOP4Xu33nor//fJJ58Mn8+Hm2++GevWrSt6H8NPfOIT/N8nnXQSTj75ZCxduhQbNmzAhRdeWNRzyZZ7770X1157LQKBgOH1Ul3fVOtXqajY8GNbWxvcbneS2mZgYABdXV0lOqtkbrnlFjz22GN45plnMs6OW716NQBgz549xTi1tDQ1NeHYY4/Fnj170NXVhUgkgrGxMcN7yuFa79+/H08++ST+5m/+Ju37yuna0jVLd+92dXUlCZ5isRhGRkZKds3JoO3fvx/r16/PODtr9erViMVi2LdvX3FOMA1LlixBW1sb//zL8foCwHPPPYddu3ZlvJ+B4lzfVOuXnTWhq6vL8h6n7+VKxRo1n8+H008/HU899RR/LZFI4KmnnsJZZ51VwjNTYYzhlltuwSOPPIKnn34aixcvzvgz27dvBwB0d3c7fHaZmZqawrvvvovu7m6cfvrp8Hq9hmu9a9cuHDhwoOTX+r777kNHRwcuu+yytO8rp2u7ePFidHV1Ga7nxMQENm/ezK/nWWedhbGxMWzdupW/5+mnn0YikeAGupiQQdu9ezeefPJJtLa2ZvyZ7du3w+VyJYX5SsGhQ4cwPDzMP/9yu77EL37xC5x++ulYuXJlxvc6eX0zrV921oSzzjoLb7zxhmHzQJuhE044Ia+Tq1geeugh5vf72f3338/efPNNdtNNN7GmpiaD2qZUfO5zn2ONjY1sw4YN7MiRI/xrZmaGMcbYnj172De/+U32yiuvsL1797JHH32ULVmyhJ177rklOd+vfvWrbMOGDWzv3r3shRdeYGvWrGFtbW1scHCQMcbYZz/7WbZgwQL29NNPs1deeYWdddZZ7KyzzirJuRLxeJwtWLCA3XbbbYbXy+HaTk5Osm3btrFt27YxAOx73/se27ZtG1cL3nXXXaypqYk9+uij7PXXX2dXXHEFW7x4MZudneW/45JLLmGnnnoq27x5M3v++efZMcccw6655pqin28kEmGXX345mz9/Ptu+fbvhfiYV24svvsi+//3vs+3bt7N3332X/frXv2bt7e3sU5/6VNHPd3Jykv3t3/4t27RpE9u7dy978skn2WmnncaOOeYYFgqF+O8ol+tLjI+Ps9raWnbPPfck/Xyxr2+m9YuxzGtCLBZjK1asYBdddBHbvn07e/zxx1l7ezu7/fbb8zq3ijZqjDH2ox/9iC1YsID5fD525plnspdeeqnUp8QYU2W7Vl/33XcfY4yxAwcOsHPPPZe1tLQwv9/Pli1bxr72ta+x8fHxkpzv1Vdfzbq7u5nP52Pz5s1jV199NduzZw///uzsLPv85z/PmpubWW1tLfvoRz/Kjhw5UpJzJZ544gkGgO3atcvwejlc22eeecby87/uuusYY6qs/+tf/zrr7Oxkfr+fXXjhhUl/x/DwMLvmmmtYfX09CwaD7NOf/jSbnJws+vnu3bs35f38zDPPMMYY27p1K1u9ejVrbGxkgUCAHX/88exb3/qWwYgU63xnZmbYRRddxNrb25nX62ULFy5kN954Y9Jmt1yuL/GTn/yE1dTUsLGxsaSfL/b1zbR+MWZvTdi3bx+79NJLWU1NDWtra2Nf/epXWTQazevc5Dw1iUQikVQMFZtTk0gkEkn1IY2aRCKRSCoGadQkEolEUjFIoyaRSCSSikEaNYlEIpFUDNKoSSQSiaRikEZNIpFIJBWDNGoSiUQiqRikUZNIJBJJxSCNmkQikUgqBmnUJBKJRFIx/H+9h291GiFDqwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "α = 0.9\n", + "T = 200\n", + "x = np.empty(T+1)\n", + "x[0] = 0\n", + "\n", + "for t in range(T):\n", + " if x[t] < 0:\n", + " abs_x = - x[t]\n", + " else:\n", + " abs_x = x[t]\n", + " x[t+1] = α * abs_x + np.random.randn()\n", + "\n", + "plt.plot(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "cd087f1b", + "metadata": {}, + "source": [ + "Here’s a shorter way to write the same thing:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "84d67d27", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAESCAYAAAB6s0uLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxS0lEQVR4nO29eZgdZZk2ftfZ+/Te6e6kO/tGELKwx4AKSoZlUHHkchtmFETcguLggsx3CaPzfRNG/XRGf3zIjArOgOKKjKgoW1hDCAkYICQkIXt6SbrT++mz1u+Pquett95TdU6dOnXWfu/rykXTffqc6lre573v536eR1FVVYWEhISEhEQdwFfpA5CQkJCQkPAKMqhJSEhISNQNZFCTkJCQkKgbyKAmISEhIVE3kEFNQkJCQqJuIIOahISEhETdQAY1CQkJCYm6QaDSB5ALmUwGx44dQ3NzMxRFqfThSEhISEhUCKqqYnx8HL29vfD57PlYVQe1Y8eOYf78+ZU+DAkJCQmJKsHhw4cxb948259XdVBrbm4GoP0RLS0tFT4aCQkJCYlKYWxsDPPnz2dxwQ5VHdRIcmxpaZFBTUJCQkIibypKGkUkJCQkJOoGMqhJSEhISNQNZFCTkJCQkKgbyKAmISEhIVE3kEFNQkJCQqJuIIOahISEhETdQAY1CQkJiRLh0NAUJuOpSh/GjIIMahISEhIlwOHhKVz07Sdw/X+9WOlDmVGQQU1CQkKiBNh7fAIZFXi9b6zShzKjIIOahISERAkwOpUEAJycSiKVzlT4aGYOZFCTkJCQKAFGphLs6+HJRI5XSngJGdQkJCQkSoCRWJJ9fWJCBrVyQQY1CQkJiRJgZMoIakOT8QoeycyCDGoSEhISJcCoianJoFYuyKAmISEhUQLwObUhKT+WDTKoSUhISJQAfE7tuGRqZYMMahISEhIlwCifU5NMrWyQQU1CQkKiBOCZ2pBkamWDDGoSEhISHiOTUU05NWnpLx9kUJOQkJDwGOPxFDKq8f+SqZUPMqhJSEhIeAw+nwYAJyYTUFXV5tUSXkIGNQkJCQmPMRLT5Mb2aBAAkEhlMC5H0JQFMqhJSEhIeAzqJjK7JYKmcACAdECWCzKoSUhISHgMcj62RYOY1RQCILuKlAsyqElISEh4jFHd+djWEMKsRi2oSbNIeRCo9AFISEhI1BtIfmyLBpHRDSLS1l8eyKAmISEh4TFIfmyNBqEoCgApP5YLMqhJSEhIeAzG1BpCCPm1LI8MauWBDGoSEhISHmNUt/S3RYMIB7SgNiLUrkmUBjKoSUhISHgMg6kFEdSZ2ti0rFMrB2RQk5CQkPAYfE4toAc1fmioROkgg5qEhISEx+Bzan5F+3pcBrWyQNapScxITCVSuOvJfTg2Eqv0oUjUISin1hoNolVvlSWZWnkgg5rEjMR3/vwGNv5xF+54Ym+lD0WizpDOqEimtdq0aNCPlogW1Mamk7KpcRkgg5rEjEMyncEDLx0FABw5KZmahLdIpDLs61DAh9YGLagl0ypiyXSlDmvGQAY1DnsGxnHPs/uRzsjdVD3jiV2DGJrU5CFZOyThNfigFvT7EA35EfBpBdhSgiw9yhbUbr/9diiKgi984Qvl+siCcdm/P41/+t1O/OiZNyt9KBIlxK+2HWFfHx+XQU3CW8TTBhsL+hUoioIWna2NxaStv9QoS1DbunUr7rrrLqxevbocH+caxND+8Ep/hY9EolQYmojj8V2Dxv9PJpCRzFzCQ1A+LRTwsRZZJEFKplZ6lDyoTUxM4Oqrr8Z//ud/or29Pedr4/E4xsbGTP8qgcPDUxX5XInS45fbjiCVUXFaTwsAbSMzIhcaCQ9B8mPYbyyvLRGtemqsBu+1R3cO4K4n99WMyaXkQW3Dhg244oorsH79+ryv3bhxI1pbW9m/+fPnl/rwLEH5Fon6Qiaj4qdbDgEArjl/Edp0q7WUICW8BAW1YIALajXM1L76mx3Y+Mdd2Hd8otKH4gglDWr3338/tm/fjo0bNzp6/S233ILR0VH27/Dhw6U8vJyolV2JhHM8tec4Dg1PoTkSwHvW9KKzKQxAmkUkvAUFtZA/O6iNTddWUJtOptnInOPjtbHZL1lQO3z4MG688Ubcd999iEQijn4nHA6jpaXF9K+cmN0SZl8flwtd3eHe5zWWdtVZ89AQ8qOrToPavz68C3/9709jvMYW0HpBIq0HNY6p1WpObXDMeDZq5dhLFtS2bduGwcFBnHXWWQgEAggEAnjyySfxve99D4FAAOl09dVr+PSkLgC8eXyygkci4TWS6Qw27dYMIh85bwEAoLNZC2r1Jj/euWkfdvaN4b82H6z0ocxIMKZmEdRqzf04MD7Nvq6VfGDJej9efPHFeOWVV0zfu/baa3Hqqafi5ptvht/vL9VHuwa5lgAtqL11yawKHo2El+gfnUYqoyLk92F5dxMAoLMpBKB+WXmt5EDqDcTUgiajSG0ytYExLqjVCPMvWVBrbm7GypUrTd9rbGzErFmzsr5fLUhljKLJN+WCUFegHo89bRH49EJYllOrkVxBoTgyLLulVALJHEyt9oKalB9rGkmuE8CbJ6T8WE84Nqot8L2tDex7Xc31mVMjHD4pS1MqAWJqJkt/g27prxG2QxjkmFqtBLWyjp7ZtGlTOT+uYCQzvPwomVo94diI9nD2tnFBrak+c2qEvtHp/C+S8By5c2q1ERgIAzUY1CRT45BKG0zt8MkYuzmnErWV3JXIxlFdfpzbZjhxZ4Kln7+nJcoDVqfmN4xnrFN/jQQGgpQfaxiZjAq+W1I6o2JwfBqP7hzAytv+hP/efKBixyZRPCinxjO1zmbNKFJvrbIaQ4YJS7K18qOeLP28+7FWjl0GNR1JziTSFNZU2eHJBLYeHEZGBbYdPFmpQ5PwAFZBbVajxtTSGRUnp+rHLMKH5wNDMjdcbhjyo7G5oKA2mUjXFHuWdWo1DN7OT0XYQxMJDOnV9GPTUoKsZVBObW67EdRCAR9rlbX1wEm8enS0IsfmNfjRSQeGqt8s8osXD+Oz923DdJ3MGmNMjTOKNEcM+0KtrCUT8RQm4sax1op0KoOaDn73NKdVy7sMTSZYvqVWLqhENsamk+zh5N2PgJFX+/S92/C+O57FcB30/cxwLd4O1oCL9yu/2oE/vNKPe547UOlDycJfDo/g9b7CGqsbTM3IqQX8PqYA1cpawjsfAY2p1UL7QBnUdPBMrbtZD2oTcY6p1caNKJENkh47GkNoCJmL/skBCQCpjIq+0dqv7ao1pkY4UGUB+OhIDFfe8Swu//enC1rMkxZMDTA69deKjEcmkTkt2npYK5O7ZVDTQYXXQb+CWY2agWDYxNRqQzKQyIaRT8vuQXr1WxfgrAVtLOcxXiPSkB1U1Wx4OlhDObVqy2v+YUcf+zpRQB7MytIP1F6nfrLzL+5shL+GJnfLoKYjpTO1gM+HDq59kmRqtY+jVKMmSI8A8O7VvfjNZy/Aos5GALUf1EQT56HhqZqQjADg5GR1PWNP7TnOvk6knAe1eJ6gVitrCQW1Oa2RmnJvyqCmgySDgF9Bp+6KOzg0xXZoU4k0e41EbcHK+SiCpKFa72yfFqJaPJVhi2y1o5qYWiyRxpb9w+z/CwlqVr0fAaODTd9IbZRZkPzY3RI2gtpU9T8fMqjpYCPY/T506PLjGwPjptfU+i5+puIYK7y2D2rNLKjV9jXOWLCyWmEG1RTUnt17whTICpEfrXo/AsDSLq2R9psnaqNbEdWodTdHako6lUFNB8/UZunyo7jA1YprScKM/lFDRrFDc5hyarV9jXmmRkaFWgnUJ6uIBTy2a8D0/26YmmgUWdqlSdz7BmsjzzmibzJmNYak/FiLSGWMnBoV5YqohQsqkQ1a1Gm3aYV6YWppjqm1RmvL/CJKp5XE1gPmZgsFBTX9tWEbplYrI4Eox9kWDbKgtndwAh+/Zyue0GcTViPK2tC4mpFKc+5HnamJqBUZR8IMqlGjOiErNFNvvhoJAHbg2321R4M4Ph6vKYUhkcpkyXaVgHjOCslLJm1yakt0pjY0mcDJyQTaG63XmWoBbeLboyG06lMGfrL5AKaT2t/3zhXdFTu2XKj83VMloJxawO9DNOTP2mUB0tZfq6Cgxnd1ENFch0aRWilT8Bk1yhiarI7m0lMJcz1WITk1O/djNBRged1ayKtRjpNnahTQqvk5kUFNB9WpBXwKFEVhnSZ4SKZWm6Cg1piTqdWX/KgoRmf4al6AxLq6ahgDpKoqJvXJHOSKdSM/WjFOYmt7B6s7qMVTaRbY26JGTo0wGa/eImwZ1HQkhc7aHRbSQC3JODMRVo1i46k0W2ScyI+VCgBe5ZOoL7dfUWoiUIt/dzWMAYol06DUJEmEXlj6AT6vVt1mEbLu+xSgORzIDmpVPI5LBjUdTH7UtRA+r0b1JZKpVS++/rvXcNY/P8Ls+wR+R5krqLVUMAAMTcRx3v95FF/99Y6i34uYms+nMGNMNTO1lBDUqoGpEbNXFEPCLSSoiRtkHku79aBW5UxtJEYmkRB8PsWCqcmgVvVIcTk1wMzUlujdJmZCTu2F/cP48H9sxu7+8fwvriJs2n0cY9Mp7Dxmbj47oQepaMjPWv1YwWBq5b/Gu/vHMTSZwJ9e6y/6vcgowjO1aja/ZDO1yteqTekbocZQgOXW3bTJClsyNd3WX+UOyJN6Y+82PZiJzuEJGdSqH3zvRwCmnBrp4DOBqf325aN4/s1h/H7HsUofSkGgHb64+DjJpwGVNYqQseDkVLLoz6cg4fcpnKOzeu/bamZq0ZCfsS2vcmrLdPnx0PAU4qnqzUtRzSCNZhKZ2nQyU1UlGDxkUNOR5Ho/AmamtpgxtepdHLwC5aWqeXcvIpZIs4VIXCiY89FhUJtMpMv+sPLHfHi4uCkBTH5UasP8Ip7raghqZJBoCgdYAbWboGaVU+tqDqM5HEBGBQ5V8QSF0Rg5H7V1cGlXExZ3NuKiFV3sNdWaV5NBTYdYW0Kd+gM+BfPbowBqa6F3CyI6tRTAeXOBuPhMxLW/oymHnR8w5EfAkCzLBb4G6vDJ4ha6jAVTq+6cmvl6Ha8Cowjli6Jhg6nFC5EfqeWeBVNTFAXzOrT15MjJ6h1zJDK1SNCPx794Ie6+5lwm41drXk0GNR188TVgGEVmNYVYZ4ZaWujdgnoH1lIAP54zqBn5kVwIBXwsf1JuuS6e5ILacHFBjZia36dU1PziFFk5tSpgasRAGkMBhALa/L3CmJp2z9kVkc/Xp68Xu4EpJUYoqDUYipWiaOVOjfpMQhnUqhxJwSiycm4rmiMBnL+0k9X7VHNuwivQIlNLfyu/EIqdH4h15WNqQOXMImb5scigliH5sUZyamlBfqwiptboVn606f1ImKcrP8Ve61KC+j62R7Nby5GLuFpr1WSbLB3MKKJT6+7mCLb+r/UIB3xMJpgJ7kfa6Vfz7l4EvxBmBTVdfsyXUwM0W/+JiXjZ5Tr+mA8VudCxOrUaZWrj0ykk0xnLfFS5QIt1YzjguVEEAOZ3aEytmuXHEUF+5NHIglp13leSqekwmJph+44E/VAUhTG1WDJd0M1di6CcTC1JrSfGDRt4lvxYEFOrTBAw59S8MoooJuZZrYNCyf3It6Wr9Py3SdYr1M9Z+p2xknTG6JCSl6lVsfxotMjKbkJBQa1abf0yqOkQ69R48AtiNSfdvQAtMrX0dx6fMIYuZlv6jV13PrAgEK8cUztc5KRqs6U/wL4XS1anVETHy1+f6Qof60SCLP2FMzX+dfmYWrFO11JiNJaLqWk5NbE/ZrVABjUdyRw6uN+nMPmqlgwUbkBMbTyeMnV8r2bwTI03XQCc+9FRUKsUU0tzX2eKsrVnOKMIX3BerRIk33OVOQ0rzNSmePmxwJyak6BGTG00lqzafOdJllOzYGohydRqAknu4bICVdTXkiznBiRfqWr11qGIMFn60zZ1atUsPwqBuJi8mmEU0dxqrKtIld63aTbHUEFEDwKVZmrMKMIXXzu09POvs1tLmsIBZsA4MhzDc3tPVJ0yQjk1sega4I0i1bk+yKCmI5f8CBgLXr0PCuUT97XCSnNZ+ilA5bP0A8hyC+48Noav/+415gQrFURmUkyuha9TA1D1rbJI7vb7FYSDmqwlBvlyg1n6OaOIU/aY4Po+Kop9W7b5eq3axj++jr/94RZ860+7izlkTxFLpNnfazXzTRpFagRinZqIlhoaZ14MMlw+p5S7x2Q6g3/6n9dw/wuHin6vXJZ+lvR3wdTuemof7n72AB58ubQtw8QuKIeG3OdaeKMIADSHq7sAO8V18okEdaZW4fZRhvvR71p+tOr7yIMaOjy95wQA4C9HRl0daykwoncTCfiMmjQeLKg5zKk9vec4jo7EymZWkkFNRzJjPFxWaJ0hQc3E1EpYwvD7HX2457kD+NeHdxX1PlOJlOnhyi6+dtYmC8iuUyPJ7tio9wn9dEbF4LhmcKFATF1sxEkDhb4vkM3Uqj2n5vcpCAeqjKkVYRTJN717nl6ATTg4VD2jaE5OGh36rdhmIcXX08k0rr17Ky64/XH0jU7nfb0XkEFNR5L6tQWsmRpp4PUe1PiuRWOxJD73s5dwy2+KH4ki4r82HwCgjbgoptcibxIBvLL0a9eYpvyWoh/hV3+9A2v/5THsPDbGFvHZLREAxd1jvFEEADd+pjqDmimnVjVMLVt+dJpTE9vt2YFaZRFGppJshlmlMRIzJl5boRBL/+t9Y0hlVHQ2hdDTGvHuIHNABjUdpO0HbZgauYBoJEO9Is1JBLv6x/C7vxzDz1447Gny/tWjo9h+aASAZkgpRhoTO1CIi8+4wy79QPZMNbLBlyKovXZsDKoK7BkcZ/KjF3P76M9n8iPLqVXHgimCnruAv4qYGud+DBfI1OIOmdp8jqmRn+TgcHWwNTKJWHUTAQozirxyVJNVV81tzZlj9BIzNqg98NIRPPDSEfb/tMMK2OTUqAjxZJXspkoFnjXt4maqeZkUvvf5g6b/HyninIoBh18QVVVlx12Y/EhMrXRBjYIMn5Tv9iSoCUytypsap9N0vEZOrRIjWY6cnMK7v/80frXtCCc/us+p5Qtqp/e2ojHkx5r5bThzQTsA4ECVdO0nO39rQ7ZJBCgsp7bjiBHUyoUZ2Sbr+HgcN/3iL/ArCi5f2YNI0J/X/UhUvNROuEqDN4rwg0KnEmnM8ugz/rxzwPT/I0XIbWTnD/gUpDKqqZt6LJlm3R3cGEUoqA2WIKjRZ0xxQY2Ymifyo1IrOTVDfqwkU3v41X68enQM9205aK5Tc2npt+smQuhqDuPpm9+FcMCHWx98DdsOnsShKsmrUfuuOa1hy59Hw85zaq8SU5vX5s3BOcCMZGrbDg5DVbUHiswAYu9HEUTFT9Z5UOOZ2psnjIfMy0JLOuc0s66YjUKfbuLoadP0en5HTfk0nwI0BLNdXCKiIbOsQjm14cmEp+3RVFVlzCmWTCOeFOTHIgw6dP1I6an2oMYzy3Ln1N48PoFn92ruQ9rAvXl8kgUmN0YRIzeff2ntaAyhMRzAollafq1amNqeAW0q9/LuZsufO5UfY4k03hjQzuvqeeVjajMyqL144CT7mup3xC79Ikh+HJlKIp5K49q7X8AdT+wt8ZGWH3xQ47/2Sn5MpDJsd97bVpwx4oX9w/jh0/sBAKvntgEwS1f81Gsnen5Ud3VRMONbSw1NesfWJhMGg4wljH6i3c3a+RifTrru5pJlFKly+ZHvKFJupvap/96Gq3+4BW8MjGO3vvjy92LUjaU/7czSz2OBHtSqxQG5d1A7F8u7myx/bnQUSePQ0BTbGIjY2TeKjKrJ6mSCKgdmZlA7aAQ1WviSeerUmFFkKoEdR0bxxO7juPvZ/SU+0vIjY1NL4hVTi3E6fE+rlix3Y74ZGJvGdfdsRTyVwcWnduOaCxYBEJhaAfk0wGBziXQGqXTGZI4ZHPMuqPHdPazkx4xq9B8sFNmWfuqEU0NMrQwdRTIZFft1JeKZPScYoyCEAj4E/b7Ci68d5tR4LJrVCAA4WAVMbTqZZh1tls22DmrE1KYSKbzjW0/g6h9uwc5jY1mve0XPp5WTpQEzMKhNJ9N47ZhR6Eg7WMqp2VlxeUs/1RGNxaq3+7lbpGwYglfNS6eS2uIa8ClsEXeTU3th/zDG4yks6WzEHVefxViWlfzoxPkIAA1coekkF2wAb80ivBEklkwzdtkcMeQut22t+HlqANDSUCPuR56plaH344nJOPvsB146ytg5gRbugnNqRQS1wfE4pircmm7/iUlkVK0ut6vJOqdm1dDYqrXbDj2ftrKMJhFgBga1vxweYVIjYOQa8vV+pOnXGRXYO6hpzol0puLNV72GnezlNVNrCPnR1kDmm8IXXHqfhbOiiASNESH89RgvoJsIoI0/ocsv5vm8NIvw+a1YIsXktnDAx4r83TIrUX5srfKepQZT8yFcRqbGM2+ynfOgTZKdpV9VVdx4/0v4/M9eMm1sE3kUHyu0RoPsOhU7T69Y7BmkfFqTrWRvtUlssXjGiP2e3iuDWknBS4+AsZvPx9TCAT+70Xmre7XugN0ibcM8vcqp0e6uIehnjlI3ObUpbjwIALbL5xcfYy6Ws6CmKAqTIIcFSdRTpmYjP4aDfrY4uM0zinVqxtT24q7f3sEJ/PiZ/Z7PE6wUU+vP092CMTV/9n0FaJuOB18+hv/5yzHTuTWYWn5jEg9mFjlR2aC2Vw9Ey22kR0AL9H5h82/FZIn9On3+vMKMC2rbhaBGQSlfnRpg5NV29Rv6cbXmKtwiY7OeeBXUyHwRDfnR1uDe/RjTHxiSDK1kokI69BMa9CApulyppZUX4DdCU4m0YS4I+IxpEC43S2nG1LT/p/ebiKdYf1M3+NeHd+EbD+3E47sG8r+4AKT1Y/L7y5tT6x/Lvp6LOxvZ14155Ef++vDH69TSL4LG0fSVoCVbISCmtszG+Qhomz+xJ2Qqnb0ZTnOF9eXEjAtqR/V82AK9TQ2THymo2XQUAYxaNX64X90xNRv50Wnz0nxgTC0UYJKum5xaTGdqxKxoEUlnVLZ4F9Khn0BsfGiidEyNlx95RhYO+Axm5ZKpiV36W0wDbt1vTIi5DozFMTadxDu/vQnv+f4z+MXWw+zZcYNKMbVBi6D2V6fNZl9Hhc1SOqOano1RgW0Tki5yakD1DN40gpo9UwOy2ZfVPSDmd8uFGRfU6OTPatJYAu3m6eEK2fR+BKwH5lVrrsIKu/rHsG7jYzk745dafowx2dDIqbnpecczPgAsHwMYu2UqzLbrYWcFCpLZTK008iP/OeGAv+jG2eJCEvD72K66mA0YLbajsSRePzaG/Scm8crRUXzl1zvwf//8huv3TVXI/UhM7S09Lex7fFATjSKAWYLkryHv6DWYWmELOcnosQoGtWQ6gwO6I9TOzk+IikHNYjMsOnHLhRkY1LQT3aEHKNH96ISp8ajWOVVWuP6/XkTf6DS++ptXbF9TcqMILz9S7Z+rnJr2PhGBqQHG4pOviNQKJGcOT5qPqWRMTQ/oiqKZCwy3ojdGEcCbsUkUaEZjyazrJdrhCwEtfEGfr7w5Nd0ocuUZvWiOBLC0qxFnzG9j542CjNV9BWQ7WMXXFMrU6L6rJFM7ODSFVEZFY8ift/mwaBZJWlwzvll1OVHSoLZx40ace+65aG5uRnd3N973vvdh9+7KDsMjaaqNBTVBfnSQU+NRS0yNl03tIDI1GpHhtVEkwhlFRqYSBRcb046WmFrAbzgXaWGhgtpT5jgPavR+VDtHO/bj43HPyjf4BZEcmmF9qGSx8iPbHXOST4sHtWoxjqmJzLqYgE+byXLn1AY5pvanL7wDv/jUOgT9PtYQoEmXA3kXY5ybqs5vEPjjddrQWERU35zFkpXbJNN92d5oPXKGB50fQsoiGS/O9isXShrUnnzySWzYsAHPP/88HnnkESSTSVxyySWYnKxc5TzR5I5GI4EOcF36cyR4rbpW10pOjde8rey3BDGndspsLSB4tYPkgxFJbW6KjUX5EYCpUHZ4MsEW23xSCg+WU9ODGgX1RDrj2dghq+BCLKVYCz5bSLjdcWuR5hPAON8aU9POzZIuzVhxYsJ9UEtbdRQpC1PTgtqclgh62xowS6/Jolw7yWuKoli2yuKvoSmn5nD0jIhqYGqF5APFPHViphhFHn74YVxzzTU4/fTTsWbNGtxzzz04dOgQtm3bVsqPzQmRqY1lGUXsL0CrJVOrbvnx/23aixt+uh0v6aNeAGBue9T29cSYFnc2QlGA8xZ3APBOfpziglok6Gc5rELzaqL8CMC0KJIkNr+jwXHxNf9+RqfyINsEeJVXswouVA9VrPsxY8XUSNIsIijzTI3qCpd1aZuFoYmEaxZbiZzadDLN/oY5QvumFbNbsr4ftmiVVY/yYyHOTerbSrBy1lbKKFLWAoLRUa3IsaOjw/Ln8Xgc8bixcIyNZbdeKRYkd9BFmRAs/fXG1L75sCb3PrdviH0v12gP2un/4O/ORtCvsGm13tepabdeWzSI2Ki2yMy3vi0sYTA14xbmd9QU1E4pIJ+mvZ9ZfmwI+dHT2oCx6XH0jU4z5loMrPJlZHQpVipkdWq+bPnRLdNMpTNswRvjcmpLu5uAnQNIpDMYi6WYm7Ww4812P3pdCyeCCq+1EgrzEvj5i5dhzfxWXHLaHPa9UMAHxM22fpP8aGkUKVB+1O873ihyaGgKV//oeVz/9iX46LpFBb2fG9Aa6CQgf+rCpehsCmNn3xge3zWY0/1YVzk1HplMBl/4whdwwQUXYOXKlZav2bhxI1pbW9m/+fPne34c1DmEgtq4w+JrwJxTo81HtXY/B8y7J76YOFfDWJLGmyMBLOlqMmYnxb3ZQU4LsiFJYyRpOYXRmcS4XrSQxFNGd/BC8mnacWl/77DO1CIBP8uzUHu0YmHVXFiUH127H4U6NaB49jedMi/mxKpnN4dZDaA4rNUpUlxHkXIxNSY9tkayckdt0RCuPGOuqWWatfzIW/qzi6/DhTK1oNFPkbDpjUEcHo7hmw/vLktDajp2J9Lp4s5GfOnSFayVVjKH/Fi37scNGzbg1Vdfxf3332/7mltuuQWjo6Ps3+HDhz0/Djr57ZxRRFVV0wReO/Dux/m6hFfNRhG7gJtr0aCEL92IlBCeLKIn3YmJOL7+u9ewZ2CcPbS0aLSxkT6Fyo9Up2bstPmWRm/0a87HFQUyK5IfKag0hPzoadPyan0eBTXrnBrJj8X1arSWH4tjfzx74HNqbdEQW9Tc5tWsmFqpc2oU1Jx2jrcManyrM26T6DanFrWQH0kinYin8IsXj1j+npegvFghLJPWS0umZpHfLQfKIj/ecMMNeOihh/DUU09h3rx5tq8Lh8MIh62baHoBVTUKKMkoojWUNS5IMIeln2dqy7ubcGh4qqrlR7vdfswmqKmqykaikA7eWMDodjs8+PIx3P3sAYxPp1hApVwadRUZLbCrCLXgsTKKJNIZw/lYYFCj96MUUSTow1w9qB0d8aariNU9Q8detPvRYiEptvUWH9SmEmmcGNfzjdEgOpvDePPEpOugxm+iysXUBgsNahY5Nf5cxrxwP5L8yL0XX8N4z3P7cc35i0rKehhTK+DYKXjPGPlRVVXccMMNeOCBB/D4449j8eLFpfy4vOApchsXoPibx6mlf7m+WFYzU6PFszkSwAXLZuHdq3sAaIuGVWKfNz6K9TrJtJozF5cLtAAMTcSzrPiGrd8lUwvxRhHtdj48HMNoLAm/T2EOPaeICu1/wgGjZseLFkbTSWN+WoQrGKdjJ/lxMpF21anDiqkV634UN0HUdLeN6+Tu1tZfEaY2Ss5HZxto5qpNW8uPMU7FmGQlGoX1frQyivDmqcPDMTz6urctykQkXeQD6dyIbbJ4AlFXlv4NGzbg3nvvxU9/+lM0Nzejv78f/f39iMUq09+Mr6VoCPrZosLnm3IFteZIgNVCnaI3/Kzm4msKJnPbGnDfJ96K//M3qwBowSuXBg4YiyLf423KZV6Ndt4jsSTXJkvPIblslRUTGB9gPGA7+zRD0sKOqMkd6QTi6xtCfvTqTM2LnBpJwopizE8DjEWwuci2VlZ5jJYiywTEoEb/3xYNoVPvzOOaqVnUqaW4VmelwAF9GCfN88sHa/kxm6nFU2m8ps8VO7XHXS6XZ8W8AxcAnrMZxukVDOem8yBELEzsjclvkOuKqd15550YHR3FRRddhJ6eHvbv5z//eSk/1hb8Qh70+9AU1vM5XPeIXPKjz6fgyjPm4oz5bThzQTuAKmdqeg6FJC2eGUxbsC5+QCidhoDfSOC7tfUTqxqdSma5Fo2mxs7PYyajMvnRzNS0r2knzgcNpxCZWiTgZ/LjsdHpoguwaTFsCgVMtT7E1ExtrVzcW9byY3Gd+u1aN7U1BNFJObXxwptSA9ZMDfCWraXSGXz8nq24/Y+7kExn8PybwwCAcxc5s9vmlR8T2vf/cngU8VQGnU1hLOl0pxBMJYwZjZRnftuyTgDmETn9o9O49LtP4b83Hyjoc3LBDVMj+VFkavwGua5yatU2QJPf/QX9CloiAZyYiLMdkd+n5L0A3/3QGQCMxSme0iYkF8oIygF68GinHvL7oChavmg6mWaLHYG/Efl2YU3hAKaTCddmEXroR2JJ9hCwnBobP+N8UeQDslVOjerJCun5aPV+gOaunN0SgaJoi9rQZIIt5G5A7KulIWgOyNz909oQxGQi7SoHlqtOzXVOzabLRUuDllMD3DO1JOd+5B2D08l0QfWFufB63zge3zWIx3cNYll3EybiKcxqDOH03pb8v4xsphZPpU1DRUmJ2PKmVjazdnFH3o4cIuheyKjamhIJ+tn1etvyTvz+lT7s7BtDOqPC71Pw/JtD2D0wjgdeOoq/98juHy/A/UgI2hhFzGtJHTG1agMxNb9PgaIoTOqhoFbIyW8KBare1k+BlxY1RVEQ0XfD0wl7txJgMDXAYFVuzSJMfpwyAiNzP7oYFMrnHSLc7p52mFSHRCywEDQInRIiQT9CAR/LHRUrQRL7ao4ETAGUX9CLseDn7Cji2iiSfa+0RALw+xSDqbl2PxpDNX0+hSvL8I6p8QrEPz+0EwDw9uWdjhlEmDMgAdnPOykRW/ZrDHDtkgIKLnVEuU0NPS+0Lp25oA3RkB/TyQzePK65ekk18bJYu5A6NYJhFBGYGnfO69bSXw0Qu4bQRGTKqRWyQ/H5FNYXsFodkLTTo0UNMCRIS/nRIqcGoOhaNXroM6phKIgWkVOLsW4iPtPCRA/jcRfd+QkNAuMmBt7D8mrFOSAZU4sELcsR6GeAO2ZFG2YrSz+pCoXCyi1LRisjp+ZOfkylzTnAUky/5nPpdE4vXNHl+PdFpiZel1hSM/Vs02c1UheeQhDw+1hAn0qkkc6o7HM6GkM4TZ8mQBJkKYJaIXVq/HEDuZlaXRlFqg1if8dmllPTmVqBPcqKtV97hS1vDuHhV/uzvk/HxcuMtEhbLRomowgXLFitmkumZmV5pqBGjtJCmJpVNxHACAz0d7jpcJGVU9PP11yPCrB59myVDwSMxgDi9G0nMOapGd/jVQU3GzDroKad207O/egm3SDavkvhgEykso/r7csLCGpCTk183mPJDHYcGUUsmUZbNFhwFxsC74Acn06yspK2hhBWzm0FALx6VDOiTLKg5p1KRIGpkMJxGrEjNjSW8mOZQDk1Cl6MqekLaqEFk7QDrrT8+Kl7t+Ez923LWgStmFoDC2r28qOiwJQToODh1ihiZTQQi69HY877BxqttswBSJRN+L/bKRrEnJr+Gb2t3jgg+Y0GLznx8+Bm61bz/tFpZDIq/vXhXfj9jj5H728lP/p8SlHtt2IWCyedWzLjJNIZV0YUvqMIgJLUqoksYuXcloLyouL0a/HvjCVSePGAJj2et6jDtTGCb5VFJpGmcAChgI8LahpTozXHq56sQHFMTdw4VNIoMqOCWlJohcVyaiQ/Fnjyqai1kvIjNWdV1WxZZIwzJRDCOZhaxkK6AozxK14wNYJYfJ1Mq46llJhQFkAQg5qrnFqW/Ki9J+sqMuqN/NgcEZmacezdelHwwFgcO46O4s5N+3Db/7zm6P2tjCJAcZ1KrHJqJD9Ggn52f7jJq2UzNe9zasQi2qNBrF3cgc+/a3lBvx8SjomeMzrWWDLN7oulBUyEENHAOSApn0abvlV6UHvt2CgyGZU9i9PJjO20+kLBOoq4yKnZMbVyszRghgU1OvEUvJoj1KKJ5Ed3TM3N7ncynsrLTJwwF36REhvB5sqpWQUau7Y2jaxVlrvds9VnEfuLBH3sIXKaVyM3nigVZgU1L9yPgvx41AVTm06m2SbCqNMTjSLG19TpYnB8Gof1QucTE3FH7MXo/SgEtSKkcrp+fOBt4+4plldzUYAttmXLJY+7BbGIpV1N+Pmn1uGS0+fk+Q0zQn5zo2U6h3SdYokMRvQ1xKrpuVMwW38yzQqv6R5e2tWIcMCHyUQa+4cmTQzNKwnSDVOzdT9WqEUWMMOCmjEIlHJqZqZWaE6t2YapZTJqzoD0et8YzvjGn3HN3Vtta4A27R7Euf/nMTyxazDnMfABVQxq40zqMnJPzP1oFdTS1rv8YltliX9jKOBji5iiKJwD0lkOyWrsDJDdxcEL+ZEZRVzKj+mMiku++xQu+7entPq6lGFyaQhaM7U5jKlNm4Kok4Bq18WhGPMJ3StzuGnI/Iahi9n6C88BloOpORkAnAt2RpE5LKilmFzYZjGeyimiQaMA+yQLktr7Bfw+LJyl9ZvtG5kWgpo3GwBP3Y9pydTKAjrxdHMbln49p5aj8NoKVrvfWCKNd/7fTfj0vfYz43YcGUEyreLJN47jup9stVysntlzAicm4ti0O09Q45la2nxzM6YWzWZqVp367Xb5jRaWflVV8ZVf/QU33v9SXkYpBjWRDRXaKktstUUQE9xumFqIm6AN8O5HbQE7PhEvqNvF+HQSh4ancGBoChMJo/dlJOgX6tSyc2oDY3FTEHUSUDM219BolVX4xoSYAD9jjN8wdDe7byPGz1MDSsPU3DYZJhg5Ne2Y6JmbrQf5WDLNMTX3QY03ilgFSb7dGR/UvBoLxTqKFBD87Xo/srWkzM5HYIYFNTZexkc5NaOpMeDC/WhRT7RncBwHh6bw7N4hu18zGUue2zeEC25/HFfd+ZzpfWinmk/y4wMqn6xVVdVw2nHuR3pwrCz9xi7f/H3G1LhjGZpM4BcvHsGDLx/LGYxUVcWUsEBFBYZVaFcRqxZZQHYnBDe7ZkVRTK5K2gTMagzD71OgqoUxEp49TyfSbDMRCfjMs+D82Tm10VgS+/S6JMBZUGPXUJQfixgUSl3ozUzNOLeLOjUGsf9E4RPtxenIJcmpueg+zyMsMDVSR2brDDWjFlfwTzCMIinW4JuXefmxRJMumVo6o+Lbf9qNJ984nvUzN0zNrku/3X1YDsyooEaz1OhCtDeab8CC3Y8kP3ISINVh5Rp0SLvlVXNbNbeUAmw7eNI0nZp+P98ujJeT+P5rWu2Mbm3nc2o55Ee7Xb6Vpf8At4DZdf0HtMVJJHIRgWEZtWrOgoWdUYRnO36fYupbWQj496XA6fcprAB7YMy5WYRfnKeTGYGpcQ2NuQDdEgmwz/3LYaM1kpMpAVZ1agBYSzg3bjk63zxT4xfbJZ2aOcJNUDPq1Mj9qFv6vcypFcvUbCz9fJCne6KYnJoVU+Pfr4ULahPT7pja1gPD+P+e2MuK0Hm4OU90buzaZEn5scQQB4Eu7TI7lYIFMjXaafM7JRbU0hlbWY4einec0olffHodzlmoFWvyNyp1xM+3CPFyklVvOr9PMRsSgrQbtB8VkSU/hrMt/fwClmunaBU8s+THAruKTNnIj/xOvK0hWHCrIgLPAPm8nSELOg9q4kbDyKn5bYuvFUVhn8Wf86MnC5Efzd+njcmUi6BG15Af1cIzksX6JISimFot5NSYpd8oiqY1gwyIReXUuKBGpikr+XE0lsQ4Lz8WYBQhtm/lVDUaGhfA1GwaGkumViYY2rp2orubw6bdfKDAnJoxA8m4qfibxaoTPsCPhNFuUqqX43dcdJPk24WZ5Ud+NIb2e63C4p6ro0ghQY06nQO58x9WAS8aNBdNG7VqRcqP3MPopvCaHV/IOqgxq30el990Mo0/vtKHWCJtlh+TRs/ASNBn2yaL/yweheTURKNIlF3DwhkQ5dTsgho17+0bnS7YiVcO92Ox8qNoFOFrDUWzUpsLcxKB7mc+R8ef51Zu8zdpyqk5P1c0IHU0lswqBXDD1Gj2mmRqFYLRJkv7sxVFMdWVFLqTo0WJv6n4uVLi7oXAt0oCjKDB774o95LvhrUzioxaOB+B3ItGxia5y+8QCQdOTLGvczE1yxq1LKMI5dQKlR/Nf1vIxnJeKOj4Qn6fKcCT/DaYh6l98K7N+Mx92/GzFw6ZglqMs/aHg35bSz//WTyOOTBi2G5MuBqoQkE5teZIAKvntaKzKYx5+uR3QLt+1AWlULaWKgNT80p+FOvUWqNB08aqORwouCyIRwNTflJZ7kfAeA4Hx6ZNo10KuaYDej2dqmomJh6u3I++3EaRcrfIAmZYUEsJ7kfALEEWPoI9ewbScZ6p2TyYfFNbwDpnRQ9iXvnRxtI/ZlGjBuTpKGIjGVi1sjLLj/bHaFWyUKz70U5+5AODFzIQP6oHcCY/Hjk5hR1HtDzYo68PmDY2fL2aNs/P2v3IfxZgnJ++kWlTf04r2OVFrcw+TsGOOeTHrz9zPp76ykVZDGVxpzsJ0ngmzTm1UrgfvbL0j/H9O7l7sK3R/UYKEORHoU4NMJ5l0S1dCFMbGDPWp5PC82a4HwthamQUEZlacee8GMysoJbJ3rEt5SYjF5pTY4ldTn50wtTETh9WHTuIqeXbhdkVX4tjZwiGpd+5UcQIOglWg+dUfowxY4RxzkXZkLkfHcqP0w7kRy9kIHHh5jt92OGHT+9nX58yuzmH/CgyNTGoGUztzPlt8Cna/ZSva4ddnVoxkxYYMw76EfSbXZsEFtSOFxbUyplTc8vUqPnAVEKbGM/kx4aA6R4sxs4PmNtkjeSw9ItBrRCm1s9tyERlJOmio0jAjqnZGJbKgRkV1JIWBYFLunj50WVOjdv98nZvOwfk+LRZGrSUH9MO5UcuEPALgdE4Vwxqhm4vwu5GpIcpo2rHeHwibpIcc8qP+s96uSnD2fKjLm86Zmrm8TUEfocp/t2FgGQg8f1nc0XRVhieTODnWw+z/4+nMkJQyzADkJZT440i1p8FAAtnNTI5Ml8BNmt1ZtcVxkVQo/Oda2YgBbU3XcqPRpf+EubUClisebSyTVcCU4k0O+ZWYSZeMeoAYGym+Dq0dgumJvaaLYR9D5iCmjVTc+d+NK91RCCkUaTEoBMfDPBMjZMfC7wAvFxAcMTUYoJRxJKppdl7OCkPED9vlEtm88jZUcRGftScetrvjUwlTPk0ILeln85Ne2OI7cJF2ZAlwB1a+p00NC6qXoiYWlagyS0/PrP3hDCRIG3aaMR4phbw23YU0T7LCGq9bRHMbdc2BfmCml0ugzZObrpP0DGL140HKR6FBjUmU5Ulp+ZugeXlcdosBnwKGoLma1iMOgAYbLpPL91QFPPza9chx6mjNZ1RWT0doLUH7B+dxu/+cgypdIadp0LkR6NOzSw/0uZKGkVKDNbQmDvR1HoGyNaY86EhZLCeTEbFVCJlyoGJlBzQWmjRa6gg1iqo8QEq1+563IH7kYcxr8ri2HJ0AWjnHuwDwsJl1+pL+xwjANHiIBo8Cs2p0Xvm6ijihVFErKebrXfOODmVZIyLh2ggiacytjm1rI4iWUHNyKn1tjWgt81Zmy57o0h++fFnLxzCB+/abJI4+cVO3ETwWEy1ascnChpBU86OIoW6mwltHEOiSRgtuquYvweLqVEDjPv5kN7vs6spbDnsVYRTR+vQZNzkeByZSuIbD72Gz/3sJTyx+zhn6XfRUSRjLmGSRpEywSi+Nv5sXlKh5rFOQQuFqmoW+RPjZqZhxbAmEynmXMpyP05n59SA3GaRfDk1W6OIxaKcylFbQtLKyakE9g85D2pTXKE05c6yjSLa950OsZyyK742MbXi2xVFLNpuERsctMirkfTMtyLjc5cT0yl2jqmR8xWrenDBsllZo1B4pjbXFNRyOy/t6tSYUzdH/uWeZw/ghf3DeGD7Ufa9ae6eEs83j4WzolAUTTkYKmAOnJFT0w64pB1FXMuPxjN0eDhm+h6/fhQtP+rnl+6Rt+iDQQl2krrTnNrAqPmeHZlKYO+g1rFmYGzacD/6nTctIFanquZxM9IoUiYYxdfWJ/pggUGN37lOJdIm5yNgzdRILgz5feyBYEyNuzn5h9puIdKS1tnMUFVV7OwbAwB0NFrn1CyZmsWASQJfS0ZMjc6j2AaLB19TRrVj4o6/MeRnMoUTtlbyOjX9fcVFnC+KHhzPDi7EcObqASieSpuYGq8E0HW44+qzcN8n3mop+a6Y3YzmcABLu5vQrbdkEu8xEXZGEbrHco0qIRPBU3uMFkq0YCpK7uGRkaAf83SJdM/AhO3rRDCm5i9hl/4i5ceA38ean9PGl/LhZqOIN0yNcHqvOahFgn7La+A0p9YvKAkjsSQbmcPXVAYLYGp80EqZgpr2X8nUSoyUjQxBO6JzFrYX9H4+n2KMckmkTfk0wHq3Oc5NPiYYxdfGzZngmJSdZCTKW3RTPvb6IF7vG0M05MdfnWYes+Fk8rW1/KgztckEDg5pDzblI53Kj8v0msAFnOQL6J36C2iVZTQ0Fidfe5PfMJha9o6VJEgrByQLanoNV0IwivBuMyfThX/z2fOx6csXmYp8c+VXAXv5MRo2/harTVIskWbs/oX9w+y6TScM6TFfh5ZT52jP0e7+sZyvszregCA/5rqnCoVhEHO/3NEm6fBJPag1kJTuHVMTg9ppQlADzKyRNipOc2piLvjoyRhThyYThopQkKWfey2/Fom50nJiRgW1ZMbcJotwz7Xn4oZ3LsN3P3RGwe/Jt8oSd9FWCxAxq2YuAUwypkl+5JmajWYuNqel1lzfe3wPAODv1y1kRbGEXJOFc81Aoof65FSSdWOnIJVbfjScil+74jT87oa34aJTurLfX39YT07mZ2pOjCJuxs4Q3nFKF5Z3N+GK1T1ZP8vlgMxmakJQ44ZLOmnh1RgOYJYuSzqV5ezyoiG/jy0wUxb3E7+Lj6cy2KpPcrZjxVY4dU4zAGBX/3je1wKaoiAGYardHHfh0rSDlUGsUND9RBs666BWHFMTc82n9eQOasTenTI1umcpGL7eZ2w++MYKhZwnnv3ydbmMqcmgVlqkbGSI2S0RfOnSFSxvUQjoYZ9KpLKGJFq1yRqz6PQhGkVUVXVkFBHnuMVTGTyz9wR2HBlFQ9CPT759Sdbv5OwokpOpaQ9T/+g0k9EYU8slP9JOP6QZI1bNa7Vc0GmXO5qHqamqaiy0JcqpnTK7GY/cdCHes6Y362fd3FgYEZRTpYGiYlCjLhG5rPF2IBZq1+iXpGc7B6uiKFwBdvb91C9M9H56zwkAfJ1h/mNeUWBQ42XQgBjUXIzIsYORK3K/wFLAMuTHbCm96Do17r2iIT8WzWrMeo0pqOn3otOcGl3jU2Zrz+0x7prz5TSFMDVFUdi14+XHlGRq5YE4T80L8LVqTpjaeDy7fozkx1gyjXRGRTKtmjrbT+hTssVuEqPCxO1EKoNXj2q7r786bTbb5fPI2VEkB1Mjk8cuXVpqDPkZa8ndJitl+lw7tDt0QPLHLco1jeEA3rumF+9e3VN0fsMOs21aZamqiqFJkh+tc2q0cDhhPSJyMbVXj45i1T/9Cf9v015mQhLlR4BrlWXJ1DT2Tb9GQc2uJtAKJD++MTCet/MJYF4E6XiLmdBth0TaWqEpBHT/HzlpNop4GdT4c/yWnhZrxYRbN+hedNpRhHqWnmrBAPnGB4X2yKT1lF/v7Bo5lAPZrQHqGMVae60Q5doPiTk1S6MIkx+NU9/I5Tsm4qmsG2EynsIH79qMyXgav/vc29jPRaaWSGXYztpOfgtzDY1VVTWxplxNSGmnSrvwnrYGFlRydhSxaWklghaEXM655/adwDd+p43M8PsUS/bwvY+cmfNzioWdYWM0lmSbJio0jyftmFrh9x9dN6ug9tLhEUwnM3hh/7CtUQTgmxpbMTXt73n78i48+cZxvN43hpGphG33FissmhVFKODDVCKNwyensNCCafAwMzXt76OgRizXrWORB8lixfRlJPmdNimUE+fv62LMSYC2cfEpWpMD0STCPsNKfnSaU9OZGcnEPCjfG/ApBUuGQb8P08mMNIpUAvncj24Q5eRHMahZ59Syi6LDAT87psl4KktiOnIyhq0HTmJn35jpM6xyatM20hyBAoGqZi+QuXZXvO0eAHpaI9z8pxy9Hx3KV10ULHJ0wL/1wdewq38cjSE/vnLpiorsAq2aOwNGPq05EmAsPJHOmM4x/Y4b+dFoqpu9gWCF+qmMrVEE4Auws68X5VtO621hOcE9gxMm+TgfAn4flut5VicSJN/ZnY63idvsiQ133YKksKLkR2GTSM8vXUu/T8lqHl4o+AG1Vvk0wKzwEFMjhScfKG+6YnZ2UKN70w2btZp+LY0iZYJVnVqx4OVHWthoB2XVUWScFV6bHxI+ryb+Ht+lgWdnWUEtlWHMyG7h5B19cUGCzLW7EuW83tYGblSGvXnBztQhIl9QU1WV5TN+u+ECfOrCpTnfr1SwC2rH9XxaV1OYsYt40iw/0roTdiM/suGZ2eeaAmcynclZQN/IatWyAyOZf+a0RLBcz7nsGZgoyCgCGBLkrj4HQS1j/C20+Pl9CnsWxjzKq3kiPwr3f6tgFClmfh+PWU3a5nHN/DbLn/NMjZ4ZIHdeG9Dy5XTPLu5qhHio9DM3zDhoMf1aGkXKBHFIqBfgp9UO6cW3PfpE3FxMjepeCHz/R3Hh4juf84GMHnqSMnn50W4RCvoVljcRC7AzOXb5ovGipy1iGj9vB7vuHyK6dau8Vf0XoPVVpMVbLAkoJ/Ixtc6msCn/ZXUPiEXdTpArp2bF1KwU9lxNjft148vslghjW3sGx9m1dR7UNBaweyC/rd+QSs2Ln2EW8YapeSE/Uk6N0CLk1Ip1PhK+88Ez8G8fOiOr8JrAB7XOpjB7lvPZ+vnNVTQUyGqfVwxTM5oaWxRfy6BWWohDQr0ALdYjUwkWUEgWsC6+tm40nIupHeKKwq2YWleTwQyNHIj1pVUUxdYBmau1jfjQ9rY25GyOTCCmJracEtHNipqtmRoViWpBo3Cm4xVoURmLJU1mCBbUmkOGUzGVsQxC7tyP9vIjdf2IpzI5JWSrEUcEyrf0tEZYqcbewQlbp6kdmAPSEVOzrh/z2gFpTOdw/9yL+TKSGs+Y34YlnY1475q57g+Qw9kL2/G+M+3fq0WoU2Ptz/LY+vk1JehXspQXCkhO6idFELtLmZianHxdFnhRhCmCdr9H9J58AZ/CasMs3Y/T2UYRwBzUsmVBY/HkO4hQgKMWSwmuzVSuhdPOAWnkY7J/R8wp8EzNyZDQvPJjU275kXoe9rZlD88sJ2hRyajABMdQTUyN21BYBRB3RhH74mu++XWuAvqoTVPjVDrDGPKc1giWdWuBac/ABGsH1hR2li9a0KGx6Fwz5wh2+T+vHZDJIidfA9n3P21uZjWF8fiXLsKN65e7P8AC0Cq4phst+sYSDpyYxJd++RfsHZww1ZAFfT7bkhc3gZ9+hw+c4vDXcmJGBbVUCfqR0cJ+VLf6tjeGjKGClu5H6+75fP9HfoJ11u+bmJp2I3c2h9jnOdlZ2zGsXLt8vlUQoDXZbXDgfpx26H40am7Slu68Po5JVBJ8qyK+todq1DqbwqbF00pCK46pZbIaBtPmJJnO5Nwhs5yacH5PTCSQUbXr3tkUZkytf2waf3y1HwBw7uIOR8fJDyPNZ+u3W/i8ZmpuRqqIyGJqRXbkd30cAlOLhu03lvdvPYxfbTuCn289ZGoV5vMptnKpm5wakQTe+JMrt1tqzKygVgr3IwU1nUm0R4NsUbMMatM2RpGIPVMz/b4pp6Z9PavRYGr5jCIA36lf3LHn7qzNT/btbW1ANKgdczKtWkqtgNEXMh9Ti4YCjA2INWAAcEw3MvS0Fl4g7zWs8mpWOTXAemG2ar+VD/x7ivcV5UYTqYxRp2bF1JhUZT4mcsV1N4fh9ylobQiyHpdHR2II+BRcaNEFxgq8ApGreTJg5F38fjGo6UzNq5xakZOvAYucWqQ6glqu6QtD+j05lUgjmTL7CaiERtxsunI/Bqzcj9p/pfxYYpSiTo1a21C1fns0xC6ytfxIs9QE+ZHTxuM2AQIwO8IogJE+rhlF8o8JsZuplq9gkh7stqg2HDESMs6jXV7NSZAl5HJA0oypSsuPgDmvRjCCWgiKorAdr2VQcyM/8q5V4b6iTVA+S7/RK9B8rfr1DQM/GWB5t2H7Pm9xh+O2Y+GAj312vqJgO6ZGNWBeuR/d9DQUwTObhqDfk/o5NyB3ZDjgQzRkTE+32kBQ558E1yOWghZdzyVd5lpCV+5HX/ZMNWkUKRPo5vbS/Ug3Fb13R2OIPTwie+G76otMjZcfaZGyuiH4hZR26LSzdVKnBvD9H21yanZMTX+wiS2F/MYCZtX/MZ1R2QKcT34EjKBmZRbpq3qmpsuPzeZejVZsI59pxgpBv8Js2CKT55larq4wJFWJ8m6/hbRLEiQArH/LbMfHqSgKkzlzjUwCDGVADMB0P3vtfizmuedlZ74ZebnR2RTG/37fSnzrA2tMrc+susRQsX8yneFMctrfQHL/KULNmnd1atp/K8HUZmRHkVLIj4S2KJdTE3fU3I5JLNTk5Ud6TXtjKIu18IskBSV6yHijSC6mRgFPdNLlWhABQ7Lo1Rc/RdGm/07EU5ZBjWeCTtxzuYLasSpkahTUVFVlTK2LNSD2Yxwpy4XdjfyoKApCfp/uqDSf6zjLqal56tSsjSLUPolnam6DGqAFpbFp67+dhzhLzfh9j3NqHsiPgLapGxiLV0x6JPzdWxeyr3MzNS2oJdJGaQkF5g+cPR+jU0l8+LwFePDlY+xauHE/0nnl6w4lUysTjN6PHsqPQvDoaAxyTM2cKCeWpSjGAkPg7dbkZpvVmO1Q4t2PFDToIePr1HLJfbSoioEoV0NjgGNqXGBpyOGA5CVJJwt5t438mM6ozE1XjUxtPJ5ijLRT6KpvNQTajVGEf09RfmRMLc0xNYtLaNfQmBgRLzGetaAdigKsmddacF1gY47SAR7i1GtCi8dMzQv5ETDk92ImQHiNJhtHK2D0UU2kMlkb+q7mMG7567dgcWejqZGyG6bG1rtUdUy+nlFMjXXp93D30ChYndujIbY7EZka9Quc1RjOYkN88TVjaha2W2umpj1kqYzKZAgn7sesOrU8ksG7V/fixQMnceUZRh2N0VXEekaX9nk+RzKEXQH2iYk4UhkVPsUIfJVEixDUXtTHtMzlHKG5B2q6W1zDQT8wnW0k4v+fgmg+9+OLB4ahKArOXtiOCYsyk9N6W/Cbz5zPWmYVgsYcPSZ52PUapeMYixXH1FLpDBRFYZ9TbNqBHJCVcj5agU9b8MhkVNbPMZFWs3JqPBpCftbpyE3gD1SZpX9mBbVMCZiaEDzaoyG2kxZdaoOsa0P2wmxVp8bPQlMUbcHic2pxganxn5mra4UhWVjLj3Y34nmLO/CHG99u+V7UI5BHoS2W7IwiVKM2uyXi6bVzC9qpU2fzx3cNAgDeearhEMyVcC+eqZmvm9gZBshdp9Y/Oo2//eEWBH0KXr7tEhZ8xA3amQsKG5pLoHt5Io98SHKVLVOLO2Nqm/cNYWw6iUtP1wbiJtMZ3PzrHXj41X7893Vr2euKmacGGLVqxfZ49BJ0rsQON2PTSeaETaSMqdZW9yWfQnFzjihQ8sXXuboTlRrVc3XKAC+svSLEnFpHY4jlV0SmRhIan7sgNHG7WwpMDSEtOR1PZbCgI4qDQ1MmRxgtZlaJ61xMrcXCvQe4uxFpgbZqkkvyk9OgZic/VkuNGoGXH1VVxRO7jgMA3nVqN3tNrv6OrpmajfxoVQJixdRI4qZ7KAHtHqBdvtMC63xospE5RdgZReh+dppT+8h/Pg8AuPe6tThnUTtu+Ol2PPq6ttHYsn+Iva5Y1kDyezXJj63MKWp+lk9yNZSa/GjPVvnhpG6YWtAi3SKNImVCyoPOAiKoVovQFg2yGyw7qNkzNV6yoUUqFPChKRxAPJXA8u4mLajpC2lGNW4iq8UoVw6LWdKFB8GNDs6YmoWln3pWzmt3lpOxa5VFTK3HhRRWCvCW/t0D4zg6EkM44MO6JZ3sNaL8GPL7OBbtlqlZdxWxap1ltTGJhrLvk3HO0NHkEQMpVH4UF9rmAjqK8I677z76Bk6d08wCmvYexjEUKz+SeWZJV1OeV5YPdhvUYW6EE19HarX2NXIb4FDAfUeRZJUYRWZUUCsFUxMZUUdjiDEy0dI/ME5FrvZMTXM/aotUOOBDYziAockElnVrD2sqo01+5g0IDSG/adEMB3LnsOya8hpMLfffzIOfUiBi5zGtqe1pNrOhRJBzcHgyYZqlRUyttwqZGkmP5y+dZboXxKDW0hBkDN61/GgzU82KqeVyP/Lgg5rYZNstnMuPdpZ+g6mJM/9E8HnhbQdPYtvBkwCAee0NOHIyxu5xv08pWgr7+AWLsW5Jp+P7uRywqpkEjPlogNkoYiU/8vdtUUytSowilU9QlBGlKL7mB3wCmg2fLnJ2Ts2B/DhtZmq0613S2WgMB42lTA9zJGAuBs1nn2fFrUIi3k0TUkN+TKN/dNrUwmlnnx7UbDqOi+BNNjRFGjA6I3RVgUkEMAwDo7EkNpH0KNjexaDWyknE4aLlx/w5Ncsu/eHs+2J8OslkYq+YGr9BI+zqH8MfXukz3R92u3nKE6UyquWEdh5WCsEn3rYYl6/U8mu02HvBGAJ+H1bNa61InsgOommJYJIfubl+VuVMppxaEUEtlTGK/3MNHC41ZlRQM4qvvTvRvJQU8CloDgds69RyyY+sTi2RZotUOODH6b0t8CnafCVKUI9NJ1ln9pDOykxBLQ8TsGNqaRf92uiBuH/rIbx142P4379/HYBWu/V6X2FMzedTWF6NCoIBIwdULbkMOo7hiQRePjICAHjbsk7Ta8RJAvyxuzeKZM9US2fUrNIRwPoaBv2+rJ362LT3OTVDfjQCzg0/fQmfvW87bv71DmYosGNq0ZDfdrq7CP5cRII+rJrbii9duoJJrWxOWBUYjEoBu2fZjqlZBS1eli5mntrrfeNY8/U/47uPvCG79JcLqRLUqfl8CjdTSWuRZMfUchlFeDs1zWULB3z416tWY+v/Wo8Vc5pN+jnrxq/fhPxDmy+o2TmmcrVYsgN91hsDEwCAHz2zH396rR/9Y9M4OZWE36eYCnnzYW67ljc7ojeIBuybQFcKtJCMx1NIpDJojgSwSKjlspIfCU6NMyJCFkYRq3waYH8NGwUWPzyZZO/XHPbm/NIGbUJ3L2YyKg7o+dVfvHgE//jAKwC43bywyVQUY1Bovlo1YmodjSE899WL8ctPr0MkaLSPYnPCKtTWqtRgEw10qZbA59QS6YzRVSWP/Ohqnpr+O8/tO4GJeAqb3xySXfrLAVVVWSLTyzo1wGAr1IORFh8+p5ZKZ4zJ2BZMLRwwHkQKftRHb5aea2rhGr2KI2aCXII3HxOwNYpkCtfBGyzyNF/51Q6Wa1rW1VQQM5mvm0oOnzRmyNHCVG1MjbCytzUr7yNKjM0RL5hatvxoJc8pCmzzUKJtn9qPaT/zZk6d0UhAO84Tk3G2yAHAr7YdQSqd4dyP2cuQ0/6PrBYy4ENHY4id26yg5qE6U02gezGdUU0lOqL7keXbrZgadz+6Y2ra71ABeDKdqailv+RB7Y477sCiRYsQiUSwdu1avPDCC6X+SEukMyozV3jZ+xEwdjrtel0Z69KfyuCpN47j/f/vWTz/5jAb70Fd9UVQsTXJlOINxufCaDGjh5hnavks4zzj48eD5GtobAWedfgU4PTeFozGkvjnh3YCcC49EuZZMTWbwaqVQkRoaLt6XmvWa/jrEQr4TENb3Vv6jeGjBEvnY45NCdU+UlE1TZdoCPo9UzDIkEIFvf1swGsIPkWbRTc8lciZdyHWmM8ByTZ3AgNtEORHL/Po1YRI0McCNn+usuVHe0t/lNvouDKKCNdP60GqfV13RpGf//znuOmmm3Dbbbdh+/btWLNmDS699FIMDg7m/2WPwe8UvXQ/AsausEMPSgZTU/Hr7Uew/dAIvvPIbgDag20XNGjXRR01siQsjqnFk0a3Du0zjYc6n1GEPiejmmuJ3MiPfJL5lNnN+NerVkNRDAbxlp5mu1+1xDx9yORhfto3NYGuEvkRMLO1lXOzgxpfpxb2+0zszLWln9yPHDuzYmq58hi3vvs0fOWyFXj36h4AxvQDkcEVA76PKWAEtbltDehoNGoR7XJqgHX/x1Q6g+888gae23eCfc+uwJ9kVtoQVaqrfqmhKIplXs1s6Td6PwYtLPvRUJFMTfgdba6f905zpyjplf7Od76D66+/Htdeey1OO+00/OAHP0A0GsWPf/zjUn6sCcfH43jqjePY/KZRhOk1U6NEa7s+byzIMTXaPW0/NALAOp9GoN9nk3rtglosmdXjsRCjCM80+AeBFUwWsLvid8hnLmjHyrmt+PC5C9j3TuvJXvBzQWRqfD/LapEfAfOxWDE1fkMSCghBzUP5sVCmds6iDnz2omWM9ZL8KI5CKgai+7GfyyXzXWNy1TLR8fFB7YUDw/jeY3vw5V/uYPkjUbEg0MbOUGfqU34ErB2QI5z8mOKmZYT82fdese5H8fol06qrVIZXKFlQSyQS2LZtG9avX298mM+H9evXY/PmzZa/E4/HMTY2ZvpXLJ7dewIf/fEL+NbDu9n3vE5eGjk1M1NLpDJZBahWNWoEccS66KDj8wzsYdZfEzbJj/kXTSNAGsdnyI95f52B1+PPnN8GAPjSJaegozGEpnAAqyxYTC5QTu3oyRgyGdWU9/PKcu4FKKi1RAJY0JFdXJ4rqLnphK79XnbxtRVTc8K0yUl7TGdRXjkfAc79OG1maj2t5qDmjKkZ1586zRwdieFN3XhiN5VCLDSvV/kRMG92CSc5+REwNhhWTK2hyJya+Dv8XL+6MoqcOHEC6XQas2eb63dmz56N/v5+y9/ZuHEjWltb2b/58+cXfRzU2oZMGoD3ycusoMa5H8VWP1Z2fkK7MGJd1Lf5m5ce5jCTH50zNcComzIzNTdGEZ6ptQEAZjWF8fvPvw0Pfe5trKbLKXpaI/D7FCTSGQyOx9nxNUcCVVUfREFt1bxskwhgvh5aUDOuk1ubs1WbrLhFnZaTt2/mJjsA3ga1Zq5NlqqqLKjNaW1gBfbHJ+I5Fz4rhy7PPp7dq0mQMUGGJ2RNdK5T+RGwHoXEnyvACGpWOTN+A+CG0YobhkQ6Iy39hFtuuQWjo6Ps3+HDh4t+T2I/Q7rGrA1b9PZEX76yB4tmRXHhCq2hLX/j8No2kFt+FEfGiw66Fs61SLVslvKjg9llVpJFvobGVqDPag4HsJRrH9TT2oBFnY12v2aLgN/HejwePjlVdXZ+Am1grPJpgJllhwM+ttHI1Wg6H4yOImmMxpI4PDzF6hV5OGJqQr9QL1kwMbWMqgWdPhbUwjZMLfuckJHlIJdb5dnH03u0oCa6gAliUAvNAPmRnKKTiXRWOdFEzqBWnIogBsJkOlOfXfo7Ozvh9/sxMDBg+v7AwADmzJlj+TvhcBjhsLddI4j9eDV+wgpXnT0PV509j/0/H2Cyg5r939eWj6k5dD86Y2rZtn43NtyVva2Y0xLBX6/q8WxXNr89iiMnYzhycooZC6opnwYAf79uIaYSKfzd2oWWP7eTH93m0wDjGsdTGfzdD7dgd/84vn7l6Vmvc3L9moVNglctsgBtkaSpEhPTKVaiMqelAcOT2v12fDzO5gVaLXxU27hXr38EzEzt+X1DSKUztkYRUX4sxXNfLRBVl5OTRp1rRtWK88kQZsVYi82pifJjMpVx5aT2CiW70qFQCGeffTYee+wx9r1MJoPHHnsM69atK9XHZkFkP+XYOfA7F951CQDduYwiYk5NeFAt69QC2fJjrg7xBL5n3H9tPoCHdhxzJRl0NYex+ZZ34db3nOb4d/Jhfoe2Sz88bPTus5pEUEmcMb8Nd/7d2ZhvkU8DzCw75OeYWhFBja7rdDKN3QPjSKQz2N0/nvU6J/KxaAzxkqkpioKmkNHUuC9PTs3KIUdBbf+JSdaBhGdq4/EU/nJkJK9RhFANI4tKBTGnRsG/PRpiGyHq7lKKjiKi/Fhpo0hJV4qbbroJH/vYx3DOOefgvPPOw7/9279hcnIS1157bSk/1oTmSIDVxgDl2bEF/D7TZwLARSu6sP3gyZzGCXI/ErKZmnHzxotwPwLGg/Dq0VH89uVjaAoH8NYlHQAKa5MF2Bf6ugV19T88PMXqqqpNfswHXn7kc2puu4lo72k4VikXxrcTIzgzipjPp5c5NUCTIMf1gEZsak5rhAW4fDm1uW0NaAj6EUumcWh4Cku6mthiHfQrSKZVPLNnyDCKhGau/Cg2Nabg3xYNIp5KYzKR5nJqFkaRons/CnVqXGF9XcmPAPChD30Ix48fx6233or+/n6cccYZePjhh7PMI6WEz6fVcVCFfbnqJoJ+H0voB3wKfvjRc/TPt79pWvPl1LiWOJRLocUyaJIf89+Y9CBsPaB1NZ+Ip1gpQSWSuzyIqR05GcPiLi0vV23yYz6Yi6/9jNFRyYIbUFCjYbOAMfmBR6WZGnu/MWDPgMYk26JBRIJ+xzk1n0/B0u5GvHp0DHsGJ/Sgpi3Wq+a2YvuhERwdmWKbBzFXGfT7TJMr6lt+NOfHaXhtWzTI0h8sqOWRH4vpKMKD1r66NIrccMMNOHjwIOLxOLZs2YK1a9fm/yWPwVvly2Xt5W+OpkgAAb8vrwSS1/3IcmrZbbLCBRtFtPeijhKA0XKoUKbmNeZxrbIM+bG2gpooP57e24oHN1yA//vBNe7fU1/Aqe4LMAc4ghOm1hgKgL/MpWBqALDvuGa9n6PL7hTUxqdTbKG122gu79YK9/cOank12pjSBmEinrLtKAKYn4O6lh+F/PgoMbWGEFuHyChiLT96M3qGB7HzurL0VxN4A0a5ijD5m8NpYWt2Ts2aqaUyKtuBWcmPTvI2VsxnKqnd+JW2zlPd17GRGGvuXGtMTXQ/AtqkBbEWsaD3DJp77AFG9xkeTq6fT58oQfA6qFH/RwpIc3RHa0vEmGJB0qnd8TKziP4exNSolnF8OmVrFAFEA0T9y4+jQk6ttSHIzvVkjqDWUCRTs9qU0Aa5LplaNaCtgQ9q5WdqTruftzQETbvnsD87T0ALAE2Hdut+tMpRTVXwRuTR3RxGQ9CPjGoMGm2posJrJxDdj16/J8Fq7IzTy8c7IL0Patr77T2uBSQq01AUhdWqEeO0281TUNszOI5UOsMs6yRPj09nu4B5FMtAagViTd8oJz/S3035fat7MeT3sXXFK6Y2LZlaacEzoHLJEKL86AR+n2IKNiJTUxSFLe7HWVCzKL52ID9aMZ9qkR8VRcFCfZTLbj0nU+vyoyfv6bBnpFOmzSsIXufUSH6k+5SvzyQJkvp72h3vcj2o7RucZHkiAJjbli0/WjM1vqi4fpc6wyiiBX06V63RYFYQs7oXFUXBuiWzMK+9gTHqQmDFgum6VGItqa3tr0u0VkB+5B+iQlhGezSYc7Bhi256oSna1CarYPejlfxIQa0Knv/FnY3Y1T/OHHK1Jj/y187tpGsRuQpjySkIOLdR8/eAV7PUCCLzO3thO/uaghrlyOwcwQs6ogj5fYgl03j16Kh2zJEASyeMTyfZfWE1+cCcU6tf+ZHy47FkGolUxiw/Cg+zXXD/7+vOQyqjFjX5mge7FyVTKw34WrVy0WFzTs35gkE5l6BfsbwhiMnR7CTr0TPFMbVK1JaIWDjL3I2k9pia99JXrqDG1/E5ZWotJWRqfFBbMbvZNBmcghqguUEvWtFt+R4Bvw+L9a40L+ou3bZoiL33xHTKtqMIMHPkR359GZtOMmt/W0MoK+DYSeH8cONCYUUUSO6U8mOJwNd/lUt+5Cv3C8lXsEGjNscpFiFbyY+OGhpbBAmyP1faKAIAizvNRc21xtRKk1Ozv678wuZcfixdTo0/1uvevthUy0g5NQD4+7cuzHm8y2ZrEuTWA8MAtOeDZNPJRJqpC1bqROMMkR/9PoWdk9FYEiMxw1wl3nulUKr4cyteSsnUSoTWhvLLj2ETU3O+YBBTs+sKIho83PZ+bA6bLd08Km0UAYBFIlOrueLrEgS1HDImf485lh+53/Fy9AwApDJG78Erz+g1/YyYWjjgwwfPyd20fJneT/TlwyMAdKbGHSs1KrfayM0U+REwm0VMRhGL+j2vwb+nOIWk7oqvqwW8UaRcOzZ+xENh8mMeppYV1LTXhQvMqZGle0yYIgBU5kYUITZDrjWmJnbp9wK55MdimFrAp7geh2OHv3vrQmw9MIyPX7A4i2Gev3QWmiMBXHv+IjYt3g7LdaZGxbzt0SDCAT8rrKYpGFYbuWJ7GtYS2qJBHB2JYWQqkTOnVophqd3NYayep/WA3Xd8wvSzumuTVS3g69TKVnzN3UyF5CvaGVNzJj/SgmHuKOLMJbe4sxGvHB1FZ1OYlQgAlXc/AtqDEg35MZVII+hXLI0A1QxTR5EyuB951uX0+hE7awwHPG91Nrslgvs/ad3jdUlXE3bcdomj96ECbAIpGc2RAJu8AVhPE2+YITk1QCtuf+3YGA6cmGIbAKfux2IR8Pvw4IYLoCgKLvu3p4SfSfmxJOCNIrXgfgQKYWrZRhGnu+4ffuxc/M8Nb8Mps80LRzXIj5qtX2NrLZGg54tuqaEoBvvxigXl2mXzTM3pvo3yql7n05xAUZyNgFrUGTXlaWiDKm4UI6HsP7qxyDlhtQSy4lODa7+uxGS5H0s0V46upXiPVmKDPDOCWgWMIqbi6wKCWmtepmYtP9LnRYLOh1B2NYexcm5r1qJbDUYRAFik16rVmvRIoPPqleTj9ymmxZmXid24H+m+9Dqf5iXCAb8pv0pKhhiI83UUqec2WQDQq8+fe73faFagKErWpOtSB3cxiEqjSInQHDamJgcrYOlvKqAG6Mz5bWgM+XHuog7Ln2e7H81GETdd4MUAWg2WfsDIqzXXalCzMPEU/Z6czMY3R+YZvNPrd3pvK0J+H86Y3+bZ8ZUC1FkE4Jha2Po54DHT5EcAeIM1kNaCf0joSiR2KfIaYu5SGkVKBEVR0NYQxNBkojJtsgrYCc/viOKlWy+xXQjt5EcKZuJwRCcQczXVwtRO0U0C3c3eDo4tF2ghFReWYhAO+DAR1967p7UBB4a0rhz8Peb0+i3ubMT2W/8KjQ7cspXEsu4m/HmnNmzYyKnxeXLrGiuTUSRQHfd0qdDTpgU1ahtG6kaW+7HE50GUN6VRpIRojWpBrVyJS7dBTfxdEVnyo/7a03tbcOUZvbYMLxdEE0Y1GEUA4K9X9aB/NI71b7Euzq12hC2cqcWC7o3WaNBUf9nswigCVCafVijIAQkYOWf+77Wry+Q3eOUyiFUKPa3mkUYsqPlF+bG050H8vEoYRar/jvYImhY/WT5LP1+n5mELohZhh0q5goDfh3//8Jmu3lNkatXy/IcDfnzmoqWVPgzXoEbarVHvrj8FyLaGoGn+nkl+rBKm7RV4B6RVTs0+qM0cS/+cFnN9GCsN4jZUilJ6ObAajCIzJqjRAlO2NlkuGho7AZ9TK2aKMo9qNYrUOr7+3pXYemAYZy9oz/9ih6ANSHs0ZJq/Z6pTqxKm7RWWdjUhHPBBVYFZTYaln9Bg4XwExOGX9XVORDSE/GiPGsOQreTHoN9XchexuHmoxFoyY4Ia7ZbL1iZL/5xGblyMFzB38S9RUKuzRbFSWDWvFavmWTfrdQuSNFujQVP9pZucWq2gIeTH3deci2RGZZIiv1G0qlEDgIbgzGiTRZjT2sCCGm3igyWol8wFGdTKiBV6LRYNoCw1KFB43SiWZqqlM6pnBclicKw3+aqewMuPfP2lqU1WHV6/87mGyABMA07t2sI1hjlLf7Vo6iVEb2sEr/dpln4qDTIztdLfFzKolRGfePsSXLiiC6cIHQpKBbqBCmmR5QQ0U+3kVNJR42InkEytdsDkx8aQKVdnlh/LflhlhyOmNoPkRwCmWWiGUcT7dm25UA2pjPrfvujw+xScOqelbLtYuplKUdjakmOGlBuITK3e5Kt6Ai0arQ1BTmJSTPnVemRqInjzVcSGqc2UIaGEHi6otdnk1EoNkQ1WwtJf/1e6Qgjpu8dSWKYpr2a3Qy0U1bC7knAG6hyxpLORNQOOBPymxWQmMG2eqTXYbO74QD8T5Efe1t9q0W6vEjk1WXxdRzh/6SycMrsJ7ztjrufvTQ7IksmPMqhVLb56+am4YnUPztPrEa88oxenzG6GoigIBXxIpDIz4vo5sfT7fVoj7OlkZkbIj/mYWjnkxyxLvwxq9YNFnY348z9cWJL3ZkzNK/lRrFObATv9WkVjOIC3LpnF/p+vTQz5taA2I+THiLPSlrct68Ku/jHMay+PQayS6GnLZmo8cyqP/Gh8hk9BRRqRy6BWg6Cg5pWlP6ujyAxYFOsRoYAPiM8M+ZE3xuRSLP7zo2cjo86Me7qnNcKG/5IzttzuR17irNQ5l0GtBsHkR89yaoJRZAYsivUIWlBmwgLO2/VzBTVFUWaEGxTQzsMDG84HYASzcsuPptyuDGoSTkFzxua2RfK80hmyuvTXf069LkGL1kyQj8MBP8shetVZpx6wTChZCpVZfgxxG+RKbY5lUKtBfPCc+Vg0qxFnL/Sm/ZI0itQHKKjNAPc6AG1m2ImJRM1NRS8nTEytzJb+SuV25d1QgwgFfHjb8k7bTgqFQhpF6gO0E58JRhHAcEB69RzUI8rP1IzPqISdH5BBTQLSKFIvYExthmxKqFbNq9xyPaL8ObXKG0VkUJOQRpE6QXgGGUUAoKtJGx5LRegS2Si3pV+6HyWqAtlGkZmxKNYbZpJRBAD+1xVvwTtO6cKFp3RV+lCqFmamVoaGxtznSaOIRMXAG0Vmyi6/HmEYRWbGNVzW3Zzl9pMwI1xBo4i/QrUUUn6UMEsGM2SXX4+YSXVqEs5QbvkxXAVMTQY1CSiKwm5GuSDWLoIzTH6UyA+/T2HPdLDMRhFp6ZeoKKgrgwxqtYtevRh/dku4wkciUU0gBl/uLv2VsvTLnJoEAEM2kDGtdnHjxctx4SldrIO/hASg5bliyfJb+iulGMigJgHAcEBKpla7iIYCOH9pZ6UPQ6LKoLWuSpWloTGfUwtIo4hEJUG1ajKoSUjUFyjQlHv0jDSKSFQUYWkykJCoSxBDmyld+mVQkwAgjSISEvWKUDmZWhXUvMqgJgFAMjUJiXoFm61W5jZZlVpLZFCTAABZpyYhUadglv4yux8rZRSR7kcJANIoIiFRr7jyjLmYSqRxjkfzF3OBir3TGVVa+iUqC7L0y5gmIVFf+Nj5i/Cx8xeV7fOCfi2oyXlqEhVFRDI1CQkJD1DpHqQlCWoHDhzAddddh8WLF6OhoQFLly7FbbfdhkQiUYqPk/AABlOTQU1CQsI9Kj0toiTy465du5DJZHDXXXdh2bJlePXVV3H99ddjcnIS3/72t0vxkRJFgowilUruSkhI1AeCFWZqJQlql112GS677DL2/0uWLMHu3btx5513yqBWpWBGEcnUJCQkikClh9WWzSgyOjqKjo7cjVbj8Tji8Tj7/7GxsVIfloQOVqcmc2oSEhJFgJhaXRtF9u7di+9///v41Kc+lfN1GzduRGtrK/s3f/78chyeBLiOIpKpSUhIFAEKajUxT+2rX/0qFEXJ+W/Xrl2m3zl69Cguu+wyfOADH8D111+f8/1vueUWjI6Osn+HDx8u/C+ScAVmFJFMTUJCogiE9Lx8TcxT++IXv4hrrrkm52uWLFnCvj527Bje+c534vzzz8d//Md/5H3/cDiMcFgOOKwEWEcRydQkJCSKQE25H7u6utDV1eXotUePHsU73/lOnH322bj77rvh88mSuGpGezQEAGhpkPX4EhIS7lGX7sejR4/ioosuwsKFC/Htb38bx48fZz+bM2dOKT5SokhctKIb37jydLx9ubNNi4SEhIQVWFCrJ/fjI488gr1792Lv3r2YN2+e6WeqqpbiIyWKRCjgw0fXLar0YUhISNQ4asoo4hTXXHMNVFW1/CchISEhUb9gjRzqKahJSEhISMxM0PTrumJqEhISEhIzEzOi+FpCQkJCYmaAal4DFXK8S/+2hISEhIRnuOqseTg0HMMVq3sq8vkyqElISEhIeIYzF7Tjvz5+XsU+X8qPEhISEhJ1AxnUJCQkJCTqBjKoSUhISEjUDWRQk5CQkJCoG8igJiEhISFRN5BBTUJCQkKibiCDmoSEhIRE3aCq69SoAfLY2FiFj0RCQkJCopKgOJCvMX5VB7Xx8XEAwPz58yt8JBISEhIS1YDx8XG0trba/lxRq3geTCaTwbFjx9Dc3AyliIFzY2NjmD9/Pg4fPoyWlhYPj7A0kMdbWsjjLS3k8ZYWM/V4VVXF+Pg4ent74cvRV7KqmZrP58saMloMWlpaauImIMjjLS3k8ZYW8nhLi5l4vLkYGkEaRSQkJCQk6gYyqElISEhI1A1mRFALh8O47bbbEA6HK30ojiCPt7SQx1tayOMtLeTx5kZVG0UkJCQkJCQKwYxgahISEhISMwMyqElISEhI1A1kUJOQkJCQqBvIoCYhISEhUTeQQU1CQkJCom5Q90HtjjvuwKJFixCJRLB27Vq88MILlT4kAMDGjRtx7rnnorm5Gd3d3Xjf+96H3bt3m15z0UUXQVEU079Pf/rTFTnef/qnf8o6llNPPZX9fHp6Ghs2bMCsWbPQ1NSEq666CgMDAxU5VgBYtGhR1vEqioINGzYAqPy5feqpp/Ce97wHvb29UBQFv/3tb00/V1UVt956K3p6etDQ0ID169djz549ptcMDw/j6quvRktLC9ra2nDddddhYmKi7MebTCZx8803Y9WqVWhsbERvby8++tGP4tixY6b3sLomt99+e9mPFwCuueaarGO57LLLTK+plvMLwPJeVhQF3/rWt9hrynl+naxfTtaEQ4cO4YorrkA0GkV3dze+/OUvI5VKFXVsdR3Ufv7zn+Omm27Cbbfdhu3bt2PNmjW49NJLMTg4WOlDw5NPPokNGzbg+eefxyOPPIJkMolLLrkEk5OTptddf/316OvrY/+++c1vVuiIgdNPP910LM888wz72T/8wz/gd7/7HX75y1/iySefxLFjx/D+97+/Yse6detW07E+8sgjAIAPfOAD7DWVPLeTk5NYs2YN7rjjDsuff/Ob38T3vvc9/OAHP8CWLVvQ2NiISy+9FNPT0+w1V199NV577TU88sgjeOihh/DUU0/hk5/8ZNmPd2pqCtu3b8fXvvY1bN++Hb/5zW+we/duvPe978167Te+8Q3TOf/c5z5X9uMlXHbZZaZj+dnPfmb6ebWcXwCm4+zr68OPf/xjKIqCq666yvS6cp1fJ+tXvjUhnU7jiiuuQCKRwHPPPYef/OQnuOeee3DrrbcWd3BqHeO8885TN2zYwP4/nU6rvb296saNGyt4VNYYHBxUAahPPvkk+96FF16o3njjjZU7KA633XabumbNGsufjYyMqMFgUP3lL3/Jvvf666+rANTNmzeX6Qhz48Ybb1SXLl2qZjIZVVWr69wCUB944AH2/5lMRp0zZ476rW99i31vZGREDYfD6s9+9jNVVVV1586dKgB169at7DV//OMfVUVR1KNHj5b1eK3wwgsvqADUgwcPsu8tXLhQ/e53v1vSY7OC1fF+7GMfU6+88krb36n283vllVeq73rXu0zfq9T5VdXs9cvJmvCHP/xB9fl8an9/P3vNnXfeqba0tKjxeNz1sdQtU0skEti2bRvWr1/Pvufz+bB+/Xps3ry5gkdmjdHRUQBAR0eH6fv33XcfOjs7sXLlStxyyy2YmpqqxOEBAPbs2YPe3l4sWbIEV199NQ4dOgQA2LZtG5LJpOlcn3rqqViwYEFVnOtEIoF7770XH//4x03THqrp3PLYv38/+vv7TeeztbUVa9euZedz8+bNaGtrwznnnMNes379evh8PmzZsqXsxyxidHQUiqKgra3N9P3bb78ds2bNwplnnolvfetbRUtNxWDTpk3o7u7GihUr8JnPfAZDQ0PsZ9V8fgcGBvD73/8e1113XdbPKnV+xfXLyZqwefNmrFq1CrNnz2avufTSSzE2NobXXnvN9bFUdZf+YnDixAmk02nTCQOA2bNnY9euXRU6KmtkMhl84QtfwAUXXICVK1ey7//t3/4tFi5ciN7eXuzYsQM333wzdu/ejd/85jdlP8a1a9finnvuwYoVK9DX14evf/3rePvb345XX30V/f39CIVCWQvY7Nmz0d/fX/ZjFfHb3/4WIyMjuOaaa9j3qunciqBzZnXv0s/6+/vR3d1t+nkgEEBHR0fFz/n09DRuvvlmfOQjHzF1Zf/85z+Ps846Cx0dHXjuuedwyy23oK+vD9/5znfKfoyXXXYZ3v/+92Px4sXYt28f/vEf/xGXX345Nm/eDL/fX9Xn9yc/+Qmam5uz5P1KnV+r9cvJmtDf3295j9PP3KJug1otYcOGDXj11VdNOSoAJv1+1apV6OnpwcUXX4x9+/Zh6dKlZT3Gyy+/nH29evVqrF27FgsXLsQvfvELNDQ0lPVYCsWPfvQjXH755ejt7WXfq6ZzW09IJpP44Ac/CFVVceedd5p+dtNNN7GvV69ejVAohE996lPYuHFj2fsYfvjDH2Zfr1q1CqtXr8bSpUuxadMmXHzxxWU9lkLx4x//GFdffTUikYjp+5U6v3brV6VQt/JjZ2cn/H5/lttmYGAAc+bMqdBRZeOGG27AQw89hCeeeCLv7Li1a9cCAPbu3VuOQ8uJtrY2nHLKKdi7dy/mzJmDRCKBkZER02uq4VwfPHgQjz76KD7xiU/kfF01nVs6Z7nu3Tlz5mQZnlKpFIaHhyt2zimgHTx4EI888kje2Vlr165FKpXCgQMHynOAObBkyRJ0dnay61+N5xcAnn76aezevTvv/QyU5/zarV9O1oQ5c+ZY3uP0M7eo26AWCoVw9tln47HHHmPfy2QyeOyxx7Bu3boKHpkGVVVxww034IEHHsDjjz+OxYsX5/2dl19+GQDQ09NT4qPLj4mJCezbtw89PT04++yzEQwGTed69+7dOHToUMXP9d13343u7m5cccUVOV9XTed28eLFmDNnjul8jo2NYcuWLex8rlu3DiMjI9i2bRt7zeOPP45MJsMCdDlBAW3Pnj149NFHMWvWrLy/8/LLL8Pn82XJfJXAkSNHMDQ0xK5/tZ1fwo9+9COcffbZWLNmTd7XlvL85lu/nKwJ69atwyuvvGLaPNBm6LTTTivq4OoW999/vxoOh9V77rlH3blzp/rJT35SbWtrM7ltKoXPfOYzamtrq7pp0ya1r6+P/ZuamlJVVVX37t2rfuMb31BffPFFdf/+/eqDDz6oLlmyRH3HO95RkeP94he/qG7atEndv3+/+uyzz6rr169XOzs71cHBQVVVVfXTn/60umDBAvXxxx9XX3zxRXXdunXqunXrKnKshHQ6rS5YsEC9+eabTd+vhnM7Pj6uvvTSS+pLL72kAlC/853vqC+99BJzC95+++1qW1ub+uCDD6o7duxQr7zySnXx4sVqLBZj73HZZZepZ555prplyxb1mWeeUZcvX65+5CMfKfvxJhIJ9b3vfa86b9489eWXXzbdz+Rie+6559Tvfve76ssvv6zu27dPvffee9Wuri71ox/9aNmPd3x8XP3Sl76kbt68Wd2/f7/66KOPqmeddZa6fPlydXp6mr1HtZxfwujoqBqNRtU777wz6/fLfX7zrV+qmn9NSKVS6sqVK9VLLrlEffnll9WHH35Y7erqUm+55Zaijq2ug5qqqur3v/99dcGCBWooFFLPO+889fnnn6/0Iamqqtl2rf7dfffdqqqq6qFDh9R3vOMdakdHhxoOh9Vly5apX/7yl9XR0dGKHO+HPvQhtaenRw2FQurcuXPVD33oQ+revXvZz2OxmPrZz35WbW9vV6PRqPo3f/M3al9fX0WOlfCnP/1JBaDu3r3b9P1qOLdPPPGE5fX/2Mc+pqqqZuv/2te+ps6ePVsNh8PqxRdfnPV3DA0NqR/5yEfUpqYmtaWlRb322mvV8fHxsh/v/v37be/nJ554QlVVVd22bZu6du1atbW1VY1EIupb3vIW9V/+5V9MQaRcxzs1NaVecsklaldXlxoMBtWFCxeq119/fdZmt1rOL+Guu+5SGxoa1JGRkazfL/f5zbd+qaqzNeHAgQPq5ZdfrjY0NKidnZ3qF7/4RTWZTBZ1bHKemoSEhIRE3aBuc2oSEhISEjMPMqhJSEhISNQNZFCTkJCQkKgbyKAmISEhIVE3kEFNQkJCQqJuIIOahISEhETdQAY1CQkJCYm6gQxqEhISEhJ1AxnUJCQkJCTqBjKoSUhISEjUDWRQk5CQkJCoG/z/sIRYRj8b4PwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "α = 0.9\n", + "T = 200\n", + "x = np.empty(T+1)\n", + "x[0] = 0\n", + "\n", + "for t in range(T):\n", + " abs_x = - x[t] if x[t] < 0 else x[t]\n", + " x[t+1] = α * abs_x + np.random.randn()\n", + "\n", + "plt.plot(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1c7fc965", + "metadata": {}, + "source": [ + "## Exercise 3.5\n", + "\n", + "Here’s a harder exercise, that takes some thought and planning.\n", + "\n", + "The task is to compute an approximation to $ \\pi $ using [Monte Carlo](https://en.wikipedia.org/wiki/Monte_Carlo_method).\n", + "\n", + "Use no imports besides" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "3c65f875", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "id": "133925e8", + "metadata": {}, + "source": [ + "Your hints are as follows:\n", + "\n", + "- If $ U $ is a bivariate uniform random variable on the unit square $ (0, 1)^2 $, then the probability that $ U $ lies in a subset $ B $ of $ (0,1)^2 $ is equal to the area of $ B $. \n", + "- If $ U_1,\\ldots,U_n $ are IID copies of $ U $, then, as $ n $ gets large, the fraction that falls in $ B $, converges to the probability of landing in $ B $. \n", + "- For a circle, $ area = \\pi * radius^2 $. " + ] + }, + { + "cell_type": "markdown", + "id": "e25a7b53", + "metadata": {}, + "source": [ + "## Solution to[ Exercise 3.5](https://python-programming.quantecon.org/#pbe_ex5)\n", + "\n", + "Consider the circle of diameter 1 embedded in the unit square.\n", + "\n", + "Let $ A $ be its area and let $ r=1/2 $ be its radius.\n", + "\n", + "If we know $ \\pi $ then we can compute $ A $ via\n", + "$ A = \\pi r^2 $.\n", + "\n", + "But here the point is to compute $ \\pi $, which we can do by\n", + "$ \\pi = A / r^2 $.\n", + "\n", + "Summary: If we can estimate the area of a circle with diameter 1, then dividing\n", + "by $ r^2 = (1/2)^2 = 1/4 $ gives an estimate of $ \\pi $.\n", + "\n", + "We estimate the area by sampling bivariate uniforms and looking at the\n", + "fraction that falls into the circle." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "e59ff3dc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.143048\n" + ] + } + ], + "source": [ + "n = 1000000 # sample size for Monte Carlo simulation\n", + "\n", + "count = 0\n", + "for i in range(n):\n", + "\n", + " # drawing random positions on the square\n", + " u, v = np.random.uniform(), np.random.uniform()\n", + "\n", + " # check whether the point falls within the boundary\n", + " # of the unit circle centred at (0.5,0.5)\n", + " d = np.sqrt((u - 0.5)**2 + (v - 0.5)**2)\n", + "\n", + " # if it falls within the inscribed circle, \n", + " # add it to the count\n", + " if d < 0.5:\n", + " count += 1\n", + "\n", + "area_estimate = count / n\n", + "\n", + "print(area_estimate * 4) # dividing by radius**2" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_sources/_notebook_build/_01_python_jupyter_demo.ipynb b/docs/_sources/_notebook_build/_01_python_jupyter_demo.ipynb new file mode 100644 index 0000000..0f451ff --- /dev/null +++ b/docs/_sources/_notebook_build/_01_python_jupyter_demo.ipynb @@ -0,0 +1,2743 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "J09tr3ds09ky" + }, + "source": [ + "# 1.2 Python for Data Science Demo\n", + "\n", + "This notebook is designed to show off some of the features of using Python for data science that you'll encounter throughout the year. Although Jupyter Notebooks are not always the right medium for your code, it will also demonstrate some of the features of Jupyter and Jupyter Notebooks that make them useful for data exploration and visualization.\n", + "\n", + "IMPORTANT NOTE: You're not expected to learn how the code below works today---we'll hardly look at the code below. The point of this notebook is just to showcase what CAN be done. We'll learn how to write the code below over the next few weeks and throughout the next quarter. **After getting a look at what's possible in this notebook, we'll start from the very basics in the next notebook.** In the next notebook, we'll cover the basics of Python (types, control structures, functions, modules, etc) and then we'll proceed to learn how to use some of the basic data science packages for Python. This first notebook is just a demo.\n", + "\n", + "You can try running this code yourself. The quickest way to get up and running is to use Google Colaboratory: `https://colab.research.google.com/` You can open this notebook directly in Google Colaboratory by clicking here: [Open in Google Colaboratory.](https://colab.research.google.com/github/jmbejara/finm-python-crash-course/blob/main/week_1/Part_1_Python_Jupyter_demo.ipynb)\n", + "\n", + "This notebook will start by setting up the environment and then will demonstrate some examples from NumPy, SciPy, Pandas, Matplotlib, and StatsModels (with some bonus examples from Seaborn and iPyWidgets.) This collection of packages represent the foundation of what is called the PyData stack (ecosystem):\n", + "\n", + "
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GgL_HaFX09k4" + }, + "source": [ + "\n", + "## 0. Set up Environment\n", + "\n", + "We'll first start by discussing the Python interpreter, Anaconda vs Conda, Jupyter, and Google Colaboratory. We'll defer an in-depth discussion until next week, but we'll mention the basics today. Today, we'll run everything in Google Colaboratory. Next week we'll run our code locally in Jupyter. The following week, we'll discuss text editors. In particular, we'll write code in [Visual Studio Code](https://code.visualstudio.com/).\n", + "\n", + "Now, before we start, we need to set up our environment. We need to install the packages that we need (if they aren't installed already) and then we need to load the packages into Python." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Be sure to install the required packages manually if not in Colab\n" + ] + } + ], + "source": [ + "## Install required packages, but do automatically only if running within Google Colaboratory\n", + "try:\n", + " import google.colab\n", + " IN_COLAB = True\n", + "except:\n", + " IN_COLAB = False\n", + "\n", + "if IN_COLAB:\n", + " !pip install plotly==5.9.0\n", + "else:\n", + " print(\"Be sure to install the required packages manually if not in Colab\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import scipy as sp\n", + "import pandas as pd\n", + "from matplotlib import pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "import plotly.express as px\n", + "\n", + "sns.set()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qOKX9_RL09k8" + }, + "source": [ + "## 1. NumPy\n", + "\n", + "NumPy a library designed to add support \"for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.\"\n", + "\n", + "A good beginner tutorial can be found on the official NumPy website here: https://numpy.org/doc/stable/user/absolute_beginners.html\n", + "\n", + "The basic functionality of NumPy is the efficient management of arrays, with syntax as follows:\n", + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([1, 2, 3])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array([[1, 2], [3, 4]])\n", + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 0],\n", + " [0, 1]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = np.array([\n", + " [1, 0], \n", + " [0, 1]])\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A @ B" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9ksbfWdl09lA" + }, + "source": [ + "\n", + "
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.5])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = np.array((1,2))\n", + "x = np.linalg.solve(A, b)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 2.])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A @ x" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.37228132, 5.37228132])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigval, eigvec = np.linalg.eig(A)\n", + "eigval" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.82456484, -0.41597356],\n", + " [ 0.56576746, -0.90937671]])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvec" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oy8f0YOD09lC" + }, + "source": [ + "## 2. SciPy\n", + "\n", + "SciPy is a library \"used for scientific computing and technical computing. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.\"\n", + "\n", + "For example, consider calculating the following integral.\n", + "$$\n", + "\\int_0^1 a x^2 + b \\, d x\n", + "$$\n", + "\n", + "DISCUSS: How did I make typeset the above equation in this Jupyter notebook? What about the images above?\n", + " - How did I create the section headers?\n", + " - How can I export this notebook into a PDF report? What about an HTML report?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.6666666666666667" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.integrate import quad\n", + "a = 2\n", + "b = 1\n", + "def integrand(x):\n", + " return a*x**2 + b\n", + "I, err = quad(integrand, 0, 1)\n", + "I" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fXUSbyiz09lD" + }, + "source": [ + "## 3. Matplotlib\n", + "\n", + "Matplotlib is the most plotting library for Python. Even other plotting libraries build off of Matplotlib as a foundation. Even if you use other plotting libraries, it is important to understand the basics of Matplotlib.\n", + "\n", + "As an example, consider the function\n", + "$$\n", + "y = x_0 \\exp(-x_2 \\cdot t) + x_1 \\exp(-x_3 \\cdot t)\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGgCAYAAACez6weAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGp0lEQVR4nO3dd3wUdd4H8M/sbnqyySakEEIKgRRSCUnoHTlQTgQ7wgE2PD099RTFRz27JzY8H6Wcih7FCggoNhSll0CA9N573/SyO88fkTxEWspuZnfyeb9evHg5+8vs9+tk1o87v/mNIIqiCCIiIiIToJC6ACIiIqLzGEyIiIjIZDCYEBERkclgMCEiIiKTwWBCREREJoPBhIiIiEwGgwkRERGZDAYTIiIiMhkqqQvoC1EUodcbfl04hUIwyn5Nhdz7A+Tfo9z7A+TfI/szf3Lv0Vj9KRQCBEG46jizDCZ6vYjq6kaD7lOlUkCjsYNW24SODr1B920K5N4fIP8e5d4fIP8e2Z/5k3uPxuzP2dkOSuXVgwkv5RAREZHJYDAhIiIik8FgQkRERCaDwYSIiIhMBoMJERERmQwGEyIiIjIZDCZERERkMhhMiIiIyGQwmBAREZHJYDAhIiIik9HrYFJbW4tnn30WU6dORVRUFG6//XbExcVddnxhYSFWrlyJqKgoTJ48GWvXroVOp+tX0URERCRPvQ4mjz76KOLj4/HWW29h+/btCA4Oxl133YXs7OyLxra3t+Ouu+4CAHz22Wd47rnn8Omnn+K9997rf+VEREQkO70KJnl5eTh8+DCee+45REdHw8/PD8888wzc3NywZ8+ei8b/8MMPKC4uxpo1axAQEIDZs2fj0UcfxSeffIK2tjaDNUFERETy0KtgotFosHHjRoSFhXVtE4TOxxhrtdqLxsfFxSEkJASOjo5d28aPH4+GhgakpKT0o2zjEEX5PsaaiIjIHKh6M1itVmPatGndtv3www/Iy8vDU089ddH40tJSeHh4dNvm5uYGACgpKUFERERv6+2iUhl23u77OxNRUF6P/1kWDXtrC4Pu2xQolYpuf8uR3HuUe3+A/Htkf+ZP7j2aQn+9CiZ/dPr0aaxevRpz5szB9OnTL3q9paUFarW62zYrKysAQGtra5/fV6EQoNHY9fnnL6WptQNFFY3YeSAHD906xqD7NiVqtY3UJRid3HuUe3+A/Htkf+ZP7j1K2V+fg8m+ffvw2GOPISoqCm+88cYlx1hbW180l+R8ILG1te3rW0OvF6HVNvX55y9l4dQROJdZiX0n8jEp1B0jPB2v/kNmRKlUQK22gVbbDJ1OL3U5RiH3HuXeHyD/Htmf+ZN7j8bsT6226dE3MX0KJlu2bMHLL7+MuXPn4rXXXoOlpeUlx3l4eCA9Pb3btvLycgCAu7t7X966S0eHYf+F+XuqMWOsF/afKsTm79OweulYKATBoO9hCnQ6vcH/3Zkaufco9/4A+ffI/syf3HuUsr9eX0Tatm0bXnzxRdxxxx146623LhtKACAmJgbJycloaGjo2nbs2DHY2dkhKCiobxUb0bLrRsPaUomsYi2OJpZKXQ4REdGg06tgkpOTg1deeQXXXHMNVq5cicrKSlRUVKCiogL19fVoa2tDRUVF1+Wb2bNnw9XVFQ8//DBSU1Oxb98+vPXWW7jzzjuvGGik4uJogwWT/QAAX/2ahebWDokrIiIiGlx6FUx++OEHtLe346effsLkyZO7/Xn55ZcRHx+PyZMnIz4+HkDnRNcPPvgAer0et9xyC55//nksXrwY999/v1GaMYQ5sd5w19igrrENe47kSl0OERHRoCKIZrh4h06nR3V1o0H3qVIpoNHYoaamEafTyrH2y3NQKgS8cFcshroY9g4gKVzYn1yvi8q9R7n3B8i/R/Zn/uTeozH7c3a269HkV3neiN1P4f5DEO7vAp1exKf7MrjwGhER0QBhMLmM22eNgkopIDGnGqfTK6Uuh4iIaFBgMLkMd2db/CnWGwDw2c/paG3nE5GJiIiMjcHkCuZP8IWz2gpV2lZ8ezRP6nKIiIhkj8HkCqwslbht5igAwPfH81BWY9jVZomIiKg7BpOrGBvoihA/Z3ToOBGWiIjI2BhMrkIQBNxxTQCUCgHnsqpwJpMTYYmIiIyFwaQHPC6YCPvpvgy0cSIsERGRUTCY9NCfJ/pC42CFyroWToQlIiIyEgaTHrKyVOL2WZ0TYb87nofSak6EJSIiMjQGk14YG+iK0BGdE2G3/JjGibBEREQGxmDSC+cnwqqUCiTn1uBkarnUJREREckKg0kvuWtsMX+CDwDg058z0NzaIXFFRERE8sFg0gfzxnvDTWODuoY2fH0wR+pyiIiIZIPBpA8sVEosmRMAANh3qgD5ZfUSV0RERCQPDCZ9FOrnguggN4gisPmHNOg5EZaIiKjfGEz64fZZo2BtqURWsRa/nSmWuhwiIiKzx2DSDxoHKyycOgIA8NWvWahraJW4IiIiIvPGYNJPs6K84OPhgObWDnz6c4bU5RAREZk1BpN+UigELJ8bBEEATqSUIzGnSuqSiIiIzBaDiQH4eDhg9tjhADonwvIhf0RERH3DYGIgN0zxg8bBChW1LdhzJFfqcoiIiMwSg4mB2FipcMc1nWubfH88H0UVDRJXREREZH4YTAwoKsAVkSOHQKcX8cn3XNuEiIiotxhMDGzJnABYWSqRWVSH3+KLpC6HiIjIrDCYGJiz2ho3TfMHAHz5axZq6rm2CRERUU8xmBjBjDHDMMJTjZY2Hbb8mCZ1OURERGaDwcQIzq9tolQIiM+oxKm0CqlLIiIiMgsMJkbi5WaPueO8AQBbfkpDU0uHxBURERGZPgYTI7p+ki/cNTaoa2jDV79lSV0OERGRyWMwMSILlRLL5gYBAH6NL0J6Qa20BREREZk4BhMjC/LRYGqEJwBg094ULldPRER0BQwmA+CWGf5wsrdEWU0zdh/OlbocIiIik8VgMgBsrS2w9E+BADqXq88rrZe4IiIiItPEYDJAxoxyRWywG/SiiE17U9Ch00tdEhERkclhMBlAi2cHwM5ahfzyBvxwIl/qcoiIiEwOg8kAUttZYvHszicQ7zqUi5KqRokrIiIiMi0MJgNsfIg7wka4oEOnx0d7U6DX8wnERERE5zGYDDBBELBsbiCsLZXIKtJiX1yB1CURERGZDAYTCTirrXHrzJEAgB0HslFW3SRxRURERKaBwUQiUyM8MdpXg7YOPTbtTYFe5CUdIiIiBhOJCELnE4itLJRIL6zDL6cKpS6JiIhIcgwmEhriZINbZvgDAL76LQvltc0SV0RERCQtBhOJTRszDEHeTmhr1+NjXtIhIqJBjsFEYgpBwPJrg2FpoUBqfi32ny6SuiQiIiLJMJiYADcnG9w8vfMunS9/zURZDe/SISKiwYnBxETMiBqGYB8N2tr1+PBbLrxGRESDE4OJiVAIAlZcGwRrSyUyC+vw40kuvEZERIMPg4kJGeJog9tmjQLQufBacSWfpUNERIMLg4mJmRI+FKEjnNGh0+PDb5Oh0+ulLomIiGjAMJiYmPMLr9lYqZBTUo+9x/KlLomIiGjAMJiYIGe1NRbP7ryks/tQDvJK6yWuiIiIaGAwmJioiaEeiApwhU4v4oNvk9HeoZO6JCIiIqNjMDFRgiDgL3MDoba1QFFFI3YezJG6JCIiIqNjMDFhaltLLJsXBAD44Xg+0vJrJK6IiIjIuBhMTNyYUa6YHD4UIoAPv01Bc2uH1CUREREZDYOJGbh91ii4qK1RWdeCz3/JkLocIiIio2EwMQM2VircPT8YAoADZ0sQn1EhdUlERERGwWBiJgK9NfhTrDcAYNPeVNQ1tEpcERERkeExmJiRhVNHwMvVHg3N7dj0XSpEkQ/6IyIieWEwMSMWKgXuvX40VEoFzmVV4df4IqlLIiIiMigGEzPj5WqPm6f7AwA+/yUTJVV80B8REckHg4kZmhXthRBfDdo69Ni4OxkdOj7oj4iI5IHBxAwpBAF3XjcadtYq5JXVY9chrgpLRETywGBipjQOVlg2t3NV2L1H85Cax1VhiYjI/DGYmLHoIDdM+X1V2P98k4yG5napSyIiIuqXfgWTDRs2YOnSpVccU1VVhX/84x8YP348xo0bh0ceeQRlZWX9eVu6wO2zR8FdY4Oa+lZ8wluIiYjIzPU5mGzduhVr16696riHH34YxcXF2LRpEzZt2oTi4mI88MADfX1b+gNrSxVWLgiBUiHgVHoFDp4rkbokIiKiPut1MCkrK8N9992HN954A76+vlccq9VqceLECdxzzz0IDg7G6NGjce+99yIhIQG1tbV9LJn+yNdDjUXTRgAAtu1L5y3ERERktnodTJKSkmBhYYHdu3cjIiLiimOtra1hZ2eHr7/+Gg0NDWhoaMCuXbvg5+cHtVrd56LpYn+K9UawjwZt7Xps2J2E9g7eQkxEROZH1dsfmDlzJmbOnNmjsZaWlvjXv/6FZ599FtHR0RAEAW5ubtiyZQsUiv7Nu1WpDDtvV6lUdPvbHK1cEIKn/3Mc+WUN2HkwG4uvCeh6TQ79XY3ce5R7f4D8e2R/5k/uPZpCf70OJr0hiiJSUlIwZswY3H333dDpdHj77bdx//3349NPP4W9vX2f9qtQCNBo7AxcbSe12sYo+x0IGo0dHrk9Ci9+dBzfH8/HuDBPRAe7dxtjzv31lNx7lHt/gPx7ZH/mT+49StmfUYPJd999hy1btmD//v1dIWT9+vWYMWMGvvrqKyxfvrxP+9XrRWi1TQastDMdqtU20GqboTPjlVRHeTpgTsxw/HiyAG9tO4WX7hkPjYOVbPq7Ern3KPf+APn3yP7Mn9x7NGZ/arVNj76JMWowiYuLg5+fX7dvRhwdHeHn54e8vLx+7bvDSHModDq90fY9UG6c5o/UvBrklzdg3c4EPHbbGFhadr4mh/6uRu49yr0/QP49sj/zJ/cepezPqBeRPDw8kJeXh9bW1q5tTU1NKCwsvOodPdR3FioFVi4IgZWFEqn5tfj2WP9CIBER0UAxaDDR6XSoqKhAS0sLAOCGG24A0LmWSWpqKlJTU/Hoo4/CysoKixYtMuRb0x8MdbHDkjmdk193HcxBekGttAURERH1gEGDSUlJCSZPnoy9e/cCANzc3LBt2zaIoohly5ZhxYoVsLCwwLZt2+Dg4GDIt6ZLmBjqgQkh7tCLIt7fmQBtY5vUJREREV2RIJrhGuY6nR7V1YZdREylUkCjsUNNTaOsrhs2t3bghY9PoqymGbGjPfDAwhDodGZ3yHtErsfwPLn3B8i/R/Zn/uTeozH7c3a269HkV3neiE1dbKxU+OsNobBQKnAiuRTfH8+XuiQiIqLLYjAZBLzdHbD49/kmX/ySiaziOokrIiIiujQGk0FiZtQwTIrwhE4vYv3XSWhsaZe6JCIiooswmAwSgiDgwZsj4eZkgyptCz76NgVmOL2IiIhkjsFkELGzscADN4ZBpRQQn1GJn+IKpS6JiIioGwaTQcZvqBq3zhwFAPhyfyYyizjfhIiITAeDySA0M2oYooPcoNOLWPd1IuqbuL4JERGZBgaTQUgQBKyYFwR3Z1vU1LfiP3uSoed8EyIiMgEMJoOUjZUKD9wQCkuVAok51fjmSK7UJRERETGYDGZebvZYMicQQOfzdJJzqyWuiIiIBjsGk0FucvhQTA4fChHAht1JqNa2SF0SERENYgwmhCXXBGC4mz3qm9qx7utEdOjk9/wHIiIyDwwmBEsLJR5YGAobKxWyirX4/OdMqUsiIqJBisGEAABuGlvc8+fRAICfTxfiaFKpxBUREdFgxGBCXSJHDsH8iT4AgE++T0VhRYPEFRER0WDDYELd3DB5BEJ8NWhr1+O9HQloaumQuiQiIhpEGEyoG4VCwL3Xh8BFbYWymmZ8+C0XXyMiooHDYEIXcbC1xP0Lw6BSKhCfUYlvufgaERENEAYTuiS/oWosnRMAAPj6YA7OZVVJXBEREQ0GDCZ0WVMiPDF9zDCIADbuTkJZTZPUJRERkcwxmNAVLZ49Cv7D1Ghq7cB7OxLQ2qaTuiQiIpIxBhO6IpVSgftvCIOjnSUKKxqx6bsUiJwMS0RERsJgQlelcbDCX28IhVIh4ERKOb47ni91SUREJFMMJtQjAcOdsHj2KADA9l+zcC6rUuKKiIhIjhhMqMemjxmGqRGevz+JOBml1ZwMS0REhsVgQj0mCAKWzAnASC9HNLd24N3t57gyLBERGRSDCfWKSqnAAzeEQuNghZKqJvxnTxJXhiUiIoNhMKFec7S3wt8WhcFCpcDZrCrsPJAtdUlERCQTDCbUJ35D1Vg+NwgA8O3RPBxLKpW4IiIikgMGE+qzCaEemDfOGwCw6btU5JRoJa6IiIjMHYMJ9cuN0/wR7u+C9g49/r39HGrqW6UuiYiIzBiDCfWLQiFg5fUh8Bxih7qGNry7/Rza2rlsPRER9Q2DCfWbjZUKD90UDjtrFXJL67Hpu1QuW09ERH3CYEIG4eZkg/sXhkGpEHA8uQzfHMmVuiQiIjJDDCZkMME+GtwxJwAAsPNgDk6klElcERERmRsGEzKo6ZHDMCdmOADgw29TkF3MO3WIiKjnGEzI4G6ZMbLbnTpVdS1Sl0RERGaCwYQM7vydOl6udtA2tuHf28+hpY3P1CEioqtjMCGjOH+njtrWAgXlDdiwKwl6Pe/UISKiK2MwIaMZ4miDB28M73qmzmc/Z0hdEhERmTgGEzIq/2GOuHv+aADAvlOF+CmuQOKKiIjIlDGYkNHFBLnh5un+AIDPfs7AmYxKiSsiIiJTxWBCA2LuOG9MjfCEKALrdycir7Re6pKIiMgEMZjQgBAEAUvmBCDEzxlt7Xqs/eosqrW8jZiIiLpjMKEBo1Iq8NcFoRjm2vnAv7e/PIumlnapyyIiIhPCYEIDytZahUdujoCTvSWKKhrxvzsS0KHTS10WERGZCAYTGnDOams8fHMErCyVSM2vxaa9KXwaMRERAWAwIYl4uzvggYWhUCoEHE0qw44D2VKXREREJoDBhCQT6ueCv8wNBAB8ezQPv8YXSVwRERFJjcGEJDUl3BPXT/IFAGz+MQ3x6RXSFkRERJJiMCHJLZjshynhQ39f4yQJmYV1UpdEREQSYTAhyQmCgL/MDUS4vwvaO/R456uzKKlqlLosIiKSAIMJmQSlonONkxGeajS2dOCtz8+gpr5V6rKIiGiAMZiQybCyVOLvN4XD3dkWVdpWvP3FWTS1dEhdFhERDSAGEzIpDraWePSWCDjaWaKwogH/3n4O7R06qcsiIqIBwmBCJsfVyQaP3BIBGysl0gtqsX5XEnR6rg5LRDQYMJiQSfJ2d8CDi8KhUioQn1GJ/36fxtVhiYgGAQYTMllBPhqsvD4EggAcPFfC1WGJiAYBBhMyaWMDXbFsbhCAztVhfzyRL3FFRERkTAwmZPKmRnjixmkjAACf/ZKJQ+dKJK6IiIiMhcGEzMK1430wJ2Y4AGDTdyk4lcal64mI5IjBhMyCIAi4deZITP596foNuxORlFstdVlERGRgDCZkNgRBwLK5gRgb4IoOnYj/3Z6ArCI+V4eISE4YTMisKBUK3Ht9CEJ8NWht12Htl2dRWN4gdVlERGQgDCZkdixUCjywKAz+vz9X543Pz6CsuknqsoiIyAAYTMgsWVuq8PAtERjuZg9tYxte/ywelbXNUpdFRET91K9gsmHDBixduvSKY9rb2/Hmm29iypQpiIyMxJIlS5CSktKftyUCANhZW+Aft0bCw9kW1dpWvLb1NKq1LVKXRURE/dDnYLJ161asXbv2quOee+457NixA6+88gq2b98OZ2dn3HPPPaivr+/rWxN1UdtZ4vHbx2CIozXKaprxzIYjqG9qk7osIiLqo14Hk7KyMtx3331444034Ovre8WxBQUF2L59O15++WVMmTIF/v7+eOmll2BpaYnExMS+1kzUjcbBCo/fPgYaByvkl9bj9U/j0dTSLnVZRETUB6re/kBSUhIsLCywe/duvPfeeygqKrrs2MOHD8PBwQFTp07t2qZWq/HLL7/0rdoLqFSGnR6jVCq6/S03cu9v6BA7PPWXaLz0yUnkltTj7S/PYdXiMbCx6vWvuMmS+zEE5N8j+zN/cu/RFPoTxH48svXJJ59EUVERNm/efMnXX331VZw8eRL33nsvNm7ciLKyMowePRpPPvkk/P39+1y0KIoQBKHPP0/ylVNch/9Zdxj1Te0IGeGC5+4eD2sZhRMiIrkz6id2Q0MD8vLy8P7772PVqlVQq9VYt24dFi9ejL1798LFxaVP+9XrRWi1hr09VKlUQK22gVbbDJ1Ob9B9mwK59wd09ujn6Ygn7hiLV/4bh6TsKvxz4xE8emskLC2UUpfXb4PlGMq5R/Zn/uTeozH7U6ttevRNjFGDiUqlQkNDA95+++2ub0jefvttTJs2DTt37sTdd9/d5313dBjnF0Kn0xtt36ZA7v0BgLe7PR65JQJvfH4Gybk1WPvlWTy4KBwWBr78J5XBcAzl3iP7M39y71HK/oz6Se3h4QGVStXtso21tTWGDx+OwsJCY741DXL+wxzxyM0RsLRQIDG7Gu/vTEC7jD9EiIjkwqjBJCYmBh0dHUhISOja1tLSgoKCAvj4+BjzrYkQMNwJf7+x85uSs1lVWPd1Ijpk+NUrEZGcGDSY6HQ6VFRUoKWlc5Gr6OhoTJw4EU888QTi4uKQmZmJVatWQalUYsGCBYZ8a6JLCvZ1xkM3dYaTM5mVDCdERCbOoMGkpKQEkydPxt69e7u2vfvuu4iNjcXf/vY33HTTTWhoaMB///tfODs7G/KtiS4rxNcZD94YBpVSgfiMSqzflcRwQkRkovp1u7BUdDo9qqsbDbpPlUoBjcYONTWNspzQJPf+gKv3mJhdhX9vT0CHTo+xga5YeX0IVGa0FgGPofljf+ZP7j0asz9nZ7se3ZVjPp/KRP0UOsIFf1sUBpVSwKm0Cn5zQkRkghhMaFAJ93fB3xaFQ6VU4HR6BeecEBGZGAYTGnTC/V3w0AVzTt7fmchbiYmITASDCQ1KoSNc8PcL7tZ5b2cC2jt0UpdFRDToMZjQoBXi54y/3xQOS5UC57Kq8O72BLS1M5wQEUmJwYQGtdG+zvj7+RVic6qx9suzaG1jOCEikgqDCQ16wT4aPHpLJKwslUjNr8VbX5xBc2uH1GUREQ1KDCZE6Fy+/rFbI2FjpUJGYR3e+OwMGlvapS6LiGjQYTAh+p3/MEc8fnsk7KxVyCnR4vVP41Hf1CZ1WUREgwqDCdEFfD3UWLU4Cg62Fsgva8Br2+JRU98qdVlERIMGgwnRHwx3s8eTd0TByd4SxZWNeG3raVTWNUtdFhHRoMBgQnQJQ13s8OSSsRjiaI3y2ma8uuU0SqubpC6LiEj2GEyILsPNyQarl4zFUBdb1NS34l9bTqGgvEHqsoiIZI3BhOgKNA5WeOKOKHi72UPb1I7Xtp5GZlGd1GUREckWgwnRVahtLbFq8RiMHOaIptYOvPFZPBJzqqQui4hIlhhMiHrA1toC/7g1EqF+zmhr1+OdL88hLrVc6rKIiGSHwYSoh6wslXjopnDEBLlBpxexblciDpwtlrosIiJZYTAh6gWVUoGV14dgWqQnRBH4+LtU7D2WB1EUpS6NiEgWGEyIekmhEPCXPwVi3nhvAMBXv2bh818yoWc4ISLqNwYToj4QBAE3Tx+JW2aMBAD8eLIAH36TjA6dXuLKiIjMG4MJUT/MHeeNu64LhkIQcDSpDO9uT0Brm07qsoiIzBaDCVE/TQobigdvDIOlSoGE7Cq88Rkf/kdE1FcMJkQGEDFyCB67bQzsrFXIKtbi1S2nUVnL5+sQEfUWgwmRgYz0csSTS8bCWW2F0uomvLz5FPLL6qUui4jIrDCYEBnQsCF2+J+l0fBytUNdYxv+tfU0knOrpS6LiMhsMJgQGZjGwQpP3hGFIG8ntLTp8PYXZ3E0qVTqsoiIzAKDCZER2Fpb4JFbIrtWif3PnmR8cySXC7EREV0FgwmRkVioFFi5IARzYzsXYttxIBuffJ8GnZ5rnRARXQ6DCZERKQQBt8wciTuuCYAA4MDZYvz7qwS0tHVIXRoRkUliMCEaALPGeuFvi/5/rZN/bT2NmvpWqcsiIjI5DCZEA2RMgCseXzwGDrYWyC9rwEv/jePtxEREf8BgQjSA/D0d8T9/icZQF1vU1Lfi1a2ncS6rSuqyiIhMBoMJ0QBzc7LBU0vHIsjbCa1tOrzz1VnsP10odVlERCaBwYRIAnbWFnj01khMCvOAKAKbf0zHp/syoNfzdmIiGtwYTIgkolIqcOe1wVg4dQQA4Ke4Avx7+zk0t/KOHSIavBhMiCQkCAL+PNEX9y0IgYVKgXNZVXhlyyk+AJCIBi0GEyITEBvsjicWR8HRzhJFFY146b9xyCysk7osIqIBx2BCZCJGeKrxzLJoeLvZQ9vUjjWfnsbhhBKpyyIiGlAMJkQmxFltjSeXRGHMqCHo0In48NsUfLE/k5NiiWjQYDAhMjHWlio8sCgM8yf6AAC+P56Pf28/h6YWToolIvljMCEyQQpBwKKp/rj3+tFdk2Jf+PgkiisbpC6NiMioGEyITNj40R548o4oONlboriyEY+uPcCVYolI1hhMiEyc31A1nlkWA/9hajQ2t+PNz+Lx/fF8iCLnnRCR/DCYEJkBjYMVVi8di9kx3hBF4Iv9mfjPnmS0tuukLo2IyKAYTIjMhKVKiYdujcTSPwVCIQg4llyGV7ecQmUdF2MjIvlgMCEyI4Ig4JqY4XjstkjY21ggv6wBL3wch+TcaqlLIyIyCAYTIjMU5KPBP5fHwMfDAQ3N7Xjz8zP47nge550QkdljMCEyUy6O1lh9R1TXE4q/3J+F9buS0NLG9U6IyHwxmBCZMUsLJe68NhhL5wRAqRBwMrUcL//3FEqrm6QujYioTxhMiMycIAiYEeXV+RBAe0sUVTbihY9P4lRaudSlERH1GoMJkUyM9HLEc8tjEDjcCS1tOry3MxFf/JIJnV4vdWlERD3GYEIkI472Vnjs9kjMjfUGAHx/Ih+vf3oGtQ2tEldGRNQzDCZEMqNUKHDLzJG4/4ZQWFsqkV5Qi+c2nURKXo3UpRERXRWDCZFMRQe54Zll0RjmagdtYxve+Cwee47kQs9bionIhDGYEMnYUBc7PP2X6K5binceyMbaL8+ivqlN6tKIiC6JwYRI5qwslLjrutFYcW0QLFQKJGZX47lNJ5FRWCt1aUREF2EwIRokpoR74um/RMPd2RY19a14bWs8vj3KSztEZFoYTIgGkeFu9nh2WTTGh7hDL4rY/lvnpR0tL+0QkYlgMCEaZGysVLhn/mgsnxcEy/OXdj46gVTetUNEJoDBhGgQEgQBUyM88fSyaAx1sUVtQxte/zQeOw9kc0E2IpIUgwnRIOblao9nl8VgSvhQiAD2HMnFa9viUVXXInVpRDRIMZgQDXJWlkqsuDYYK68PgY2VEpmFdfjnRyf4rB0ikgSDCREBAMaNdsc/V8TCb6gaTa0deG9nIj7+LhWtbTqpSyOiQYTBhIi6uDnZYPWSKMwb7w0BwIGzxXj+45PIK62XujQiGiQYTIioG5VSgZunj8Rjt4+BxsEKpdVNeOm/cfjueB7XPCEio+tXMNmwYQOWLl3a4/G7d+9GYGAgCgsL+/O2RDQAgn00eP7OWIwNcIVOL+LL/Vl487MzqNZyYiwRGU+fg8nWrVuxdu3aHo8vKirCCy+80Ne3IyIJ2NtY4P6FoVg2NxCWFgqk5NXg2Q9P4HhymdSlEZFM9TqYlJWV4b777sMbb7wBX1/fHv2MXq/H448/jpCQkN6+HRFJTBAETIschucumBi7YXcSNu5JQlNLu9TlEZHM9DqYJCUlwcLCArt370ZERESPfmb9+vVob2/HypUre10gEZkGD2dbrF4Shesn+UIQgGNJZXj2oxNIya2WujQikhFVb39g5syZmDlzZo/Hnzt3Dh999BG++uorlJUZ7utflcqw83aVSkW3v+VG7v0B8u/RFPpTqRS4acZIRI5yxfpdiSivacbrn53BnNjhuGXGSFhaKPu1f1Po0ZjYn/mTe4+m0F+vg0lvNDU14bHHHsNjjz0GX19fgwUThUKARmNnkH39kVptY5T9mgq59wfIv0dT6C9GY4fQADds2pOE747m4scTBUjOrcEjt0chwFvT7/2bQo/GxP7Mn9x7lLI/owaTl156CX5+frjtttsMul+9XoRW22TQfSqVCqjVNtBqm6HTye9ZIXLvD5B/j6bY3+2zRmK0jxM+/CYZheUNePzfB3H9ZF9cP9kPqj78H5cp9mhI7M/8yb1HY/anVtv06JsYowaT7du3w9LSEmPGjAEA6HSdK0jOnz8f9913H+67774+77ujwzi/EDqd3mj7NgVy7w+Qf4+m1l+IrzNeuGsctvyYhhMp5fj6YA5Op1XgrvmjMdzNvk/7NLUeDY39mT+59yhlf0YNJj/++GO3fz579iwef/xxbNy4EQEBAcZ8ayIaQPY2FrhvQSiiAsqw5cd05Jc34IWPT+L6yX64drw3lAp5Xo8nIsMzaDDR6XSorq6Gg4MDrK2t4ePj0+310tJSAICnpyecnJwM+dZEZAJig90R6K3Bf79PRXxGJXYeyEZ8egXuvC4YXq59+/aEiAYXg/5vTElJCSZPnoy9e/cacrdEZEYc7Szxt0VhuOfPo2FrpUJuaT2e33QSew7noEOG1+SJyLAEUTS/h1/odHpUVzcadJ8qlQIajR1qahpled1Q7v0B8u/RHPurqW/F5h/ScCazEgDg7WaPO68Lhre7wyXHm2OPvcH+zJ/cezRmf87Odj2a/MoLv0RkNBoHKzx4Yxju/fNo2FmrkF/egBc/icPOA9lol+GHOhH1H4MJERmVIAgYH+KBl+4Zj7GBnQ8E3HMkF89tOoHMojqpyyMiE8NgQkQDwtHOEg8sDMP9N4RCbWuBkqomvLr5FLb9lI6Wtg6pyyMiE8FgQkQDKjrIDS/dMx6TwjwgAth3qhDPfHACCdlVUpdGRCaAwYSIBpy9jQXuum40Hr01Ai5qa1RpW/D2F2exbmciautbpS6PiCTEYEJEkgn1c8GLd8diTsxwCAJwNKkUf33tZxw4UwwzvGGQiAyAwYSIJGVtqcJts0bh6b9Ew9vdHg3N7fjgm2S8/mk8SqoMuywAEZk+BhMiMgl+Q9V47s5YrJg/GpYqBVLza/HPj07g64PZaO/QSV0eEQ0QBhMiMhkqpQKLZozCqysnIHSEMzp0InYfzsWzH55Acm611OUR0QBgMCEik+OqscEjN0fgvgUhcLSzRFlNM9747Aw27k5CbQMnxxLJmVGfLkxE1FeCICA22B2hfi7YcSAL+08X4VhyGc5mVWLhlBGYETWMTy0mkiGe1URk0mytVVgyJxBPL4uGr4cDmlt12LYvAy9+EocsrhxLJDsMJkRkFvyGqvH0X6Kx9E+BsLVSIb+sAS9vPoWP9qZA29QmdXlEZCAMJkRkNhQKATPGDMMr947HpFAPAMChcyV4asMx/HyqEHo91z4hMncMJkRkdtR2lrhr/mg8tWQsvN3s0dTaga0/peOFj08io7BW6vKIqB8YTIjIbI30csSzy2OwZE5A5+Wd8ga8uuU0Nu5OQg2XticyS7wrh4jMmkIhYGaUF6KD3LDjt2wcPFuMY8lliM+oxPyJPpgTMxwWKqXUZRJRD/EbEyKSBbWtJZbPC8Izy6MxcpgjWtt12P5bNp7+4DhOpVXw2TtEZoLBhIhkxddDjdVLonDPn0fDyd4SFbUteG9nAl7/NB4F5Q1Sl0dEV8FgQkSyIwgCJoR44JV7x2P+RB+olJ3P3nlu0wl88n0qtI28vZjIVDGYEJFsWVuqsGiqP165ZxxigtwgisBvZ4rx5Iaj2Hssjw8HJDJBDCZEJHtDnGzw1xtC8eQdUfBxd0BLmw5f/ZqFpzYex4mUMs4/ITIhDCZENGgEDHfCM8ujcff8YGgcrFClbcH6XUl4ZfMpZBZyeXsiU8BgQkSDikIQMDF0KF65dzxumOIHKwslsoq1eGXLKby3IwGl1U1Sl0g0qHEdEyIalKwslLh+kh+mRnji64M5OHiuGKfSK3AmsxLTIj1x/SQ/qO0spS6TaNDhNyZENKg52Vth+bwgvHBnLML9XaDTi/jldBGe2HAUuw/noKWtQ+oSiQYVBhMiIgDDXO3x8M0RePy2SPh4OKC1TYevD+bgyQ3HsP90ITp0eqlLJBoUGEyIiC4Q7OuMZ5ZF474FIXB1soa2sQ2bf0zH0x903sGj5x08REbFOSZERH+gEATEBrsjKsAVv50pxu7DOSivacb6XUnwPpaHG6f5I9TPGYIgSF0qkewwmBARXYZKqcCssV6YGOqBn04W4PsT+cgva8DbX5xFwHAn3DTNHyO9HKUuk0hWeCmHiOgqbKxUuH6yH167bwL+FDscKqUC6QW1eGXLKaz98izySuulLpFINviNCRFRDznYWuLWmaNwTfRw7D6ci0PnSnAuqwrnsqowNtAVN0wZgWFD7KQuk8isMZgQEfWSs9oay+cFYd54b+w6lIPjSWU4lVaB02kVGBfijusn+cHD2VbqMonMEoMJEVEfuWtsce+fQ3DdeB98fTAHp9IrcCypDMeTyzAxxAN/nuQLNw0DClFvMJgQEfXTMFd7PLAoDHml9dh1KAdnMitxOLEUR5PKMDHMA/Mn+sLNyUbqMonMAoMJEZGB+Hg44KGbwpFTosWuQzk4l1WFQ+dKcCShFBNDPbBgih80Gs5BIboSBhMiIgPzG6rGwzdHIKuoDrsO5yAxuxqHEkpwJLEU08d6YW7scAxRW0tdJpFJYjAhIjIS/2GOePSWSGQV12H3oVwkZFfhl7gC7D9VgHHB7rhuoi/v4iH6AwYTIiIj8/d0xCO3RCCvrB57j+fjZHIZjiV3TpIdG+iK+RN94e3uIHWZRCaBwYSIaID4D3PEs3eNR3xKCXYd6LyLJy6t80+4vwvmT/TFyGFcSZYGNwYTIqIB5uuhxgOLwlBY0YBvjuTiZGp510JtQd5OuG6CL0b7avgsHhqUGEyIiCTi5WqP+xaEYuGUJuw9locjiaVIza9Fav4Z+Hg44LrxPogKcIVCwYBCgweDCRGRxNydbbHi2mAsmOyH70/k48CZYuSV1uP9rxPhrrHBvPE+mBDiAQsVH29G8sffciIiE+Gstsbi2QFYc/9EXD/JF3bWKpTVNOPj71Kxav0R7D2Wh6aWdqnLJDIqfmNCRGRi1LaWuGHKCMwd540DZ4rxw8kC1NS34qtfs/DNkVxMi/TENdHD4cy1UEiGGEyIiEyUtaUKc2K9MXOsF44lleH7E/kormzEDycKsC+uELHB7vhT7HDeakyywmBCRGTiVEoFJocPxcQwDyRkVeH74/lIK6jF0aRSHE0qxWhfDf4U641QP2feyUNmj8GEiMhMKAQBESOHIGLkEGQXa/HjyXzEpVYgObcGybk1GDbEDtfEDMeEEHdYqJRSl0vUJwwmRERmaISnGvctCEXltGb8FFeIA+eKUVTZiI+/S8X237IwPXIYZkYNg6O9ldSlEvUKgwkRkRkb4mSD22ePwoLJvjhwtgQ/nypAlbYVe47k4rvjeYgNdsc10cPh48F5KGQeGEyIiGTA1toCc8d545oYL5xOr8SPJ/ORVaTFkcRSHEksxSgvR8yOHo6ogCFQKrhSBJkuBhMiIhlRKhSICXJDTJAbsorr8HNcIU6mliOjsA4ZhXVwVlthxphhmBLhCbWtpdTlEl2EwYSISKb8PR3hf70jbp4xEr/GF+HXM0Wo1rZi+2/Z2HUoF+OC3TBzrBf8hqqlLpWoC4MJEZHMaRyssHDqCMyf6IMTKeX4+VQhckvrcTixFIcTSzHCU40ZY4YhNtiNd/OQ5BhMiIgGCQuVEpPChmJS2NDOyzynCnEypRzZxVpkF2vx+S+ZmBI+FNPHDIOrk43U5dIgxWBCRDQI+Xs6wt/TEbfOHIWDZ4u7LvN8dzwf3x/PR+gIF0wf44lwfxdOlqUBxWBCRDSIOdpZYv5EX8wb741zWVXYf7oIiTnVSMiuQkJ2FTQOVpgW4YkpEZ7QOHBNFDI+BhMiIoJSocCYUa4YM8oVZTVN+O1MMQ6dK0FNfSu+PpSD3YdzETHSBdMiPRHq5wKFgkvfk3EwmBARUTfuGlvcMmMkFk4ZgVNp5dgfX4SMwjrEZ1QiPqMSzmorTA33xOTwoXzCMRkcgwkREV2ShUqB8SEeGB/igeLKRhw4W4zDCSWo1nZ+i7LrcA7CRrhgSrgnIka6QKXiXBTqPwYTIiK6Ks8hdrht1ijcOG0ETqVV4LczxUgrqMW5rCqcy6qC2tYCUyI8cd0Uf9hbMqBQ3zGYEBFRj1molF3fopRVN+HAuWIcTiiFtrEN3x7Nw7dH8zDKyxGTwoYiJsgNNlb8zwz1Dn9jiIioT9ydbXHz9M65KOeyqnA4oQRns6q6lr/fti8dMYFumBQ2FAHeTlAInDBLV8dgQkRE/aJSKhAV4IrY0e4QlUrsPZiF384Uo7S6qWt12SGO1pgY6oGJYUPhxsXb6AoYTIiIyGCc1da4bqIv5sQMR1aRFocSSnAytQyVdS3YfTgXuw/nImC4EyaGeiA60A221vzPEHXH3wgiIjI4QRAw0ssRI70ccfvsUYhPr8DhhBIk59YgvaAW6QW12PpTOsaMGoKJoR4Y7esMlZKTZqmfwWTDhg04dOgQNm/efNkxGRkZeP3113H27FkoFArExMTgySefhKenZ3/emoiIzISVxf9PmK3WtuBYchkOJ5SgpKoJJ1LKcSKlHA62FogNdseEEA/4DXWAwPkog1af4+nWrVuxdu3aK46pqanBihUrYG1tjc2bN+M///kPqqurcffdd6O1tbWvb01ERGbKWW2Na8f74KW7x+HZ5dGYPdYLDrYWqG9qx8+nCvHSf+Pw1H+OY9ehHJRVN0ldLkmg19+YlJWV4Z///CeOHz8OX1/fK47dt28fmpqasGbNGlhbd64O+Prrr2P69Ok4ffo0JkyY0KeiiYjIvAmCAF8PNXw91Lhl5kgk59bgWFIpTqdXoKy6CbsO5WDXoRz4DXXAuNEeiA12g5M9n9UzGPQ6mCQlJcHCwgK7d+/Ge++9h6KiosuOnTBhAt5///2uUAIAit+fUqnVavtQLhERyY1KqUC4vwvC/V3Q3NqB+IwKHEsuQ3JODXJK6pFTUo/Pf8lAkLcG40a7IyrAFfY2FlKXTUbS62Ayc+ZMzJw5s0djvby84OXl1W3bxo0bYW1tjZiYmN6+dTeGXvpY+fukK6VMJ1/JvT9A/j3KvT9A/j2yv6tzUFliauQwTI0cBm1jG44nl+FoUikyC+uQkleDlLwabP4hDWH+Ll0hZSAXceMxNL4BvStn8+bN2LJlC55++mk4Ozv3eT8KhQCNxs6Alf0/tVre99fLvT9A/j3KvT9A/j2yv57RaOzg46XBLXOCUFbdhINninAgvhA5xVqcyajEmYxKWKgUGBvkhimRwxAz2mPAQgqPofEMyBEURRHvvPMO1q1bh7/+9a9YunRpv/an14vQag07KUqpVECttoFW2wydTm/QfZsCufcHyL9HufcHyL9H9td3lgIwa4wnZo3xRFFlI44nleJ4chlKqppwLLEUxxJLYalSIHykC2KD3RE5agisLQ3/nzgew75Tq2169E2M0YNJe3s7Vq9ejW+++QarV6/G8uXLDbLfjg7j/ELodHqj7dsUyL0/QP49yr0/QP49sr/+cXeywfWT/PDnib4orGjEiZQynEwpR3ltM+JSKxCXWgELlQJhI1wQHeSKCP8hBv8mhcfQeIweTFatWoWffvoJb775Jq677jpjvx0REQ0SgiBguJs9hrvZY9HUEcgva0BcWjlOppajvKYZp9MrcDq9AiqlgBBfZ4wNdEPkqCGcOGviDBpMdDodqqur4eDgAGtra+zYsQN79+7FqlWrEBsbi4qKiq6x58cQERH1lyAI8PFwgI+HAxZNHYGC8gacTC1HXFrn7cdns6pwNqsKSoWAIG8nRAW6YcyoIbwF2QQZNJiUlJRg1qxZePXVV7Fo0SJ88803AIA1a9ZgzZo13caeH0NERGRIgiDA290B3u6dIaWoshGn0ipwKq0chRWNSMqtQVJuDbb8kAb/YY6ICnDFmIAhcNfYSl06ARBEURSlLqK3dDo9qqsbDbpPlUoBjcYONTWNsrxuKPf+APn3KPf+APn3yP6kV1bdhNPpFTiVXoHs4u7raQ0bYocxAUMwZpQrfD0uvSy+OfTYH8bsz9nZzjQmvxIREZkKd2dbzBvvg3njfVBT34rT6RU4k1GB1PxaFFU2oqiyEd8cyYOTvSUiR7lizKghCPLWwMLAa2fR5TGYEBHRoKRxsMKssV6YNdYLTS3tOJtVhdPpFUjMrkZtQxt+jS/Cr/FFsLJUItTXGREjhyAq0NVo62hRJwYTIiIa9GytLTAhxAMTQjzQ3qFDSl4tzmRW4kxGBWob2nDq98s/m/amINBHg7ARzgj1c4GXqx2fhGxgDCZEREQXsFApu57ds3ROAHJL63E2sxJnMiuRX9aA1LwapObV4Mv9WXBWWyHcfwjC/V0Q7KOBlYVS6vLNHoMJERHRZQiCAL+havgNVeOGKSOgbWpDepEWh88WITm3BtXa1q5LPhYqBYK8NQj3d0HYCGe48S6fPmEwISIi6iFntTXm+bhgfLAbGpvbkZpXg3NZVTiXVYkqbSsSsquQkF0FoHOibdgIZ4SNcEHgcCdY8tuUHmEwISIi6gMrCyUiRg5BxMghEMUAFFc24lx2FRKyqpBRWIey6iaUVTdhX1whLFQKBHo7IdTPBaF+zhjqYsu5KZfBYEJERNRPgiBgmKs9hrnaY944HzS3diAppxqJOdVIyK5CTX0rErOrkZhdDQBwUVshxK9zAm2wrwZ21lwm/zwGEyIiIgOzsVIhOsgN0UFuEEURxZWNSMiuRmJOFdIL6lClbcWBsyU4cLYEggD4DVUjxNcZIX7OGOGphqoHC5HJFYMJERGREV34bcrccd5obdchLb/2929UqlBS1YTsYi2yi7XYcyQXVpZKBA13wmhfZ4z21cBzyOC6JZnBhIiIaABZWfz/7cjAKFRrW5CUW42knGok59agobm966GDAOBob4lgH03XnyGONtI2YGQMJkRERBJyVltjSrgnpoR7Qi+KKCxvQHJuDZJzq5FeUIu6hjYcSyrDsaQyAICbkw2Cfg8pQT4aONpZStyBYTGYEBERmQjFBU9GnjvOG+0demQW1SElrxopeTXIKa5HeW0zymubceBsMQDAc4gdgrydEOStQaC3ExxszTuoMJgQERGZKAuVousSDgA0t3YgraC2a/XZ/PIGFFc2oriyEb+cLgIAeLnaIdBbg8DhTgjwdoLazIIKgwkREZGZsLFSIXLkEESOHAIAaGhuR1p+DVLyapBWUIuiikYU/v7n51OFADq/UQkc7oRAbycEDHeCk72VlC1cFYMJERGRmbK3scDYQDeMDXQDAGgb25BeUIvU/Bqk5dei6PdvU4orG7E/vvMbFTeNDQK8OkNKwHBHuDrZmNRdPwwmREREMqG2s+xaPwUA6pvakF5Qh7SCGqTn16KgvAHlNc0or2nGoYQSAJ13/QR4OWGUlyOCfDVQO0r7jB8GEyIiIplysLXE2EBXjA10BQA0tbQjs6gO6QV1SC+oRU6JFnUNbTiZWo6TqeUAgFHDnfDMsmjJamYwISIiGiRsrS0Q7j8E4f6dc1Ta2nXIKdEivbAOGYW1yCqqAwDoRVGyGhlMiIiIBilLC2XnHTzenXf9KJUCnJ3tUVPTCD2kCSeDdzF+IiIi6sYUJsEymBAREZHJYDAhIiIik8FgQkRERCaDwYSIiIhMBoMJERERmQwGEyIiIjIZDCZERERkMhhMiIiIyGQwmBAREZHJYDAhIiIik8FgQkRERCaDwYSIiIhMBoMJERERmQxBFEVpnmvcD6IoQq83fNlKpQI6nd7g+zUVcu8PkH+Pcu8PkH+P7M/8yb1HY/WnUAg9enqxWQYTIiIikideyiEiIiKTwWBCREREJoPBhIiIiEwGgwkRERGZDAYTIiIiMhkMJkRERGQyGEyIiIjIZDCYEBERkclgMCEiIiKTwWBCREREJoPBhIiIiEwGgwkRERGZDAYTIiIiMhmyDSZ6vR7//ve/MWXKFERGRuKee+5BQUHBZcfX1NTgH//4B2JiYhAbG4vnn38ezc3N3cZ89913uPbaaxEeHo4bbrgBR48eNXYbl9Xb/jIyMnDvvfdi3LhxmDBhAh566CEUFxd3va7T6RAeHo7AwMBuf959992BaOeSetvj7t27L6o/MDAQhYWFXWPM9Ri+++67l+wtMDAQq1ev7hq3YsWKi15funTpQLV0WRs2bLhqHeZ2Dv5RT3o0x/PwvJ70Z27n4IWu1p+5noO1tbV49tlnMXXqVERFReH2229HXFzcZccXFhZi5cqViIqKwuTJk7F27VrodLpuY7Zu3YpZs2YhPDwcixcvRnJysmGLFmXq3XffFceNGyfu379fTElJEe+8805xzpw5Ymtr6yXHL1myRLzxxhvFxMRE8ciRI+KMGTPEVatWdb1+9OhRMSQkRPzkk0/EzMxM8V//+pcYGhoqZmZmDlRL3fSmv+rqanHSpEnigw8+KKalpYkJCQniHXfcIc6bN09saWkRRVEUMzMzxYCAADElJUUsLy/v+tPQ0DDQrXXp7TFcs2aNuGTJkm71l5eXix0dHaIomvcxbGhouKiv1157TYyMjBRTU1O7xk2YMEHctm1bt3E1NTUD2NXFtmzZIgYFBYlLliy54jhzOwcv1JMezfU8FMWeH0NzOwfP60l/5noOrlixQpw/f7548uRJMTs7W3z++efF8PBwMSsr66KxbW1t4pw5c8R7771XTEtLE3/66ScxNjZWfOedd7rG7NixQwwPDxd37dolZmRkiI8//rgYGxsrVlVVGaxmWQaT1tZWccyYMeLWrVu7ttXV1Ynh4eHinj17Lhp/+vRpMSAgoNvJcfDgQTEwMFAsLS0VRVEU77zzTvHvf/97t5+79dZbxWeeecY4TVxBb/v74osvxDFjxojNzc1d24qLi8WAgADxyJEjoiiK4rfffitGRUUZv/ge6m2PoiiKd999t/jiiy9edp/mfAz/KCkpSQwJCRF37NjRta2yslIMCAgQk5KSjFJzb5WWloorV64UIyMjxblz517xQ9/czsHzetOjOZ6HvelPFM3rHBTF3vd3IXM4B3Nzc8WAgAAxLi6ua5terxdnz54trl279qLxe/bsEUNDQ8Xa2tqubZ999pkYFRXV9T9Mc+bMEdesWdP1ent7uzht2jRx/fr1BqtblpdyUlNT0djYiAkTJnRtU6vVGD16NE6ePHnR+Li4OLi6usLf379rW2xsLARBwKlTp6DX63H69Olu+wOAcePGXXJ/xtbb/iZMmID3338f1tbWXdsUis5Dr9VqAQBpaWnd+pdab3sErtyDuR/DP3rhhRcQHR2NhQsXdm1LS0uDIAjw8/MzSs29lZSUBAsLC+zevRsRERFXHGtu5+B5venRHM/D3vQHmNc5CPS+vwuZwzmo0WiwceNGhIWFdW0TBAGCIHT9zl0oLi4OISEhcHR07No2fvx4NDQ0ICUlBVVVVcjNze12DFUqFaKjow16DFUG25MJKS0tBQAMHTq023Y3N7eu1y5UVlZ20VhLS0s4OTmhpKQEWq0WTU1N8PDw6NH+jK23/Xl5ecHLy6vbto0bN8La2hoxMTEAgPT0dHR0dOCuu+5Camoq3N3dsWzZMixYsMBIXVxZb3usq6tDWVkZ4uLisG3bNtTU1CA8PByPP/44/Pz8zP4YXmj//v2Ij4/H119/3W17eno6HBwc8MILL+Dw4cOwtbXF3Llzcf/998PS0tKg9ffEzJkzMXPmzB6NNbdz8Lze9GiO52Fv+jO3cxDoXX8XMpdzUK1WY9q0ad22/fDDD8jLy8NTTz110fjS0tJLHh8AKCkpgUrVGRku9bmVmppqsLplGUzOT5j74y+ClZUV6urqLjn+Ur80VlZWaG1tRUtLy2X319raaqiye6y3/f3R5s2bsWXLFjz99NNwdnYG0DkpT6/X46GHHoKHhwd+++03rF69Gu3t7bjpppsM38RV9LbHjIwMAIAoinj11VfR0tKCdevWYfHixdizZw86Ojouuz9zO4abNm3CjBkzEBwc3G17eno6WltbER4ejhUrViAlJQVr1qxBcXEx1qxZY9gGDMzczkFDMIfzsDfM7RzsD3M9B0+fPo3Vq1djzpw5mD59+kWvt7S0QK1Wd9tmZWUFAGhtbb3i55Yhj6Esg8n5r0rb2tq6fW3a2toKGxubS45va2u7aHtraytsbW27Dswfx1xuf8bW2/7OE0UR77zzDtatW4e//vWv3WaKf/PNN9DpdLCzswMABAUFobi4GB9++KEkH4i97TE6OhpHjx6FRqOBIAgAgP/93//F9OnTsWPHDtx8881d+7uQuR3D4uJiHD9+HBs3brzotRdeeAFPPPFE19ewAQEBsLCwwCOPPIJVq1ZhyJAhBu7CcMztHOwPczoPe8PczsG+MtdzcN++fXjssccQFRWFN95445JjLnUeng8ctra23T63/jjGkMdQlnNMzn/NVF5e3m17eXk53N3dLxrv4eFx0di2tjbU1tbCzc0NTk5OsLW17fH+jK23/QFAe3s7Hn/8caxfvx6rV6/Gww8/3O11a2vrrg/D8wICAiT7irUvPTo7O3d9IAKAjY0NvLy8UFZWJotjCHR+uDg7O2PSpEkXvaZSqbpdGwaAUaNGAYCklzt6wtzOwb4yt/Owt8zpHOwrczwHt2zZggcffBAzZszA+vXru4L+H13qPDz/z+7u7n3+3OotWQaToKAg2Nvb4/jx413btFotkpOTu67lXigmJgalpaXIy8vr2nbixAkAwNixYyEIAqKiorq2nXf8+HFER0cbqYvL621/ALBq1Sp8//33ePPNN7F8+fJur2m1WsTGxmLHjh3dtickJHSdVAOttz1+/vnnGDduHJqamrq2NTQ0IDc3FyNHjpTFMQQ6J6fFxsZ2Xeu90NKlS7utpwB0HkMLCwv4+voarHZjMLdzsK/M7TzsDXM7B/vK3M7Bbdu24cUXX8Qdd9yBt95664pzXWJiYpCcnIyGhoaubceOHYOdnR2CgoLg4uICPz+/bp9bHR0diIuLu+LnVq8Z7P4eE/PWW2+JsbGx4r59+7qtEdHW1iZ2dHSI5eXlXbft6fV68bbbbhMXLlwonj17Vjx69Kg4Y8YM8cknn+za38GDB8Xg4GDxo48+EjMzM8XXXntNDA8Pl+z++970t337djEgIED84IMPLroP//yYBx98UJw8ebL466+/ijk5OeKGDRvE4OBg8cCBA5L019sei4uLxejoaPGBBx4Q09PTxXPnzonLly8XZ8+e3bVGhDkfw/NmzZolvv/++5fc3+bNm8Xg4GBx27ZtYn5+vvjtt9+K48aNE996662BaOeKnnjiiW63YsrhHPyjq/VorufheVfrzxzPwQtdrb/zzOkczM7OFkNCQsQHHnjgot85rVYrtra2iuXl5V23Are0tIizZ88W77rrLjElJaVrHZN33323a5+ff/65GB4eLu7YsaNrHZNx48ZxHZOe6OjoENesWSOOHz9ejIyMFO+55x6xoKBAFEVRLCgoEAMCAsTt27d3ja+srBQffPBBMTIyUhw3bpz4z3/+s+tkOm/nzp3iNddcI4aFhYkLFy7sWntACr3pb8WKFWJAQMAl/5wfU19fL77yyivitGnTxNDQUHHBggXiTz/9JFl/otj7Y5iYmCiuWLFCHDt2rBgVFSU++OCDYnFxcbd9musxPC88PFzctm3bZfe5ZcsWcd68eWJoaKg4Y8YMcd26daJOpzNqHz3xxw99OZyDf3S1Hs31PDyvJ8fQ3M7BC/WkP1E0r3Nw3bp1l/2de+KJJ8Rjx46JAQEB4rFjx7p+Jjc3V1yxYoUYFhYmTp48WVy7du1F9X/wwQfi1KlTxfDwcHHx4sVicnKyQesWRFEUDff9CxEREVHfyXKOCREREZknBhMiIiIyGQwmREREZDIYTIiIiMhkMJgQERGRyWAwISIiIpPBYEJEREQmg8GEiIiITAaDCREREZkMBhMiIiIyGQwmREREZDL+DzVHVFABjd31AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = np.array([1, 1, 1, 0])\n", + "yfunc = lambda t: x[0] * np.exp(-x[2]* t) + x[1] * np.exp(-x[3] * t)\n", + "t_grid = np.linspace(0, 2, 100)\n", + "y = yfunc(t_grid)\n", + "plt.plot(t_grid, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HADy3tiY09lE" + }, + "source": [ + "Now, let's consider some fancier examples. We'll even use some Seaborn code." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAG1CAYAAAD6GvACAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xddZ34/9fntNvvtGRmkkx6hSSUQEAkICBFFMuqX1cUFNeytkVxxVV/iq4ugoKyuoBtQamui2s3FLEgSAkdkpCE9DYl026/p//+ODOTTDJ35t7pk3yej8c8CHfOOfd8ptz7ns/n/Xm/he/7PpIkSZIkSccoZaJvQJIkSZIkaSLJYEiSJEmSpGOaDIYkSZIkSTqmyWBIkiRJkqRjmgyGJEmSJEk6pslgSJIkSZKkY5oMhiRJkiRJOqbJYEiSJEmSpGOaDIYkSZIkSTqmaRN9A1OF7/t43ugX61YUMSbXnQrk2I+9sR+r4wY59mNx7MfquGHyjF1RBEKIIY+TwVCZPM+nszM3qtfUNIWamhjpdB7H8Ub12pOdHPuxN/Zjddwgx34sjv1YHTdMrrHX1sZQ1aGDIblMJkmSJEnSMU0GQ5IkSZIkHdNkMCRJkiRJ0jFNBkOSJEmSJB3TZAK1JEmSJA3B8zxc16ngeEGxqGJZJq478buqxtN4jV1VNRRldOZ0ZDAkSZIkSSX4vk863UmhkK343PZ2Bc87tnaS9RqvsUcicZLJ2rK2zw9GBkOSJEmSVEJvIBSP12AYoYredFVVHHOzQr3Geuy+72NZJtlsFwBVVXUjup4MhiRJkiRpAJ7n9gVC8Xiy4vM1TZnwOjsTZTzGbhghALLZLhKJmhEtmckEakmSJEkagOu6wME3XWny6f3eVJLPNRAZDEmSJEnSIEaajyKNndH63shgSJIkSZKkY5oMhiRJkiRJOqbJYEiSJEmSpGF55zvfzG23/XCib2PE5G4ySZIkSZKG5cc/vpNQaOonmMtgSJKOMq7nkcpaOK7H9OqITP6UJGnM1NTUTPQtjAq5TCZJRwnP8+nKmGzfn2ZHc5r97Tm6s9ZE35YkSZPAmjWnctttP+Qd77iEt771Ivbs2Y1t29x66/d429su5oILzuIjH7mCdeue7HfeunVP8k//9F7OO++1XH75u/jDH37LmjWn0ty8Hzhymezxxx/jIx+5gnPPPZO3vvUi/uu/voNpFvvdx+9//xs+9amPc955wTE/+cmPx+eLMAgZDEnSFOf5PqmsyfbmNDub0xRMh5pECFUVtHblMS13om9RkqRJ4Fe/uo9rr/0W1157I7Nnz+Haa7/K008/yTXXfJ3bb7+H8847n8997tM8/vhjALz66mauvvpTnHrqafz0p/fy/vd/kJtv/s+S13/kkb/w+c9/hte+dg133HEvV1/9Rf70pz/y1a/+f/2Ou/nm/+SNb7yEu+/+X97xjn/kttt+yAsvPDeWQx+SXCaTpCnK930yeZv2VIFU1kJRIBnXUXuqsMYjOp1pk9auPE31cRS5XCZJx7SLLnojy5YdD8DevXt4+OEH+clP7mHx4qUAvPvdl7F166vce++dvPa1a/j5z+9l2bLj+fjHPwXAnDnz6Orq4rvfvXHA69999085++xzuOKKD6FpCjNnzsb3fb7whc+yY8d25s9fAMDFF1/CRRe9EYD3ve+fuPfeu3j55Rc56aRVY/0lKEkGQ5I0xfi+T7Zg05Eq0pU1EUAypqOq/Sd6hRBUxQzaU0XiEZ3aZHhibliSpEmhqWlO37+3bNkMwMc//qF+xziOQzye6DlmE6tXn97v8yeddHLJ62/fvpULLrjosONP6ftcbzA0d+68fsfE43Fs265gJKNPBkOSNEX4vk+u6NCRKtCVNcGHRERH00qvdmuaQkhXaO7MEwlpRELyV16SjlWH7vry/aBv2C23/JhoNNbvuN4eX6qq4nnlN1v1Bzi093k07eBrj2EYAxw3sQ1tZc6QJE0B+aLNnrYs2/el6EybxMI61YnQoIFQr1hExzRdWjvzFb2wSZJ09Jo/fyEAHR3tNDXN7vv4wx9+y9q1vwNg0aIlbNy4vt9569e/XPKaCxcu4qWXXuj32IsvPg/A3LnzR/HuR58MhiRpEiuYDnsPZNi6L017qkg4pFKTDKGXEQQdqiqu05Ep0pkuDn2wJElHvQULFvLa157FDTdcx2OP/Y19+/Zyzz13cPfdP2XWrCYALr30MjZt2sj3v/9f7N69i0ce+Qu33fYDYOCeYO997/t45JG/8NOf/je7d+/i739/lJtuuoHXvvYs5s2b3MGQnDOXpEmoaDl0pkw6MkVsxyUW0Unq+rCvp6oKEUOjpTNPNKwRDQ//WpIkHR2+9rXr+NGPbuGGG75BJpNm5swmPv/5L3PxxZcAsGDBIq699gZ++MOb+d//vZc5c+by9re/i9tv/xGaduRryDnnvJ6vfvVa7rzzdu644zaqq2u44IKL+OAH/3m8h1Yx4U/0Qt0U4boenZ25Ub2mpinU1MTo6srhON6oXnuyk2MfeOym5dKZKdKRNjEth1hEI2yM3t8sXWmTqpjB3BmJvl1n40V+z+XYp9rYbduio6OZuroZ6PqReS5D0TRlyo35UK+8sgFVVVmyZFnfYw899ADXX/81Hnrob/3ygA43XmMf6ntUWxs7YnPJQOQymSRNApYd5PRs3Zdif3sOVYG6qvCoBkIAVXGDzqxJe7dcLpMkaXBbtmzmyis/ymOPPUJLSwvPPvs0t9/+Q17/+gsHDYSmoqNrNJI0xdiOR1emSHuqSMF0iIQ0apOhMWuhoSiCeFijtatALKITj8jlMkmSBvaWt/wDnZ0dfPe736G9vY2amlrOP//CKbHsVSkZDEnSBLAdj/buAs0defJFm0hIHdMg6FDhkIZpWTR35Jg/I4lWxhSyJEnHHiEEH/jAh/nABz480bcy5uSroCSNs1zBZvOuTna2pPE8j9pkiGhYH9eGqomYTjpn0dZdGLfnlCRJmqzkzJAkjbPOTJGs5VGTDONPUN0fRRHEozoHugrEwzrJWOXJoZIkSUcLOTMkSePIsl1SWYtE2JjwXmEhXQUBzR05bEc2c5Uk6dglgyFJGke5okPRcgmH1Im+FQCSUZ1swaa1qzDh5fAlSZImigyGJGmc+L5Pd7aIqopxzQ8ajBCCRFSnvbtAd9aa6NuRJEmaEDIYkqRxUrRcMnmH6CRrlmroKqoqaOnMY1pyuUySpGOPDIYkaZzkCjaO42Lok2OJ7FDxiE6+aNPalceTy2WSJJXpne98M7fd9sOyj29paeHhhx8s+/i1a3/HmjWnDufWKjK5/kSVpKOU5/t0Zkx0fXL+/SGEoCpm0J4qEo/o1CbDE31LkiRNAT/+8Z2EQqGyj7/22q/Q2DiD88+/aAzvqnIyGJKkcZAvOuSLNono5K34rGkKIV2huTNPJKQRmWTLeZIkTT41NTUVHT9ZN2rIVztJGgeZvIXnUVbDwIkUi+h0pkxaO/PMaUigKJMj0VuSpJFZs+ZUrrrqczz44Fq2bt1CU9NsPvKRj7NmzesA8DyPe+65g7Vrf0dLSzO6brBy5Yl85jOfY9aspr5rfOADH2bt2t/hODY33/xjrrrqE1x88SV9LTr+/vdHue22H7Jr1w6mTZvO+edfxPvf/0EMw+CTn/wIL7zwHC+88BzPP/8sv/jF72hpaeH73/8uzz77DJlMmtraOi644A189KOfRBnHZtKT+5VZko4CjuvRlTEJh6bGr1tVXKcjU6QzLZu5StJAfN/HtNwJ+xju7MoPfnAzF130Rn7603s544w1fPGLV/Pyyy8CcN99P+Pee+/ik5+8ip/97Jdcd92N7Nmzi5tvvqnfNX71q/u49tpvce21NzJ79px+n3vyyce55prP85a3/AP33PO//Ou/fp4///mPfP3r1wDwjW/cwIoVJ3DeeRfw4x/fCcDnP/8ZstkcN910C/fe+39ceull3HvvnTz22N+GNcbhmhIzQ57ncfPNN3PfffeRyWRYvXo111xzDbNnzx7w+A0bNvCtb32Ll156iVAoxIUXXsjVV19NIpEY5zuXpCBx2rRcquJTo8qzqipEDI2WzjzRsEY0PHmX9iRpvPm+z3V3P8fWfakJu4dFTVV84b2rKi7R8cY3XsI73vEuAD72sX/pmZ35OStXnsisWbP50pf+nTPPPAuAxsYZnHvu+fzlLw/3u8ZFF72RZcuOH/D6d955O295y9t529vegaYpNDbO4uqrv8iVV36U5ub9zJgxE03TCIVC1NTUYJpFLrrojZx33vk0NDQC8K53vYe7776D7du3cvbZ51T4lRm+KREM3Xrrrdx7771cf/31NDY2csMNN/ChD32I3/3udxhG/zeY9vZ2PvCBD3D++efz1a9+la6uLr785S/z+c9/nltuuWWCRiAdy1I5CyHElFpyioY1utImLR155s5IoI7jdLUkTXpT51e5n1Wr+u/KWrnyBNatexKANWvOZsOG9fz3f/+A3bt3sXv3Lnbs2Mb06fX9zmlq6j8bdKgtWzbxyisb+P3vf933WO8s1s6dO5gxY2a/40OhMO94x7v461//xMaN69m7dw/btm2ls7MD1x3fMh+TPhiyLIvbb7+dz372s5xzzjkA3HTTTZx11lk89NBDXHLJJf2O37dvH2vWrOFrX/samqYxf/583vWud3HTTTcNcHVJGlum7ZLO21NmiexQVXGDzoxJrFunoTY60bcjSZOCEIIvvHcVlu0NeaymKTjO0MdVytCVYRVuVdX+b/mu66EoQamPu+76KT/96Y+5+OI3c8opq3nXu97DY489csQ2+MF2jnmez3ve8z4uvvgSVFXgugeX8+rqph1xfKFQ4BOf+DCWZXLuuedz8cVv5vjjl/OJT3y44rGN1KQPhjZt2kQul+OMM87oeyyZTHL88cfz9NNPHxEMnXjiiXznO9/p+/9t27bxm9/8hjPPPHPc7lmSevUukcWSU2OJ7FCKIoiHNVq7CsQiOvGIXC6TJAgCopAxdL0wTVNQJ9GM8KZNG1mz5uy+/1+//iWWLl0GwF13/YQPfODDXHbZFX2f/9nP7qwoP2nBgoXs3r2LpqbZfYHgc889w333/Q+f/ezniUQi/YK4deueYMuWTfz2tw9SW1sHQDqdorOzY4QjrdykD4ZaWloAmDFjRr/H6+vr+z5XykUXXcTOnTuZNWsWN99884jvRdNG96/73p1Fk32H0Vg4Fsbu+z7pgk0opKJpB184e5ecpsLSUyxqYGVMDnTniUer0Ebw/ToWvuelyLFPzbF73vADmd73fCFgsuwm/9///Rlz5sxj2bLj+O1vf8XWrVv4/Oe/DEB9fQNPP/0UZ555Nqqq8MADa3nkkb/0BSnleO9738c113yBn/zkx1x00Rtobm7muuu+zsyZs/pmhiKRKM3N+2lra+1bgnvwwfs599zX09rayg9/eDOO42BZlbUHUlUxovfoSR8MFQoFgCNyg0KhEKnU4AlsN954I4VCgRtuuIH3ve99/OY3vyEWiw3rPhRFUFMzvHOHkkxGxuS6U8HRPPZcwUaoKg11oQGrTsdi5Rcqm0jxWJj2VIGiC7Onjfx34Gj+ng9Fjn1qKRZV2tuVEb3RTqYg8B/+4R3cd9+9bNu2lUWLlvDd797KsmVLAfjqV7/OjTdez4c+9D6i0SgrVqzk3/7ti3zrW9fR3t5KY2MwIaEoR34teh+74IILURTBHXfczp133k4yWcVZZ53NJz7xqb5z3vGOd/K1r32FK664lPvv/xOf+tRn+J//uZf//u/vM316sBW/sbGRzZs3omlKX65lqa+/5wkURaGqKko4PPxiscKfrBWQejz44INceeWVvPjii/0G+qlPfQrLsvj+978/5DVaW1t53etex/XXX8/b3va2Yd2H63qk04VhnVuKqiokkxHS6QKuO/rrypPZsTD21s48e9oy1FX1fxNQFYVYLEQuZ+J6U2PspuVSsFwWzkySjA1vye9Y+J6XIsc+NcduWSZtbfupq5uBrlf2cy9EMHbX9SbFzNCaNafyxS9+hTe+8c1j/lzjOXbbtujoaKa+fiaGceQfmMlkpKyAdNLPDPUuj7W1tTFnzsEs9ra2NpYuXXrE8du3b2f37t19ydYADQ0NVFdX09raOqJ7GYtEOAgCrbG69mR3tI7d83zauwtoPS8IA3E9b8q8OWiqwPM89rRmWDAzia4Nv7/a0fo9L4cc+9Qa+6EJwJXqDQImQyA03iZi7K7rj+jna/LM35WwbNky4vE4Tz31VN9j6XSajRs3snr16iOOf/zxx7nyyitJp9N9j+3evZuuri4WLlw4LvcsSbmiTd50iIQmX1PW4UpGdbKFoJnrJJ9QliRJqsikD4YMw+Cyyy7jxhtv5E9/+hObNm3iqquuorGxkQsvvBDXdTlw4ADFYlAt95JLLqG6upqrr76aV199lWeeeYYrr7ySE044gXPPPXeCRyMdKzI5G9+fGknS5RJCkIjqHOgu0p2tLLlRkqSJ9dhjz4zLEtlUNSVeqa+88kre+c538qUvfYlLL70UVVW57bbb0HWd5uZm1qxZw9q1awGorq7mjjvuAODSSy/lE5/4BMcffzy33XYbqnr0/JUuTV6249GdM4+qWaFehq6iqYKWzjymNb5F0SRJksbKpE+gnixc16OzMzeq19Q0hZqaGF1duSm3lj5SR/PYu7Mm2/enqUkYAxZGU1WFZCJCOjP1EkohKBnQmTaZXh2hqT6OUmbxt6P5ez4UOfapOfbe5NzhJFDD2BVdnArGa+xDfY9qa2NlJVBPiZkhSZpKUlkTRTCsCrFTgRCCqphBe6pId8ac6NuRJEkaMRkMSdIoMq2g/UYkPOk3ao6IpikYmkJbV37KlAeQJEkqRQZDkjSKsgUby3YJDVBk8WgTCasULJeCKXOHJEma2mQwJEmjxPd9ujIm+ii3bZmsVEXB83xyBXuib0WSJGlEjo1XbUkaBwXTIVe0iYYmbonMdjye23KAux7czPOvto/584V0lVTOwpP7MCRJmsJkMCRJoySTt3Fcb9Qb+pYjm7f5y/P7+O59L/H7x3exoznD2id20TXGCc5hQ6VoOhTlUpkkTWqbNm3kve99J+eeewY33/yfY/IcjuPw85/fU9E5a9acytq1vxuT+6nE0Z3lKUnjxPU8urMmYWN8c4VaOvI8ubGV9Ts68bxgdqYqZhDSVdq6C/zxmT2869xFY/b8mqbguB550yZ6lCeNS9JUduedP0HTdO6++z7i8fiYPMcf//gA//VfN/GP//jeMbn+WJKvXpI0CnJFh3zRoSo+vCamlfB9ny17Ujy5sZVdLZm+x5vqY7zm+AaWzamhPVXkh7/dwKZd3exoTjN/RnLM7kfTFFJZi7pk+KgtJyBJU10mk2bx4iXMmtU0Zs8xlcsWymBIkkZBJhe0p1CUsQsGLNvlha0drNvYSmfP8pcQsHxeLacfX8+s6Qf/2quviXDq0nqe3tTGg0/t4SNvOX7M7i1sqOSKDqbtEjbkS4p09PN9H5yhW9L4voI/FoUHtYELupbyzne+mZaWZgAeeOAPNDbOYPXq17B16xb27NnFZz7zb1x44cXcf//v+Z//uYc9e3ZTW1vLJZe8lcsv/wCqqtLcvJ//9//ewn/8xze555472bp1C3V107j88g/w1re+nbVrf8c3vvHvQLD0dcstP2LlypO45547WLv2d7S0NKPrBitXnshnPvO5MQ3KhkO+cknSCNmOS3fOIjxG7TdSWZN1m9p4fks7xZ4WGGFDZdWS6Zx2XD3J2MCzUeecPJP1Ozpo6y7w7OYDrD6ufkzuz9BVMvlgZkwGQ9LRzvd98r+9Fq9164Tdg9qwmMhbvlh2QPTjH9/JF77wr9TXN/CpT/0rX/7y5/n973/Nl7/8dRYtWkRd3TT+93/v5Qc/uJlPfvIqVq8+nY0b1/Od73yTVCrFpz71r33X+t73vsNnPvM55s9fyM9/fg/f/vb1rF59Oq9//QVks1m+971v85vfPEBtbQ3/+78/49577+JLX/p3Fi5cxL59e/nmN/+Dm2++ieuu+/ZYfXmGRb5ySdIIZQsORcuhNhEa1evubcvy5MZWXtnVRe/sc20yxOnHN3DiwjqMIWoZRUIa55w8i/uf3M1fnt/H8vm1Y5bXo6qQyVvUJsNjcn1JmkwEU2s5uKamBk3TCIVC1NVNQ1EUFi9ewoUXvgEIAry7776Dt7/9Xbz97f8PgNmz55BKpbj11u/ywQ/+c9+13v3u97JmzesA+MhHPsEvf3kfGza8zAUXvKEvF6mubhqapjBr1my+9KV/58wzzwKgsXEG5557Pn/5y8PjOfyyyGBIkkYolTVRFTEq+TKe5/PKri6e3NjKvgMHe+HNm5HgNcc3sLipqqLnOWXJdJ7dfIC2rgKPvLCPi18zd8T3OJCwoZItOFi2O2SQJklTmRCCyFu+WNYy2Zj156pwmWwgTU1z+v7d3d1FZ2cHJ5xwUr9jTj55FY7jsGvXTmprawGYO3d+3+d7gx/HcQZ8jjVrzmbDhvX893//gN27d7F79y527NjG9OljM0s9EjIYkqQRKJgO6fzIawsVTYfnXm3n6VfaSPXkH6mKYMWCWk4/voHG2uiwrqsogotOm81dD27hmc0HWLV0Og01w7vWYEK6SlfRomA6MhiSjnpCCNCHngkWmoIQk7NdTSh08P5LJT737lDVtIOvb7quH3FcqfPvuuun/PSnP+bii9/MKaes5l3veg+PPfYIDz/84EhufUzIYEiSRiBXtLEdl2TsyBeIcnSmizy1sY0XtrZj9/wFGQ1rnLp0OqcurSceHd51DzV/RpLj5tbwyq4uHnxqD5dftGTUd30JIVAEZAoWVfHRXS6UJGls1dbWUVtbx0svvcDZZ5/T9/iLLz6PruvMmtVEJpMe8jqHv67cdddP+MAHPsxll13R99jPfnbnpNx1JoMhSRomr6f9hqFXVmTR93227unm4ad3sXl3d9/j9dURTl/ewMr5taNeuPH8U5vYsqebnS0ZNu3u5ri5NaN6fYCQoZLO2Ti1Hpoq67lK0lRy6aWX8+Mf38qsWU09CdQbuP32H/GWt/wD8Xi8rGAoEokAsGnTKyxatJD6+gaefvopzjzzbFRV4YEH1vLII3+htrZurIdTMRkMSdIw5YtB+414pPzZm2zB5ud/3tovH2hRUxWvOb6B+TMSY1anpyYR4rUrGnn0pWb++PQeFs2qGvUeaiFdJZW1yJsOyejY11uSJGn0XHrpZRiGzs9/fi/f/e6N1Nc38N73vp/3vOfysq+xatVqjj9+BR/72D/x1a/+B1/+8tf4zne+yYc+dDnRaIzly1fw2c9+gW9/+3paWlpobGwcwxFVRviTcb5qEnJdj87O3NAHVkDTFGpqYnR15cYmyW4SOxrG3tyZo7k9V9EOqoee3sOTG1rRNYUTF03jtGXTmVYdGcO7PMiyXW751XoyeZtzT57JWSfOHPXn6EyZzJgWZUZd7IjPHQ3f8+GSY5+aY7dti46OZurqZqDrlQf4Y5ZAPQWM19iH+h7V1sZQy5iplnPZkjQMjuvRnTEJVdB+w3E9XtzaAcD7Lj6ON585b9wCIQjqAZ1/alDo7LGXW0jnht4NU6mQoZDOWX2Jl5IkSVOBDIYkaRhyRYeC6RKpoMjg5t3dFEyHZFTnuPkTs2a+Yn4ts+vj2I7Hn57dO+rXDxsqBcuhYA281VaSJGkyksGQJA1DJm+iiMrabzy75QAAJy+ZjjqGbTsGI0Sw1R7g5e2d7GnLjur1VVXBdX3yRRkMSZI0dchgSJIqZNkuqaxdUYf6znSRnc1BU9VVS6aP1a2VZea0GCcvngbAA0/tHvVtroau0J01J+X2WUmSpIHIYEiSKpQt2BQtp6J8oee2tAOwcFaS6lFu2zEc566aRUhXae7I80JPHtNoCRsahaLT10dNkiRpspPBkCRVwPd9urMmmqaUvQ3edT1e3BoEQ6dM8KxQr3hE5+wTZwDw52f3UhzFHB9dU7BdTy6VSZI0ZchgSJIqULRcsgWHSAWzQlv2pMgVHWJhjcWzq8bw7ipz2nH11CVD5IoOj77YPKrX1jSFdN4c1WtKkiSNFRkMSVIFsoWg/UYl/bee60mcPmnxNFRl8vzKqarChT3J1E+90kZHqjhq1w4bKrmCg2nLpTJJkia/yfPKLEmTnOcF7TdCFQRC3RmTbfuDMva9ScuTyeKmahY1VeF5Pg8+vWfUrmtoCqbjyqUySZKmBBkMSVKZ8qZDvmgTCZUfDD3/apArNH9GoqJK1ePpotWzUYRg694Ur+7tHpVrCiFQhSCTH/3CjpIkSaNNBkOSVKZ03sLzKKu0OwQzSb3B0ERvpx9MXVWY046vB+ChdXtw3dEpoR82VDIFG/sYbUcgSdJBqVQ3v//9ryf6NkqSwZAklaG3/Ua4glmhV/d2ky3YRMMay+ZUj93NjYKzT5xBLKzRkTZZt6ltVK4ZMlRMyyVvyqUySTrW3XLLd3nggbUTfRslyWBIksqQK9iYlltRocXe2kInLqorezZpooQNjfNWzQLgby80ky3YI76mEAIB5PIjv5YkSVPbZC/COrlfoSVpkkjlLKig/UYqZ7F1XwqAVYsn7xLZoU5aPI0ZdVFM2+Uvz+0blWuGDIVU3sT15FKZJE2kbDbLN795LZdccj4XXfQ6rrzyo2zatJH9+/dx1lmreeKJv/c7/hvf+Hc+9rEPAmDbNrfe+j3e9raLueCCs/jIR65g3bon+45du/Z3/OM/vq3vv+eeewbvf/97eOmlFwC49tqvcv/9v+eFF55jzZpTx23MlZDBkCQNwbRd0jmLaKj8pqwvvNqO78PcxgR1VZMzcfpwQgjecPocIEj83t+eG/E1Q4ZK0XIpmHKLvSRNFN/3ufrqK9m/fx/f/OZ/8qMf3cHy5Sv52Mc+SDab4aSTVvHwww/0HW+aJo888mfe+MY3A0Ew8/TTT3LNNV/n9tvv4bzzzudzn/s0jz/+WN85ra0t/PrX/8eXv/x1brvtbiKRCNde+1V83+dTn/os5513AStWnMBvfvPAEfc3GchgSJKGkCvYmLaHoQ8ncXrybacfzOz6OCsW1ALw4Lo9I57aVhUF3/fJjcKymyRJw/Pss0+zfv3LfP3r17F8+Qrmzp3HP//zJ1i+fCX33fc/vPGNb+Zvf3uEYjGoNfb3vz+K67qcd9757N27h4cffpAvfvErrFp1KrNnz+Hd776M88+/iHvvvbPvORzH4eqrv8CKFStZsGAh73nP5ezbt5eOjg7i8TihUAhN06irm5yvieX/qStJxyDfD2oL6Zoou/3Gtv0p0jmLSEjluDk1Y3yHo+/8U5rYvLubPW1ZNuzoZMWCuhFdz9BVUjmLGZM8Z0CSjlZbtmzC933e8Y5L+j1uWRamafKZz/wb3/nOt3j00b9ywQVv4KGH1nL22ecSi8V56qlgOezjH/9Qv3MdxyEeT/R7bO7c+X3/jsXiPcdNjT+EZDAkSYMomC65gk0kXP6vynObg1mhExbWoWlTb/I1GTM4c2Ujf31+P398Zi9LZldXVHH7cGFdJVd0KMhdZZI0ITzPIxaLcdttdx/xOV3XiUQinHvu6/njHx/g9NPP4MknH+eGG74LgO8H+X633PJjotFYv3OVwyrqG4ZxxPUne+J0r6n3Si1J4yhbsLBcD73MoCaTt9jSU7hwMtcWGsoZyxupjhtk8jZ/f7llRNfSNAVXNm6VpAmzYMEicrkctm3T1DS77+Oee+7gscceAeBNb3oLTz/9FPff/3tqa+s45ZTVAMyfvxCAjo72fuf+4Q+/Ze3a35V9D+XOrE8UGQxJUgm97Tcq2U7fmzg9uz7O9OrIGN7d2NI1hQtWB33LHl/fQndmZE1XNU0hlbOmzF+JknQ0Of30M1i8eAlf+coXeO65Z9i7dw//9V/fYe3a3zFv3gIATjzxZOrrG7jtth/xhje8qW/WZ8GChbz2tWdxww3X8dhjf2Pfvr3cc88d3H33T5k1q6nse4hEIrS3t7N//+jsVB1tMhiSpBJyRZuc6ZTdfsP3p27i9ECWzalmXmMC1/P54zN7R3StsKGSL9gULbmrTJLGm6qq3HTTrSxbdjzXXPN53v/+d/PCC89z7bU39M0AAVx88SXk87m+XWS9vva16zjnnPO44YZvcPnl7+L++//A5z//ZS6++JLDn6qkiy++BNMscvnl76K9/cCojW20CF/+qVYW1/Xo7Bz5VuNDaZpCTU2Mrq4czjHWsmAqjH3/gRwtXXlqk6Gyjt+2L8U9f3yVkK7ymX88AV0bOIhSVYVkIkI6Uxi11hdjpbUrz49+uxHfh8svWsL8GclhX6s7a3LycTNQfW/Sfs/HylT4eR8rU3nstm3R0dFMXd0MdP3IfJihaJoy5cY8WsZr7EN9j2prY2UVvZUzQ5I0ANvx6M6ZFTVl7a04fcLCupKBEAC+D64N/uR/kWyoiXLK0iD36cF1e/C84f/tpKoK3dniaN2aJEnSqJHBkCQNIFe0KVhO2flC2YLN5t3dAKxaOvgSmSh0QeurqO1bUTt3oqT3o+TaUQpdCDODsAvgWpMmWDrnpFmEDZW2rgLPbhn+9HbY0EjnLCxbLpVJkjS5yK31kjSAVNZEFeXXFnpxazue7zNrWoyGmmjpAz0HJdcOBuD7CCePYmWCwMcXIHwQKr6iBv9VNVDD+JoOioYvVFA1fKGBogYfYywa1jj35Fnc/9Ru/vr8PlbMryVSQTXuXiFdCRq3Fh3iEX0M7lSSJGl4ZDAkSYcpWg7pfPm1hXzf5/meJbJVSwffTq+YGYRVgGQ9eDa+GqLfwpPv9wRGLsJzEY4JVh7F9wAfECBET7CkBf9VDXzVAFXHV4IgyVc0UHUQozP5e8rS6Ty7+QBt3QX++vx+Ln7NnIqvIYRACMgULBkMSZI0qchgSJIOkys4WLZLIlreG/bOlgydGRNDV1g+b5CK056LkusYPEgRAoQKqPiHTPr0D5g88HqCJdcCu4DwPDzPxfPA9X0cX8U3YkRmLBiVgEhRBBeeNpu7H9rCM5vbOGXpdOprKi8dEAlppDMFpldF0MpIapQkSRoP8tVIkg7h9bXfKP9XozdxeuWCukErNStmGmHl8I1BltEG4fvgej6W41NwBBlbJWUZdLsRUsTIq1U44Wr0eC3JqgSamcHOdA/ruQayYGaSZXOq8X14cN3uYdUMihgaRcslL6tRS5I0iciZIUk6RMF0yBVtYmUukeWLNpt2dQFD1BbqmRXyVR0xxEyN74Hjebieh+uC6/UmUgtUIVA0gaaqxMIKhq6iqUrwoQg0TaD0XP+AbdLR3Yoerxq13KILVs/m1b0pdjRn2Ly7m2VzK+u9pihBDlauYJOMVr5VWZIkaSzIYEiSDpErOjiuV3ZPsRe3deB6PjPqosyoi5U8TjEzCDuHF64Cghkox/WwbBfX83E9P9i2LkARAk0RqIogFFIJGyqapqApCpom0FQFVRn6/hK1NWT37sfKdmEkR6cIZE0ixBkrGnnspWYeenoPi2ZVVdx/LaSrpHMWDTXRvuBIkiRpIslgSJJ6+L5PKhvk/pR7fG9T1kH7kHkuIt8ZJDULhYLlYHk+lu0igJCuYeiCkBYEPWrPLI+qKigj6OcTDhkk4jE6ulox4tWgjM6v+5qVjby4tZ3urMUTG1s564QZFZ0fMlRSGZO8KXeVSZI0OcicIUnqYdouBdMlVGaH9t1tWTrSRXRNYcX82pLHCSuLYmXxjWDmyLQ8ZkyLMa8xwbzGBLPr4zTUxKhOhIlHDCKGhq6pIwqEesVrqgh5Rex054iv1cvQVV5/StCTaN3G1ooLMWqqguv55Iv2qN2TJEnD99JLL/Diiy8A0Ny8nzVrTuW5556Z2JsaZzIYkqQeBdPFdtxBk6AP9dzmoADhivm1hEoVZ/Q9lHxHz1Z4Bdvx0DVBMhrC0NS+/J6xEjYMYlUJrO62oOr1KFk+v4ZISCNXdNjRnK74fEOXjVslabL4+Mc/xL59ewCor2/gN795gJUrT5zguxpfMhiSpB6ZvIVaZg5LwXTYuHPoxGlhZlDMLL4e7CArWh7xiF46eBoDyaoqwlhYqY5Ru6aqKBzfU0Zg/Y7KZ53Chkah6MjGrZI0yaiqSl3dNHT92FrClsGQJAGO65Et2GUHKS/1JE431ESYOa1E4rTvoeS78IUSFEL0gjyjxDjvogoZOvFkAid9AN82R+26vUuDm3Z1V9yQUdcUbNcjX5Rb7CVpPDzxxN/54Acv5/WvP5NLLrmAa6/9Kul0mjVrTgXgG9/4d6699qtHLJN98pMf4ZZbvsvXvvZlLrjgLN761ov49a9/wUsvvcAVV7yH17/+TD760X9iz57dEzm8EZPBkCQRzPQULaesfKF+FaeXTC/ZskOYWRQz3ZcrVLQdIoZKtMxt+6MpUVVFGBsn3T5q15zTECcZ1TFtl637UhWfr2sKqdzoBWeSNF5836dYLAz5USgMfcxwPipdXu7u7ub/+/+u5k1vegv33PMLvvGNG3jhhee59dbv8pvfPADAlVf+K5/61GcHPP+++37GokVL+OlPf8ZZZ53DTTfdwLe/fT1XXvkZbrnlx3R0tPODH/zXiL+uE0nuJpMk6JuhKGer994DOdq6C2iqwsoFJRKnfQ+l0IkvRF+NH8v2qak1RiUxulIhQyNeXU17Vwdasg6hh0d8TSEEy+fX8sSGVtbv6Ky45lDIUMkVHUzLHddlQ0kaCd/3+exn/4WNGzdM2D0cf/wKbrzxe2X3TjxwoBXLsmhoaKSxcQaNjTP45je/g+u61NUFy/zxeJx4PE4mc2QO4OLFS3nPey4H4O1vfxe//vX/8Y53/COrVgWzSueeez6PPvrX0RjahJEzQ9Ixz/d9UjkLQyvvDfn5ns7ty+fVEC7RsFRYOZRipm9WyHY8NFWUXcxxLCSqEoQVBzs1erNDK3qCwS17ujEr7EZvaAqWLatRS1PR1KqPtXjxUs4//yL+7d+u4q1vfQP/8R9fYefOHcyfv6Cs85uaZvf9OxIJ2vDMmtXU91goFMK2p/buUDkzJB3zipZL0XTKasxatBzW7+hJnC7VlNX3UPKdwetlT22fouWSiOhlB1xjwdBUEjU1HGhvx0jWwjDbghyqsTZKXTJER9pk8+5uTlhYV/a5QgSFJTN5i5pEaMT3IknjQQjBjTd+D9MsDnmsqiq4bmX5dOUIhcJlzwr1+upXr+Wf/unDPPnk4zz99FN8/etf5oQTTuK73/3+kOdq2pGvjZU+/2QngyHpmFcwHWzXI1lGJeX12ztxXI/p1WGapg+cOB3MCqXxQsHnfT/4iEeNCX8BSSTiZLq6sboPYNTPHfH1epfK/vZiM+u3d1QUDAGEDZVMwe4pOSAnqqWpQQhBODx0o2JNUyreXDAWNmxYz5/+9CBXXvmvzJkzj3e96z089ND9fO1rX6ara/RqkE1l8tVHOuZlCzaqOnSQ4vs+z/UskZVMnPZ9lHwwc9Q7K2TaDoauTOgSWS9dU0nU1uBmO8HMjso1VywIAqDt+zMVF1IMGSqWbNwqSWMqFovxy1/ex623fo+9e/ewfftW/vSnh2hqmkNVVTWRSJSdO3eQSnVP9K1OmCkRDHmex/e+9z3OOussTjrpJD784Q+zZ8+ekse/+uqrfOQjH+H000/njDPO4Morr2T//v3jeMfSVGE7HpmCTbiMXWTNHXlaOguoiig5AyKsHIqZ6psVArBsj2TUKKuf2HhIJmKENLBSB4IpqxGaVhWmsTaK5/t9tZfK1RtQ5vJTO99AkiazefPmc+21N/Dcc8/wgQ+8h4997IMoisq3v/09FEXh3e9+L//3fz/nG9/494m+1Qkj/ClQAvbmm2/m7rvv5vrrr6exsZEbbriBvXv38rvf/Q7D6F+zpaurize/+c2sWrWKT37yk1iWxfXXX09nZye/+tWvCIWGl5vguh6dnbnRGE4fTVOoqYnR1ZWbFFOp42myjD2ds9i6L0V13BhyJ9nvH9/Jc1vaWbmgln84e4DEQ99HTe1BKaTwIkFDVtf1KZgusxviRIxgZkhVBclkhHS6gOtOzK9fV3eGAwc6iMxcDOHEiK/3+PoWHn5mL3Ma4lxx8bIBj1FVhWQiQjpT6JdHEcwmCZbOqZ40AeNomyw/7xNhKo/dti06Opqpq5uBrldeH2yyLJNNhPEa+1Dfo9raGKo69OvKpH/lsSyL22+/nSuvvJJzzjmHZcuWcdNNN9HS0sJDDz10xPEPP/ww+Xyeb33rWyxZsoQVK1Zwww03sG3bNp577rkJGIE0meVNG/yht9Sbtsv67cHa+sklmrIKOx/kCh2SmFy0XKJhrayZp/GUSMQI6WrQpsMf+QvW8p4CjLtbs6RzVkXnhg2Nou3KAoySJE2YSR8Mbdq0iVwuxxlnnNH3WDKZ5Pjjj+fpp58+4vgzzjiDW2+9lXD4YB0VpeevzXS68h5K0tHL833SORvDGPrXYMOOTizHoy4ZYm5D/MgDfB+l0BUEFqre+xCO65GI6hOeOH04TVWoqq3BzXWDmRnx9apiBnN6vi4bKmzPoSgCfJ+cbNwqSdIEmfiMziG0tLQAMGPGjH6P19fX933uUE1NTTQ1NfV77Ec/+hHhcJjVq1eP6F60Ud7t0jt1V84U3tFmMow9X3SwHI9oWB/yPnorTp+yrB5tgO3xQa5QGsKJvqWeou0SCWkkYka/BO3+Y5+4KfSqZJxsKoWdbicUrYIRNo1dubCO3a1Z1u/oZM2JM4/4fO/XZaClsEhYJ1d0UFQxIUUpx9pk+HmfKFN57J43/J/F3h9jIUYlNW9KmYixq6oY0Xv0pA+GCoUCwBG5QaFQiFRq6BYAd911F3fffTdf+tKXqK0tUS24DIoiqKkp0YNqhJLJobdoHq0mcux2V55wWKeuZvB6O/vasuxrz6EqgrNOaiI+UG+xzgMQ1iB2cNbIzhSZNi1KXYmfm1hs4mvr+GImzXv2EVcslHhlFaQP95oVM7n/iV00d+QpOj71Jb6uA407GgmRLliEIiHikaO3QaT8XZ9aikWV9nZlRG+0UzEIHC3jMXbPEyiKQlVVtN+KUKUmfTDUOzjLsvoN1DTNvkqYA/F9n+9+97t8//vf52Mf+xiXX375iO7D83zS6fyIrnE4VVUOSaQ9tpLsJsPY9+5PUyhapDOD//X3yPPBzsXj5tbguS7pTKHf54WVR+lsBS0MPb22HM+jUHQQrks63f94VVWIxULkcuaEf98VBD4KHXt3Epqh97UOGa4Fs6rYujfFEy/t59xVs/p9TlUOGbd35LhTqQL7WzSmV0+9N82hTIaf94kylcduWSae5+G6fsXJwEIcLLp4LM4MjdfYXdfH8zxSqTyFwpFV8JPJSFlB2aQPhnqXx9ra2pgzZ07f421tbSxdunTAc2zb5gtf+AK///3v+cIXvsAVV1wxKvcyVpnxrusdszsOJmrstuOSzlnoqhj0BdqyXV7a2gHASYunDXismu3Ad2w8PQ49b/KFYtD0VdfUAXaMBce4rjdhu8kOlaiqoa25GS3bBbHhz55C0KJk694UL2/r4KwTGgfMlXI9b+CvoyLoTBWpjk18ccqxIn/Xp9bYR/L72RsEHGuBEEzM2IcTsB5q0s/fLVu2jHg8zlNPPdX3WDqdZuPGjSVzgD73uc/xwAMP8O1vf3vUAiHp6JI3XSzbHbJL/cadXZi2S00ixPwZR25BD3aQpfCMg0thvh/UL0pG9SmR/xKPhQiHI1hdreCNbEfXsjk1aKqgI12kpbMw9AmHCOlB49aiVVmPM0mSpJGa9MGQYRhcdtll3HjjjfzpT39i06ZNXHXVVTQ2NnLhhRfiui4HDhygWAz6xPzyl79k7dq1XHXVVZx22mkcOHCg76P3GEnq3bk01AxEb8XpkxdPG/BYJd8Nng3qwTwix/EwNIVoaGrkvqiKQrK2Bs/MQr57RNcKGSqLm6oBWL+jo6JzDV3FdlwKshq1JEnjbNIHQwBXXnkl73znO/nSl77EpZdeiqqq3Hbbbei6TnNzM2vWrGHt2rUA/P73vwfgW9/6FmvWrOn30XuMdGzzPJ9MzsLQB//xb+sqsPdADkUITlo07YjPC7uAMLvx9P6JwkXbJRbRMSZZbaHBxKMGoUgcq6sN3JFtce/tZL9hRxeV1nTVVFFxnSJJkqSRmvQ5QwCqqnL11Vdz9dVXH/G5pqYmNm/e3Pf/t99++3jemjQFFa1gKSYWGfzHv3dWaMmcKuLRI2d5RLEb4dr4xsEdZL4H+JCIVF6tdiKpikJ1bTWte/dCvgsS9cO+1uJZVYR0lXTOYndblrkN5Ve4Dhsa2aKDZbtTKpiUJGlqmxIzQ5I0mvKmg+t6aIPsMLAdj5e2Bcs8qwaqOO0UUQpdA8wKOYQNlUh46r2Rx6M6oVgimB1yhj87o2kKy+ZUA7Bhe2UFGA1dwbQd2bhVkqRxJYMh6ZiTzllD1gx5ZVcXRculKmawcGbyiM8rhW6EY4PWv2aOZXskYgbKCAsYTgRFKFTXVOHbBchXlu9zuOU9S2Ubd3YNuI2+FCGCoovZglwqkyRp/Ey9V2xJGgGrpwfWULvI+hKnlwyQOO2YKIUufKN/PRzbCWabYuEpsfo8oHjUIBRPYnUfAGf4Gw4WzEgSDWvkTYcd+ytr9xE2VNI5G2eK1aSRJGnqksGQdEwpmEELjsGSp9u7C+xuzSIEAyZOB7NCFr7Wv9pp0XKJhTVC+tQNhhQhqK6pwrMtyA1/dkhRBMvnBRWt11fYqyykqxQt2bhVmtyKxcKgH657sESEbduDHmuaZt+xvu8Pee3hyufz3HTTt3jrWy/iggvO4pOf/AibNr3C2rW/Y82aU/sde/hjtm1z663f421vu5gLLjiLj3zkCtate3LY9zLZTN1XbUkahlzBQTD4lvrnXg36kC1uqiYZOywR2jFRCp34ev9ZId8L6gslDj9+CoqFdSLxKszudkLRGnx98HYlpSyfX8vTmw6waXcXtjO37NL8ihJ8b7JF+8ivvyRNEv/wD28c9PNf/OJXOPfc8wC4447b+L//+3nJYxcvXsr3vvcDAFKpFJde+g+DXvv++/9S4d0Grrnm8+zZs5svfvGrzJrVxJ133s5VV32CK6744JDnXnvtV9m1awfXXPN1pk+v5+9//xuf+9yn+cY3buS1r10zrPuZTGQwJB0zPM8nlTcJDdKl3nE9Xtzamzg9wKxQsRvhmHiR/n28TMfB0BWioan/KxXMDiVo2ZPGz3RATeRg58UKzK6PUxUzSOUsXt3bzcqFR349SwkZCpmchVcT7QuOJEkavt27d/Lkk4/zne/czGmnvQaAf/3Xz5NIJIhEBv+DZ+/ePTz88IP85Cf3sHhx0Pnh3e++jK1bX+Xee++UwZAkTSUFy8G0XBIDbJPvtWlXNwXTIRnVWTSrqv8nHQsl3xXMCh0WHJiWR31NZMCO7FNRNKwTTlZRTHcQjtfiG5U3KRZCsHx+LY+vb2H9js6KgqGwoZLJ2eRN56hu3CpNXb/61eB163T94Kzm+9//QS677P0ljxWHbLioqqoa8trDsW3bVgCWL1/R91goFOJf/uUzrF37u0HP3bIlKF/z8Y9/qN/jjuMQj5dfOmMyk8GQdMwoFB1cb/BOys+9GiROn7R42hEzEkox1TMrVN3vccf10RSFWPjoedNWhKC6KkFLJoWXbUfURIc1O7SiJxh6dU+KouVw5L68gamKguv55Iu2DIakSSkcLr+hsK7r6Hp5P8dCiIquXS5Nq+zt/tCcJ98PNjPccsuPiUb7/2GkHCV/AB4do5CkMqRyFrpW+g29M11kZ3Ow8+nkxYfNYrgWSr4TXw8fERQULZdoWBtyh9pUEw1rRBLV2N0dCCs7rGs01EaYVhXG9Xw27eqq6FxDV+jOWhVXsZYk6Uhz584H4JVXNvY95jgO73znm/tyKHO5g7/ne/bs7vv3/PkLAejoaKepaXbfxx/+8NshZ5WmChkMSccE03LJm0FBxFJe7ikQuHBWkqp4//pBSiGFcApH7CDzffA8j3hUP+o6rQezQ3F8IfCz7T3ltSvTu1QG8PK2ynaVhQ2NoulQMGXjVkkaqTlz5vK6153Ld77zTZ577hl2797Ft751LZZlMXfuPIQQ3H77j2hu3s+f//ww99//+75zFyxYyGtfexY33HAdjz32N/bt28s999zB3Xf/lFmzmiZwVKNHBkPSMaFgOViOiz5IscXNu7sBWD6vtv8nXDuoK6QdOSvU2zZiKtcWGkwkrBFJVmGmOxHm8GaHenuVbd+fIpsvv5iirinYrkfeHFmvNEmSAl/4wlc48cRVfPnL/8YHP3g5ra2tfOc7N3P88Sv47Ge/wCOP/IX3vved/OY3v+TjH7+y37lf+9p1nHPOedxwwze4/PJ3cf/9f+Dzn/8yF198yQSNZnQJX85Bl8V1PTo7c6N6TU1TqKmJ0dWVw3GOrQJz4z32vQcyHOguUpMIDfj5VNbku794GSHgM/94Yr/8HyXXjpraG+wgOywYSmdt6pJhpteUt8bvuw7eznUYiodp+/hCBUVFKMF/UbSD/69qPY+pCOXgv4/4f1Xrl4A52nJFm+a9+wnFkjB9Pgzjuf77dxvZ35HnHecu4oQFtbhlFlRM5yziEZ0FM6uGPngSk7/rU3Pstm3R0dFMXd2MfgnR5dI0ZcqNebSM19iH+h7V1sbKKutxdP45K0mHcD2PdM4eNKdn854UAE3T4/0ToV07yBXSQkcEQq7nIxSIDbI77XD2K3/BefXvmEMfWiEB6sGASqga2sIz0Be9ZsRXjoY0oslqCqlOwon0EQnk5Vi+oJb9HXme29zGCQtqhz6hR9hQyRYcipZD2JAvV5IkjQ356iId9Qqmi2m7JGOlg5bNu4Pk3qU9DUZ7KWYGYRcGDABMyyUS0gbNQzqUlzmAs/UJACILT8ZxBZ7rgOeC5+B7bs+/e/7fPfhvPLfn887BY/rxwXWCD0x8wF7/EGrjYpR4XVn3V4oQgupklHwmjZc5AKFEEHRVYPm8Wh5+ei879qfpzpokytwhZugqmbxNriCDIUmSxo58dZGOegXTwfP8kjWAiqbDrpYgH6ZfMOQ5KLkOfM04YlbI94NeZNOrIihlJE77vo/14v3ge6gzllD7uktJpwu47vBWqX3fDxKaDwmOfPfgv631D+G1bcN++UFCZ7xnWM9xqEhII1ZVRa6znUg8hRctf3YHIBkzmNuYYGdLhvXbOzljeUPZ5+qaQipnUpsMHXVJ6pIkTQ4ygVo6qvm+TyprDdqLbOu+NJ7vM60qTF3y4G4xpZhGOLkB21HYTpA4HSkzcdrdvxHvwHZQVMInXlz5QA4jhEAoKkILIYwoIpxAidWgJKahVDVgnPAGEApuyxbc1q2j8nxViSi+ZgSzQ27lSc0rFgYzVC9vq6zn2cGlMrmrTJKksSGDIemoZtrBlvrB84W6gQFmhfId+OqRuUIQVJyORzQMbejlIt+xsF9+EABtyRqUeGWzKsOhJKajLTgNAOvlB4IlthGKGCrxZBVWNoNipis+f/m8GhRF0NKZp727/GaThq5iO7JxqyRJY0cGQ9JRrWC62INsqXddj617g+TppbOr+x5XzAyKlT+iISsEPc4QEA+Xt7vE3vw3/EIaEa1GXzJ+PXz0Za8DI4qfacfZ8fSIrxfMDkXwtTBuqg3c8rfJQ9DiY9nc4XWy1zWF7qwpCzBKE0L+3E1eo/W9kcGQdFTL5C0URZTMNdnZmsG0XeIRnVnTe8rMey5KrgNP1QfcRm5aLuEyl8i8TDvOq48DoJ/wBoQ6fq0lhBHBOD7omm2/8ld8c+SlISKGSrwqiZXPoRRSFZ+/amk9EARDlbyIRUIquaJcKpPGl6oGM7+WNfr7P6XR0fu9UdWRpUDLBGrpqOW4HtmCPehury09hRaXzK7qC5gUM42wcniRgWvbWI5HbTI8ZOK07/tYL60F30NpWIzauHR4AxkBdd4qxI5n8FMt2K/8BeOkkRVIC2aHwuTSEbz0AQgnQRu4dtNAViyYhq4qdKZNmjvyzJxWXgNYXVNJ52xyRZtISL5sSeNDUVQikTjZbLDb1DAqS+L3PDHsTRJT3ViP3fd9LMskm+0iEomPuEeafFWRjloF06Fou1THBl7O8n2/r77Qkt4lMs9F5DvxS8wK2Y6HpipEy5gVcve/gtcWJE0bJ1w8ITuhhFAwTngD5qM/xdnxLNr8U1GqGkd0zYihEUsmyLa3ESl04SXKv17IUFkyp5oNOzpZv6Oz7GAIenaVZS3qkmG5q0waN8lkkOPXGxBVQlEUPO/YLLo4XmOPROJ936ORkMGQdNTKFx3w/SO6z/dq6cyTzlnomsL8GUE/dWFlUawcXnjg/upFyyUZ1Qnpg//qBEnTDwCgLT5zXJKmS1GnzUOdtRx33waslx4gtOb9Iw4mqhNhsukobqYTEa0FtfzqvCsX1LFhRycbdnRywalNZd9LJKSRK9gUe+o7SdJ4EEJQVVVHIlGD65afxK+qgqqqKKlU/pibHRqvsauqNuIZoV7yFUU6Kvm+TypnDbrbq7cX2cKZySDB2vdRCil8oQw4K+R7gA+J6NBv/BOVNF2KvuIC3ObNeO07cfe/gjbr+BFdL2xoJKripA+0ErVyeJHyg6HFs6sI9RRT3NWaZV5joqzzdE0h43rkCnKpTBp/iqKgKOX/nGuaQjgcplBwj7mWHFNx7DKBWjoqFS2XouUSMoZuzNq7pV44RRQri6+HBzy+6DiEDHXIN+J+SdMr34DQKu9pNNqUaDXakjOBoDK1P4w6QYdLxsMomoGX6ayoo72mKhw3L9hVtmF7hbvKdIXurCV390iSNKpkMCQdlQqmg+146CVmhrozJq1dBYSAxU1BorSw8sF28RJLPpblkYgaJStZQ2/S9P09SdOLUGeMf9J0KfriMxGRJH6+u68tyEiEdBU9FscupBF2+XWDAFbMD5YNN+7qLLtpKwQzUvmiTcGUu8okSRo9MhiSjkrZgo06SD3E3kKLs+vjRMN6ELwUuoKGrANwXA9NUYgNkTgdJE1vm9Ck6VKEZqAvvwAAe/OjeIXKCyceShGCZDyC67gIM1PRufMaE8TCGgXTZdv+8u9D1xRs1yNfHPnMliRJUi8ZDElHHdvxyBRswhVUnRZWHmEX8LUSS2SmSzSiDVrJul+l6cVnjrhB6lhQm1ag1M4G18be8PCIrxcJaShGBDfbWVGLDkURLO+ZHdpQYQFGQ1foypp4cqlMkqRRIoMh6ahTsBwsK+gdNuDnTYddLcFMRm/VaWFlAH/Abuy+D67vk4gag8702JsfxS+kENGqSZE0PRAhBMYJQW80d89LuB17RnS9kK4RicVxCnkUq7Kijr3B0Kbd3dhO+cteEUOjUHQomrI9hyRJo0MGQ9JRJ1+08X1KbqnfujeF78P06jC1yTC4NkohXXKJzLJdQrpKdJDEaS/TjrN1ciVNl6LUzESdezIA9sv341eQ/DyQWNTAQYVCdxA5lqlpeozquIHteGzZU341a01TsF2fnOxVJknSKJHBkHRU8XyfdM7GGGwX2eFLZHYe4RZLLpGZdpA4rakDX7Mvadpze5Kml41oDOPBOP480Ay8rv24u18a0bWiIQ01HMMppBFO+YnUQhxcKqu0V5mhC7oycqlMkqTRIYMh6ahiWi5F0ymZL+S4Hlv39W/MqhR7awsdOZPkej5CQCxcuqeY27xp0iZNlyLCCfSlrwPA2vAwvj383ku6phKLRbBNC2FmKzp3xYIgGNq6N1XRslckpFEwHQpyqUySpFEggyHpqFIwHWzXQyvRpX5nSwbL9ohH9KAVhGMirOyA3emhJ3E6pJfsb+Y7FvZLvZWmXzspk6ZL0RaejojVgpnF3vLoiK4Vj+h4SgiR7wav/Pyfhpoo06vDuJ7Ppp66T+XQVAWnpwCjJEnSSMlgSDqqpHMWmlp6Zqa3MevS2dUIIVCsHMKxB6wt5PvguD7JmF6yKau9pSdpOlKFvuSsURnDeBGqhr7yIgCcrU/gZStbqjpUJKShRaI4xRyiwkTq3ppDL2/vqOi8kK7SnbXkUpkkSSMmgyHpqGE7LrliUCV6IEFj1m4AlsypBt9DFLuDpqwDXc92MXSlZMVpL9txsNL0CZM7aboUtXEJSv1C8Fzs9Q8N/zqKQiISxnSCZcdK9OYN7WzJkM2XP9MTDqnkTVsulUmSNGIyGJKOGgXTxezZ+TWQ5o48mbwdNGZtTCDsAoqVK9l+w7Q94hFtwP5m/ZKm6xdOiaTpgQghMFZeBELgNm/Cbds27GtFI1rwtSxmwCmWfV5tMszMaTF8P6hIXS5NVXBdv6IASpIkaSAyGJKOGrmeqsSlEph7e5EtmlWFpilBsq/vgXLkzI/n+fgC4iUakLrNm/BatwZJ0ye+cUokTZeiJOvRFpwGgPXSA/gV5PwcKhJSCYUj2MUiSqWJ1L27yirsVRYyVFI5C8+TS2WSJA2fDIako0Kwpd4ipJe5pd5zgl1kJWoLmZZLxNAGXCILKk33JE0vmlpJ06Xoy84BI4KfOYCz89lhXUMRCvGoTtHXUArdFSVSL58fNG7deyBHd6b8nW0RQyVftMnLpTJJkkZABkPSUaFoOj1d6gdeIuvKmLQd0phVWHmEU7q2kOV4VEUHTpy2tzyGn08hIkn0pVMraboUYUTQjzsPAHvjn/HN/LCuEw3rYETwzBzCLv8aiajBvBkJoLKaQ6qq4Hq+3FUmSdKIyGBIOirkTSdoplqiMGLvEtmchkTQT8vsaQ4qjjw+6HavEB2gKWuQNP13YPJXmq6UNv8URLIB7CL2pr8O6xohXSUcMrBsD6VYWSPYFcMswBg2VLqzplwqkyRp2GQwJB0VsnmrZG0hOGSJbHZ1UFvIzOCVqi1kucQjOobePxg6Iml65nGjdfuTghAKxglvAMDZ8TReurXiayhCUBXVsYSBMNPglL/kddzcGhRF0NZVoK2r/ErWYUOlYDpyqUySpGGTwZA05Vm2S7bolqw6XTAddrf2NGadU91TW8gauLaQF9QXGihx2m3eHCRNC2XKVJqulDp9fhDk+X6QTD2MGj6RsIaih/GsYkXNWyMhjUWzkkDlS2We75MtWBXfqyRJEshgSDoKFEwHq6cm0EBe7WnMWl8ToSau99QW0gZsv1G0HSKGSiTUP7AKkqbvB3oqTSemjf5AJgl9xYWgqHgHduA2b6r4fENTiYZ1Cq6GKHQFEWaZepfKNuzorCgQC+kqqazcVSZJ0vDIYEia8nIFB8HQW+qXzq5G2EUUK1+y/YZle8SjOqrS/1ejf9L02aN5+5OOEqtBW/xaAOz1D+G7lSUnCyGIR3VsEUJYOYRVfiL1ktnV6JpCV8Zkf3v5s0pBAUanr7yCJElSJQYurXuYp59+uqKLrl69elg3I0mV8jyfTMEq2aXecQ5pzDqnGmFlwXdL1hZSFEEk1L8itZftPGqTpkvRl6zB3fUCfq4LZ+uTFe+aixgahqHh2B6KmcEPxcs6z9BVlsyuZsOOTtbv6GTW9PLOUxUF34NswSYRPfq/P5Ikja6ygqHLL7+8rPwI3/cRQvDKK6+M+MYkqRwFy6FgOSQiA7fU2NGSwXY8ElGdGTUhlM79+GqJ2kJ2kHd0aFPW/knTC466pOlShBZCX34+1rO/wt78N9Q5J6JEkmWfb+gq0bBGxtJJFFN4sTpQBy5jcLgVC2rZsKOTDTu6uODU2ShKeblZoZBCKmdRXxM5YmZPkiRpMGUFQ3feeedY34ckDUuh6OC6QRLtQA5tzKrYeYRTwAsP/KZu2R7VNeF+tYXcls14ra/2JE1P7UrTlVJnr0TZ/jRe117sjX8idMo/VHR+PGrQnTUQTi5IpDbKC4YWzUwSNlSyBZtdrRnmzygvCIsYGt05i3zRkbNDkiRVpKxg6LTTTiv7gsPZfSJJw5XKW+jawAHK4Y1ZFTMDiAFrCx1cIjv4K+G7NvZLPZWmj/Kk6YEIoaCf8AbMR/4bd/eLuPNXo9Y2lX1+71KZaSrohRTEaso6T1UVjptbw/OvtrN+e2fZwZCiCPAgI5fKJEmqUFnB0OHWrl3LunXrsCyrL/jxfZ98Ps8LL7zA3/72t1G9SUkaiGm7FAbpUr+/PUe2YGPoCvOmhRCp/Xglm7IeuUQWJE13HxNJ06WotU2oc07E3f0i9kv3o7zug4gBgsmBaKpCPKzRbYYIWVl8uwDEyjp3xYJann+1nVd2dfHG18wpOfN3uHBIIZU1qa+OlCzAKUmSdLiKg6Gbb76Zm2++mUQigeM46LqOpml0dnaiKAr/7//9v7G4T0k6QsF0MB2XWGTgH+PeWaFFs6owvALCtfD16IDHHr5E5mU7cbY8BoC+8qJRTZr2fQ/PKuI7Fr4vQKiTevnNWH4+hf2v4HXtw93zMtqcE8s+Nx426M5YeG6xZ2auvNm1uQ0J4hGdbMFm6/50UCyzDGFDI5W1yJsOSTk7JElSmSr+0+lXv/oVb3vb21i3bh1XXHEF5557Lo8//ji/+MUvqK6uZvHixWNxn5J0hFzBRhWijC31VYhCCl8ZuLaQO8ASmfXyA0HS9PQFqDOPH7V79n0fP9eF7zrgmPhmFj/fhZfr6PnoxMt14RVS+MUsvpXHt01818avoF7PaBLhBPqSYDeZveFh/AqqSodDKiFDpYiGKHRDmdv0FUWwfF6wrLahgk72iiLwCXaVSZIklaviYKi1tZU3v/nNCCE47rjjeP755wFYsWIFH/3oR7nvvvtG/SYl6XCu55HKWRglqk53posc6C4GjVkbQih2rnRTVsslbGh9S2RO82a8li1B0vSJo1xp2swh9AjhmYvQZixFa1yC1rgEtX4h6rR5qLVNKMl6RCQJPbNRvmsHQVEhhZftCZqyHXjZTrx8N34xg2/m8K1CMNvkOaOeu6cteg0iVoNfzGD3zJiVQ1UU4hEdyzcQjglmtuxzVywICjBu3tONZbtlnxc2FLozJo47McGjJElTT8XLZNFotO/NYe7cuezdu5disUg4HOa4445j7969o36TknS4guli2S6J2MBb6nuXyOY2JohSBNeB0MDHWo5HTTJYIguSpnsqTS86AyUxfdTu2XdtfNdCnb4AJRxDFECI4J5KhVu+74Hn9n34h/7bdcC1gqKIjo3vu+A4QR0lzwtKXcRqys7xGYxQdfQVF2I99XOcVx9Hm7sKpcyE6GhYRygKji8g3w1GQ1nnzZwWozYRojNjsml3NycsrCvrvL6lsqJDMiaXyiRJGlrFr5IrV67k17/+NQDz589HVVWeeOIJALZt24ZhyBcfaewVTAfX80vWk+lbImtKohS78Uvk/By+ROZs+fvBpOllo5c07fs+fiGFkpiOiFWXfZ4QCkLVEXoYEYqhRJIosRqUxDTU6kbUujlo9QtRZywNZppmLEVrXIrasAgRjuEXy5+JGYo6YxnK9PngudjrHyr7vLChEjY0ir4BxQw4xbLOE0KwsicAenlbR9nP11uXKJuXS2WSJJWn4mDoox/9KGvXruWjH/0ohmHwlre8hX/7t3/jX/7lX/jmN7/JmjVrxuI+JamP7/ukc1bJXmT5os2etiAIWDYjhLALpdtv9CyRhXQVL9eFveVRoDdpeuDijMO652ImCGaqGkZlpuZwQgiEoiE0A2FEgqCpqhE8p+J2GoM9R9DVXuDufwX3wI6yzlOEIBnVsX0VXKcnkbo8K3uWyrY3pysKbkKGSndOLpVJklSeil+VV69ezS9+8QsuvvhiAK655houuugitm/fzhve8Aa+9KUvjfpNStKhLNsjV3QIlcgX6m3M2lAToVbtmYUoEYBYPdWpFSGwN/+tJ2l6/ugmTTsm+C5K9YxxbeUhIlWIRB1+ITVqOURKsgFtwakAQVd7r7xcnkhIQ9MUbFUPEqnLPK82GWbWtBi+Dxt2lp9IHTZUipZLruiUfY4kSceuYdUZWrZsGcuWLQMgFArx9a9/fVRvSpIGkzcdHNdF10psqe/bRZZAmGn8ErWFepfZIiENr5DG3fMSAPpx545a0rTve/jFDErVDESkalSuWS4hBGqyAaeYBSsHZfYHG4q+7FycPS/jp1txdj6HvmDoXoQhXSUS0ii6AtXuQlg5/BKVwA+3cmEd+9pzvLytg9OPLy/fSFEEAsjmLapk3pAkSUMYVjCUyWR48sknyefzA/7F+ba3vW2k9yVJJeWKVrAsNEDAYjse2/anAVjWYCDcLjy9esDrWJZLyFAJ6SrOlieDWaG6Oah1c0btXv1CGhFOolTVT0gtIaGHUasacQ/sBD2MGKBBbcXXDEXRjzsX+6X7cTb/DW3eKoQy8Cxd3zlCkIgYdOUtVBSUYgq3zGBo+fwaHly3m/0dedpTRaZVldfWIxxSSeUsGmo9WYBRkqRBVfzK+Oijj3LllVdSKBQG/LwQQgZD0phxXI90zu5XKfpQO5rT2I5HMqYzM1LAt9QBawvBwV1kwi7i7HgGCLq1jxbfLoIQKDUzEOrAO9nGg4jWIGIp/HwXIlbejqyhaPNPwd78N/xiBrd5E9qs5UOeEw2r5CwV0w6hWT2J1CXKHRwqFtZZOKuKrXtTvLy9g3NPnlXWPYZ0lVTWIld05OyQJEmDqjgY+va3v82CBQv4whe+QENDA8o4dIf2PI+bb76Z++67j0wmw+rVq7nmmmuYPXv2kOd95CMf4cQTT+Rf/uVfxvw+pbFXMB2Ktkt1iTe3LT1b6pfOSqDaebwSidOue3CJzNnxBDgWIlmP0jA6RUN9z8U3syg1TSjhxKhcc7iEoqBWNeD01CISxsBfk8quqaHNOwVn899wtq8rKxgyNJV4VKMlq6D7NoqZwysjGAI4YUFtEAxt6+Cck2aWNcvWu6sskzdlMCRJ0qAqjmS2bdvGpz/9aU499VRmz57NrFmzjvgYbbfeeiv33nsvX//61/mf//kfPM/jQx/6EJZllTzHsiy++MUv8uijj476/UgTp2A6+D3b4Q/n+z5b9qQAWNaoB9WOS8zImHawRGYoPva2JwHQF585erlChRQiWo2SnBzNXUUohpKsxzfzo1bJWpt/CgiB174LL9Va1jnJaAjXA08xUApdZSdSL51TjaEpdGct9h7IlX2P4ZBKOmdjO3JXmSRJpVUcDM2cOZNsdvRqlwzFsixuv/12rrzySs455xyWLVvGTTfdREtLCw89NHCtk+eee463v/3tPPPMMyST5eUlSJOf7/s9VacH/rHddyBozBrSFebHi/iDbI23HZ9kVMfb82JQFTpShdq0YnTu08yDqqNWzxiVHJ3RoiTqENEkfiE9OteLVKHOCDZSODueLuucaFgnpCtYvo6w8wg7X9Z5uqaybG5Q5PHl7eXXHOrdVZYvyppDkiSVVnEw9M///M/ccsst41ZpetOmTeRyOc4444y+x5LJJMcffzxPPz3wC/AjjzzCWWedxa9//WsSiYldopBGT9FyKZhuyXyhvsasM2LobqFk+41giUwQNhScV/8OgLb4jCGTgMvhew6+nUepakSEyuvQPl6EoqFUNYAA3y6/v9hgtAWnAeDsfjHIkRqCrinEozqmF8zAKcXyA7PemkMbdnThllk/SAiBIiBTKD2LLEmSVPGfrb/73e9obW3lggsuoLa2lnC4/xuOEIKHH3541G6wpaUFgBkzZvR7vL6+vu9zh7vqqqtG7fkPpWmjmx+l9uxwUY/BnS7DGbud9/B8j3Bo4Bmf3nyh42foKIqF0AZeIitaNtGwhtGxBTPXhTCihBacglBHvkTmFdIoVdNRq6cjevLpPN/HdX0c18NxPXxLoOjmxHzfE9U4dgNu136UkDHiApBKw3zsZD1eug1vz4sYi19T8tje8SajBp1pE9+IotpZ8G0oo8Dlwqbqvk72O1oyLJ1TZjuQiE624ODhY2gjD3iHQ/6uH3tjP1bHDVNz7BUHQ42NjTQ2No7FvQyod9fa4W0+QqEQqVRq3O5DUQQ1NWPzl34yOfKE1qmq3LH7vk971qI6GSWZOHLG50BXngPdRRRFcPIMQSRUBcbAb7Cm5zNjWgzvkaCNTHz5mSRrh18DyPU8HNfHzqXxwzGomYmFgll0KFoupu3huC6uC67r4eNzIG0ypzFB/Rj9TA3GS8yjqNngmKjRkdc+UpefSeqJX+HueJrEqtcNGWBNq4uRKgTNZKNOGnQH4tVlPdcpy+p55Pl9bNzZzerlM8s6Jx736UgV0UMGNcnyErbHivxdP/Ycq+OGqTX2ioOh6667bizuo6TemSfLsvrNQpmmSSQyfl9oz/NJp8vLbyiXqiokkxHS6ULZ0/5Hi0rHXjAd9rWkCRsq6cyRZR2eeSWYJZxXH8E3M+REDQywFOS4HrblYu9/Fa9jH6g6ftMq0umBS0X4+EEQ43m4rofr9QY/HpbtYTte8DnHRhSzFOKz8NIpEEEbClUVqIpAVRRUVaApAl1V8RWFjVsP0FUXZXp1ZNxrEHlqFU7HdoQpRrzt368/DrS1OOl2urZuRGtYOOBxqqoQi4UoFmxUfA6kC6D5+AdacL1IySrhh1o2p5pHnt/H+u3ttHVkSy6ZHi6fN9m9vxvhTsyyufxdP/bGfqyOGybX2JPJSFkzVBUHQ/v37y/5OUVRiEajo5q03Ls81tbWxpw5B4vhtbW1sXTp0lF7nnI4Y7QjxXW9Mbv2ZFfu2FMZE9N0iIW1AX+5XtnZBcCy6QquL4JioAMUBC2YDoauwpbHAdDmrcLTIuAGx1q2Q7boYDsutuPjOC6uD57r49J7TYHoCXYUBVQg5GTxq6ajVU8b9E3d93xc4ZGMhcjlFHY1Z7Bsl/qaKMo4BkS+kcCL1uKn21HiI6w9pBhoc07E2b4O69WnENMWlDgw+L65rkdYV8EHS4TQilm8Qha/jArZ9dVhplWFaU8V2bC9g5MWl7dbz1AF3WmT+qow+gQtlYH8XT8Wx36sjhum1tgrDobOO++8If+Kraqq4n3vex8f//jHh31jvZYtW0Y8Huepp57qC4bS6TQbN27ksssuG/H1pcnP83w6MyZ6iV1kuaLN3gM9jVmnOSWbskKwi2wa7XgHdoBQ0BYdTMx3PY+27iKprIWmBTM6iiLQVIGiKyhCDFi/UZhZCMVxEvVlzW70ioQ0fM9nf3sez4PG2uiAJQPGghBK0KqjkME3cyNO9tYWrMbZvg63ZQtergslNng+TzikEdZVTNdDw0eYmbKCISEEKxfU8pfn9/NyBcFQyFDpzJjkig7V8YkLhiRJmpwqDoauv/56rrnmGk477TQuueQS6urq6Ojo4KGHHuKvf/0rH//4x8nlcvzgBz+gurqa97znPSO6QcMwuOyyy7jxxhupra1l1qxZ3HDDDTQ2NnLhhRfiui6dnZ0kEokjkrmlo0PedMgXbRLRgZdzXt0TNGZtrDao0V08deACe67roykCY/c6ANSmFSjR6r7Pd2VMMnmL6rhRfkzjWgjPxamaBcNowhoyVISA5s4cnu8xoy6GOg6FTOGQVh3tu3padQw/SFAS01GmL8A7sB1nxzMYKy4Y/HghSMQMWjvzRENhlGIKL1YHJb53h1qxoI6/PL+fHc0ZMnmLRHToc4JdZYJ0zqI6PnSytiRJx5aKg6E//OEPvOlNbzoid+htb3sbX/nKV1i/fn1fIPSzn/1sxMEQwJVXXonjOHzpS1+iWCyyevVqbrvtNnRdZ+/evbz+9a/nuuuu4+1vf/uIn0uafNJ5C88rvTOhtzHrsnoFf5C1YdN2iXhpaHkFAH3JmX2fyxVsOtMm0ZBWfiDk+yhmDjdejx8a/tKwoaskhaC1s4jnwcxpsXHrpSVitYhCGj/fjYjVjuha2oLVWAe24+x6Dv24c4bMRYqGNFRFwREaupNCsXJ4kaEDm5pEiNn1cfa0ZVm/vZMzVpS3oSMSUsnkbSzbDZZKJUmSelQcDK1bt45bb711wM9deOGFfOITnwDg5JNP5vvf//7I7q6HqqpcffXVXH311Ud8rqmpic2bN5c8989//vOo3IM0MRzXoztjEg4N/OZlO25fY9bjp7n4eunlHtvxaGh9DgClYTFKsqHvGu2pAghKLsUNRJgZvFAcLzatZP+zcumaQlVc50B3Ac/zmTU9Ni65LX2tOorZEbfqUBuXICJV+IUU7t4NaHNPGvT43k72pu2gKRqikIJwdVlfy5ULatnTluXl7R1lB0MhXaWzGCyVyWBIkqRDVfznZ3V1NZs2bRrwc5s2bSIeD9b98/n8uO72ko5O2YJN0XKJlAiGtu/P4LgeVVGVxrgPJZZ6HNfHcAqozS8DBxuyer5PZ6ZI3nSJhSv428AxEULgxetLtvyolKYqVCcMOtJF9rRmMe3yWlWM1Gi16hCKijb/VACcHeuGPl4IElEN2/Hw9QiKlUXYA+/qO9zx82pRFEFLZ4G2rvLOEUKgCkE6NzoFJyVJOnpUHAy9+c1v5nvf+x533HEHra2t2LZNS0sLd911FzfffDNvfvObSaVS3HHHHZx44oljcc/SMSSVNVEEJZP2ewstLqtXYZDEact2qep4ATwXpXY26rS5AGTyFl0Zi1hEK39yx/dQrDxudBp+aHS3aquKQk0iRFfWZE9rlqLljOr1S1ES0xDRxIhbdWjzVoGi4nXtx+0cukp9JKShqQq2p4DvIsxMWc8TDWssmhXUSKqkPUckpJEpOOMWaEqSNDVUvEz26U9/mo6ODq6//nquv/76vscVReEd73gHV111FQ8++CAbN27kjjvuGNWblY4tpuWSzttESszYeJ7fFwwdN80r2X4DwDULRFpeAkDryRUybYf2dBFdC3aMlUspZvDCVcHy2BhQFEFNIkR3xmJ3q0/T9DjRSmathkGoGkpVI27bdnzHRJRREXrA64RiqLNW4O55EWf706i1TYMeH9I1YmGNbMHG0HsSqaO1Zc22nbCwli17ulm/vZPzVs0qq1aToSvkiib5okNILpVJktSj4ldYTdO47rrr+NjHPsZTTz1FV1cXDQ0NrFq1itmzZwNw9tln8+ijjx5RNVqSKpEtBMmupXaR7WvPkSs6hDXBvFqlZK6J4/ok29cjXBORmI7auATP92hPFbEtj2S8/GUuYRfwVTVYHhuFXmalKIqgJmkEAVFbhqbpceKR0VmOK0WEEyiJ6XipZogZwy4EqS1YjbvnRdx96/FXXjjktv1YRCeVs/DUMKrZjbDz+OrQlbEXN1UT0lVSOYvdrVnmNg49SydEUC4hlTWpSchdZZIkBYb95+acOXP6FUE8VFXVyEv8S8c2z/fpypjog/SD691Ftni6gjCiJY+zTJPathcA0BefiRAKXZki6ZxVMtAa+KZchF3ErZqFP8jzjRYhBNUJg3TWZndrhqb6OMkytpGP5PmU5HT8YhrMLISHtwSo1jah1MzE69qPs/M59KVnDXp8NKRh6Cq266EIFaXQjRtKDplIrWsKx82t5oWtHby8vaOsYAggYgQzUabtytkhSZKAMoOh17/+9dxyyy0sW7ZsyKKLo92oVTo2FUyHXNEeNKm5Nxg6bro/aI2fUNtGFDuHiCRRZ68gbzp0pIqEDbWiIoeKmcaLVAfLOONECEFVwuib/Zg9PUbVGNbJEZrRs1y2A1x72K06tPmnYXX9GmfHM2hLzhy0X5muqcTCGqmchREKEqk9pzho8cxeKxfW8cLWDjbu7OINp88pqySBoStkCza5gi2DIUmSgDKDodNOO41YLNb37/HuoyQdezJ5C8f10ErMDLWninSki6gCFtWXDg4cx6W6Zzu9tugMXF+hPZXD831CRvkTo8LK4auhYHlshJ3eh6MqZpDJW+xqzTLbZ0yXeES0ChGvw8+2I4bZqkNtWg7rHwy22TdvQZu5bNDj4xGdVNbCFzq4WYSZLSsYmtuQIBHVyeRttu5NsWzu0J3shQhyxNI5i9oJbtwqSdLkUNa7waEFFq+//nqy2Sy5XI6GhgYsy+Kuu+6iubmZCy+8kNNOO23MblY6NjiuR3fWKllbCGDz7qAX2fxahVC09Jum0rYFzewGPYw6dxUdaZNc3iYZq2C5yXMQro1bPbusN+ixkoga5ArBkpnredQlw2Pyh4kQCmpVPY45/FYdQtXR5q7CefXvONvXDRkMRUIauq5gOi4RLYRS6A5m4IbIy1IUwYr5tTyxoZWXt3eWFQxB0A4kU7AxLZdQmc1eJUk6elX8J+6LL77Iueeey9133w3Atddey4033shvf/tbrrjiCv70pz+N+k1Kx5Zc0SFfdIgMMnOzuW9LPaCUOM73ie1/GgBtwWnkHEFntkg0UmGV6WIGL1qLF574XLhYREfXFPa2ZTnQXQga0o4BYURQqxrw7QK+N7xt6EHNIYF3YDte5sCgx6qKQiJsYNkevh5GOAWElSvreVYuDGavtuzppmiWV4rA0BQs2yNXtMs6XpKko1vFwdB//ud/snDhQt71rndRKBT4zW9+w6WXXsq6det45zvfyQ9+8IOxuE/pGJLOBbWFSuXzZAs2e9uCN8qlM0ovc4jOXYTybaBo+HNOpSNVRFXEoEnZR1zDyuHrEdzY9AlZHhtINKwRNlT2HsjR0pnHG6uAKFaLiNbgF1PDOl+J1aA2LgHA2f70kMdHIxoI8HwBQqCU+bwNNRHqqyO4ns/GXV1lnRMslUFKFmCUJIlhzgx97GMfY/bs2fz973/HNE3e+ta3AvDGN76RV199ddRvUjp2WLZLOmcPukT2as+s0MykIJkovasrtKenIevck+k0FQqmQyRUwQZK10J4Hm6iAYZZd2eshEMasYjG/vYcLe15PG/0AyKhqKhVDSA0fLs4rGtoC4Nlc2f3i/j24IFHJKQS0VVM28XTIwgrA87QzyuEYOXCIKn95W2VFWDMFpxxK2wpSdLkVXEwpCgKoVDwxvDoo4+STCY54YQTAMhms7JzvDQiQfuNwQviHVwiU0rO1qiZVsLp3fhCUJh1CqmcTTyiD11l2nMQVg5h5lCz7XhGBISGsAtBqwjHBMcC1wLXBs8NPkbQxmK4QrpKIqrT3JljX3sWxx39exDheLDd3swOq1WHMn1+kITtmNi7Xxz8WKEQj+pYtgeqgXBsFLO8pbIV84NgaFdrllS2vNkeQ1exbJd8UQZDknSsq7jO0IoVK7jvvvsIh8M88MADnHPOOQgh6Ojo4Mc//jErVqwYi/uUjgG+79OdNdE0pWRisGW7bO9pzLp0ZulkZmP3U8E1G46jw45g6D7qUFWmXQs1ewBh54PAR9Hx9RCKnQdET90bgS8I/p+e//YGZAJAwVeUg4+LoBik3/tvBIqmgZoERj7bZOgqyZigrau3wWt81DveK4np+IUMfiGDiFaWNyWEgrZgNfZLD2Bvexr/pLMHPT4a1lGUIq7nB9v8C114keohE6mr4iHmNsTZ1Zpl/Y5Ozlw5o6z70zSF7p4CjHKXrCQduyp+1bz66qt5/PHHefe7342qqnzsYx8D4JJLLmHnzp18+tOfHu17lI4RBdMlm7eJDrJEtn1/Gsf1qQ5DQ/XAs5BKoRujI1iuzcw4FcfxCA+1jf6QQMhXDXwjhlMzFy9SixdK4BkxPD2Kp4fx1RC+quMrOr6i9gRBfjA75DkIxwxmkqwcwkwjCt0o+Q7UbBtqthVS+6BjF6LQPbwv1GGCjvcG7akie9oy2M7o9t0KWnU0AB6+Y1V8vjbnJFB1vHQbVsv2QY/t62RvufhauCcwzZf1PL2J1C9v6yz73iKG2rNUJnuVSdKxrOKZoeXLl/PHP/6Rbdu2sXjxYqLRIGfjq1/9KqtWrWL69OmjfpPSsSFbsLBdn6Q22Jb6bgCWNagIZeBYPrT3aQQ+ZvU8ukQ1VUO1sTg0ENKjCCuPF6s7pMq0ODgRNIBys3We3llg3fY8HVmXE5rgkuP3IWrEqDR7Pdjx3sTzoKk+PqoFBUUkiRKfhpduhVhdRbMoQg+jzTkRZ8czZF95HP3Ud5Y8VhGCZESnuWBDOCh/oBTTuGV8jY6fW8P9T+6mrbtAa2eehtqhq4Qbukombwe7FyvJJ5Mk6agyrPn0eDzOiSee2BcIAVx00UUyEJKGzfOC9hsho/SPpOf5vLq3G4BlswZ+oxNWDqNlPQCd01YRDamDbwJzLdRsG8LO4RtxhFPAD0WHvY3ecnx2HLD425Yc9zzRzabmg/krpu3TmnZxPHhut8WPHy+QbdmLsMqb+RiKqijUJkJ0Z012t2YolLnNvBxCCJSqeoQRC1p1VEhbsBqA4q4NePnBd4lFwj2d7B0vSKQ2U8Gy5RDCIY3Fs4Pv20sVdLLXNYVU1hyzMgWSJE1+8k8haVLIFW1ypkNVrPQszt4DWfKmS1iDOdMGXiIL7XsO4bvkIw04VU1EBpsdcS3UTFsQABkJ8F1A4IVrym7C2p132dNps7vDZm+XTUvK4dCNXTUxlWUzgtyg42aGqI2pGJrCL59N0Zz2+OHfc7xn9W4a588DbeSbDxRFUJsM0ZWx2Hsgy7zGZEWlBAYjtBBKdW+rDgehlv/yoSQbUKfNw23fib3jWbRl55Y81tBUoiGNnOmgR0KIQh5R7C6r4OUJC+rYtCvoZP/6VU1ltVuJhFSyBZuC6RANj20zXEmSJqfJUThFOuZlcjb4wexGKZt7asgsqddQB3qTc0yM/S8A0FF3MvHBmpo6hwZCcRAi6EgfSuLrA886Oa7Pnk4b0zm4q+pXz6X5xTNp1u0osL87CIQSYYXjZ4a4aEWcVXMPvoHXxlSOmxliSWOIq944g4akRtaC25/IsvGVHcEOtVEghKA6bpDOWRxIDT2jUtG1e1t1FCqvPaQvCrbZ29ufxfdKz1oJIYhHdVzXx/fB06Moha6yttkvaqoibARLX7taM+XdlxY0iU3lRufrL0nS1CNnhqQJZzse3TmTyCCJ077vs3lPEAwtK7GLLNT8IoprUtCr0GYsLb2N3ulZGjskEMIx8RUdN1Ldlx+UKbrs6bDZ02Wzp9Nmf7eD68HlZ1SxqCGY7ZlXp2M7Pk21OnNqdZpqdaoipXfD9aqNa3zkdbX8fF03W1otnt+RZ/ms/fjVTaUraldAUYKA4kBXgXhYr6z9yCD6WnUUM/hmHhEaOi+nlzZzGUo0iZdP4+57BW32ypLHRkIahiZwHA9dDyHy+WBnWWLwXWKaqnD8vBqe29LOy9s7mT8jWda9RUIaXRmTaVVh9EFy1iRJOjrJYEiacNmCTcFyqB2k+Wh7V57OjB00Zm0Y4DjPwdj7bHBs3cnESy13DBQI+T7CtfBi0/EUjV89k2J3h0134ci6OjFDkLcOroOde1ycc4+rbLy9QrrCpa+p4u+v5jl1joFWTOFlNNzEjLKX6Qa/vkrRcmnpzBMJqaP2Ji+MCEpVA17HLtBDiDLvVSgqsaWnk3n+j0G/skGCIUNTiUV0UjkLXVfwjGjQryxSM+Ry4soFdTy3pZ1XdnZx8elzylomjIRUOtMmmbxNbVIGQ5J0rJHLZNKES2VNVEUMOpuycet+AOZP1wnpR/7Y6i2voNo5TDUKM1cMPCvkmEcGQgBOAV+P4IUSKELQmnbpLngIoDGpsXp+hLevSvCpC2q5+uJpnDB79AqLKkJw1pIYkbCOF07gpA/w279uJp0dXsXnwyWjOpm8RVvX6PYxU+K1iGg1fjFd0Xmxpa8BoeJ17sHrbh782IiO5wVLZWghhGOhlFGOYE5DnKqYgWm7fQn3QxEiaNPSmTbHrL2JJEmTl5wZkiZUwXRI522ig2xrdos5nt0avOmeOHuAJTLfw+hpvdFecyLh0ABLQn2BULF/IOS74HoUI1XoPTMc5x8fQ1MFs6q1AQOvMaNo/OFVlRd259na9grvfv1iZk6Pj+iSQggSUZ0D3QXiEZ2q+Oi0FQladTTimFl8x0Jo5S3DqdEEWtNxOHvWY29fR2jVW0seGzE0QkZQJTpkqPhGpKcIY82g7VGEEKxYUMvfX27h5W2dHD+vtqx7i4Y1snmLXMEmMVi+mSRJRx05MyRNqGzBxnZcjFK7vnyPjZv3krV8kmGF5bMGeBNs3YJuduEoBoX6FWiHL4uUCoQAYRX48/4E//2ERaYYFN5b0hhiwXRjfAOhHmcvTVCfUMgWXX76wGY27Ci/gGAphq6iKIKWzjyWPYrFBUMxRKQGv8Kt9vrC0wFw976MP0hZAU1ViId72nNAUITRsYJk6iGsXBAUYHx1X6rsdhuaquD7snmrJB2LZDAkTRjP8+lMFzEGCTpEvosntgZvtqctiByxi8xzvb6GrO1VywlHY/2XyPoCIfOIQAjX5qmWEH/eIWhJu2xrm/jdRDUxlQ+eXcvi6SqO6/N/j2znkRf2j3iJKxHVyRZs2rrzo7ZcJoRATdSBolRUmVqtm42oagDXwdn1wqDHxnpyv3ob0fp6pGdn2eABS31NhMbaCJ7ns3FnBRWpwyrdWRtTVqSWpGOKDIakCZMr2uQGq/zrmOze3UxLxkdX4ZR5/ZfIfB+s1h1ECm14QqWz7oR+sznCKaJmW3sCoVj/QMiHDc0Ov9sazDS9bmmUk+YMXcdmPIR1hfe8tpbXzg++Lo+8sJ9f/m0HtjP8Rqy9y2Xt3cXR3UI+jNkhIQT6gp5u9jueHrQBbCSsEQ5pfe0yfD1cdu7Qip7ZoZe3lx8MhXQV03LI5Cc+MJYkafzIYEiaMKmMief5AzcW9T3U3AGe2B7MAJw4O0L0sOrURdMhtv8ZALqqlqJH4n1LZMIpomTbEI51ZCAEbG+3+N8tUXzglHlhzl0WG/0BjoAiBBedWMtbl2soAjbs6OSBp3aP6JqGrqKqwXKZOUrLZX2zQ0LBd+2yz1ObVoIexs914bVuLXmcIgRVMR3b8eid0ApmhzqHnB3q7WS/py1LV6a8pS8hBCFdpSNdxPWGH3xKkjS1yGBImhCO69GRLhIuUVtIKabpOtDB5gPBO+BrFvaftXFcj0L7PhL5PfgIWqpOJBrSEaInEMqUDoSa0x73bAjh+oLjZoS45MTEpO1YvmpxLVecqtOQUHjdymkjvl480rNc1jV6y2WEYohoDb5ZXpFDAKEZaHNPBsDe/vSgx0bDOoauYtuHzg6ZQ84OJWMG82cEPc3WV9CeIxrWyBUdsoXRa2ciSdLkJoMhaUJkCzaFokNkoG7yjoWSbeOJPT4+sLjBYHri4HFBkqtFddvzAGSSC/EiVRiGgrB7AiF34ECoswB3vKBguoK5dTrvODWJMkkDoV5zZ1bz8TMUapw2cC1c12NHc2Vb2nsJIaiKGbR3F+nOjl7FayVRC1Q2O6TNPxUAr/VVvGzppSxDU0lEdIr2wZmacnOHVh6yVFZu8KcoAiGgOzM65Q0kSZr8ZDAkTYhU1kQIjuwd5fuouXaK+TzP7w3+Mj9jYf8qx7mCjdndQU12GwAttScR1lUMPwiiSgVCAIZwSIZ8GhIKl55eha5O7kAICMYRqUYpZlBS+7n/yV3c9eAWHn1xeInVuqagaYLmjtyoJQqLUBwRrapodkiJ16E0LAKC3KHBxKMGQoDr9iRSa+FgBrA4eFuQ4+bWoKmC9lSRls7yG+LGwhqpnD2qzW4lSZq8ZDAkjTvTcknlrL6dQocSZgYl38EzrRqWC/UJlQXTDx5n2S6prElD90sIfHLxOeS0OmKqi5JtHTQQAkhQ4IOnalz+2hoixhT68RcKXjiJKHRjeEG/sb88v59fP7oDZxiJ1fGITsF0aO3Kj0qRwWB2aBogKpod6kuk3vX8oDvSwoZKLKxT6A3ehAhmh/KdMMh5IUNlyexqAF7aVn4itaGr2I4rt9lL0jFiCr0bSEeLbMHG7Cmk149ro2bbcBA8tSN4g3vNwmhfPo/vQSpr4Zt5alKbAOiYdjIhYRKx2hGuPWAg5Hjwt53gWEV8VUdLVJOITMGWC4oKkSRvWmRxyUnVKCJY/rnjwc1k8+UHIHDIclmqSHeZycVDXjMUD6pSV7CzTGlYhIjVgF3E3bu+9HFCkIwZuN4hidRaGOGaQ84OrVwYLJVt2NHZt0W/HL0tOhxXJlJL0tFOBkPSuPJ9n+6siaGpRyQtK/kOhJXjlU6DVMEjaoh+rS/SeZNs0WFGdgOK71KM1JPRqkk4Xeg4AwZCng+/2CB4aJvCfRs1/Eg1qCX6lk0FioZnxDm9Ic9lZ9UTNlT2Hcjx3394paJlIABNUzB0hZbOPEVr5MtBQgiUeBB4lDs7JITSlztkb1836LJfLKwFW99tp/dkfC2Mku8YdHZo0cwkkZBKtmCzo6X8XKtISKNgOWQqDDQlSZp6ZDAkjauC6ZAr2EfUFhJmBjXfgWfEeGJbsAx06rxIX05PvuiQytpEFYfqzmAGobtuJUa+g4jq44fiRwRCvg9rtwjWtwlU4bO6SeCFyutiPqmpBp4eYXEkxYdfP5O6ZIh0zuInazexdd/gsySHi4U1ipZDa+coLZeFExXPDmlzTwZFw0+14HXuKXmcqihUxQyK1iGJ1FrPzrJBZodUVWF5T0uOlytYKhNCoKkKXeniqPZ1kyRp8pG9yaRxlcnb2K7Xv5O456DkDuD7Hnszgj2dQXf60xYE2+kt26UrU0QoUJvahOqaWEYVlhJBw0GN1g34XI/shCf3BgHSO5cUWDBrOr4ySPzvOWhdu3DqFvY9ZOx/HuF5gB+s0/l+z799hO9hT1uMG68HQOvcgda9q+9zvcf1nuMbMYrz1gz/i3coLYTve9R77Xzw/Fnc98QBmjvyVFfYe0z0LD91pk0SUYPa5Mia0PbODrm5bnzXRpQxCyeMKOrslbi7nsfZvg61bk7JY+MRnc60ie30/AwJga+HUfKdeJEqUAfuKbZyYR3PbD7Apl1d2GfMQdfKWyaNhTTSBYtc0SEemcIzipIkDUoGQ9K4cT2P7qxJ+LBcISXfiVLM4EWqeHJ9sBtpRVOYRFjF9Xy6MiaO6xM1FKrbXwAgm5yP67mo4QTaADvCntkHD28PAp83LSiysimCq5curKim9hF99UGEXSR9xsf7Ho9sfwThlV5CcsNVB4Oh9H7Ce58pfWy0juK8NTiuh2M76Lufwp0ZzIoMh69HwMoRL7by3rNn0V7UmVYVBDO+7+OWKmh5GE0NlsuaO/NEQlrpiuBlCmaHqvDzqSAfqAz6gtW4u57H3bcRf2UGEU4MeFxI14hHNNJ5py+g9rUwSqEbpZDCi08f8Lym6TGq4wbdWYvNu1OsWFBe81ZNU/BcSGctGQxJ0lFMBkPSuMkVHPJFh6r4wb/ehZVD5NvxjQipos+GfUEy72sWRoJ6QlmTvOkQC+sku15Bt3O4aohCtBHTi1KrH/kj/MoB+M2mIEB63RyHM5pcvEg1DLTBzLGI7Hw0mAEC3FAymMnpWXKzpy0JZoREzxuvUHo+J0AIvOjBN1WnahbFptU9n1dABMf7Pri+wFbCZLI2hq4Q2fE3wnvXobVuJH/cJXglZreG4hsxRDGNkW2hobqJ3sWcvzy/n9bOPO9+/aKyCkrGIjqdKZPWzjxzGhJHljyoQO/OMjefwncdhDr0y4xSPROltgmvcy/OzufQl72u5LGJaIh0zsbz/OA+hcDXQ4PODgkhWLmgjkdfaubl7R1lB0MQ9CvryprUVYcJlWooLEnSlCaDIWncpPNBoNP3Ruu5iGwbuC6eEWfd5iyeD3PrdGZW66RzFulckF8kgJq2ZwHIJhZgaXFUz0c/7M3J8eD3mwU+glNm+FzQlMMP1+FrRy4faZ3bib76R5Se2jhmwwqKC17XL/cov+yNZY/PqZmHUzMP3wPLcbEdD8/zEYpA1xRiYY2ZhkY0rKMaS8m3vIyWO0DiubsoLDwXq/GEkiUBBuOHEijFNGpqP071bHK2wpMbWnFcj8fXt3DmyhllXacqrtORLhKP6kyrGlmfNhGOVzw7pC04DatzL86OZ9CWrEEoAwce0UP6lUXDwUuYrwVFGAebHVq5oJZHX2pm674UuaI9YGmHgYSNYFdZJm8RGuHXRZKkyUkmUEvjIqgPZBM5tP1GtiN48wrFsRyfZ3cGidNnLIxSMB1SOQtDU1AVhWTHyxhWCk9opGuX4bg+IU3h8NQPTYEPrPI5fZbPWxblQQ/jhfsnTQs7T3TTWuLrf4liZnBDSbIr30lh6RuCpacK+T7Ytkeu4JDKWmSKNj5BfsuMuhhzGhLMa0zQUBOjKhYibKjULV5J6PUfxa6ei/Acoq/+kegrv0XYhYqfHyGCGkR2DjW9j5jh84bTZwPw5+f2sbu1vEKIqqoQCam0dhbIF0e2u0wIpafuEPhueddSZx4PoRh+MYPbvKnkcQP1K+vLHSp0QYmdbNOqI8ysi+L7sHFHVwVjERi6QmfarGhrviRJU4cMhqRxkSs6FC3nYG0huwDZtiD4UFRe3FOkYPvURBUWTNeC2jc+6LpKOLuP6c2PA5CpXoKvaLguhA9ZIjv0vXtaFN681EXzXfxo9RE5OUbrBoy2jfgIirNOIXPqFTg188oei++D7Xjkiw7pnEUmb+N4PtGQRmNtlDn1CeY2JJg5LU5VPETE0FDEkb9q4UQ18de9D3vROfhCwWh/lcSzd6J2l95RVZIQeOEqlGIGNd3CyQurWbmgFt+H/3tkO/liedvDo2Ed03Zp7cqN+I2/b3aoWF4wJlQNbd4pADgV9iuDYHZI2PlBd5b1drJ/qYJeZcHzaeSKNtmC3GYvSUcjGQxJYy6oLVREU0WQv+J7KNm2oDaMHsHzfZ7cFtTIOW1BhHTWomh7hHUFvdBO456HUXwHM1xHqva4IDFYo2+JLGfBD54WPLhV9M0UCCuPb8TwjHjwwCFJ0ObMVVjTjyN70nsoLjy35A6kQzmuR8F0yOTsYEec4xHSNaZXR5k9Pc7chjizpsepSYSJhjTUwXatHUJVVKpWngOveT9OuBrFyhDZ9mcYzlbunirVSqETLdvGm14zm7pkmEze5teP7ih7e3hVTKczY9KRHsYs1aG3I5SeukN+2bND2vxTgsCufSdeurXkcQP1KztYd6iz5OzQivm1CAH7DuToTJffe0xVFATQnZUVqSXpaCSDIWnMFS2XTN7p26WkFFMo+S6IVAGwrc2iPetiaIIFtSrZgkPMUNHNbur3P4puZ3DVEO2NZ4BQcVwfQ1PRVDAduPNFQXte8FIrFByCwEdR8CJBroqx/3mST/0oWEIBUFTyx70JN1k6l8b1/L6Ce+mchWl5aKpKXVWYpunB0lfT9Bh1yTCxiI6mjiyxNtY4l9C5H8FqPIG2ORdi2sOseqyoQUCUbydstvPOc+ajqYKt+9I8vr6lrEuoqkLE0HqWy0Y2EyIildUdUiJVqDOWAUPPDh3erwyCHXbCLpScHYpHdRbMCJZNX95efs0hgEhYoztryX5lknQUksGQNOayBRvbcTF0FRwTJdMGWihoLwF9RRZXzjIomjZhQ2BYXVR3vEQ0tw8fQXvDGbhaFPBxXZ+wruJ48LOXBfvSgqjuc8VJPlENhFXACwU5NPEX/4fo1j+h2HlC+58f8l4LVpD3Uyy6aEKhNh5m5rQ4cxrizKmPM60qQjxiDFhBe6RC4SjJ1/wDdbNm47g+mZxFdONv0Q+Uzp8ZkKLhGTHUTBsz1RQXnxbkDz3yQnPZyzzRsIbteLR05HG94bej6Jsd8j38QUoUHErr7Ve2+0V8u/TszRH9yoInxNdCg84O9bbneHl7R0XFFEM9/coy+dLVriVJmprkbjJpTHk9dYJCugq+h5o7gHCL+KFga3Nr2mZbm4UAFtUJdMUjaqeJZvZQ1bkRgO66FZjRoJZPsEQmUDWVX24UbO0U6IrP5Sf6TI8BdhFfUdEPbCa8Zx3Cd/EVncL8s7BmnjToveaLDr4PM2qjhEMahq6ijHLAMxRFCGoSYUKGRnrLMxjtWzDat2B27qSw6LyylvSAoEp1SKDkD3BKQy0dy+s5bl5tRbVyknGdroxJPKVTXxMd5oh6ZociVfiFLFQPXD/oUMq0eYjEdPzMAZzdL6IvPH3g43oKRmYK1qHVEIIGroVuFDM9YMmCZXOq0bUgIXp/e45Z0+NljyVsqHRmTGqT4bJqOEmSNDXI32ZpTOWKNrlisIss6EjfGeTx9LxzPbE1yBWaV6cS11wSbgojf4Ca9hcQeORjM8lUL+u7nuP66KrKw9sFL7UKFOFz6Qk+s6sA30fNtRHd8Vciu59A+C52zTzSp16BNWtVX62gAe+z4CCAxroo1YkwYUMb90DoUNGQRt2yVZhzXoMPhFrXk3juLtRM6TyaI6g6XiiBmu/gokUwq7ay6tSqohANa7R2FciNYLns4M4yr6zcISEE2oLVADjb1+H7pWemjuhXFlwAXzNQch0Dzg4ZusrSOdXAMJbKQhr5oiMTqSXpKCODIWlMZXI2vg8qDmqmDV/R+hqlZosuL+wOlsiOmw7Vfjeamaa6ayOak8fW43TUn3ZI7Z1gieyFAzqP7wkee/txPkt6/vgXuXYiOx5FzXfiaRFyS99IbsU78MNVg95jNm+jKILG2hiJSJkzL+NA1w2qV12Ee+p7cY04aqGL+Av3ENr7TPkJ1ooW7DIrdKKm9+HbJs9sais7fygS0nDdYLlsJN3bRSSBEqnCLZS3s0ybfSJoBn62A+/AjpLHDdSvDMDXo0HukDlwY9aVPbvK1u/orGgZUFEEqgJdGdmvTJKOJjIYksaM7fz/7P13jGRZdt6L/vY+Pnz6zPK2TbX30z3Tw3EckjOc4XAkGkkjkrqPT8KF8HSfBEGAIIGQBAGSQAF674lXeHq4oszVpUQOrUYcGg2p8T3tvavq8jZ9hj9u7/3+2JGRmZWZVVnVlVXVPfEBiYg8ceLEOSfinP3ttb71Lc1SOyHyJU5rDpHZCq9lfP9ok1zDSAHuLCzh5B0KrTNEnUto4TA3+RRmVVpoOUU2UbapsZ84rHlwWQOtc/AKpON3k47dRfPRXyKbOHJFE0NjoNXJcV3J1HCB4m3YbkEIQWX3Ydwf+RukI4cRRhOd+CbFN34HkW6xS7100FEN2a1z5sQpvv6DM/zZi+c4vUX/oUrRZ7GVMF/fevXV+uOQyMrolrVDwgtw9zwIQH782SuuW4o8PEeS5ZdXlvnI9sbaoYM7KhRCG+U5cWFr52EZhdCj2c7oDITUAwzwocGADA2wbWjHGd0kJ6KD7M6jg2KfnOTa8N137SD02FgbX8d4aYvqotUJLY49QhbU1mwvy20V2T3j8Lc+YvjojpTgzDO4i6cQWRcTlune8eN07v7JNaRrI1giZFtjTI0UKWzRjfhWISqVKX3050nu+DG0cBDtBbS4hgo2IdFRlYPlLg/s9DAGfvdbJ7aU/pJSUOqly95PekiEFZxiDRNvrbJsWUitLh1FLZ7fdL3lfmXxaiE1vehQ3uk7jK+GlIJ79/c62V+j55DnSnKtqbcHQuoBBviwYECGBtg21FsJDgq3NWt7eq2K8rx0qkMz1hRdzT21LgbByPSzCKBZOUC7sm/Nts40BMeXHKJe+4Wx5AzFt/8b/vxxgnMvYLCmg2zB38cYaHYyQt9hcrhA5H8w6ghcx6F25CPop/4Xlu74PM1EWmPEPF3jo7QphMREQ3zhLhgtSus/9O2t+Q+FgYvW5n2ly4SUuNWxXnRIXXV9WR7F2f0AANmb37jiuuVCAMa2kVv5QIFxetqhDc7Pfb3+ZO+eWSLNrr4/qxEF1hg0y6/tfQMMMMDtiQEZGmBbEKc5jU5GSdcRaRvjr1Ts5LnmmWN2tv7IeAJ+xOj0D3B0ShIMsTj60JptXWoJ/uCozx+fCjg3nxCe/DbRyW8j8xgVVIh3PoIpbNx/7HIYDc1OShS4TI4UCD8gRGgZQggq4zuZ2HeQctH2bwvf/WNKr/yGLSe/+gbwSjV+/kEXT8LxCw2++/rW9EOVoke9nTC7dP1mjE6hgogqW44OeXd/wqb5Zk+iZo5vul4hdHr9ytaSHhsdaiPj9dqhHaNFhssBWa5558zStRwGoe/QSawP1QADDPDBx4AMDbAtaHUz8k6DKF1E+4V+eswYePf0HLNtcIXhvinJ0OwrBMkCSvrMTT7V9x8CmO0Ifuddn1TD52rv8cDM1/CWzmAQJBP30jn4KVR1Fzq8esm20dDopBRDn6nhAsEGHe8/KAg8l6mRApOFHK9+Brc1Q/ml/4R/8fWri6uFYGysxueP2OP/5svnOX3p6roZKQXFyGV2sXvdXjtCOjjlMdBqa9Gh4hDu/kcBGx3arLJMCkm16JGu7lcGvehQgOysjw4JIfqeQ68dv7ZUmRAC35XMN2L0QEg9wADXBWMMRmWYtIuJW1v2ItsODMjQADcc2hgW6x0K6ZxlIMsRG2PoLMzw4ikrxL1vAka7pyg3jmOA+YknUN6K1mehK/jtd31iJfjr1e/wY/IZpEpRhWE6d36OdOp+BGCioXX9x9btkzY0OhmVgs/EcGQNID/gkEIyPD6B/NhfJ63u6TV8/RMK7/x3RH51sfODB4d4cKeDMfB73zpOnl89/RX6LhrDpYX3kS6LrjE6dOfHwfXRSxdR59/adL2N+pXBcmVZZ8Po0HKq7MSFBtOLWxSk91AMXVrdjPagzH6AATaF0QqTJZikje4soZtzqMUL5LMnUZfeJb/4Lvmld8ln3sNssdp0OzAgQwPccHTinGRphkh30EEvYmMMaX2W2Zk5jjctOXp6bIHa9AsANIaOEBdX2mPUE8FX3/XpZILRSLFj1w6McIh3PEznjh9HF4Z6/cdK6KuIpbU2NDsZlaJnidDlre4/4CgODRM9/Qt09z+NQeLPvkv5xf+I07h4xfcJIfj8Q8PsG5b89D0CP13aUsl+peDTaKfMXGe6TMjlyrJ8S9EhERTxDj8FQPbWn2/6ng37lcGKdqizsC46NFwJObLPtm35zqtXPl+Xw3EkGKi3B/3KBvjhhTEak6eYtIPuNtCtBVR9mmT6JNnFo6iLPcJz8Shq+j3U3Gl0/ZIlPkohpIvwS7CFe8F24oObJxjgtkWzvoTTnkWWilY4bTS6OUeyMM3L81VAcEc1Zu/st5FG0S1MUh8+0n9/K4U/fEdxFyd5L9jHz92jcCv7aQ9PrFSJqeX+Y7Urls8rbWh1Mmoln7Fa4UPrGhx4Lt4Dn6I+uh/ntT/ATeqUXvstWvf/DKqyY9P3+a7gl54eQeYxon4etEIXR694TqUUlAoes4tdSqFHpXjt3kwirCDCKiZpIaIr+0ABuAefJDv+HKa9QH76Zbxe6uxylArWBkApg+OsHIPxItsTL2n2e9Yt4+kHpnjr1CJvnVpkZrHL+FC05eMohC5LzZSxqiLwP1wke4AfbtjCCmMnSMbYiYTKbSpLZZgsxeQx5ClGKTA5qB6hcSR5pYDJckAivBAcF3EF41vDrTO5hQEZGuAGI8sy2tNnCRyD8ULQCtGao7swy1Ie8NZCABh+LvoebtokdwvMTzyxxh26PXeRvxk9T1HEnBh1GSntAsEKETIgsi66MGQ/YxPkytDu5gyVA8Zq0ZY6yRutNu1pdeU3bl03YhyBzm78wCmFYGjXATpDf5302d+0bt/u1Qd2IQTGi0AI3jp6jkKtw579u6/o2B14DnGSc3G+g+/JaxaiCymR5RHUbB2jFUJe+XwIL8C760fIXvsj8ne+ibv7foS7noQt9yvrJDmlaNU+CYmRHrI9jw4qa3RpE0MF7t47xNunF/nOqxf4C584uOXjCHyHVjej0UkZ87dOogawEQW0sn+qFyXUudWT5auuQSFWkXNhewKuI+ti1YNYed+G66xaLoRdLoQdqPvbFpc9X/vaje5LeDWsEBPs4+rnl5MWo8EYDGv/X1lv5X+jlf1fa4xZeW7XuWw7WtvvZ3k7wgHp2MiO44ETgrA9G6UjcEsRUncxauv3xluJARm6xdBZYsVjeIgtDNa3OzrzM6jWEn51BHRuidDSAi0d8F4zItWCnyy9zmh6HiMk8zueQjs2bSZUytDcK+zpnAIJHadCtRywLquVxxjHR4e1TfcjyzWdOGe4YomQvNKMxBjb0yzrAAI2GGTX4Co3QrGFGY5Ju+hWE+MWEd61tcm4GgrFIu5Tf5np6Xk6FLi6tNzilQuG331NUQ5m+Rtlh8LojisSokrRZ7GRcm6mzZ6J0jXrsERURYSVrUeH9j9C/t4zmM4S+fFn8e58et06m/UrAzB+Admt255lG0SH3j69yJunFvn4Upex2taJTeA7LDRihivBlgj3DwNWExudaXI3QTWbqCSBPMPkCehlAqRWBuBlrPvdmTUPdjDmsmXYL9wY7Iur1mH1ckCsWsf0Xl8mUmL5uVxFhuy2Rf91aZdLx/4vZY9MOfa5dFCOJBNFVKODzjXLhMWsISd6g2WryIc9mauO3/Qell9jZX1Wvbe/La5wnlhH/vokb/UyJEgBbo/8XOGe8EHGgAzdYmRLM+QXzqCkhwhKiKA3OHrhVWfLtxtM2qU9cx7jhgihkK050madeu7jei4vz7gcci/xGf8VAFpTj5KFI6ANTmua0dnnCVQHAyxV7mCxdg/D1cv0QMYgVYYqT4Cz8c93mQiNViJGauGmPcaWqxhQGXgBsjyOKFQRfgSrCc1Vuc1WZokr67iuJCxK2pxF1ectGQiKNpR8g+CHISMT48RzbZIkp3rxWdLRw+jS+KbvuXtHyNixDrNNxe/9YJqvPA2mMrUmirLmiISgVvZZbCacn4NdY2U8d+s3ShsdGkXNnNhadEi6eHd/kvTF3yM79l3c/Y8g/PUNZAvBSr+yNRErITHOxtGhyeECd+6p8e6ZJb7z2kW+/PEDWz6OQuCy1EppdTKqpRtLbG9HGJXZNPVyRWA/mpNi8tSmUHTeiyQojDDEzYC8laCV6ZMFhIOQni2wuA0G2XVpoY2iLhjQBliJkJjlKMvl6zuCJIlQrS5K9YiZWUW6YE3Ea/m5WLNsed217xP9gpHLSdxlka4BtowBGbrlML1yQgfdnIPGjL0xuL4lR2ER4Qbgh6sugNsPxmji+Qt0Ol38IMJpzpB3WyzmPq4rOVV3MWnML1W/jcDQruwjHjqMSGIqM69Sa7wHQOwUqU8+zqIYolb0WSfxyTrooGCbvW6ALNPEqWK0FjFSWU+EjNGQxpisa89zUEKWhhBhecO0y3ZASIkMi7gjuzHRELq1iG4tk6LSDSNFhdBjpBrSeef7hOeewb/4Cq37fxZdHNtwfd8V/OxjVf5/31rg+Lzhu2/M8PF7DaoytWm1npSCoXLAYiNBCsHOsdI16bJsZVkZk7QRUeWq6zu770Mc+z6mMU129Lv493523TquY/uVzSx2CS/7Sq8UHfr4Azt498wSb55c4OMP7GC0urXvQUqBFLDYTKgU/ZueQtluGJXb6yWN0XETk3bWR3OWB2HpIJaJjev17mUOXqWAQxdu45SJWB0Fupb3bbJcOgKvEiH54KSKfpgxoI63A4SDCIrI4hCyNIII7UCv2wuo2ZPk08esGn/2FLo5a/0YrkfXcoNgtMbkq0slZ9EL5+kuzJJqSRjPodMuS3mAMRLPdXh5WvJLpW9TljGpX2Vp/BF7A007lOonAPh+cgdvjPwYDW+YwHeIgssGYJ0jMDY9tkE6IknVpkTI5Cm6s4RpL9p7dm0Kd+IQzsQBe85vEhG6HMIv4AzvxJ08jKxOYVRmiVF2/X3AVqNWCnD2PEBSGEdmXUqvfdV67myC8YrL5++3ibU/f09z+twcTv38FXVUUgqqJZ+5eszF+bZ1xd4ihHSQ5bFeNGELlWVC4t/zaQDy48+hu/UN1ytFHu7l/crsB/ajQ5dXr0yNFLhjdxVj4DuvXtjyMYAVUjfaKd3kg+9IbXSOiVvo5hz57Enyi++gLh1DzZ/BxK1e9U8BUagiSyP2rzhs719RxUY5/chO6KTzoSOHA3w4cfuGGn6IIaQLvttPARitrGK/U0e15i2JcH2EX0CGZfAChBfe0AHd9CoHUHk/LG7yxA7SeYrphcltzttWArTjnDBdBEdTz3zSTBGFDtNtwSP5KxyMZlDCY27iIxgh0QZ+7/QwI+0naFLg3oOjjJU1caIpFlykWLNDiLSLiaoYb30pfZwqslwzNhQxVAqsKFgryLqYLAHHQ0QVZHEIEZas4O82gvAjnOGdyNIwurWAbi/YaIlf6KXtrg9SCEaGa1y85y9SffOr+J3ZXpXZz6ELwxu+56G9EafmM145E/Nbr2v+ZnGRgjG2Km2T35jjSCq9aIwjJJOjhU3Tk+uOPaogwq1Hh+TEYeTIHvT8GbK3v0Xw8BfXrbPcr6zRydal7oxf6FWWbRwdOnq2zhsnF/j4gzsYqWwtOuR7Ds1ORr2TUAg/WLdVe53EmCxGxy1I2lbTYzQI195XCrVB2mWADzU+EFet1ppf+7Vf46tf/SrNZpPHHnuMX/mVX2H37t0brr+4uMg//af/lG9/+9vWS+Xzn+fv/b2/RxR9MKs9hHTAj/qDojHaEpK4hWovsiz6FX5o0z1eiPBDcK4csjcqX8nvLz9P7U3R6MyWSfarBwAhEY4L0u2XSgKQpyTtFlljDs+BpgnopBlh4ACCxYsX+GxkzfLqw/cwOv0D2pV9/PbS/RxblJwQh/jpOzJ2lTVJpgl8Sbi6TNloRNLGBGVUYXhdXLqb5qgcJoYiqsUA8gSddUCDCCLk8C5kVAYvuu1nqWtIUbuXPmvNIfzidZMi33MYGalx8Y6fZuLo7+J25iwheuDn1pGBZXz+/jLnFzNmm4qvviX4pYeWcIxGVXeAuzFB8FxJueBxabGDdGyV1lbOt5AOsjK2de2QEHj3fIbk27+OOv0y+vCTNrp0GcqFgHo7s2P66nG8V1kmOgtwmXZox2iRw7uqHDtX57uvXuSnnt5/1f1fRhQ4LDYSRivRNWmnbjaM1rYIIY0xSRsTN63WR6uVFH1Y+cBpFm8GtLEaIWOMzRJi0AaMto/917VBSEE3N7TbMcbYNIzoibOltGJsK/OxadZl3bboCZlXXru971nvF9potDaoXCGMuWXpqg8EGfo3/+bf8Bu/8Rv883/+z5mcnORXf/VX+eVf/mW+9rWv4fvrZ6p/62/9LbrdLv/hP/wHGo0G/+Af/AM6nQ7/4l/8i1uw9zceQkgrsO5pSyw5yjBJB9Op2yvK8RFeYMmRH9nRQGWYPLPeEFliIz7L1RzLpTdC2jC4dMD3NxQ2Gp1DlqC7TUiaqDSm3eqijMDIiFYrJfAkUgjSdoOPm2dAQMMbY2j+NQSadO4Y7yzcixSSLxzK2FvVvRuJdfbtX/9GWSIUVlHF0XVi3m6cozVM1HwqboZpt8ANEKURZFSzUaAP4E1d+BGOH61EiloLmNa8jRZ64TWTulLkMzQ8xMWDX2LH8d/D6cyvRIii2rr1l/VD/+n7Szy6L8JEATKuI5bOoao7bSn+BvA9h6KBi/MdXCkZ3WJV1rVGh5yRPTiTd6IuvUv21p8TPPFz69YphDbVGqd5v8HvMpajQyZprjv+jz8wxbFzdV47Mc/TD0wxvMXoUBS4LDQTWt2MofLtI6Q2RtvrPYvtPSJu2MiPUvZ6d4PedfKBGA5uCLQxZLlCaVbITZ/UGDSgc4MyGqUMqkdwlDG2KKtHfoyxhMgsL0f0CtUMQkpKiaLdSXup49UVbAIjTK86bVkiLfoa6GUyBD0SJSWOtHWqUgqkBLl6mRAIaYmTFPSe2+04Utx0UmWMIcs1aa5IM43unUOtNUobcqXJc/uojMEohZO0Gamk1DaWg247bvtff5qm/Pqv/zp/9+/+XT7xiU8A8K/+1b/i6aef5k//9E/5yZ/8yTXrv/zyyzz33HN8/etf5+BB6xfyT/7JP+GXf/mX+Tt/5+8wMTFxsw9h22HJUdAv0TbGgEotYYmbl5VUYkPfjvWHsJUc7lUHV5On9maadnph9AwwpMZhqSvoqgg3EDTaKUKCIyVCZ4xeeoZQ5CTGo5LNAjDt7uRfzz6FQvKTB3MODlldR5ZpQl8SLJdoX4UIdboZQiVMFAQlacAt4tSm7I39BlZm3UoIL8QZ2rEmUkR7HvzCNUe6hsoBSVrj4qGfZurY7yKTBjKub0iGwOqH/rcfHcHrmRfqsIqM6zhL51DVHSu+T5ch8B20MZybayGl2BKZsNqhUdTsyS1FhwC8ez6NunQUdeFt1MI5nOFda16XQlIteFxcyAgvK7O30SEX0ZmHoLzmt7VzrMTBnRWOn7dNbL/40X1X3RfoRawcyUIjplryb9mM3hhjI8dZt0d+mjZVrDJbZeQGNtJ4m6WKtwvLA/Py4NxNcuJMoXKD3oTIQI+QsBK5QYKkRzJcuRLRQWzoQOFISbEY4ApQWq9fob9/9KQGdjK43OvO9CaHGksW8twWshmWK996j70Ktd6SlX3u7dcysZIIHFfgCIHjCBwp++J/KaV97JOqlaiU7JEspW0ExxiDMqA7dVTHEmuTZ6g0QWe2olDoDKdQZrF2N3muEVmX4VP/A6kypM4IdYbQ9rlQGcIoZvZ/DmPuujFf+nXgtidD77zzDu12myeffLK/rFKpcOTIEZ5//vl1ZOiFF15gbGysT4QAHn/8cYQQvPjii3zuc5+7aft+qyCEsCTHDew8xKxc3FvFmtlk3II8wagUkFZDEBZpJ4qldopShtB3qLcTlDa2nNkYapdeoGzqGAOByNDSY3H0IbqlvewzPnuHDHcNa7QGZTQIWwElBD0i1MFENVRhdK1gWmV0Wy1coxkdrVIaHkMUKvYG/yH1eRFeiFObQhaH0e2F6yJFjpSM1kLivMzcXX+BgmqgahunmpfhrXJxPj6bMVEuU1GtFUK03G7lMkSBi9aGc7NtHCm2VHIuCteoHaqM4+x5AHXmFbI3v4H82C+uOw+FaKVfmX+ZQ7Txi8i4sWF06Ece2MHx8w1ee2+ep++f2nKkpxC6NLspnTinFN08smGMgbSD7jYx3YbV9qnMRh2cwAqanauf01uN5fL25Wi07ixB2l3lxbPsx2OfC7+ArNk2PibtomZPoPIcpTR5npPnOVmmUEqhtaY1fBfSj/AcQaVxFDeu2yjOBqaGqjxJNnoHALIzT3DuVdaV2/cfoXvo09AjmOHJb+PEDYQrCVWvefCqsvds+ADZ2J0AuM2L+NNv9M7ASok9QlhqIyTxgR/pn6PgzLMIla5l96vOSTZyiLyyG43BnT9OMPtOr/KvlwEwK5WA2g2ZOfiT9vwKmHrzPyOMRiyfX3rPtULonKXDn6dTO4Q2huqZ71KZeXnT71JXpgjH7gXXQXoZhfrJK3738hY2aYUPABm6dOkSAFNTU2uWj4+P919bjenp6XXr+r5PrVbj4sVr6z10OdwbrANwHAm5fTTOds4it7ZtW0IbW++dpG1nk1ohHA/h+RBaDYjWhno7pdFObBjWkdQ7GWluiEIXgaC4+B7lzln76QLiaIKZ8ceQQREX+IlDCt9zSTMb8k1SQyF0CQMHoZR1mC4OQXEUZ3nalcWItEMrM7iFEpO7dlIeGr5llWDXC6dXeu5cT2sQN4JoJ6Y6imovYppzmO6iTYX6VydFBcdjcqjA+TlDVqri9cijO3sUVdmBCTaOUT97vMN/f7XBgXGfX/zoEE7SQjYvoMUUJqxeFnaxqJQCGu2UC/NtfN+hFoRXOW4fZ2icfOYEQq4MiFdCeM8naZ97HT13CuZO4EweWvN65LjUSgHzjZhoHVGWCNdDJIuoQnVNdGjvVKUfHfre65e2rB1yHEk7zml1M2qrCNT7+s6vAKMyTLdp06hxE6FVT/MTgVO5LTRyq4/d6BRdn0F36pa0dRvobgPTqdvHbpPCp/7vOLVJANK3vkF+9o3Nt73jLuSjP2ujPvPT+M99tf+a2/tbHZf0pw5jCvZ+Ec2+ibt4etNtp1P3o8dtpMJJWwQXXrricaaHPtWftHkLp3DaM/b5BuuaoIyeuNvuZ7JEcPHVTbdrhCQ79Mn+/8GFl5Bpe/MdiaowvNd+dlonnHtn01W1X1pD9L1kyZKfTeCiKIQuQgqCUgVdr2AcHxwP43irHn2cygi+56K1BhkR3/njGLl6vVXvkx55o47jiBs+zm4Vtz0Z6nZtM8jLtUFBEFCvry+r7Xa7G+qIgiAgSa6/oaKUgqGhKzcEvR50LyQEMscNzIo+Rzo3JcJhjOk12Ouium100rb/AzL0EaWaFUyvQpop5uoxnTTH81ziJCfJNI6U1MoeAoHbmaU29woAmZG8U3iEs8EdvPCO5K/cb6ismmT7nkuuFGHgMVwNCRwg6cLQOJTH7M0lTyFpYUKPpWCSUnWIfXunqBRvH13G9aBSeT+C/iIwjM52kTcXyJdmMKmtPpPBlYXL5XKIdB1ml7pEkY+89Bbizd+H4gjmyV+ADQjRkT2CP3mjyfGZlGdOxHz2/lGImxBfAieF0igE66+PSjlisRGz2MkZHnavetymEhCbJiaLcQpXd6WmEsHdT9F+8zvkb/8ZQ4fvWUeiHM8lVoYg9HAvn3REHnTr4GVQWHvcn//oAf4/v/UKr7w3x+c/eoDhLfoOeZ5HphVRMVjXpuT9fecWxhh03Ea1l8ibC+ikg3A9nNFRhHtrUl/GaHS3jeosoVp1VKeOatdR7SV0UIAnv0SxGKA6KZf+7N9ecVuRiAl750kXy+iobO+HQmIQtt+hjVkQOyVajQStNdJ4yNpuRM8NWiy7Qy87RgtJoVyCsHffmLwDUx5hJRqz1sDQre3E7d9jxjGHPtZfx6x5j30slgv9yBCHn0Kny42MV7lH96JJXm0n3vK2R3ei7/gRML3uXJdHnhAUV93rxJ6He9V+ZmXbveNDSvyx3fjL608dRPtuzyl7ZZ3+c8dfs23zxFfs+b18PenYdVcXztz9cbj74/2p9kZ3nDW/9vJjV/raybOYSiXalnF2K7jtyVAY2htQmqb95wBJkmxYHRaGIWmarlueJAmFwnq32q1Ca0Oj0bnu928Ex5HI5iKtCycx/kz/hyeWf4jSXanecpz+j1Ks/qH2fuRbnQHa9FeM6QmgrZAys15Hrm9Ta8JGrMgVsOKb0olz5uodWnHey8MbHCnwPYkA8k6L4tIxivUTCKN5OdnL78aP81jV5c9O2Fn365cUj04phBC9yFBOJ84oRR46TYmzDjqqYZwKtGNE2sIgUGGNxbxEVCoxNVRGpTmL6a0Nq14vHEdSqUQ0Gl2U2nwWtmWICqYUoDpLmMYcZn7RmnT6m5Oi0JU4GGbmW1T8UQpB2Tozf///pPvgz2Muc3Yue/CFByv8zot1/vjVOlMVyYGxAJRAzF3ELMxiCsO2XN9dS1Ilhrn5LnE35b47xsnT/IrHrSmRL80isis3duzjwJPw7nNk8xdYeOtFvN33rnnZYBBGM7/YohStnyiJWGFmLqCG3DXmkiNlnwM7Kpy40OCPnjnBFz66teiQMYaFRsJZ3+kLyG/Ed96PArUXbVRFK4QXgV9AaAmdHHvhbg+MzlFzZ9D1aZzRfThDNgKfvvs9kjf+zKZfNoAs1qg9+SXa7YQ8l9blPShZT6JCxT5G1f7zJKqQNDrkuSE79GmyfZ8iTnO6aU6ea3JltTSuK3AdiasVvpRQGKL74F+68kEooN2bFE88dPWDXl6XIux66srrxhrorV+7AyklUeTR7WY2OrLZtp0a7Hhii/sB7Hpy8/UuX98dhomNLTQ23HY4ufl6il4j1qt7aV312DdAHGc0Gl3cwhWiXteBSiXaUkT2tidDyymvmZkZ9uzZ018+MzPDnXfeuW79yclJvvGNb6xZlqYpS0tLjI9v3opgK8gvN3B7n1DzZ0lf+LolFVN3I8IyGI3Rxpa6m9T+v3oGAL2ZiOzNlsQKKZIeuO4qq/tVzF4rdF/8bGcVVkDtI4KenxH0bIPWmuZpNIvNhJnFLklqLwTHlQSeRCAwyhC2zzE88wKOtkR03lT4L+2nmKpK/uyU/SE+Mpnz0Lit/loOfKW5QggIHYNJ2qjCEDocRsQthM5RYYUkGKKe+gyVQ6ZGiwSuc8O/i1sBq2u4QcchPCiOQVDFtBcxrXlMYw5RqG1YJSSAoXJIJ27RkkX0/T9L6dXfxOnMEb36m7Tu/9l1FWP37w44MRvy8pmY33quzv/6yWFKoQNBFfIEWb+EaC+iCyNWg7NKoFsueDQ6KacvNhgqejhXsnwIymivAJ2WvSauBreAd/gpsrf/J8kbf4aYvGudALsUetRbCbnS6zN6XoTsLIHwUZXJNXX4Tz8wxYkLDV46OsdH753ccrsNR8LMYpdKwUeuMsy61u98RQvUsN9r2gHpIYICwvH61yyXXbM3CiZuoaaPWaH6zHEbpQW8e34UKnbg1I7fJ0IiLPdcxZf/qjgla9+glEZrQfRjf3vD48xyRZprkqWEdpJb0bPS0CtTd10rUA88Z913eCWB8s2A0oZ2omnEmmZX04gVkefwsSM1tLbC7ZfPxISeIHQFgScJPUHgCkJP4jnXpun8oMBWj23tu9EalDK37N5+25Ohu+66i1KpxLPPPtsnQ41Gg7feeouvfOUr69Z/7LHH+Jf/8l9y+vRp9u61edPnnnsOgEceeeTm7fgWkB77AfGp1wFQ596wpoDDe5Aju5HVqX6K6vJLxKwSy/Ub+qkUTIwxeh2ZQch+SNWKKUtbTsPFqeLSYpu5eowQtnQ6cCUyjwmbM4SdacLuNG7e7b9H4fBv658gweV03R7B/WM5P7I7v+wmZsgyTdkHz8To4hDG7ZU8+0VUZQdtUSBODRMjIZPDxWtq9fDDCOH6ONUJTHEItXge05qHwtCG1VmFwGW0GnJpoYNXqNG6/2cpvfpfcdqzFF//bdr3/Qzmsqq8z/X8h2aait95sc5ffapmq6bcAO0GiKyL0ziP7C6ii6PosNqLZgpq5YClVkK7nbBjpIC3rgNv7xikiyyPoWZPgiluKTrkHvoI2YnnMO0F8lMv4R1YG5LftF+Z/UB0UEZ25jCOhy6teBbtnSizb7LMqUtNvvf6JT735N6r7gv0HKlbGa1uRqV47Zo2ozLrAt1exMQNUDnCKyCKwzfF/DA7/gPU2dfQi5c5cQdFnJE9iNJKtMHdeQ/OxOFNbSycDfSQy6XtSaZJMkUnzkkz1SOrAtcReK4k9Lwr9QredhhjiDNjSU6sGCu7VCN7jC+c6vLiqS7NWNOK9To6OlV1+diRGgBJbvjaK81NP0cK+KtP1TgwZn8r33+vw6m5lNCTPcIkCDxLnEJXUCs67Bqykw3d8zxalwK+pVhO8+mVhrNcNqnvi9Xto9BZr+/brcFtT4Z83+crX/kK//Jf/kuGh4fZuXMnv/qrv8rk5CSf/exnUUqxsLBAuVwmDEMeeOABHn74Yf723/7b/KN/9I/odDr8yq/8Cl/60pduu7L68JEv4uRNOiffsDP5bgN1/g3U+TdAOsjaTkuMhncjV1XXWOMuB1h/49mYONm64muZeeRas9CIubTQpZtkFEKPwLO5+qHZlyjX31v7OTZGBMC3xRNM6xq9BAVHRhSf2Xc5EYI013hSUXA1Oiiz3B1GVXagohqN2G5193iR4ermDVcHWA/h+jjDu1BwRUJULQXEac5SK6VSHLaE6LXfxG1NU3zjt2nd9zNr0l6+K/jZx6v8228ucGI245vvtPnU3StaG+NFtlFv1sFZOosILCkyQRkpXIYrIafPL2K0Ydf45n3MRKFq29IkbdhCdEi4Ad6dHyd77Y/I3vkW7p4H1gjrr9SvDLBCTjfEac9g3AATrlxvH39gilOXmrx8bI6P3T+1JXLjSJu6XmzGWyZD66NAy/3ztrcM3mQJavYEzvCufiROL13qEyFZm0JO3oEzeQeyNrWOjIlVhrCbQWlDnCo6cUaS2vL2NNMoo63O0BUEvqQg3fWRu21CpgydRFMtrFwX/+PNFksdRTPWvT9Ftior9MUHyzyyzx5rJ9VcWFpJS0oBpVBSDiWV0GG8sjK8GgN3TPgkuSVXSaaJc0OS2amrNmsrN88vZrx7ab3cYxl3TPj8lSdrAMw1Ff/7ny/gOVDwJZEniXxB5NvHgi958mCBYmC/t9lmjjF23dAXuMuRS0Ov4kwjtLIVvb1KMkyO0Hq1DwBryY1ZRWQ0Ukrousg47fWju5zkLJsZrDz32g1IW5se83bjtidDYE0U8zznH/7Df0gcxzz22GP8u3/37/A8j3PnzvHpT3+af/bP/hlf/vKXEULwa7/2a/zjf/yP+cVf/EWCIODHf/zH+ft//+/f6sNYB+EFBAceJXEqOMVh9OJ59MJZ1PxZSNvohTPohTN23ULNkqKRPcjq5JaNBEW/k/HWkGtNq5Mxs9giX5xmKJtlbzZLQ9xJ17Nl2JlXwgCZXyHzKmjpU2ydQZicxfJhvnZm2dZAcHhI8WMHsnW7YDCoNKbsJEi3iPGKqMIIujCMlj5LzZRC5LJjtEil8MGqFrtdIBzvqoRICsFINSLNNJ04p1gc7UWIfgu3eQlv4QTZ+N1r3jNWdvnCA2V+/+UmE5UNbiFCYPwixosQaRt38TQ6rCLKozilkFo5YL4eI6Vg51gRZ4Mo5Up06JS9OW8lOrT/EfL3nsF0lsiP/wDvzo+veb0YerhOQpbrDR2ijRdCkuM0L6Ecr58m3DdVYc9EiTPTLb73+iV+4iN71r13IxRCh3o7o5vklK9Q8WhUjombG0SBhrYtCqRbC6jpo6hLR9Fzp0ErvAc+h3fgcQDcfQ/3jC0Pby1VeRmU1qS5Js0USa6RSzFLzZgs00hp9T5B4OA6N2cIUtow3cg5u5BxdiHj3ELGYkfjSviHXxjrTxRfOxfT6K5P00SeoBzJNdGXI1MB42WXSmQJUDGQayZsq3/XxUD2yctqGGNIc0OcG4r+yvqP7Y/YN+qT5LpHngxxpvtkaqK6ct66ac+nTUG9q6lvsP+P7g3BsyTnay+3OL2wwvACByLPELmGgmu4dyzn8QmrI1qK4UTdJfIgcCFyDaELoWvwnZ7/0uVTcIH1PgKsOZNmpQ2qWLO6gf74ZAnYrUt3CrNsQjPAFaGUZmHhxgq7XFcy8/ozLJ56l2B4B8XItT47Bkx7AT1/FrVwFlO/xBpm7XjI2g7kyB6c4d39xq7vB1mu6C7OkMyeRTYuECXzyFWCyG40QVyYwEsbeMkSXtpEXiakS8IRviY+zXfOh7jSsKus+dLhbH3nebBESLYJysOo6m50aQzjF0kzRbNjHXx3jBbXpzQ+BHBdydBQkcXF9k3JjxuVoebPYtoLiE0iRK1uxoW5Nr4n8D0HpzWD07hAuuPBTbc718wZLW/h+9EKmbQQjkNxdIKmKRIbn6V2ytRwganR4oZRP6Ny1PQxSw62OCDnZ18jfeF3wQ2IPvu/9fVwy7g436LRySgXNo+0yO4SOiihqrv7uqeTFxv8n39yFEcK/tZfvI/yFgn6fD1h11iRneOlNd/5rYgCqfkzqAvvoC4dxbTm1rwmikN4hz+Ku//R69u2tq100iynmyi6qdX8aG1wXUmtEpGm2bU2hH/fuLCU8cevt7iwlK2J8CzDlfB3f3yUqEdEnjnewRio9CI85cihHMo1UZutYtl0sd1OtlXTpJUiyRRxYiNunUz3voPeY6b50X0ZvrS+Qf/x9YCzTZc471XFXYan9yh+7BAgBK9Pw2++sUn0FkPgwt9/2vTv8X/wjiBTq8gjmsDRPQIFY0X61cTLTQ+Wkc6ep3rkIwztW68Ffj8YHi5+OATUH3a0lxbo1heZi31wPYIgoFL0KEVFoh334ey6H0enmMUL6IUzqIWzkHbR86fR86fJsTcyObwHZ2Q3ojK5ZT2QMaYn/Mvh7T8laF5g9S1++UIRGKLuNFF3eu37EWR+mdyrkAY16uVDvPyG/aV/Yk/GkVG9nggZg5O1kHETb/ch9NhBlFcGIenEGXGqmRwuMDFcGOiDbhCE4+GM7LYRovbChhGiUuQxXA2YWeza814aR5VWCg5kexYd1taIolcToaOXEpqx7qcQ1kA66KiKYxQ055DpDH5Yo+pXubTQQUrB5PD6yjfhuMjK+DVFh5xd9yKOfQ9TnyY7+l38+z675vVN+5Wtgg4ryO4SONO2Oa2Q7Jsss3u8xNkZGx368Se2Fh0KA8lCM2ZipFekoHJ0u74qCqRsL8FtiAKZpG0bFPeiUvmx76EuvmtfFNJOpibvsNGf0ui1pdGVbbOQZHYA7mbKkrxecYTnSoqhi5TW6TgKXHSutoUUrI76nFvIKIWSH7vXkmffEZyezwAIPcGuIY/dw/ZvsupS8HrR857+8sn9AWvL2m2KiNzeB/t9GlcXtWzwfNkFGjxEN7Omjj1LgDUl+UJgkDZastHrPZNEsdw2iV4KS+eIXgNtx2g8oygbDdJAgP0DzLKkQgiQLkYIfuEhB4RtJxLnhk4G3Yz+41hxJXoTeXBo2NDNIM5X/pSxhpDamDX3+DdnoJMt/46Wv+uVFT5/h+bJns/rM2fhGydEL+IEnxoLuXLx/fZiQIZuMcLpN6g13uz/r4VDLjyU9Ok4Pnk0QrLrEaJwimDnBG40Ym3Mkwa6OQftBUx7EdVeRJ191UaNhnYhR3bbqNEq7xeTdlEL59Bzp9D1i+SVneR5jhMv4SaNdfu2rAEySDK/bNNifoXMr5L5FXKv1B9RFrqCPz3m0soEBc9wz6gNQa/Zns5wsyZZpkhH7mTijkdoxxqTKxqtBCEkeyZKjFSuvffWAFfGmpTZJoRouByQpDYyVymukB6ncZHS679NXp6kfe9Pryk/B7hUz/mvz9bRxlZRPbhnE/2I40GxBPUGTnOGyK0jvCEuzSocKRgfWm99YbVDZUzc2pIrtRAS/8hnSJ75v8hPPIt78AnkKr+iK/UrW9mItISoPY9xfHTRplE+/uAU/9efHuOlo7N89L7JLUWHIt9lqd6iubBAVTTJL55Hdds2CuQXEBuU+l8vjDGY+iVb/XXxKHrxHP6jX8bdfT9giSJuiDN1B874wWtuWZPlik6S0+pkxD3yo43BdWzkJAxvjti5neh+uuvsQrYu6lMrSH7s7gChNaO+4qfv89lVhdGCQQoDZPZPG0hW3J5XiEiPRNgX6DODPlmxz60fz/L7lit3baWvlgIcB4oR2u1istzqcdYQGg06Q6oe4dIKYXLI856YuEeijOrpcXqand5JNr2qYWuzsuwj5KzZ5TU5Ka16/ysQlqIUJBQC0SdP/ePr8ZhDNcGh2trzb4wh15YUJTk9TZDFZw/IHnGS5EhaiV5FpAQVN0P0vqw48UiVR6qgmYAZ3eovYHswIEO3GkKihIs0CoFBGoVvFOgYcmghmV/q4rkOkW6x48wzwArnXgeVoedOoudOWscRz/rNmLhlK85WwZ0/vuYHoJHkQbWvBVomP7lX3HQarTScqku+ccqj1ZsRPDieryVCWuGqLmiFkhFz5d2M7TqI4wWoTpvFZkIx9NgxWtxy+mGAa8caUfUGhEgKyWg1tLP9eBVZ6FUuekunKb75+7Tv+dIaQjRRcXh4X8TzJ7v8/ktNXCm4d9cVBlo3QEcuIo+JuhcRImT6XAtX7GC4ttZwTUjXdrSfPYHR+ZaaicqJQ8iRvej502TvfJPg4Z9ac4yb9itbsxEX7RdwWtPg+OioxoGpCrvGipybbfP9N6b5scc3aWWiMkSeIPIEJ21SbDZpJpDqGsaIGx4FMnlKfvpl8uM/wLQX17ym69PQ20131324u+67pm1ro+nGilac0urmJJnCcyS+KwmjbSY/xqCUYrqe4Tu9iIVRvHoy5U/eydasGrqwqyrYPSTZU3OsBUDPp+3B/aGNijgeSrqWyCybEK4zT6Rn6sjKcli5/1227pUgpIBIYjIHLbNVEZ0UQ2oFyfQ+wtjPMHjguRgilhuimd5n9ieI/UpivUKubMMy1gqVzap/Vwmdl5dvKpAxmzxf2V0PgedC2RVrBqNHJ3rWK1ISRn6vkbZmtVbI9Ap/PrrH8OCOjK6COBNUtVwTeb7ZGJChW4zu7se5kFdxa1O9xnUpUqU4vUft+La3Um6IFbQLO3DNynpSpYhV2p723qfxswZO/TyyPdczWIzXfKZBoPwSeTRMx6nSFkUoDmG84pYucmPgYlvw9pzDuwsO3XzlPRLDA+O9/TEaJ48BjZI+2veZd3fgVMYoFXySVLHYTKw+aKRE4G9NFD7A9aNPiIzBdBbXEaLAcxmtRlycb/eFxqq6k9a9X6b0xu/gLZ6i+NbXaB/5Yr99hRCCz91fQmnDS6djfufFBo4U3L3jCp48QvQrz4Ksg+icY/a9JeTevVRHR9eQBRFVEVEN020gikNXP0Yh8O79DMm3/h3q9CvoQ08hKyvl8lfqV7YGboDRObJ5ybYO8At8/MEd/Mb/OMaL79roUCny7ACXJ4g8RiRtRNaxvaOMwTguQRDQNA5ZUEOKHKM2HYWuGdnxZ8ne/p+wfI07Hs7YAZzJw8jJw8hoCy7el8EYY8vdk5xmOyXueYsFnq3Iu+FBW6N7JCFH5Rmn5nNOLBjOLhnONwyZgsf3uvzkvQWQHrtHXcbKbXaNBOwejdg1GjFaDezvWDoY4aBWOyffTGhlfwdpBydvg6dx2h2EWo7q9By0e2TMOAGmH9W58om9rl+N2YTYXPPy3uNGEae1HZDtg3SgGKA7tl/lRuu6QLX3B9CZ92yvxVuEARm6XSAExvFRjo/ybCB3GS7gOmBMmYv+k6jcIF1B4DqEvoPvgNQJJo1J3RJNsxNTuZvC4jHCziWcrEMeVOkUphDlcZyoRJxqGt0Mow2B35shbQEnlyR/ftplKVkZrAquwXcMS4nkyJii4BpkniB1Ru5GaDfACJduNElsSuyqRHSSnAzBjpEiI5VwoA+6iRCuv6Ih6ixBobaGEJUjj7hkK74qRR8hQdV2077nyxTf/F28heMU3v7vdO7+yf5gI4XgCw+WURpePRvz1efr/PwTVe6YvIpJYa/yzPMiVLPO/PG3kd0pSuNTiKBkO25LaaNDccN2xN5CLzpneDfO1F2oi++QvfVnBB/5+f5rvutQjjwWmsmVyRDYZq7dOrJ5EVXdzcEdFXaOFjg/1+GZl0/x40cCRNrtkR9tIw6uj/Yq/WiCA6hOTqOTUXDfP5Mwl+unshhRHMI99CTungevu1dfrhSdRNHspHS6Obk2+J6gdKMiQMbYqJnOLfnRCjvKSk7VBS+f17wzndFJ1w77gSchrJGP7gEh2TEK/+uhDTZ/A3bxWmGMQecJJB1M3Ia0CVmMVgYjfdJyiW4e9Rq1gkAgAWFsF3mpbcRESiv3ueGRto2IymVPtwVydTuPD4ZB7oAMfYAghMB3HXCXqzfs7M1zJKHvEwQhgSv7v38T3k1H30WuNQ4Cz5NoA81ORrub4zhcdTDoZNBMBRNFe6sJXUt6XGk4PKQ5MqKohoZ//5q9AT8yFuNmHZQTkhTG0UIijSIpTLKkSpQKLmmuCKTDwZ01HKNQN3CmPMDWsI4QrUrdCCEYqYYkmaYVr1Re5UN7aB/5EsU3fw9//hi884eWEPXeJ4Xgpx4qo7ThjfMJv/lcnb/0kSqHxrfg2iwkYWWIVjtm7tI0ImlQGB5HlkettiYsI0rDmOY8wr1Ke4EevCOfQl18F3XxHdTCOZzhXf3XSgWfxZadtTryyiODDkrI1iwi7WLCMp/cb/jPc/DC8TpP7wwoFQJ0WL7iSBYGDkvNGKfk415H30FjDHruFNmx7yOjCv5DXwDA3fsgIizj7LjrulJv2hjiJKfdzWnGKUmmcIQgDByK1ztBWRb9qh7pQYHxEHGGEA4Il8wrkYmAMAwxjsfb5+Z46ewsYA0yD++usnu8xK6xEmO1W6Mh1NqgtUEZg1Krnuc2EugomwZ1VRfH5EgpEW6AUxrG9RxC36VSiWi1YrJco3JDrjVKG5TSKGPIjcEoY4NjGFYXdxtjrymblbNl7EL2SJQQvWCSQCJuqTHlhwUDMvQBhSNlT8VvyJWh1c1ox7aKIwocAtexHYAdgetYwpPnhkYnpZsoAl9u6O8C1q/ivUXJ2/MOp+qS4cjwi/emCAGTRcMXDqXsq1qB9JtzDn90wsMg2FtOGQ8zUn+E3C8jdYbUOUlxiq5TwagcEBQClz2TZcaGIhYX29yaOd0AK4TIYFoLUFpxN3akZLQWcmE2J05XXJvz4X207/kpim/+Af7cUbL542Sjh/vbdKTgy49UULrB2xcTzsxnWyNDPZSKIc2Oy2xbMWGm8dtLyOIwwvMRCHTaRes5hB8Cq9rRXPYohEBWxnH2PIA68wrZm99AfuwX+4Nq6DsUQ49uklOMLrsNGm0jGCpFZF1E1oU8xW1eRBWGODw6zo6aw4UlxffOOXz2nqsLkcNeWm52qct4Ldr02rscRivU+bfI3vs+ZukiANrx8O79LMILEG6Au/PIls/vMpIspxvn1DsZcWpN+AJPUilcYxpsWQezXN1kjI06SNd2KPcK6LAA1SpJK+fYpQ5vnWny7tkFHrtrnE8+XAPg3oOCJIcj+4bYO1Fe08JkO2CMIVe2z5nWtqpWaUtKrABHIAQ4QtgekuREJiEwMb5p44gU6Wqc0EMGQ0gvwHWsz9Dyb8xxBJVKiIvZcMKnjelX9Bpjq7u0XrVMGzRsTKL05SQKrBbIEiMphO2tKoSt6BNyQJiuggEZusVoZ5DkgiBvo4WHcVxWlyJeHcuEx17gmdLUm6qXRpOEvovvOX3/HqUMhdDh8jipNnCmIXl7zuHYoiTTK6970pAoK1IUAu6oZZxrGP7n2ZCZrv0JDQWKH9kHSXES7QQ4eQehFUlxkiyoUV9K8H3BjpECO8ZKFKNbJ5QbYAVrIkTtBVjV7iHyXUaqIZcWuniO6bdVyIcP0D7yRYKLr5KNrM9XOFLwFx+r8Nb5hPt2bZ0ILaMUubQ6hunUZzKQeM1Zek3zMGkHtXDeRor6HcmF3WcBawiSdHB2HkGdex09d4r8zCs4Y/v7ZKniKdrNDsYN7FtUarU/aadXyWOFn8axWgblR4gsRpqcT9xV4jd+UOf5E10+emjF3fdKKBcDLs02cR3J6FUqJk2WkJ9+ify9H2C69d6JdXH3PIR76CMI79rPq9K6rwNqxzm50mtK4K8KoxF5Cqt1isLBSBfjBrb1imsjPcbxQHrkRnDqUpOjr8/wxvG5vv4I4PT0SnuKyeECn99iq5PrhdKaJLURdW0MnuP07p2SYujguw6uJ3GlwJECqVNc1UUkLZysZUXZAkTog1vqt0u6Xsjeb/daA3Abkii1QpjyXJPlmrxHnLJUo43CaI3MY6s11VaX6ugEV6VIkyJVYjWoPfG/UMnKc52tqqBzetonh9Wd7fvd7oXVbgnPJVSg++X9vfXWvce+pjMD+o73dU7fDwZk6Bbju2ddnjm5n/CsYShQDAeKIT+nFhpqBUktlARb/JbWp9E0nSTBcyRaG5A2XH855jqC337Xp52t3BCrgebuEc3dIxkjgZ35yTRnKZH8z4tlji7ZtJjvwBN7JPftjJCuhwacrIMwmrg4RR5UabRTcq25Z9cIeybLW54VD3BzINxgU0JUKQbEqWKhmawRz+YjB8mHD/Q1CU5zGv/Cy3QPfhLcAFcK7t+9EjGZbebkSnBn8eqDuBBQKng0Oymz0mdyuNKPboqwbMkPAtxwpYKm369vuS1ABnlqtRnjh9CX3iV/51vgBivRIWUodWNMDK7rWA2LkOC4GDe0+p/LYBwX0ZnnzqEJpqouF+s5zxzv8JkjVzc+daSgEHosNGJC36G8SVm9iVt0v/GvIet1E/cLeAefwN3/6BqrjK1Am5U2GI1OSprZRrWh76yPiK3bkZ7GRyU25SWEFfxGNbQbWcLTJz7rt/XysTn+9LmzJKvq3kuRx917hziyb4jd4+/fLPbKu29s49dU2WbY0vZWHKuFFEOfKHDw3JUIudE5pDE6aWNaDWuEqTI7sLsBFGs3pS/c1SCFsI2OkgamOYvu1CGL8bIY8gSzXDSTxZjMaknJY3ssNxnXMuWNALX7MEzt3K7duSIGZOgW4uWjs7x0ylaBxLngYu5yse2yyvSBPaWUn7+jiRYeHe3y6oxHLTQMhYZaaNiA2wDr02iuK/oXfT0RnG8KjoxaYdtQaFDa6oHuGso4MpyyM0qQaIwQGOPSxecH01VeviRRvUj4vTs8Ht8X9N1bAZysjcAQl6bIvDKtbkonUdy9p8b+qcrAP+g2RZ8QmbWESArBSCUkSRXtOKe0egDti9MMhaN/jNOexVs6TeeOHycfWpnlzzVz/v13F1Ea/uZnfYa2IiESUI586p0UAVRLPoXQRbo+sjCMrk/bNNEWBifv4BMksyesNqo5h5yw0SwJRHRZbMZ4rrsh+VkHN4S0jdOd5xN3DPNfns959kSXpw4VKPhX3xfflSRSMLvUxXclgWfPp27MIMrWz0iEJWR1ChO38A4/ibP7/mt2pU57Zoj1Tko3yTHG4HsO5YJ35TTYcmVcb+A0jofxiuhSGeOFGDfcsEIrzzXHL9RxHMmhnbY+qFzwSDJFueDx4B3jHN5pxefbeQ/IlY38pKltnOq7kmLkUS34hIFLFDhrJmMmT9BxF9NtYuImJkus3skNrBnmFrytthNGK0x7Ed2ctcSnOYtuzmGac9dPbhzPekx5oY0wuoEl/25gI3xOgHZ8lAzIhUuGj5IuRtnoktHL/cs01pBFIzEIoXGMthYxwhD5kjTJLMnU2kZaV/0J0/NaMva1VEE4vDUz0+3AgAzdQszWuyT5Si55omgYKxq0ESzFUI+hFkm08JAqZbGV8b3za0sPC65ZRY40D02oywiSTaN1czg65/D2nMP5lgQMe8oxZTfDN4q/fLjLsJ8jXQctXZRTInNCcuHw5ozkB6cyupnd191DDh87GDJSWntTdLIWAoiLUyRumVYnw5WCPeMl9u8YEKHbHX1CNI/1q+mJqj3XYbQWcWG2TZpuUI4uBJ1Dn6Hw7h/hxEuUXv8qyY6H6O7/ODge5UgyXHQ5u5Dx//3GNP/Lx4YYLV+deAgJlYJHK7bd30PfoVr0KQQlnKABabylUlzhhbi7HyA/9QL5yeeRY/v71XNR6NPo5ORGbv1m6BURaZMjpQaTFZ9LDcUz73X49BaiQwBR4NJsZ8wtdRnXl1DvPYOeOUHw5F/BmbT6q+DxnwE/uqZIRK4UcappdVPa3Yw017iOpBC6m4vE+6mvxA5ujotxAlQ0hPEKlvxsUp2W5Zrj5+u8dWqRo2eXSHPN7vFSnwztnyrzSz9xJ3unKtQqBRrNLkrd2MqiZRuAJNPkveMNfYeh4ZBi6BIGLoHnrFnfpF1M2kF36talO09ttNG15GerfR9v6HGoDNOat2SnMYtpzlkC1Jpn035d0kGURpDF4R6xCXskJ1hFdpYJz6rXruP4tNFWRG7sxFlpjVZWUJ7lijy3GqzEWA0WQpAEHu1OitbGWiYJGx0VEhwEopeOFMLqszrzs4Tutad/bxQGZOgW4kcf3U2aK775wjlm6gnTbcF0WzBScrlvV8id4w4OGakpIlSGkyfcM5qx1DEspg6d3KGTCzotwYUWgMNjYx2EkBgkv300JNcCzzGcaUh0v3meYW8pI00ThAvKCajWAjLHR0sP0zMmO7eY8933YubatjNzLZJ89GDA/iGBQCHyFNFj9cLkGOkTF6foiALdbka16OFIye7x0oeyx9iHEcJbJkRmDSEqhh7D1ZCZxQ6uK9dpTFR1J81HfoHoxLcILr5KcOFl3MVTdO78CYLKDr7yZJX/9P065xczfv27i/y1j9UY20JfMykF5YKH0RBnORcXOvieQ0WGFJM5fDdAbuHm7uy6j/z8m5i4ibr4Du7OewAIXIcocGjH+dabhgowfgmZNPnU/iF+41V49kSXJ7cYHRJGMdx8F/+t58ni+f5Gdf1inwxtJR2mjbGNUFNFO87opoos76XBPIcw2KADvDFWD5WntsQdeqmvIbRf7EcINlPbZrnmvR4BOtYjQMuoFDx2jhUxxiCEjUTvmShv2Hfu/SDLe9GfzH524DlUCx7lQkAU2Cqu1b9PY4xNGaUd2wYl6fTSX64lCD0Lh5sBk8W9yI6N8CxHfEx7iU0LSRwPWR5DlEd7j2O2yrK4cZ/B7YAUcqNM6DoskyaEoFDwqTdiskytI03KGHSuSbR9D0bccjIyaNS6RWxXo9Z3zi3x5rE5XFfy1qkFjp2rk/cqDwLP4a69NY7sqVEMHYRRlnhohVQxKunQarZpNLssdTXdzPCZXS2MkGgc/t+vDq0RQo9HOXeP5NwxJilGQY/4eCvpAWMQRlPvZHzvZMbx+d5+OIaP7DY8MAHSsa6oCImWDkZY8qSlj/IimipAa8NwNehVtNmwue856479ZjYrvZ3wQTh2kyWo+TN9o0MhJNpoLs13aLQzysXN0y3uwikKR/8YmbYwCJI9TxDv+xhpDv/he4ucX8woh5K/9rEaI6VruwUaA1mmiNOcoHOJgsiIqkM2/XGVKEp+/k3yY98DLyJ44ucRrk09dZKcmcUOUehyTUVMOsekMb/2apXpluFH7izwqbs3jg45UlL0Ddl7z+GdexGZtuwmpIfY/SDRnU8ht2AomeW2KWc3VXS6GUmmUVrjOBLfFXius/570bklPyoFjE19uREmKFvy44Uban42wsvH5vja9071/68Wfe7eN8SRvUPsHCtuSCocR1IpR9cdGdJ6OfpjbTg8RxIGLuWCRzH0etqftfeXPgFK2ujOUo8Apb0UUXTdXkxbhTEG0Z7Db1+kPXMB1ZjBNOcw3fVtj/rwwhWyU+kRnvKYjVbdBlqla4GtpItoNLqbVNKtVPItWxbo5gKFnYcIaze2L8dWG7UOyNAWsd1kaGzI9nNKUsW7Z5d469Qira7NCQsB+6cq3LN/iPFatP6GYxROniBVgps0bCWXSphpwULq0s4lu6uSkZKLERKBWSFWRrM8I0kUPHtO8spFVumCfB49UCYMLWkyy9UjQq44p2Iv/lY3w3Mko7WIUuSy0EzZN1FmtLa+V9UHgRBsFz4ox26yuEeImn1ClGY55+baaG0obNbbCxBZTHT8z/Fn3iLe8xHifR/DkRLjuPzrP7nETCOnGkn+2seGGCpe3+xWd1uoxXPkTkjgBxQjj8i3VUEbHo9WpM/9FiZu4u5/FHfvw3Y7GOaXurTjDcrsr4Y84c0Z+C9vR4Su4P/52ZE1GrplOFJSOv8DxLFv28/0iyQ7HmZx6B7csMCOkQK+t/6ztbGFEEmS046tzUGmbCNQ17MFE+tSYEZb4pOnVhQuHasFCcorqS/Hu6rjcZzmvHFigVY34xMPWVFrmil+/evvcHBHhSP7htgxujEBWnPs10GGslwRL0e6EAS+QynyKEUeUeAS+M66iJMlQF1M0ukRoDaovK+RuRkEyNQvkV94G3X+LUxrbsP1RFjqRXdWoj2yPAbB1c/lBwVXI0MbQbcXcMb2b2lScC0YkKEbjJtFhpahjeHMpSZvnFzk0kKnv3ysGnJk/zAHdlQ21QEIleKoGJl3cbOWLZdE254wPRJjpIOWvo3oCMnbFxOee69BnNqb1c7RAh+5Z5Kh8uY53OVqjTRTGG0oRB5jtchqIjopvutwcGd1Q3fpDwoh2A58kI7dZDFq7gwmXiFEjU7Kxfk2oW+rca4Ed+EEeW2vLXOXkmK+yHRW4v/4zhJzLcWj+0K+8OB1ilQNtndY3CB2CuS5wXUEUeBSDD07YF5mIaGm3yN7+8/B8Qg+8pf6zUqTXDG90MGV1pz0WqDTDv/7SwWm25JP3FXkk3cVwRjcxVPItE06ea89djfDPPtfSKYeJB2/y3rxGGh2UioFn8mRAgJBlmviTFkzxNhqf7QG1xH4nsR15MY8Jk+QWQdrB+Bj/CImKF019bXmlBrDudk2Lx2d5a1Ti2S5xpGCv/2z91MIr88OY6tkyBjTF+p7jiQKXSoFK5yPAnfD+8gKAWqj23VM2rYpMMe/aQRIL11AnX8LdeGttb3hpEMwecA2+i2NrqS3/E0aGX+I8EEkQ7c6TTfAJpBCsG+qwr6pCvP1mDdPLXD8fIPZesy3XrnAc29Pc/feIe7aO0Thstp74/jkjg9+hdSMIVWCMLpPglZHdC7MtfnBm9MsNG0Zb7Xo88SRcXaPb5xHtzoFTZYrjAHfk1RLfi9cbW9YWtt1do6WBm02PuAQXogzuscSol7rjnLkkZRC5hpda9J3ha84Hz6wsq3uEuKF/8h4cZT/2yOf5ZtnIz577/sorxagwypO1iaUBiLXGpB2lgXXLsXIJfLdvuuzHD+IOPsqpjVPfvplvENPAlY7VCn6LDQTXHcTsrEJpFfgk7tj/us7BV45vsSnC29TnH4Vp7uIdkPSsTtBBhCU6DzyCyi9QgiEsILq2cUuSaZwHYcky8mURgqB54qr+wDpHJm0QLqo0jjGL19T6gugE+e8dnyOl4/NMbu00stwtBry8B2j22qHYYyhk+TEiSLwXaZGitRKVv+z0T3IGA3pqghQuhwB8q1b+TY3+zRGoxfOoy70CFCnvvKidHEmDuHsPIK/806qI0PXRAgGuHUYkKEPAEaqIR9/YAeP3TXOO2eWePvUIp0k56Wjc7zy3jwHd9gU2mh1gxmHkGh3/fJ6O+W5t6Y5PW21C74nefjwGEf2Da278WptSHNlxZLGenUMlUMKgUvoO7iXRQea3YxqMaBaGnSg/zBAeGFPVH0W01lCFGoMVwPiTNHqWv3QViA7C9ZkrnGBqTf/M1868COk4kEAuqlGGShtwbxwNYwXooMKsrOIccrWRC9y0camnLtJbo0FI49C4BK4Du7+x8le/yPU+bdwd92HCC0hKxc8uolNz0SbeVZseILg3qGYv1p5lXudk4SnloXJPunEPT2h8kqE1RhbAp5mmjizJKCbZMw3E8aHIsoFO7G4KiEzGpG2EVqhwxq6OIq5jkaXnTjn//XVV/taRdeR3LN/iIfvGGPXJjqgGwGtjY18ZZoocNk9XqJaDDZs2LyGALUXMVkHlEK4PsIv3hwCNH/WEqDzb2HiFcNIHA9n8g6cnUdwJg5ZTyJAOB+OlNcPCwZk6DaA6lnDL5cZboYocHno8CgPHBzh5MUGb55cZGapy7FzdY6dqzMxHHHvvmH2Tm5uZ59mipePzfHmyQV6FZDcvXeIh+8YXVPxpbStVElzO0P1PclIZYUAbRZ2zJUtuRythQNzxQ8RhB+tIUSyUGOsFnJhXtHqZJQKVx+M1MgBzMf/Buql38ddOkPhvT/Dm3uP+f2f5T++YF2Bf+ljQ1uqyFoNHVYRSQvyBHoDkRQQBQ7GQJprlpoJzXZKFDgUi5M4tSnM0kXyUy/g3fUJABwhqRY9ZpZsk1J3K2rqPCU69W3c5iUe7V0+06pKeOhR9NQ9aOmhtUHkChFnLLUS2nHWcwi2JceuI6kUAuKeOLosrt4SQ2RdRB6j/RKqOIoJrtwbbTWanZQ3Ti7wxN0TSCkohJaIxKniocOj3HtgeFurP3OlaXcztIZi5LFzNKRc8NelXJcJkI5bmE795hMgrdDzp1Hn3yK/8DYkq2QSro8zdSfOjh4B2uZ9GWD7MSBDtxiB5xB6Tr9SAixBcaTEdWxfnMu1QVIKDu6scnBnlZnFLm+eXODExQbTC12mF85TDF2O7Bvizj1DhL1ZljaGd88s8eK7s31L/F1jRZ44MtHXBSml+34dUloCNFZbJkBbs+xvdXJqZZ9KcRAV+rDhckIUFIaYHCpwcaFDu7tF8XFUpfvAz+Gce5Ho5Lfxlk4z9tp/5GD+BN9t7+M/fW+JX/xobUMR8qZwPExYQ7ZnME6wtjm3sD23Ak+SK0M7tk1JCyP3U1m6iLp0DGf3A32dQhS4lCKPZiejGK6NziybW5s8wQjP9oTSkjCNMQji0g6+OncXL3Z28JEZwQNRhtEpy0mxIPCI4wwhbA/B8LJjjHyHVien3kwYqYQbcxuVIpM2xg1QlZ3oqLaldJjWhvfO13n52BxHzy5hDAyXA+7cY4/7Zz91aI0fz3YgzRSNlu1xWCn4DFdDygVvrQni5QQo7YC+yQRo9iT5hbdQF96BdEWviRfiTN2Ju+OITbe+z3YcNwJGK+uTtOzEDmuer0iCTW9Rz6398mWi9xYheo/Lr4lVz+mt11tZiFXbWAvhSHICdCuxvkOXX5TLG+svFmAUtxK3/tv8IcdINWLnWIkocMiUJSJppntVI5o0yXs/JkuCHGl76TiO7Vw8PhQxPrSTx+Nx3jm9xNunF2nHOc+/M8tLR+c4vKvK1GiRV47NsbisCyr5fOTIBLvHS+RK04kzO0uVgtBzGCoHFEJrVnYtDROz3FamjVSjG+4tMsDtgRVCdAbTWSAqDDMxVODSQptunBNdocJsZSOCdOfD5EP7KLz7ddzmJX4m+A4zqsLR+gj/+ZklfuGpGsE1CJl1WEIkTdt2wNu4cartQ9VLoTnDxKVdhK1zdI/9AOfIj9ruE8Z2sc9yzUIzxpESpTXGgBsvUWm8R6V9lnMTH6frWSLRqT5I7gTkbpFh4cJpwSsXNEcmY/wgxJF2UlOMPFxho66bnBgKoUuzm+F7cu2EQiurCxICXRxDFUf6UbArYamV8MqxOV45Nkejs+JYvGu8uKYcfTuJUDfJSVSXJFWMVEOGyrbyb/kesaYMvr3Y0wD1CFDw/nuAXQ1G5eiZ47YK7OI7kK1opvAjnKm7cXceQY7tQ1yDDuuG72evPQoqxeSZNWOUDrgeQkr6ffkQtmcYYm3/Pnr9+4Rcu06fjFpyopdJvwGlQQOml0aQQuAIkNJ6SUlh20CttMUBMNbqoRrhBB1Mlq8QMGOwfQZNb3W9iqSVtl3wfiUMyNAthhCynyYrBC4iXCERSukeQbINWJM0J84Uea6JU9Nn/fZmK3jg0Aj3Hxzm5MUmb55cYL6R8M6ZJd45swTYGfLDd4xxaGeVXGnq7cQ6tnoOI1WfyHcI/I1Fi1tBq5MxXAkoD5qwfqhhCdEe1PxpTGeBYmGY8aEC0/MdumlOtMUUiy4M03rwLxOcfQ6Ztvj02CHOfneJc4s5//kHdf7qkzV8d4u/ReliCjVk8xLGBFcsG5e93lz5rocw75zHWTrL3PkzZNGKv4lSmmY3I/AElfgitcZxomSlVLoaX4TSKCAgGMfD9mG6dxxeuKRZTCTHLnZ48ECAkQ7Ocj+1qx2GFASepN5O8T2H0JOIrINQGTqsoAujGL941bJ4gD/8/mlePDrb/z8KXO4/OMJDh0cZH9reiiZjDN2eKDoKXXZPlZBGEawiYCZPMHHPByhu9arAvJsTAVIZavo9qwG6eNSmWJcRFHF33I2z8whyZO8tcaSGlaiPUZk9NwKQHsILkIUhhB9Zd2kvALH+vq21beaqe67Qq5+v9vdRiR1f8t6f0gbTe79Zfk8vuCOFsQaMUiKFvZaklHiOwHUljmOrHX3HQcgCLcdHCzvBkNKSKbnq+e2EARm6xZgYKdBul5hZ6LLQSPA96/Yre7NJx5HQJ8sBxtheY7mynYmzXNlOzLkizRS5MkwOF5gYilhsJhw9V2duKWbPRIm79w3hOpJca6LQoRRFhL5D4F0/AVpGkikcKRjdyAdpgA8dLCHa20uZLVIu1DDDEZcWOiSoDUWwG29Ikuz5CACTwF99qsZzz77Okfg0v/3MU/zMU+N4WxSiaq+I8AuQdcC/uoOziapkwwfwF44zNPMSncM/av13gJKbM1Q/TnH2OJ7q2vURdEo7aVUPk4Q9InQZpIAndub88QmfFy55PDixAKURruVW67kOeZLTWGoSRAoRllC1SdsV/gq6oLmlLp5nW5YA/QKG/VNlHjo8xl17a9te3bksik4yO7nbOVZitBYxOVFmcbFNliQ9I8Q6ptuL5EnPDuw3oQ+YiVtkJ54jP/k8pN3+chGWcfoEaM9NNzlcifpkmOW0lxSWHIYlZFiyTYa9lfYoada773czcpWQaztxXn603e1Z1d3e/m+TWyvRSSlsawxLbJajPwLhrCUwy9vQumcpoC1JynPVn5wvR5SkFMw3E1rtBNWrjFzezvJnOdJmOFwp8RyJ64pNBfQ3AwMydIsReA6Tw0WqhYBmJ2WuHrPUSpESSqG3rlJL9MptPVcSrYqSa236zD5ThixTlAoekyMFcm2QQCFwKRZ8Qt/Bd+X7Ji3LviDdxOZ6x4ZCitfpRTLABw/9lNnCWUx7kUpxCKMjppe6CFjfw2wL2FkVfKXyLF7e5o78Ii+88ikee+Surb1ZSnRYw0kvYowCcfXPT6fux1s6g9NdoPDeN+gc/BS4AcH0G/gL7wCgZECreoBW9SDKvXq11t0jmh+c1ywlktcvZjy0p44uDG/tGAChcyo0acaCuWic2tBOpLvxdTVXj3nr1AJvnVpkZrHL43eP8+NP2GaXj9xpq0OHKxunDW8kcqVpxzlKGUqRx46RkErRiqIdoVHtOvn8JfLWou0pJ6T12wlGbsrkSTdmyN57BnX2NdD2fiWiCs7Oe3B2HEEO77ypBMhotUJ8lhuuOh7C85GFsV7UJ7QEyHF7zuOapKPopi3a3Zw01z1pAoBZIS5CIKUdKxxH4K8mIu/jXIseSdoKn172lvIdQd6zYdH9KJMlZfaYLIGy45fh0E5nQIZ+2OG5kuFKSLXk0+pkLDRj6u0Uo6EQuVfN6Usp8KWzru2F6s0ShGDda9eLLNd0E3sxRr7L2FBIpRBQGqTHfujQjxAtE6JCDQ3MLHYRUlzVlHEdpEt8zxfRb32dIer8aPu/k7/0PEgPLR2EdGnf/Xlw7Ow4OPscIo9tPz3pYISLTDugM4xfREc1G1GBnilh17afWfbccgM6Bz5B4fif43TmKRz7H3QPfYp09A6c9iz1yiFmnUmiyGejSNCGhyDgiR2KPzkpeW6myEPjizieD+FVND5G42ZtwJAFQ5jSMDO5i+gqhsor19bcUpe3Ti/2CdDK54p+cQTYtFgUbO8tPs0UnTjH0BNFV0IqRQ8JkHZQrSYmbhAHGt2KETLs97vbbhhj0LMnyI59Hz1zvL9cDu3CPfwkzo67bxoBMiqzKa88tVofIa3WJyggwjLCW4n6KG0j7Umq6bYS2t0WSaZJcwXG9PynbFFAKXJv+0j8ciPWq+lPFxrJFV/fbgzI0G0GR0qqpYBK0acd5yw2YxabKa1ORiG0Ze3X8uN3pFweN94XtO5pAFKF1xOD7ipbAnSjSNYAH0zY5q57UOIcpr1ArVBD65C5uhWiXishUtWddB//RcyJbxFefBW3Nb3m9fNLih3DVsDpX3oDp7uw6baSyftJp+4HwK2fIzrzzKbrGgROvETh6J/SOfQZOnf+BFKD34xJcr1G73I13D2i+MEFh3oieXmuwEe8BURUADbYhjHWMV4lKK9IGo6Qe9b01BeKuXpC4LkUQpfvvX6RP3vxfP+tUggO7ChzZN8wd+6pbTv5WUac2qo8z5EMlQOGKrZLvMxjdHMJ1em5QWuNCCOc4hDSpJibYD5oVI469zrZe89gGjO9pQJnx124h57CGdm9/ftgDCaNyZsddCvGIBGujyyPIIKi9SLyAoxw+33XkqaiFTdJUkWaK5SyxNpzJZ4nKQT+NRW0DHBtGJCh2xRCiH4vntFqzlIrYaGZsNBICDyHwtVcaW8AjLENEruxnW0WQpddY6tN4QYX5gAWwvVtykwITGueoWIVo0Pmml2KwsO9VgM6xyc+/KOkOx5CxnXePd/hrXNtXKF49jsNxisdHt4b8eTYPQSqY40NdY7QCqFzKzrOE7S/2uFaoN3A9uvSCrFKN6G9iKy2F2/pLDJtUTj2J3QPfhqiGsXQY7GZoh2zZdGnI2106E9PSp6bDnlkrEuhPYNrIowToKVvU0UqxcvbKCckLu4g8yu2QghYbCacvNjAEYLAddgxWmBvrwv8rSBAVhRtjSxter/AUDkglDmkTfTsInnSWqkEC8sI6SIdcVNEyCbpkJ96gez4c5BYM1kcD3ffw7gHn0AWt56qvO59ULm1A1AphAXcoSncooPAQ7s+ed6L+sSK9mKXTpKT55pM2x5sriPwXbnOcmCA7cegN9kWsV29ya6lR1WaKRqdlPl6TDvOcRxr1X+jRZGr02Ch71IreVQKAcXIvWEX6AepP9eNxof52I3KUUvnMfU5TFRmrpkx30go9yKIxWJAu52saUmxpe0aw+n5jBdPdXnrQsLyaXMl3L0j4NF9EftGV4VAVYpTv9BLR2wSGjXakiKjME6PnGQdovf+DCeuo52A7qFPoaIR6q2UTqyIwq0P6krDr78W0EgFn9qb8bGdGWncQSPR0gUEyo1IozHScBjj+H0CdPJis2+FMVT2+cwjuxmuBIzWItJM3TQCBCuVYd1EEQYuI5WAaigITGIrwbrNXkd432pdLqsEu54+VdcC3Zonf+8H5Gdetm05sIJo9+ATuPse2fZeYH1rgLQD0kEEJWRpCKdQwS+VmJ5t0mwndOLc+rgpjTEG15X47rJ4+MNFfK6nOe9CI2H/VOWK/TCvB4PeZB9C+J7DaDWiVgpodjIWGjGNTorARm3eT7pqszRYMfK23YxtgA8PhOPiDO2yA35jhtFSEWMCFpsJlffRnkAIwb5Rn32jPp9LNa+di3nxVMx0I+f1cwnasJYMOT4mrCLbcz2is9FGJTgSw8rgbbwCncOfXaUh+gbdA5+gFI2T5Ipc6S1PPmx0KOd/nPJ49oLL47sdlCcRaQs3bWCEj3ZCmp2Et07PcHwmZrG14gUkBewcK7F/qkwhdFlqpoS+e9Pa3KzuGRb5kl01h2qg8NQ8eqGByhI7+N+kSrDL903PnyF/7/uoi+/2l4vqJN6hJ3F23bPtnkBGZb0oUA5egKxOIgtVYuHT7irqlzoIN6XZ7GK0wfMkUSBxnUFU/XbEgAx9AOH28vTVkk+rm7HYiKm3UlrdzPZf2qKuaDkNFidW7T9Igw1wIyCkgxzaafvi1S8xWixgjE+jk1MqvP/IQORLnjhQ4PH9EReWcl463eXenSsVU6+e6fLmhYRH9gTcGQY4VzBi3BBuQOfQZ4hOfBO3NU10/M9h/9MUw0nqrbSX8tvatXHPqOIHF1yaqeDl8xkPD7XInICmP4YTlhAmpz7T4YUTdn0pYNdIyP4dVfZMVddMRJTWzC118T25rZEhY4yNYnS7FJycPaGiJFPcJIVOjl6uBCtuX9+yTfdNK9SFt8iPPYNeutBfLicO4x1+Cjm6b1v3yUaBupi0uyYKpLwSrQyWlhIanaaN3oUuE9UCnjBbjo4McOswIEMfYEghqBR8KgWfTpyx1ExZaCW0Gwmhb3VFG90YltNgWW4IfIeRaki1eGPTYAP8cENIiRyasi63SxcYLUYgPeqdBO8GjVVCCHYOeewcWpuWef5UzNmFjHcvpZSDkIfHYh7ZbRguXMMHOx7dg58kOvkd3MZ5ohPfgr0fJQ6mSDK95WipI+GJyYRvnAn51hmPme4IpxuS0JN8+SGBER47xl0OznU5MAwHazmR00E7iizLUJRQbgRCEvourU7G7FLMjpEi7lYNKbcIk2d02y3ybpeC6TARaoquwTUSIQLwtr8j/Kb7lsXkp14iP/4sptvrEi9d3D0P4B76CLI8tr2fv0EUSEQVOvg0uzmLc22SVCEERKFrNT89A8IPCpZJcL2d0uyk1NsZjXZKo5PSTXLrP+TY8vrlbggrj3LN/64jKRZ80jTvtZcSK+9f5V20+j3XmDm/4RiQoQ8JCqFHIfQYqYXUl8XWzaSX8nIRCLqpDXkvp8GGBmmwAbYRQkhkddKmoxbPM14IaRmfS7OtXknw9nzuTz1U5qXTXV45E9NMDN86F/Ktc3BgyPDoDsPdY7Cln7x06R74EcLT38dbPEV0+ruM7nicS95ulNZrJg7aQK5h2SJlvit4fUbQTgz1TCKFIVaCly8BGBypSHJD4NqB4CfuXfEvyoxGqoSgO4+J59FORO6Xyb0ixdCn0clYaHYZqxXe3zk0GpHFmKxL0myguk0iV1MpuBSLRdygaHVAtzBCrDtLVg90+iXbgwsgKOIdeAx3/2OI4OrmmtcLY3RPC9SLAoUlZHGYzCnQzGBxIaHVbZIrTRQ4VEu3b7XXcsqz0U5prCI5jXbaIz922eatYm4O/h8ln6FtJrabYUCGPmQIPIfxoQLDlZBGO2W+EdNoZRigOEiDDXCTIYRAVsatOLl+nomST6vl0mxnlIvethCisbLLj91b5tNHSrx7MeGlky2OzylOLApOLAp+6i7NYzu3egCSeO9HMY6HP3eM8oXnOO2nfDu/i65yaKWCZipoZ3DvmOKz+3OEzok7OS9O1zbcZCUUfPmhIsFmkR0h0W6EdiMwCkclBJ1pfOGg3RDplqkvpoSeS+Va9EPGgEqQWWxduuMWSbeNyhVh4FMZKVOsFHFvgwakauEc+XvPoC681e9rJcpjVg+0+75tjVCtiQL5IbI2BUGZtvFodDLqLdt2xnelLWC5xeLnZYF7vZ31Cc6av2skOqXIo1L0qBRt1qFS9CkELsastPRQatVzvardR+/RGJCOJE6ylXW1bfWxvN7qFiFKWU3VUOnGiqevBbf+Vz/AtsB1rIljrRTQ6lpR5iANNsCtgBACpzKG9Bz8dI6JoiZXNuVTKmwPIQJwpeCenSH37AhozEzz0rmUN+Z97ptYWeebJ6EUwGgE9QQaCdRjYR8T+PLdhomSINn1OG/N+zxo3uTe9BUudBV/2H2Q1dqhVgpOZpupVspFHtppW+uUAkklkoSBx289V6cRG/7nuzGfuzfCuVokQTgot4ByCwidI1VMKW3haUn7wjzhxDh+qcKmZmIqRWQxIusi0hYyTzB5SpwZUuESRlVGKhGl6NaXchuVWz3QiefRC2f7y+XYAbxDTyInDm6bSeKaKJDT0wIVh4llRCsxLM4ldJIYDESBw0gluGWTSWMMM4tdjp2rc+xcnYvzbfItVumVIo9KoUd0lv8Kfp/8lCNvS5VXV8P1VpNVB2RogO2ClGJt9+sBBrhFkOVRfKeE3z7KeJQxYxxa3ZxyYZtvQ0JQHaryGfcCnzoo+l3Quxl885Qg15sPaouxYaJkt3G2+hDNBZ+n5ct8NnqdA6UupyoPU/Gh6nQouhrlFcn8Cr4T8tHaynYdKYhCjy8+UOB3X25zeiHnm0djPnVnuOVB1UgXJUsoDxydoVpNuhebhLUyIqqigzLGCxEqswQoaSLyLqLX7kELj1bukIsyUcllsuTfFiRId5bIT75AfuolSDt2oZA4u++zJKg6uW2fbVSGSaxjOX6ErE2h/DIt5VFvpjQ6HbLc9tqrFG/duUozxcmLDY6dq/PeuTqNTrZunWLoUi36lIu+fSx4K/8X/L6OaYCNMSBDAwwwwE2DWxnBGd1DMH2GMZNwyaxEiLYTxoswQQUZL2GcMmAbv3/6gOHVS5ApqARQCaEaQDU0VALYtapi/BP7gf33EM96BOee45B6j4m4Q7N8H7lXJvUrPbHz5uRmquryY0civv5Gl7cvZRR9wUcOXHvvMCM9vHKNeidDdjVDZgG3M49xPITKwWiM42IcH+VEdFONVoYochkvBZQiF3mTm5Gu2X+j0TMnyE88j7p0FHoGmCIs4+5/FHffw4iwvH2fn8WYpG2jQGEZikN0CWkmhqXZhG7axZGCQuBSKd4a0fh8I+a9XvTn9KXmmjSX60j2T5U5vKvK/qkKtZI/IDrvEwMyNMAAA9xUyEINZxTChbNM6i4XOy7tbk4x2sbbkQAdVpBpq28QGLrw9F54eu+1iUaz0UOAJjj3IuXuBcS85NK+z1k/oy1g/6jHJ+80/Pm7MS+cSSn4kvt3XUf0Vgii0KWeaLwwpBhKUDnGs9VnWtvqIG0UxdCjWvJvPQlKO+SnXyE/+TymvdhfLsf24+5/DGfqzm11qzZ5golb4HjI6iSZV6atPBaWEtpxG60gDByGyzc/DZYrzenpJu+drXPsfH1dr66hcsDhXVUO7ayyb7J8y7VKHzYMyNAAAwxw0yGjCmJkLxFnmTBNLnU8unFOFG6jf44brBgxyk2MGK+4AYPIY9A52fBBVGGEwrFvUGqfY8fpP+TC3s9vmRAdmfJpJ4ZnTyV8+72Ygi84NH7tEQjHkThKs9RK8N0Iz/NR2tDpZmCgGFkSVAy9LbcS2Q6kc2fpvvod8rNvgLYu0XgB7p4Hcfc/uv2l8XmKSVogHVRhhK5bo5k5NJZSkizG9ySlyLvppfCNdtpPfZ242FjVhd5KHPZMlDi8q8rhXbVbqlP6YcCADA0wwAC3BCIs4YzuoSjPMq7qTHd9umlO5G/fbUkHFUTchGsxYjQGoRLbddwN0aVhjF9C1XbT8KqU3v49Cq3z7Dz5B1zY9wW0u7XtPrrXp51q3riQ8advdwk9wa6haz/2wHfpdHPmlroUIg8pBaVeJKhwC0mQURnq3BvEJ1+gubjSXFZUJ/EOPIaz6z7EZq1SbuA+mLhJpgyxW6FpyjQ7PkmWIoVNgxVvYud3rQ3nZlt9AjS92F3zeinyeuTHpr8Cf2B7crMwIEMDDDDALYMIijgjeylzFsM8l7o+CWL7BgHHxRRqyNY0xgRX1PcAkCcIlWAcH1MaRwclWNXmwYzsYfGuv0Dtnd8j6kyz68Tvcn7/T6G8q/vfCCH4+OGQTmo4MZfz9Tc6fPmhIqOlrR+70YYkV2ijqXc0YeCyY7RIueDfMhKkW/NWEH36Zchiu1A6uLvuwdn3GHJ417aTD51npO06SappigItUSHOQlxXEPqCYnjzoiztbsbRs0scO1fn+Pk6carWvL5rrMihXvRncjgaRH9uEQZkaIABBrilEH6EM7qHipCYuRmmE5vB8reJEGm/hHCXo0ObNPHslaQbx0cXRtFBGTbxtnFGdnHx0JeZPP4HBPECu47/LucP/BS5f/V+XVIIPnt3xH97rcOFuuJrr3X4Cw8XqYRXSNcYQ6Y0aW47nfueoFoMcR1JmikWGnHPCNAj9J2bQoqM0ahLx8hPPIeeOd5fLgpVvAOPMXzfU7QzZ1satS5DG0OSpMSNRTpxTluUiP0qTlgiDFwKrrxpRCNOcl49scA7pxc5c6nJ6qMOfYdDO2305+DOCoXw1gi0bwWW+8IbAwbrR8Tq57cQAzI0wAAD3HIIL8QZ3U1FgJmZZjqxM3fP2wYNh3QwUQ3ZvGT9ZVYLilWGzGO0dNGFEXRY3tzDZ3nfBYSjU5zMv8S+s1/DT+vsOv47nN//U2Th8FV3x3UEn7+3wO+80mahrflvr3b4Cw8XiC47dqU1aWaN63xHUC34hKFD6Lr9Q4h8lzjPmVnsImVMFLhUCh6FwMX3bvzt3iQt8lMvk598YaVNBiAnDuHtfww5eRjXdXCiCLLuFbZ0fdDGEKeKbjeh01giTTNSt4woT+AXKwx5N5dozNVjnn97mlfem1+j/5kYiji824qfd42Vblun6sthjCHLNZnSaL1CWIwxGFjzP0aAMIBtu5EoQ7ud9HyGlo/XgBBIbGRUQD86GwUOt/K0DMjQAAMMcFtAuAHuyB5qQqKnLzAbGxAB3jZUzWi/iPCLiKyN8UugckTexUgHFdXQQQXcrRvAea4kGh7jqPkpDl/4Q4Jkkd3Hf5fz+79IUhi/6vsDT/DF+wr89sttlrqa//56ly89UMAVkOaKTBlcRxD5DoXQI/CdXsPYtRDSEqLIB6VsI+aL8xlezy25VPCJfPd9CYWNMeiFs+Qnn0edfwt0L+3jRbj7HsLd9yiydHUSeL1QWlsClOS0OwlZp4FRClmo4o7vxi9U1hLcbYYxhuPnGzz79jTHzzf6y8drEU8/tJO9EyVK21gYcKNgjCHvRRyzXKOUbRzsuhLflbieRAqQUiKl5TBSLC8Ta0iO60qGhgrU61200iBEb337m7Wkxy6zf8J+1i20B7j9v6EBBhjghwbC9XFG9jAkJObCOWa7hmIh2nDg3xTGgNG9P4PoP7d/wmiWfW1k0kKrDOMG6KCCCauYa+lwvwql0KNbrPLeri9y8MLXCbuz7Dzx+1zY/5Nk5av3/yiFki/eX+B3Xm4z3VB8/fU2n7rDJ/IdygWfKHDwXGfLjt2OIyj0DCazXNPoZCy1UgLfoRz6FCOXMHC3lEYzxmCas6iZ4+RnXsHUp/uvyaGdtix+1z3b1iYjVz0CFOc045QszZFpB89RhKUqlEYxQfmmkqA0U7z63jzPvT3DfCPuL79jd5XH757g0K4q1UrhmlyYbxaWiU/WIz65MpbEOJLAk1QqPlHgEngOvufgX2OK0XUlQ9UIqTV5fnsd+2YYkKEBBhjgtoJwXNyRXQwjMedPs9A2ICW+I/AdgRSXERvTC8Mb+mF6hAQhMb1HpIuRLjguWro9EbRAh1VkXEcVhm067H1oSoSESslnNos4vfen2H326xTaF9h54g+Y3v85CO+44vuV1hRcw6fv8PmTd1LOLmlevqD56YfKyGshgxvAcyWeKzHGDuLzzZiFFoR+L40Wuvius2bA0+1F9OxJ1OwJ1OxJSNorG5Quzu77cPc/ijO01UZv14YsV8SZot3NaCc5eWa/64CYitCYaglTGLF6rm30Jroci82E59+Z4eWjcySZjYr5nuShw6M8dtc4wxVLpm8XIbQlPr10V67WEB/fFQyVQ5tG9R0C18Hz5C21YbhVGJChAQYY4LaDkC7uyE6GhSCYmyZOczqpppUCCBzXxQ8iHN8H6WHj9hIjHDswriFCzqYRA+NHsHiq96HvfwAIfYdS5LPUMlzY/wWmTv8xxeZpJk/8Ic28jg4m6AbDGGkjKMYY0swOUNIRhL7knt0lSsWMrz7f5LVzKbVCm08fKb3vfQN7iIHvEPgOWhuSVHFpIcOVkqJMKHXP49XPwNwpTGdp7ZsdFzmyF2fiEO6eBxB+4Ybsk9KaXNnohH3UJKmimyrSXCGFJcFlN0XqFOMV0cURm8q8SSTIGMOpS02ee2uGd88u9ZcPVwIev3ucBw6NEni3Rxl83tP4pLnu63VcR+K5gloppBi6NtrjSXzv5gjsPwgYkKEBBhjgtoSQDt7ITmrlYRCS3AjiTNNJDI1uRjNRZLnGAULHhvOvVZhqvAI6GsJpzqAd74akWcpFjzjL6eaaC3s/x+TZb1CuH6Ny5ttUsAGszKvQCYaJ/RHywgiiMoFXHsbzbePae3a6dDP42itNvn20QzmUPH7gxpCPZUidUm6fxVs8g7N0GrczD9CvfDJCIod24owfwBnbjxza1e/rdq1Q2qZj4lT1CU+aKZJMk2uNzg3KGJvWFAIhBb4rqEQeMu8g8hTjFVDlCXRYWWNvsJ3Ics3rJ2wqbGaVJ9CBHRWeODLOoZ3VWxoBMj0BeZZr8txghMGTEteVVAs+xcjD9xwCT+K71359/DBhQIYGGGCA2xZCSAisZ48HeAGUSzC+XEWU5LS6Gc2u1cMABJ7sCYy3Rmx0NILIusjukvUR2qKL9GZwHUGl4DO7FKNdyaU9P0o6P06xdRanPYunuvhZAz9rAKdgwb7PSBdVHEUVx1DFMT5SGyW5o8ifHlV8/bUWpVByZMf16ZkAUBlu4wLu0hncpdM4zWkEa+uZ8+I4aWU37eIuktIOgiiiVPAphC7hVaIwuqdDUboX4ck1aS8t4y/FNFoxWa4xxmYzpbS6JkcK/MAO1H1eYYxtMhvHlgTVdtlI0DZpki5HvZ3ywjszvHR0lm5iU2GeK3ng4AiP3T3OWG0TS4abgGUClKQKbWw0slLwKEQ+gSt75GdAfK4VAzI0wAADfOAghCAKXKLAZbgSkuXaVhfFGY12SrubkyuN60rCXkpg0xm866NqezDtWZzWPEamGL94zWkzYywh0MogJDgSFhoJUeDQLd9HNP4IaE1RJBSyRYJ4DtmexWnP4XTmETrHbV7CbV7qb/PzwCdHCpxOalx6Y4h6ZydDk5PowvDVoyNa4bSmcRdPWwLUuIAwaw3/VDREXtvT+9uN8Wz0yQNcDXGWM7PYwZGyX6YfBg7G0EtrKbLMGj+muUJrg9Km7ycjhMBzJUHgEXoOoXcVAbgxiKyLyBOMG6IqO9FR7aaQIGMMZ2daPPf2DG+fXuyXjddKPo/dNc6Dh0eJglszZBpj+qlDY2yqc7QWUo6sy/h2VFz+sGFAhgYYYIAPPKxA2KdS9JkYLhAnOZ0kp9lJaceKdpwigMC3USNHXjZ4SBddmsR4BZzmNDJe2lCTYgwobdBKo4xBKYNeNlwRAkcIpCPwpGRiqIDn2r5XxcinUgpJswyjQ6BKwr5VG9bI7hJOe7b31yNKcZ2C6XC33+FuLsCFN+GCTWHpaLgXRRpFlcZQhVFEHuMtnbHkp34OodI1+6/9EnltD1mPAJlwc2NIIekRTlumH6c5rW6K60hL+oxB9MqjHWkjPJ4riaRck210pCQMXFSuUHqTyiKjEWkHoTOMG6EqO9BR9X1H6baCXGneOrXIs29Nc3G+01++d7LME3ePc8fu2i2JshhjrRHiRKGMIfRcRiohlaJPMXTx3NtDo/RhwYAMDTDAAB8qSCEohB6F0GO0GpFmPU+abk69k9BsZ9a40JMEnoO3XDYsBCasksoA6pcQzQUyJySXwYqpnARHWFM513EohjYt4UgrUnUdgSMljhQIIaiUfKYXOoQ90XKe5ajLUlOA7TJfGEYXhsnG7lxZnqc4nTlozvDe8fOUs3l2uotEZDidOfva7ObnQrsheW03eW0veW0POhq6LqG44wiKkdsng31vmfcLnVsSZLRNh1Wm0H7ppkSCWp2MF96d4cV3Z2nHtnmsIwX391Jhk8M3VqO1FVhBvY1yKmMIPBv5LBd8StGAAG0nBmRogAEG+FDD73mlVEsBEzqim1hy1GintOOcZifr8QOBwViyU5jClyFROo/ndPGKQziu1SG5stct/vLo0gaoFn1a3Yx2nFEuXYfex/VRlR1Q2cHk2P38+ncWmVnMOVCK+cp9GYVkvh9Nkt1FKzSv7rLkZ2gPqjh+Q6rkliEE1+b5tBlUikw7IAQ6KKOiIWt+uc3VYcYYzs+1ef7tGd48tYjWlpiWCx6P3jXOI3eM3vT2GMYY0l6aVylD4LsMlQMqxaBf+TXA9mNAhgYYYIAfGjhSUookpchjtBqSZIpuokiy3JYfO7YSxz4fhXQKvXgREzcQQfWaq6kcKRkph1xYaJO+T/O5yJd85aka/8e3FznRivj375b5hacO4rs9cqJVz873NtWPGIPIYkTeBenZSFhYw/iFbd/nPNe8eWqB59+e4cKqVNiu/397dx7eVJX/D/x9s+9tuiNugLRlaSmVFnApglJQcUQRAQEVGEVwANGRRZip6AOio6gggig/GVnmx+go44wMKi44DlsLqCi0pVigSpeUNs2+3HvP94/QSEhaljZt03xez1NLbk6u5+Tc3Hx61kQtBvZORvo1sRcV3LaWxgDI5ebBCwxKuRSxWiVidEpoVLIOM00/mlAwRAiJShzHQaWQQaWQAWhi6w2VHlyiEmJDNUSLCZArwCkvbc0fjcr3l77d6UFLt1qLUUsxeXAs/t9/61FRx+ODogaMy42BVMK16cKDl4QxwG0H57QAEgUEXfLZlb7DPyPLbHOjqNiEQ8dq4XT/1hXWt1scBvRKQtcEbdjzcC6P1zcImud93bQxWoWvBUgtpwConVEwRAghzeBkCkjiuoJTaiCYK8HsdeDUMeAuMvjgOA5xehXqHV7U1TugUcla1HOVZJDhgUEx+Ov/zCip8uDf31vxuyx9h1nx2E8UfDPDmAAoYiDGdAUv1wOy8A6KZoyhvNKKwqM1KP3F7J8VFqNV4Pq0RPRPTYC2DbvCPF4BNqcXPC9CLvNNg4/RKqE9u8cc6RgoGCKEkAvgOAk4XTw4hRpCfSWY3QyotOAuch8zuUyCKxJ1sNndsDu90Gla9mV8dbwCY3Ni8P/3NeDgSRf0KgmG9WqdVapbTOTBeezgGIOo0ELQJQAJSRAdXiCMe3S5PQK+P34GRcU1qG34ba+wbl30yO2VhJ5Xtu2sMIebh4t3wOsRoFfLEXu2C8zXEkk6GqoVQgi5SJxCA2niNRCVGoiWajDeDU5luKhWGY1ShhSjGr+Y7LA7eWjVLbv9pndRYlSWHv/6zopdJQ7oVVLkdGu/xQDBeyDxOnwz45QG36BopQ5SmW9POMAblv+tyexEYXENfig74x+XpZBJ0O+6BAxIT2zzBRLdXgE2hxcalQzdrzQCggDZ2dmFpOOiYIgQQi4BJ5FBGtsFnEID0XwazF4HqC9ucLVGJUeKUYPKOjucLh5qVctuwQOuVcPqEvF1sR2ffG+FQgpkXKVqu/2mGAPHu8F5nWAyOURNPER1rG/xxjDmQRQZSivM2F9cgxOVVv/xhBgVctKTkNkjvs27oHhehNXhhVTCISVOg+R4Dbok6lBfb4+YndujGQVDhBByGSSaGHAKFYT6KjBbLSBXg1NeeG0arVqOJKMG1WcccHn4Fneb3JKmgdUl4MAJFz48aMWnP9qQmqJEryuU6J6ogLw1psKfj4mBK0XrU8BUhrAPira7vDhUWouiEhMsdt+CkhwHpF0Vi5xeSbg2pe3HTokig9XhgcgAo16JhFg1dGo5ZLQqdETp8MGQ2+3G8uXLsWPHDrhcLgwbNgyLFi1CXFzcRb127NixePjhh3Hvvfe2QW4JIdGEkykhTbgKTKWBYK4Cc9T7BldfYKq4QaMAExmq6h3gILSoFYPjONyZqYdCyuG7Uy7YPQyHTrlw6JQLCimH65IV6NVFiZ7JCqgVLfyCFrzgeBc4gfctkhiTBFEZ/kHRv5psKCw24afyOghn1wbSKGXon5qAAWmJiNE1MRswjBhjsDt5uHkBMRolEo1q6DVy2gU+QnX4YOjZZ59FUVERVq1aBYVCgYKCAsyePRubNm1q9nVWqxVPPPEESkpK2iinhJBoxHEScPpEcHK1LyCy1wEqA7gLBAgxOiUExmCqd0LCcZC3YN69VMJhZIYew/vocPKMF0dPu1Fc5YbFKeLIaTeOnHZDwgHdEuRI76JEehclDOqLCMCYCI73gBPcvinyEhlEuRqiwegLgsK4e7x/baDiGpyu/W1toCsStMhJT0Sfa+ParfXF4eLhdPPQqeW4IkGLGJ2iTdcpIq2vQwdD1dXV2LZtG9auXYsBAwYAAFasWIGRI0fi0KFD6N+/f8jXffnll3j++edhNBrbMruEkCjGqXSQJl57dk2iGoB3A0pds902Rp1vqw+T2QVwaPGGm1IJh+6JCnRPVOCOTB1Om3kUV7pRXOlGjVXAcZMXx01efPKDDV2NMqR3UaJXFyUS9ed8FYi8bxyQ4AHAgUmVENVxYAotRLnat19YmFo/vLyAMw1u/HSiDodKa+E4Z22gPt3ikJOeiK6J7TdrrnFwtEohw1VJOhj1KtoktZPo0MHQgQMHAACDBg3yH+vWrRuSk5NRWFjYZDC0c+dOjB8/HlOmTEFGRkab5JUQQjipDBLjFeCUGohn1ySCJqbJvbY4joNRr4IoArUWJ7ScvHW2uzh77q5GOboa5bi1tw5nbDyOng2Mfqnj8Wu97+eLI3YkaCVIT+LQOxHoGicHZCoImngwudo3DqgVW4BEkaHB7sGZBhfOWM7+NLhwxuL2jwNqZNAqMKAd1gY6n5cXYXN4IZVKkBKnQXyMiqbIdzIdujarq6thNBqhVAb2ByclJaGqqqrJ1y1btiws+WntJlmpVBLwO5pQ2aOv7FFV7ph4MI0WQn0lRGst3+29HwAAHVxJREFUOIkegPps2QNnFknBITlODU4CnGlwQaeRQxaGLpckgwJJBgWGpOlhdXhQ/KsDRyo9+PmMiFq7iG/LgW/LAb2aQ9o1cvS6Ro1ru+ghu8z6sru8ONPgQp3FDYvDi8paG2rNLtRZXeCFEJvVnqVWStE1QYcB6UlIvTrWt7p2OxFEEVa7F4wBiXFqJMaooVVfXFAWVdf7eSKx7O0aDP3yyy+49dZbm3x+zpw5UCiC+92VSiXcbnc4sxZEIuFgNIZn6XaDoR3XBmlnVPboEz3l1oIlxMJrrgFfVwneWgeVXAlOLgEkUt8ga4nU342m06ugUTtQ2+CETqWAtDVngTEGCB7A6wZEHlqtBCl9YnHLAD1cUOHIaTd+LK/HkRN1sDp5FBWbUFRsgkohRe9u8cjokYD0a41BrSEeXkCt2QlTvRM19Y7ffpudcJzdCT4UqZRDYqwaSUbNb7+Nvt8XG2yEk8h8M8R4AbgixYCUON+4oMuZqRY913uwSCp7uwZDycnJ2L59e5PP79q1Cx6PJ+i42+2GWt22b7IoMlgsjgsnvARSqQQGgxoWixNCGFdm7Yio7NFX9mgtNzgDOL0UKqEBNrMFIi8ATABEAUw8931gUDEOKq8bNZX10GlVkEikvk1M/T+X8GUsCoDg8Y39YSKYVOHr8lLGne3+Uvk3SL3uSjWuuzIWo264BuWnLTh6sh4lp8ywOb04WFKDgyU1kEk5dL/CgFid0t+11WDzoOk2Ht8WGAmxaqTEaxGrlcNoUCIhRo0YrSLkatACz8NibTqICjfGGBxu3+BovVqBJKMasToFGM/DbL60fEXt9Y6OVXaDQX1RLVTtGgzJ5XL06NGjyedLSkpgNpvh8XgCWohqamqQnJzcFlkMEK6FswRBjNpFuajs0Vf2aCy3TKGFypgEh8oG0ev1BSqiAE4UwUT+7GMREsELo9IFj8kCi80BvUYGDiI4UQRY8HvGzgmW2NlgyTf7y+s7JlNCVBnBFFowmTpwCrzo/48fB6D7FQZ0v8KA2wdejV9r7Sg+VY+Sk2bUWd0orWgIyoNSLkV8jAoJMSrEGZRnf6sQb1BCLpP6vhj1alisv30xMsYgNNNV1h5cHh52pwCVUoqu8VrEGVSQSSUQRQZRvPy8RuP13iiSyt6hxwxdf/31EEURBw4cwODBgwEA5eXlqK6uRk5OTjvnjhBCLg3HceAksoAByee3j0gBpMQLOFVlgcnmglEnhQTMFzAxARwTzwZPXl/QI/LgBB6cKABgYHIVRF2Sr/VHprrs3ewlEg5XJelwVZIOt11/JUxmF0orzHB5BMQblIiPUSHeoDq78Wzkrq3j5QVYHTxkUgm6xGsQb1DRBqpRqEMHQ8nJybjzzjuxePFiLFu2DGq1GgUFBcjNzUVWVhYAwOPxoKGhATExMSHHFxFCSKRRyqW4MkmPCnAwO72I1Sv9AUfINorGAAkMkMhbfeo7x3FIMqqRZIycMSAXIgi+7TMA3zYeCTEqaNpxxhppXx1+qPfzzz+PwYMH4w9/+AOmTZuG7t27Y+XKlf7nDx06hJtuugmHDh1qx1wSQkjrUitluDJRB7VKhgZb8NjJAJzEN30/jGsAdRaiyGCxe2Cxe2HQKNC9awyuStJRIBTlOMZYx+q47aAEQURdnb1VzymTSWA0aqNyIz8qe/SVPVrLDbSs7DanF6eqreAFEQZt5LV+hxoz1B5EkcHu8sLDi9CrFUiMbXogd2ug671jlD0uTtvxB1ATQghpnk4tx5WJOpyqtsLm8EKnoRaMS8EYg93Fw+0RoFPL0TVBR9tnkCAUDBFCSAdn0CpwZZIOp6ptsLu87boac6RgjMHp5uF0C9Cq5UhJ0SBWp7zsRSRJ50bBECGERIBYnRKiyHCqxgqnm4daSbfvpjjdPBwu33tEe4iRi0GfJkIIiRBxBhVEkaHCZAPHgfbHOo/Lw8Pm5KFWyNA1UYs4vQoKOU2TJxdGnyRCCIkg8TEqCCLD6Vo7JBxHX/b4bTd5hVyKKxK0iNfTWkHk0lAwRAghEYTjOCQa1RAYQ+UZOwwcIJdF5xe/xyvA5vQtmJgc51swkboPyeWgq4YQQiKMhOOQYtSAiQyVdQ7EajnIomhMjJcXYXN4IZFwtGAiaRUUDBFCSASSSDikxGsgiAwmsxOxOsVFracSyXjBFwQBgFGvREKsGtoI3w6EdAwUDBFCSISSSiS4IkELUWQ4Y3HBqFeGbRHB9iSIviBIFIFYvQLxMWro1XIKgkiroWCIEEIimEwqQddEHUTGUG91Q6+Rd5pB1aLIYHN6IQgMBq0CCbFq6DVySCgIIq2MgiFCCIlwcpkEVybqIJVwaLB7YXV4oVRIoVHKIrKlqK23ziCEgiFCCOkEFHIprkkxwOnmYXV4UG91o8Hm8a1HpJRCKZd26G4lxhg8XhFODw9RZNCqaOsM0nYoGCKEkE5ErZRBrZQhPkYFu5OH2eaGxe6B3emGQi6BRinrMAOtGWNwewQ4PQJExqCUyxCrVSJGp4ReI6etM0iboWCIEEI6IalEAoNWAYNWAbdHgNXpay2yOrwQGaBWSqFStH1rkSgyuL0C3B4BIgOUCiniDSroNQpoVbJOM96JRBYKhgghpJNTKqRQKtSIM6jgcPGw2Dyot7tRZ3FDJvO1FoVz7y5BZHC4vHA4eTAAKoUUCbEq6NUKaFSyqF00knQcFAwRQkiUkHAcdGo5dGo5Eo0qWB1e1FvdsDu9sAji2dai1hl0LYgiXB4BvMDgEX0rZycbNdBq5NCqZNQFRjoUCoYIISQKyWVSxBmkMOqVcLh5WOy+bjSzzQOJBNAoL73LShB8AZDbK4DjOKiVMiQaVbgyJQYelwdgYSoMIS1EwRAhhEQxjuOgVcmhVcmRGKuGzemF2eqGxXFxU/R5QYTL7QuApBLOP3hbp1ZArZRCqZAhRqdEvZcHz4ttXDpCLg4FQ4QQQgD4FnCM1SkRq1OGnKKvVsqgVEjh5UW4PDw8XgaZ1BcAJRnV0KjkEbu2EYluFAwRQggJcu4UfZuTR8PZKfo2pxdyqQRqlQwpcUpoVTKolDJaFZpENAqGCCGENEkqkSBGq0DM2Sn6DjcPpVwKtbJjL+JIyKWgYIgQQshF8U3Rp2nwpPOhuY2EEEIIiWoUDBFCCCEkqlEwRAghhJCoRsEQIYQQQqIaBUOEEEIIiWoUDBFCCCEkqlEwRAghhJCoRsEQIYQQQqIaBUOEEEIIiWoUDBFCCCEkqlEwRAghhJCoRsEQIYQQQqIaBUOEEEIIiWocY4y1dyYiAWMMotj6b5VUKoEgiK1+3khAZY++skdruQEqezSWPVrLDXScskskHDiOu2A6CoYIIYQQEtWom4wQQgghUY2CIUIIIYRENQqGCCGEEBLVKBgihBBCSFSjYIgQQgghUY2CIUIIIYRENQqGCCGEEBLVKBgihBBCSFSjYIgQQgghUY2CIUIIIYRENQqGCCGEEBLVKBgihBBCSFSjYIgQQgghUY2CoTASRRErV67EzTffjKysLDzyyCOoqKhoMn19fT2eeuop5OTkIDc3F0uWLIHT6WzDHLces9mMP//5z8jLy0N2djYmTJiAoqKiJtOvWbMGaWlpQT+RqLq6OmRZPvzww5DpO0O979u3L2SZ09LScOutt4Z8zYEDB0Km37dvXxvnvmXeeustTJ48OeDY0aNHMWnSJGRlZWHYsGF47733Lnie//znP7jjjjuQmZmJ0aNHY8+ePeHKcqsIVe4vv/wSY8aMQf/+/TFs2DC8+OKLcLlcTZ5DEARkZmYGXQOrVq0Kd/ZbJFTZFy9eHFSOYcOGNXueSKtzILjskydPbvKzv23btibPM2XKlKD057+nbYqRsFm1ahUbOHAg++qrr9jRo0fZ1KlTWX5+PnO73SHTT5o0iY0ZM4b9+OOPbPfu3Wzo0KFs3rx5bZzr1jFlyhQ2atQoVlhYyH7++We2ZMkSlpmZyY4fPx4y/Zw5c9jTTz/NampqAn4i0ddff80yMjJYdXV1QFmcTmfI9J2h3t1ud1DdffbZZywtLY198MEHIV+zefNmdttttwW9rqnPR0e0adMmlp6eziZNmuQ/VldXxwYOHMgWLlzIysrK2AcffMAyMjKafB8YY2zPnj2sT58+7K9//SsrKytjy5cvZ3379mVlZWVtUYxLFqrchYWFrFevXmzNmjWsvLycff311ywvL48tWLCgyfOUlZWx1NRUdvTo0YBrwGaztUUxLkuosjPG2H333cdWrFgRUI4zZ840eZ5Iq3PGQpe9vr4+oMzV1dXsgQceYHfeeWez9Th48GC2ZcuWgNfW19e3QSlCo2AoTNxuN+vfvz/bvHmz/1hDQwPLzMxk//rXv4LSHzx4kKWmpgZ8EP773/+ytLQ0VlVV1SZ5bi0nTpxgqamprKioyH9MFEV22223sddeey3ka26//Xb27rvvtlEOw2vdunXsrrvuuqi0nanez2W329nQoUOb/SIsKChgjz32WBvmqvVUVVWx6dOns6ysLDZy5MiAL4e1a9eym266iXm9Xv+xV155heXn5zd5vqlTp7I5c+YEHBs3bhz705/+1Op5b4nmyv3UU0+xhx9+OCD9Rx99xPr06dNkgPvJJ5+w7OzssOa5tTRXdlEUWVZWFvvss88u+nyRUueMNV/2823cuJH17du3yT98GWOstraWpaamsp9++ikc2b0s1E0WJsXFxbDb7Rg8eLD/mMFgQO/evVFYWBiUvqioCImJiejRo4f/WG5uLjiOw4EDB9okz63FaDRi3bp1yMjI8B/jOA4cx8FisQSl93g8OHHiBLp3796W2QybkpKSgHpsTmeq93OtXbsWTqcT8+fPbzLNpbxPHc1PP/0EuVyOjz/+GP369Qt4rqioCLm5uZDJZP5jgwYNwokTJ1BbWxt0LlEUcfDgwYB7BQAMHDgw5L2iPTVX7qlTpwbVt0Qigdfrhc1mC3m+SLoGmiv7qVOn4HA4LvoeFkl1DjRf9nPV1dXhtddew4wZM5p9L0pKSsBxHLp16xaO7F4W2YWTkMtRVVUFAOjSpUvA8aSkJP9z56qurg5Kq1AoEBsbi8rKyvBlNAwMBgOGDBkScOzTTz/FyZMn8cwzzwSlLysrgyAI+PTTT7F06VK43W7k5OTg6aefRlJSUltlu9WUlpbCaDRi4sSJKC8vxzXXXIMZM2YgLy8vKG1nqvdGdXV12LBhA5566inExsY2me7YsWMwGo249957UV1djdTUVMydOxeZmZltl9nLNGzYsCbHg1RVVSE1NTXgWON1XFlZiYSEhIDnLBYLHA4HUlJSgl4T6l7Rnpord+/evQMee71ebNiwAX379kVcXFzI15SWloLneUybNg3FxcVITk7GQw89hLvvvrvV895SzZW9tLQUALBx40Z88803kEgkyMvLw9y5c6HX64PSR1KdA82X/Vxvv/02VCoVpk2b1my60tJS6PV6PPfcc/jf//4HjUaDkSNHYubMmVAoFK2V7UtCLUNh0jgA9vyKVSqVcLvdIdOHugiaSh9JDh48iIULFyI/Px+33HJL0PONNxK1Wo3XX38dS5cuxc8//4wHH3yw2cGXHRHP8/j555/R0NCAWbNmYd26dcjKysKjjz4acnBkZ6z3LVu2QK/XY9y4cU2mqayshNVqhcPhwOLFi/Hmm28iISEBkyZNQllZWRvmtvW5XK6Qn3sAIeu08Rq/2HtFJOB5HvPmzcOxY8dQUFDQZLpjx47BbDZj8uTJWL9+PUaMGIGFCxfigw8+aMPctlxpaSkkEgmSkpKwdu1aLFiwAN9++y1mzpwJURSD0nfGOrfZbPj73/+OadOm+a/3ppSWlsLtdiMzMxPvvPMOZsyYgffffx+LFy9uo9wGo5ahMFGpVAB8XUCN/wZ8N0O1Wh0yvcfjCTrudruh0WjCl9Ew27lzJ/74xz8iOzsbL7/8csg0o0ePRl5eXsBfjz179kReXh6+/PJL3HHHHW2V3RaTyWTYt28fpFKpv9779u2LY8eOYf369UHN4p2x3rdt24bRo0cHXPfn69KlCwoLC6FWqyGXywEAGRkZOHLkCDZu3IglS5a0VXZbXag6bfyCC1WnjV8coV4T6l7R0dlsNjzxxBPYv38/3njjjWZb+v79739DEARotVoAQHp6Ok6fPo3169fjvvvua6sst9iMGTPwwAMPwGg0AgBSU1ORmJiI+++/H4cPHw7qWupsdQ747vUejwdjxoy5YNrnnnsO8+fPR0xMDADf+yWXyzF37lzMmzcvqPW0LVDLUJg0dn3U1NQEHK+pqUFycnJQ+pSUlKC0Ho8HZrM5IruKAGDTpk2YNWsWhg4dirVr1zb718L5zehJSUmIjY3tkE3GF6LVaoMCgZ49e6K6ujoobWer9+LiYlRUVOCuu+66YFqDweAPhADf+JIePXqEfJ8iSag6bXwc6rMfGxsLjUZz0feKjqympgYTJ07Ed999h/Xr1wd1l59PpVL5A6FGqampEfe5l0gk/kCoUc+ePQEgZFk6U5032rlzJ4YMGQKDwXDBtDKZzB8INWru/WoLFAyFSXp6OnQ6XcCaKRaLBUeOHEFOTk5Q+pycHFRVVeHkyZP+Y/v37wcAXH/99eHPcCvbsmULnn/+eUycOBErVqxoth/41VdfxYgRI8AY8x/75ZdfUF9fj+uuu64tsttqjh07huzs7KC1cn788ceQZels9V5UVIT4+Hikp6c3m+6bb75B//79A9bd4nkexcXFEVfn58vJycGBAwcgCIL/2N69e9GtWzfEx8cHpec4DtnZ2f56b7Rv3z4MGDAg7PltLQ0NDXjooYdQV1eHzZs3h7zPnctisSA3Nzdo/a3Dhw/7vxgjxbx58/Dwww8HHDt8+DAAhLyeO0udn6uoqCio5bspkydPxsKFCwOOHT58GHK5HNdee20YcndhFAyFiUKhwKRJk/Dyyy/jiy++QHFxMebOnYuUlBTk5+dDEASYTCZ/33G/fv2QnZ2NuXPn4ocffsDevXvx5z//GaNHj464vxTKy8uxbNkyDB8+HNOnT0dtbS1MJhNMJhOsVis8Hg9MJpO/iXj48OH49ddf8eyzz6K8vByFhYWYNWsWsrOzcfPNN7dzaS5Njx490L17dzz33HMoKirC8ePH8cILL+C7777DjBkzOnW9A8CRI0eaXCzTZDLBbrcDALKzs2E0GjF//nz8+OOPKCkpwfz582E2m4O+VCLNmDFjYLPZsGjRIpSVleHDDz/Ehg0bMH36dH8aq9WKuro6/+MpU6bgk08+wbvvvovjx4/jpZdewtGjR/HQQw+1RxEuywsvvICKigr85S9/QVxcnP8zbzKZ/IGh2WyG2WwG4GsZHDRoEF599VXs2rULJ06cwLp16/Dxxx9j1qxZ7ViSSzdixAjs2bMHb7zxBk6dOoVdu3bhmWeewahRo/yz5TpjnTeqrKxEfX19k38E2e12mEwm/+MRI0bgn//8J/72t7+hoqIC27dvx0svvYRp06ZBp9O1VbYDtffc/s6M53n20ksvsUGDBrGsrCz2yCOPsIqKCsYYYxUVFSw1NZX94x//8Kevra1ls2bNYllZWWzgwIGsoKCAuVyu9sr+ZVuzZg1LTU0N+TN//ny2d+9elpqayvbu3et/ze7du9m4ceNYVlYWy83NZQsXLmRms7kdS3H5TCYTW7BgAbvxxhtZRkYGGzduHCssLGSMde56Z4yx3//+9+yJJ54I+VxqaipbuXKl//HJkyfZrFmzWG5uLuvXrx+bOnUqKykpaaustpr58+cHrbvy/fffs/vvv5/17duXDR06lG3cuDHoNUOHDg049tFHH7Hhw4ezjIwMds8997Ddu3eHPe8tcW65eZ5nGRkZTX7uG+97kyZNCnivrFYrW7ZsGRsyZAjr27cvu/vuu9nnn3/eLuW5FKHqfPv27Wz06NEsMzOT3XjjjWz58uUBn+POUOeMNX29n79e2rlWrlzJUlNTA45t2rSJ3X777f7PyJo1a5ggCGHL94VwjJ3TN0EIIYQQEmWom4wQQgghUY2CIUIIIYRENQqGCCGEEBLVKBgihBBCSFSjYIgQQgghUY2CIUIIIYRENQqGCCHtLlpX+IjWchPS0VAwRAhpV1988QXmz58PwLcdQVpaWtB2Jh3d5MmTMXny5Et6zYEDB/Doo4+GKUeEkEtBu9YTQtrVhg0b/P/u06cPtm7dGnH7kxUUFFzya95//30cP348DLkhhFwqCoYIIR2GTqdDVlZWe2fjkkVa8EYICUTdZISQdjN58mTs378f+/fv93ePndtNtmrVKowcORKff/45Ro0ahYyMDNx99904dOgQvvvuO4wdOxaZmZkYNWoU9uzZE3Du0tJSTJ8+HdnZ2cjOzsbjjz+OiooK//ON/69vv/0WEydORGZmJvLz87Fly5aA87jdbqxevRojR45ERkYG8vPzsW7dOoiiGFCOc7vJ0tLSsHnzZixatAi5ubno378/5syZg9raWgDAggUL8NFHH+HXX39FWlpa0M7thJC2RcEQIaTdFBQUoHfv3ujduze2bt0Km80WlKaqqgrLly/HY489htdffx0WiwWzZ8/Gk08+ibFjx2L16tVgjGHu3LlwuVwAgPLycowfPx5nzpzBiy++iKVLl6KiogITJkzAmTNnAs4/d+5c9O7dG6tXr8YNN9yAJUuW+AMixhgee+wxvPPOOxg7dizWrl2LkSNH4rXXXrtg19irr74KURSxYsUKzJs3D1999RWWLVsGAJg5cyaGDBmCxMREbN26FbfccksrvJuEkMtF3WSEkHZz3XXXQafTAQCysrJCDpx2Op0oKChAXl4eAKCsrAyvvPIKli5divvuuw8A4HA4MHv2bJSXl6NXr1544403oFarsWHDBv/5Bw8ejNtuuw3vvPOOf8A2AAwfPhyLFi0CANx8882oqanBm2++iQkTJuCbb77B7t27sWLFCtx5550AgBtvvBEqlQqvv/46HnzwQfTs2TNk2VJTU/HCCy/4H//www/YsWMHAODqq69GXFwcFApFRHYLEtLZUMsQIaTDy87O9v87ISEBANCvXz//sdjYWACAxWIBAOzduxe5ublQqVTgeR48z0On02HAgAHYvXt3wLnvueeegMf5+fkwmUwoLy/H/v37IZPJMHLkyIA0v/vd7wAA+/fvbzLP5wc5KSkpcDqdF1FaQkhbo5YhQkiH19i6cy61Wt1kerPZjO3bt2P79u1Bz8XFxQU8Tk5ODngcHx8PAGhoaEBDQwOMRiOkUmlAmsTERACA1WptMg/n508ikdC6QoR0UBQMEUI6Hb1ejxtuuAFTpkwJek4mC7zt1dfX4+qrr/Y/bhxTFB8fj5iYGNTX10MQhICAqKamBgBgNBrDkX1CSBujbjJCSLuSSFr/NpSbm4uysjL06tULGRkZyMjIQN++fbFhwwZ8/vnnAWl37twZ8HjHjh3o2rUrrr76auTm5oLnef9Yn0Yff/wxAOD666+/7DyGo9yEkMtDLUOEkHZlMBhw6NAh7NmzJ+Rssssxc+ZMjB8/HtOnT8eECROgVCqxdetW7Ny5EytXrgxI++6770KpVCIrKwufffYZvvrqK7zyyisAgLy8PAwcOBCLFy9GdXU10tPTsX//frz99tu45557WrS+kMFgQG1tLXbt2oVevXohKSmpRWUmhFw++tOEENKuJk6cCLlcjkceecQ/Nb6l0tPTsXnzZnAch3nz5mH27NkwmUxYvXo18vPzA9I+88wz2LVrF2bMmIHvv/8eK1euxKhRowAAHMfhrbfewvjx47FhwwY8+uij2LFjB5588kn/NPnLde+996Jr1654/PHHsW3bthadixDSMhyjEX2EkCi0b98+PPjgg3jvvfcwcODA9s4OIaQdUcsQIYQQQqIaBUOEEEIIiWrUTUYIIYSQqEYtQ4QQQgiJahQMEUIIISSqUTBECCGEkKhGwRAhhBBCohoFQ4QQQgiJahQMEUIIISSqUTBECCGEkKhGwRAhhBBCohoFQ4QQQgiJav8HdUJoES/thdAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# https://seaborn.pydata.org/examples/errorband_lineplots.html\n", + "# Load an example dataset with long-form data\n", + "sns.set_theme(style=\"darkgrid\")\n", + "fmri = sns.load_dataset(\"fmri\")\n", + "\n", + "# Plot the responses for different events and regions\n", + "sns.lineplot(x=\"timepoint\", y=\"signal\",\n", + " hue=\"region\", style=\"event\",\n", + " data=fmri)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAH9CAYAAABLMkVIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADoQUlEQVR4nOydd1hUR9uHf+dspxcputbYG6KCRmOPIgIrEDRqggpEjX5Gk7xpJq9JNNVUNZpofA0QQyxRgrigiMYSjRUbdo0dRCx02IVt3x+469azlerc15UruOfMnDmzszPPPPMUSqVSqUAgEAgEAoFgBXRDN4BAIBAIBELTgwgQBAKBQCAQrIYIEAQCgUAgEKyGCBAEAoFAIBCshggQBAKBQCAQrIYIEAQCgUAgEKyGCBAEAoFAIBCshggQBAKBQCAQrIYIEAQCgUAgEKyG3dANqAtUKhWUStsCbNI0ZXPZ5gjpD0NIn+hC+kMX0h+6kP7QpbH3B01ToCjKonubpQChVKpQVFRpdTk2m4anpzPKyqoglyvroGVNC9IfhpA+0YX0hy6kP3Qh/aFLU+gPLy9nsFiWCRDkCINAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEAgEgtUQAYJAIBAIBILVEAGCQCAQCASC1RABgkAgEJoBKpWyoZtAeMogAgSBQCA0ccTiVEyYIIJYnNrQTSE8RRABgkAgEJowKpUSycmJKCwsRHJyItFEEOoNIkAQCARCE4aiaMTFJcDPzw9xcQmgKDKtE+oHdkM3gEAgEAj2IRLFICIimggPhHqFjDYCgUBoBhDhgVDfkBFHIBAIBALBaogAQSAQCAQCwWrqXID4+eefMXXqVMZ7tm3bhq5duxr8l5eXV9fNIxAIBAKBYAN1akT5+++/Y9myZQgKCmK87/LlyxgwYAC+//57nc+9vLzqsnkEAoFAIBBspE4EiMLCQnz88cc4evQo2rdvb/b+K1euoGvXrvDx8amL5hAIBAKBQHAwdXKEcf78eXA4HGzbtg19+vQxe//ly5fRsWPHumgKgUAgEAiEOqBONBCjRo3CqFGjLLq3tLQUhYWFyMnJwfr161FcXIyAgAC888476NChg81tYLOtl41YLFrn/087pD8MIX2iC+kPXUh/6EL6Q5fm1h8NHkjq6tWrAACVSoUvv/wSUqkUq1atwksvvQSxWIwWLVpYXSdNU/D0dLa5TW5uApvLNkdIfxhC+kQX0h+6kP7QhfSHLs2lPxpcgAgKCsLhw4fh6ekJiqIAACtXrsSIESPw559/YtasWVbXqVSqUFZWZXU5FouGm5sAZWUSKBQknjzpD0NIn+hC+kMX0h+6kP7QpSn0h5ubwGINSYMLEICht4VAIEDr1q1RWFhoc51yue1fjkKhtKt8c4P0hyGkT3Qh/aEL6Q9dSH/o0lz6o8EPYjZt2oSBAweiquqJxqCiogI3b95Ep06dGrBlBAKB0Pwh2TsJtlLvAoRCocCDBw8glUoBAMOGDYNSqcS7776Lq1ev4uzZs5g3bx68vLzwwgsv1HfzCAQC4alBLE7FhAkiiMWpDd0UQhOk3gWIgoICDBkyBNu3bwcAtGzZEsnJyaiqqsKUKVMQFxcHV1dXrFu3Djwer76bRyAQCE8FKpUSycmJKCwsRHJy4lOtiXia390e6twGYsmSJTr/bt26NS5fvqzzWc+ePZGYmFjXTSEQCATCYyiKRlxcApKTExEXl1Bn2TxlMlmd1OsoxOJUTR+IRDEN3ZwmRYPbQBAIBEJTo7HsWO1th0gUgy1bxHW2cG7duhnPP/88tm7dXCf12wvRwtgHESAIBALBChqL3YCj2lFXmgeVSomkpNrFOSmpcS7Oai2Mn59fnWphmiuktwgEAsFCGsuOtbG0gwmKohEfX7s4x8c33sW5rrUwzZnG+Y0SCARCI6Sx7FgbSzvMERU1EX/99ReioiY2dFMYaaz919ihVCqVqqEb4WgUCiWKiiqtLsdm0/D0dEZxcWWzCPJhL6Q/DCF9osvT2h8qldLoolOX/WHsmaba0Vh4WseHKZpCf3h5OVscibLxjjwCgUBopNT3om3K3qExCw+E5g8ZfQQCgWAhDWFr0BTsHQhPJ0SAIBAITzWWLsgN5X3RGOwdiNBCMAYRIAgEwlOLpUKBPVoARyy+Dekp0FjcVgmNDyJAEAiERk9d7ICtEQrMaQFMlXXk4ttQmgdyfEIwBREgCARCo6audsDWHg2Y0gKYal9zWHwbw/EJofFC3Di1aAouNvUJ6Q9DSJ/oUtf9oVIpMWGCCIWFhfDz88OWLWKHL2L2uELqt2/r1gx4eblp+qOx51mw9N1t7SPye9GlKfQHceMkEAjNgvrYAdtTp2H7WDrXG3OUQ2s0O0TzQDAG0UBo0RSkw/qE9IchpE90qa/+aOwBk9Ttayrjoz40OwD5vejTFPqDaCAIBEKzojELD0Djb58+tmh2mqINB6FuaVqjnkAgEAgOwZrjFeLKSTAGESAIBEKTg+yGHYOlmoem7k1CqBuIAEEgEJoUzWE3bM8iXN8LOHHlJJiCjAQCgdBkaA67YXsEoIYSnhqzNwmh4SACBIFAaDLU1264rgQTe0NiN6TwRDQPBH3IiCAQCE2Kut4N1+Uu3x4BiBwlEBobJA6EFk3BR7c+If1hCOkTXZpbf9gbH8HS/rA3+mVTER6a2/iwl6bQHyQOBIFAaPI0hH2Dvbt8lUph8XPM12X8/ZuK8EBo/pCRSCAQGh0N6Wlh6xGJWJyKqKgIpKSk2N2G5uBpQmj+EAGCQCA0KhraWBCwfpev3eY1a9ZYrIkwV1dT9TQhPB0QAYJAIDQqHGUsWJ8Lr3abZ82aZZBUy9a6iLEkoTFDjCi1aAoGLvUJ6Q9DSJ/oUpf9YY+xYEOl0WaxVJp03jKZ3K7F39r3rwvjSnvrJL8XXazpj4YyliVGlAQCocljj+ahoY4A1JqHrVs3223DYM3714XNhLV1kqMWx9FUbGCIAEEgEJoV9X0EoL9wymQyJCXVnwBTFwKTtXU2lQWvKdCUbGCIAEEgEJod5jwpHDUpG1s4ORwO4uPrT4CpC4HJkjrVfdiUFrymQFOygSE2EFqQ8zpdSH8YQvpEl6bYH8bsI4ydN5s7gzYWdIrDYWv6w14bCGtQqZRQqZSgabbD6zX2Dvp9aMrmhGl8KJVyh7e3sUNsIAgEAqGJYmy3bEyLYIlK3txOsb4mf3Vbv/rqU2RmptX584z1obWxM5KSVmPixEgkJa22+tlPC41Z86Cm8beQQCAQHIT+og/AYDG0RiXf0Fkqtduak5OD3buzoVTKHVK3KSHKlOBk6YKnVMqRkSFGYWEhMjLEFreX2Fk0PogAQSAQngrUgoD2om9sMbT2DNq4fYDtgaSsQbutwcHBCAzsi4kTI+1eZM0JUfYITjTNRkSECH5+foiIEFl0jEHsLBonRIAgEAhNBlsXDv3dq/aib2wxtGeBTElJQVRUhMlFXK3lsARL7qNpGm3btsXIkc9j27Z0hyyylghR9qjY4+NnY/PmdMTHz3ZYewj1DzGi1KIpGoTVJaQ/DCF9okt99oe1waHURmj2ZtjUr48JFkuFqKgIk89Sv0NQUBACAgIRHh5tsi5L3lf73YRCIWJjp1ncR5a8jyWGpEzXbRkfTHU2pUykxmgK8wcxoiQQCM0Ke+ISOGL3aun5O0WxMGvWLKPP0rdX2Llzh8n3sPR9td8tNnaaxZqTvXuzMHlytAXvY7qvGiJ4VVMWHpojRAOhRVOQDusT0h+GkD7RpTFqIExpHLR3r9bsZK3RYKj7o6ioDAoFZfIdTGkgtNtljcbFmvdR1xsQEIALFy5g48Y0m5KHWdIn1rotOkJT1JhpCvMH0UAQCAS7aIxGaiJRDDZvTje7mJrzEmDa5Rp7b1s0GKaSaak1BAsWfGwgPOi3yxo7DGuEIbVmIzc3F6++OsemRbqhglcRGhdEA6FFU5AO6xPSH4Y8DX1izc63MWog1JgKDmVql2uuflO7fO3Pbe2P+tx9OzLRWH3bQDR1msL8QTQQBALBIvR33I3VXc6WdpnyHFDvcoOCgrB9e7rF9WvXR1EAh8PClStnkZa2EXl518Dnc8DhWJ7GW/sZ9bn7dmSY77poZ3MVHpoj5JsiEJ5SjKnyG6sa2ZHtioiIhlAoRHZ2NhIT12p2vEz1q1RKcDgsODvz4OXljBYtXOHh4YRnnx2IF198EUJhK7i48ODiwgcAuLkJ4OzMM7mTM9b39galsnfhNxWVk0AwBTnC0KIpqJfqE9IfhjSXPjGnMrdUjVzf/eEo9bYpNb5+/Ww2jbt3b6FVq5bw9PSEQqFETY0cMpkCcrkCW7du0dQTERENLpcNFxceFAoVOBwWaJqGTKZAdbUcNTVyKBRKk31P0xTYbBosFuvx/2s/o+knxpgKhQoymVxTp7n3sbQPxeJU7N6djby8PI1L6IYNqXbnqtAfH2ohp7EIpvVNU5g/yBEGgUBgpLHkcbAWbS8Ka9DOHAmY3u2rF3InJy48PZ3h6ekMf38/pKWl4ZVXXsGjR+WoqKhGdbUcCoUKERHR2LJFDJqmMWGCCP/7308ICQnB+vW/49GjSpSWSqBQKOHszH2suXCBp6cL1q/fgJSUFGza9Ae8vV3RooULvL1d4O7uBCcnLlgsGnK5AlKpDBUV1Y//k0Imk4PDYcHNTQBPT2dwOLTO8UtKyjoolXKT/WNMw6Aun5ubi6CgIAiFQoSGjnNIREttMjPTsGTJYqLhaEY0zlmCQCDUOQ2dx8FWrFWzq+9PSlqtE/tA36aBz+fAw0MAb28XCARcyOUKlJRUYdu2DCQnJ+O554YaBIWaMEGEfftqj0IKCwshFovBZrORlFRrR1FTI0d5uRQPH1agpKQKlZXVkMsV8PHxRe/efeDp6Y3qajkqK6tRUlKFR48q8OhRBX777TeMHTsamzZtgFQqw+bNGxEePhYbNqxHcXEViooqUVhYAA8PZ1RUFGHmzFchFAoRFhaOr7761Gj/mLLzUAuTXl5eCAgIxIYNqZpcFdbYwTDdp1IpkJ2dhZycnEZnX0OwHSJAEAhPMY1V02AKa40pte/PyKhd3NXlKArg8dhwc6sVGlxceFCpgLIyCR49qkB5uRR//vkHfvvtV8ydO8/gqENd7+rVqzTaHJFIBLlcjvh4Q62OTKaARFKrUfj9998REjIa69f/jsrKakgkMshkCiiVKoN3VCrlBu8sl8sxZcoUvPHGG2jVqiUmTZqEDRtSkZ+fh9OnTxvtHyatk1qYDA+PBk2zrbY3MR8AioWQkFAEBQU1Ovsagu0QGwgtmsL5VH1C+sMQ0ie62Nsfttg0WOuGqL4/IkKE7OydePfdBRg+fDi4XDYoioJMJkd1tRxSqRza06E5O5HMzDRkZ2chJCQU4eHRjw0t2XBx4aKiosZkf1jisqn/jsbeWf3ZO++8h/DwMBQU3EVsbCyGDRuGAwcOaCJTGnu+JX1uzX2m3ofYQOjSFOYPa2wgiAChRVP4cusT0h+GkD7RxZ7+sCcegfWChwoCARcCAQcsFktjX1BdLYdSaXoKZDK23L49HYmJa3WuWdof+vUaex+lUq5jxGgqrgVF0WCzKbi68rFu3TokJydj8+Z0uw0grcFUP5Hfiy5NoT+IESWBQGjU2BtvwlLhgaIoODtz4e3tCmdnHmQyJYqLK1FcXAWJRKY5MjCFMTsRtbo+N/c0ioqKbGo/TdMQCoVgs9lG1f9icaqBESNTRky5XIUTJ04iLi4O7777nsOEB0vfq6na0xDsgwgQBAKh3qmPeBMCAQdeXs4QCLiQSmvw6FElysulOjs/Swwy1Xk0gFqtQErKOk1CrN69e1vdfpVKicTEtTh58iSysrYbCFK2ClfPPNMdCoUSoaGhFreFCWuNVZ/WY4mnmTr/xn/++WdMnTqV8Z7i4mK89dZbCA4OxoABA7B48WJIJJK6bhqBQDCDrZbylpSrq10rh8OCp6cznJ15qK6W4eHDclRW1kD/tNaShVo7uFJS0mpMmRKDcePGQSgUIi4uAcuXr9YcQViKtvAUEhKqI0jpX7dWOCkvrwaLRYPPt08D0dARSYmHRtOgTgWI33//HcuWLTN73/z583Hr1i0kJydj+fLl2L9/PxYtWlSXTSMQCGawNSqhNeUcuWulKMDFhQ8PDycolUoUF1dhw4b1iImJMNoWcwu1WJyKN96YY+DFIRaLsWFDKkSiGFAUbVM/aXs9qP9Wx5IQi1MRERGtkzjM0gVVoVDi+vXrqKoqQ2ZmmsXtMYbaYyIoKMiueqyFRMNsOtSJAFFYWIjZs2fj22+/Rfv27RnvPXXqFI4dO4avvvoKPXv2xKBBg/DJJ58gPT0dhYWFddE8AoFgBlt3oA21c+Vya7UOPB4b5eVS9GobgGd7BGPJB1/j3pWHWPLB13iu90DNf2pMaUH0gyv5+flh5MiRkMvlCAoK0glopfu+CqPt0w9kBRgKT4mJa1FUVIS//96H1auXY+LESGRmplm1oKpUSixatAg+Pj4oKMi3uf8pikZAQCCEQiECAgLr7XiioTUfBOuok1Fx/vx5cDgcbNu2DX369GG8NycnBz4+PujYsaPmswEDBoCiKJw4caIumkcgEMxgqxq9/nNpKOHqyoe7uxPk8loDSalUZnet+sGVtmwRIyAgAK1atTJYUBMSZmi9r2EyLbE4FZMnRyMpabVJQYCiaCQkzMDYsWNx/fp1lJSUoKioCNnZWVYtqBRFY+TI53Hs2DHMmDHTrv4PD4/G8uWrDdKO1yWNNRcLwTh14uczatQojBo1yqJ7CwsL0bJlS53PuFwuPDw8UFBQUBfNIxAIFiASxSAiItrqSVxdrq45fvwgAgP7gKYFKCuTaHJDWLNrZXKn1H5/7fvUC6r2Z6bSb6t31C4uLjrRHdX1aj8vLCxSE9FSbaAZEhIKpVKpeY4l34VIFAMOh4aHh2XugkzuoUzPq6u027aOO0L9U3+OwiaQSCTgcrkGn/N4PFRXV9tcL5tt/eBT+75a6gPb3CH9YUhT6xOVSmF0V2w5zO9pqj+2bk1FUlIi4uMTEBU10Y7nG0cgYCMsbBxycnLw5ptvYtWq/4HNZmHr1s1ISko0W57NpqFSKXR29z4+LbB06feYOnWaVptpKJUyjedFcnIioqJeAACdslFRL4CiaCP9QeOVV2bg3LmzUCgUyMnJQXx8AjgctqatT/qIRnx8ApKSEjFgwACMHDkKgwcPB4DH9Zv/HtXft0qFxzk4eKisND2PGrbB+GeWlDOG7b+XpvH7spamNn+YRVXHvPfee6rY2FiT1z/55BPVhAkTDD5/9tlnVUlJSTY9U6lU2lSOQGhO/Pbbb6qhQ4eqfvvtN5vrqKmpsanM0KFDVV26dFENHTrUpjos4fjx46phw4Zp3k/7uZ39ujP+p0bdR19//bVq5MiRqrlz56pGjhypabP6+jfffKMaOXKkTl9a2r/qdvXs2VM1efJkVU1NDWMfpaenqz744AOrvztrv29jbTDVLu321df3S2j8NLgGwt/fH7t379b5rKamBiUlJfD19bWpTqVShbKyKqvLsVg03Nxq1aEKBTHeIf1hSFPpE5VKgTVr1qCwsBBr1qxBWNh4qzURluwyTfWHeicdH5+AiooaADX2vA4AgMfjQCDgQKlUobKyGh07dkdamhgUxUJxcSVUKoXmufdKHzLWVVxcG6k2PDwa48ZFYOLEF5Cfnw+5XI7XXpuHiooaqFQSTR9u27YNaWnbQNMcTdmwsPGaflV/Zq4/QkLGPu4P432kUimwceNGTVptS787pVKGxMREgzKurnxQFIWyMuNu8YZtMPxs69bfDcaBpd9vU/m91BdNoT/c3ASNJ5T1ggULkJ+fj99++83o9dOnT2PSpEnIzs5Gu3btAAAHDx7EzJkzsW/fPvj5+Vn9TBLK2jGQ/jCkKfWJvaGizeVrAJj7w1Fn5DRNwc1NADabhkRSg8pKw8VK/a4JCTMQFhaJIQGDGOv85+xRo+X1+0r/c3V4aWtDN5vKAWGsjzIz05Cbexo5OTkWfXd792Zh7dr/ISZmAlJTt2Dy5Jc0ZVgsCh4ezpDJFCgvl0CpNG3vYOwzpnFgyffblH4v9UFT6A9rQlnXuwZCoVCgqKgIrq6u4PP56NOnD/r164c333wTixYtQlVVFT766CNERUXZJDwQCIRa7DFGU1vDW2O8Z6wOe4UIgYADZ2celEoVSkokkMufuElqG0uq7RESE9dCIBCYrVe/Xab6SvvzpKTVyMgQIzIyEpmZmQYGkaZgMtQ0Vi48PBphYZEmr2uTmZmGv/7aheeeew6//56CuLh4HYFDoVChvFwCV1cB3Nx4yMzMRIsWPujdu9/jMN4qKJWmQ2Q7YhwQmi/1LkAUFBTg+eefx5dffokXXngBFEVh5cqVWLx4MaZPnw4ej4fQ0FC8//779d00AqHZYc+Eb681vLFdOpNAob3rZbFYcHPjg8NhQyKpQUVFtU5Z7V16QsIMiEQiiMViRESI8Msv/wPlroBQKERs7DRNG1xdXbBq1U+IjZ1mdBet3a5xg0zt+vnYsGon3vl8Dn78cYXZRVU7rkFKyjoAsEgrZGkWzNzc07h16xZ8fHwe5+VIQkTECzrla2oUKCoqx/btWzFq1Ci0bt3aoC6lUgm5XKlJMKaNsXFgj3aL0Hwg2Ti1aArqpfqE9IchpE90YVLZv/HGHOTm5sLLywtbtoiRkZFmctERi1ORkrIO48aFgc/nYc6cOaAoGuXlUshkCp0FKyIiGm+8MUdjJ+Dn54e2bdvi/v37kMvlePXVJ4u7/o5f+2+mRdC0AFHL9kObARgu9Gw2bZDOW/2c116bh5UrV5g8FrI21bX+8YJQKMSYMWNNLujqdrzyykyIRLWbN4qqPSJisWhwOCxwuWwoFEqUlUnsSkeu3R/k9/KEptAfJBsngUCwCkdH/MvISENeXh5CQkKQkDADgK7bo/bz1Lv0gIAATJw4AXPnzsXWrVvx6FE5ZDKFQXRCAAgJCdVEiIyLS8Do0SGQSqWIjZ2GUaNCdaJLai9upiNIOiYb6Natm/H8889j69bNms/U0S5Hjgw1GSQpMzMNS5YstiqE8/bt6RgwYAD8/PwQHByMF16IMSk8qFRKTTvCwqIgl8shlysgkylQXS1HVVUNUlJSEB8fj7t388FiKTTljL07CfZEAIgGQoemIB3WJ6Q/DGmOfbJ3bxZWr16F2NhpVqujjfWHqR2qqR0/RQEPHuSja9cu+Pfff5GZmQlPT2+dCIimjkNqy1tu1KeNPRqI1xbGIjs7CyEhoZp2qlRKTJ4cDQ6HA5lMho0b00wGl9LXPOhrVDZvTgdNs02+k7qPXV1d4ebmhrNnz2o0PcZyemi/p6m+VH9nwcHBSE5Oxtmz5/D66/NNHlNoHzmZsndpjr8Xe2gK/UE0EAQCwSLE4lSsXLkCPXr0QErKOodoIkztUI3lneDza1Nud+3aFT/++COioqKQlpamMSJUY6ysfqREWyJmzp07Dykp66xO3JSbexp5eXk4f/4slEq55vnjxo2DRCLBuHHjTLZH/3OKohESEorg4GD4+flBJBqPKVNikJS0GpMnRzMmApNIJOjbtx+8vLyMagP0NS1Kpdyo5kX7O/Pz88Pt23fQvn07Rg2NdiIxprYSmi9EgCAQnlK0F5fc3Fy8+uoch6mjTSWpUtdfm/zKCa6ufNTUKFBcXAlnZ1e0aNHCpFrc1raZEoqUSjl+/nkV8vPzrT7GyMnJQVFRERQKBSZOjIRYnPo49XdtuGqxWAyVSslYp/a18PBo9O7dB0KhEPfvF+L+/fua7J+m2iYSxWDjxjTEx882mRZdX5ijabbm3+qjJe36tmwRo3fvPli16id4enpiwIABJr8P7fFjrq2E5gkRIAiEpxT9xWXUqFCH168Pl8uGh4cT3N2doFKpUFxcifJyKZRKFSIiok0uhMawZKEylclSLE7FxImRCA0dB6FQaPVZflxcAgICApCTk6NjmxEfX9ufr7wyAxkZaQbPVmsr9NulUimRmLgWJ0+exNGjRxEYGIiICBHkcrmmbaa0ANr/N4a+MKf+t1KpNNo3iYlrsX//fgDAihWrTH4f2uNHv62EpwNiA6FFUzifqk9IfxjSHPvEnlgN2v0hk8lNaA4o8PlsCARcsFg0ampqjfZksicxHax1C3y+fwjjdb6gBeN1qYQ5UqWzq6GrozaV5XmM17lcV8brZRXM5b9Y+QmGDRsD4MlRgalYErbA5EkhFqdi3bpk7Nu3TydJGVNdxAbCMppCfxAbCAKBYDFMcRksZevWzTq7WYqiwOOx4eYmgLe3M5ydeZDJao8qSkslOsIDk0eEsTY8DSryH374Ad9//yW2b0+HSqXE7t3Zj+M8JGLPniyrvDVMoZuGXDeo1h9/pEOlUoGiKItSiGv/31qehu+zuUIECAKBYIAp1b8xZDIZkpIS4eHhAaVSDg8PAVq0cIGrKx80DVRUVOPRo9qjCmO7LlNGl9pt0F5kngYVeWFhIQ4dOoSdO3dg795sHZfYn39eZbP7KfCkX5VKJbZsERtNvV5roErhxIljDhFWzLWFGF82TZr/L5FAaMQ0xt2XMY2AqXZSFAUOh4Nt27Zh27ZtmD59+uNkdhI8elSJ4uJKSKUy6J+U6tenPpdXL2b6bXj99dlP1SLj5+eHoKAgjB07TiMw5OTkICwsErGx02yOwaDfr3v3ZhtdwGmaAgCkp6fZJaxY05bG+FsgMEMECAKhgWisuy99jcD27ekG7WSzabi68uHuXpt3QiBwQUlJJUpKpCgrk6K6Wo5t27aYNGA09rm20aF2G4KCgnDx4kXs3p391CwyW7aIsWDBxwgPjzYQGEx5uGhjWuDT/W61tRl79mRp7lOfgQ8dOqzOAkaRgFRNH2JEqUVTMHCpT0h/GOKoPrEmHLCl9Tl6AlYvQtrtTEvLhIuLADweG7dv30ZeXj4GDx5kNJS1sfez5HOhUIgNG1I1gZSyssQ4ffqkTnbK5m5EueCLd3UEBGvCXJszSNUWLtThxQMCAnDhwgVN8Cs+nwMXFx4ePqwwGvjK0rFmye+lLsZuY6UpzKnEiJJAaOQ4cvdVV5oMiqKxfXs6goKC0L59e3z22Wfw9HQGm01j0aJFCAkJwYIF70EmkxktGxEhglAoxMsvxxpkd9R/b/XnQqEQoaHjMHFiJDIz0wAAoaEiHXdJtStkc0ZfpW/MJdQY5o6fxOJUTJ4cjeTkNZgwQQQ2m425c+fhwoULOknGWCwaSmXt3lI/iZajx9rTIjw0R4gGQoumIB3WJ6Q/DHGkBsIR6a6ZNBmOqrt79+74/PPP4eLigsTEREyY8LJm5xofn4D4+DijGojY2IkICAjAsWPHNEmwzLVNqZRj4sRIFBUVISQkRKN1YLPZyMrajn79+mP79kw8/FfC2PbmpIGwVlulrYGgaRqJiWs1/T9hgggCgQASiUSnPkB3IXd3F0ClUqGsTKr5zBatGZlDdGkK/WGNBoIIEFo0hS+3PiH9YYgj+sTRqZCN1eeoZxQW3kavXj1x48ZN/Pe/H2D06BCdhY3DYZvsj717s3SyT2pnixzeZxjjc+XKasbrbi7MC3xNTTnjdWlNKeN1PtfdrvLm2mdOgPjn7FGdf6uzlc6ePQcjR5oP+KXWOhjLiJqSsg6hoeOQkSE2OT68vZ0hkchQVVVj0A5rxhWZQ3RpCv1BBAgiQDgE0h+G2NsnjrZ90K5Xe3dv7zNomoKbmwBsNo2KCimkUrlRrYm5/lAvOEFBQcjOzoaXlxc2b07HyL6jGJ9PBIijBp+JxVuQnJxk8eKt3fcBAYE6Sb+YtF80TcHb2wWlpRLU1BgeFznaBuJpoin0B7GBIBAaKXVlea6fVMqeZ3A4tXkqaJpCcXEVpNInyaKsPQNXewwEBATCy8sLEREiTJliv9blaWPv3iwkJyeZdHk09m+1LYTa/VONscBP2uXZbBYAQC5/EuxLG2KzQFBDRgKBUM9Y4obXUM8QCDhwc+Pj2LFj2LBhIxQKXbsG7YiIlrpUUhSN8PBobN6cjqysHcjPz7eqTU8jagNSoLbfV69ehYCAAKNCoTGhzpgQqf6+9L83/fJsNg2lUqkxotTnaXGlJZiHCBAEQgNQH7s4a5/h4sKDiwsfGzduRHx8PNasWW3gCaCOiDhw4EBs356uU97cwkLTbE1MAwIzubmndVw3Y2On4cKFC5g7d56OUGgsPbe6nLYQqfa+SEpabZDES788h8OCTGb8u2yssUsIDQMRIAiEpxyKqrW65/M5KC+XQiqtgY+Pj85OV18lfu7cOSQmroVKVavm1s+FYQr1okZgJicnR+ffIlEMNmxI1cmYKhanYsqUGEREiDTpufXdPdWah+TkRHA4HGRl7YBAIEBKyjqNLYO+poLNpo0eX9gSOVI9PgjNEyJAEAhPMRRFwd3dCWw2C6WlEkilMqPHH9oLzYgRI1BdXf14wWFpcmFYsrA8TUGD7CEoKEhHw6NOP64WDJRKOVJS1iE/Px9ZWTuweXM6xo2LMLrAq787lUqF559/HhKJBKGh47QMYdkICQlBSso67NqVAZqmrcpZYgqxOBVRURFISUlxVLcQGhnkl0wgNBOsPZtmsSiNsWRJSZVOhkxjiEQxmDt3Ho4cOYJXX52jETA4HA7i480vLET9bTnZ2dmPNTxKnZ1/Sso6jTARGjoOQqEQcXEJ+PXXtZgyZQLGjh1rMsPmb79tws6dO1FYWIiMDLGm7qys7cjOzkZ+fj4OHz4EADq2L9pYaluj3eY1a9YQTUQzhbhxatEUXGzqE9IfhjTWPrHFP9/dXQClUoXSUomOwZxYnIpvFy5nLL//zN+aetT9IZPJNYtWyIAIxvJ8J1/G67JqZjdJhYLZzdPZtQ3j9fkLI3ViVKhjJGzcuB5Dhw5F+q8HGMvTLB7z8726MF5/lH+I8bq9gagO5h42KshlZqYhOzsLISGhGrfOzMw05OaeRk5ODj7//AsMHToEDx4wu8FagnpMzpo1C+Hh0Y3q99JQNNb5QxvixkkgPEVYezbN4bDg4sLFxYsXsWnTHzrCg7oucxjTIjSlo4kRI0IM1PG1u/SN2LVrV0M3z24mTBAhMzPNYCwolUrk5eXhwoVz2LcvGwAQHh6NBQs+xpYtYvTrF2xS+2AtIlEMtm7NQGxsrEPqIzQ+ms4vnkAgGMXc2bT2IsLlsuHuLsCJEyfw8ssv4+efV+lcV9dljpSUdThy5G/HvUQ9M3lyNC5ePI95817X0djQNAcREaIGbJljKCoqQm7uaaMeF0VFRZDL5VixYrmOsSVF0aBpyqT7pi1QFMthdREaH0SAIBCaOCqV0uTZtLbdAZ9fG+OhulqOixcvw83NzajAQdPmp4UhQ4bgm2++wtatmx36LvVFjx49cOLECfz55xaDhFPx8bMbsGWOISAgQCcBmbbHhbFramiaQjM81SbUEUSAIBCaMNoCgjHNg/poQy6vgasrHxKJDOXlUlAUBaFQaCAsqFRKJCauNfvcffv2obCwEElJiUazcTZ2ioqKMHr0aIwbF25xpsumxNKlPyI4OBh+fn4ICgoC8ETQXLZslUmNFUURAYJgOUSAIBCaIPrW+cZsH9Q7zkWLFmHWrFmoqJCisrJaIyScPHlSY+mvX8YcI0eOhJ+fH+LjE8DhcHTa1RTIy8uDv38rhIaKrI5t0BTIzExHnz59IRQKERjYT0dIUtt7GNNYEdmBYA1EgCAQmhhqrcP27elm/fKnTHkJU6ZMwdGjxxAWFqJZQJjKWeLFkZ6eDqFQiMjIFwza1RR28toCQ13kJmlokpMTERoqwvLlq00KScZzYageayGahyBFqFuax6+FQHhK0NY6JCauRUREtMFOUj35u7rywedzUFZWhXfeeVtnAWHy57dk8XBzc8OYMWM1RnIqlUJnkWrs+Pn5ITw8HFOnTgJN0zp90RQEIHOohSH1f0xCkrbgp1SqUF5e6jBBkMR/aN6QOBBaNAUf3fqE9IchjaFPmGI+iMWp+O23X5GYmIT27duhvFyK6mq5xXEi1PdFRIiQlbUDsbHTNLkUtMurjfK0+yMtbbPmnmWLfmZ8B76gBeN1Ls9MOu2q+4zXOWbKc52Z83HQLTqavkZTqLl7lrG8Ss4cp4JiM8eRKH14gfG6uXTiHyxZoInzoGmTkSig+qnfMzN3QqWSaewn7Ek3r445ERERgXHjIskcgsYxf5jDmjgQRIDQoil8ufUJ6Q9DGkufmFoMJk2Kwn//+1+MGDECFRXVqKl5EtyJKYy0WuugvZjw+XxIpVLNImKsPIulgpeXm6Y/1LYZY4LDGNvf2AQIiqLg6eWKlq280UrYAq06d4afryt8W7jCy8sZ7m4CuLrwwWbTYLFoyGVySCTVKC2tQOG9IhQWPML1f/Nx7WoeLl+8hbKiIsbn17UA4d+lhcWLv7ZwGBMzCe7uAkRHR0MkirQ5Y6xKpcSSJYuRk5ODoKAgLFy4CAoFZVNdzYnGMn8wYY0Awa7jthAIhDrA2MJAUTSSkpLRurUQH330ETw8PJGRIdZoDYwJHBRFaxaQhIQZiItLQHJyIkaOHIkDBw5oLPiNPVM/0qD6nvqwI+jeqzMGDumPTl3ao0OndnBzd4FAwIcKKlRWVKGyQoqS4nKUlpSjorwKlZVVkNXIQdEUWCwW3D294eIigFcLd/j4uMPH1wM8PldTf3FJFQrvl+H+g3LknstHSakEFRVSyGQKyOVKsCSFcHLmw8PTFb5+Xmj/TCuMHBMMgaBWMLhxLR+5Jy/j6KFcnDh6HpUVkjrvE22ssecQiWIQERENinqSRCspKcVkRk5LUbuK6icGIzQfiABBIDRStHf8liShcnXlo0WLtnj//fdx6tQpSCQSjU2CeoFQo178X3ttno5NxZYtYkRERCMrS4wrV64gICDQ6HP1cx2EhY0HULc7TD9/b8S8FILR4wbB188LFeWVuHrpOs6dvojiolJIpdWgKQpOLgK4e3jB3cMVLXw80a5DKzi7OIHDYUOpUkEhV6CqSoaKiio8eliKSxdu4cH9EhTcfYR7BY9QkP8Q1c7MobDl984ZfEZRFIStfdCj9zPoFdAB/Qf0ROTEUZDL5Dh+5Bz+2nkU+3cdg0TCfLzhCGzVHCiVKigUSnC5HMhkxttpyVhU212oBcxaW5nGueMm2A4RIAiERoi2VkCpVJq1X3Bx4YHHY6OsTIpu3XogPz8fAQEBEIvFBrtR7cV/9epVmole+75x4yIRGioyuVAwLRCOtuBvKfTBrHkTMTJkICRVUmSJD+KvHX/hVM5ZKIyknQYcYAPhbH07VSoV8u7cR96d+9i5bT8AwL9VCwweGohRoc/ig09m4vV3Y5G+eQ+2bNqHRw9LrH9IHaBv3yKTKcDlslBp5BTYlC2MMUSiGERFvaA54iI0P4gNhBZN4XyqPiH9YUh99Im2YVv//v2Rl5enk/RJf8J2duZBIOAYGEwmJMxAWFik0QnemoXAVBtrQx8r4O3tYdAfz/cPYSxviQ2Ek7MA02dFYsJLISgtqUDK2m3Yse0AJJLqBjWiBIxrILQxZkTp19IbE14KgeiFkaBZNJZ/vR7bt/1jtLy9NhCfr/gUI0YYfgf637O+EeWWLWLw+Vy4uQnw6FGFQZ4U9b1CoRCxsdPMCrZkDtGlKfQHSaZFIDRhKIpGZGQk/Pz80K9ff0YXPIGACycnLioqqlFdLTdw8zSFSBSDzZvTNRO/JcKDWrMgFqdi8uRoJCWtRnT0eKSkpBi9zx4GPheA39KW4IXJo/F7UgZeGv8O/ty0u17U/3VFYcEj/PjdBsSMfR17so/j/UUJ+PCzmeBwHK8I1s5zocZYnA5jLp41NbVaHQ5HN4+F9r2zZ89xaAAuEneiaUIECALBAupzghOLU5GZmYmRI0ciO3unQawHdVt4PDZcXHiorKyGVFobTtqcz7+avXuzMGVKjMW+/tqLT0rKOnA4HGRkiB8LKolQKmWattljRMkX8PDBp6/hu1Xv4tb1u4iNeg+JP/0JaRMWHPSprJDgq0+SsWjBzxg+qh8+/Gymw5+hv7AzRS3VjwmiUqkglysMBAjte0eODHVYAK6mFICMoAs5wtCiKaiX6hPSH7Voq/ujoyfWaZ/oq5Tnzp2HUaNCDdqycOFHGDPmeUilMlRUGC6uz/UeyPgcNs3sRmgOuZJ5QedzmY8QPP37G3zWuWtrfPRZPHx8PfDTiu3IEB83WZ7iM9evEJgxYrh3ifEyzWLuH3l1CeN1Ns+D+fmerQEAw57rjMX/jcCHn27DwcPXNJeVD6+ZKgkAiJ3ZB1FRkwEA+/Zl49ixIzh69KjGZiYlZR1mz56DESNCNIu7WvibPXsORo4MZaoeLi48sNkslJRUMd5nTmA0N4cYO0JpLtFAjdEU5lRyhEEgOAjDnVvdRtbT1yBoCw/qtvj6+mLo0OdQUyM3Kjw0RcLGD8JPv7yFamkNZk37mlF4aE78/c9VHDl2Hf83czi4XMtTX2/YsAFKZe2RVVpaKo4ePaoTnTQ2dhpWrlyBJUsWIzMzDQDAZrMxaNAgbN2ahh070hm1agqFEmy2+eXB3sXeUo0ZoXFCvi0CgQHDCc7ySd5WTIWZpiga8+e/gbVr16KsrAxlZdI6b0tdw+Vx8N7Cl/HewpeRlXEUcxK+w+1bhQ3drHrlx//tR0t/dwwf0sXiMmFh4aBpNiiKRkhIKIKCgjRjFIBG6M3JycHOnTugVMqxa9dOSCQS5OXl4dq1q5g8ORqZmWlQKuUG9SsUSlAUBZqu++BPTGHVCY0b4sZJIJhBO9BOfWHsWTRNITo66vEZNQtKpX32Bg2Nj68HPv9mFtp18McXi3/DzsyjDd2kBiEvvwTXbz5EQE8hdu25aFGZadNmaP4OD49GWFgkgCfjRu1iGxQUhICAQNA0G+PHR2HFiuUoLCzE3r174ezsjNzc04+1FiLEx8/W1Kn2vqAoCkDdn3I35XH8NEO+NQLBAhp6gqMowN1dAAAoLZVg27ambXjWp28nrPn1Xbh7uGDuK989tcKDmguXCtC1C7NrqTYZGWk6/9aPAKre1S9Y8LEmSuiIESEabVpEhAgtWrTQRIvMyBDraCKUytrjDW0NBPGUIOhDBAgCoQng7u4EmqZQWiqBQqGb+VJfBd3YJ/rJ0yfg+x/n4cb1Arwa9zX+vZrf0E1qcB4+qoDHYwHREvQ9LPRRGzcaS9W+ZYsY8fGz8d13KyESiTQCBU3XKqTF4lS89tosnXLEU4JgDCJAEAiNHHd3AVgs+rHwoNSxy4iIEGHq1EnYuzdLc39Da0tMweVxsejrD/DBp2/hzz/24535P6KkuKKhm9UoqKqqgbOT5Z4xaoNDYwu7ucVePT5qx9Fs/PHHVs3xhVIpR3JyIkpLSx//W8noAkp4ummcMw2BQABQKzxwOCyUlUl03L4iIqKxeXM6du/ehS5dumDlyhWNencobNMS6/78GWFRIVj4n0/x47I/oVCQhUgbygp7RXX0UP2F3dRnphCLU/Hii1HIzEyDWJyKKVNiEBEhQrt27dStIp4SBJMQI0oCoZHi5lYrPJSWSiCTPXEf1Y/xcDM3DwCw5IOvseSDrwEA/5yttSnQ9v3PzMzAmTNn0L17d5zYe4bx2ebiOHh59GS8rp2u+tnneuPDz2aiorwKc+K+xL9X7piNk6DwZU5mxX7EHMoapXcYL6vamGm/mfqpVp2Yn3/3X+br5Q90/imgZaislGo+r6lk9kRRH1EYy2MSF5eAbxcux8PycowIHGGyjn2n92mEjezsLE3I9KysHfjzz20AnhhTNoQhMaHxQ0YDgdAIcXcXgMs1FB6sVR+LRDGamAA9e/aCl5cXxowZ6+jmGoXFZmHO6xPwzYo3cC73X7zy8if49wrzwv604u7uhIpyy1N+q40o9aOUApZn4tTWLISEPIksGRs7DSwWGyqVCtpxBonwQNCHaCAIhEbAE6M3tc2DofAAWD+Ja6u0MzLE6NevH2i67heClsIW+PiLWejarR1+XPoHNqVkoxkGvXUYfn4euHevxOL7k5MT4ezsjB9/XMGYzMoc+poF9d8sFq2TSMteagOw1X1MCUL9QkRKAqGBURu97dqVCXd3p8fCQxVkMoXdBmsURSMiotbSfuTIkdi3bx9jki1HECoagqQNi+Dp6Ya5M77Cxt92EuHBDP4tPVFYWGLx/QkJM/Dzz6uMGjZaO2a0hVL13ywWpWOjYs84TElJQVRURKO20SHYBhEgCIQGQG3cptYQcDgcDBs2BDRNoaSkCnK50i7XOW0Xv6ysHeDz+Thw4AC6d++uiVboaDy83PDZ9/Ox8PPZOLDvFOKnLMKFs9fr5FnNCZqm0LpNC9y5/cD8zY9RKpWIi0vAgAEDMH/+fKNCgD2wWLRGgLBvHCqwZs0a4sHRTCECBIFQz6gn5CVLFmP79nS8/fa7+OOPP+Dq6oqSkiooFPa7zqnvpygasbHTIJVKERs7DcuXr66TkMHPhz6L3/78En36dcMHby7D5x/9gqrKph9quz7wb+kJHo+DmzfMGIZqkZKyDnK5HLdu3cKhQ4fw669rrH6usRDWatQChL3jkKJYmDVrFvHgaKbUybepVCrxww8/YOjQoQgMDMTMmTNx545p46lt27aha9euBv/l5eXVRfMIhHrBVIAf7TwFd+7cQkREONzc3CGTsbRCCNvnOjdxYqRmx6ida8DRE7iwjR++X/0eFn/9Gk6fuIypLyzA33/lOPQZzZ1nnvEHANy8YXkOkPDwcJ1xdOJEDqNAYAztMaINTVOgKApyudIhLpyxsbHYujWD5LpohtRJOu+VK1ciJSUFS5Ysgb+/P7755hvk5eVBLBaDy+Ua3P/NN98gNzcX33//vc7nXl5eYLGsT15E0nk7hqe9P4ylKra0T7RTgOtPnOpr8fHxmDZtGhQKFUpLjVvgK5VyTYRA7XaZSoGsVMoxcWIkSm7KGN+NL2jBeN3ZtzfjdR5LiSlTR2FK7EgUFZVj+bd/4sihJ3kclArmLKF0i46M15VsDuP1qoFezPXfY35/50v3GK9L7jILQcpREczP35PBeL2y/MnmaM6br2DStBiM6Bum+czc9/NcWCewWCwcO3YMQUFBaNVKiOnTZxkdsyqVEtnZmbh06QKqqqqQk5OD4OBg/PXXX+jRoweWLVulU4bLZcHd3QmPHlVoBFpzabtN8bTPIfo0hf5o0HTeNTU1SExMxPz58zFixAh069YNS5cuxb1795CdnW20zJUrV9C1a1f4+Pjo/GeL8EAgOAJ77Q+Y1L4iUQwyMrIQFxcHmUxpUngQi1MNdona/v/GdoU0za4zGwc1w4b3RPKGdzFl6ihsWr8PcVO+1hEeCNbRpXtnXLloJm6EHidOnMCzzw7G5s3peO+9DzF9+izGMXvyZA5u3bqlyX1x/PhxTJgwAXl5edi+PV1He8Fi0VCpVDpeGOTogWAMh4+KS5cuobKyEoMGDdJ85ubmhh49euD48eNGy1y+fBkdOzLvSAiE+sL+c19mtS+fz4GbmxOkUhnKy43bCRhrg/YCwZQCua5Uxc909Mf3y2dg8Wcv48b1e0h4+RskrslCdTXzbp/ATNcenXD5/FWrysTFJaCiogITJ0YiMzPd7JjNycnBqVOndNJ+79mzB0VFRcjNPY2JEyORnLwaQK0A0Vh3x4TGhcPjQNy7V6sabNmypc7nvr6+mmvalJaWas7x1q9fj+LiYgQEBOCdd95Bhw4dbG4Hm229bKRW21iqvmnuPL39QSM+PgFJSYmIj08Ah/PkZ2JJn6hUCkRHT0RU1AugKF0tGo/HhpMTD1KpDFKpzOQ43bYtDUFBQcjJyUF8fALYbEpngaitm615nv5zHIm7hzPiXxmNCFEw8vMe4d23knD80Lk6e97ThIurM1q3FeLyResEiMjIKERHj9cZD6bGrPZ47tMnEAsXLgJFsUBRwK5d2RqthFgsRkLCTLDZLKhUKpvmUH30fy91PVYbO81tTnW4ACGR1Kpj9W0deDyeJkGLNlev1v5wVCoVvvzyS0ilUqxatQovvfQSxGIxWrRgPgs0Bk1T8PR0tqH1tbi5WZ4V72ngaeyP+Pg4xMa+DADgcAzP4031SUpKCtasWYNZs2Zh0qRJRssCtVoIPt/4NZlMhl9+WYuioiL07t0bsbEvg8PhYNasWZq6vbzcDJ4XGxtry6uahKYpjI8ciISZYwAAq3/aga1/HoFcrjBTkmApnbvVal4vX7BOgPD29jAYD/HxcZg8eRIEAsOxqR7P2uNRff/ChQtx/PhxBAUFwc3NGRxO7QLP5TpueXBzE2DdunVYu3at2bEqk8lM/m6aC81lTnW4AMHn8wHU2kKo/waA6upqowM7KCgIhw8fhqenJ6jH2WRWrlyJESNG4M8//8SsWbMMyphDqVShrKzK6nIsFg03NwHKyiQk0Q9If2zdulmzo4uKmgjAeJ+od1XaPu9r1qxBZmYmQkLGIipqIjgcFpydeaipkaOqqkbnOcZ2ZeodY0jIWFRU1ACoQXh4NMLCxoOiWCgurjR4XljYeABwyA6vazch/vNOFLp0ESJDfBxr12SjtMR6w2RrcRJw0a2rP57p6Ic2Qg+09HODp4cTPN0F4HLZ4HBoKBUqVCkVqJDW4F5ZFe6WVODf+yW4UFCEq4XFqGlCY7VLt06Q1chw49otq8oVF1cajAdj49WQGoNPAgL64O7du+jTJxAVFTXw8GCjqqoGNTXWeXUYG8fq38vmzVuwdu1anbFqbJxa9g5Nl6Ywp7q5CSzWkDhcgFAfXdy/fx9t27bVfH7//n107drVaBkvL12LaoFAgNatW6Ow0HK3Jn3sOcNTKJTkDFCLp7E/VColkpJqjwySkhIRHq6bSEjdJ/reFurkRkFBQcjOzkZ+fj4iIyfA2ZmH6mq5gc2DKW+NiIgYzTN1+54CoNT8rZ1Madu2rUhMXGuXEaXAiY/Zr8fixakiXL92D//36k+4eKFu3am7d/XHoIHP4NngDujYwQc0TUFaLcOd/BLcvVeGvLt3UVwqgVQqh1yhAIumwerkBlc+Fy3dndBL2AKiPs+Aw2KhWq7A2byHOHn+Lk5cvYdzNx9C3kgnagDo3L0Tbly7BbnMusVaLldqeUYojY5XwDLjx7CwaIwbFwmKqg1fTVEUZDKFVb95Jq8jmUyGVat+QkBAAHJzcxEXlwCFQnsc12LuN9ecaC5zqsMFiG7dusHFxQVHjx7VCBBlZWW4cOGCUbXVpk2b8P3332Pv3r1wcnICAFRUVODmzZuYMGGCo5tHIFiEqUyH2ugbrkVERGtyC2zfno6cnBzMnfsa3N2dIJcrUV4u1XGHUyrlBuWtjSiofp5KpcSUKTGaumyhd99uWPTVm/Dx9caa1VnYsvkQlHW0+Hp5OiN0TA+MG9MTrYWeKC2V4GjODaRtO43zlwpw6145mBzM9d04OSwanX090Ke1D/q398OUkT0xK7wvpDVyXLrzCJduP8L1eyUoLK7Eg5IqqIqqUCWp3WXLZAqH5n2whs7dOuLqpWtWl9POsjpyZKjBeN2+PV0jTFpiVKsea+o8KZb0h3osq1RK7N6djaKiIqPjmMPhYOrUafjtt3WYO3ceRo0KNdkGc785QuOiTuJALF26FBs3bsQXX3wBoVCoiQORkZEBmqZRVFQEV1dX8Pl8FBQUYPz48Rg4cCBef/11SKVSfP/995r7eTye+QfqQeJAOAbSH4b+7/p9YmznNbzPMAAAh8PGb2mJaOHbApPCYvHoYREA4O3PXgdN01i3LhmhoeOQkSHWKR8ygDnGQHV1mdl2e7VgTlet0IrTwGKzMGveZMQmjMf5M1fxyQcrUZBfzFheNnwMcwNMHGG3aeGK2FG9EBbUEUqVCn9duA3xqes4ffs+FNpug1XMdhaUhHnacrpTgU4dWiCwtxDdOvmia2dftPJzB00bT+gkVyghqZGjoroG+UUVyKusxMEbd3Hwxl2ddqlhr2V27+U6+zFep3m1Nizi7R9iw/q/sT5lv8718gLmOBRVVcxhr1t0cjUaJ8QcPB4bbm4CPHzILMCpx31CwgwolUqN1i0gIBDh4dGa343270Umk1vUDltjTjQFmsKcak0ciDrJxjl//nzI5XIsXLgQUqkUwcHB+OWXX8DhcJCXl4fnn38eX375JV544QW0bNkSycnJ+O677zBlyhSoVCo899xzWLdunU3CA4FgLUwTlrmJTD+boTavL3gN3Xt1Q2xUvEZ4AGozKQqFQuTn5yMrawc2b043CBZVX/i38sGn376Bbj2ewapl67E+SQylUgkWy7G/PW9XAWaG9sH4gZ1RXCHF6r25SDtxFRXSunEBVSpVuHLtAa5ce7LQslg0Wng5w9vLCeyeXnDissFls8Bm0eBz2BBw2XAVcCH0dEGvVt6I6t0RjyolSDlxGb+fuARH77Ra+LjBxVWA69eZg1rZgrGdvKkgU9qfqbNwMgkP2pq37Ows5OXlaTzpFiz4WEeojo6e+LiMwmKhoLkKD82ROpm1WCwW3nnnHbzzzjsG11q3bo3Lly/rfNazZ08kJtqmdiUQ7IHp7NZStCc8tf/9s0MGIGHOdHy9+HucPX1e536RSAQfHz/k5+cjNnZagwkPg4f1w6Kv5qOstAKvTv0QF85aF8zIEjgsGi+P7Im453ujRq7AD9tO4M9DlyB1qv9FQqFQovBBOQoflEPCY46UqfJmo1MLd8QEdMLrwwLBoin8etyxwbI6dKjVUliTA8NS9AVbY+Pc2Gc0TZk17tM+aggJCdVoINS2N/ruxmpPIXt+Y4TGScPMXARCI8CYDYM9ux/1hOzk7IRPv/sYRw4ew69rUgzu27FjBzZuTENYWGSD7LYoikL87BjMmPsiDu47gU8/WImKcuu9lszRt6MfFkwYhNYtXLHx7wtI3n0W5RK1F0Dj32X++7AUX+05AYlMjhnP9sTuK3eQX1rhsPrbd/CDpKoahfdKHFanNtqaB/1xvm9fttGxz2azLPIO0BdQtP/W1n4A0MnGae9vjNC4IN8k4anFEYmC1GhP0m8seA2e3p748K3FMGZiFBs7DRRF60zw9QWXx8Gir+Zi1rzJ+OWnzVgw/xuHCw98Lhv/iQrG6rmhKK2UYup3YqwQn9ASHpoWaw6fQ1FlNf4zvK9D6+3wjB9u3rxvdIw4Ev1xDgCrV69CQECAwdi3JgqlKYNf3eRtJBtnc4ZoIAhPNUw2DNagnqQPHNiPKXEv4rvPliP/zl2j94aHR2r+dsQRiqW4e7jgy+X/QZdu7bDg9W+wf/cxhz+jZ7sWWDx9KHzcnbB063FsOnCB8Ty9KSCVK7Dp9BXMGdwbNEVB6aAXeuYZP1y/5nj7B2Poj/PY2GlISan1ihg5MgQqlRJsNhs0TTkkUJj27yk2NhZhYeMfu24SmhNEHCQ89ThqVxQREY333nsPN6/dQsovG0ze99Zb8/DnnxvszrlhDX4tvbF63cdo084P82d84XDhgaYoxIX0xpo3x6GkQorYb7dh499NX3hQc+1hKfgcNlq6OTmkPpqm0L6DH67VkwABQONyCdQKFBs2pEIikWDCBBGWLFmMK1fOQaVSQSZzfKTRpzl8dXOGaCAIBAfB43HRrVs3zJgyB3K56cBAnp6e+P33FPB4PAQHB2vCCAOAWLzF4e1q084fy9YsgFyuwKuxi3E3z7FGey3cBPhk+lAEdvLDr9lnsXbHGShYzURyeEyxpDYAmBufi/xS+yNyCoXe4PE49aaBAHS1XTRN63hQnD59GjNmzMC5c+dw/PgJiEQxzdqdkuAYiABBIDgIZ2cujh07hgMn98CvU63/PfBEw6FUypGRkYZff01GYWEhEhN/wbx583H37l0EBATi7793ISXlN7PPcffsZPYejnttELd27X3x/bJXUFYuwdtvJOJROb/2WmvmRHWcvBuM1+U1tTvZAd1bYVHCMMgVSrz2fRZOXa2NHqsKdmEsT59htrughzGXV+1mjoWhH2hKH8qPOdeCfvsEj3fuNTekoO9Vg9txOHP5B8z919Krtv0n/05HaYnhu5iL9dGikyvi4hJQVPQI27alIyJCBH//lli7do3RSKT62i6hUIizZ88iJCQEOTk5GDduHDp16oRvv/0WWVlZcHZ2xo8/rjB7tEaEjKcb8s0TCHaiUinB53PAZrNw9+49HYMxbTe6iRNrvS4SEl7R3DNixFgsX74aYWGRWLNmDYYNG+awdrVu443vl72C4pIKvDHvf3j0qNxhddMUhRmiQCybH4LLdx5h2mfpGuGhOeLEqxU4JA5KXd6tZ2cUFtw3KjxYwubN6Y8jnmaCz+cjK2sHsrOzTB6H6RtSjh07Dr6+vhg06Dls2SLGrFlzweVycerUKcTFJeDnn1eZPVrTTi+vTX0aBRMaFqKBIBDsQCxOxfr1Kdi6NR1SqQzPPTcSgwcPN4gNob3727JFjLCwKAMr9hkzZmLlyhWozXdhH37+Hvhu6SsoK6vCW28kOjQRloeHM96fPwb9u7XE/8SnkLzjTLOxdTBFGx9XyOQKPCh1jMdK156dcem8dRk4tZk4MRIJCTMQGztNEwWyVSsh7t69q/HyUaPWEugbUj569AArVizHjRvX8cYbb0Imk2PlyjWauCTWhnGnKLpejYIJDQ/RQBAINqKeRIcNGwaBgI/Kytpzcv0J15i7qLZmQr2LGzkyFAkJM+xul4enG779PgEymQJvv+lY4aFX77ZYk/gaOrX2wvxl2Uja3vyFBwBo6+uOvIflRsNa20L3nl1w8dwVm8vXHoGtRXj4eAiFQmRnZ2PbtnRs2JCqs3Drawm0j9PS09NRWFiIY8eOgsNh4ciRo5g4MRJicaqOK6YxjI3p+jQKJjQOiABBINgIRdF45ZWZmDNnDm7cuAklw3wpEsVg7tx5SElZp5nMjU24YWGRpiuxAB6Pi69XvgcnJx7e/k+iQ48tYiYOxtIfZuJeQTGmfZaOE5cLHFZ3Y6dbGy9cNZMfxFL8/D3h6e2BC2cvm7/ZBP3798f48ZGYOnUy+vbtBy8vr8fGkU+UykwLOk2zEREhgp+fH9577z2oVMBnn32ic68lYdy1hQxHxlUhNA3IN0wg2EFMzES0aNECnp7MyZNUKiV+/HEF8vPzdSZoU5oJW6AoCh9/NQ+durTF+++tw70Cxyx4AgEXHy+egtfmR+DPLYfw5vy1eFgqcUjdTQEWTaFrG2+cv/XQIfV17d4GAHAh13YBIi8vDwUFd3H37l1NPhV9bQFF0XjttXkQCoVGF/T4+NnYsmUb+vcPgkRSg0mTpli9+OvfZ05zQWheEBsIAsFGKApwcuJBKpU9TkDEnJRLP8QvYBjgR6k07f5pjhlzX8Tw5wfgvfnf4MrlUpvr0aZtOx988tnLaOHjho8X/o6/9583X6iZ0aW1F/hcNs7dYM6AaSndurfBvbv3dRKsWUthYSGOHz+OMWPGoE+fvkbzqVhij+DsLABFARKJzKFB1QhPB+SbJhBsRCDggqKAqqoakxbp2qh3ZzRNGz2XTkpajYkTbTvCGDFmIBLmTMDPyzfg4F7mVNCWMnxEL6xa839QKlWYM/Onp1J4AIB+nfwhrZHj0p1HDqmvR692OHfmgl11+Pn5ISJChPPnz8PJSWBw3RJ7BIqqHcMSiUwTTpss/gRroFR1HYi9AVAolCgqst5wrCnkaq9PSH8You6TkpIquLsLIJHUoKJCigkTRCgsLISfX238B1MTsUqlRMTQWMZnyGqsc+3r0LEdUtJX4+C+o3jvtUUAANd+k5mf4WE6XTeLpvBaRF9MjgzErgNX8c2qfZBW62pGamJ8GetXPDKjSTF33Z85ToPZ8m5mIh+WMUdbZF+Xav7+9vUx4LJZmP9dluYz/gUzwpRna6Mfs1g0Mjb/H5Z9tQyJq5JMFvf17cdYfWX5Hcbr2ccyzGogbt++it69e+HPP7fi+efHMdZnK2QO0aUp9IeXlzNYLMsESSJuEgg24OTEhUqlQlVVjVXGY47e4QmcBPh21ScoyC/Eone/srs+dxcelv1nLCZEBGBF0j/4dNluA+HhaYLFotC3iz+OXzCe18RaOj7jAz6fg1PHTzmkPlOoVEoz9ggqdOvWFevXr8dPP60kHhMEmyA2EASCDXC5bJSVSTQujI46P7aW/37+H/i38kVs5GxIquwzbHxG6IFv5o0Bn8fGfxaLcfq8YxbNpkzPDr5w4nNw/EK+Q+rr3aMVamRynMut2+OgJUsWIyAgEOHh0UavOzvzwWYDqampxGOCYDNEgCA89dgSjlcmU6Bab2de35NwxAtjER4Vgg/e+BQ3rt2yq65ne7XGZ7NHIP9BOeZ+sx2Prtlu4NecGNizFUorpLhy2zH90bunEBcv34OsxjERLU2Rk5ODgoIChIVFamI0qMcnTVMQCDiorKzBL7+kEOGBYDNEgCA81VgbOc/JiQsAqKqqruumMdLumTZ4/5M3sG3LDuxI321XXZHDuuKdqYNwKDcPH6/ZB0m1HGYsECyiq48nglv7oruvF9p5uoLPZoPHplEmrUFhcRVuPSzFqVsPcOrWfZRLaxzwRMcT3FOInIsFDkvh3btnK2TuPOeQupgICgpCQECg0eiQzs48KJUqSCQ1RHgg2AURIAhPLabC8ZqCx2OD9zgngtJBEQltgc1m4YulC3G/8CGWfLzcrrriI/pgVnR/bPnrApZuOGr3QunEZiOyUwdEtGuHjt7ukMjkuPygGOfuPUJljQwyhRLuAh78uHyM6dkOsYN7QK5U4sSNQvx14Tb2XLiNUknjECac+Bx0b98CmQdtDzmtTbs2XvDydMaZs3kOqY+J9977EDTNNhjjUVEx4PHYqKhoWAGY0DwgAgThqUU/NoOpmP8URYPFouHqykd1tRw8nu0/GyY3T0uZ9XocOnfvhLiY/7PL7uG1icF4ObQ3fk47geSMM3a1icdi4cUuHfFy9y5w5nCw91oefvjnNI7eLoTCmFDy2IuipYczBnVqhed7tMF74cF4JywI/1y9i6zbd3DwdgGq5czeEnVJn85+YLNonLjkmIibQf3aoaZGjrPnHWNPwcTEiZEajYP2GHdxEUChUEIqrdsjFMLTAREgCE8d2ufBTMaPmZlpyM7OgkgUiYkTJ0KhUKKqqtpmAUK9GwTcbW57n/69kDDnZaxelmRXKOTXJw3A5JBe+O73w9iy56LN9QBAHx9vLHw2CP5OTth27QZ+vXAZBXcsC6FdUFKJP3Ou4s+cq/B05iGkV3uE9emAJSGDIZHJcfB2AY7nFSLn7n3cKa2wq53W0q+rPx4UVyLvvm0ZM/UJ6tsW5y7cRU1N3QtF2lo19Rjn8bjgctkoKXFMQjACgQgQhKcKYzYP+kZmz/UeqLmfw+XgzXn/QVlpCSaGTcGdW3dw5R5zEKDhfZhTcru4MgsQzq5tjH7u5CzAF8s+xrkzV7E+eRf4TqZjMVAy04vU7LjBmBzSC0vPncY2jwJwX/AwuKfqCvMxgpM7BTZFYWa3nnixQ2ecLy7C+wcO4U5lBcABnJ5htqKo8TecesoBpFbcQuo/t+B/h4XRvdphePc2eG9oP7BoGhXSGtx4UIrbD8tQ5l2De5JK3K4qx+2qMlQrdd/3QRqzAMN6yOyayntYhn4dfJB75g74BYZRPSuLmBNhOevXx+Ogb582+OXnHUBxHpwFPozl798/yXj9YO5hTJggQlFREQICArB06Y+YODESRUVFCAkJQU5Ojo5WjaJoODtzUVMjh4xhbAC2GRUTnk6IAEF4arA2BTFFUfhq+RcI6Nsb0ybE484t5uA9dc3r78bCw9MV815ZDCVT5i4GYif2x5QX+uGH82ew9dZ1m9vSgsfHJ/0Hoou7J1ZfOofN16/CkZEE8osq8Ovf5/Hr3+fhzOMgoK0POvt74BlfD7T2ckVrP1d482ojMCpVKhx+dBfJN86hQOqYzKN8HhtdOvli5277Ikaq6du/E3g8Do4esk/bo82MGbNw+vRJ5OTkIDMzHQkJM5CYuBYBAYFYsOBjHSGAx2ODzWahuJi5f0g6boI1EAGC8NRgzObBmFChZuFnHyAschzmz3wTp3JOaz6XyYyfH9flzm3IiH4Ijx6OJYvW4m7efZvqiAjpgZlTByHx96NI9bD9HL6Hnxe+HzIMCpUS8w7vx8USxyTtMkVltQyHr97F4atP4lL4jnUCj2ahrZMburh6IqZ1F/zUfwzW3TyPtHz7jR67dfUHm83CWQfFfxg6ojdu37qP27ds++70mTBBhLi4BJw+fVozdrdsEWvcNvVxduahulrGGP1Q/7fg7OyMUaNCHdJeQvOE6KkITRprI+gZS0GsTmscESHSTL5z3ngVU195GR+/9wmyM3fp1MHhGKrnLcmFYSueXm54b9ErOLD3BDL+3GdTHQP6tcWbc0YgLTMXv246bnNbhj0jxM8TR6FAUolZB/fWufDARLVSgasVxcgsuI7ZJ7KRWXAN8R16obd7C7vr7tm9FSoqpLh5y/78FzSLxnNDe+HAvly761KjXuRffXUOYzZXlUoJJycuaJoy6Xmh/g1pR1QNCAjAzz+vIhEqCYwQAYLQZLF10daeZFUqJbKydoDP5yMrawdUKiVejp+CNxe8jmVf/YBNv/1hUH79+vU6/9bfuTmatxfGAwC+WvyLTeU7tPXCondDcezELfzwvwM2tyO8R3t8LXoOB2/cxZtHDqC4pvG4AtYolfjl+llcryiBqFVHu+vr1b0lLly6B0eEfxgwsCvcPZyxb4/jBAi10DBqVKjJcNVicSpeeSUWXC4NiURm1PVY/zckEsVg7tx5uHDhAmJjpxFbCAIjZHQQGi1Mux9Lsg1aAkXRiI2dBqlUitjYaeDxuPjw8/8iaXUyflq62mgZsVgMlUrXEC0oKAh+fn4ICgqyqR2mGBM2GMNHB+Pbz5JRUmS9N4C7Kx9ffhiBgsIyfPJdts3xK6J7d8Sisc9i2/kb+O/2w6ix0QajLlEBOPAwH/08/cDjmEmmxQBFAT26t8L5i44J5T02PBjXrt7Fv1cc5745d+48HS2aPurfR2RkJGQyGSorpSbv0f8NjRoVio0b04gNBMEsRIAgNErMaResSWBlDvWxxgsvvAg3Nz4yt27HksXfMNwvAkU9WaAoikZAQCCEQiECAgJtboc+LXw98Z8PpmPX9kPYv9v6YwcWTeHjd8eCz2Pjg88yIZHY5vsf2esZfDA6GBtPXcEXu487LCpjXXCyuBB8FhvdWnvbXEfblu5wc+XjvAPiP3h4uuC5oT2Rtd32YyNjmLNNoCga//d/r2Hq1Km4cuUqAMroPaZ+Q0TzQLAEYkRJaHRYGiHSkQms2Gw23NwEyM+/i6Urv8d7n79jsANTqZRgsyl4ebkZWLOHh0drDNi+/mAp47OUCmbVP9erMwDg/c9fQnWNEit+OqD5zFKqWjrjtZgg9OklxLylWbjNVgItnzgXKguYXfn8gmpDdg9tIcQ73YKRcfcaUirOaT53ETA//9YNZiFDfo/ZjZLb34nxepWJUAZ5strAWm6dXaHkMLhyykwH4OrZuyWUShVOlVRB2tK4y61zeW/G9imra7VFYRHDoVQosUP8j8737ubDXJ5lxk1U32DXmAFvVFQ0OBwWWrd+xuRRTEMlgSM0D8ioITQ66js9NkVRcHevjdD3yisJyM/PR0rKOiiVhsmytDUPddEWNaHjAjFwYGd89802VFQYqp/N8Xz/9ogN6Y0Vqcdx6mqhTW0I9PDFW12Dse/+Hfx8zb5IlfVFhbxWy+LG49pcR+8OPrieX4wqO6M1slg0RNFD8Ff2CZSXOTZ4k7Z2zpi2jsWiweOxUVlZY9aOgwgPBFshI4fQKNH3lqhL3N1rt9NlZRJMmjQFQqEQoaHjMHFipEUGmo62VPfxccP/zR2LrB2ncPTov1aXb9PWGx9MG4LsY9ex6S/b4hi0c3LD+90H4nTJfSy/egKN99BCF/bjxVBmh41Gv07+OH3lnt1tGTm6H/xbeiF10z6769JHrZ1TKuVG7RicnLhQKlUWh6wm3hYEWyACBKHRUh87I1dXPthsGmVlEiiVKkRERGPDhi3IyBCjsLDQqCZCm7pw33z7HREkkhr8+ONOq8vy+RwsWvwi7hdV4suUf2x6vreAh497DsY9aSW+unTMeC6LRooTu/ZUttLGdNk+7k5o4+uGk5ftFyAmTx2No4cv4N+rjs99odbO0TQbr702D0KhUKOtU2sfqqosS0pWly7IhOYNESAITxXaOy0+nwM+n4PycinkcqVmIv322y8hEonMaiKMWbHbOwmHR49B8IBO+P5bMSptyJg4/40w+Pt74P01eyCpZrYzMAaHprFk9GCwKAqfnD8MicL6OhoSTy4PAFBiY3rwgd1aQalU4eRl+wwoh47og85dWiMl2Xoh0BLU2jmxOBUrV65AbOw0jbbO2dly7YOjvJkITydEgCA8NWjvtNhsGi4uPEgkNaiulutMpEePHsWZM2d0NBHGJld9Ww0AdsWB8PTywJsfvIpdu3JtOroIGdsHoaGBWLY0EzeN5G+whLcGBaJ7C098cfEIHtXYnumzofAX1BqK3i23LaT1oB5CXLj1EKV2pLumKArxM8OQc+wSck9ds7kecxg7vmCzafB4HFRWWtZ+R3ozEZ4+yGghPBVoCwh//LERbm58yOVKTXQ+7Yk0ODgYUVFRoGmO2clVbauhtmRXCxK28NbC2YBKhZ9WWr9rbdu2BV5/IwxZO05hV7ZtAYsiOrfHC9074ut/TuJyecNFmLSHVk7OkCrkKKqy3vCUw6bxbPdWOHQhz642DB/RCx07C5H8v+121cPE9u3pmDIlRhNFVT0+nZx4kMsVqLZC+1Sf9kaE5gURIAjNEiZtwYoVK0FRNMr0LOPVE2nv3n3www8/QCxONZhc9QNIAUBGRppGs2HrJDx4WDBCx4/C91+sRmmpdRb7XC4bH348AYWFpfhh+Q6bnt/Zyx3vPtcPWy9dx7YrN22qozHwjKs7blaU22T0OaBrK7gIuNhz+rbNz2exaMyYFYJDB8/h7Bnbk5WZIzFxLfLz85GVtQObN6dDJIp5rH2w3PZBG6J5INgCiQNBaHaYyigoEsUgJuZFuLs7Yf/+v/HhhwuNZh1MTFxrNAaFut57Vx4afe6SD77Gkg++hptLa8b2Cdx003Xz+Fws+PQNHD9yHnv3XAHdui9jeWknV51/z3lhIFq3bYH4ZRl41EMIAFD6mXFjlD9ZYp04bHwxahBulZTh2wOnoFKocF9cwVxe5MJ4Obi7YeAibS55M6f75jJfRmGO8UWyfaArLt8pBucQczpvWV/9hNvAqKHP4GZRGa45ScA7voe5Ac5+Rj8WRT2Hlq088X/TZuNBnuljqE9++BBDh47AxIlRKCwshJ+fH4RCIcaMGQs2m43P3mV+/msJC5CYuBaxsdNA07XTuJMTFwqF0irtA4FgD0TsJDQaLDXgsjXENU1TcHUVQCqtwYcfLjR6j6kzYe16Hc3UhHC08PHA91+mWF12aM82mDikG5anH8e1ghKbnv/OkL5o4cTH+7sOo1rBHGCqMcNns9DJxwMXCq1PgMVjszCyc2vsvHzL5uc7u/ARN2MsdmQcx9VLzDYsP/ywTGOsqx5ry5evhkgUg9BQkdlnhYVF6mjGrLV9IBAcAREgCI0CS13JmO5TR+MzZbfg4sKHSqVCRUU1o22DsTNh7XodSdv2/nhpeih+T96BvDvWpXpu4SbAwkmDsf/sbaQeumzT80M6tUFE1w74+uBJ3Ck1o3Vo5PTw8wKbppF717iGiIkRHVvDmcvBjos3bX7+S1OfB5fLRuIa88dIamPdc+fO4Y8/thqMNXPoZ960xfaBQLAXIkAQGhxLXcmY7tMWLIwJADweGzweGxUVUqhU5g3HTBlMbt2aYefb6jL/7cl4UFiMlMRMq8pRFPDRlCGQKZT4/I9DNj3bz1mABUP7Y+fV29h+xfadd2Ohfxs/lElrcP2R9UnHono/g5N595Ffapv3hp+/JyZMGoo/1u9H0SPm4xOgNo7DwIED0atXL7z4YhSSklZj8uRom9yArY37QCA4CiJAEBocS13JLDleUAsWuomBKHC5FHbv3o3U1D906tNGpVKaPUZhCmVtLYOGBGDg4N5Y+f0m1NRYt3OcNLQHBnZthU82HESpDWprCsDHowagSibHVwdOWF2+MfJsO38cv1NodbKv9l5uCGrjh9Rc611n1bw6NwKlZVXYmLLXovu3bBHj7bc/gFhc6yackSEGm83WRJc0R2ZmmuZvYvtAaCiIAEFoFFjqSmbueMGYAOLiwkV1dTUWL16M3buzjQoJmZlpWLJkscHxSF0F1mGzWXjtP5Nw4thFHNh3yqqyz/h74P/C+2HD/gs4dsW2gEeTA7ogWOiHRXuOodzGqI2NCS8nHnq19MY/N6xPwT2xTycUVUmx91/b3Dd7BbTHyNGB+GX1dkgtDGBFUTRomq1xwxw7dizkcrnFbsC5uaehUimJ9oHQoBABgtBosNSVjCkewxN3y9qFn8Nhgc/n4uzZcwgODkZeXh4yMtJ0yqpUSmRnZyEnJ8cgquTkydHYuzfL4YJEzOTnIWzjix++3WBVOTabxuKXhyLvYRl+yrRNc9DB2w1zB/TG+twryLlrnd1FY2VEp9ZQqlT4+5p1YaNdeBxE9OiA1Nx/IVPY9h3Pfk2EK5fuIHuHdd+HSqVEVtYO8Pl87N+/Hxs2pIKmaUyZYt4VOCcnB4DlOS9IhElCXUAECEKzQdvdcsIEEbZv3woXFz5qauTo0qWXgYCgXS4kJBRBQUE6USVTUtahR48eWLlyBb7//ksdtbE9uHu4IG6mCFu37MX1f61b8KZNCsYz/h5YtP4gauTWLwosisKi8GeRX1aBn46etbp8Y2V057Y4cec+Sq0MYR3V6xlwWLTNxxfDRvRGz97tsXplBlRWHp1QFI3Y2GmQSqWYPPklUBStie9gjri4BLDZbAPtgzFBgeS6INQVJA4EoVmhbQ8hl9eAxaJQVlatOeZQx4fQ12KEhUUiLCwSADB24His+DQJAPDPjbMAKOzcdBg7cRjLF/9itg0KBbNNwtT4UABA4o+boZIb3qsf50FNt9ZeeHlCf/xy+DwuySsAhlgProE8o59P6dAFXf29MGPnXsidARaM23SwBjHHeVjR/1nG668eOcJ43ZH4ugjQv40vPss+pvmMivZkLOO6/CzYbBovxYbhr+xc1Kw/A+1el5j5DqnqErDZLMyYMw5H/jmL44dydK7zeG4WtV0kitGJNRIXl4CUlHWY/ekcSKXVWLt2jUGsErWNj772wVj8E337IO1nEQj2QkYSoVmhFhQCAwMxffp0SCQ1UDxWTZuys1Dv0DIy0up8cm3V2h/Rk0bj96QMlJZY7jbJYdH4cMoQ/FtQjKTD5216djtnV0zv1B2bblzBxaKmGaraGGO7tUONQoE9VtowjB4dAB8fN2zcYJsXy/iY4RC29sGq5ZttKq9G2xhYJIpBbOw0rFy5AqdPn0RRUZFRjRlNU+Dx2JBIajRljXkokVwXhLqEjCZCs0MkisGvv6aAomhUVuqqd415XtRnNsJ578xCaXE5Nv9uXb6LuNG90d7XHZ9u+AcKpfWBmikAb/fsh3tVVfj12kWryzdmxvd8Bvv/zbcqhTdNU5jy8hAcPHgJt29bHzeCz+di2isR2Jlx2OpjKGNoHzOkpKxDYWEhcnJy0Lt3b6MLv5MTFyqVChJJ7TszCQok1wWhriACBKHZUWs4yUFFxZOESqbOgetzh9YjoBtCxz+PtT+lQiqx3PWyY0sPxI0OQPLuXPxbYJvmQNTmGfT09MZ3509Cpmw+BnX9W/uivZcb/jxrXdbLESN6ok0bb/y27m+bnvvCpFFwd3dG0pptNpXXdtXUF2JffXWOQXRKbWiaAp/P0dg+qIVeJkGBaB4IdQEZVYRmh4sLD/fu3YNIFAqxONVo2mNtTUN97dDmvzMT/16+jh3pli9aNEXhv5Oew50HZUjebZvRozePjxmdeyLjzg2cLbE+zHNj5sXAzrjxqBQn8yz3JqEAxE4diqNHr+KqDW6wTk58TJkWioz0gyiwIeolAEycGImkpNW17dESYoOCglBdXa0Zj8YWfm3tg75grH0/8bwg1DVEgCA0KwQCDlgsGu+//75GYHjrrXk6aY+3b0/XmXTVRxt1OeH2HxiIgUOC8NP3iVBacQQxYUhXdG/tjc//OGSzm+HcbgGoUSqw5so5m8o3Vlq5OWN4RyE2nr5iVbmRQiHad/DFul/32/TciS+Pg5MzH7/9YntUUnXwKLUmIiIiGkKhENnZ2Vi7do3Ovfr5XGq1D9UWR2YlEOoKIkAQmg0URcHJiQepVIahQ4drdnSnT5/G7t278McfWxEREa2TbXPPnixMnhyNpKTVdTrhzn93Fi7kXsLe7AMWl/Fxd8Lscf3w5+HLOHvzgU3PDW7hhxH+rfHT5VxUyJt+wChtJvftgvJqGTIv3LS4DA0goVt3HDv2Ly5esN52wcmJjylxIojT/sb9QtsNUf38/BARIdJk0qQoGmPGjIWXl5fOUZq+ICAQcFBTU4OYmChkZKRh/PhITV1MkVkJhLqgTgQIpVKJH374AUOHDkVgYCBmzpyJO3fumLy/uLgYb731FoKDgzFgwAAsXrwYEomkLppGaMY4O9e6NVZWVkMkisG8ea+DxWLB19cXo0ePwYsv1k66M2bMQv/+/ZGQMAM//7wKHA4HGRlizYTraEaMeQ4B/Xrih6/XmL9ZizcjgyGtkWNV5kmbnsumKMztGoBTRQ+wp8C2KIuNFXc+F1G9O2LLmauollueQXR06zbo4OaG5KR9Nj036sUxcHIW4Pck8wmzmOjXrx/i4mYBMG3DoC0IpKSsw969O8HlspCcnIybN28iOTkRp0+fAp/PR1bWDrOeF0SQIDiaOokD8dNPP2H9+vVYsmQJ/P398c0332DGjBkQi8Xgcg191+fPnw+JRILk5GSUlZXhv//9L6qqqvDVV1/VRfMIzRAWiwafX5vOWB3PZ8SIEAwfPhoqlRITJ0ZqBIS5c+chLy8PSqUS06bFYd26ZIwdOxY7d+5EZGQkfvmOOa22t3dPi9tF0zRee3s2co6cxZlTd8B38gWrPXMMBRTUYGCf1ng+sD0Wr9iD6huV4GhdrmaI/6Cm/HQ1XgruCqGTM9774yDKH+gabfoNNh4nQk3haWZthbk4D9Vm5H+egPl64XnmvA4zB/QERQGbrl4D5WoYy4L79T8Gn9EsGgnrh+KfA+dx6d9HAIdvsn6us2HWVS6XjZfiI7Fz+zGcO72dsX2UuwJ+fn5o27YtTp8+jZCQEDx48AC+vr44fvw4WKzaNuvHbtDN4fIkdsns2XPg6uqM4uJi3LhxQyMc0HRt8Cm1oKA+jtOPL2EsRgSBYC8O10DU1NQgMTER8+fPx4gRI9CtWzcsXboU9+7dQ3Z2tsH9p06dwrFjx/DVV1+hZ8+eGDRoED755BOkp6ejsLDQ0c0jNFNcXHhQKJ64talR5xzQ3pH9/PMqjTARFhaJDRtS8c8//2DkyJHIzLQuK6Y5RoY8i45d2mL1cstDVnM5LLwxfTBOnL+LXYes8y5Q4yHgYeZzvZB2+hr+fVBiUx2NFRcuB1N6dUbapesorbY88mRoWBDatPVB0v+ybHru2LCB8PRyxYbfdpu9Vz3WRo8OQUBAAE6fPo2ioiKwWCwIhUL07t0HAMweNai1EqNHj8PYsWOxfv16dOvWQ6OpCA+P1vxtyqCSHGkQ6gqHCxCXLl1CZWUlBg0apPnMzc0NPXr0wPHjxw3uz8nJgY+PDzp27Kj5bMCAAaAoCidONI8sgYS6hctlgctlo7JSavIebfVwbOw0HfVurYARj71791oURthSaJrGK/83EYcPnML53KsWl5sU1hstfVyxNMlwF20prw7pDaUKWH0w1+Y6GitTArqAw2Jh3ZnLFpfhcNmYlhCCPbtO4dpV6xNu0TSFybHP4++9p5F327zHR1raNkRERCM8PBrLlq1CaOg4lJeXw9fXD8uXr0Z4eLRVWWidnHhQqYApU+I0ZbWvMwkJJJgUoa5w+BHGvXv3AAAtW7bU+dzX11dzTZvCwkKDe7lcLjw8PFBQYFumQaA26ZC1sFi0zv+fdhpLf6hUCsY02i4ufMhkCiiVKqPfu7q8SqUCRdGIinoBUVEv6NQ5ZkwYKisr8dtv63DvkmOiNIaKhqJDx9b45P0VFpfx8XbGtKhAbNl5DjfzS2x6bjsvV0QFdsTKfWdQKmleWRrdeVy81Lsz/rx4DY8kpgVGfcZHDUKLFm5IXmtdAC81Q0f0Qeu2vvjkw2SL7o+OHo+goCD06RMIkShKY2OzbVs6EhJmahbx6OiJBmNRH+2MmxyOqSmbRnx8ApKSEhEfn2BwnyXPqQsayxzSWGhu/eFwAUJt/Khv68Dj8VBaWmr0fmN2ETweD9XVlgfb0YamKXh6OttUFgDc3Mwc0D5lNGR/pKSkYM2aNZg1axZiY2NN3sdiweh3ri4/fvx4ZGdnIyQkBNu2bTNaX3x8HCZPnoT+HQfb3W42h42EOROxb9dRXDp/3eJys+OeQ5VUhsRU2wwnAeC14YEoLKvCHyetc29sCkzv2w0URSH5jOXRNAVOPMTGjUbW9hzcuW2bN8ukl5/HyZzLuHzxtkX3qyNJFhQU4KWXpmDWrFmacezlZVmeDH2cnXlwdjZtuxIfH4fY2JfB4XBM3tNQkDlVl+bSHw4XIPj8WsOkmpoazd8AUF1dDYHAsNP4fD5qagx3SdXV1XBycrKpDUqlCmVlVVaXY7FouLkJUFYm0eRPeJox1x/mNAP2olIpsGbNGhQWFmLNmjUICxuv8zyKAtzcnCCTyVBVZWj0p11+27Zt6NKlC06erM0vYKw+dRlHEB41Ai2FPnj3NcsNgXt198fo4V3wxer9qJLY5nIZ2NoHI7q0xn+32R43orHi6yzAxJ6d8HvuFZRYkXVz4uThcHLi4ddfDG2wLKFXwDPo2bsDFvxntcVl1C7EffoEoqKiBuHh0ZrxVlxcaXE9LBbg5uaMigopZDJLx6Z9WidH/q7JnKpLU+gPNzeBxRoShwsQ6uOI+/fvo23btprP79+/j65duxrc7+/vj927dY2SampqUFJSAl9fX5vbIbch1bEahUJpV/nmhrH+qB+rbkong6ZCQQF40g5nZx4UCjkmTXoR48dHGWnHk/IikQhFRUW4desWIiIiEBw8EHK5ChSl+16ZmVvtbjWLzcL0mdHYs/MIrv9r2n1Zp6UUMDdhCC7/ex87/rZdczBvRB9cvFeEXRdv2VxHY2V2cC9UyeX47fQli8t4erli8ssj8OeWg3hwv8Sm5056eRRu3byHI/9YnsRs69aMx+OLhkwmf3xkoTt+9dHP1SIWp2LAgCD4+/tDpWL2mnEUdfW7JnOqLs2lPxx+ENOtWze4uLjg6NGjms/Kyspw4cIFBAcHG9wfHByMe/fu4datJxPesWO1aXn79+/v6OYRHEB9WnWbCjNN0xQEAg5+/fVXXLx40awV+/Tps1BdXY28vDzweDz8+OMKLFmyGJmZaTrvlZi41v42R4+EX8sWSFq9xeIyo4Z2Ro+u/vjxl4MaN1RrGdKxFQKEPvhx/xnYWEWjpYu3B8K7tsf/cs6jUsbs4qnN9IQxkMsVWL/uL5ue20rYAkOGB2Dz+r1QWfHFUBQLFEVbHBFSLE7F5MnR2Lu31kNEpVLiypVL6NWrF7744ot68Zwg3hoEa3G4BoLL5SI2NhbffvstvLy8IBQK8c0338Df3x8hISFQKBQoKiqCq6sr+Hw++vTpg379+uHNN9/EokWLUFVVhY8++ghRUVHw8zP0xSY0PNr+6XVl1a29G9Ov/7neA/HNiiV4duiz+OHzn6CSsHCv9CGGBNR6/vxz9qjO/RRFY9++bOTk5KCwsBB79+4Fn89HTk4O7t+/j3HjaiMCqt9ryQdfM7atstx0UCYOl4P4uS9h799XcFfWBvx2bQzuqWrnqluGTWNG/GD8nXsbRyvKoexlxn6HSxl8RAGYMzwAJ+7cx9G7heB2Yd6xlpcxP2LMaOZYE1OFgYzX/2XoIwBYes6MLUKprrr+7fBA3HxUhrQjVwGlCioJ8+Ima98NbfzdER45CD9vOo4ir3aA15PrSg7zmJX8WxvnYc5rr6O0uAxb1iWi2gqX0YHddTdLSz74WmdcaY9RlUqJlJR16NGjB1auXIGKikqIRDF4770FOHfuHAICAuvFc6I+fteE5kWdjJD58+djwoQJWLhwIaZMmQIWi4VffvkFHA4HBQUFGDJkCLZvr/2BUhSFlStXonXr1pg+fTreeOMNDBs2DIsWLaqLphEchCUJqGzdwZjbtfUO7IXIieOx8tsfITVjia9OnLVq1Y/o06ePJuyvXC5HcHAwAgP7YuLESM2z7FXbvjBJBG8vZ/y6njnQkjYxQ7vB18MZK7fZ7rY8uktbdPHxxE//nLG5jsbKmG5t0beNL77766RVqcxnTwnGg+JKpO60/OhBGxdXF4yPCcUfKVutEh6shaJozJ49B7m5uZrdP4/HgqenB5YtWwZlPWZPJam/CdZQJ5EoWSwW3nnnHbzzzjsG11q3bo3Ll3X9t729vfHDDz/URVMIdQjTDsXWs1R9Nap2ND01Cz5+F5cuXMbm9cxq4b17s7B69SrExk7TRJycO3ceRo0KRVzcLIMIlcaeZQ1sDhuvzJ2Gv/Zfxp08y1xBnXhsxIf0RsaRf3Gr0IxawAQsisKrg3vhwPV85BY0r2ybTlw2Xh/VF/uu5OHYTUM3cFP07dESwwd0wOKVe1BjsfGhLi9MiQCbzcbmlHSbylvDyJGhqKioRHJyIhISZsDZmY+9e/fiwIEDuHLlit1j0xqI5oFgKWSkEByOPWep5oLecLksBA8KwjeffmdyZ6ZSKZGZmYaVK1egR48eSElZh7CwSGzcmIZRo0I1z9GPUGnvxBk5IQy+/j74fdMxi8tMHtEDAh4Hv2TZrjkI7d4O7TzdsPqQbem+GzMzn+sFdz4X3/9luVsri6bw+rRBOHulELv+sS2SJ5vNwpTpMdievhuPHhbZVIclGEsrP2HCi6BpCkVFJSSfBaFRQwQIgsOxN/IdkxpVqazG4QNHcGDvQZPlJ0wQITe3NnRwbm4uRo0ahe3b0422QySKwebN6XarbNkcNma8Fodd2/fi9h3LFhwXAQcvjeqJrf9cxv0S692OgVrtQ8KAntj7bx6uNLOQ1V18PTE5qCt+OXQeBWWWuz5G9euETu28sfzXQzY/e/S4EfBv5Yv1SZttrsMcxo7qaqNOclFdLcewYaN1fgckRTehsUEECEKdYO9ZqrHFvvZc2BNLlyxnLKsO4tO7d28MHjwYW7ZsQWLiWqO7N7E4VWMDYc/uLnJCGFoK/bB62S8Wl5k0ogc4bBrJ2bZrDkK6tkVbT1esPXLO5joaIyyawkdhA3HjYRlSjlnutuku4GL2qD7I2HsZl64/tPn5U2dOwqG/j+HqJcuDgFmDKS2dkxMXFEWhsrI2iJ625iElZR0EAgFSUtYRTQShUUAECEKd4eizVGdnPvbv34/TJ5jV/WrNx/Llq9GtWw+4ubkZVQPrT+Kvvz7bpt0dm83CjLnTsWv7Xly7csOiMk48NiaP6I70Q1dQVG55SGZtaIpCwsCeOHA9v9lpH6YO6I5OPu74dMdRyK0wIpzzfCBYNIXVGy0/RtKnbzd/9OjdFb+t3WRzHeYwpqWjKEAg4EAqlUGpZyxKUTRCQ8dBIpEgNHQcsVMgNArqxIiSQHA0AgEHNE3hwYOH8O/SAnFxCYiIiMaECbUBosaMGYMzZ87g/v37uHfloYHbnPa/1eVFohiN21pQUBD27NkDijJ0kdTHW6gb6nr02H4Qtm2Fj/+7Ht7CwZC5uzCWV3bhY3xgFwh4bKy7/i+UXfTSSnPMtOFebZTK4d3boL2XGxalHjJwe6wpZI6V0CaI+adfIGVetHfdv8B4/ZRZocj0Oz7j6o5ZA3sh5chFXMwzbhTq+o+hm2jPnkLEBHXGDyt34ZFcBjiZjqbIPWvapiJ21mzcvn0bA0f1wSffLQIAZGamYffubERFRWPYsNEal2FTHL14HLLH8SomTBChsLAQfn5+mDdvPoYPHwMABim3b926ClfXnti6dStGjw7TqU+lUmryaWRkiBEXN4sIEYQGh4xAQqOHompVu1KpDMOHh2iORtS7OC8vL/Tp0xexsdPg5eVltj5ttbH6qCUwsB9GjRqFvDzm+AWGbaPw0tRROHLoIq79a1nyNxZNYUpgF+y8chv3KyVWPU+b2MHdcfJmIc7nNx/PCw5F4/3e/XHzYRl+/tvyox0Oh4W33gjFhYt3sU18yubnd3imJQYN6QV39xYID48GULt4r1uXjAcPHuCnn360uC71Ah8UFAQ/Pz8MHToU5eUVRlNuA0p07twJmzZtwqpVPxocUdR3Rk1yREKwBCJAEOodaycnPp8DiqJQVVXri689eaoFgPDwaM3f5tCfhCmKxtix4ZpAU9YwdERvdOjYEr8l7bK4zKiOreHv6ozfT1mejlqfHq28ENDGB78fttw+oCkws0tPtHF2xcfbDluVyyNu2hAIhZ747vsdBup/a3hp+hjcKyhCTU2tRkcd0MzW4wOKohEQEAihUIjAwH46R2Z79mRp7nNy4sPJyRlpaWkmBYT6itFAjDUJlkIECEK9Yu3kpK19MLUwaE+2lkzu+l4XYnEqpkyJQUSEyOrop1PjRiPn2BVcOGd57onJfbrg+J1C/PvIMDutpUwI7oKCkkocvJJvcx2NjYEt/DGhfWesuXwOV63IW9GzpxAvThyA5HUHceOm7YaTrYQt8HxIEDb8VpubR3usZmXt0BwfWCsAh4dHY/ny1RgxIkSjRQgICMDPP696LKAAAgEXMpkCP/+czCgg1IfmgYSzJlgKESAI9YY1k5P6mkDA1dE+OALtyJPqNuXn5yMrawc2b7Y8aNCzg7ujUxchUpIt1z50bu+NgJYt8EfuVavbrcaVz8WYXu3wZ85VKG1NnNHI8OMLsKB3fxy+X4A/b1seu8HJiYv33w3HpcsF2PTHUfMFGHh5+hiUllRgu/gwlEq5zlh99dU5Gs2VLagXfpEoBnPnzsOFCxcQGzsNFEU/1rABVVU1FgkIdbmo1/dRCaFpQ0YHod4wNjmZcq2cMEGE7du3GrVKt3cCVS8KSqVcp02xsdNA05bbFU+OHYlzZ2/izCnLXf0iRnTFgwoJDty4a0vTAQAhvdqBzaIhPm1bkKTGBoem8XHgs5Ao5PjqnHXhvN+YHwJ3dyd8uSTDrqML/1beCI14Fht+242aahl27BBrbBfi4hIwalSow44PRo4MwcaNaZq6BAJmDZs29XG8QMJZEyyFCBCEeoWmaQiFQrDZbKOTobaWoqjooYH2QT9roS0IhUJERIgwdeok7N2bZVMwqZ6926NP347Y9Ptei8twOSyEPNcJmZduQGGH5iA88BkcvnoXjypsc/9sbLzePRDPuLjh49NHUSazXNMUOrY3Rj/fE0uX78TdghK72jA1fizKSiuRnnoAALBuXTKys7Mfj5VaY0pTyd2sQT3mMzJqs8Dy+bXeRRKJ+feuz+MFonkgWAIZJYR6Q50u++TJk8jK2m50MtTVUsShulqu2ZnpZy20dRcmEo3Hvn170aVLF6xcuQLr1q3BlCkxVtUXO/153LhWgH/+tjxR07OBbeDqwkPGpZs2tLoWH2cBerdugV3nLbe5aMzEtOuIsNbtsfTCKVwtK7G4XOfOfnhjfggyd5zBnr0X7WpDu/Z+GBfxLFKSs1FdXesiGxISAi8vL4wZM9Zhi6kxAcDJiYuaGjkUCvMCJTleIDQ2SBwIgsPQTsFtDO10wSEhoVAqlUZTB4tEMYiOngBPTxe88cYbCAgI1Lhtzp49BytXrmBMgMWmmVNZr/uhdvdXcPEsAAopK7cBAFZ8moQVnybB27snY/kObQV49rkeWLzgR9RUGCZ44j70NVpubNAwXLlyD7ceMCfN6jXE9M9yZIvWkCuVOMYtArePwOR9/TszPgJD3DwYr3+7jzkcd0nnasbrHnzGy6goVGKw0B+zuwTgt/OXkXrqps51p6Omn+/uxsfi71/E9VuPsGztISgEhunPKRnzgkzz3DR/z5j7Ah7cL0VG5hnN5yUlJWjbti3c3Fw141r9f7E4Fa17+CM0dBwyMsSIioqGVCrB7t27MW7cOOzYsQNbt25GRISuRks/XTafzwWLRaOs7Ikrr7nfkH7sCAKhISGjkOAQLD2bNeZ2aezoQCDg4saNG9ixY4eOhmLkyFCdXVhD8HJ8BPLvFGLPTsuN9vh8Dp4d+Az27rNvt9zbzQ+5jx6hXCazq56GpouXB74Y9iwO5hfgx5OWx3vgclj4/L/h4HLZWPjlDpszbarpE9gBw4b3xC//y4ZMq65Dhw4hODgYR44cxoQJIiQlrcbkydEQi1ORkrIOHA4HGRliFBUVIS/vDrKysjB+fCR27dqF/Px8JCUZP2LQHvNq7YNcXnufpb8hIjwQGgtkJBLsRls1m5KyDkolcxRES9wuWSwKFy5cMKquVU/CNE3Xu796q9a+GDFmADau2wGFFXEKBg54BjweBwcOXrH52TQodHPxwfH7922uozHgw3XGslHP4WZpGT48cBTW2D6+N/95dHnGBx98lokHDyvsagdNU3htfjjOn7uNv3bn6lwbMGAATp06hWPHjmncN9lstsYjQyaTISJChICAAE38kD//TMWMGTPh5+eH+HjTRwwURYPDocFmszT2PfbaNxB3S0JDQAQIgk1oT1hq1axQKERo6DgdN0lb6uNyaXA4HKxYsULHiE2fxMS19e6vPmW6COVlldie/rdV5QYP6ox/rxXaZezX3skDAhYHJx40XQHCjc3DW52GoEoux5t7/oFUbrkGYea0QRg9vAs+X7oLF69YF/DLGKLxA9Cpcyus/CEDKj2j1pMnT2LEiFEabVdEhAhyuVzjkbFxYxri42dj2bJVEIlEmnvGjAnDX3/9haioiUafqU41f+PGFTx48FCj9bDHvoEEfiI0FESAIFiNsQlLJIrBhg2pmnj91izq+vVxOByUlZWhqqrKpBFbQxiUebXwgChmFDanZKFaarm3AEUBwUEdcOSofW6XHZ29UaNU4HJJiV31NBTOLC7e6jQEXIqFebsOoFjKbEehTYwoALET+mPl2gPYf8h+91Vvb1fMeHUsMrYdw6WLhuHLN25M0xyzbd6cjvj42Tqul9oeGXFxszX3ALXj1xjqcV5RUYa+ffti6dLvdX4jtrhPksBPhIaECBAEq2CasGiabfWibqw+DocFLldgdjKtb3/1SVPDIZfJkbrR8sBRANC5sz88PJyQk2NZpk5TdHT2ws2qYsibYPAoJxYH73QaAk+2AN9eO4CCyiqLy44e1gXzZw7Dhj9PYvM25kyslvL6f8ajplqGn1cZdwdWu1lqp3vXH8/6Y18f7eva4/zZZ5/FrVu30KlTF4M6mX4zxoQDc4I0ESgIdQkRIAhWYW7CsnZR169v+/Z0VFdLcPbsGYsEkPoyKHNy4iP6xTFI+2MXKsotX/wAoG+ftpBKZbhw0fbgUQDQVuCBW1UldtXREAhYHLzdcQi8uE74+t+/cVdabnHZwcHt8f6bo7Hjr4v4+ddDDmlP6OBOGDqsJ5Yv3YYKE7E01IHGTAnL5o4Ntm7dbJA0Ky4uASEhIQgKCoK7ewurBF+m55n6zZmKs0IgOAoiQBCsRnvCMrUrsqW+iIho/P77b3BxccHx48ca1WQnihkFgYCHP1K2W102IKANzl/I11jb2wKbouHHc0Ge1Pb8GQ2BG5uHBZ2HwYfnjG/+PYA8KbMLqzZ9ewux6L1QHDxyHd+s2ANHKF58vZzx5tRnsSv7FP7ebzqGR1xcgkmNmrljA5lMhqQkw+siUQy++24pZDIFZDLLx4IlxxTGNA/6ZYitBMHRkDgQBJtQ+8OrfdrtPUZQT4Dz588HANy5cwcZGWk21bv/TK2Bo0qlxPbt6Vi3Llnjs2+srUlJq5GRIcaYMWNQWVmJY0d04yvQLAqTpkdh774LqFC2QmX5Hsbny0aP0fl3j4A22PT3RVT29gcACA4WM5Y/V+Nh8Fk7L1fQgRSOHCyGAuZX0iMnme854VrCeJ1mU4zX844w24DkP5LD38MZi+OGgS9jY8b/snH9/hPhh7uNOZJo55cn44vXx+LU1UJ8uP4fyPycdK4L7jC3n3/bMMU5zaLwydvTIamU4lHRVfQNluL06dMYPnw4/vrrLwwYMAAXLlzA4MGD8e3C5fh24XJNWf1/v/3Z60ZjmKh55ZUZ+OWXtTrXuVw2uFw2Skut02Dpx4+wVDOnXQao1aoUFRVh9+5sEkuC4BCIAEGwCf0djn64X0vr0L5fLE7F0aOHIRKJUFpaajJQlKVQFI3w8GiEhUU+nlBnGd2pqf35y8rKoFAoAOgKECOG90TLlp74cOEmq9vQxscN7k48nLv1wKZ3UOPjUruA3i+XAK52VVUv9BB649vYEZDK5Jj1v524W1xpcdnO3dph6bwxuHznEd5b9RdkdmhutImPH4mePdvgjdeT8eFHMRg1aqzmWsuWLbFlyxaIRCLs2LHDbF2mAjpt3boZSUmJiI9PwLx587Fq1U+a+52deaiulmlShQPmA0eZe541ZRISZiA39zRycnJsFs4JBG2ICEqwCW3bhYSEGcjISLNKPapWp2ZmpkGlUmoEkrNna4MKeXt7M+62rDne0I4iaOo9AgICkJ+fj5ycHIN7Xpw0CMeP/Yvr16x3HezRxhsAcOG27WmmAcDbuTa046PKxp//YmSn1lg9YwwKiiswc411wkOHjkJ8v/o93C4sw1srd6PazkBRagY+2xkvxw5F4i97cP7cHYPxsHHjRnTp0gWbN29Gjx49zNZnbPypVErN0UVSUiL+/DMV+fn5SE5OhEDAAU0Ds2bN0PxGrE9tb/10rV0mLCxSE7OCeGwQHAERIAg2o7ZdCAuLtMqVTC0sFBUVITf3tCa5UELCDHh4eAAA3n57gckdkrUTL9P9KpUSIlEMli1bhZCQUAQFBelc79mrDbp0bYUtW45Y9Cx9OrXyREFRBcotSJbEBI/DAgBIZMxBuhoSFk3htSF98LVoCP6+mIc5ibusSvjVuq0flq55H48eFOPNH7JRJXVMtM02bb3x34Uv4ODBS9i44R8AtSnd1dElMzLSMGbMGOTm5qKwsBDHjh0zW+f27ekGY4qiaMTHJ2gCSY0dOw5+fn6YN28+nJ152LRpE44cOWLWQLOuILk0CI6GjCCCXVAUbdXEpN75qXf92juisLBI/Prrxsd3mtY8pKSsg0AgQErKOo32Qv8e7b8tsaSnKBphYZF4770PdeqKfmEA7tx5hJzjtsUe6NTSE9cKmG0eLIHHYqHGiqBL9Y2/qxPWTHweL/friuV/n8KHmw+ixoqjB7+W3li25n1UVlThjVe/QlmVfQKXGldXPj77bDIePijDki/SNIaY+tElu3TpisGDB1scIn3dumSdMahGnW2WpmuPz7ZsESMyMgpKpQoymULnN6JOF/7cc8855F0tgaTqJjgSIkAQHIKxiUl/YddesEWiGCxd+qOB4EHTakt3QyNAtfARGjoOEokE48aNM9gJ6msbKIrGa6/Ng1AoZLSk37cvG0uWLMbEiZGa57m5CzB0aHeIt+XY7AHQ2tvVbPIsS5DK5eCyWWDRzMaN9Q1NUZjStws2TRsHXxcBZm3+CyknLlvVX17e7li25n0olUq8PvNLlBTZ318AwGbTWPTJi3Bzd8LChRt10sL7+flh5MiRmuiSw4aNwX/+877Fi6t6DIaGjtMZU7/8Uptt9pdf1kKlUkIg4IHLZaO8XIpx4yI19VMUjcDAfggJCcHRo0c1cSfqA6J5IDgKMpIIDkPfIFJ7IVcq5UhJWafJl6EO0EPTtM6kTT9eIJV6CRK068vK2oHCwkKIxWLs3LlDIwRoq4XVOTnE4lSsXLkCsbFTddxO9bUm27Zt1WhD1ISF9YNKpUJ2tm3Bi2iKQksvF9x9ZHncA1OUPj4CceczZxqtT4Z3FOK3l0PwxvC+2Hb+Biat24GzBYbeD0y4ubtg6ZoF4PO5eH3ml3h4335tjZq33xmPnj3b4KOFm3A3X7deoVCIjh07G0SXVNvLmEMdcTUjQ6wzpl55ZQb69++PV16ZATabBT6fhfT0dPz55x+ae9SEhoqQnZ2tsZMgNgmEpgbxwiA4HP3dvbOzM378cQUiIkTIytqhk5I7MXEtwsKe7PpZLBoqlQpKpeljiLlz5+HHH1c89tWnkZ+fr+O3n5KyDqGh4/Dmm3ORl5f3uFwSZDIZfv89RePKqW2lzmazcefOLezfvx/yxxvVcWF9sX/feZSVSvRf0SK8XPngsFm4Z4URoSnultbW0d7bDWdQYnd9tsJj0RjVtjUmjnoGPfy9cfx2IRI27sL5e8zpv43h5CzAd6vehZe3G16L/xwF+fZ5qmgzc9ZohIztg08Wb8HZs7cNri9b9pNB9EhtQcAcCQkzkJi41uDITqlUIi8vDxRFwdVVgHv37mLRokVwdXXV8YjQPsqzxj2TQGhMEAGC4HD0J8aff16l2a1t3pwOmmajoqLS6MTJ4bCgUCh1VODa9QUFBaG6uhpbtog15dRumkDtUUrSygMQb7yEWnfMzvB17gxVBZDy81EAnbHkg6+x5IOvTbbfr9Vt9AroiDZtvPHd50mQlekuQIKh0xjfX22p4OVa6w5apGdIKBniyVjetQfX4LP7kKCoWopRg9rgzOESxvIAoCpltpdQmInzoCh8YsAo4LDxbDt/DHtGiGEdhXDjc3H83n289tffyCmsXfRZfrr5HxRmnu/s8wy+/i4ebdr54435a3G3iA2Oe9snN5QxG4tKb5mOSjllegSmvPQcvvjwa2z8ZYPxe6bsx+zZczByZCgAIDMzTePiGBeXgP1n/sa+fTuRnr4VISGhCA0VgaJoZGamITu7NoaF9hgEdL0w3NxcwWbTOHHiFFxdXXXGuX78FCb3TEvdPAmEhoAIEIQ6QX9iVE+Y6l2fqYmTw2FDZsTTICIiGrt27UR2djZOnz6NsWPDdRIaAY6dbEeHDkThvSKcPH7J5jo8nGuPG4rLbdNgaKMCcPD+XYS0aosk3mWUVDvGyNAYLIpCz5beCGrjhwFt/RHQyhscFgvXH5Vi85mrEJ+/gXt8yxNh6cNh0fjk85fRpasQ7/wnEdf+LXBY20UxozD/3elY88MvSDEhPABAjx49sHLlClRUVCIiIhrZ2Vla2qpEhIdHYsWKH1BYWIjbt28jNFQElUqJ3NzTyMvLQ27uaR3NGfDEC6Og4C6ioqJQXi7Fc8+NxODBw03a3jAJD44M1EYg1AVEgCDUCdqLuSlhQf/fNE2BzaZRWWm4e6UoGmPGjEVhYaEmZbj2xKqebBMSZjik/UNG9MXfe04aNea0FCde7a68stox7oi//nsRw/2EeDuoLxb+c9Qhdarp4O6Kgf5+CPb3RV9fHzhx2KiorsGJvPtYuv80Dt8sQF5pheZ+Ft94xklzsGgKn8U8h74dW+L999bh/DnD4wVbGT1uMBYsehVb1mdh2ZKVjPeqXTbVi3hISKiOBkJ9HKY/ptR2MsbihQBATMwkuLryUV0tg/SxG6r2OLf02MJSQaMuNRRE+0EwBxkdBIdjLO6CJRMRl8uGSqXS0UDopzs2ljJce7JVq5ftoUu3tvDz98LB/afsqkfAq5XPq6odE7uhuKYaP1w8g9HtWmN2n57gsVg21+XK4WBkGyHeH9AP6ZHjsCE8BHMCe4FD00g6fxHT12dj9Ko0vL3tIDafuaojPNgKTVH4KHIQhnVtjUUfbcDJE/an5VYzfPQAfLxkPrLEf+P7LxLN3q/v/RMeHo0FCz7WMehVexYplUpMmCDC9u3pjO7KFEXBxYUHiqJQWWla62SJK6UlrtF1mduC5M0gWALRQBAcijUqWn14PDZkMoXG/sGYCpem2UhImIHs7CyEhIRq6lbv6oRCIe5cst6gT5v+A7pDIqlG7qmrdtXDebzAyxWOs67fey8PvpQz4nt2w7j2bfG/sxew/85dlMuYtRyeAh56+HmhbysfBLX2RTcfL7BoCjdLy7DnTj4O372HMw8eovpxW7VtIBwBRQHviwZgbO92+DD1EA4fsv1oSJ8hI/rjs2/fxN7sI/jiw1UWaY2MacVMjVP1eE5MXKtJ+mbsXnf32mihqampWL58OePRg77thLH6mOwj7PmdmaMu6yY0L4gAQXAoplS05tShFFVrQFlZWa2539QkprZ01/bUUE+2WVliHPlrr13vEDSwJ06fuAy5nYGbaApQKB3vmpd07hKyb97BvL69sfDZICwYoMSFR0W4WVaOImk15EolODUUXHlctHZ3RlsPV/i7OgMAHlZKkJN3H+k3b+JoQSEKq+y3z7CEt8cFYXzfjliUdhi7zt+Ci4PqHTysHz5f+hb+3puDxe+vgMIKYY0pxLn2PZYcObi48MBms1BeXoXly5dbvPias3MwVbYuPTiIdwjBUogAQXA4+jsnS4zBuFw2KIpC9WN1v77nxfbt6QgPjzYIAaw/Qcvl9h0X0DSNXn064tf/ie2qRw2Fugn8lF9RiQUHjsBHIMDgVv4I9vdFRw93BPN4YNEUqmsUqKyRI7+sAjuv3Mal+8W4cL8Id8tq3UFZ3vX3038rtD9eHNAVn287gh25NxxW7+Bh/fDl8rdx+O9T+Pjd5VBYIfDVJlFLs8hI0ZynBI/HhkDARXm5FAoFMGvWLKxZs8aiqKz27PRtSbDVGOomNB+IAEGoE6y1OufxOJDJFDoBpPQ9L5TK2jDWEREiTWpubSFl9+5sPHz4EEAbm9vdscszcHLi48I5+xc6uUIFmqZAUxSUdhhjMvFAIkH6tRtIv6bbXsWjxpEz4z+h/TH52W74QnwUW086zuZBW3hY+PZSyG3IEWLN4m3qGotFw9WVD4mk1miSzaYRGxuLsLDxUCiYhUemnb6lBox1ucAT4YFgDiJAEOoUS9ShFKUCl8tCRYWha+DYseOQn5+vE3wqK2uHJp4E8ERIKSsrQ1xcHFLXnWVsk4d7R5PX+gcPBwDcKHYG27+X0XvM7XM5BbUulsqHte/j9FCOaq0Uzqx/mSNTlld5MV6n/CzwgKgyk9DsihmjyJ4Cxsuqw8zlnQqq8PorQ/DCs93w7c/7kZV9QTdJuqsPY3nOTdM2Es8N7YmPP3sb+3b/jbfnLDDq9stm8xnrpyhaI4hGRIisXixVKiVomoabmwAKhRIVerE+KIoFQDcYmqV2DupYEyEhoQgPj7aqXQRCfUJETAIA69JjWwuT1blYnIrU1A1QKBSo1nJ3VFuBK5VKbNkixsiRoRqr9NjYaTpRBNVCSo8ePbBt2za72tqmbUs8KqpEpQOSOUkeH8cIeLa5PDZVaIrCu3NGIGpsL3y9ah+2ZV9wWN1Dh/fGoi+mY8/OfXhrtnHhwRKUSjmysnaAz+cjK2uHVeNfPTZLSu6DpimUlTHbkZjzaNDXPGjHmiDhrQmNGSJAOJim+IOvD5ctJkvykJAQ/PXXXxqjSP1jDzXagoh+xk11Su7YWOYokeZo3a4l7haU2FWHGsnjOABOgqdHgGCzaCyePhRjR3TF5yv+Qsbuiw6re+ToQHz82VTs35OLt//vfbvsXWiajdjYaZBKpYiNnWaxBkI9NoOCgtCpU0eUl0ugUJg+nmLKBmsKc7EmCITGAhEgHEhT9J22ZYJzFBRF45133kWHDh2gVD4RMph84CmK1unnzMw0nZTc9kbs8/H1woOH9sc8AICKxwmwnJ0MQ1M3RwRcNr57dRRGBLTF4u93Ydff9rnBajM2LAj/XfQydu08iS8W/w6Fwv7U5iJRDDZvTmccM/q/B4qiMWfOXCxatAjXr99ATQ1zO6xJdW/L/QRCQ0JGp4NoyIXYHhp6who9OgQKhRJBQYN1Pjd17KGd1TM5OVEnG6cj+tzL2xPFJVV21wMA5Y9tOtycG08GzbrC04WPH+ePRe/2Pnhj1W7sP3LdYXWPjx6EBR9OwQ7xUXz9+SaDTK22os4Ia0rgz8xMwxtvzEFmpm6q7RdeeAHOzi5wc2uh87n++FP/25LAUdpYez+B0FAQAcJBNPRCbA/WTFhMi7QlC7j+PTweW+O6qY9+H6on/NDQcRAKhRgwYAD69w9yaJ+7ujujrFxq/kYLKC6rrcfTndkgsanTwd8DiW+Hwd/TGbN/2IkTV+85rO4XXxqBN9+dgM0b9+O7r7bYFVpcG7E4VUcQNbb4G7NF4HJZ4PE4qKio1kn4ptaKbd26GQCwdetmHW2ktWOzKc0fhKcXMkodSFPeOVgyYTEd0TBdU0+++vfweGzQNA2p1LzBoraGJyNDjICAAMhkMuzZ8xf++GOrw/pcIOBDInFMoiqJVIYqSQ1aeDo5pL7GyLPdW2Htf8ahUipD/LeZuJJnXxRQbeJmjMWceSKsS9qFn5bbZxyrT3JyIkaNGgU/Pz8EBQUZXFeplDq2CPv37wYAODvzUFMjR02Nbrh19dhMSkqERCLRZOVsStpIAsFaiBung2msOwd7E+MwxXMwdg14Yq+gduHU3vFFRERDIOCgpkbOaISmRtsdtOSmDHtuPkkmFTIgXOfev05ka9o1YYIIRUVFGDNmDM6cOQM2mw15tbvJ5/AFfFSXl4OqKjN5D+8hc1slbTw0fxcWV8G3lRvkbk9+atW9nBnL885VMj/gHPNlAKhpw3xsQleZSbe90YzxY005Xp7+POJnPo+jhy/h049SIKmqhlpUolx8GYsrSu8wXp89dwymTA/Bym9/xbr/bTG4Hjp5JLKzs+Hr64vw8HCkp6cjIkKEs2dzcevWLdy7wvwlxcW9CzabDaFQiICAQJ3fhlo7ERUVha1bt6JPnz5YtepHjB07Dmw2C8XFut+P9tiMj0+AQCBAfHwCkpJMuy6TRFWE5gAZwU8BjjDuNGfYqH1t+/Z0TJggwt69WTqCxauvztHcw2azwOGwNRkLLUGt4TGHOsEWRdFISJiBkJAQnDlzBsOGDYNUavp4gqIosNksyOWO2zHevFeCDi09HFZfY8DNXYBPv4rHK6+Ow7rEXfjvO4mQVNme3lsbFovGuwtfwpTpkfhq8SqjwgMAtGnTBl5eXoiNnYZp02Zh8+Z0xMfPxnffrURcXILZ59A0jXHjIrF8+WqdWAtqYTg/Px9ZWVmYO3cezp8/j+nT4+HszIdUKjM6PtRjMypqIgAgKmoio+tyUzO2JhCMQakcdajYiFAolCgqMrOLMwKbTcPT0xnFxZUOXUQaEvUuvLCwEH5+ftiyRWzxzsdYf6gXZmM7KLWqVv08oVCI2NhpOuGC1eWcnLgQCLh49Mi0x4OpZ4wOCmVst0d7DoKCghAQEIiwsEid9mzYkIqoUbOMluNw2Pj79AZ8+UUadmXnmm6Xkxvj87U1EDNEgYgZ3h3j3t6g+UzRllk7YFYDYQHmNBAsM5EqBdeMawgGDOiEdxdEgkVTWPLpBhw5ZFxTYYsGgsNh46PP4jB4aG98+sFy7Eg3ndPEo101fvttE2iabTRU+nO9BzI+379LC53fgvZY+//2zj0sqnL749+5MdzBMcGk46ksS0u8YekvrbwhchFQKTUiQUNLLU8X81SnOqfLsZtpWhLHgFNUFiLoACKp1DlZmiheTpSaWYYmliB3mMvevz9o72YPM3tmD8MMA+vzPD7F3rP3XnvNO++73vWudy3z+7EsAx8fNfz91airaxb1mNnqQ7rye/REemOf2hU8QR8ajR8UCvvaZO9tuQQA5wd3mm+jND9n+rzk5JROcSHc89VqlSBxlDliz7AFt269a9dOABDIs3OndQ+GXM4NJs6zqStP1qBfgDeG/kk8u2RPJzjYF6uemIU1r9yDU6d+QVryq1aNB0fw8VVjzdqluHXCcPxt1b9EjQcAmDdvAeRyZaddOfbGG5inQTdta5barK+vF9rb7VtuswQnlycHWxOEORQD0QdwZmEce2pbmD/P/LxC0WGJNzVZngWzLIPdu8tQW1vrUJEhLjBu1KgxAnmADu8IEGr5Qhn3fLsfZZOj39eguVWH20b8CSd/dl6Aoavw8lIibtZYpNx3BxiGxeuvalFcfBhsu3g6bikEBfnh5XUP4E9/DsWqlZtw5LDt/BFxcXP4WIW7756H/PytmDdvgd3thDMOrLVn0/uo1UooFHLU1ztWudTco0GFqojeArXgPoKzOit7Z1DWjmu1+dizpxQtLa3Q6zsC+cxnjUVFBaiurkZcXBwWL06XLHte3nasXv0sDAaDIMkUFxNh/d1kv8vjPAvCYGSw9/CPmHPnjVCrFE67b3cTGOSDpLsm4IOPHsLSByLx+WdVuC9lI4qLDzv1OQNCgrEh8y8IHajByqXr7TIeAKC8vBS5ue9h+PDh+OCDXMybN9+hnTj2tGcfH6/fg33t2aZsNPvbcn4YMh6I3gC1YkIyjm5XZVkG77//b0yZMgVa7Q6wLAOtNh/z5iWivLyU/wzX4e7btw9qtZo/bi9JSfEoKiqw6Nrm0mWLCyrptWySXXIUwf7emDt5mHNv7GSuCglA3MTrsWbZVORtfRT3p0/Fgf3f476UjVj7ehEaHJyBW+PPV4fi7XcfhZdaheXpb+DUyWq7r928+V9YunQpjh079vt3nO3wdkmx9qxSKaBSKdBiR20UrTYfCQmxyM3N5Y/RkgXRm3H6EkZ7ezvWrFmD0tJStLW1YcqUKXjqqaeg0VhfA960aRPWrVvX6fiJEyecLR7hJBzpCGUyOVavfhL9+/eHWt2RXImbRW7cuAFNTc2Ii5vDb4kLDw/Hu+/+C83NzcjJyUJa2mK7DADOaFi2bAXeemsD33Fzxom1JQzOA+Fszv/WhO3/PYH740bj/K+N2H3JeYmWbOGrViJME4D+AT7oH+CNAB81fNVKBLBK+Pt6IdBPjYH9/RE2IACBfmowDIvvfvwNGZvKsHfP/1Bf75ysnObcOPzPeGX9g/jt4mU8/vDbuPRbvaTr58yZi5ycHMTHx2P79u2dYhqkYq09+/p6Qa838t4ya5gavpmZmYiOngVuTYyWLIjeitN3Yfz1r39FRUUF/vnPf8LLywvPPvss/Pz8BFa5OStXroSXlxcef/xxwfEBA8RL/lqDdmE4h+7Qh7+/GiqVArW1TZDJ5CgvL+XLdHNR6TNunSV6j5Ch3mhtbeWvCQsLQ//+/XHy5EnMm7fA4q4PDq02Hxuez7Z4X18/H+z7XymefvQN7Cn90urzfQZYLvPN0XTLNZ2OeSnl+Ntdt2F6+NV4O+sL5O04avV63QDxxFNev1oe1AcNDMTwoQNx/ZABuH5wEK65JgQajb/gM62tOrS26tBkZNDQ2o6mVj0uXG7GudpGfP9LHY78eBHNbXqwvuLLLQH7xL0FbJt1g2DcLdfj78/Pw4mq7/HQotVobJBee2TkHdegoqICISEh+OijfEFpd9NdDsuWrcCUKVGd2oGtXRr7jh+ASqVAcLAv6utbBYmjrMHFOqSnpyMmJpH6EFCfao4n6EPKLgyneiBqampQWFiIjIwMPrvb2rVrERUVhcrKSowePdridSdPnsRdd93lsMFAuAZryW+kJMVRq5X45psqLFv2ID/INzU184O+PfdhWRaTJ09GeXk5IiIiUFZWBo1Gww8WYgGccXFzrBoQ3C4Mp0ZR/o7OwOCZj/6LC3XNWL54EqbfeQMKio/js33f81U7peDv54WhQ0IwbGgobr5xIIbfMBDBv6fMPn+hHqdPnod2xyFUV1/CuXO1uPRbIy7XN0P/e/EnS0aOK5g6bSRWPzUX+z4/gNXLn0Nbm2P5I3744QdERkYiPHyUxdLuXHuaMiWKPy4VX18vGAxGu4wHoKNtJSTMhkYT2CnZFEH0RpxqQBw6dAgAMH78eP7YNddcg9DQUBw8eNCiAaHT6fDjjz/i2muvdaYohJOxtNde7LgpnIGhVMohl8uRmfmOIOpdqot3zJgxuP76G7Bs2SMoKdmOiooKuwYLlmVQVFRg8RzwhwFhtCdOwgFYFnhr52EcKz+NuXEjsWrFFDy2fDJOfn8RVSdqcL6mHjUXG3FZJUObzgiZDPD26lhqGBDsi4H9/fHngUG4dmAQBg3syKbZ3KJD1YkLKCw5jqoTF/DtqYtoaGyDouFSt7xDV5h7121YtiIGO0sO4W8PPd2liprcVt3Vq58VHOdKu3d1ycDLSwkvLyXq61ssGsgMYxAYLtxnZDLPCZQliK7idA9Ev379+MA3jpCQEFy4YHnd9/vvv4fRaMSuXbvw4osvor29HePGjcPjjz+OkBDxZDSEa2BZo8WtbvZs6TQ1MO6+ez4YhsWYMRE4evSowONgmtDHFl9++SUeeeSvAICYmERER8fbHCzKy0uh1e7ATz/9BH6/phmc246xI9q+K1Qc+RkVR37GwNAAjBs1GCNvGoRxYwZjYEgA1F6Wf5I6vREX65px9kI9/vPVDzh95jd8d6oGP5+/3B0OE6ez5MEozJt/Oz7I/Qyb3ynrcjluS0GJ9hiz9qD2VsPPr2PnRX7+J53umZ2dgaIiLWJj45CaulTw3MTEpC69F0F4EpIMiOrqakydOtXq+YcffhheXl6djqvVarS3W3ZVnjx5EgDg4+OD9evX49KlS1i7di1SUlJQWFgIb29vKSLyKJXSZx/cAGLv+k9vh9ODUqnC8uUrkJGxCffemwKVims2cj7nf2pqmsnxDswNj5SUZBgMRiQkzEV8fKKV2Zpt3aempmHnzu14993NSE1N49MHc880v29hYR6ys7MwevRohISEYO/PFRbvK5d3XGcwdG1ws5cLNY3Q7voG2l3fAABkMiA4yAfKQYHwVivBsiza2o1oadPjctMfKbitxUD0RJRKBR5fPRuRM0ZjwzottuV/5ZT7cu1RJutIG23e1hISZjvsDVj5xENQKOT80hp3z/j4BABAUZGWL+qWlrZI8JnZs+cCoD6Eg/pUIb1NH5IMiNDQUJSUlFg9//nnn0On67zdqb29HT4+lksaJyQk4Pbbbxfs0rj++utx++23Y+/evYiOjpYiIgBALpehXz/xgkViBAb27vLLUtmxIx+ZmZlYvHgxUlJSBOdSUxciOfkeqFQqi9emp6cjMzMTDz30EJTKjubmZWWWbS/Jyfdg6tSpfPVD7vm5ubnIzMxEeno6kpOTAQB6vZ6vjFhZWYm//OUv2LvNsgGhUHYMOF2dHTsKywJ1l1uhU3XPbhBX4+enxt9fuAcjwq/GP579COV7jzvt3lzgren3z7W19PR0aDTW042LBXSPGTcaqUvug0wmQ3CwP3/PWbNmISlpNtLT0zFr1izs2LEDs2bNwhVXaATPDQ7uCFqlPkQI6UNIb9GHpJ5cpVJhyJAhVs+fOHECly9fhk6nE3giLl68iNBQK9n/gE5bPENCQhAcHGx12cMWDMOioUH6LE2hkCMw0AcNDa12JY3p7SgUcvj4KJGZmYmamhps3rwZsbEJVmZ2lvfJdywxzOKXtS5fbhZ1uZsn4rFEU5NO4PloatKBZVt5ObltdJycpp+9885I/APrrLxvx+e7ewmjLxASEoSXXklBSEgwVj2ajaNHzjj1/hEREaioqOC/f0DHtzWZrKNiJsPoIZcLDVuWNSIzM9PiPftpgrF202s4cugorh4yBDKZAjExiZg5MxZJSbNx7tw5vP322ygsLEJq6mLI5SrU1TUjOnoW/9yGhlbqQ0ygPlWIJ+gjMNDHPbswxo4dC4ZhcOjQIUyYMAEAcObMGdTU1GDcuHEWr3njjTdQWlqK0tJSfh9+dXU16urqcN111zksS1e2yBiNTI/dYuNqVCqVoDSx0SgDIFU3MigU8t/301u/1t7dHAYDg5iYRL6KosHAgGVZpKUtRlbW5k5yxsbOQUxMR3yGXm89op770XRXEGVf4cYbrsQLf09Ee7seKx58Bz/9eNHpzygrK8OIESMQHR1v9lvt+N7N4xRMzy9cmIY1T74iuJ9cLsfrb78KtbcXVi55FPm7tuOPdq4QFIXraFsKMAxjNe6C+hAhpA8hvUUfTs8D8eijj+LIkSN46aWX4OPjg2effRb+/v54//33AXTsuqivr0dQUBC8vLzwv//9D/PmzcOcOXOwcOFC/Pbbb3jppZfg7e2NDz/80KHkPpQHwjmY6kOvNzgU1c4ZBRqNH9rbDWhubhcc5zDtiM07d3O8vYJEzwcGW/eSAYCu3XKOgj/9+Urkl2ViRdqLqKywXiiKGTVZXL6zNnIk2KjmafQRj/uR2UhqBACsjbTZivPfi55njOLbK+Vqy+8wbfpIPPbEbFQdr8KK1L+g9lKdxc9dcV0An6th8ODB6N+/PxQKBSoqKjBx4kTs378f586dQ2hoKLy9vdHW1sZXrrRuHPwuO6NHUlICf/+8vO2CHRPAHyXfk5LiUVNTg+eeew533303UlNTcebMGYtVMs3brKXKmiqVskt9iJQt0Z4A9alCPEEfbq3G+fzzz2PChAlYvnw5Fi1ahGuvvRZvvvkmf76yshITJ05EZWUlAODmm2/Gv/71L5w4cQKzZ8/G8uXLMWzYMGRkZHRbZkBCOo50alyVw88+K/vdA2EQHOcyBprv5nAXnEtRJqd2JxW5Qo4Hls3EU8/cjc/2HkdqUrpV4wGAIL1zQkICKisrUVZWhrCwMIwZMxbJySkIDQ1FbGwcDAaDYMdFaupS5OVt540H0507Wm0+7r13HmbMmMFfb248AB31VubPn4PY2Dg88MADmD9/Pg4erMCZM2es1ksx/w04O021tQq0BNFTcboHoidAHgjn0BV9mM7O0tLSsGrVKly61ASG6Txr40qEu9sDEXrlAGg/y8IjS1/G119aD/gjD4TQA3HFgEA8/czduPnmwdj01k7kb/0SNad3il7/+dH/gGUZlJRsx4cf5mLGjBl8SmrTSpncdmGx4mxcu4mNTeTb1p///Ge8994WKBR/xECY3o/73Lx58/Dcc8+htVWP5uZ2PleIlO2gpvI5+pux5M3oDZ4I6lOFeII+3OqBIAhAODubM2fO73EK1mdtjhbociZtrR1bJb191DY+SXBM+L8bsTlrBQYN0uCRle8if6v1FOCmcF6DrKzN+Omnn1BcXIy8vO2C799aNlGO8vLSTp6r5ctXICwsDPPmLRAYD9zsvri4I5FYWtpiJCYm4tlnnxUsrQGwWD1TDGcM9FR0i/BEqJUS3QZnFISGhmL79gLeNWvNWOA8Ee6iqbHDaxUQIF6LggD8/b3xxJNz8NLLKfjmm7NYnLYBx47+aPf1XHl1btBMTk6RNGiyLIOMjE0IDw/nB92Sku3YuHEDkpNTBG2LWyKrra3FsWNHMHduHAYNuhL//Oc/odcb0dj4R44Ndw7kPcGIJggpkAFBdCtyuQwBAQHYu3evYEZnraaGu2Mg6usaoLki2G0yeAJTI8ci+/2VmDjpJrz8z614avX7aJBYtZNrB9ygKZfLBWXdbSGTyZGcnIKqqiosW7YCsbGJyMraLPAcmLa1hQvTEB4ejoqKCowcORKTJ98Jnc6Ahoa2Tvd250BOngfCk6DWSnQrarUXGIbBmTNnbM7ouI7enZz96TyuGjzQrTL0VK6/4Sqsz3gYz7yQiqr/nUVqyjqUlhx26F7mwYJ79nyKESNGYOPGDaJeKNMlhbi4OdiypQCTJ0cKPAdpaYtRVFQgeEZc3BysW7cJL774T6xbtw5nz/5s0XjgoIGcIGxDvxKiW1GpFDAaWfz731vsmtG523179sw5XDMkzK0y9DT+NDgEz76Yis3vr0a/fgF4dMVGPPu3D/Hbrw0O39PUU1BUVICffvoJCoUCDQ0N2L27zGLsgaVdCqaGQlzcHOTlbUd0dLzFOAY/P29MmnQb2tsNCAyUVvnXnlgIguhrODWRFEGYR8x7eSnR2qqTNKP74thXWLnyAVRXV/NR6WFhYZg+fQbkcjmfLCoubo6gKiIXyd5yXjxxkVxhPUjyyKEqRM2ajKCbbkdTs+Xsmm1ffix6f/XQmaLnZS3iA69Sb/m5HNXH/y16HgBCB00QPd/Y8LPoeZ/AP+H6GwbjntSZmDwtAr9evIw1f89GadGXMBoZyJXiqXhH3TkM69ZtQk5OZqecDaY7J4A/ghaPHDmCqKgofPnllygqKrAYx2BauM302pycLPj5+eGttzYgLW2xoKS3TCZHQIA3vL1V2Lx5M+RypSRD1VlFugiit0EeCMJpmM8QO8p3y6A32XZob1R7ZGQUIiIiEBoainHjxuH48ePIyclCdHS8YH3a3DDp6hLI118egUIhx9iRf+rSfTwVuVyOO6b9H97MfBxZHz2LYcOvwev/zMWChL+iePsXktLvlpRsF+RsYJiOPCBcjAFXvZVbeli69AF8+eWXFndAWApuND/2zjubUFNTg6yszYiNTcTWrVrMmjUXwcE+UKuVeP755/Hqq6/avbsC6Gy4kCeCIP6ADAjCKVjqaL28lGAYljcgpCTKiYlJxOrVz2LrVi1GjBgJjUYjGDhM71dcXMD/v1zetSb9y7mL+O7URcRMH96l+3gaIQOvwOLl92DHZ+/h9YznoFAo8MwTm7Ag8UnsyP8cOp31FOCWqK6uxrFjR8CyDORyJbKzM5CUFI/s7AwAnZcetm7VYvLkKNEdEJxRYOoFMA145JJPcdd2ZIX0hUIhx+XLLQgL+5Pk3RW0vZIgrEOJpEzwhCQfrkRqKmtzV29wsC+MRgaNjW02E+XYSuFrKY3wypUP4NixYwgPDxcsd7ScF0/EJLaEAQBx96/A3x6LxIOrtuKb7zoXdGuu2iF6fUAXlzCgEpffGUsYrQ0/w9fPB3dO/z/EJEzHuP8bhbbWduwqKse2j4rx41nrAYYAbC5hXKj/lP+eWdZollq6UPC3PW3B3mUE7lpvbxX8/dUwGBg0NLSCYVir97YHe6+jPkQI6UOIJ+iDEkkRTqWwMM8uz4HpbFAul0GlUvAzV7GZnD2eCfPOu6ioANXV1YiMjERUVLTg3l1lz39P4rtTNfjbo5EIChQfzD0NXz9vTIkch3+++RTKDnyCf7z2BJQqBV548g3MvG0+XnxqHb7936kuPyc0NBRxcbNQUrId8+fPNUstrRKd1XN/M4yB345p7zKCXC5HYKA3AgK80dqqx+XLLWAYVnT7sD2Q54EgOkMeCBM8wTp0JUqlHP7+Xpg6dapdKXZNZ2ncDPDSpSZB+W57ChJx563N+qxdw31+5gTxQDdbHgifG2YgdEAA3nk9CT9V1+HxZ3dAZxLH4UkeCIVCjiFD/4SIW4Zj3PjhGDlmKFQqJb775hTKij5DWfHnuGAh6NQnUDwGxJYH4s6Z/fHTTz/hhx9+QE1NDcLCwvDhh1shlysgk8lRXFyAXbt2YsaMmXxVVVP+/e9MnD9/DhUVFVi4MK1T8CzQuX2oVAoEBHhDJpOhsbGNN15dGQRJfYgQ0ocQT9AHeSAIp8GV87a1BmzuRVCrldDrjTA3T+0tSGTJK2E6i0xLW4yxY8ciLW1xt8wOa35txN/+uRPDhoYi8427cNONnpEbws/PFxMmjkfKoli8umElisvfxLsfPIP77o+FXmfAW2s/xtyYVUiOX4b3/pVn0XhwBuXl5YiJieO/25SUhSgp2cF/p++9l4PDhw8jK2tzJ48Cwxhw+PAhVFRU8F4H8+BZ8/bh56fml8zq6pp544GCIAmi+6BtnIRNEhKSEBOTKOp5MO2k4+JmQ6VSoKmp3abrWKvNR27ue1i2bAWmTImyeL/Y2MROBY4YhkF1dTUYhuHvk5OTZbWSoiMc//YXLH00D48vn4yNa+ag/ItT2FZ8DAeqnPaILhN6ZSjGjY/AuPERGB0xEtffeD0UCgUaG1tQdfw0crNLcLTyJL793xkYDLaLcDmLhQtTceedkQDAb7nkvEY5OVlYtmwF3nprg0WjVC5XYsyYsRg4cCDvgTD3WnHt49Chg0hJuRcKhRxNTW1obdXznzHdqWG6pZMgCOdASxgmeIJ7CXA8EEwqUvRh6iZOSpoHf381PvxwC955ZxMiIiIQHj6qk6uaYQyYP38Ozp0712n5wlqVxdDQUFz+US8qS5vOcrVNDlvVPL19rhD8LZfLkXBXJBakJmLw1YNw6sQZfFr8X+wp/QI///RLp+v9NENF72+Lxl+tVwKVyWQYMWoY7pg2AZOmjse11/0ZAHDm+7M4evgbHK/8Fscqq/Dj6Z8h9tO2tYxzuf606HmlXPx6rtqmeayLqRFoqx0zjEGw68aUnTu3w9fXmy/U1tDQgt9tSYtLFj3xN9MXIH0I8QR9SFnCIAPCBE/4cnvyei7XSQcF+QBgMW3aVEEiqPXrMzoZCLGxcSgt3dmpAJLp/Uw/v3BhGtY9946oHM42IDhkMhnGTxqD2MSpmHjnOPj4euO7b05j987/YlfRf1Dzy68AuseAGHbz9YiaNQVTZ96OgVcOwKXf6vBF+QF8+Z+DOHzgOOpqL0t6RncbEI+98LDFdsp9p6YJwKTCxTrI5TI0N7dj504tNm3ahOTklE7GpqvLYnelD3GVkeNKPKFPdSWeoA8yIHqpAWFrK6SzcUQfMpkM/fv7oampHXl5W5CTk4WIiAgoFArcdNMIxMQkdnqPvLztooMJt8yxZMkDmDIlClPHRorK0F0GhClqbzX+7/axmB49CRPvHAdvHzUq9h9FccFe7P/6ItraxLNJisEZEGF/GojohGmImjUFf77mKlz6rQ57dv4HZcWf4+ihb0Q9DLbobgPiiusC+ODJjz7KF3y/2dkZnbJT2oufnxq+vl7Q6w1obGxDYeFW5ORkITw8HFVVVdiypQCffVaGjIxNFo3S7sbRPqS3Zrvs6X2qq/EEfZAB0UsNCKBneyAA090XzWBZFgxjwKOPrsCRI0eg0Wh4o8fae1jbpVFbW4vw8HCsW7cJ0yKiRGVwhQFhio+vN6ZE/h9iEqcgYvxItDS34bO9R7GnrBJHKk+DkZC98YoBQbh13BWYHn0HRo69CU1NzSjftQ+lO/aiYv8RSZkgxehuA2LVS3/Bnj2fIjw8HFqtVpB6PCkp3m7jkX+esiMdtUIhR3NzO1pb9Z0M0RUrHkZjY6NbB2JHfjOunhi4Ek/oU12JJ+hDigFBQZQeRlzcHD4FcFfoLnfpb7/9glOn6rB79x6kpi6FXK7ElCnTcPbsWT6IzVLgJGDZOJLJ5HjooYfw1Vdf4eDBgygqKnC6zF2ltaUNxYV7UVy4F4OuCkXC/CREzoxAdNytqK1txMH93+HYkTP4ruosamrq0NzUkaRJrVbhyrD+uObagRg2fDDG3jIU1w65EnqdHl99cQhPP7IG5WX70N7W7uY3lA7DMDAajdBqtSY7KWZBoVAhNjaO90CYGw+W2qWPjxf8/LxgMDCoq2vhjSjzAMk77pgmCNR0xu/ElmzOgAI9CU+FPBAmeIJ16Azs9WJI0QfLMvjii72Ii4vFyy+/jLKyMsHskut8WZbBvHmJUKlU0Ov12LKlgD9uPgsDOuoplJWVCjJNujqIUipcDMQNw/6EO6eMxJiI6zDk+jDeqte166FQKgRW/oVfalF56HtUfH0Se7T5aGqU3n6l4IoljNraWkRGRqKiogIzZszAnj17EBU1k6+LYW48mLdLmUyGwEBveHkp0dLSjmaz4mambcpSrIwzPRDd8Zsxh2Igej+eoA9awiADwipS3KX26kOrzcfu3WW45ppr8OKLL2L+/PmIiIhASkq6xU7R2hp4cXEByspKERUVDYPBwMdP7N27F1OmTOG39LkriNJeLAVR+vqqcc2QK3HFgED07x8Ivd6A1lYdLtZcxg+nf0FTYyv/WbFdGM7CVUGUaWmLERUViwUL5vK7bfLytnfaXWHeLgsLSxAU5AuZDGhoaBMUZAPEB3RnD8Td8ZvpK5A+hHiCPiiRFGEVZxcH4vbkHzt2DFFRUfjll1+QkDAbKSnpnZL9cGmJi4o63NpFRVo+TwT33+rqanh7q/l9/hUVFRg2bBjCw0dh61Ztl4tluYuWlnZ8c/xHfL73GLblfQFt4X7s3nUYx478IDAeegtcWvOYmEQoFCpERc1EaGgoZs2KR3Hx9k5Jwkzb5csvv4J+/fzAMB1LFubGg63kUM6exTvjN0MJrIjeCHkgTPAE69BZ2DNLk+KByMnJwrZt2+DnF8gnkDKdtXGJgxYvTscLq17qkuzXjPxTp+UP03e5bcStotcH+l8lel6lFvdQ1Nd9L3o+qN91oufbWsSzPwYOGCF6vu7CIdHzgG0vSvEXHwLoaAelpVrs3FmMmTNjMGNGDJKS4ru8TLT6pVWdPANcXgex2by/vxo+Pl5oadGhudl67Ic7di04+pvprTss7KEv9an24An6IA8EYRNnztK42Wb//v35H4X5rO2ddzahpqYGpaUlXX5ea2sroqJm8u/Q29aNXQVfO2RmPNavz8DMmfGQy5VOKUhmyTMglyutzublchmCg33h7a1CQ0OrqPEACAu3ib2fM3HU80CptIneCvW8hFNQKpWQyWSCbYamnTznwh4zZmyXn2W+/EFIh1teKi4u6DSzdsYsWczVbz74K5VyBAf7Qi6Xoa6uGe3tBrueITag21Ph1RU4e8mQIHoS1Jp7Ie4YWOVyGQB0ylPALTGUlu6Et7c3SkqKu/wssc6YjAr72L27DA0NDTh27Ei3DLS2jBDuu1OrlQgO9gXDsPjkkzwkJER3WZaeNuu3x1tiirvlJQh7IQOil+GumRdnQDBM55AamUyO5OQUtLW1ITk5pcvPMu+MuQ6Xe3fCNtXV1Zg5cyaOHDnitoHW19cLgYE+aG/Xo66uCZs2vWVVFimy9cRZv70y9BTPCUHYg/t/WYTT6EkzL/NnS52FiWFeoGnu3DiUl5fy707YpqamBvv27cOSJQ8gNDRUUMW0u9uNTAYEBvrA19cLBw9WIDJyGkpKtlsd9B0ZVJ3Z3lxFT/r9EoQ9kAHRi3DnzIvbyyOTyax2+M6Sx3TrJ9fhZmRs4t+dsA3XRqZMicLWrVowTMeumezsDMybl2j7BnZgaQCUy4HgYF+oVArU17fg0UcfQU1NDbKyNiMgwN+id8nRQbUneB6k0BM9JwQhBm3jNMETttjYg7MS6UjRh0Ihh0bjh7q6JsTHR1vdpmdNNtOtbq89vV70WZ8f/U+n67gZ9K5dO3Hq4CXR6xuaqkXP20qSpFYHip5vb28QPe/rO0D0vC35bCXCAoCVzy0RDMRipbTNt9x6e3ujra2N33p76623ol+/fti9ezemTp2KXbt24ZZbbsH48RPQ2NiI7OwspKamITbW+vMA4PjxCowffyva29vBsioYjSz/OdNiWObtw5O2QTqjD+lNGSl7S5/qLDxBH5SJso8bEM7CHn2YdnZXXOGP5mYdPvnkI4sdvq2BgLvXHSNvF5XL1IDgrgPAD4IBxj+LXt8XDIg9h8p4vZgaCtYGJkvl1WNjE/Hww0tx/PhxhISEYPDgwTh//jyGDx+O3bt3Q6PRoLCwCAEBPmhq0vFtxFLmRj8/b/j5qVFcXIw333wT77//CS/L3r2leOcd8eqZnjKoUh8ihPQhxBP0QXkgCIeQuuZqvlSh0xmhVistrj/b44p2dIDg0iLTEsYfcN/NmjV/R3FxRwEyMf1y31lq6lJs2VLwey0KOaZPnwGNRoOoqJk4e/Ys5s1bgFGjxkCj0fzuZldApVIJ7mX6XTzwwDIEB/vB19cLBw58jZdffhl33z2f350DAFOmRPHPtIRU44FiBwjCNZAHwgRPsA67C0subpVKKdCHaUfOMAbMnz+Hr2+wdasWarUXgoJ8LOqvuLgAx44d4etZiA0Wd466U1TWz458ZnVAYVkG0f+XJHp9X/BABF+t4j0AYWFhWL8+Q3QQtjZIm3oxTItXccfEfjPHj1dg1KiRUKvV0OlkMBiM/D1Ml56io+NtekbsXb5w93JHX+5DLEH6EOIJ+iAPBCEJU+9Abu57/Oy1sDCP/4xp4iGtNh9JSfGIipqJsLAwPuBLpzPAaGTg4+PV6f5ZWZtRVlaGsLAwxMZaDtLryjZMc3d9X+eWW25BaGgoIiIiMHZshENJl7jjXAl1buCfOzcOJSXbRWf63t5K3H77JJw6dQoLFiyAXq/n78G1t9raWtE8FFIDKGkXA0G4FuptCYHLeenSB/hOODs7C3q9Hixr5I+Vlf2xXbKoSIuPPsoXzPRaWtrh7a2CUinvdH+NRoPp02dYnenauw3TUpCdqXFDAOPHj8fgwYPx3XffoaSk2OpgyrIMcnPfg4+PD3Jz37O4w4UbjLljDQ0NOHHi205GJsBt0fRGQIAPqqq+xerVqxEfnyj4zrj2EB4ejoqKCtGiWFJ2JdAuBoJwLbSEYYInuJe6E3P3cmpqGlJTF6KurhkFBXm8y5lhGL7Udnj4KMTEJAruodH4g2WBy5dbLN7fGtxzf/u+UVRO0yUM04C9sWPHorq6Gi3nvUWv7wtLGHsOldntzrdWXt3S9cXFBTh37mfs2rWLXyLZs2cPmpp0YNmO/A5yuQyNjW3Q6Qyi33lHZdYCmzI6EgPhLuOhr/ch5pA+hHiCPmgXBhkQXUYsBoJlGT46X6PR8Fs1uQFn1arViImZiebmdrS2ild1tPRcWzEQ5rswTNfTGYbB2y99KHp9XzEgANtLO5Z2TIhtu2VZBvPmJWL48OE4duwYb2Q2N7fD19cLRiODhoZWGI2sXQZjbu57WLLkAUyZEmXznTwB6kOEkD6EeII+pBgQym6WhfBQLHX8ptUvp0+fgXPnzvGuYlOX9yuvrMGUKVPh56eGTmfsVB/D1nM5A8E8R8BHH+VDLu9osqaDk1wuR1hYGICO3QTrnntH9BlfHPsKADBvXiKUSiUMBkOn/APm2xpHjRqF8PBRiI+fgxnj54ne32jU2TgvXmnSz0fcwPjry8sxeXKUXdsfbc3wObc/9xl7lgmSk1OQm/seli1bgcjI6A6Z/dRobdWjqakNgH1bdrn28tZbGzB5ciQtORCEh0G/WEKAvYFn5ls1zdefm5t1MBoZBAX5QCaTOSRLXNwcLFu2AlVVVUhOTuGNB9OgPy5A8/Dhw8jK2myX/Ny2T9P6HOaDF/d+CxemIzQ0FGVlZb/f3+jQuziTjRs3IDf3XbzzziacO3fOasCgvUGF1tI+WwuujIubg48+ykdkZDQCA30AAM3NbbzxIPZcU48IxSsQhGdDv1qCR2rNAdMtfUDngai+vpUPqpOKtRwB5oMTAMFAJOXetuolcIYGlwuBy3vgbmpqalBQsA2TJk0SHYDFBmlLAYumiBkBRUXbkJ//EQIDvcGtgOp0RsG9LD3XvH15Yr0KgiD+gAyIHoK7tpyJRd3bwpLBYToQMQyL+vo2qFQKBAX58BU7TZ9rz30tRfCbDk6mA5E9M1lr97aG6f3Ndx24g9DQUMTGxuGrr77CsmUrRAdgTvaYmHj+mD2GojUjQCZjMXr0SCxduhSffPIJGhosxxqZGwfW2hd5HgjCc6Ffbw+gO0v42jtQS3Up22NwsCwDg8GIy5dboVDI0a9fRxElsfe1576WZq5SBiJHCzOxLIPs7Cy7r+ku8vK2IzV1KXJz80SDD7n3y8nJRFJSPLKzMyQZiuZ69vZWQaMJwHXXXYeHH34Yra3toh4ZW4YfQRCeDf2K3Ux3Jr+ROlBLcSnbGhBMn20wGFFX1wKDgUFwsC9Gjx6J8PBwfPDB+w7v/TdfPjF9L1uI3Vvs+pKS7YiIiLB5/+7GNJjVGqZlzouKtHzeDpZl7B7IuUBVlUqBfv184e+vRnu7Hm1tLP72txckLz10dcmCEkMRRM+CDAg3010zM1uGiXUXtf3PtzYgWE5CxKK+vhX19a0YNGgQNm7ciJ07dyIw0BdeXkq77mtKV0qG5+Vtt3hvWwZXWVkp9u7da/P+rkBsMDUvcx4fH88ve8jllmuVmKPV5uP555+GTteI4GBfPq9HU1M7WLZrdUtsyW9Nnu7y0hEE4RhkQPQAuiOYzB7DxBnPtTaQcM/mymxz6HQGyOW+uHSpEXo9C6VSjqAgH/Tv7w9/fzUfJyE2QDGMoUtem6SkeH4gsjcGpKioANXV1ZgyZYqkZ3UHa9b8XXQwNf3uk5NTkJKSzi97mH4G6DyQy+Uy+PioEBk5DRs2bEBbWyvq65tx+XKL0/at22MMmO/coBTVBNHzoERSJnhCkg+pdCUrnyP64JIDRUfH4MiRSowcORJarVY00+B//rMbly/XYsGCBfD29kZLiw4tLZZzKXD3j4qaiaIiLdLSFmPmzDh+i6cldu7cjsrKQ5g48XasX/8GnzRp2bIVeOutDbxsXO6CCyd/s+tdrcHlmbCVkGnu3DjU1tZi1KhRmDYtEu+9l4Np06bB29sHhYUFneRauDAN5eV7cODTQzZl2Hf8gF2JnAoLt+Hhh/+CCRNug5eXAkqlAizL4vvvT+Ptt9/CiBEjERubaPU+UtuIrcRVnFzmOSRcXSTL0d9Nb+xDugLpQ4gn6IOKaRE8rgxW42aKKpUKJSXFUKlU2Llzp81Ay/Xr38Arr7yCxMREtLTo4OvrZXHrJ3f/c+fOobR0J/LytuPXX2v4AEFrGAwGHDp0CI2NjQKvzDvvbLIYA9JVuO2fHNZ2q3D1QaZMmYaYmEQkJ6egtLQUGk1/wTILJ1dsbCIGDhwoSQ5LKJVy+Pl54fbbJ2LHjh2YOnUy1Gol9Hoj6utbcelSE4KDQ/HXvz4HuVzu1KUDW54xa94GV275pOUSgrAPMiAIp8ENDizLYurUqTh9+jSmTp0qqNgpFotx113z0NKiQ0NDK7y8lPDzU1v9bHJyCgBAq/0jQJBhDJ1kMh2QsrI2IzY2kR+ck5NTuhQDYg2u8JT5882NKNNB0bxCpekyCyeXTCbHTTeNsEsGS4OfWq1EcLAv+vXzg1qtAsOweP7557FlyyeorW1GU1M7dDoDGOYPGbOyNjt96UDMGBAzMFxhDNNyCUHYDy1hmOAJ7iVX4qg+GMaApKR43k2dl7cdcrlS1A1t7jL29lYhIMAb9fWt0OkMVj+bk5MBrVZrsbAXh+lz5XI5srI28zKYP1erzceaJ1+x+10tMXDoFQJ57H1vrTYfu3eXobq6WtTFf9uIW+2SgbtWpVLAz08NlUoBnc6A1lYdn/jJ0vubympr6aC7fjPuLIjVleUS6kOEkD6EeII+qJgWGRBOwVwfUjp1807YnrVvcwIDfaBUykW/S2uFvSx9DoDNwlFz58Z1OQZCFmREaGgowsLCsH59Bu95sWet37xCpaX4A3sMiNUvrUJc3Bz4+6vh4+MFvd6ApqZ20XZt7TtiGIPVGJPe+puhGAjnQPoQ4gn6oBgIohOOuGJN6z5IXRe2VSvDns65paUdCkXHDNoanVNNW88bYUsG7nxXCQ0NRUREBGbMmGl1aUQsMyOnu67EHyQkJKFfP194e6vQ2NiKy5dbbXZYlvSj1eZ3Wk7pC1CiK4KwDXkgTPAE69AebLml7YG7Jj09HdHRs5CQECvJe2CvbLbo18/39xLRbU67r9hnWZbBxPAJdstnCUu7MCxha2lj5coHcOzYMYSEhAgqkdryQNw57XZkvLcJDNOhNynVULlnc14TW16j3vKbcRakDyGkDyGeoI8e44F45plnsHr1apufq66uxpIlSzBmzBhMnDgR69atg9Ho/qqHnoi5p8CRoDDTazIzMwFAsvfAGlKvbWvTd0o0JfW+tgpHcXC66yrmuzCsYbq7goOTlcs7MWPGDERHx9jtBbgndT42/fst6PUG1NW1SDYeOPm5/1L6aYIgrGG7Z3YAhmGwbt06fPzxx0hM7BzUZoper8eiRYtw9dVXY8uWLTh79iyeeuopyOVyPPTQQ90hXq/F3Fjg1s8XLkzjZ7r2DAKm16Snp0MmUyAubo5oPoDuQqczwt9fBi8vhaDio71YmuVPHRspek3ElFFYt24TDhz4L954Yy3OnTvHz8CVShk0mkDU1jbAYOhw3nH5HCIjI1FRUQGtNt9uTw8X78Al3CorK0VkZBRyc99DTU0NDh48iLCwMMF3uu/4AYvv5evrBT8/NVpadGhubpekJ1Ovg+l37K7vnSCIno/TDYjTp0/jqaeewk8//YRBgwbZ/PyuXbtw/vx5fPLJJwgKCsLQoUNx6dIlvPLKK1i6dCm8vLycLWKvxZqx4MggEBc3BwkJs6HRBKKurpm/v6sxGhkYjQxUKqVkA8KaQWWL6upqFBUVYMuWDzF8+HAYDAYTfXYYDdu3b0N2doeeFy9OR2XlIVRUVNj1LNPBmpNvz55PMWDAAFRXV+PYsSN44IEHsWHDm/zOkXPnzol+p1ywZFNTG1pb9ZL0xBkjsbFxKC3dieTkFIcLlREE0Xdwes+wf/9+DBkyBEVFRbjqqqtsfr6iogI33XQTgoKC+GPjx49HU1MTvv32W2eL1+uxtsfekUFArNKiq9Bq8/HZZ+VobKyzeF5sScZRFzxnBCxadD+qqqr4ktlabT4SEmJRUFCA7Ow/DBO1Wo2jR49i1qx4jB07Fmlpi20uk5hXQJ01K4E3QCoqKnDHHdP57zEmJrHTUgf3fgAQEOD9e7Ck/caDpTwVRUVaKJVKyn9AEIRdON0Dcc8990j6/IULFzpl1wsJCQEA/PLLLxg5cqRDciiV0gdMLnDE3gCSnotz5He3PljWiJycLERGRmLSpEloamoTGDWFhXnIzs5CamoaEhKSOl1fWJiH3Nz3sHz5CkyfHm33c0NDQ5GamobIyGhMnz4DMpmCl6WmpgYbNmxAamoa/+x33tmEixcv4pdfzqO6uhosy1hsf6b3yMnJQkLCbCQmJiEhYTYAYP/+L3Hw4EGMGzcOSqWwJkhhYb7Fd+XyOzQ3t8NgMNrV7s31xr1LXFwcdu7ciUWLFkOplNllcLm7jfQ0SB9CSB9Ceps+JBkQ1dXVmDp1qtXzX331FTQajSQB2traEBgYKDimVndkIGxvl7aOyyGXy9Cvn59D1wId+QeIP3CnPtLT01FeXg4vLy9oNH8sZ+n1et4LkJ2dheTke6BSqSye37hxAxITE6BSqVBQUGDzmZGRkfDx8e7UhtLT05GZmYm0tDQkJyfzz1SplCgpKcHBgwetymN+j/T0dGg0wnY/duxYnD9/HuPGjUNJyQ7+c3fffbfouwKAv3/n1N+WsKS31NSF/D1XrlyJjz/+GAkJsUhPT0dycrJd96XfjBDShxDSh5Deog9J2zj1ej3Onj1r9fzVV18NheKPGeK9996LsLAwrFmzxuo1S5cuhbe3N9atW8cfa21txahRo7Bx40ZMnz7dXvF4Orb9tUq+TqGQIzDQBw0NrQ5Fr/c0WNbYpWWInqIPljWiX78AtLXp0db2h4t+8+a3odVqERcXh0WLlnR6V26mHRERgdGjx8BgMCA7OwuXfxR38zOBjdBoNCgsLOp0T5mMRXCwfyedsKyRj4uw5hEx/ay174XLvWG6bbawsIi/d0REBG655VbMnTsXCoUcTU1t/HYwe79vMc8Nyxo7PVvsnj2ljfQUSB9CSB9CPEEfgYE+dntIJHkgVCoVhgwZ4pBQ1hg4cCBOnjwpOHbx4kUAHa5kR+nKHlujkemxe3TtxZnVC92vDxl0OgOUSgUMhg6vFMsy2LlzJ/z8/HDx4kUkJMR2eteYmESUle1CWVkZLly4wKeIVkPcS8YlpTIaZWBZg8CVzy0RdNaJDLGxHfEKMpnchr5kAKyd71i6MA2GNRpl/Lt8++23ePjhhyGXywQltqV83+Jyyjo921xWS3k03N9GehakDyGkDyG9RR9uX4gZN24cqqqq0NTUxB/bv38//Pz8cOONN7pRMs/FnQWBuutZbW0GqFQKyH9vsTKZHMnJKejXrx8OHDhg8V1Ns1RGR8ciPj7eLqOUC150RVVGa/oyL7TFve+WLVsQHBwsMB4c+b7FdoiIFbuiSpUEQXC43IDQ6XT49ddfodPpAADTpk3DgAEDsHLlSnz33XfYvXs31q5di7S0NNrC6SDuSgDkjMHF2uDXUQSqFYcP7+fvHxc3B+vWbRJ9V24w1Ol0KC4uxuTJkzHwxgDsrijFnkNlgn8rn1uC4KtVKCoqcGhQFnt/S9ebft7SeS6V9Ny5cTh9ugrR0VHw8fGFXi+H0cgKPmdJB1KNufLyUsybl8jvELH0Drm578HHxwe5ue/RTg2C6OO43ICorKzExIkTUVlZCaAjYHLz5s1gGAZ33XUX/v73v2PBggV48MEHXS1ar0JsFtkdmJaj3r27zKHBxdYAvHbtWkyfPh0XLpwX1I6Qy+UICwuDXG69OefkZOHcuXMoLy/HokX326xNAUjLvilmcFh6L/PPP/zw0k7vzbIMtm79BE8++STGj78Vp06dQlTUDOzY0Vk/5t+3VGNOq83Hxo0bMHz4cKvGgUwmR1TUTLS2tiIqaqZdhikZGQTRe6FaGCZ4Qp5yV8C5zJVKOfz9vdDUpLNLH8XFBTh27AgqKiokx17YU3dBq83HFVdoEBsbi5YWPVpbdXZX+bRW+dL0s9nZGSgq0iI2Ng6pqUstfsZaG7H27mLycTJFRESgrKysU80LLy8FlEoWDMPg668P4sUXXxBkxRRbhpBS+dS07oZGo8GyZSswZUqUXfdVqZRWfzPOjMPxFKgPEUL6EOIJ+ugxtTAIz8N05rpjRz6mTp2KwsI8u66Njo4XZGNkWcbqDNRSfQpbM/64uDkYP/4OtLXp4efnhaAgHygUCrs8BeYxBcXFBZ1qhpSW7oS3tzdKS3cKPBy2YFkGWVmbUVZWhrCwMEHCJ9P3ioiIQEnJ9k4yhYePQkhICKKiZiIpKR579uxEQIA3goJ8UVVVhfLyzxEePg7JySl2e0TS0hbb/Vmu7kZkZCTS0hZbNB7M38XWfd0Zh0MQhGsgD4QJnmAddifmM8ywsDAcPnxYUgXO8vJSZGRsQkrKQjAMY3EGaqsKpT3PUakUCAjwhkwmQ0tLO1pa2u26znzWr9Fo+Hezx0uhULB8em/TNmLtnbTafJSX74HBYMDx48cFzzOFYQxYuHABYmJisGjRIqjVarz66qvIysoS6N+WfkzlsCd1t1RvhblOxH4z5IHoe32IOaQPIZ6gD/JAEA5hPsOMjo7B2LFjsWiR9dTMpnDr6MnJKYiOjrc4AxWbmdoaHE0/u23bJ4iJicaJEyfg7++N4GA/yOUyUflMn11RUYERI0YIZtKxscKU0eZxBFwq69zc3E73thRzwj2vsrISV155Jb891PwdZTLA398XhYWFuP/++3Hq1PeorW3GgAGhnWb7pteaz+otxXHYwpGAW3uDcl0dh0MQhGshA4IQYNrpGwwGVFdXg2GklQAXC0K0NmDZCvoz37GQk5OFM2fOYMmSdNTVNUGh6LDsVSrrSY/Mn71+fYYg6DA5OQkFBR/zOxG4ipg5OVlgGIOgxDmX8Mn8/paep9FoEB4+qtNgqlDI4e+vRv/+/vD19YLRKENjYzuuvPJqsKz4AGxJX47uvunOgZ4KcRFE74WWMEzwBPeSq3DEtW3PEoDp/U23G4o9q7y8FBs3bhCc58pgc8+SyToyqHF1IcSKSpnLxLIM5s1LxJgxY/D1118jPDwcVVVVWLLkAbz11gb+Gdz7paenIyYmsVMbsfWuLMtAoVDAy0sJb28VVCoFjEYGbW16tLbqYe9P0Za+7F0Gcgb0mxFC+hBC+hDiCfqQsoRBBoQJnvDlupKioj8KOMXG2jc7dWTwYhgDdu7UIitrc6f1cm5wHz58OI4dO2bTOPHzU8PX1wttbXo0NrbZLcPnn+/Ctm3bOu1EsDcGory8FJs3/wuLF9+PyZOFQYhKpRynT38HtdoLN998M4COvBZtbXrJJco5ekp8Af1mhJA+hJA+hHiCPsiAIAPCbsQGfKnbOB0hJyfj93oWs3DffZ3zMwDglxOWLHnA6g4BU7y8lAgM9IbRyKCxsU2QsRGw7FY3Da4MDx+FmJiOOAiVSgGVSgGlUgGFQgaFQg6ZTPb7/VgwDIva2ks4efIkfHx88PPPP2PEiHCEhV0FhULOf76pqQn79+/H119/jfvvXw6WZbvsJXClp8EaffE3IwbpQwjpQ4gn6IOCKAm7sCfZkKWKks6CYQzQarWoqamBVrsDDGN5Nh4XNwdbthTYZTwAHbP7uroWsCzQr58fAgO98dVXn2PNmr932rrJ/TcnJwutra1QKpVISroLwcG+uOIKfwQH+8LHxwsyGZcNsyODanNzO5qa2tHWpsPXX3+N9vZ2qNVqjBs3Di0tzfjtt1+h1xvR3NyOurpm5OXl4x//+AcGDhyE4uJCp6SDdrfxQBBE34Y8ECZ4gnXoLOyJcXC2PizFHqxZ83dUVFQgIiICly5dwh13THaqS76qqhI33DAUAwcOxLlz57B//37U1dVh7NgIfPnlPtxxx524/vqh0OnaEBAQAKCj/ej1Rv6f0cjwHorU1DSkpi5EbW3D74Wm/vBe3HNPMj74INeqThmmozCX1NgSKbjaK9GXfjP2QPoQQvoQ4gn6IA8EYRNX18uwtmsgPHwUwsLCoFQqcejQIYeSDoklq/rb357GjBkzkJ2djR9++AEjRozAggX34IYbhmLhwoUICPCHTCaDQqFGfX0LamubUFvbjMbGNrS16WE0MoIdJtnZWdi2bRsSEmIFNTm2btVi9uz5VnWq1eYjKSkeRUUFkpI8SXlnKnRFEIQrIQOiD+OqffpiuR9iYhKxfn0Ghg+/2WqeBDHEBk3OSAoKCoJMpsANN4QjODgUzc0GbNnyCWbOnIk9e8pRX9+K5uZ26HRGQZEq8/uEhoYiNTUNGRkZnQpKcTKL5YPg3j86Or5LerentgZlfiQIoruhJQwTPMG9ZAtnurCdqQ97dg1Ild3erab2bK+0N2W1SqXEu+9uwo4dOwQ1M2zRlV0T9m55dcfOjN7wm3EmpA8hpA8hnqAPWsLoo/RkF7Y93g5LFTLFsHcZRuy4FJ11GBtG7NixAzU1NSgq0to903fU22Mun9g7U+ZHgiBcCRkQvQRPcGHbm6YasM8YYlmmS4OmIzqTyRRIT093KIbBnhoT9sgn9s60M4MgCFdBvU0vwdVBkc7E3FiwZ2A3vcbRd3VUZ8nJySgsLLJYCMxRbKWmTktb3El2giAId0K9UC/CHS7srno6LBkLtgZ2Z3pbHNWZTCasudGV5SOx94mLm4MVKx7C8eNHe+zyFEEQfRMyIDwMe+ICXIUzYi6sGQu23PTO9LY4IyNkVwwasfdhWQZffrkPBw8e7NHLUwRB9D3IgPAgelKQJMsy2L27DLW1td3mBRAb2HtSwKAzDBrufbhS4hxFRQU4evQoJk+e7JHLUwRB9F6oJ/IQelqQZFFRAaqrqxEZGYm0tMVu8QL0pIHUGQZNUVGBxViQc+fO4b///S9WrVrdIwwmgiAIgAwIj6EnBUmaGjMVFRWIjo7nj/dluvKd2IoFSU5Owa23TnKitARBEF2DDAgPoqe47S0ZMz1peUUqPcHwcSQWhCAIwp1QJkoTPCFLmCuxpQ/TTI7dWSCqO5GavVGhYKHRBHZbG+kJJbqlQL8ZIaQPIaQPIZ6gD8pESbgEbqDrScsrUpAaV6LV5iMhIRa5ubkOP88WnqI7giAI6q0Ip+CJrnYpho+psZGZmQmWNUp6licv8RAEQViCDAjCaXji7FnM8DH1GJgaGxEREdBqC+1+Rk/bQUMQBOEMPK/HJwg4N/DRkuFjyWMQG5uIsLAwlJWV4d13N9stgzOXeMj4IAiip0AGBOFxdPdygDWPgUwmR2TkDGg0GqSmSjMEnLHEQ8sgBEH0JMiAIDwKseUAZ83OxTwGCQlJ2LNnDxISkhy6r6PQMghBED0NMiAIj8La4G5tdu7oQCvmMVCpVA7dsyt46k4XgiB6L5QHwgRP2KPrSnqyPkzzJVjLQyE1x4M9uFsnPS1PhLv10dMgfQghfQjxBH1QHgii12M6iFqanbvK5e/qpYSeZDwQBNG3od6I6BWYLzm4wuXv7KBGimsgCMKTIAOC6DWYGwlSdj5IHbxZ1uhUDwftsCAIwtMgA4Lo1djjeXBk8JbJFE7N7UA7LAiC8DTIgCD6NF3ZFuqs9N20w4IgCE+EeirCKbhq1uzs50jdFmrpemfgibVECILo25ABQXQZR9fvpRoD3RUnYD54u2tJgTwPBEF4EtRjEVaxp+Kko4OtVGOguwd1W9tCCYIgCCHUMxIW0WrzkZAQi9zcXNHPOTLYOmIMuHpQpyUFgiAIcSgTpQmekCXMFZhndiwsLILRKLN5jZRB3dEske7OxEhtRAjpQwjpQwjpQ4gn6ENKJkplN8tCeCDcbD8nJwvp6emQyRQAxBu71EE9Lm4OYmMTJV9HywkEQRA9AzIg+jBis/m4uDlISJgNjSYQdXXSvTn2QMYAQRCE50I9eB/FniDGDs8DQRAEQXSGDIg+iD1BjJQNkSAIghCDDIg+iK0dDZx3orAwz00SEgRBED0dMiD6KNa2KZp6J7Kzs6DX690kIUEQBNGTIQOiD2MpiNHUO5GamgaVSiU4T0sbBEEQBEAGBGEBzjuRkJAkOE4lpwmCIAgOMiAIi5h7Jzyh5HRPlIkgCKK3QgYEYRc9vT4EeUcIgiBcCyWSIuzG0eyR3Z1+2tw74oiMBEEQhDS6tZd95plnsHr1apuf27RpE2644YZO/4ieh9SB2RWegZ7uHSEIguiNdIsHgmEYrFu3Dh9//DESExNtfv7EiROIj4/H448/3h3iEG7ClZ4BR70jBEEQhGM4vbc9ffo0FixYgLy8PAwaNMiua06ePInhw4djwIABgn+EY/SUYEIxz0B3yEjGA0EQhOtweo+7f/9+DBkyBEVFRbjqqqtsfl6n0+HHH3/Etdde62xR+iQ9LZjQUsKqniYjQRAEIR2nL2Hcc889kj7//fffw2g0YteuXXjxxRfR3t6OcePG4fHHH0dISIjDciiV0m0jrga6vbXQexosaxQsGSQkzO5SQSzn6cPU8+BcGV2Np7cRZ0P6EEL6EEL6ENLb9CHJgKiursbUqVOtnv/qq6+g0WgkCXDy5EkAgI+PD9avX49Lly5h7dq1SElJQWFhIby9vSXdDwDkchn69fOTfB1HYKCPw9e6m/T0dGRmZiI9PR0aTaBT7ulsfXSHjK7Gk9tId0D6EEL6EEL6ENJb9CFjWZa198N6vR5nz561ev7qq6+GQvHHbPLee+9FWFgY1qxZI3rf2tpageFx8eJF3H777Vi7di2io6PtFY/HaGTQ0NAq+TqFQo7AQB80NLTCaOwZcQSOwLJGp8zqZTIWwcH+3aIPZ8noanpLG3EWpA8hpA8hpA8hnqCPwEAfuz0kkjwQKpUKQ4YMcUgoMcy9FiEhIQgODsaFCxccvqfB4PiXYzQyXbre/cgAdE1+rTYfOTlZSE9PR0xMYjfoo+syuhPPbyPOhfQhhPQhhPQhpLfow+0LMW+88QZmzJgBU0dIdXU16urqcN1117lRsr6L6fbLzMxMsKzR3SIRBEEQPQyXGxA6nQ6//vordDodAGD69Ok4d+4cnnvuOZw5cwYHDx7EihUrMGbMGEyaNMnV4hEQbr9MT0/3yKUGgiAIontxuQFRWVmJiRMnorKyEgBw880341//+hdOnDiB2bNnY/ny5Rg2bBgyMjIgk8lcLR7xO3Fxc1BYWITk5GR3i0IQBEH0QCQFUXoKRiOD2tpmydcplXL06+eHurrmXrE+1VVIH50hnQghfQghfQghfQjxBH1oNH52B1G6PQaCIAiCIAjPgwwIgiAIgiAkQwYEQRAEQRCSIQOCIAiCIAjJkAFBEARBEIRkyIAgCIIgCEIyZEAQBEEQBCEZMiAIgiAIgpAMGRAEQRAEQUiGDAiCIAiCICRDBgRBEARBEJIhA4IgCIIgCMmQAUEQBEEQhGTIgCAIgiAIQjJkQBAEQRAEIRkyIAiCIAiCkAwZEARBEARBSIYMCIIgCIIgJEMGBEEQBEEQkiEDgiAIgiAIyZABQRAEQRCEZMiAIAiCIAhCMmRAEARBEAQhGTIgCIIgCIKQDBkQBEEQBEFIhgwIgiAIgiAkQwYEQRAEQRCSIQOCIAiCIAjJkAFBEARBEIRkyIAgCIIgCEIyZEAQBEEQBCEZGcuyrLuFcDYsy4JhHHsthUIOo5FxskSeC+mjM6QTIaQPIaQPIaQPIT1dH3K5DDKZzK7P9koDgiAIgiCI7oWWMAiCIAiCkAwZEARBEARBSIYMCIIgCIIgJEMGBEEQBEEQkiEDgiAIgiAIyZABQRAEQRCEZMiAIAiCIAhCMmRAEARBEAQhGTIgCIIgCIKQDBkQBEEQBEFIhgwIgiAIgiAkQwYEQRAEQRCSIQNChHfffRdTp05FeHg4Zs+ejf3797tbpB5BRUUFhg0bhgMHDrhbFLfxyy+/4JFHHsFtt92GcePGYdGiRTh16pS7xXIZDMPgzTffxKRJkzBq1Cjcf//9+Pnnn90tltu4fPkynnnmGdx+++0YM2YM5s+fj4qKCneL1SM4c+YMRo8ejW3btrlbFLdSWFiI6OhojBgxAjExMdi5c6e7ReoyZEBY4e2338bGjRvx6KOPYseOHRg1ahQeeOCBPt1JAkBjYyNWrVoFhum55Wi7G51Oh/T0dPz666/IyMjAhx9+CD8/P9x3332ora11t3gu4e2338aHH36I559/Hlu2bAHDMFi8eDF0Op27RXMLjzzyCCorK7F27Vrk5+dj2LBhWLRoEX744Qd3i+ZW9Ho9HnvsMbS0tLhbFLeyfft2PPXUU7jnnntQXFyM2NhYvs14NCzRiebmZnbUqFFsbm4uf8xgMLBxcXFsQUGB+wTrATzyyCNsSkoKO3ToUHb//v3uFsct7Nu3jx06dCh74cIF/lhbWxs7cuRINi8vz42SuYb29nZ29OjR7AcffMAfq6+vZ8PDw1mtVutGydzDjz/+yA4dOpStqKjgjzEMw06bNo1dt26dGyVzP6+//jrfX+Tn57tbHLfAMAw7efJkds2aNYLjaWlpbEZGhpukcg5KdxswPZFDhw6htbUVMTEx/DGFQoEdO3a4USr3s337dlRWVmLTpk2YNWuWu8VxG9dffz0yMzMRGhrKH5PLO5x5DQ0N7hLLZXz33Xdobm7GhAkT+GOBgYEYPnw4Dh48iNjYWDdK53r69euHzMxMjBgxgj8mk8kgk8n6RHuwxsGDB/Hxxx+jsLAQd955p7vFcRtnzpzBuXPnEBcXJzj+7rvvukki50FLGBY4c+YMgoKCcOLECcyfPx8TJkzAvffei8OHD7tbNLdRXV2NF198Ea+88gr8/PzcLY5bGTBgAO644w7Bsffffx9tbW247bbb3CSV67hw4QIA4MorrxQcDwkJ4c/1JQIDA3HHHXfAy8uLP7Zr1y789NNPmDRpkhslcx8NDQ1YtWoVnn766U7tpK9x5swZAEBLSwsWLVqECRMmICkpCXv37nWzZF2nT3ogqqurMXXqVKvnH374YbS1teGZZ57Bo48+ikGDBuHjjz/Gfffdh8LCQgwZMsSF0nY/tvSxb98+PP7447j77rsRERGB6upqF0rnemzp46uvvoJGo+H//vTTT/H6669j4cKFuOGGG1wholtpbW0FAMGACQBqtRr19fXuEKlHcfjwYfz1r39FZGRkn515P/fccxg9enSnWXdfpKmpCQDwxBNPYPny5Xjsscewa9cuPPjgg8jOzhZ48jyNPmlAhIaGoqSkxOr5PXv2oK2tDU8++SQ/07zppptQWVmJ3NxcPPvss64S1SXY0seWLVvQ2tqKFStWuFAq92FLH0FBQfz/f/TRR3j++ecxa9YsrFq1yhXiuR1vb28AHcGk3P8DQHt7O3x8fNwlVo9g9+7deOyxxzBmzBi89tpr7hbHLRQWFqKiogJardbdovQIVCoVAGDRokVITEwEAAwbNgxVVVVkQHgiKpVK1IvwzTffAIBgNimTyTBkyJBeOfu2pY9t27bh4sWLuPXWWwEALMsCAO6//34kJCTgH//4h0vkdBW29MHx6quvYvPmzUhNTcUTTzwBmUzmAuncD+eSvnjxIgYPHswfv3jxYp/wwFgjNzcXL774IqKiovDyyy938tD0FfLz83Hp0qVO3pdnn30WJSUl2Lx5s3sEcxNcrNTQoUMFx6+77jp89tlnbpDIefRJA8IWERERkMlkOHLkCKKiogB0DJrff/+9R1uLjvL+++/DYDDwf9fU1ODee+/FCy+80CfW/C3BGQ9PPPEE0tLS3C2OS7nxxhvh7++PAwcO8AZEQ0MDqqqqkJyc7Gbp3AO3pfXee+/FU0891WeMSUu89tpraGtrExyLjIzEQw891CeDr2+66Sb4+fnh6NGjiIiI4I+fPHlSYIB7ImRAWGDQoEGYM2cOXnjhBfj4+GDw4MF4//33UV1djQULFrhbPJcTFhYm+FuhUADosKz79+/vDpHcyoEDB7B582bce++9iIuLw6+//sqf8/X17fVBpl5eXkhOTsZrr70GjUaDsLAwvPrqqxg4cCAiIyPdLZ7LOXPmDF566SVMnz4dS5YswW+//caf8/b2RkBAgBulcz2mu5NM6d+/v9VzvRlvb28sXrwYb731FkJDQxEeHo7i4mLs27cPOTk57havS5ABYYXnnnsOGzduxNNPP436+noMHz4cWVlZuPbaa90tGuFmioqKAHR4Zt5//33BueXLl/eJWJGHHnoIBoMBTz/9NNra2jBu3Di8++67/HpvX2LXrl3Q6/X49NNP8emnnwrOJSYmYs2aNW6SjOgpPPjgg/Dx8cEbb7yBmpoaDBkyBBs2bOCXhT0VGcstaBMEQRAEQdgJ5YEgCIIgCEIyZEAQBEEQBCEZMiAIgiAIgpAMGRAEQRAEQUiGDAiCIAiCICRDBgRBEARBEJIhA4IgCIIgCMmQAUEQBEEQhGTIgCAIgiAIQjJkQBAEQRAEIRkyIAiCIAiCkAwZEARBEARBSOb/AZgxPWI8LOeqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# https://seaborn.pydata.org/examples/layered_bivariate_plot.html\n", + "# sns.set_theme(style=\"dark\")\n", + "\n", + "# Simulate data from a bivariate Gaussian\n", + "n = 10000\n", + "mean = [0, 0]\n", + "cov = [(2, .4), (.4, .2)]\n", + "rng = np.random.RandomState(0)\n", + "x, y = rng.multivariate_normal(mean, cov, n).T\n", + "\n", + "# Draw a combo histogram and scatterplot with density contours\n", + "f, ax = plt.subplots(figsize=(6, 6))\n", + "sns.scatterplot(x=x, y=y, s=5, color=\".15\")\n", + "sns.histplot(x=x, y=y, bins=50, pthresh=.1, cmap=\"mako\")\n", + "sns.kdeplot(x=x, y=y, levels=5, color=\"w\", linewidths=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAMQCAYAAABv9Sf3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hkfVnnj78r5xy6cugKHWfmyYCYQRAX+C5hWQVh9+HRRRCRRUQXUIISLkGC4I+gPICigo+u+EOWr3G9Vhee/MxM58qxq7pyzlXn+8epOt0906FSd1fPnNd1zTUz3adPfc7pqvu87/tzBwZBEARoaGhoaGhoaGhoaGhoLh3Mi14ADQ0NDQ0NDQ0NDQ0NzXjQDh0NDQ0NDQ0NDQ0NDc0lhXboaGhoaGhoaGhoaGhoLim0Q0dDQ0NDQ0NDQ0NDQ3NJoR06GhoaGhoaGhoaGhqaSwrt0NHQ0NDQ0NDQ0NDQ0FxSaIeOhoaGhoaGhoaGhobmkkI7dDQ0NDQ0NDQ0NDQ0NJcU2qGjoaGhoaGhoaGhoaG5pLAvegGzSLfbQy5XHepYJpMBpVKEXK6KXo8445WNz2VZJ3B51kqvc7rMyjo1GsnUzjWsLZmVax+Gy7JWep3T57KsdVbWOS1bQmuSi+OyrBO4PGul1zkaw9oReoduQphMBhgMBphMxkUv5UQuyzqBy7NWep3T5bKs8yy4TNd+WdZKr3P6XJa1XpZ1ngWX5drpdU6fy7JWep1nA+3Q0dDQ0NDQ0NDQ0NDQXFJoh46GhoaGhoaGhoaGhuaSQjt0NDQ0NDQ0NDQ0NDQ0lxTaoaOhoaGhoaGhoaGhobmk0A4dDQ0NDQ0NDQ0NDQ3NJYUeW0BDMwadThtbWxtgMAChUAKRSAqJRAoul3fRS6OhoblEJJNxXL8eB58vhEgkgVgsg0gkBpNJx1tpaGiGo91uY3NzAywWA0KhGEIhrUnuNmiHjoZmRAiCgNe7hVqtirm5OWSzGSQSMQAAl8uDRCKFWCyDRCKFQCCihRkNDc2RFIt5+P0eaDQaNJstRKMhEEQPDAYDIpEEEokMYjEpzDgc7kUvl4aGZgbp9XrwejfQaNSg0WiQzWawu3tQk+zbEaFQDAbjcrThpxmNmXDovv3tb+PLX/4yotEoLBYL3v72t+NlL3sZACAWi+F3fud38NRTT0EoFOK1r30tfuVXfgUsFov6+T/7sz/Do48+inQ6jdXVVbz//e/H8vLyRV0OzR1OJBJAqZTHyso12O1m5PNV1GoNVColVCpFlMsl5HJ+EAQBJpN5mzBjszkXfQk0NDQXTKNRh8+3CblcgYceegiFQg2tVge1WgWVSgnlcgmZzB4SiSgAgMcT9INFUipYRAszGhqaSCSASqWElZV7YLMZ+5qkTtmRSqWIXC5NaRKxeN+OiMW0JrlTuHCH7m//9m/xvve9D+9973vxIz/yI/jud7+Ld73rXdDpdFhdXcUjjzwCm82Gb37zm4hEInjf+94HJpOJd7zjHQCAv/mbv8Hv/d7v4Xd+53ewvLyML3/5y3j44Yfxve99D0ql8oKvjuZOI53eQzIZg9XqgFy+//7icrlQKtVQKtUAyIhZtVqmDGo6ncDubgQAwOcLDwgzGfh8AS3MaGjuIrrdLjyeDbBYHCwsrFCf/4NiS6cjj202G4eEWSazBwBgsViHhJlIJAWbfeGPdBoamnMklUpgby8Om80FmUxOfZ3L5UGp1ECp1ADY1yQDO5JK7WsSgUBI6RGxWEprkkvKhVp/giDw2c9+Fm9605vwhje8AQDw1re+FU8//TSefPJJxONx7O7u4i//8i8hk8ngdruRzWbxe7/3e/ilX/olcLlcfPGLX8TP//zP45WvfCUA4KMf/She/OIX47HHHsNb3vKWi7w8mjuMSqWMYHAHavUc5uaMJx7LZDIhkcggkcig15Pv9VuFWTqdBACw2ewDwow0qHSaJg3NnQlBEPD7t9FsNrCycu+p0XEejw8ejw+VSguAdAZJYVZEpVJCMhlHPB4GAAiFIirdWyKRgcfjn/n10NDQXAzlcgmhkBcajR5arf7EYw9qEsBMaZKBHqlUSkdokn1bQjt4s8+FOnTBYBDxeByveMUrDn39K1/5CgDggx/8IFZWViCTyajvPf/5z0elUsHW1hZMJhNCoRBe8IIXUN9ns9l44IEH8NRTT9EOHc3UaLVa8HjWIRSKYbe7RzZuDAYDfL4AfL4AavUcAKDT6RwSZolEFLFYCHK5Cm73Cm1AaWjuQHZ3I8jnM3C5ViAUikb+eRaLBalUDqlUDoB0EBuNOmVHSqUCUqldMBgMLC/fA7FYOuUroKGhuWharSa83g2IRBLYbM6JNIlGs69JyNIRMvC8uxtBr9eFQqGGy7VMa5IZ58IdOgCo1Wp45JFHsLm5CZPJhLe+9a34yZ/8SSSTSegGeSd9tFoySplIJKj0Er1ef9sx29vbE62NzR5uh4TFYh76e1a5LOsEZm+tvV4PPt8GAGBp6Qq4XPJ9N+k62Wwu+HwVVCoVAFKYZbNp7OxsIJ1OwGAwTWH1s3c/j+OyrHNUhrEll+naL8taZ3Gd2WwasVgIZrONepZNY50cjhgSiRgAmTlAdry7Cb9/C9euPTi1VMxZvKdHcVnWOQq0JrkYZnGdvV4XXu8GGAwGlpZWp6xJ1FCrydIRgiCQTu/B691CJpOEXn9yZtKwzOI9PYrLss4BF+rQVSoVAMBv/MZv4O1vfzve/e534+///u/xtre9DV/96lfRaDQglR6OLvJ4ZAvWZrOJer0OgKxfuvWYZrM59rqYTAYUitEip1KpYOzXO08uyzqB2VgrQRBYW1tDtVrBC17wAigUituOmeY6lUoxms0qwmE/zGb9be//STjP+/mhD30If/7nf47//J//Mz784Q9TX//zP/9zfP3rX0c8HofRaMQb3vAGvOlNbzp2nb//+7+PL3/5y3jooYfwp3/6p9TXH3/8cXzmM5/BxsYGpFIpXvayl+G///f/DpFo9B2Ps2RUWzIL7/lhuSxrnZV1lstleL1b0Ol0uHr19h34aa9TJLof//Zv/4ZYLIB77713que+LLbk85//NL7+9a/fds43velNeN/73geAzL745Cc/ie9+97solUpYWVnBb/7mb+Kee+450+saBVqTXDyzsk6CIHDjxg3UalX80A/9EORy+W3HTFuTtFo1hEI+mM16SCSSqZ37TrIjA6rVKl7ykpcgk8ngW9/61rnakQt16DgcsnbgkUcewate9SoAwNLSEjY3N/HVr34VfD4frVbr0M8MHDWhUAg+n6wPOOoYgWD8N0qvR6BUqg11LIvFhFQqQKlUR7fbG/s1z5rLsk5gttaaSMQRiUTgdC4C4CKfr1LfO6t16vUWpFJpPPXU07h27YFDHV3H4bzv5z/+49/jW9/6FgCg1epQ9+xrX/sKvvjFPwRA1vqEQiF85CMfQTKZwi/+4ltvW6fHs4OvfOVRAEC73aXO89xzz+Dtb38rut0OhEIRMpkM/vRP/xQbG1v4/Oe/OHH94ajC6SSGtSWz9J4/jcuy1llaZ6fTxo0bz4DH48Nmc6FQ2H9PnOU67XYXvN4tCIVSaLW603/gFC6bLdnY2AIAyOXyQ2MfOBw+da4Pf/gD+F//6ztgMpng8wV47rnn8F/+y3/BN77xLZhM5onWPy1bQmuSi2PW1rm7G0UsFoPLtQSC4JyTJrEe0CT3g8m8uzTJMHYEIO38e9/7G8hkMgCAcrl+6PvjMqwduVCHbm6OzNt1u92Hvu50OvGv//qveOihh+DxeA59L5VKUT87SLVMpVJwOByHjhmce1w6ndHeZN1ub+SfuQguyzqBi19rqVRAMOjF3JwRKtXcsWuZ/joZcDiWsL7+LAIBH+x211TOetb3M5/P4Wtf+2P8z//5GAiCAEAKkU6nh0ajga99jayN/Y3feD9e8Yr/iL/4i2/gD//wM/ja1x7FK1/5GszNDZo+9NBotPC7v/shdLsdAGRUcrD2L33pC+h2O3jpS38G73//h7CxsY63v/0X8eyzT+Nf/uWf8eM//qIzu8ZxGOWeX/R7fhQuy1ovep0EQWBnZwOdThsrK/eBIJhHrucs1qlUaqFSZeH3eyAUSsDnTycifllsid/vBQB89rNfhMPhPPQanU4PicQu/tf/+k7/mC9gdfUq3v72/4aNjTV84xt/ine/+zfP7BpHhdYkF8ssrLNYzCMY9EGnM0Gp1J6rJnE6SU0SDPphtTpP/5EhuFPsCACsrd3Apz/9CXg82we+R5zre+ZCE0NXVlYgEolw48aNQ1/3eDywWCx48MEHsbm5SaVmAmSqlUgkwuLiIlQqFex2O5544gnq+51OB08//TQefPDBc7sOmjuPZrMBr3cTEokMFsv8ub++UCiC1epAKrWLXC5z7q8/Dr/3ex/FX//1X0KvN8BgOJxrHwz60Wg0AAAvfvFLAQA/+7NvgEAgQLfbxeOPf//Q8d/85jfg8Wzflk4NANvbmwCAF73oJWAwGFhdvYIHHngIAPDv//5/pn5dNDSTEI0GUCzm4XQuT82hGgWbzQUOhwO/fwu93uwLZ2A6tiSVSiGfz4PBYMBkOroe+amnSO2g1xtw7733g8Ph4KUv/Zn+9x4/k2ujoRmHwdxKqVRxQZpEDItlHslkHIVC9txffxzOy45UKhW89a2PwOPZxoMPPu8Mr+hkLtSh4/P5+IVf+AX84R/+If7u7/4OkUgEX/jCF/B//+//xcMPP4wXv/jF0Gg0eOc734nt7W380z/9Ez71qU/hzW9+MyX03vzmN+OrX/0q/uZv/gY+nw/vfe970Wg08NrXvvYiL43mEjOYEcVkMuF0Ll/YCAGtVg+FQoVgcAet1vg1oeeFQCDAa1/7s3j00T+DVnt4h3xQ+wqAuhYGgwEWi0wSCIdD1PcjkQgeffSPoFAo8cpXvuq21xmc6+A9GaRBHDwPDc1FQw4Gj8FicUAmu73+9jxgs9lwOJZQqZSp8QazzjRsyc7ODgDy+v/bf/uv+Mmf/CH8/M+/Dv/8z/9I/Xw0Ss7h0mi01Nd0OjLzJ5HYRafTmfKV0dCMzv7cSjZcrqUL6zY5N2eETKaE379zW6nTLHJedoQgCFgsVvzWb30Y73nP4Zq68+TCp5C+7W1vg0AgwKc//Wns7e3B4XDgc5/7HJ73PNLL/eM//mN86EMfwute9zrIZDK8/vWvx9ve9jbq51/3utehXC7jM5/5DAqFAlZXV/HVr36VHipOMxYEQSAY3EGjUcPy8r1UnedFwGAwYLcvYG3tafj921hcvDrTbYPf974PHlvvZzZbIRSKUKtV8Sd/8lU88shb8L3v/R0qlTIAUH8TBIGPfezDaLWa+B//47cQidwuQBcWlvDkk4/jr/7qW7h27T7E41E8+eQPDp2HhuaiqVbLCAQ8UKvnoNNNpzvcuEgkUphMNsRiIchkCmrkwawyDVsyEGLtdpty3EKhAD7wgf+BXq+Ln/qpn6ayfwb1+MC+0Ov1eqjValNtTEVDMyqjzq08SxgMBhwOUpMEAttYWLhyx2uSYeyIWCzGn/3ZX4HBYCCR2D2HKzuaC3foAODhhx/Gww8/fOT3rFYrHn300RN//pFHHsEjjzxyFkujuctIJKLIZtNwOpchEokvejngcDhwOBaxvX0TiUQUBoPlopd0LCc1b+FwOPiFX3gL/uAPPoVvfevP8K1v/Rn19Xa7TT0UvvnNb+K5557F85//Q/ipn/ppfOUrX7rtXL/4i2/FM888hevXn8UrXvFT1HkAzPTDhebuod1uwePZgFAoGmtu5VlgMFhQLObh92/jypX7L1QYnsY0bInL5cIrX/kq6HR6/NzPvRHdbhfvfe+78eSTj+OP//iL+Kmf+ulzuRYamkmYdG7ltOFwuJifX8TOzhqSyTj0+umMVzoLzsuOzIJ9B2bEoaOhmQUKhSyi0SAMBgtUKs1FL4dCJlNArzcjFgtBKpVf2kHBr3vd68HhcPGd73wbrVYTL3/5/4P//b//GRsba5BKZUilUvjkJz8JgUCAX/u145sRLC2t4NOf/kN87Wt/jL29JB544CFwOBz81V99C1Kp7ByviIbmdnq9HjyeDRAEAbd75cJStm+FjK4vYm3tGQQCnks9KPg0WwIAP/ZjP4arVx+gmhJwOBy86lWvxZNPPo54PIZKpUKNOTk45mhQV8NkMiEUCs/5ymho9snnM4jFQjAarVAq1Re9HAq5XAmdzoRoNACpVAaRaHqjDM6TadkRsfjig/8A7dDR0AAA6vUafL4tyOVKmEy2i17ObZhMNpRKBfh827hy5T4qz/uy8eIXvxQvf/n/Q+2o/cVffAMAYLc78OSTj1MpUP/pP73y0M9dv/4sfviHH8Bjj/3/odcbsLy8io9//PepiOUHP/g+6jw0NBdJOOxDtVrG0tI1cLm803/gHOHx+Jifd8Pr3UQ6nYRWq7/oJY3NSbYEAJ555hns7PhgsznhcpGdtAc1cWw2G3w+H0Yjubuwt5ekzptO7wEgG6VMayA7Dc2o1GpV+HzbUCjUMBqtF72c2zCb7X1NsoXV1fsnHq90UUzDjswKsxE6pKG5QDqdDjyeDXA4XDgcF1dwfBJkg5YltNtNhEK+i17OWLz+9a/By172E1Rqwz/8w/eQzWbA5fLw/Of/EAQCAebm5qDRaKk/A4eNw+FAo9GCxWLhE5/4KF784h/GBz/4fnS7XQSDAfzgB/8OAPjRH/3xi7o8Ghrs7e0ilUrAZnNBIpnN3WKlUgONRo9w2Id6fbjZZrPGabYEAB599FF86EO/jU984qOoVCpoNBr4n//zMQDAPffcBzabjfvvfwAAkEwm8MwzT6HdbuMf/uH/BQA8+ODzL+DKaGjIeWYezwZ4PB4cjoWZ1iStVhPhsP+ilzMW07Ijs8LsrISG5gIgC4630G43sbIyWx/OW+HzBbDZXAgEdiCXK6FSaU//oRnip3/6P+DLX/7/4Ytf/Dy+8Y2vUbtxv/iLb4VUKsWLXvRTeO1r/yPy+SqV3vCVr3wJX/3qH2Fl5Qo+//kvAwBe8pKX4Tvf+Ta+//1/w8/8zE+iVquBIAi88IU/ghe84IUXdn00dzelUgHhsA9zc4aZ3/myWh0ol4vw+bawsnLvzKSFDstptgQA3vKWt+D//J//g83NdbzylS8BwECr1QSfz8cv//KvAgAsFhte9KKX4J//+R/wrne9HTweH7VaFTweDz/3cz9/UZdHcxdDEAR8vi10Om2srs52No5AIITV6kQw6IFcroBSOTulKsMwLTsyK1wuK05DM2VisRAKhRycziUIBBdfLzEYfnkcavUcVCoNgkEPms3GOa1qOvz8z/9XPPzwL2JuTodWqwWHw4n3ve+DIwuna9fuxQc/+FE4HE602x1oNFq88Y0P48Mf/vgZrZyG5mQGcyvFYikslotP+yUI4kRbwmKx4HQuol6vIhoNnuPKpsMwtuTq1av4wz/8Eh588Hng8wVgsZh48MHn4fOf/yO4XAvUce997wfwn//zGyCTyfvD36/g05/+Qyodk4bmPIlGgygW83C5LmZu5a2cpkk0Gh0UCjUCgTtTkwxrR2YBBnHab+supNvtIZerDnUsm82EQiE6tKswi1yWdQLnt9ZsNg2fbxNms32s7pGTrLPdbqPRqKFer1F/1+t1NJt1aDS6EzvjdTodrK8/Aw6Hi+Xle05Nx7gsv/tZWadGM70C72Ftyaxc+zBclrWe1zq73S42N69TEfXBTMRhmWSdvV4PzWbjFjtC/pvBYGBp6RqEwuML9hOJGCIRPxYWrkAuP33UD/27H41p2RJak1wc57nOTGYPfv82LBbHWN0jp6VJDtqTZrMBrVYPu9197M92Om2srT0DHo+PpaVrtCaZMsPakdndy6WhOUOq1QoCgW2oVBro9eYzeQ2CII4VWwcH1vJ4fAgEQigUqv4ckyjEYumxaVvkoOBFbG5eRzwenskmLjQ0dwPk3ErPgbmVozlzw9LptFGv128LAjWbDSqCzmKxwOcLIRAIoVSqkcmk4PVu9dO2jm5YoNMZUSzmEAhs48qVB85s/TQ0NCdzHnMrSU1SpwLIB+3J0ZpEDQaDDPyIxVJoNLojz8tmk+OVtrZuYHc3MpNNXO4GaIeO5q6j3W7D41kHny+E3T55wXGn00GlUr3NaWs06pTYYjKZEAiE4POFkMuVlPDi8wW31a90ux2Ewz6IxdJj585IJDIYjVbE42HIZIqZbcBAQ3Mnk0jEkM2m4HQuTTy3kiAINBoDkXVYbLXbbeo4LpcHgeBWOyIEh8M5ZMsUCjXW159BOOzD/PzRqUGDUQY3bz6NQGAHbvfqTDZgoKG5kzk8t9I1JU1Suc2OHNYkLEqDnKZJ2u02QiEvxGLpsaUpUqkcBoOlP15JAYnkco5XuszQDh3NXUWv14PPt4lerwe3e2XsVru9XhcezzbK5SI1twggh24KBEJIpXJotQZKbHG53KGNtMWy37BgdfVeMJlHr9FotKJUysPn25r5QcE0NHcahUIO0WgABoN5ogZFuVwGa2vPoFKpoNcj03oYDCYEAgH4fNKWDOwIWcMxnM0SCIRUEyWpVAG1+ug1kt19F7Czs469vTh0Orp2jIbmvOj1evB6N0EQPbhcK8c+70+j2+3C799CuVw8NFeRy+WBzxcc0iQCgRAczvCaxGZzoVIpndpEaaBJ/H5ylMEsN5m7E6HvNs1dRSQSQLlcxOLiVfB4480PGRjgUqmA+fl5MBgccLkCCASCqXSkIhsWLGNj41mEw/5jc9fJ6PoS1taeRjDohdM5myMXaGjuNBqNGny+zf7cSvvY5ykW89jZWYdKpYLVOt+3I0JwubypfJbV6jkUi3kEgx6IxZJjmyzI5SrodEZEIgFIpfIT6+5oaGimRzjsQ6VSwtLSNfB4482tJDXJBsrlEubn7WAwOODxBP0A0HQ1SSQSgM3mPPI4JpPZ1yTPIBQiNQnN+UF3uaS5a0ilEtjbi8NqdUAqlY91DoIgEAjsoFjMY3FxFYuLi9BqdRCLJVNtLywUimC1OpFKJZDNpo89jsfjw253I5dLI5PZm9rr09DQHE2n08HOzuRzKyuVEjyedchkCjz00EMwGMyQy5Xg8fhTC8wwGAzY7S5wOFz4fFvUDuBRmM3zEAiE8Pm20O12p/L6NDQ0xzONuZXk6KVtlEoFLC3taxKRaLqaRCQSw2JxYG8vjnw+c+xxfL4AdrsL2WyK1iTnDO3Q0dwVlMslhEJeaDR6aLWGsc5BEATCYR+y2RQcjkUoFKopr/IwGo0OSqUGweDOie2AVSotNBodQiHvpR0UTENzGRiIp3a7Cbd7deyUolqtip2dNQiFYiwurp7pHDgWiw2Xawm1WuXEEQWD6Hqz2UAkEjiz9dDQ0ADlcnHiuZUEQSAU8iKXS8PpXB6qU+0kzM0ZoFCoEAicrEnU6jmo1XMIBr1oNOpnuiaafWiHjuaOp1arwuvdgEgkgc3mHDv6HY+Hsbe3C7vddS5DvcnouhtsNoeq+zsOq9UJLpcHv//kKDwNDc14kAEdPwqF7ERzK5vNBra3b4LD4WFhYXXsOt5REIkkMJvnkUzGUChkjz1OKBTBYnEgldpFLnd8FJ6GhmZ8arUKPJ6NiedWxmJBpFIJzM8vQKlUT3GFR8NgMDA/vwAmkwW/f/vEGXVWqxMcDufUzACa6UE7dDR3NKVSAZub18HhcOB2r4wdCU8mY4jHwzCb7WPv8I0Dm82G07mEarWCWCx07HFkjvsSarUqYrHLNyiYhmaW6fV68Pu3sLcXh83mglw+3u58u93C1tZNMJlMLC5eOddGRjqdEXK5En7/Dlqt5rHHabV6KBQqBIMnH0dDQzM6A03C5fLgci2PrUkSiSh2d6OwWOaPHSdwFrDZHDidSyiXi4jHwyccN9Au5ROPo5ketENHc8eSy6WxvX0TIpEYS0v3jD1jKZ3eQzjsh15vOrOZdSchFkthMtmRSERRKOSOPY6MwtuRSMRQLObPcYU0NHcuZM3cGnK5DFyuZczNjRfQ6XQ62N5eQ6/XxeLiVXC54zVAGBcyur4IBoNxYnSdzAxYAIPBPDUKT0NDMzzZbKqvSaRYXr42tiZJpRKIRAIwGCwXokkkEhlMJhvi8fCJWoPULjbs7kZQKhXOb4F3KbRDR3NHkkzG4fVuQqlUY2Hhyti1Lvl8BoHANjQaHczm+QvrIqnXmyCTKeD3b6PVah17nE5nglQq79f5HH8cDQ3N6bRaTWxtXUe1WsHS0jUolZqxztPtduHxrKHZbGBx8eqx3SbPGg6HjK6XSgXs7kZOPM7hWESpVEAiET3HFdLQ3JkkEjH4fFtQKjX9VOvxNEkul0Yw6IFWq4fJZJvuIkfAYLAMpTUMBgskEhn8/m10Ou1jj6OZHNqho7mjIAgC0WgA4bAPOp0JDsfS2CkNpVIBXu8mFAo17Hb3hY4EGAwAJqPrWydG1x2OxX43Tg8dXaehGZN6vYqNjefQ6XSwvHzP2F3oBrMvq9UKFhauQCgUTXmloyGVymE0WhGLhU6MmstkChgMZsRiIVQqpfNbIA3NHQRBEIhE/IhE/NDrzXA4FsfWJMUiOXdWpdLAZpt8APkkHNQafv/OKZpkCd1ul9YkZwzt0NHcMfR6PQQCO1ReudXqGNvgVatl7OysQyKRzcx8N7JN+ulRcy6Xh/l5NwqFLPb2ds9xhTQ0dwblchEbG9fBYrGxvHzv2E7YwTEnbvcKJBLplFc6HkajlYqat9vHR82NRhuEQnF/lEHnHFdIQ3P5IWtvt5FIxGC1OmGxjJ/lMxhzIpXKqdTpi4bL5cHhWECxmEMyGTv2OB6P1CT5fAbpdPIcV3h3QTt0NHcE3W4HHs86stkUnM6lifLK6/UatrfXIBAI4XafbUvxUSGj5hZEo0GUy8Vjj1Mo1JibMyAS8aNarZzjCmloLje5XAZbWzchFIqwvHzP2MN+D485WYJMdrYtxUdhEDXv9boIBI6PrjOZTDidS2i32wiFfOe8Shqay8t+7S05UkCnM459roNjTlyu8Zu7nQVyuQp6vQnRaPDEnXylUgOtVo9w2IdarXqOK7x7mJ13BQ3NmJCd426gXC5hYeHKRCMF9luKc7CwcOVcWoqPitFohVgshc+3dWJOusUyDz5fCI9nkx4UTEMzBHt7u/B6N6BQqLC4eHXs2lsAiMdD/TEnbqhU49XenSVk1Hzh1J18Pl8Am82FTGYP6TQ9KJiG5jT2a2/LWFy8OtHnv9GoY3v7Jrhc3sxqEpPJTu3kdzrH7+RbLA5wuXxak5wRtENHc6lpNGrY2HgOrVYLy8v3QCZTjH2udruF7e2bYDAYWFy8Cg7n/FqKj8Igan5aTjqTSY4yqNfruH79+omGlobmboasvQ0iFPJCpzPC6Ry/9hYgGyDE45H+mJPxhgafBwqFGjqdsb+TXz72OLVaC5VKC79/B+l0+hxXSENzuajXawdqb++FVCof+1ytFqlJmEwmFhYmCzCdJQNN0um0EQodr0kOjle6ceMGrUmmzGy+O2hohqBSKWFnZx1sNhsrK/eCx+OPfa5BS/FulzTC59VSvNvtolaroFqtoFoto1arQKXSwmCwnPhzPB4f8/NueL2bSKUSx7ZSFwpFcLuX4PNtI5vNwW53Qy6fndQvGpqLptfrIRTyIp1OwmKZh05nmqg+JZ1OUg0QTvscTwuCINBsNig7Uq1W0O124Havgss9uTW62TyPUqkIn28Lq6v3Hdl9j8FgwGZzwedr4YknnsDcnAEmk31mBSYNzUVQLhfh8ayDw+FiYeHKxJpkZ+cmer0elpfvOfVzPC32NQlpR2q1CtTquVPLWPh8Aex2N3y+LUilimMDWSKRGC7XEvz+HUqTTBKIp9mHtsY0l5JCIQuvdxNCoRhu9+pEu2m9XhcezzqazTqWl+85s5bitxrKarWMer0GgBRMQqEYbDYX0WgQEons1K56ZE66AeGwDxKJFEKh+Mjj1GotjMY5PPPMc9jZWYNGo4PF4qDFGM1dT7fbhde7iVIpD4djEWr13ETny+UyCAR2oNHoYTbbp7TKw+w7b+XbHDiAbJ4kEklQqzUQDO7A7V490UFlMplwuZawtvYsQiEfHI7FI48jA2f3oFTKYHNzC/l8FvPzC7QYo6EBOeLI59uCSCSB270CNnt8TdLtdrGzs4ZWq4mlpbPUJJ2+Ddm3I43GrZqEg0gkAIlEBrH45KZOKpUWxWKe0iQCwdHNpDSaOUqTbG/fhFarh8UyP/YoBxqSqd29TqeDSqUCuVw+rVPS0BxJOp1EILADhULVT40aP6e81+vB692ict2Pc4pGZRhDKZHIodOZIBKJIRCIwGQyQRAENjevw+/fxurq/ac6XVarA5VKEV7vILp+9L0QCoVYWbmG3d04IpEAisU8vVtHc1fTbrews7OOer2GhYUrEzsmZEvxTSiVGtjt02kpTjpv9UN2pFotU/UnXC4PIpEYej1pR0QiCTWsOJ/PwuNZP3EHfwCfL4Td7oLfvw2pVA6NRnfkceROnQ08nhhe7zYlxszmeTpARHPXkkrtIhj0QqFQT5yuTWqSTdRq5OzLaY056XQ6twWUG406AIDBYEIoFEEqlfdtiQQCgRBMJhO9Xu+QJjmths9qdaJSKfU1yb3H6jORSITV1XsQj8cQjQZQKOToANGEjGWBO50OvvjFL8JqteIVr3gFnnjiCbzjHe9AqVTCQw89hD/4gz+ATDbezB4amuMgCAK7uxHEYiFotfqJ57AQBIFg0INiMQe3e3XsOVOdTgelUulYQykSiSCTyWEwmCEUiilDeRSD2S5ra88gEvFjfn7hxNce5K6vrz+LcNh34vEMBgNzcwbI5UoEAjv0bh3NXQvZaGANvV4Xy8vXIBJJJjpfpVKGx7MBqVROzYscFYIgUK/XDtmRWq1yi/MmgV5vhkgkgUgkppy3o1AoVNBq9YhE/JBK5RAIhCe+vlo9h2Ixj1DIC7FYeuLxfL4Ai4tXkUolEIn4aTFGc1dCEATi8TDi8TDm5gywWp0Ta5JAYBulUh4LC1dO3RE7jk6ng2KxeMiBG2gSJpMJoVBMdcweBJSPWzeTyYTDsYj1dVKT2O3uE1+brJNb7muSAOx217HHMhgM6HRGSpPQu3WTMdYd+4M/+AN85StfwXvf+14AwO/+7u9CLpfjl3/5l/HVr34Vv//7v48Pf/jDU10ozd0NQRAIhbxIpRIwmWwwGCwTG85w2I9MZg9O59LIO1XdbgfhcAjlcgHVKtmCd99QKmEwiE81lMfB5wtgtToQDHogl6ugVKpPPF4gEMFmcyEQ2IFUqoBafXKXTx6Pf0CM0bt1NHcXlUoZOztrYLPZU0mxrter2Nm5CaFQOFZL8Vwui62tGygWi5TzxuPxIRKJYTBYIBQOdt5GT+GyWBwolQrw+7exvHzPqWuz2VyoVErw+bawsnLvicffGiCid+to7iYGAeF0Ogmz2Q693jyxJgmFfMhm03C5lkcOjnQ6HYRCQZTLBdRqZDbQ7ZqE3HkbdZ0CgRAWiwOhkBdyuQoKherE44VCEWw2B4JBL2QyOZTKk7t88vkCLC1dw97eLr1bNwFjWd3vfve7eNe73oU3vOEN8Pv98Hq9+PjHP47/+B//I+RyOX7v936Pduhopkav14XPR9Zs2O3uqXSNi8fD2NuLw2ZzjTzmoF6vwevdQKvVhNlMNj7g80VjGcrj0Gh0KBSyCAY9EIulpxZED6Lr5PGSU0UqvVtHczdSKOTg9W70mwVdmbiTLTnmZA0czugtxQ9G95VKJUwmKwQCMhA0Sf3NQVgsFhyORWxsPIfd3QhMJtupxzudy9jYeBaRSAA2m/PU17g1QESKMfdMzd2joZkm3W4XPt8misU85ucXodFMVnsLALFYCKkUOebkNAfoVur1KjyeDbTbbVgsZrDZ/KlrEq1W39ckOxCLHzgxOwAANBo9isUCAoEdiESSUxvE0Lt1kzNWom8qlcK1a9cAAP/6r/8KJpOJH/3RHwUA6HQ6lMvHtz+moRmFdruNra2bKBbzWFhYnYozl0zGEY+HYTLZTq0tuZV8PoONjWdBEMDVq/djdXUVWq0OQuHoO3EnwWAwYLe7wWDgxMG/B4+32VzgcDjw+TbR6/WGep2BGLPbXchm01hbexqFQm4al0BDM1Ok00l4POuQShVYXLw2sTN3eMzJlZGcsE6nA49nA/F4GBaLHS94wQtgMlkhkymm5swNEIulMBqtiMfDJw7+HSASiWGxOLC3F0culxnqNQYBoqtXHwCfL8D29hqCQQ/dlpzmjmMw97ZUKsLtXp2KM5dIRLG7G4HFMj+yxsnl0lhffw4MBgPXrt2PlZWVM9QkCyAIIBg8fjTB4ePdYLNH0ySD3TqbzYlMZg83bz6NYjE/jUu44xnLodNqtYjFYgCAf/mXf8HS0hKUSjIa99xzz0GnO7qgmoZmFBqNBjY3r6PRqGNp6Rrk8pO3+Ychk9lDOOyDTmcaqaU4QRCIxUJUnczKyr1TK1Y+Dg6Hi/n5BRSLOaRSiVOPZ7PZcDqXUatVEY0Gh34dBoMBrXZfjO3srCEQ2KHFGM0dAbkTFkEgsAO1Wge3e2Xi4bz7Y066WFy8OtKYk1qtio2NZ1EuF7CwsAqz2TZV4XUURqMVIpEEPt/2UAN95+YMUChUCAR20Gw2hn6dQYCIHESewtra0ygW6QARzZ1Bo1HH5uZ1NJsNLC9fm0qZAjnmJACDwXzqaICDDGZner2bkMsVWFm579Q62Unhcrmw293I57NIp5OnHs9ms+FwLKFarSAWCw39OmSAyIgrVx4Aj8fH9vZNBIMeqpMvzdGM5dC9/OUvx8c+9jE88sgjeOaZZ/Ca17wGAPCRj3wEn/vc5/CKV7xiqoukufsolUq4efMZEEQPKyv3jF0cfJB8Pgu/f7ufWjg/tIgio+nr1K6ey7VybmmJcvl+Y4PBiIOTEIslMJvnkUzGkM9nR3otereO5k6DbDLgRSwWhNFonUr3yf0xJw0sLl4ZqQYvl0tjY+M5MBhMrK7eP5Ug1TAwGAw4nYtot5uIRPxDHT8/vwAWiwW/f+vUaPytP0vv1tHcaVQqZWxuPgcAWFm5d+JGSsD+mBOtVg+TafgxJ51OGzs7a9jdjcBstsPpXJ44SDUsSqUaGo0O4bCfarRyEhKJFCaTDYlEdGQ9Qe/WjcZYDt073/lOvPnNbwaDwcCv/dqv4fWvfz0AYG1tDW9+85vxtre9baqLpLm7KBTy+P73vw8ul4uVlXvB508edSqVCvB6N6FQqPupjMOJuv1oegkLC6swGq1nHk2/FYvFAS6XB79/e6i0hYN56K1Wc6TXonfraO4Uut0unnnmGSSTcdjtbphMk++EDVqKV6tlLCysDj3mhIymB/rRdGXfrp3NbKnj4PPJxgapVGKoYA+bzYHTuYRyuYR4PDTy69G7dTR3Cul0Gmtrz4HL5U9tVu3BMSejdOyu1SpYX3+2P2rpysQN4sbBanWAw+HA798eKtij15shkyng92+j1WqN9Fr0bt3wjLXN8IUvfAEvfelL8Za3vOXQ17/5zW9OZVE0dwedThv1eg31eg2NRg31eh2NRg2NRh0ajQbz84sYM+ZwiGw2jUBgBxKJFE7n0tDGj/y5bfB4Aqyu3nfuAmzAqI0NBtH1tbVn4PNt4cqVe0d+zYEYS6cTCIfpTpg0s0uv10Oz2ejbENJ+DOwKQfSwtHQFUunk79t2uwW/fwelUn6kMSedThs+3xaKxTwslnnodKZzF2ADBo0NAoEdXL16emMDiUQGk8mGWCwEiUQOlWq0HcXbO2Gu0Z0waWaWdrt9wI7s25NGow6FQgWHY2kqO2GZzB6CQc/IY06y2RQCgR3w+UIsLl69QE3ChsOxiM3N69jdjcBotJ54/P44pqf78+yujfyag926VGr3QPMluhPmQcayqF/60pewsrICh8Mx7fXQ3GGQg3Ebtzlt9XoNnU6bOo7H44PPF0IuV0IslsDtnkexWEenM1wh7VH0el2Ew36kUgkolRrMzy8M1VJ8kJueSEShUmlgty8MZcQJgkCv1wNB9Pp/k/8/6mvHHUMQBORy5W3pHAcbG8hkSkgkJ6egcjhcOJ1L2Nq6gVgsDKVy5dT138pgt04mozth0lw8nU6Hsh0H7UmzWaeixCwWC3y+EAKBEEqlCjabGd0uayI7ApA7/D4fmXrodq8OHdioVivwejfQ7XawuHh1KPFBEMSxdmLw/5NsyeD/LBYbWq3+kM0bBHtu3nwawaAHLtfKqWLSYLBQow+k0gcBjF47THfCpJkVbtck+7bkVk1C2hE1NBolRCI5hig/PZFut4tw2Id0OgmVSgu73T20JolEAkgmY9TPna8mUUEkOpyNIJHIYDBYEI+Hj9Qst8LhcOFwLGF7+ybi8QiUyuVT138rg926gSahO2EeZqw74HQ6EQwG8WM/9mPTXg/NJaXb7R4pthqNGiW2mEwmJbZkMkX/3wLw+QIwmfvGic1mjjzL6VZqtSp8vi00m3XY7W5oNLqhomDtdht+/+nR9GIxj2g0iFargW63O3QHp+NgMslrJgggHo/A6Vy6bf6c0WhFoZCD37+NK1fuP9WgS6VyGI1WRCJBGI06MJkntw0+Dnq3jua8IAgCrVbzFjtCRsnb7f1UHS6XR9kRgcAIPl8AgUAIDodLfV7ZbCakUhHy+epE6xmMFhhE04dtgDKIwvP5QiwtXTuybXen00EkEkYul0an06EE1bgwGAwwmUwwGEx0Om0UClm4XMuHxA6HQzY28Ho3kE4nT+2qtx9dfwZe7xY0mheMvTZ6t47mvOh2O4cCyAN70mjUD2kSgUAIPl8ImUx5QJMIKQ3CZjOhUAzsyPjP+VqtAq93C61WA/PzC1Cr54bUJC34fFsolQqwWh2YmzMeo0lyfU3SnFiTMBgMypYQBIHd3QiczuXb5s8NNInPt43V1ftO1STkMHMzwuEgTCY9gJMzBI6D3q07mrGs6E/8xE/gU5/6FP7t3/4NCwsLEAoP1zgxGAz88i//8lQWSDO75PNZJJNx1OvVQ2KLw+FCIBBCIpFBq9VTBpLL5Z15qhFBEEinkwiHfeDx+FhZuW/obpTDRNNbrSYikQCy2RSkUhkcDgeazQ4IYiCk9gXVwf8f9bWD/x/Q6/Xg92/D692AzeY6NFZh0Nhgbe0ZRCJ+2O3uU6/JaLSiXC7iySefhNO5CLn85CHlx3HUbp1Wa4DN5ryw9DGaO4N2u414PIxyuYBGo04JEQaDSdkOqVR+SGydRwOAVqsJn28L5XIRJpNt6FoVMpruRzIZh1o9B7vddShgNTgmm00jEvGj2+3CZrOi12Mca0eOthtMMJmMQ3bk4PqKxTw8ng1sbd3AwsKVQ+mV+40NfP17e3LqFpfLg8OxiJ2dNTz11FN92zPe7+Co3Tq3e2UqTSZo7l4IgkA+n8XeXhz1eu1ITSKVyqHVGignjsvlnosmSaUSCIf94PPJ8g2BYFhNUobHs4Fer4elpWuQSuW3HdNqNREO+5HLpftBJ9MYmuR2WzKAnAO8DY9n/bY5wEwms69JnkU0GoDN5jr1moxGG8rlIp544gk4nYuQycZrDHXUbp1OZ4TF4rhrNQmDGCMcuLi4ePJJGQxsbW2NvaiLptvtIZcbLqp7MHozaVrPWTLNdTYadYTDPhQKOUgkMkgkMspA8vmCiaOt46610+kgFPIim01Bo9HBanUOLfwORtPd7pXboukEQWBvbxexWBAMBrO/e6eHUime+u+eIAiEw37s7cVhMFhua+aQSu0iGPTC7V6BQnG6g8Zg9BAO+5BIJKDXm2E22ycyeOQDahehkA9q9Rzm5xemYkBn5bOk0UxPWA5rS2bl2odhWmsdCB1yxAYBlUpL7eALBJMHgCZZZ6GQhd+/0w+iLB0ppI6i3W7B691EpVKCxeLA3Jzhtmuo12sIhbwolQpQKNRwOFzQ6VRn8ruvVivY2VkDk8nsd+TcD752ux2srT0DDoeL5eV7hrrX5XIeXu8WWCw2XK6ViUe3NJsNeL2b/dE0V6fm1M3K52latoTWJCdTr9cQDvtQLOZv0yQCgWCidLxJ1tnpdBAMepDLpaHVGmC1zt8W3DmOdDqJYNADoVAMl2sFPN7hzACCIJBMxhGLhcBkMvu7d7oz0yShkA+p1C6MRuttzeGSyTjCYR8WFq4MmbnTQzjsRTKZhNFogdE4WcMqUp/FEQ77odHoRmp8dxKz8lka1o6M9S7f3t4e58doLjndbhe7uxEkElFwOFy4XMtQKNQzEQ2pVsvwejfRbrfhdC5BpdIO9XO9Xg/RaODEaHqlUkIw6EWtVumnCNnBZnPO7LoZDAasVrKzZTQaQLvdgs3molJANBo98vksAgEPrl6VntrYgMVi47777sP6+jbCYT9qtQqczqWxBxgPImMsFht+//aBIegX/z6guRyUy0WEQj7UahVoNDqYzfZT38fnAWkPgkgmY5DLlZifXxx6AHmlUoLXSw7QXVy8epsTeNB+crk8LCysQi5Xgc2evPHTcYhEYqys3Ivt7ZvY2LiOhYVVagTMqI0NAEChUOGHf/iH8cQTT2Jj41nMzy9CpdKMvb7Bbt329k1sb9/E4uK122p1aGiOo9vtIh4PI5mMgcvlweVagUKhmolnUaVSgs+3hU6nDadzeejPSa/XQyTix97eLjQa3aFn/wDSfnpRq1UxN2eAyWQHm80+U01isznB5XIRi4XQarUOjYCZmzNQzZauXHngVJvJZrNx//33Y21tE5FIENVqBQ7H0tibAQwGAzqdCSwWG4HATn+9k4+ouWxMnLheLpeRSqVgNpvBYrHObRYGzflBpjJkEA770W63oNebYTBYZuJ3PYhSRaMBCIXikTo/HYymW63O26LpnU4b0WgQqVQCQiEpjKYxD28YGAwGDAYzuFxuf/xAq18LwzrU2CAQ8MDtPr2xAYPBgMlkgUAghM+3hfX1Z+FyrUwkntTqOQCA308GeGinjuY02u0WIpEAMpk9ytk4r8/UaTQadfh8W6jVKrBYHNDpjq5VOYrToun5fBbhsA+tVhMGgwUGg3noSP2k8Hh8LC/fC49nHVtbN+ByLVPz7w42NpDJyIZUpyESiXD16n3weLbh822iWp1s15/NZh9w6m7QTh3NqRAEgVwug0iE1CTn/Zk6bW3JZAzRaHBkTdJqteD1bqBaLcNmc0Gr1R/6XLXbbUSjAaTTSYhEEqys3DfUZ3YaMBgMGI1WcLk8BAI7aLdbcDqXDmmStbWnEQp54HQuD6VJzGYbBAIRfL5trK8/C7d7sl1/jUYHAAgEdgDgrnPqxnbonnjiCXzyk5/E+vo6GAwGHnvsMfzRH/0RdDodfvM3f3Oaa6S5QA6mMsjlSlit1y6sVe6ttNttBAI7KBSy0OmMMJvnh26mMoimE8Tt0XSCIJDJ7CESCYAgekc6e+eFWj0HDocDj2ezXwuzCg6HCw6Hi/l5Nzye4RobDJDJlFhdvR8ezwY2N5+D3e6mHLNx1wfQTh3NyQxSYmKxUH9H1wWNRj8z75VsNoVg0AM2m4Pl5XuHFkm9Xq/fSXcXGo0eNpvzkA1qNhsIh33I57OQyRS3pT2eFxwOB4uLV+HzbWFn53AtjNFoRbGYg9+/hdXV05stAeTuntO5hGRSgkgkgGqV3PUfdjfzVkin7grl1C0tXRt6xh/N3UWtVkU47EOpVIBcroLV6pghTUKONikWc9DrzTCZbENrknK5CK93EwCwtHTt0FiUQW+AaDQAgsCRzt55odHowOFw4fVuYHv7BtzuK+BwOOByebDZ3PD5NpHJ7FHO1WnI5Sqsrt4Hj2ejv+u/MHSG1XHrIwgCwaAHAOOuqvMfK9fjBz/4AR555BHw+Xy8+93vpjoGLS4u4k/+5E/w1a9+daqLpDl/ut0uIpEA1taeRqNRh9u9ioWFKzNjOEulAtbXn0GlUoTbvQqr1Tm04UylEtjcvA4ul4vV1fsPOXO1WgVbW9cRCOxAJlPg6tWHRorUnwUymRLLy9fQajWwsXEdjUYdAKBQ7Dc2GHxtGMiI/T1QKNTw+7cRDvsm6qw3qKMjdym8E52L5s6jVCpgbe0ZhMN+qFRaXL36ELTaiwmQ3Eq320Ug4IHPtwW5nAx2DOvMtVpNbG3dQDqdgN3uxvz8fgvyXq+H3d0Ibt58CpVKGU7nct9+nr8zN4DFYsHtXoFWq0cw6EE8HgZBEGAymXA4ltBqNRGNBoY+H4PBgF5vxuLiVdRqZWxsPItqtTL2+ths0unkcvnY2rqJWm38c9HceXQ6HYTDfqyvP4Nms4mFhVUsLKzOlCZZW3sG1WoZCwtXYLEMF2Ae1Odvbd0Aj8fH6up9h5y5arWCzc3nEAx6IJercO3agxcWYB4glyuxtHQNjUYDm5vPodlsAABUKg3U6jmEQj7qa8PA5wuwsnIvFAoVfL6tfjB9fB2h1epht7uRSu1OrG8uE2Pt0H3mM5/Bi170Inz2s59Fp9PBJz7xCQDAL/3SL6FWq+Gxxx7Dww8/PNWF0pwPZCpDGuGwH51OB0ajFXq9eeIxAtNi0EKXHHQrg8OxdFt603GQ0XQfUqkEtFr9ISew2+0gFiNz8QdDO2epBa5IJMHy8r3Y2VnDxsZzWFi4ArFYAqvVSc2IGraxAbA/rFwsliIc9qFarcDlWh67julgqgODcfelOtDczsGOsGKxBKur981UJ0NytMkmms3GSKNNgFuj6fccmgtZLOYRCvnQaNSg05lgMllnZkbSoLaEy+X1a2GasNlcEAiEMJvnEQ77IJerRhpJIpMpprbrz2ZzsLR0FVtbN7G1dbO/UzdZ4xWayw3ZETaFSCSAbnc2Ncm4o016vR5CIS/S6STm5gywWBzUdXU6HcTjISSTcQgEwmO7XF4UYrH0QH3uc1hYWIVIdFiTLC1dG1GTLEEkGuz6k4GwcXf9BxkI5E4dYLXe+Tt1Yz1ltra2qLEEt96gF77whfj6178++cpozp2DqQwKhRpWq+PI2UkXRavVhN+/jVKpcGSnpdN+1uvdRLVaPpRuNMjFD4d96HY7MJvt0OlMM/OwOAifL6Ccuq2t63C5ViCXK0dubDCALCQ2QigUwevd7NfVLY9d03S356/TkPR6PSSTccTjYTCZzJFmLp0Hk4w22W9B7oNYLIHTuQIulwyCtFotRCL+vgMrxZUr989k2uCgFobD4SIY9FC1MKM2NjgIeR/vQTDohd+/jWq1PFIK/EEGO3Xb2zextXWDduruYmq1CkIhH8rlIpRKNSyW2dMk44w2AfY7vNZqFczPL1DPz4NBdVKTzEOnM86sJllZuRc7O+vY3LwBt3sFMpkCDscitrZuIJGIwmCwDH2+wa6/UCju1/o/M9FIE1LnEQgGvQDIZnOz8hw6C8Zy6CQSCdLp9JHfSyQSkEhmJwpLczoHI0F8vmCE1rPnx2CgNoPBGDlSVa9XsbV1EwCwvHwP5bA0GnWEQt5+faAKNptzph4WR8HhcLC0dA0+3yY1F0aj0Y3c2OAgUqkcq6v3w+vdwObmdSo/fxzu5vx1msO7U3NzRphMtpkaGn1wtIlWq4fF4hi6udPBcSIHo+mHR5owZs6BPQ6tVg8OhwufbxNbWzfhdq9SjQ2CQQ9crtMbGxyEyWRhfn6hH2H3T7TrP6j5296+QTt1dyGdTgexWAh7e/F+xswVyGSzpUnITtPbYDJZI2uSWq2Kra0bYDKZh2p2bx1pMmtB9aPgcLhYWroGr3cDOztrlP3T682IxUKQyZQjNzkid/3vg9e7gY2N632dM96uv1ZrAEEAoZAXDAbu6Dl1Yz1pX/SiF+HTn/403G43lpeXAZCedTKZxBe/+EX8+I//+DTXSHNGkM0/UohGyeG2s7g71ev1EIuFkEhEIZMp4XAsjCQQ6vUatrZuHqjP4FL1Lbu7EXA43KHnuc0KZC3MKoJBL9UB02CwjNzY4CA8Hg/Ly/cgFPIiGPSgWq3AanWM9V44mOrAYFxcqkO73UYsFkSxmMfVqw/O1Pv6TqPZbCAS8SOXy0AikcHlmr3dqUqlDJ9vs99GfPjRJsD+sPC9vThsNhfm5gz9cx4eaWIy2cdOEboIFAoVlpau9SPs17G4eAV2uxte72iNDQbcuuu/tkZG2MfZ9SedumvY2rpBNUoZdiDzNCEIAoVCFpFIEDqdkfrd00yfgw3Jer0eLJZ5zM3N1u7UwVFHcrkK8/MLI33myQDzDXC5PCwuXgGHw0Wv10U8fvtIk8vCvibxwO/fRrvduq3Z0qi/w0GtP6lzyF3/YesSb2XwmQ2FvAAuzqlrt1uIRoMol4u4evXBqa9hLIfu137t13Djxg287nWvg1pNCuF3vetdSCaT0Ov1eNe73jXVRdJMn2q1glDIi0qlBKVSA4tlfuYiQY1GHdvbG/024vPQ6UwjfQAajTq2tm6AxWJjaekqOBwuCoUcQiEvWq3mTI1fGJVBp0ByLkwQrVYT8/OL2Nh4FtFoADaba+RzDtLjxGIJNSPM5Voeuh7gIBeZ6jBIi4vFgiAIYuzUL5rT6fV6SCSi2N2NUHPNVCrtTEVACYJAIhEba7TJ4OcHAs5mIzve3jrSZHn53kN1dJcJshbmHmxv79fnDhobSKXysZ4LUqkcV64M6urG3/UnMxIGNXU3sLR0DwSC82ss02jUEAr5USzmIJMpLpXIvmxUq+W+JilDpdLCYpkf69lzlhwcbUIO8h6tYdogwMzhcLG4eBUcDudCR5pMk4F+4HJ5iEQCt2kSq9U5xjkP7/oPNMk4u/5zc4Z+loUPAAMWy/y5ahIyiyMEAGf22mM5dDKZDI899hi+/e1v4/HHH0ehUIBEIsEb3/hGvPrVr4ZAMBtdh2hup9NpIxQKYG9vFwLB7DX/GLC7u4sbN26CzWYfSpMclmaz0XfmWFhauopej4DXu4FcLgOpVI6FhSvnKgzOAnK2nA1cLo+qhTGZbIhEAiM3NjiIVmuAQHC4ru5g161RznPeqQ4HB1ar1XOwWOZnYmD1nUg+n4Xf70Wr1cDcnBFGo3Wm0isBsq5ta2sN+XwWOp0JZrN9JOeeIIh+hkAMVqsDWq0B6XRyJkaaTBM+X9hvcEDW587PL47V2OAgXC656x8O+/q7/uWRuhEPIFO6rmJraz/98qxt98Eh8BwOd6YGVt9ptNtthEJ+pFIJCASimWv+MSCd3oPPtwMOh4OVlXtHruu6NcDc63Xh8ewgn89CKr24kSbThJwtZweXy+sHzlswmeyIRklNMo7WHOz6i0RieL0bE+3663RGAEA47AODAZjNZ+/UHRwCr9HoYDbbz0yTMIi7pZ/nCHS7PeRy1aGOZbOZUChEyOer6HR6Z7yy8WGxGKhUctjc3EKv14PJZJ25VAaAdMQSiSj29nahUmlgs7lHFokDZw4ga+YajTp2dtbBYrFgsTigUmmm8iGepd99Pp+Bz7cFoVAEJpOFer1GNTYYd52tVgs+3wYqFVKIjTv3Zm9vF6GQFzqd8USnbpL7OUhlSKeTEArFsNmcYzmhAKDRTK8GeFhbMkvvpdPodJqIxYLY29uDVCqH1eqcufqmXq+Hcpms5+t0upifX4BCMfruSiwWQjweplK/fL4t5POZqe4gzNLvvtvtwOvdRKlUoOpyzWY71dhg3LWmUgmEQl6IRJKxd/3b7Ra2tm6g0+mc6tSNu86jBlbr9eaxszimZUvuVE1SLmextbUFgiBgMtlG3vE6DzqdJlKpOKLRKFQqLWw218iaZODMMZlMLC1dQ71eg8ezARaLBavVCaVSfcdpklyO1CQikRgMBgONRh1Xrz4ANnsSTdLsD16vTFTrn0zGEA77odebYTbbz0STkGNggshk9iASSWCzOSdoODecHRkrnPr5z3/+2O8xmUwIhUJYrVa88IUvpDqA3amUyyVUq3nweBKMOdbvTGm1mkink0ink2g2G9Bo5mAy2WcqlaHVaiKbTSObTaFaLYPJZOLKlSuQSFTodkeLNwxmQwHkcM5arQKPZxMSiRQu18rM7SBMC4VCjcXFa/B41sBicdDr9ajGBuPC5XKxuHgNkYgfoZAX1WoZNptr5CAAmb9OIBTyAZjuTt3BhhRkE5aLG7g6CQTRQygUAovFB48nnLn1EwSBYjGHVCqBfD4HPp+HhYUVyGSzs2tBrjGPXC6NXC6DbrcDlUoFu30BLNbodW2DVuQmkx1arQEezzpKpQJcrhUolZen5nYUWCw2VQtDtmGXjd3Y4CBarb6/678x9q7/oPnC5ubZ7NTV61WEQrM5sHoUyuXiJdEkCTSbTWi1un7t6exoxWazgVwujWw2jWq1DBaLBadzEUrl6OnkzWYD29s3qYZu1WoZXu8mpFI5nM7lO1aTKJVqLC1dxc7OOjgcDnq9LkIhH5zOpbHPyeXysLQ0+a6/TmcCQQCRiB8ATnTqRqXX61HplUwmY+SROJMw1g7dS17yEiSTSbRaLbDZbMjlchQKBXQ6HTAYDGqIn9PpxJ/8yZ9AqRwu9SsYDOLVr341fuu3fguvfvWrAZAjEj7ykY9gfX0dSqUS//W//le86U1von6m1+vh85//PB577DGUy2U8+OCD+O3f/m2YzeZRL4tilGjY3l4MoZAfTCYTCoUaavUcZDLFhYqcw+IrCyaTCbVaC7fbCYLgXHjkBiCjrdlsGrlcGuVyEQwGAzKZsj+YUgONRjZW9GZr6wZ6vR6Wl+9BtVqGz7cFmUwJl2t56ruR9XoZQiEXrRbAYnFmYrezXq9hZ2cNnU4H3W4H8/ML0OsNE0ftyKHhHgiFYrhcy2PV1SSTcYTDPuh0piNzyEeNhpVKBYTDPtRq1ak2pLiIHTqC6OLmzafRaDQgEIigVs9BrdZeeOCl2WwinU4gnU6i1WpCKBRBpzPA7XagXG5euC0hCAKlUoFy4jqdNng8PlQqLbTaORiNWhQKtZHXubsbRTQagNFohU5ngsezjmq1DLd7deop6gTRBdBCs9kDi8UFm82+cCeZrBsMIpGIgs3mgMPhYHX1fnC57IlsSbvdgte7iUqlRKWwjnqtZBrtDXS7HSwvXzsyTW0UW9LtdhCPh5FMxsHl8mC1OsfazT2Ki9ihSyajCIcDlCbRaHSQSuUXrkkKhSxSqSQKhYEmmYPb7ZgZTdJqNZHLZZDNplCplMBgMCCXK6HRzGF+3jKWvWu1mtjcvA6ADDBXKiX4/duQy1VwOpemqhkIgkC9XoFYzEOrRYDJnA1NUqtVsbOzhm63i263A4djCTqdbmJNsr/rL4bLtTLWszKRiCES8cNgMMNkut2pG0eThEJe1Os1aLUGmM02sNnnp0nGcui++93v4gMf+AA+/OEP46d/+qep1s3//M//jN/+7d/Gb//2b8PhcOBd73oXrl27ht/93d899Zztdhs/+7M/i/X1dXzsYx/Dq1/9auTzebzsZS/DT/7kT+KRRx7B9evX8aEPfQgf+MAH8JrXvAYAuVv4jW98Ax//+Meh0+nwiU98ArFYDN/5znfG3h0cNb2Bz2fC5wtiby+JRqMGDocLtVoLtVp3rqlIzWaD2o0jxZcYWq0eKpUWfD73wrfi2+028nky6lUqFcBgMCCVKqBSaaBQqKlI1Tjb3O12C5ubg4f8PSiXiwgEdqBSaTA/vzhVw1atVhCJBFAq5Q99nc3mgMfjg8vlgcvlgcfjUf8e/DmPh2qr1cTOzjrq9SoYDAbuvfch6PXqiX/31WoZHs8Ger0eXK7lseocBk6dXm+6LX992N/7wYHVZCqDa+RRDSdxUSmXMpkAoVAMyWQC+XwGBEFAJlNArdZBoVCdW/OeffGVQKGQA5PJ7DtIeohEEnA4rAu1JQRBoFIpUQGhdrsFLpcHlUoDlUoLoZBM8Rk3XWb/IW+BTmfCzs4aGo0aFhaujJ3GexSDeX27uxF0ux3q60wm8za7cdCucLm8c4vqDz6vALnT7nQuTPy77/V6iEQC2NuLQ62eg93uGrkJxGGn7p7bdtKG+d2TA6vTiETIeV+D9MppPisuKuVyX5Mk0GjU+58PLTSauXPtFDrQJKlUAu12CyKRGBrNLGmSFuXE7QeWFVAqtVAoVGCz2ROlBx4MMBeLeQSDHqjVc5ifX5iqFqhWy31NUjj0dQ6HAy53NjTJ9jZpRxkMBu6773nQ6VQT/+4rlRI8ng0ABJzO8TRJIhFFJBKAwWCByWQbS5M0m01Eo35ks2mIxVLYbM6xZ+cdxZmmXH7uc5/DO9/5TvzMz/wM9TUGg4EXv/jFyGQy+OxnP4vvfe97+KVf+iV8/OMfH/qcYvHhlI6//Mu/BIfDwYc//GGw2Ww4HA6Ew2F8+ctfxmte8xq0Wi08+uijePe7302NSvj0pz+NH/mRH8E//MM/4OUvf/k4lzcyAoGgX5NmQrVaQSZDOlWJRAxCoRgazRxUKu2ZpBQcLb7m+uJLTL05e70eSqUSOh0C55mG0el0kM+TBrNYJB0gqVQOu90NhUI9lR2VdruNra2b6HbJ2opiMYdQyAeNRge73T01g9VskrVDmcwe+HwBFhdXodOpkU7nUa830Gw20Go10Wo1USzm0Wo10et1D53jdqF28P98cDiciddLpiVcg8ezjnK5iM3Nm9DpfmKicwKASCTB6up98Pm2sLV1A2bzPPT60TqPkkXJ5DwvgDFSqgOZyhBHLEYOrD7PVIbzgIyoqyCRKNDpdJDLpZHJJOH3b4HJZPV3r+cgkcjO5JpJ8ZVAKpWkxJfd7oJKpQWLxT50XK22n4lxHhAEgWq1TDlxrVYTHA4XKpUGSqUWYrFkKvckmYwjEiFrK7RaA7a2bqDdbmFp6drUHtCkI5FCNEp2p9XpjFhcdCGXK6Ner6PZbFJ2pNGooVjMo91uHToHi8U6ZDduFWo8Hm8qnfJ0OiO4XC683k3s7e1CoVBCoZjMIWAymZTgCQY9qNercDqXR0pv5HJvb5Qyys8fHFh9WeZ9jcJhTVJGOr2HVCqBRCIKkUgCtXqgSaY/YqPX66FQIDOEisUcmEwW1Or9gNDB4y5Gk7T7TlyaCspKpQrY7W4oleqp7KiQ9Z430e12sbx8D/L5DMJhP7Raw1RnszabDcRiob4mEWJp6Qrm5lRIp/Oo1eqUHRlWk+zbET71fzZ7Oppkefke7OysoVIpYXPzJubmfnyicwJkh94rV+6H17uJ7e2b1BD2Udar15PZfJFIAABuc+pOggzKxRCPh8FisS58BulYDl0ikYDVaj3ye0ajEfF4HAAwNzeHYrF46vmeeuopfOtb38K3v/3tQzPsnn76aTz00EOHopHPf/7z8aUvfQmZTAa7u7uoVqt4wQteQH1fKpVieXkZTz311Lk5dAMYDAbEYgnEYgksFgcKhRw1UyUSCUAmU0KtnoNCoZo4CthsNpBKkalQpPiSHCm+ANKAeb0bKJXI3wWbzQGfLwCfLwCPxwefLwSfzwefL5iKMet2O8jns8hm0ygWcyAIAhKJDDabE0qlZqqObafTxvY2KboGhjMaDZ7agGMUut0OdnejSCZjYDJZsNmc0Gj04HLZEItFaLcZEItvj94QBIFut4tWi3T0Dgq1VquJarWCVqtxSBgzGAwolZqxCq8Pwmazsbh4FTs7ayiVCnj88cfhdq8AmOx+DNotR6MBRKMB5HJpzM+7R5o5Nk7++uGB1Yb+wOqT36uDeYPFYg5LS/fMRPrJsLDZbGi1emi1ejQadWQye8hk9pBOJ8Hj8akMgElrfPbF1y6Kxfyx4mtAJrOHQGAHBEGAwWD07cfAlggO2ZVJP3sEQaBWq1BOXLPZAJvN6Ttxmqk7tqnUbj8l2AitVt+PrnexvDy9+WelUgGRSADVahkKhQqLi1chkYgpOyIQHP056vV6aLdbB+xI44AdKSOfJ9NND8Lj8aeSPqhUavpDvtews7MBuVwMFmvy2jKNZg5CoRBe7yZu3nwaJpN1pDmog8DVKE5dp9NBPB5CMhkHny/AwsKVoboBVyolRKNBqNVzI8/mu0hITSKFWCyF1epAoZDtaxI/IhE/5HIl1God5HLlxPax0ahTGUL7msTd1ySHgwvtdhte7zrK5RKAw5rkVnsyjd1oMrCcRS5HBpb3NYkLSqV6qppk0LxnEGDOZlOIxUJHZqWMS6fTwe5uBMlkDCwWm6od53BYY2uSZrOBarWMVqt5myZRqbSwWp0Ta5KlpWvY3r6JcrmIJ554Ai7XytjnG3BQk5CzUNOw290jZcfp9WYqzXzQPfw0CoUcwmEfGo06dDojjEbbqfdnMG+wVCpgefme2ZhD53Q68dhjj+FHfuRHbvveX/3VX8FutwMAQqEQtNqTh7eWSiW85z3vwfvf/37o9Yc71iSTSbjd7kNfG5wvkUggmUwCwG0/p9Vqqe+NC5s9nHFjsZiH/t6HCa1WC61Wi3a7jUxmD6lUEj7fJthsdl806SAWS0eKBuTzWSSTuygUcmCxWNBo5jA3Zzg25azZJLf9W60m7r//flSrDdRqNdTr9X70N4d2e18IDAyrQLBvWMl/C0+M5nW7XeTzWWQyKeTzWfR6PUgkUthsDqhUWvB4w+c3H39PD0M6czfRarWwunoPMpkUYrEwTCYrLJbJi1wJoodkMoFoNIhutwuDwXSoNfsw6+RwWODzj39YEASBTqeNZpM0qPV6DbFYBOvrT8PlWoZMJp/gCphYXb0HGxvXkc1m8dRTP8Dy8nTSxubnXVCrtfD5trG+/iyMRgvMZuvQuwJmswVMJgOhkA8sFhMWi/3I+9lsNhAM+pDNpiGRyLCw8MBQ6ZX5fBaBgBfNZgNmsw1c7sUVng9jS056L4nFIojF87Ba7SiVikink0gm44jHI5BIpNBqdVCrtSMFYxqNOvb2drG3R4ovsVgKp3MBavXtAaEB8XgUoZAPc3N6WK1m5HIFVKs1NBp1FIt5NBq7lBAYOHsD23HQpvB4/BPFY61WRTq9h0wmhUajDjabDZVKC7VaC5ls+FqgYe0IAOztJRAMeqHXG6HTGbG5eQMAA1ev3jeVxhi1WhXhcAC5XAZisQSrq/dSn+3h1skEl8uGSHR8E5Ber9u3I6RAy2T24PGsQ6czwmZzTJSyq1KpsLJCNiR5/PHHodPpYbe7J3YCZDIZ7r33IUQiQUSjQeRyaTgcC0PP9GOzBVhdvRfr689he/sGVlfvBZ8vuO2eEgSBdDqJUMiPbrcHq3W+P+/r9GdMOBxAMrkLkUgMuVw+tDaYNtPRJHPQaufQbreQTqeQTifh9W70NclcX5MMv9vd6/WQy2Wwt7eLQiHf1yQ66HSGY5voDLpQdzptSpNUq1U0GnU0GnUUCrlDwQk2m3OLHhFS/z5Nk+Rymb4myYEgelRgWa3WDF1zNYodabfbVA37yso1pNN7iMcjsFjsMJmsE2uSQcONSCSEXq8Lo9ECo9EydU3SbrcpJ4/UJGGUy0W43UsTjpRg4soV8vOayWRQLH4fS0tXpzDDkwmHww21Wgu/fwfr68/AZLLCZLIObaMsFhuYTEa//pRxrCZpNBoIhUhNIpXKsLi4OlTDqFwug0CAnIFssdjB4Uy/hGKsGrp//dd/xS//8i/D7XbjJS95CVQqFTKZDP7pn/4JOzs7+IM/+APo9Xo8/PDDeM1rXoP3vOc9x55rMIT8U5/6FABgYWGBqqH7qZ/6Kbz85S/Hr/7qr1LHR6NRvPjFL8af/dmfIR6P4z3veQ+2trYO/dLe8573IJVK4Wtf+9qolwYAVPT5LKhUKojFYojFYmg0GhCJRDCZTDAajRAKj35YV6tVRCIRxGIxNJtNyOVyWCwWGAyGEyMClUoFTzzxBAiCwPOe9zxIJEcL4Xa7jWq1ilqthmq1Sv2p1WpoNpvUcRwOB0KhECKRiPrDZDKRTCaxt7eHbrcLmUwGg8EAvV5/7PVMg3a7jccffxy1Wg3Pf/7zEYvFEAwGsbi4CKdz9AGWByE7J+5he3sblUoFJpMJCwsL5zZfsV6v47nnnkMul4PT6YTbPblw2tnZgdfrBQBYrVYsLy9PpSar2+3C7/fD5/NBIBDg6tWrUKmG3xHw+/3Y2tqC0+nEwsJ+XUG320UwGITX6+1H9pZgNJ6eSlGv17G5uYlEIgGVSoUrV67clsp9npyVLel2u0gmk4jFYkin02AymZibm4PJZIJGozny/UKmhyQRiUSQyWTAZrNhMplgsVgglR7/QCUIAtvb2/D7/XA4HFhcXDzymnq9HhqNxm02ZPB3r0dGjBkMBgQCAWVDBjalWCwikUigXC6DzWZDp9PBYDBArVaf6e5qLBbD9evXYbVaYbFY8OSTT4LD4eB5z3vexJ/5ZrMJj8eDSCQCPp+PxcVFGAznM7eOHKIbxubmJoRCIe69917IZJMFc2q1Gn7wgx+gXq+Dx+PhgQcegEIxnSYxhUIBN2/eRKlUgt1ux8LCwtA7AvV6HT/4wQ9AEARe8IIXHHr2FItFrK+vI5/Pw2AwYGlp6dTfKzl/MIatLXLMz8LCAqzW4cXhtDlLTVIulxGLxRCPx9FoNCAWiylNctx9qlQqiEajiEajaLVaUCgUlCY56blSLpfxxBNPgMFg4HnPe96xtnmgSY7SJa3Wfvoxh8M5ZEMGmiSRSGBvbw+9Xg9yuZzSJGf5DG+1WnjiiSdQr9fx/Oc/H+FwGOFwGMvLy5ifn5/o3ANNsrW1hWq1CrPZDLfbfW6apFar4bnnnkM+n4fL5YLLNXq361vZ3t6Gz0fW59psNiwtLU1Nk/h8Pvh8PohEIly9enXoxowA4PP5sL29DbfbfWhDqdvtIhAIwOv1gsPhYHl5eShbXq/XsbGxgWQyCbVajdXV1TPTJGPPoXv88cfxuc99DtevX0e32wWbzcb999+PX/mVX8EDDzyAf/mXf8G///u/4zd/8zePbU7y7W9/G5/61Kfwne98h3rQHHToXvGKV+BHf/RH8eu//uvUz/h8PvyH//Af8Dd/8zeIRqN4xzvegRs3boDP389//9Vf/VW0Wi184QtfGOfS0O32UCrVhzqWxWJCKhWgVKqj2x1t3k2xWEAqlUQ2m0av14VUKodWq4NKRQqyXC6DZJJMhWKx2NBqyd24YaIB5TKZp0wOwbwGoVA41jo7nQ4VOWs06qjXa/2/61Rdh1AoouoEp2FgTrunnU4Hm5s3UKvVsLJyrb/TkMD8vBt6vXGi1y6XSwiF/CiVCpDJFLDZHMfuCI37ux8GgiAQj0cQiQQhFIrhdi+P7SAP1hmLJbC2Rn5euVwuXK6lsYeP30qtVoXPt4NyuYi5OT1sNsfQO0axWAThsB8Wix1Xr64gFIrB59tBo9GAwWDqd4o6LZWh129mEQKLxYLd7oRaPXqLaQAT1wgdZFhbMsl7iWwDTmYA1GpVcDgcKtouEomp3TiyNq4NiUQKnc5wZCrUrfR6Pfj9O0ilkrDbnTAYzGOtlSAINJtkTRiZHXDQptRBEL1+naAaarV2Kilgw6wznd6Dx7MJrVaPuTk9trZugsfjY3n52kQjd8jB1FHE4xGQtaJW6PVHpxOepR0ByM+mx7OJWq1K7UyN6xywWEyIxTw89dTTSKdTAMg6O6t1fiqpcQTRQzweQzQaBIfDhcPhHjpltNlsYH39OgiCwLVr90EuF2NtbQOJRBxCoQjz866hOpRWqxUEAh6USsV+0xbH2N1mp2VLzk+T5A9okh5ksn1NwmAwkc2msbe3i2KxADabDY1Gh7k5/VCapFQqYmvrZr+e6hqEQsHEmmSgR27VJCKRuJ+Wrp14h32Y+9npdLCxcR2NRh0rK9eQSMSRSiXhcCxApzNM9PrkYGo/SqUi5HIlbDbHsff7bDVJD7FYBJFICGKxBG730thjQwbrjER2sbFxo69JeHC7l6bWRbharcDv30G5XIJOZ4DV6hjaRkWjIUQiQVit87hyZRnBYBR+vwfNJqlJyJKP0zUJ2S05BDab3S+JGm8G8rB2ZOLB4q1WC8ViESrV6HVhb3zjG/Hss88eenDWajVwuVw873nP67eNleMTn/gE9f3vf//7ePjhh/H9738f8Xgc/+k//Sf84z/+IywWC3XMz/3cz2FhYQEf/OAHx7qm8x7iSaYGpJHJ7KFUKoDJZILJZKHTaUMslkKr1UOp1AwdvSgUcvB6NyAUirGwsDrRIMfT1t3tdqbeWv2ktXa7XezsrKFWq8DtvoJUahfZbArz8wsT1TY0mw1Eo0FksykIBEJYLPOQyZQnfvjOY4jnYPRCq9WE1eqARjP6jLWD66zXG9jZWUO1WgEAaDQ6WCzzU6mdJAgCqVQCkUhg5IGpu7sRRKNByGQyFIvFkQZWl8tFBINe1OtVzM0ZhzK2J3GZB4sPmjJlMil0Om1wuTy0Wk2wWGxoNHPQaPRD1xaQkc5NFIt5qth7mmsdQBAEWq0WOBz2VBp5DDhtndlsGj7fZn9ExBw8ng0IhUIsLFwZ+/NAEAQymT1Eo0F0Om3MzRlgMFhPTA07DzvS6/UQiwWRSMQglcoxP784Uhr8gINrjcdjCIXIXX8Oh9tvdDWddv+NRh3BoAelUqFfv+MYqs5pkM5HEAQIooderwej0Ya5OcOp+qTb7VL1dTweHzbbcA7gSVzWweLdbqefrnhQkzDR6XQgkcj6mkQ99Oc1n8/C59uESCSB2706UffIk9c9fU1y2jq73Q62t9dQr5OdcJPJKHK5DByOJajVJ5ccnUSjUafSkIVCEczm+VMDsOdhSyqVEny+LbTbLVitzrEakx1cZ61W72s68v09bU2yt7eLaDQIFotF1UwOQzweRiwWglQqRalUglQqh83mGsqJPTi+YNj6upM40y6XAHmjtra2UKvVQBAEQqHQoe8/+OCDp57jk5/8JBqNxqGvveQlL8E73vEOvPKVr8Tf/u3f4pvf/Ca63S7lzDz++OOw2+1QqVSQSCQQi8V44oknKIeuVCphc3MTP//zPz/upZ07g7xzjUaHZrOBbDaFTqcDtXpu5LEHg6YFMpkCTud00uqOg8VinVsrdWDfmatWK1hYWEUiEUWxmIPLtQylUjPWOcniYnIGEZvNmbnOiWRnyfsRifgRDHpRKORgt7vHLuLmcLhYXr4XoZAP6XQCmcwe8vks1bBmkutmMBiYmzNAoVAhFPLC59uEQqGCzeY69QFrMFjAZDKRySThdi9DLj/dEWy3W4hEAshk9qgOnNNsFXwZEYnEEImcsFgcKBZzyOdzkEikUCqPTsM8jk6njZ2d9X7gZHVqO7lHQdbbne+8vVwuA79/CyqVFkqlBh7POsRiKdzu1bFtWrGYRyTiR61WhVKpgdlsn5nB1EwmExaLAzKZEn7/NtbWnu43rBjPbgLkGAOhUAyPZx2dThsez3q/oZNz4iYTZBfhq8hk9hAO+1Es5mCxnL7rzuPxsbR0DV7vBhQKOfR6C5jMk4UhQRBUF8JOpw2j0XbsburdAhkA2tckmQxZUqHR6EbelUmnkwgEdqBQDGav3WmahBwR5HavIh4Po1TKw+VaGdpxuJVOp414PIK9PVKTXHTnxFshO0s+QA333tck4zlgXC4PKyv3IRj09oOReygUsrBaXUMHhI+DwWBApzNSmoS0C2rYbM5TNYnRaAWTyUA2m8LCwgpkMtVImkQslmJ19f6hdq+nxVg7dDdv3sSv/uqvHmo8MsjxHvy9tbU11oIOplxms1lqDt0v/MIv4ObNm/jgBz+ID33oQ3jVq14FgBxT8M1vfhMf/ehHYTQaqTl0f/d3fzf2G+y8o2HTYjA/iUwTOVx3NUvrPI2j1trr9aiWty7XChKJKMrlUl/8jx4V7vV6SKV2EY+H0ev1oNebodebR3oYnPc9zeUyCAY9YDAYmJ9fGFpkH7fOVCqBYNADNpuDTqfdT+dwTaV990AkhUI+dLtdWCzz0GpP3l0c9n4OdgKj0SAAwGKZn6oTfpl36KZBs9nA9vYaOp02FhZWIRYfrq+bpbWexHHrzOez1INdqdTA79+CTKaAy7U8ltis1aqIRPwoFvMQi6WwWOZHajx03vez02kjGPQgl8tAo9HBanUc2wjnVo5aa6vV7A9er4DJZIHBYMBqdUxNhLbbLYTDfmSzqX4avOtUR3nYe9po1BEK+VAs5iCXq2CzOac6vuCy7tBNA4IgkEhEEY0GodHoYbe7xprxddEct86DAWa3ewXxeBjVahlu9wpkstEDYIOxPPF4BATRo+ZgzrYmSSMQ8IDJZMLhWBx6R/uodQ6e66GQ94AmUfU1yeQBP4IgkMulEQr5QBC9vm6YpibZpbpkms0Xo0nG2qH72Mc+BjabjY997GPQ6XRnFslSqVT44z/+Y3zkIx/Bq171Kmg0GrznPe+hnDkAeMc73oFOp4P3v//9aDQaePDBB/GVr3zlTOarzCqDdquJRBR6vXmk2V6XgV6vB49nHZVKCU7nMuLxMGq1KhYXr4zccYn8UGcQjQbQbDag0ehgMtmmnjZ6FiiVaojFEgQCO9jZWYNOZ4TZPD/250+r1UMgEFJdziqVMm7efApmsx1zc6PNcrmVwfgFqVSBaDSAUMiLTGZv5HbCt1KtlhEMelGtlqHR6GA2289kvuPdSq1Wxc7OGgBgefmesWskZpVBOrpcroJcroTPtwmlUgOHY3Hkz1Gr1UQsFuqPkhDA5VqGQjFZRPk8YLM5cDqXkcnsIRTyoVQqwOFYGrvTHFkTdS9CIS/S6ST4fAECgR3q8z7pLiWHw4XTSaavBYNerK09DZPJBp1utBmYBxmMNNndjYDD4cLtXoFCMd6OCs3tEASBSMSPZDLe78Q4/Gyvy8BAk1SrZbhcy4hGg2g0av0xJKM1Hho4GtFoEM1mA1qtHkajbaIa3vNCqdRALJbC79/G9vZN6HQmmM32sTTJIMOH1CSbfU1Sws2bT8FisUOrnayZ1GD8gkymQCQS6O8IpmC3uyd6zlUqJYRCXlSrFWg0+r4muRj/Y6wduqtXr+JTn/oUXvziF5/Fmi6cyxQN6/V6CAY9yGT2YLE4oNebjjzuotc5CgfX2mp14PVuoFgswOFYxO5uBM1mA4uLV27bOTiNcrmISCSASqUEmUwJi2V+Iufiou4pmRceRyQSAJ8vhNO5eOIcuNPWSUbYN1CtViCVylAqFSASSUaeL3cSpVIBweCgqNhCpVgOu85Op4NYLIi9vV0IBCLY7a6pjF84irt1h65cLmJnZx1cLg+Li1eODXLMwlqH4dZ1Fot57OysQSZTQi5XIBTyQaPRwW53jyQUut0uEokoEokomEwmjEYrtNrTa7SGXed50mjU4fNtoVotw2i0wmg8ubX6SWsd1KuEwz4IhSJ0Oh202+2R58udRLfbRSwWRDIZ7w++XzgypemkdRYKOYRCPrRaDej1JhgM1jNL07sbd+h6vR4CgR1ksylYrU7odEc3KrvodQ7LrescOHPlchEOxyLi8TBarSYWF6+OnPJfLhcRDvtRrZYhlythNl9eTZJMks2MBAIhHI6lE6/jtHU2mw14PBuo16uQSEhNIhZLJw4IH6RYzCMY9KDVasJotEKvv32MycmapI1oNIRUahdCoRg2m2sK4xeO5kx36FQq1bnmKdMczcGmBQ7HItW04E6h1+vB59uimjLE4yG02+1+h6zhHQ0yxchLFRcvLl6dWieli4DMCzdBKpVTc+Aslvmxd9XICPs9VGBAqdSgVqtiff1Z6PXmfi75ZGJMKpXjypUHEI+HsbsbQTZLDiQ/zSkjCALZbAqRCDk/anCdd3N9y1lwVNOCO4lSqQCPZx1SqQISibQ/T88Iq9Ux0mcmm00jHPah02lDpzPBYLBc6nvF5wuwvHwPdncjiMfD1LNknF21Qb2KUCiC17sJJpMJlUpDNZuy2xeGmiF5EoNmSyqVFoGAB+vrz1A26jRN0mo1EQ6Tg4elUjkWFlamNjCehqTb7cLr3UCpVIDTuQSVavymILNIr9frX18R8/ML1IzapaV7RnI02m0y7Tmfz0AoFN8RmkSvN0MqVcDn2zqgScbbVSM7DZOaJJtN9TVJBevrzxwbEB4VmUyBq1cfQCxGNj/JZsmB5Kc5ZYPGV5FIAL1eD1arY+KMpmkx1pPo9a9/Pb70pS/hec973pnOGqM5nvNsWnARkFGwTRQKWdhsLsRiIRAEMXIaWLVagde7gW63M3PFxZMiFIqxunofotEAwmE/CoUc5ucXxkofZTKZmJ8no93hsB8SiRwKhQqJRBS5HGnoJhsoSr6G2WyHSqVBIODB5uZ1aLUGmM32I0VxvV6lUsKUSg0sFse5N8+4GzjPpgUXQbFYwM7OGsRiKUQiMaLRIAwGM0ym4VPTyRSyAJLJGBQKNaxWx1RrrS4SJpMJk8kGmUzRb5jyDGw219hjP6RSOVZX74PHs4FcLg2TyY5cLo2NjWeh05EtvycNCJMNB+5DIhFFPB6mbNRRonhQmxSLhcFikbU+KtV410ZzPO12q98ghOz2eJkdlKM4GGAmNUmQ0iSjBECq1TI8ng30er077r0oEolx5cp9iEQCCIfJ2tT5+YWxyiJYLBYcjkWIRGJEIgFIpQrI5aqRAsKnwWSyYLHMQ6XSIhj0YHPzOczNGWE2246sK67VqgiFvCiXi1CpSE0yS+U6Yzl04XAYfr8fL3zhC+FyuQ7NgANIb/3rX//6VBZIczv7TQtaWFq6NnLq4axDEASuX7+OXC4Di8WBeDwMBoOB5eV7RhJRmUwKweAO+HwhFhevzkzHuWnCZDJhtTohkykRCOz0u9ctjNVha7DzJxCI4PNtotVqwOlcRiIRxdbWDWg0+n474cl2JIRCMVZW7qXaCefzGdhsLmi1ZDS32+32a0Jj4HL5WFi4cscFLGaBw00LRk89vAzk83lsbt6ESCSBQCDE7m4EJpMdRqPl9B/u02634PNtoVQqwGJxQKebjWjstJFIZFhdvR/hsA+BwDaKxSxsNvdYn/dBhD0Q2EEsFoReb4ZKpUEsFqY+75N+pgfprkqlBsGgB9vbNw+0PCdFVqlUgM/nmdpIE5qjITXJTXQ6HSwvX7vjug0fDDBbLA7EYuS806WlayNpknQ6iWDQC6FQCJdr5Y4JCh2EyWRRn2+/fwc3bz6N+fmFsUaaDHb+SE2y1dckS9jdjZ4aEB4FkYjUJMlkHLHYvibRaMguwN1uB5FICMlkDDwef2Z3VMeqoXvjG9946jF/+qd/OtaCZoFZzlev16vY3iabFiwuXh16t4rNZkIuF6JQqM1svjpBEGg06kgkIshkUrBa5xGLRcDhcLC4eHXoSMjBaLpKpYXd7p56inCn08HeXgxCIQ9crhACgfjCdzbINI4d5PNZaLV6WCwOsFissd6jjUYdXu8GGo065ucX0em0qflyNptzas0fms0GQiFyHINKpYHZbMTW1jZarebUUitG5W6ooTv4GTEYLDCZhm9awGIxoFCIZtqWdDodVKtF+HzbEApF4PH4SKf3TqzpOYqD0XSXa3niXeqjKJcLqNWK4HAEEImk4HJ5F+4wZrMpBIMesFhsOByL1HWP+j49GDSQy5UwmWyIRAIH5ss5p9JAgCAIpNNJRCJ+MBhM2GwONJtVRKNRiEQS2O2uC3Ey7oYaulqtgu3tNTCZzJECp5dFk7TbTeztRZFIJGA227G7GwWHw8XS0tWhd556vR4ikQD29uL9LuSuqeuFgSYRifjgcAaa5GJLE9rtFgKBHRQKOWi1Blgs8xNpEo9nHc1mEw7HAlqt1ljz5U6j2WwgGPSgWMxDrdbCZDJgc3ML7XYbRqPlyFq7s2ZYOzLxYPE7kVGMZ6tVB4PRAYslAJN5tpG/crkIj2cdHM7JTQtupdlsIBz2oVDIQSgUQSgUQygUQySSQCQSXZgj0m63UKmUUamUUK2WUamU0e12wGAw4HK5EAgEwOWS0ZBhH/oHo+lnldtcKhUQCOyg3W6DyWSg0yHXLBJJIJXKIJHIIRZLLyQSPBA24bAPXC4PDscS5HLZWA/4breLQGAHuVwaRqMVGo0O4bAP+Xx26Plyw645lyNrk9ptcnyC1eq8sB3Vi3DoWCwG6vUiul0m+HzRmQr6YZsW3Ar53iLHRTCZTIhEYggEAzsivjBHpNfroV6vHrIl9XoNAKBQKMBksvspOgvQaHRDn5eMpnsgFIrhci1PPZre7XYRiQSQSu2Cx+Oh2WwCIGtaJRIZJBIZpFIZ+HzhhdzXZrMBv38b5XIRer253w2YPZYtKRRy8Pk2weFw4XKtoFotIxz2g8HAUPPlhoWsk/Mhl8uAw+HAYrFDpbq4uaIX4dA1mzUwmd1z0SSD2lQeT4CFhStDd2ZsNOqIRHwoFPKUJhnYEaHwojVJqW9LyqhWSU1CpiVbEY9H+hk/V4YefN1ut+D1bqJSKcFqdZ46vmccSqUC/P5tdDqdQ5pELJZStkQikQ49nmSaDMYRhMN+8Hh8OJ2LkMnG1SQd+P07yOczMJlsUKm0lLYddr7csGvOZlPUbEqFQgWLxTHzmmQih65YLOLpp59GKpXCS1/6UhQKBdjtl79l/ijGM5GIIBIh52EJBEJIpXJIpXJIJPKpti4dp2nBfu1ACGw2G3q9HtVqHbVaDfV6FYNfvUAg6g8kHhhU8dR3tLrdLmq1CmUsq9Uymk1yqDybzYFYLOnXuEjAZBLweLYgFIpHatBQqZTh9Z5dNL3X6yEWCyGRiEIslmJhYRk6nQrxeAr5fB7lcgHlchHtdhsAmVpIOnjkn/Nsr1+v1+D3b6FWq8JisWN1dWmsSChBENjdjSIWC0IuV2F+fgHlcgGhkA+9Xhc2m2uKNQBdcDhAr8dGt3txcaaLcOgIoovr159Eq9UCi8Xqi3nSlgiF4qnZ1INNCwb1G8NQq1URDHpQqZT64zOEKBbLqFYr6HTI9zubzTlkR0QiydSdPIIg0Gw2+gGggS2pgCDI97VQKKZsiUQiQTIZRSqVGulayWi6H3t7u9BodLDZXFOPyFYqJfj95E60zebA0pIb6XSxb0eKKJeLqFbLAMj7etDBm+b74TQGO2yxWAgCgQgLCyswGjVj7f40GjXs7Gyg3W7C6VyCSCSh5suRtsU9NRvZaFQxN6dEtdq+0N2fi3DodnfDiEZDAMhn+8COSKWyoZ2QYcjlMvD5tiCRSOFyrQytSZLJGGKxMDgcDvR6HarVWl+T1ChNIhSKIBJJzjTw3O12Ua2WqWBypVJCq0UGVUhNIoVYLIFMJoNAwMGzzz4LkUiChYXVoR2jcrkEr3cDAOByLU+9M3Ov10M0GkQyGYNEIoPbvQydTolYbA+FQh6lEmlLBjZaJBL3bYm8r0nOr71+vV6Fz7eNer0Ki2Ueq6uLY2uSeDyMeDwMhUKN+fkFFIu5/nw5Ana7a2rNeAiiCx6PgW6XdSk0ydgO3Re+8AV86UtfQqPRAIPBwF/91V/hM5/5DPL5PB599FFIpZe3rmvU9AaBgIVIZBf5fA6lUoFyVAaCfuDgjbtjM07TgnK5hFDIg1qtCrV67lDUGiBn+7DZHGoYfLfbRqvVor4vEAgPCbNRnDyCIFCv1w7tvNVqFQAAg8GEQCAEj8cHl8sFk8lCr9dFu91Gu91Cq9VCq9WASqWC07kMghhOuByOpq9MvXlGrVaF37+Fer0Gk8kGvd4MDod15HDMRqNOibJyuUi9H/h84SEH76zz53u9HuLxEHZ3o1AqlbDb3VRtyajk81n4/VvgcHhYWFgBm81BKOSjOlDZ7a6JxcKstLG+qJRLmUyAaDRJ2ZFyuQSC6IHNZkMikVPCTCAYb8em3W5jZ2cN9XqtP/z29BqAbreLeDxM1Q6IxTJkMknq+0wmk/ocA4z+Z7mFbrfbvy42hELJIUePx+MPvf5Op33bLv5AnHC5PPD5AnC5vL4tQ79V/sCONNHrdbGwsAKpdLh6rVarBZ9vA5VK+Uyi6YP5Z/F4GCKRBA7HIiQS8TGDizsol0uUHalUSiAIAiwWq++wkiKdDIKdbQpQtVru17A0sby8DKlUPZbA6XQ68Pu3UShkYTLZYTCYUShkEQh4AAB2u3sqqVN3mi0ZR5OEw/G+qL9VkwyCzrKxNUkqlUAw6IFSqYbDsTTU+69cLiIY9KJeH0WTtAEMAs8DTTJ64JnUJNUDO28l1Grk/WQymeDzheDz+eBwuGAymej1epQmabdbaDYbkMkUcDqXh37NwZBskUgCl2t56s0zqtUK/P5tNBo1mM126HSmUzUJ+VwpUo6rQCA85OCdddMxMihO1serVKp+Ocx4QZxcLgO/fxs8Hh9u9wpYLDZCIbKbuUqlhc3mvOs0yVgO3Te+8Q189KMfxVve8hb8xE/8BF73utfhr//6r5HJZPCe97wHL3/5y/Fbv/VbIy96Vpg0X73ZbKBUKlB/Bh8eMiVv35ieZhjI6GgM0Whg6KYFnU4H0WiQmo2hVmsRj4fB4XBx7dpVlMt11Ot1NJtNtFrkH/LfDdz6VhgY1gEcDgd8vpC6jsEDYXC9g6jywUgbi8UCk8nsG+juba/BYrHA4fDA5XLB4XDB5XIhEAixsOBAqdQ49UPU6/UQDvuRSp1NNP3gfBU+XwCHY4maezTsh73ZbFCirFQqotEgH2I8Hv9AOoQMfL7gTCLv1epgN6AFq9U5dqfPer0Gj2cd7XYLTucy5HJlv9bGS3XJnKTRwWUznsMwSQ1dr9dDpVKi7MhA0LPZnANRd/lQ75uDTQsWF68MVU9EzuvyotVqQq83o1aroFDIwWSywmIxIpMpoF5v9O1Ig7IpA4drwGBtg88+k8kEj8eHUCiCWCyFVKqAQCAEQRDU9VYqpOBqt1vUOUh7yUCv10Ov171tvaT94FF2hMfjwWo1gSA4Q72fyuUivN5NAGcTTSd3zbepmW+D+tBh3/e9Xg/VapmyteVyCb1eFwwGE2Lx4XTvsxgrRM6ACyCZ3IVCoYTN5h5LpB6MsCuVGszPL6DX6yIQ8KBQyEKj0cFqdUyUHnan2ZJZ0iS7uxHEYiFotQbYbM4hNEm7r0kSEIkkVHMcHo+Ha9euolisoV6vU3pkNE3C7WsSMWQyOcRi8hparWb/WklN0mgc1iQMBhMAgU6ni4HDOOBWTcLj8aBUyiCRqNAb4q1EahIfUqkEtFo9rFbn1DXJ/q65EA7H/hzaUTXJYAfvKE0ilcrA452NJqlUivD7t9FutyfK8qnVqvB4NtDptOFyLUEqVSCbTSEU8oLFYmN+fmGi5iWXzY6M5dC99KUvxcte9jK8853vRLfbxcrKCv76r/8aKysr+Iu/+At8+ctfxv/+3/975EXPCtMsQB6kCB00pu1260DN1cCYSg/tvI3atICsQ8ogHPah2+3CZLKh3W4hkYhCoVDB7V6GRiM7cZ2dTvuAMR0Y1gYajRqazSa63c5Q9wQYRO55BwTWvtA6+P+jHiDDfoharSa83k1Uq2XYbE5otYah1zcMB2tIdDoTzGb7IcM87oe93W71I+/kA2ewe8nhkKlVSqUWSuV0mo4M1ikWc/HcczeQSiWhUKhht7vGSm8iI+xbfWFP7lR2Om0EAjsoFvOYmzPAbJ4fS1BeNuM5DNNsitLtdvsOT77v9JApeRwO9zYH7yCjNi1otVqIRHzIZsl5XTqdEeFwAJ1OCw7HEjQazYlr7fV6lO04KNIajToajTra7TaVIjkMHA4HHA4PPB7vtuDP4P+DyP6o93RAKrWLUMh3JtF0soZkF5FIoF/XunioM/G473uCIFCrVfqirNBPrSJttEgkgUwmx9yccarXwmYz0WpVcP36DRBEr7+jphnrXLlcGn7/NhUoEwiE/fpfPzgcTn/3cjyn+k6zJdPXJHVKjxSLBXQ67X7NlYTKKJJIZIeedwRBIBz2YW9vd6gh9GQdElkb3ev1YDbb0Ww2qNEfbvfSGJqkgWazQTmAo2kSFrhc7i265LAeOUqTjPJeIjXJBqrVSr9zs37o9Q1Do1FHILCNcrlE1bVOT5PsB533NQkXEokMKpUWCoVq6prk2WevI50mZ9/abK6xUkA7nTY1TsJkskOvN1HNWEqlAnQ6Y1+73fmaZKwQ2O7uLh566KEjvzc/P49MJjPOae9IGAwG+HwB+HwBtFo9tf09EGWpVAK7uxGqgHUgylKpxNBNCxqNOkIhcuaHQqGG0WhFNBpAsZiH2WyHXm8Gm33ym5nBYFAG7bjoPdnxqYVGo0GlQLXbLfD5fIhEUgiFIspInnVR88Fo+tLStalG08nBkSmEw2SUZ9otajkcLpRKNZVa1Ol0UKmQDl6xWIDPtwmBQASj0QKlUjMVI8rhcOByLUEmUyIY9FDjDUZtJcxms+F2ryIeDyEWCyGTScFmc2Jh4Qr29kjROhhOfKeN07hoWCwWZDIF9V4kU/KKlCjLZlMAyCjrfpo3C37/Dng8HhYWrp7YtGBQvB6NBsBgMDE/vwiAgM+3BT5fgMXF+4cqCidTmAQnHtvtdtBqNVGtVlGplFCvV8FkMqkaOB6PfygF66zo9XoIhbxIp5PQag2wWh1Tjaa3Wk0q2HGwy9s0GAQFRSIJ9HoTleo+EGZ7ewkkEjFotXro9ZappVPNzc3h3nsfhNe7A693E2r1HKxW58jpe0qlBny+EF7vBtbWnoZOZ4TRaINUKoffv43NzetHilaaySA1iRB8vhBarYF63wwcvL29XcTjpCYZ1PJKJDLs7e0il0vDZnNhbu7k4GmjUUcw6EWplIdSqYHBYEEk4u+P/piHTmc6I01SQrvdBp8v6JeKnJ8mIUdkbILBYGJ5+Z6pPv8Gw6xDIR/YbDaWlq5NtUcAqUk0VHCG1CSkc1cqFeD1bkAoFMFotE6twzWHw4HbvdzXJF6srT09VpYPm83BwsIVRKNBxGJBZLNkN+PFxatIJuOIRgMoFPJwOhfvuHEatzKWQ6fX6/Hcc8/hh37oh2773vr6OvT66UYlZplarYpGowQ2Wwjg9IcOg8GAQCCEQCDE3JyRyu0eiLJkMkbNXXM6l04s7hwUGMfjYbDZHLjdK+BwePB41tHr9abuiDAYDCq6JZVONx1pWPY7JvkgFkvgdK4M3VlrGNrtNkIhD3K5TD8P23Xm3SrZbDbkciXkciXMZtJZjcfD8Pm2IBCEqVlL0zCiSqUGYrEMweAOPJ71Q+MNhoXBYMBkskOp1CAU8mF7+yaUSjUsFgc1nHhj47mhorg0JARBIBaLAeCAyx0uzYXFYkMuV0EuJ53yTqdNPYBLpQLSabLWjSyWP7m5UK1W6Tc9KUOj0cFksmF3N4K9vV2o1XOw2VxTTeNjsdgQCNgQCERQq6dTwD4qzSYZTa/VKiN3wByGbDaNUMgDBoOJhYVV6vd0VjAYjH7HQBHm5gz9NuZxJJMxpFIJaDR6GAzmqdTukt0qlymROWiyM6rIFApFuHLlAeo5ls2mYDY7sLR0rd88I0QFiIRC0cTrvhuoVitoNErgcIbXJIP3jU5n7O/8Vik7MkjvI7tPL5+4I9vr9frD3iN9wb4KDodzx2sSMpjph1gshcu1PNUGaO12C8GgB/l8duzgyaiQmmT/2VIuFxGLheD1DoLN1qllEalUWkgkMgQCO9jZWRsry4fBYPQHhB/UJJojNYnBYLljNclY74rXvva1+NznPgc+n48f//EfBwDUajX8/d//Pb70pS/h4YcfnuYaZ5psNo1IJAgGgwGZTAGFQg25XDW0k0EaU7LAV6czUWk0TCbrxBlzBwuMdToTTCYbstkUvN7NM2uzfdEcjKbPzRlgsUw3ml4o5BAI7IAgenA6l6FSjZdKNCkSiQyLi1dRLpcox47PD8NotEyloySXy4XbvYpUKoFIxI9isdBPbxotoigUirG0dA3ZbAqRSAA3bz4Fg8HSj4yRAq1QyMHhWBx6XuI0IQgCxWIOlUoZJpPt3F9/FDqdDjY3N9FqtcDj8aFQqPvdJKVD/77ZbM6hnd92u4VarXpb6tRBBk1PEoko+Hwhlpaugc8XHEhldp1Jm+2Lhow6b4LJZGJ5+V6IxdOL3HY6HYTDPmQye/30Zve5dpMbwGazYTRaodMZsbe3i0QiinQ6AY1GB4PBMvHzgcFgQKPRUTtqW1s3oNebYDLZR7LLTCYTBgNp2yKRAAKBbaRSu7DZXJQYW19/Bmbz/IUNdW+3W9jb24Vcrpz5zINsNo1oNAQGgwmZTA6FQg2FQjW0k0Hu/IohEompnd9qtQw2mw0+/zRN4kG9XoNeb4LBYO1rko0zawxy0fR6XQSDXmQye/3UvvmpapJ8PotAYAcA4HKtTG3W2qhIJDIsLV07EGzehEAgnFqwmcvlUVk+g+yycbJ8RCIJlpfvQSazh2g0gJs3n4TRaMXS0jUqMDHQJBcxgoAgCBQKOVSrFZhM1qmff6waOoIg8IEPfACPPfYY9f9BseorX/lKfPzjH7/UKRKj5qvzeAwEgxFkMmmUy0UAgFgshUKhgkKhnqqYvbXA2G53QSAQIhTy9dOGji7CnZVc4GE4rqjb691ErVaB3e6eajT94DwomUyB+fmFoR4853VPK5US5Rzx+QIYjdaRHLuT1tlokI0aKpUyDAYLjEbrWJ/dTqeDeDyMvb04uFw+bDYHWCxOv/C5CYvFcapjMK372Ww2sLcXRyqVoLotPvDADw8d8buoGjqplI9wOI5MJo18Pot2uwU2m9O3IyrIZIqppg0VClmEQj60Wk0YjVbo9WZUKiXK0XE6l4908i+LLTlqnWQ0PY5IJHAm0fTBPKhutwOr1TXUfLXzup/dbhd7e3EkEjF0ux2o1ToYjaM5dset9XDzKCGczv1GDaNSLOYRDvtQr9cwN2eAwWBBIhFFMhmHVCrH/PzCqWuexj3t9XooFLJIJKJUvapaPQeHY3Hoc1xUDR2XCwSDUWSz+5pEIpH2nTv1VMVsp9NGJBJAOp3saxI3+HwBQiHS0ZmbM8Jiud3Rucx2BCCfMx7PBhqNGux2N9Tquam9ZrfbRTjsRzqdgFyuhN2+MNQmwXnd04FjVyzmwecL+5pkeMfupHXe2jxq3CwfUpOEkEzGwecLYLU6wWKx+pqEbBCn0Zw8o3Ja97PRqGNvbxfp9ECTMPDggz88tNY6lzl0wWAQTzzxBAqFAiQSCR588EG43e5xTzczTFKA3G63UShkkc9nUCzm0ev1wOcLoVSSzp1IJBnrzXlw+HK3SxYYz80ZKEenXq/Bbncd6+hcFuMJ3L7Wg9F0t3tlqnnQB+dBWSzz0GoNUzFKZ0GlUu47dlnw+QIYDJahOlYOUyQ/aKUuFIr6O2rjpTfValWEw2QKllyugslkQyq1i1QqAZlMifn54zvjTXI/e70ucrks9vZilPgCAIVCBZPJPlK61iw0RSE7PpaRz2eQz2fQaNTBZDIhkyn7okw5dktmcviyH7lcGlKpAna7CzweH8lkDJFIAFKpHE7n0rGOzmWxJbeus9vtIhj0IJtNQaczwWKZn9puz63zoByOxaEdpfO+n91uF6nULnZ3o33Hbg4Gg2UokX/aWms1spX6wfEu49zj/RmqYTCZTJjNdvB4PAQCHnS7nVM7401yT+v1KlKpBFKpJNVNlcPhwWAwQ6vVjxTwmoWmKO12C4VCDrkcqUkIogeBQEg5dyLReHMNDw5fJogezOZ5aLX6vibZQKNRP9HRuax2BCCDDj7fJlgsNlyuFarz9TQol4sHnA4HNJrhMyTOX5McDDYLh84iOm2dR413GXdjpFarIBTyoVwuQqFQw2SyIZmMIZ1OQi5XYn5+4UyedaQmySCZjFMzRQFQazgLTTKRQ3eQdDqNVCqFxcXFM2mZfJ5Mq6NUt9tFsZhHPp9BoZBFp9MBh8OlUiCkUvlQDwey6YkXxWIeCoUaNpsTXC4PhUIWPt822OzTjcplMZ7A/lpzuQri8SjCYf+pInNUpmEwLuqeVqukY5fPZ8HjCWA0nuzYDbvOSqUMv38bzWYDFss85uaGd24PMui4Gon40W63YDBYIBSK+oM/j++MN+r9HKQnp1IJZDJ76PV7SrNYLMzNmaDTGcdKdZsFh+5W6vUa5dwNHFapdD+dahjnYdBtMRoNgsFgwmp1QKXSotfrwu/fQT6fgV5vhtlsP5eo5VlzcJ3Vau1ANH1hqnV75DyoLTQadWoe1Cifm4u6nwPHLpGIot1uU6mYJzl2w6yVnDUVQiIRHdm5vZVWq4lIJIBsNgWRSAKz2Y50OknNvzyuM96o97TT6SCXS2Nvb5fq8AeQqWYmkw0SiWwsWzgLDt3h8xyvSZRKFSSSYTVJrd/0pAClUgOr1QEul0fNK2WzuXC7l0/cpb2MdqTd7h4IfCn6mmQ66dTk3NgwdncjEIslcDiWRt5Jvah7emsWkcFgPTE7YXhNcjDgfnqWz3EMOq5GIn50u52+nRMiFPICOH7+5TiapFotI51O3qJJ2NDpjNDpjGMFYs/UoatUKvjIRz6C1dVVvOENb8D3vvc9/Pqv/zq63S5sNhseffTRS90YZZotggcQBIFyudgXZVk0mw2wWCzI5WTEXSZT3lboShYYx/pz5Diw2VxQKFSH5vjI5Uo4HIunvkkui/EE9tPPnn76WaTTe9DrTTCbpxdNP24e1DjrvMh7etix41M7dpOktnS7XUSjQeztxSGVKuBwDJd+ety5dnfDSCRi4HJ5MBqtyOfJ3eujiruHXWe73UY2u4dUKnFoMK1AIILBYIZSqZko5XsWHbqDtFpN6j6WSgUQBAGhUAyFQgWlUg2BQHTbZ6VaJZueVKtlaDR6WCx2sNkc1OtVeDybaLWacDgWh6rRuOj3/bAM1hkMRrGzszH1aPpJ86DGWedF3U/SsUv0HbsW1Oo5GI2WI+ulRlnrIP200+nAZht//uXgXOGwD7VaFRqNHmKxBJFI4Nj5l8Osc/BMJh3ENDVKg8FgQqPRQa83TZyaOGsO3UEOapJcLoNWq9nXJKp+LwDFbbMA95uehMHl8mCzuSCXK/uaJIR4PAKFQoX5+cVTG3dc9Pt+WAbrzGRK8Hq3kM2mhwp8jUK9XoXPt416vTpR446LvqcHs4hOCjaPqkn2S2JOzvI5jW6XLA1JJuN9TWJDPk+WOBw1/3J4TdJCJpNCOn27JjEaLVAo1OeiScZy6D70oQ/hb//2b/HhD38YL3/5y/GiF70ICoUCb33rW/GZz3wGbrcbv//7vz/yomeFszCeBxl0tszlSOeuVquAwWAcirg3m41DBcZGow0sFgudTht+/zY1B2zYD/5Ff9BHodMh58tVKmT3uZM6fY7CafOgRmVW7mm1Wuk7dpkjHbtx1lks5uD376DX68Fud030O6jXawiHfSgW85BK5ZDJFNjdjYDFYh/qjHfSOgcNTtLpJPL5bH9ILAMAAblcBYPBPFIDkZOYdYfuIJ1OB8Virh8oyqHX6/abqpCiTCgUU061QCCE3e6mRnxksykEAjvg8fhwuVaG3qGelff9abBYDORySWxvb0MmI6Pp46ap3spp86BGYVbuZ6/X7Y/R2XfsDAbLoffFODtfhxvEjDf/EtjvJhiLBQEwoNeb+50Yb59/edI6m80mMpkk0ukkms0GGAwmCKIHDocLvd4EjUY/tS6Cs+zQHWTQ2XKQBVCrVQ80elNBLldTu3LNZh06nQlGoxUsFgvtdht+//4cMINhuDTbWXnfn8agJvGJJ55Eo1HH/Pzi1Bqm7df0BsHj8SdurT8r9/TWYPOg7n8STVIoZBEIeCaefwmQmiQUIneYZTIFJBI5dncjt82/PE2TFAqkJikUsod6iSgUauj1pqmN0zpTh+5Hf/RH8fa3vx2ve93rsL6+jte+9rX47Gc/i5e+9KX4+7//e3zgAx/A448/PvKiZ4X/j70/j5ItoctE0W/v2DvmeZ5yPGOdKpBiUOG2oiwWrSgqPrr1CnY70E3jA9sBl0vhia3tWAKrr8tLXURoW0GEVdCDLvG2/Z54UZEqoIqhqs6QJ6eY52nP0/tjDxmRGZkZYw6n9ndWrIiMExn5ix07fvH9pu+3bOd5GILAW5W7Xq9j3W8OGJsZZYbp4+7dZyHLMq5efWiqfR0M0wPLdiFJKgjCAYfDAYeDAkXp1/pFv02S5EKVxFRVhaLIkGUZsiyNvVYU82cZPM/C5XLh+vWH4XItRlBmGfugLorzNMGyemDXajWM7NMq4vE0nE5qxmBBwvb2XbRadWOFw9WZCbGmaWi3m9jb24IoCkgk0mBZfQeZqYw3zk6e51Cv6+RLkkQ4HA4oigKSJJFMZpFO5xau5nqZArphqKo+b2r6EkkSAegVB130JA+SJEfmvWKxBDY2bkz8WZBlGY1GGTRNHvElw9cUpfuURfoRTdOgqsopfuTgtr6fikM+v4ZsdjHrM4b3QdE0jc3NG3Pvg7pofkRVVWs/qiSJiMWSyOXW4PF4Z7a11Wpge/sOCAIz7b8chiSJ2N/fRr1egcfjQyik720dTtIdtlNVVbTbTdTrZXS7bRAEAYIgoKoqfL4AstkVLGq/1jAuS0B3GDzPWV0ApqgKoIu9bWxcsyrRg0Efd+9+A6qq4urVh6ZaSTAYdMFxvRE/ovuNs+Qkh/3IUU6iKDI4jjVWdTy8sPUZgiDg/v3n0et1DOGY2ZZfD+Oi+ZLjks2zchJJkowVDuO7fKaBzkka2N3VR0OSyQwYZmBwEj1JN85OjmOtlsrDnCSVyiKVOj9OMlNA9+IXvxgf+chH8PKXvxx/8Ad/gA9+8IP4whe+AL/fjy984Qt4+9vfjq985StTG31RMI3zLJf3rC8Wr9dvLHr1z5yFlGUJ7XYLBIGR4dJ6vYLt7bvweLxGoDPZCcPzHPb27qPdbsDtdkNRdEdm9vYeh1FidtTBDjva04I1c7D8MEiSBEXRxoUyLjRcLhceeug6GEaa2ymZBGxvb8tYlnx9YfugLprzNMGyjBHY1eF0upDPr+HGjSvo9fiZ7Gw0atjZuQuSJHHlys259gipqoJSaR+l0h4oikYwGEGrVYPb7cWNG7eQz6fQaPRQq1VRr1fQ73dBkiRIUq9OO50uI4uePtIOtCicR0CnaTK+9rUvg6Joy494vX54PN6ZKj9mL785CG62jomiiHv3nsVg0DPmJCeTgdc0DfV6Gfv7O1BVBW63G6IoQpblE3+PJMmxfmPUr+jXmqYe40f024oi47ivqwMfcnBN0zRWVrKgad9CPp+CwGNn5y46nRYSiTRWV68spJJzUf2IGdiVy/sQRQGxWBKrq+vI5ZIz2SqKIra3b6PTac20//Iw+v0ednbugmUHCIdjEEUeLKu3rK2uriMWC6BQqKJSKaHRqFrzYrIsQdM0xGJJpNO5pa4hOI+ArlTaRaNRNfyHb25OYgq9EQQ5omRYq5Wxs3N36jVJPM9id/e+Ie41HScZ5zcWy0kch/wIBZp2IhTyIxJJAphfH0L3pRWrZfjKlRsIhaZbpn0cLqovYdkBCoWDwM7kJN0uN7WdOqerYXf37pEun1mgj4bsoVzeNzhJGK1W3eDaJifpolbTWyr7/d4IJ3G53EinTU6yHP2QpQZ03/3d3423vOUtePOb34w3vvGN8Pl8+NM//VMAwO/8zu/g85//PP7H//gf0z7thcE0zlMUOXS7DTSbbQwGfSiKTnCcTpexy0V3pl5vYKYF2KqqYnf3nrEYNo319WsTETxZllEq6b3CNO3E+voVXLu2gU6HhamipygyFEWxnJ95e9y1mak6/H+apo1xgsdf605Z//m417FIqdjt7Tvo9TqIxZJYW7u60H1QF9V5mmBZBqXSLprNOjweD/L5dUQis+2MEQQe9+/fRq/XMfbtzJdN5HkOu7tb6HSa8PkCUBQZgsAjlUqhXq9DUfTWQfO8CwRCSKfziERiS99DdR4BncNBoN9volKpod/vg+f1PnyCIOH1HpAyny8wc5DX73dx9+6zAIBr125N3A6iy8hvgeMYY8n4JtLpmCUSYGa7p/Ebo/+vQFUVEAQx4h8OJ3qO8yUOh2PsObGoz6fZ6re/vw2Hw4H19WsL3Qd10f2Iqqqo1ysolfYgigLy+TxSqRVQ1PTfZ2ZiYHd3CzTtHGlvmgV6G30ZhcI2VFVFIBBCt9uGzxcARZHodrvWeSIIHCiKQjKZQSqVO5OdaOcR0B1wkpbBSfTg5TAn8fkCMwV5w/tgj1uTNA6yLBmrbUqncpJJ/cZJnISmaSsInIeTLPLzyfMs7t+/g36/a1SYriysDRy4+L5E7yLaQ6tVh9frRT6/jnB4tsq4IPDY2noe/X4X6XTe4CSzz6npnOQeOp0W/P4AJEmGKOqcpFarW+MM5rkZDIaRTucRDkcvDCeZKaD74z/+Y/ze7/0eVlZWcP/+fbz//e/H61//erzjHe/A//pf/wvvec978OY3v3lqoy8KZm1vkCQFgsCDYQZgmL5xGVhBHk07R5ypz+c/8UtlePeaueD3NBx8wemZ9Gx2Fel0Hi4XvfAPunnqLPpkntcpmWIFxeIuKIrGxsb1qdpTz8rOs4IociiX91CpVOD1+rCysoFQaHonNLzDy+XyGO1N8xEWcxeaIPDw+wNQVQUk6QDD6EpzZhZ91rkCVVUhivyJC3EP4yK0XCqKApYdWD6EYfrWsDVBEEYV78CPeDy+Y7/MDu9eu3r11kTJJY5jsbe3ZXzBBbG2dmVsO9sisAxfsgg7WZbB9vZtDAZ9JJNZrKxsLGy+apF2ngVUVUWzWUGhsAtJkpBK5ZDNrs6UJON5Dltbz829/9KEJEkoFPT9rC6XGyRJgqYpCIIIQdA//+l0DvF4auYsuiDwVivxpDjvlssDTtIf4iUncZKTE8/mSgKWPXlN0jDMSm+xuANV1ZDNriCTycPpvBycZFHt8LrA3Q6cThc2Nq7P1elyHC6LLxEEFuXyHqpVvZKsc5LITJxkeP/llSs35ppB1Ofimtjd3bI4iaapIAjS4iTxeArpdG7mPZs6JxGmElxa+tqCv/iLv8CTTz6Jb/mWb8HrX/96AMDP/uzP4lu/9VvxQz/0Q7M85YXBIvvVNU2DKAojAR7D9K1WJd2hHs2a9Xod3Lv3HEiSxLVrD09EnDudFvb2tsBxLOLxFFZWNqyA8bJ80IH5bGWYPu7fvwOWHSCdziGf31haGZwkgWjUb2UYLyrM47m3V8L29hb6/S4CgRBWVzdnajdiWQZbW8+DZQeIROLI5dbmUg40ldNKpT2oqgqKopFKZZBM5maqapvPaVYVFEXBy172qom/LC5CQDf+ucwg74CYcZz+3ARBjLRX6S2bPmiahu3t22g26xNnMYcz6U6nCysrG4hGDyq7l8WXzLdDSEWptItSaR8ulwebm9cXNuA+zs5g0D1zS/RZgqJIBAIufOMbz6NY3AdBAJnMKtLp3NR+dnj/JUXRyGZXp97zdhiDQR87O3etvU/hcASpVH4msmhiuIV9dfUKMpn8xL973gHdcZxkNPE8AMuezEn0NUktbG09N5VarE6O74PnWSQSaWNW2jmRnRcF89o5GPSwvX0HLMuMCNwtA5eNk+zuFrG9vYXBoIdgMIyVlc2ZksTm/kuWZRCN6pxk1oALOBgNKZf3oaoqaJpGMplFKpWduXV5eDZZ0zS89KWvXDgnWdgeugcJZ6EopQd5o5U8WZYAADRNQ5IkhEIRXLly+p4TjmOwt3cfnU4LgUAIa2tXjmQpLovzBGazVVEUFIs7KJcL8Hp92Ni4vrTZCEXRd9GYH3aXyw2n0w2XS7+43frPbrcbFEUvvRx/Gg5nbDudFvb3t8FxuvPL5zem3sGnZ+trKBZ3IQg8IpGYEdjNTmAURQQggaa9UNXZjtnRuZ8Estm1S7dYfPLnV8CyDBimb1X0WPYgyHM4HFBVdSK1WP3YlVAo7ELTNORyenV/njUY54lZ7ez1OtjevgNB4JHNrs681mQS9PtdFArb6PW6xvyw+9jLsmyYBsPHlON4FIt7qNVKoCga+fw6Eon01P6O41iUSntoNKqgaefQAu/ZSK8ux99BMhmBLJNzVGcP5n6GRaYu22LxSTCaeB4cy0kmXZPEsgz29rbQ7bYNTnL1SAD4oPsRRVFQKGyjUinC6/Vjc/P6XN+PJ/8tGeVyAeVyAYAGp9NlcZDDfuRicpIm9va2wfMsotEEVlY2pl4ZoqoqGo0qSqU9g5PMn2yWZQEEIc/JSUbVg4dFpibF0gO6z3zmM4hGo3j1q1+N559/Hr/wC7+AYrGI7/qu78Kv/uqvzpxZvwg4a0UpwHSookHI+kaV4mTBAkmSUCzuoFotweVyY3V181ilrsviPIHpbe12W9jevgtRFJHPr40loYuAWfUpFnchyxLS6Ryi0RDa7R44joMg8BAE3mpnAXRRiOMcq8vlXrgS4DiMO56mWEyhsANRFJBMZpDLrU09V3I4sAuHY8jnZwvs5q2oHFXmW4XHM70i2WUK6MZBVc0gbwCe55BIpE8MaE355b29LePxGaysrB+bibwsvmQWif39/fuo1cqGmt/1hSnaHQbHMdjf30a73YTP58fGxjp6PWbEjwgCP/I7NO08NthzOl1nEvCNO6Y8z6FQ2EGzWYPb7cHKyuZMs648z6JYPAjsMhk9sJulmjFfl8fJa2CmwWUJ6MbhcOKZpp1IpbKncBIRhcIuarUSXC6PwUnGnwsPqh8B9Mrk9vZdyLKEfH4d6XR+Kd/zB+2su1AUGZlMHpFI8FROclLiaJEzfcfhOE5Sr1dQKOxAliUkEhnk82tTV8SOBnazJ5vn4yQKqtXR/Z6H18BMikn9yEzDAB/5yEfw2GOP4ad/+qfx6le/Gr/6q7+KdruNf/Ev/oUV6L3rXe+a5alfsCAIAi6XCy6X69SBe1VVUa2WUCzqmfSVlU2k07kLkcE9S0iShL29LTQaVQSDYdy8+eK5F8GOg6ZpaLUaKBS2wfMc4vEU8vl1+HxeRCI+hMOjH3ZZlkdImXnp9boQhMqImpfD4TjiUEOhyEyByDQgCAKJRBqxWBLVatEiUul0HpnMysRzQiSpL+GNx1OWE/3617+McDiKXG5tqQpywGKyXw8aSNIBvz840bFnWQa7u1vo9fQdgdeu3ZqrVeWyotWqY2fnHhRFwfr6VSSTJxPXWSGKAgqFHdTrFbhcbly5chOpVBrRqP8IaTAJ9YEP4SAIAgSBQ6/XsdZSmHA6XSN+xOPxIRKJLf17we324OrVh5DJ5LG/v427d78Bvz+AlZXNqdTn9BmYm8jl1lAq7WFvbwvl8p4R2GWX1qZm4vDurI2N6zMHcg8CdE6in0uTcZIiisVdALAUdF9ox06SROzubqHZrCEYjGBj49oSOUkd+/vbEAR+Sk4y6kcEgZ+Ak0SX/p1KEASSyQzi8SQqlSJKpX00GhVkMvrM5aSzq/pKowzi8ZSVbNY5yezJ5mmgKApqtZIRyEmIx1PI5VanmuOfFTMFdJ/61Kfw1re+FW9/+9tRKBTw9NNP41d+5VfwIz/yI9jc3MTjjz9uB3RLgDmwubd3HzzPIZnMIJ8/PpP+oELTNDSbNezubkHTNGxu3kA8nloKAet229jf3wbD9BEORycivLp6ln9sqV/TNMO5HjhV09F2Oi0IAm8tpszlVpfufEiSRCazgkQig1JpD5VKAbVaCdnsGlKp7MRfyGaAOOxEv/GNryAUiiKfX3xgpzvNxWS/XojQM+k7qNXKcLs9uH79YYTDy1cQvWgQRQE7O/fQbjcQDsewvn4NLtfi1Q911eE9VCpFOBwk1tauIJnMnrhfa5hQj4Mp+GP6D57nIYo8OI5Fp9M6tOZjtkrXNPD5Arh588WGz7yP5557BuFwFCsrm1NVOt1uDzY3byCbXUWptIf9/W2USvvIZFaQSi0+sGOYPgqFXXQ6eiBntie/0IKRWTC8X1QQeCSTWYOTLL/Kc5EwvB4JwNI5yd7efWtdx/Xrj5z6+Tqdk0hjk9AHnGQL0WgC2ezqXC2Mk4AkHdY8bam0h1JpD9VqCbnc2lQzticnm9fnFnQ7DDOQK5X2jQpjGtns6lIC+uMwU0BXKBTw7d/+7QCAz33ucyAIAq95zWsAAJubm2g2m4uz0AYAvZ9fz6R3EAxGXrCZdEHgsb19B91uG9FoAuvrV5cS0DLMAPv79y0J7Ice+qa5FwgDOkmjaX1Hln/M23fQLrCPr3/9ywiFosjlVpcmyGCCoiisruqV3kJhF3t7W6hWi8jn10f2IZ4GgiAQj6cQiyWNwG7PCOwiyOXWEQjMF9iNz36tnanTvMxQVRWVSgGl0h4AAqurV6YK3B8UmGrA+/v6LqirV28hGl38YumDysUeNE1FNptHOj15BfwkkCQJt9t7bOaX4xiUSvvY3d1CsbiHTCaPZDK7cJXOwwiFIggGX2pVEL72taesCsI0C3dHA7t9FArbKJf3kcnkkUpNL8JyGINBH8XiDjqdlvW3lkXCH0QwTB+7u7rIVigUmSiweBBxdD3SlSVxkj729rbR67Xh9wcXzEmcoGnn2MSrzkkqBif5EsLhKLLZtbm/y08DRdHG91MOxeIudnfvoVIpIJ/fGNmHeBrGJ5sX10WkKAqqVZ2TKIpsJZfPg5PM5Nmj0SgajQYAPaDb3NxEOq3L196+fRvx+OJ29Fx0NJsN7O7ehaaRxjJbF5xOp/UBmfdLR5JE7O/voF43M+mPnMnei4sGXZ62iEJhGxRF4/r1RxCJLGZB+DAEgcf+/rY1D3Lt2q1j5xKXAbNdIJFIo9msoVTaw7PPPo1AIIRcbg3BYHiptjidLmxuXkcmk8P+/g62tp5HubyPlZXNqZTihgO7VquOYnEXzz5rBnZrUweow9mv83aay4CiKPjqV78KUVQMP+KE0+kyrp1zD7KbbcP7+/eNfX855HJrL7hMOqCLcGxv30a/3zMWhG8ufG7k6IxqFrnc6pnsPjPh8fisFsZyeR+Fwg5KpX2k0zmk07mlzsoQBIFYLIlIJG7N+DSbtZlWHejB1nXkcnrFrlDQxa/0wC471RoBQFcdLBZ3rUDuypWbUyWtLjqazfqxnMTpdM61PxQYbRt2u724ceNFS1kLdNFhSuYXCjugKBo3bjyCcHjxnGR0RtWLa9cePpN9rCZ0TpJFIpGxkrTPPvsVBINhZLOrS+ckZtU8ndZbure2nkO5vI/V1Y2pFrIfTTbP10WkB3JFlMsFg5OkkcutTpW0WjRmCui+8zu/E+973/vwj//4j/i7v/s7/OzP/iwA4KMf/Sj+4A/+AD/4gz+4UCMvMjRNBcuyYFkWoiiO9CIDej/yYYc67ufDgZ+ZSS8W90AQxEiLzgsNDDPA9vYdMEwfqVQOKyvrU3+JnwZJklAq6VLtFEVjfV3fsXNex3vY+bTbTZRKu3j++a/C5wsgl1tdenucx+PD9esPo9/vYn//Pm7f/pohK7wxleMziV00mhgK7J5GMBhGPr9+amB31Gk+WIGcCU3TIEkS+v0+BEGw1OVMDGdRD3yHa+RnmnaBpo8GfsOZ9HA4ihs3Hln6jOZFhL6KQG/hcbncC8twD8MUmDlQkU0gn18/11Zgt9uDjY3ryGbXUKnoUtzlcgGpVBaZTH6pLfskSSKdziGRSFkqfPV6Gdns6tRVNnOuzWzF1AO7faTTesXutMpjv99DsbiDbrdtzes9SIGcCVVVwTCmwI4ITTvMSahDfuQwJ3GNTUarqoJyWa/ukyS51FnTi46zWI8kSeKIiuzGxvWZVGQXhVFO0kCxuIfnn/8q/P4gcrnVmXbbTgOv14cbNx5Bv9/F3t59PP+8zklWVzenGk0ZDezqQ4HdZMlmRZFRqZRQqexDURSrtfI8AzkTM6lcCoKA3/iN37D20L373e8GTdP45//8n+ORRx7Br/3ar8Hnu7yEYZ4lnoqiQJIEiKIISRKN66M/Hw78SNIx4lAHgx5EUUAqlUUutzZ3NvWyKEoBB7Y2Gj3s7uptNh6PFxsbNxZe5jdXEJRK+wCAbHYF6XR+Iud8lsdU0zR0u22USrvo93vwen3IZldH9oMty84DknofHGfKCq/PNORrVoqKxV1wHINgMGxVHoftFATRaGPQA7lZnKaZFOl227hx40UTB+cXQeVSVVVI0rDPGO9HJEk68lzDJA3QFdc8Hi9WV68sJJN+WXzJsJ3tdhvb23fA85yxC2pt7krFYfT7Pezv3596z+NZH09JElEuF1CtlqBpGpLJDDKZ/ESfrXlt1UnqLmq18lyrDgC9m6JU2ke9XgZJOqxWTH1eaPS9LxZ30e224fF4kcutTeQ3h6HP2e0gFkshHj95/ccwzlvl0uQkoigc8hvikC/Rfx6fjD7gJP1+F5IkWtX9eVt3L6MfEQTJWo/k8fiwubn49UiKolhJF4LAVMmPs+ckLRSLexgMevB6/cjlVifqaFoEJ2m3m9jf11cdxGIJ5PPTrzown8tMNnMci2AwgnxeD+yG7eR5EdVqEZVKwQjkMshmV6bmJOXyPvr9Lm7ceNHF3kMnCMJSBsrPGmex80UP/A6c6WEHS9POhWZ2L4vzBHRbFYXD008/A0HgkcutIZNZWWi17PAKglQqi2x2uha0ZRxTRVFOFEoA9D1ZxeIeer023G4PstnVE4f4FyljvYhVB+Zz6Vm+XbAsY+wq2kAul8Jzz90xWitny36Z4kG7u1sQRQGZTB4rK5sT//5FCOgmhV7ZOz5xJMt6VTOZzCwse3pZfAlFkfD7nXjmma+jUinC5wtgc/P6wmePOY41VhA04PX6pm5PXsbx1DQNqqqeSAJlWUKlUkS1WoSiKBNVvxdl6+E2spWV9Zlb2wVBQLm8h1pND+z0iskKHA4V3/jGc3MFcsMjDx6PF1ev3jqXnZbny0l0v+J06pxkUWp9l8mPRCI+bG/v49692xBFAbncOjKZxa5H0jlJGYWCvoJglvbk8+Akmqah1+ugVNpDr9eB2+1FLrd6YvV7kZxkeNVBMplBNrs209q0ccnm1dUN5HJJPPfcHRSL+1BVxUiArU4V6wyLB4migGx2Bfn8xsS/v/SAThAE3L59G6IownwKVVXBcRyeeuqpS61yeR47X5aNeezUNM26qKoKTdMrCPptzXj/tZHHjd6HCR5z8DhBYFGvVxEMhrC+fn2h7UqHVxDEYknjS2r6zM60x1RXpdNlyEVRGLkIgn6tKLIRpK0hHj+5HUifBdmz1Nl0tcqjbaKLPkdNoYdSaQ+KoiKdziKTme6Lx4Tp6PTAbgCSJKFp2kzZL0AXgtjd1RfahkIRrK1dmbq98DIFdOeB+X2JClXVDvkR9YhvML9XjvcXR/9/+DGA/mUviuYuqJP3ek4LfZZoF/V6GU6nCysrGzO18E17PE1VumG/IYr8yM/mSoNJgjRFkYcUYyXEYklks6tjA5dFn6fDQg8+XwArK+sIBicPhochigJKpX3UaiUQBAFVVY1OhrWpBW8OVgPtACCQz6+fuoNtHC5LQHceWAwnGedLTvIX03MSkgQkiUepVEIgEMLm5vWFStAfrCDYgSBwMwkImVg8J+GhKMpEQRqgdymUSvp8qr7DcQXx+PI5iTmaUSrtQ9NUIxhemamz7XCyWeckMILFlakT2PpqoHvo9ToIhaIGJ5nu/FlqQPdP//RP+Pf//t+j2+2O/X+fz4ennnpq2qe9MHjQnKemaej322DZHjhOgKKoYwOz4ftMR2neXhYIgjAcBGHddjgcuH79GgKBGBRlYQVk9Hod7O3dB8P0EQpFsLKyOZcE7+HWlnEB2jDROjwXRVEUnE59KbC+Q0qfXWi3G8YuJA9yudVTlddYdoBicQ+tVt1YyJsf2du0rHNUlmVUKgWrNSSTWUE6nZtpvlHP8rWhqgKCwRgcjukybLIso1jcQaVShMvlxtralZnnDO2A7niIooBGowJAAc+LR3zJYb8xfJ8ZtC0Lpv8YvkSjUeTzG6CoxXWOyLKMcllfQUCS5NQrPg5jfIscf8iPjPqVYZ9MEITlQ0w/4nS6jVmPglWlPS2w03c6VlAu70MUhbGrU5Z1nvZ6Hezvb2Mw6CEQCGFlZWNmZV9RFNBsVpFIROFyBab+Dul0Wtjd3QLPs3PL8NsB3Xjo/r4FjusbnEQZG5hdFE7idNLIZlcQjS5WBfXwWqSVlY25OgiG33tRlK2KqxmcHfYjRzkJfciP6Jyk1apbIkK53NqpgR3DDFAqHXCSbHZlZHXKMjlJubyPSqUAgiAMTjLZCM1hmOeoqooIBuNwOKbzAbIsoVDYQbVagtvtsTjJLFhqQPfDP/zD6Ha7+Lmf+zn89//+30GSJH7wB38Qf/d3f4c/+7M/w8c+9jE8+uijUxt9UfCgOE8z81Mq7YFlGfj9fhAEaVwIo4xOjlyTJHHoPmLo/47ed5hADTvB8fdh5OdxWOQxNdsByuV9awXBysoGQqHIzM8pyzK63RZ6vTZEkQfLchBFYeQxDodjiGS5Lec4fDnJyRxecms60ZNII8exKJf30WhU4XBQSKdzSKVycLudSz1HJUm0dsU4HJTR8z89wZ21VaheL2N/fweqqiKXW0U6PV8rjB3QHcXovBKJQCAAVdUATOIj9J+P+pujjxnvP3CijzH//zAWfUwlSUStVkalUoCqqkin88hkZl9BoGkaWHaAbrcFnmcwGDAQBAGqqow87miw5rISQS6X60QF1HH7Gk9b8zG8OkUQuBGxgGWep+asbqGwDZZlEA7HsLKyPhPBncVOnuewu7uFTqdptIBfnXvnlh3QjULfIVtHqaTPK41yksl9yWI5yaiPOYxFH09zHr5cLhgrCAJYWdmcS6BJliV0Om30em1I0mmc5CgfMX8+aa5YX/Oh72s0Rz1OSzZzHItSaQ+NRhUURVvJ5rPgJKagjMNBIZdbnUlUcFZOUquVUShsQ1U15PNrSKVyZ8JJZgroHn30UfzH//gf8T3f8z349Kc/jU984hP45Cc/CQD4lV/5FVQqFXzoQx+a9mkvDC6781RV1ZK853nOqEatY309d6HsPA6LOKaKIqNer6JaLYHnWXg8PmOGYrY5DX1ZbxPtdhP9vl6Z9vn8iETCAEwl04PLonY9MczACOwaRguD7kRPcg6HyXcmk8dDD10Hy8pLfe8FgUexuGe1oOVya1MJHkz7vvd6HezuboFlB4jHU1hZ2ViILLwd0B3A/EJuNmtwOBxIp/PI5VaQSIQunK2HsahjOhj0UK2W0GzWDIW09MwrCBRFQa/XRrvdQqfThCSJcDgoxOMxkOTBuoqDoM25kIqAXn0ro1QaDuxWT2wdOyDfe+A4xhB6Wcf6eh6dDru09978u4WC3oKmt8WvTdXmNs17rygyisU9VCoF0LQTq6tXFraT0A7odIxLEqyurmNt7eJzkkUdT1mW0WhUUa0WwfMcvF4fcrn1mVYQaJoGnufQbjfR6Zw1JxlONk/WRcTzHMrlfdTrFWNxuM5JGEY6A06yi3q9AqfThXx+fapdk7NxkntgWQaJRBr5/MZM83yHsdSA7pu+6ZvwR3/0R3j5y1+OL33pS3jrW9+Kr3zlKwCAv//7v8cv/uIv4vOf//y0T3thcFmdpyn0USrtGS0zMWSzq/D7gxfKztMwj608z6JSKaHRqEBRFEQicaTTOQQCoalnKPr9LjqdJjqdFnieA0GQCIXCCIdjCIej8Pm8Z3ZM9bbKXbRakwd2oiigXC6gVisBAOLxJJLJ7FQSv7OA41gUiztoNutwuz3I59cXqsap7wq8j2azDp8vgLW1qwtVP7UDunFtvCtIJvWWmYtm63GYx05VVdFq1VGpFMEwfbhcbqRSWSQS6annMgSBR6ejB3DdbgeapsLt9iAcjiESiSEcDiMWC5zJ8VRV1Qjs9iBJImKxJHK5tRNnOsw511JpDwzTRyAQQDKZQSSSXLhU+2FbTREmSRItwYNJxAgmee9Nkaf9/W0oioxMZgWZzMpCX9MLPaA7qY33Itl5Eua1k+NYVKtF1OtVqKqCaDSBdDoHvz84Mydpt5sQBB4kSSIYjCASiSIcjsHr9ZzZMZ0l2axzkn3UamUAMAS7snNXwk8Dx7EoFHbQatXhdnsNTrI4NU5B4LG3t4VWqwG/X+cki1Q/ndSPzBSyr66u4vbt23j5y1+OjY0NcByH+/fvY3NzE7Isg2Emczw2FgNz6XK5XDC+pBPGUPtyPyQXBaZ8bqVSRLfbBkXRSKVySCYzUw0WS5I0RLxaUBQFNO1EJBLD6uoVBIPhpRKYk+D1+nHt2sNgWQbF4i62t++gWNxFNrt67L48p9OFtbUrWF1dR6/XwP3726jVKvD7g0inc4hE4kvZs2eqwWUyAxQK27h37zl4vXvI5zcQDs++q0ZVFZRK+h4th8OBzc0bU2XbbJyOw0I7572P8awhigJqtRJqtTIkSUIwGMb16w9PNY+paRoGg76RDGqCZRkQBGHNhoXD0ZEA6iyPrbkXLpnMWIFds1k7MbDTZxHjiERiYJguGo0KtrbuwOG4j0QijVQqu5S9kPpC4wzi8SSq1RJKpT3U65WZ1P8OYzDoYWfnHhimj2g0gdXVzQuxR+pBgaLIqFbLqFROF9p5EGEqLVerJYuT6CMQ2akq+5IkWpyk02lDVRU4nS6Ew1FEIjEEg+GFr1+ZFD6fH9evPwyWHaBQ0DlJqbR3YmCnc5KrWF1dR7fbwPb2Dmq1MgKBEFKp7FI5ybVrt8Awfezvb+PevWfh9fqt8ZtZOYS5YqJU2gdFUee+23KmgO4Nb3gDfu/3fg+apuEtb3kLHnnkEfz6r/86fvRHfxSPP/44rl69umg7bYyBLMsjezHi8RQymZVzXWJ7lpBlGfV6BdVqCYLAwefzY3PzxqmzZiY0TQPHsVbbwmDQAwD4fAFkMisIh6Pwev0XKmDwen24du0WWJZBqbSLnZ27lhM9jnjTNI2rV68iGk2hXq+jWi3h3r3nQNNOJJMZJJPZhbQFHIbP58eNGy8ylpNv486dr8PvD2JlZWOqeQFTmXRvbwuSJCKdziObXV1YC8kLHbpoUndkFcY0n6PLDj0A66FSKaLdblhtlel0dmKFVFmWjVZKvaIvyxIoikI4rHdJhELRC3W+Dgd2ZlfHV7/6pJEMXBtLvAmCQDgcxcbGCsrlBkqlIup1faYwHI4ilcrNRY6Ot9VhKPhmLBGmWq2MTCaPdDo/1XEVRQH7+9toNKrwen1LWS7/Qoa5CqNSKUJVJ1uF8SBBlqUhTsIbq1JuIhZLTMFJmCFO0gegc5JsdsWowvkuGCc5COyKxT0r2ay3Yh7HSZy4du0aYrE0arU6qtWixUlSqSySyQxoehmcJICbN19siTDdvv21mUSYTH2Kvb37kCQRmUwe2ezauSX8TczUcqmqKh577DE0Gg089thj+NrXvoZ/82/+DTqdDvx+Pz74wQ/iFa94xTLsPRNc9PYGSZJQqRRQrRahqupEEu+Xpb0BON1WlmVQrRbRaFShaRqi0QRSqexELQyqqqLX61htC6IogCRJhEJRhMN628Kkwc1FOKYcx6BY1LPsTqfLao0bdqLj7Bx/DHPw+wNL+bIwB8ELhW0wzMCY69w4VUGPZQfY2bmHfr+LcFiX/F2kZPQ4vFBaLs33pFjcNRbDTras/iKc95PgNDtVVUGzqbdVsuwAbrcHqVQW8Xh6oiCB57mRuVpN0+Dx+Kzs+aQtVRfheB5u149GE8jljgZ2h21VFAXNZg3VahEsyxjHMId4PLW0AFaSJENltASHgxwSYTogU4ftVFUVlUoBxeIeSJJAPr+x0N2Mx+GF0nI5y7L6i3DeT4JJ7Bz3fWq2VZ4GnZMczNXqnMSBUChitGRHJw5uLsIxNbuIWq06nE7X2GTzODsZZoBqtYhmswZN0xCLJS1etwyYnV37+ztg2QHCYV0Rebj9c7ydfezubqHf71rdW8tOWCxthu6rX/0qisUiVldX8fDDD1v3DwYDq+3S77/crX7TOE+Hg0Ao5EGvxy/9A3S4/ziZzCKTyU9Uwr8IH/RJMc5Wc46jWi2i1+sMVZcyJ75+fTciC4bpodNpodttQ1VVuFxuK4DT2xamr0Sc12LxcdDn1nbRbNYMmeBVK7A7yc5xGcVUKru06oy542V/fwc8zyIajSOfX4fH4xuxk+MEFAo7qNVMyd+rCIejC7dnHM4roAsG3eh2uYWu6hiHg5moXTDMAD5fALnc2sTtsJfFlxxnpyDwqFZLqNfLkGV54uqSJIlgmD56vQ7a7RZ4ngVBEAgGw9Y83FnsjpoEkywWH4cD8Yo9CAKPaDRuBHb+E201q7zVagmtVh0k6UAikUIqlVtax4goCpbgAUXRyOfXrIqAaWerNUCjUcfu7n0IAodUKod8fm2m/VSz4DwCurPkJIIgoFIxOQmBVErnJJMEIJfdj5jfZZVKEf1+d+KOF52TMEZbdstY12NykhgikSgCgcvPSfQuooNks7m6YBZOkk7nEI1OVuWcFma1rVDYAc9ziEYTBifxHuIkvMFJynC7vVhfv4JQ6GJxkokDul6vh7e97W14+umnoWkaCILAo48+ive9733IZDJzGXvRMI3z3N+/j1JpHzRNG3Kwoxe32w2n0z3XiairFu4ZCkGk0Yudn2qG4LI4TwBHiH29Xka1WoIoCvD7A0ilxn+4TUfJMAMwTB8MMwDLDqzdV35/0Mh4xeDxeOfOzs4nuqCA41iwLAuOY4wLC0HgjSXheSOrNR0hG5YJNve/ZDI5xOPBUwUCOp0WqtWDOUTzy2kSEYJpYQoSFAo7EEUB8XgKa2ubSKUieP75u9jd3QagIZebX/J3WpxHQKeqMp566h8AEHC5XEf8iHk5SaL+NOjqgTVDtZBFIBBCLreGYDA81XNeFl9yeL9br9dBtVpCu92Aw+Ew5r9yY7OroiiM+BGG6VvLummaNoSRYgiFInO32cy7YFkUxREfwrL6bVVVjdmllannqQ8HdrqYxRpCoeCptgrCwRyiLEsIhSJIpXJzzc+eBJ7nUCjsoNmsweVyG0vA03A6gaef/io6nRaCwTDW1q6e+QzXeQR0e3v3UC4XLU5ichC3+8CPzMtJeJ5DqbSPRkNXLUync0inc1MFypfRj8iyCkmSDnGS42fSDziJ6UdGOUkgELIq+m73ReEkuh/hOAYsy0AUBYOTrMw0Tz0u2ZzNZhGLTcJJmqhUzCQ+jWQye2oSf1boK5AqKBZ3IYoCEok01tY2kExG8Nxzd7C3tw0AyOfXZ1qBMA8WHtD92q/9Gp544gm87W1vwyOPPIL79+/j8ccfx4te9CL84R/+4VzGXjRM4zxVVYYkMWg2O+A4DoLAQxD4IztAaNp5yLF64HS64Hbr1+M+yId3eKTTeaRS2RlbWVSoKg+GEYz9UafvZjm4b/yyzZN2QM0DiiLhcCh4/vm7qNerAMzyu94SCOiOkmV1R8myA+OasRylx+OFzxeAz+eHzxeA1+tfeH/zJM5TVVXwPGc5R9NR8jxnPcbpdMHj8cHr9cLt9qLX66DZrA0NUuemfs95nkOxuGsFdleubMLvj0y0sHucKlcqlZ1aKXQSHKju7UKWZXg8HrAsi0QijZWVjaX00Z+G86rQKQqHarVpBfbmRVEO9pKRJAmXy2MEfZ4xAd/R8+QwOQ+FosjlVmde3MxxA7hcJBhGhKpqx+6bXMQOqHlAUSQCARfu3r2PUqkIjmPg8XitlkCHwwFN06zK23AAZwZvFEXB6z3wIz6fHy6Xe6G2TkrCJEk8QrY4jrHOD5Ik4fH44PF4rcClUilCFAWEw1FkMiszqf02mzUUi7tWxe7q1U1QlPfUSrL+u/p8zLxKoZOAZQfY39+x9mTpyTEXVlauzCQNvwicR0A3KScx94+N8yPHcxLGCOQO9oqlUlk4HLNwEgWqKhicRL/nInIS8/O5v19BsbiPZrMGQFdoTKUOVKN1TjIY8SMcN8xJfCN+5OJwEgYsy0IQRjmJ1+uDx+OD2+1Bt9s2FI91HppMTs9Dh/ms0+k0uvmiEy3s5jjGUi/XNM1SL59WKXQS6JykhGJxD4pywEmSyQzy+fULzUkmDui+8zu/Ez/2Yz+Gf/2v/7V131/91V/hXe96F5588kl4vQ+OEMci+tVVVYUoCiPEbPhiEgYThx0qyzJjJcOnhaZpKJcLKBS2MWV37cSgaRoU5QRN04duO0FR9Mhth8MBgiCgqnqmS5IEiKIISdIvoiiA51n0+z04nS5D5SxlkK7zc5TjcLgCoDvJUbLF85xlJ007LbKlEy+fUdY/6hj1vS0F1OtlEASJVCqDdHqy9tqjz6N/AauqimAwgkQihUgkfuoxGrc3J5XKIRZbvFy5oiio10sQRQ7JZA5u9/mpoV2kGTpN06Ao8rF+RBB4qOrB4x0OasSPOBwO1OuVI5Lhs4DjWNy79xxYdjDT758GknSM8SHjb1MUDZIkjeOjjPgR/VqAJEnGol0JkUgMqVQWLpcHLMuAZYcrbxIAgKLoET/i8wWOJbaLxOH3XpalkUqbGcTJsm4nQRDweLyWD/F69dvjAk1z/UKptA+OY+D3By1xhWlel1lRL5f3wXEsaNqJeDyJeDw9UdXLFJ1pteqG6IzejrmMilm/30OtVkQ8HkUkkoSqnp+AxEWaoZuGkxAEYQR8w5xkgFarYc1qJxLpmb4HVFVFuVxAsbizRE4yyj1MnzE9JxEgyxIEgUOn04HT6bJGEkYTQaOcxOv1WYlk/dp3jpzkaDJ5lJMc+BCdm3jHBug8zxqcpGIo0GaRTudm4CSswUlqUFUVoVAE8fg0nKSCSkUXwvN6/Uinc4bozKI5iYxarQRZFpBIZC8FJ5k4oHvkkUfwn//zf8bLX/5y675Wq4VXvepV+Mu//EtcuXJlNksvIM5iAFlV1RNJmsPhmLnEbaLTaWF7+zZEUQRBEFhbWwPPi+B5YcRpDYMgyCHyZF4ow/FRoCgHCMJhOAR9TkOWJcP5SVZQJsvSSGVhEujPT8PlciIUCoLnJTBMHxzHWm2+w5U3PXPuO1PZXr3FSQDLMhAEFrIsoNPpgmVZaJr+/lMUNUS2fBb5mkVmW5JEVCpFSwBnFiVTiiLh9zuxtbWLarWMfr8LknQgGo0jHk+d2nJnimdUq0V0Oi1QFIVEIo1kcrFy5cuaJZJlaaqs2kUK6E6D+foO+w+e5yGKPERRtPZRzkqeZVnC3t591OsVADDanpPo9Qbged5Kxhz+vOt+wyRTlOVLHA7z2mG9BjNwlSQJsixBFAXLn8iyNBXxIwgSFEXB6XTC7/eBIChjjnZgBUV68DZaeTuL4G0YiqKA4xgIAgdFEdBud8AwzIhPdru9lg8ZzpjPsoi402mhXN5Dv9+Dx+NFJrMy9aysw0GAJGVsbW2jXq9ClmV4vX4kEinEYslTP2eiKA6thRARCISQTucQDscW2sK0DF8iSRIcDsdUdl6kgO40qKoCQTg+4KMoCpnMyqm7xo6DeQ5ub9+BJB1wEo4TIQiC8ZmfnJM4HDRomoLDQYEgyGM5ifm8s3ISmqbh9XpA0y4oil6FY1nGsI0Yk1A+e04iCLzlSw44yUGASVH0iA8xfcoslXJRFAxOUoKmqUgk0shkVqbiAiYnuXdPn0nr93sgSQdisQTi8dSpnQQHq6pK6HZNTpIxknaLWz9y2TjJxAHdzZs38clPfhIvfvGLrfsURcHDDz+MT3/607h169bExl10XHRFqdPAcQy2t++h3+8A0Pu0b958GKlUdGwFQJIOHKpOAoWhn4UjDtbhcMDp1NsyKIoyCJhoOc1REJbT1TNhB8O1ZnZdVRVIkgRVPXC2BEHA6/VZGS6z8nZWfcvmcTGz5IdnU8zjEAwGjTbagwzXPHNOx0GWZdRqukS4JImIROLIZlcmUoA6fI7yPIdGo4pGowpB4OF0uhCPpxCPp04NFHmeMwQlKlAUGYFACPF4CtFoYm5Vu0V+llh2gHq9imazBlVV8LKX/W8TvyeXKaBbJszWk/39baiqCpIksb5+Del0BtGo/4iteiXxwG+YF7PdSxSFkWoiQRCgaafV+qWq2kil/vBXk77UnLb8iOkL9IBQhaKoBmmTR36Xpp0jrdd65c15ZsHbSfOyJsx26+EAzu32LsXf9ftdlEr76HSaRrUlj0Risg6Q4fNUFGV0Oi00GlV0Ok0AQCgUNbLtJwdoqqpaghKDQQ8URRsVv9RCVsUs6vOkKAparToajSp6vQ5WVzeRyaxM/PuXKaBbJliWwc7OXfT7XQBAMBjGjRsPI5WKLIiTUJYfcTiGOYkAWZYPWUOApnU/cjInEY/4Kz14MxNBZ89Jhudlh6tuB5yEQjAYgNPpMTiJ7k+W0Saoc5KSwUkkRKMJZLMrE3WAnMZJXC635Q9OU7XWOUnR4CQKgsGwwUniM7YCH2/nPGCYARqNChqNGgANL33pqxbOSRYS0D3xxBMjipeXHZfVeUqShGJxB9VqCQAsAhaPp0DTjjmGZVXDwfJDJE2wKnF6S4MTTqfTImjmz9MEN2ZmDVCRTsfORKULmH425eC2ZyyxXSbMeahyeR88zyEYDCObXT2xynZSO99g0EOjoQc+iqLA5wsgkUgjFkucmL3TiU4DjUYFvV4HJEkiEtErfrPuopr3syRJIhqNGhqNKlh2YJHERCI9lSjECz2gMzPpu7v3rKAjFIpgc/Om8ZmevZp4NOjjrZ8JghzyIU7QtGvk50mz3gekTEYsFgDHKWdyTMfNpnAce2RedtSH+OD3+08VLVoGWJax2rEpikIqpc/rntRJcNx7L0kSWq0a6vUqGKYPh4Oysu2nzbkMEx1ZluDx+IwEU3Jm8YN5hWZ6vQ4ajSparbrRqq6TxGkrmi/0gE6SREsZENDbqjc2rhnV3Pk4ydHE0SgnGcdHzDbLaTiJpinw+WiIIqCeweE0KzjjksmHOclwB5D+s/tcOEm9XkG5vA9B4BEMRpDNrszFSer1ClqtOhRFgd8fND57k3CSg+SLyUkSifTUwl+n2TkpRFFAs2lyEmaIk2Sm6piZ1I8sZFHMRVpy+EKEqqqoVksoFHastj99Aez1hagB6UIM7oWWso/7O3rVj1xKv/k0syn6As/jZ1PMx5819N71DBKJNFqtBsrlPTz//Ffh9fqNHWLxie0iCAKBQAiBQAhra1fRbjfRaFSws3MXu7v3EA7HkEikEApFj5AYXSUwhUQiBUHg0WzWrIrYtPM188DM9OtVghYIgkAkEkM+vzbWbhsng2UH2N3dQq/XAUEQcDgcWF/XCdi85ztBEFbL1PCun0VD/zt6u6fb7QbHTUaEJ4WmaRPPpoTD0VNnUxyO8zlHvV4frly5iXx+HeVyAeXyPsrlfSST+rzuNP6epmkrIOQ41grQdIlvj9UBMO459WrHVayuXkG320K9XkWhsI39/fvGfE0akUhs6TNIw3aLogC324NsdvVYu20cD52TFA1Oon8mwuEYNjevL6RaRJIk3G7P0vd/6RL7FAIBndSrC47oDgI39gROovuOSCRm8ZOLxknMZeDmvO7zz3/VWoYeiczGSdbXdU5Sr1ctTjKcNB7PSdJIJNIQBN6q+JlrE2KxJBKJFDyeZXMSxbK72zU5SRz5/MZYuxeJqSp0t27dGtkxp2kannzySTz88MPw+Q4OEkEQ+OM//uPFW3tGuCzZMHOf1P7+ffA8Z+0KWVu7hnh8lIBdpKzdaVikraaKYqVSGGlxWsRsykU4pmY2uVTaQ6/XgcvlQTabt/YxzWLnuEqX6QxPaofSNA0M07ec6LTzNZPaOa6y6PcHEI+fXlmcBC/ECt1wJp0kHVBVBeFwzEgKjb5v523rpFi0nQwzQLG4i06nOTSbQg0FbAf+5DLKt0uShGq1iEqlCFVVEIslkcmsjCRlprF1XKUrEAghkUgjEomf2KItyzJarTrq9QoGg+nma6axU5IkK4M+WllMw+8PzE2QX2gVOnM3297efQgCb7VG60mhxKXkJIu2U1UVVKtlVKtFi5MQBAG323OkE+iycpJut41yeR+9Xgdut+fI7OW0dpqVrnq9Co47qHSd1qJtchIz2awoMny+gFVtP03XYBpO0u93LV9nVhYTCXMc5Ww4ycQVule84hUAcGSuYdz90wywdzodvP/978ff/u3fYjAY4MaNG/j5n/95S3zlH//xH/HYY49ha2sLmUwG73znO/E93/M91u8LgoDf/u3fxmc/+1nwPI/XvOY1ePe7341o9GwW/p0XGGaAvb0ta8k2AASDEWxsXFvKjo7LBlVVDDn8fUiSiFgsiZWVjaXOppwHCIJAKBRBKBTBYNBHubyH7e27KBR2kU7nDHnh6TKiurJqHplMfmQWrVotwuPxWtn2w+cZQRDw+4Pw+4NYXb1izNdUsLd3H3t79xEKRZFIpGYWQBg3+2dK0C9refGDDlVVUakUUCzuAdBAkrri25UrNxdSlXsQwDB9FIu7aLebcLncWFnZgNfrX9q87HmBpmnk8+vIZFasJFijUUU4HEM2uzL1moth37S+fs1q0b5//zZI8u6JLdoURRl7MDMjn/t6vWLM16SM+ZrpKzSqqo6d/bt27dbCxVleSGCYPnZ3t6wl24DZKXTtXKTeLxoURUGtVkK5vA9JkhCPpwxOogduD8p5RxAEwuEowuEoBoMeSqV9bG/fQaGwg0wmj2QyMzUnMZVVM5mVkRbtSqUIj8dnJY1P4iRra1fQ6eiVs729LeztbSEcjiIeTyMcnq2bZ9zsXzqdn9k3zYuJK3TLwk/8xE+gXq/jve99L2KxGP7kT/4ETzzxBD7zmc9A0zS88Y1vxI//+I/j+77v+/C3f/u3eP/7348Pf/jDeOUrXwkA+KVf+iU89dRT+K3f+i04nU68973vhc/nw5/+6Z/ObNNFzoZJkoj9/W3U6xXQtNNqAVhbu3qkKneeds6DeWzVnWbZcJoi4vEUcrm1pXy4Luox5TjWmo0xF9HfvHkNPK/ObKeZdWs0Kmi1mtA0XW44nc6fOjM3PgueNOZrDrLg446nmalvNKqWOuc0mfpZ8EKo0Gmahlargf19PZPudnvA8xwikRjW149W5c7T1lkxr50M00ehoFfkXC4Pcjm9/W4Z+/Iu4vE0d9CVSvvgeX0RfT6/io2NFXS73My2Drdo87y+AiGZ1BXqTiL+J2fBkyMVv8PHdN7ugVnxQqjQiaKAQmEH9XoFTqcTiqJYnUKHq3LnaeesmNdOM5ArlfahKDLi8RSy2dUXMCdxIJPJ4caNqwvgJHqLdrvdgKZpCIejSKdzCAZP4yQims06Go0KGGYAijrgJD7fZJxk1u6BWbBwUZRlYHd3F6973evw8Y9/HC972csA6G/S6173Onzv934vms0mnnvuOXzqU5+yfufnf/7n0el08Ed/9EeoVqv4ju/4Djz++ON49atfDQDY3t7Gd33Xd+ETn/gEHn300ZnsuojOcziTThAw9ikNjLao06tyF/WDPg6z2Ho4+5VIpJfmNOex8yyhywsXUK2WoaoK3G4PAoEwgkH9chJpPwmmQ6tWS2DZAdxuLzKZHGKx1KlzLhzHGBmtgzkVM9vu83kRifjQavXRbLYM4taApk23P29ePOgB3XAm3ev1QxR5aBqwvn51oqrcRT/vTcxq52DQM1orW8Yc1dqJybLzsvOsYLb2l0p7RkLGgUAgCL8/jFAoPEKApn1evR2qgkajCk3TEI+nkE7nThUxOphTqaDbbVtzKmbFz+mkEIn4UKk0Ua1WRoJH098se74XeLADOlVVUC4XUCrtgSAIi5NEIvGJqnIX/bw3MaudiqKgWi2iXC4sPZADAF4WUBfacHscGAwEKMrijqmXdiPhjYIm55PdEASdk9RqB5zE5CPBYHjmxIrOSWoGJ2Hg8XiNSlnyVDEtlmWsKpskiXC7zS6k5CFO0hwJHs9yvvdMRVFmRSQSwYc+9CG86EUvsu4jCAIEQaDX6+Gpp57Ca1/72pHf+dZv/Vb8xm/8BjRNw5e+9CXrPhMbGxtIpVJ48sknZw7opkGjUcPeXg8ulxdebwBut3ehX/x6Jr2O/f1tiKJgtdYJAo/NzZtLJRqXAbrT1AO5s3CalwlOpwurq1ewuroBWWZRLFbQ6bRRr+uKY263F6GQ7kgDgfDEe/LMdqhEIo1+v4tKpYjt7bvY399GMplFKpU9NsHg8fiwsrKJfH7Dmq8plfZQKOwgGAwjGg2jWCxBkkR4PF7k82tj2zsfNCiKgmeeeQaAw5DFDs69BuIwRFHA/v42Go0q3G4vgsEQer3uRFW5FwIGgx4KhV10u3ogZ7ed6iAIAtFoHJFIDILAQhQZVCpVlEq7KBS2QZIOBIMhi5RNunZguB1qZWXDaPPU5ceDwTDS6TzC4ejY59Kz4knEYsmR+Zo7d75uzdfIsoBGo2Gp3a2tXZlZgfcy4YCT+AxOMv3ewpOgaRqazTr29+9DkkSLk4gijytXHjqxKvdCgKLIBifRAzkzubxoYR1N09Diu7jX2ce9zj4K/So0LK8+QxIEEp4osv4EMr4Esv44Yu7p1CNdLhfW1q5gbW0dksSiVNI5iamC6vF4RwK8SWfPdE6SRSKRQb/fRblcwPb2HYOTZE7kJF6vD6urm1hZ2UCv10a9fuDbQqEIIpHQECfxYWVlY2x750XAuQZ0wWDQqqyZ+Ou//mvs7u7il3/5l/GZz3wG6XR65P+TySQ4jkO73Ua1WkUkEoHL5TrymEqlMpdtFDVZPy1Jkuh2u+j19o3foxAIBC2lnkAgOHP03u/3jH1yXYRCEXi9PrTbTUQiMVy9emOqE8pUUjsvRbVpMImtiiKjXC6iWNQDuWQyjXx+Oa2V42Au82y3RTCMAFVdnCN1uVwLdRYOB4VEIgSfLwxF0eWeu90Out22sTBcX3Ph8/kRDIaNuZfQRM40Go0iGo2C5zmUSgUjI7mPeDxp7Mk7PrMUi8UQi8WgKDKazQbq9QoqlQoSCX3VgM83+z4qVVXR7bbRbjchCAJu3nzk3EjGZL5EhSzLqNcrlsKZ1+tDMBiyfInbPV7Z7DQoioJicQ/F4h4cDgdSqQxarQZYVsT167emTgpdFl8yqZ29Xhf7+zvodFrweLwzHZN5oGkqOp0OGIZfqB/Rpc0XOy/sdocQDKaRSGQhSTIGg77hRzooFHagqiooihryI2F4vb4Jqr4urK6uI59fRbOpK+XdufN1o0K6gmQyfez3KEV54PWuIZ9fBcMMUK9X0GzW4fP5cP36Q6cKsJwGnufQajXR6bSQSmURi8Vnfq55MDknIcZwkpDhS/QAenZO0jU4Sc8Itn1ot1uIRuO4cuXGVEmhB82PyLJsVCz1QC6VyiCfX1toIKeoCvZ6Fdxt7+Nuew9tvrew5z4NqqahyjZRZZv4Cp4HALgcNDL+BLL+BHL+BLKBJALO0+fZdU4Sht8fgaKoEAQBvV4HnU4b3W5rhJOYfkQP8E7/HJucRG/z1EWedE6SQjabP4WTxBGLxSHLMprNOur1KiqVCpJJs4toHk6ioNvtoNVqQpJE3Ljx8OLb9xf6bHPiy1/+Mn7pl34Jr3vd6/Ad3/Ed4Hn+iIMwf9YXLHJjHYjL5YIgCDPbQZIEIpHJ2jG8Xgo+nwuKooBhGAwGAwwGAxSLe9bOEK/XC7/fD7/fD5/Pd+pSW03TUKlUUCwWEQgEcP36dezu7kJVVbzkJS9BLpeb+UQIBi9P5WqcrbIsY2dnB1tbW5BlGSsrK7h69Sq83uWLYuh7TlqoVquo1WpgWXZpf8vtdiMcDo9c5q3YHBxPH1KpA9EgjuPQbDbRaDTQbDZRLhcAAKFQCLFYDPF4HNFo9JS/70MmE4ckPYz9/X3s7OzgmWeeQjQaxcbGBtLp9InnbDwewo0bV+Z6fTzPo1aroVaroV7XZ2w8Hg9yuRwikdNJ5TIwqS/RNA3r6+vIZrMQBMHyI51OC5WK/uVGUdSIH/H5fKeSdUEQcPfuXYiiiJWVFaPlpYxUKoUXvehFcLtnJxuXxZccZ2er1cKdO3fQaDTg9/vx0pe+FJlM5kzOE5ZlLT/SbDYXLodugiRJBINBhMNhRCIRhMNheL3zd5GYxzQWCwDIAtD9Y6fTsfzI7u4WVFWF0+m0/EgsFoPPd/JnMRYL4Pr1TbTbbdy/fx/37+uZ9tXVVayvr8PjOf68i0b9WFlJH/v/k0BfhdJGrVZDtVrFYDAASZKIxWJIJMIIhZbfqnkY03ASj8cBn899hJMUCrvWfJvH47F8id/vPzUQ0zQN5XIZpVIJwWAQ165dw+7uLjRNw6OPPopsNvvAc5Lj7JQkCTs7O7h//z4URbE4yUnn6TQYCCyer+/iG9X7uN3YgyCLp//SGUFQJOx0S9jplqz7Qm4/VsMprIbTWA2nsRJKwnWMCMowJ0mnDzgJy7JoNpsGL9ETPAAQDoetRPBpnCQS8SGbTUCSHsbe3p7BSSqIRqPY3NxEKnXyPHQiEcLNm1enOBpHYXKSarWKRqMBRVHg9XqXxknOXRTFxN/8zd/gXe96F1760pfigx/8IFwuFx599FH8wi/8An7kR37EetznPvc5/Nt/+2/xxS9+EU888QQ+/OEP4x/+4R9GnutNb3oTXvKSl+A973nPTLYoiopejzv9gQB2d7dQKOzN9HdOAk3TyOXWDHn22kxVOUB3xKIogucZOBwAQdBwuTwLb+daJBwOEsGgB70eZ/WBH2S/9qEoylKyX+MgiiLa7SZarQY6nTZUVYHL5TLmNeKIRkNgmMX2q/M8h36/h36/h8GgD1U1EwM++P1BowIcNIjZ6dnNccfzOJiVRz1TplfxJEk02qMCVrYsEAidmOU1RTdKpX30el24XG5kMnmkUpljz71p7DT/BsMM0Go10G43MRj0AQCBQAjRqL6zh2UZiKKIzc1rEzvPSYnTJJjUlyiKhC9+8R+WQuxjsQRCoQj297ehaRo2N6/PVIFSVQUsy4LjWIPU0qDpk5NT54njzqdut4P9/R10u214vT6srKwvvU1M01T0+z20Wrov4TjWUIEMIxZLIJtNgWXFhfoRRVEwGPQxGOi+xFxwricGgla1JhAITDy7Ms1nVFEU9Ptdy4/0+30AGpxOp+VHQqHIqV0VPM+jUimgUilDURTE4wlks/kTVTen9SWyLKHdbhmVuCZkWQZNOxGJxBAOR6wVDPF4CuFw5NTnM7EoXzINJ9nevotSqbCQvzsMmnYin19Fr9dFs1mfqSoHmJxEAMexoCidk7jdnrE7Gi8CjjuXZFlGqbSPUqkAVVWRTmeQy83fWqlpGupsG3fae7jX3kOhX5v3JZwrCBCIe8N6Bc+fRC6QQDoQQzjkm5iT8Dw31FXUGeIkQcuPBIPBE+flNE1Fs9lAqVRAv9+F2+0eUt1cPCdptZpgGJ2TBIMhY4+gDwzThyxL2NhYPCe5EJ+gP/3TP8Vv/MZv4Lu+67vwO7/zO5aDyGQyqNVGT+ZarQav14tAIIB0Oo1OpwNRFEecSq1WQyqVmsumSYdfV1c3cevWTXQ67Km/I0kSGKY/dBlA01QQBGksVw1YF44bYHf3HlRVG5nlOOlvqKpqLM4eGBcGLDuALMtHHut0uoZ2J/mMJdreUwdIzxKKooLnRWuwWFUVJJMZZDIrltNc9DC1pmlgWb0y0m4ffCD9/iCy2VVEIvqiYH15MYlg0AdFWexQt8vlRSgUs+zhOBaDQQ8M08dg0Lf6zUnSPG+C8PsD8PuDcDpdxzoJRZlMUYqiXIjH04jH05Yz7fU66PU6qFRKKBR2h5ypLks+ThghFIohFIqBYfoolwvY3d3C3t42ksk0UqncsUTuJDsVRUGv17beH0kS4XA4EApFsbmZBUXR6Pe7qFbL1m7GaDQBWVbPLfCY7JjTeN3rXodWazDRfi+OY6zzgWH6EEW9I8HpdMHnC8Dv1+fwnE4nisUd3L9/Z2RWTlE04IR5C1EUj/gRjjtakdbb+g4WZ5u3L1KgZ55PvV4HxeIuer0OvF4frl27ZS29Pe14zAJZltHt6udpt9uCLMugKNpYfL+OUCgCh4MCRZEIhXxQ1cWLQ3i9ASSTegXN/P4xfUm5XIQs7wAAXC63dc7o1/4Tvwsm8yUE/P4w/P4wcrl1KIqMfr9r+ZJ6vQpAP2dNPxIMRo7M8lKUE/n8JjKZNaMtu4ivfvXL8PsDSKfziEaPD8aPs9P0a51OE+12E/1+1zhefqRSWfj9QQiCgE6nhbt3n4emqfB4vIhGk+cm4DHp311fv4pHHrk1IScRwTADMIyePGTZATRNG+Ek+vkQAMPonATQcPXqQ9ZxXxQncbncIz5Ev31xOIl5LsmybCQYigYnySKbXbGS7bOcH7IqY7dXxpYxD9cTJxPAuQzQoAeodbaNp2t3AAAU6cBqOI01fxZXQyuIecInPgdNuw9xEha9XgfdbgeVStHiJHprsclJjrZHhsNxhMNxDAY9VCpF7OzonCSRSCOdzh8bjE/CSdrtFjqdA04SDkeRSpmcpDPCSWKx5FI4yblX6D7+8Y/jP/yH/4Af/dEfxbvf/e6RF/grv/IruHfvHj7+8Y9b9x1WuXz1q1+Nj370o9YaA1Pl8s///M/xkpe8ZCabzkpRSlVVsOzAqMT00O93IUkH5fSTFCwlSRpLuMy30+VyW7uSvF4/gsEAkskISqU6+v0+OI4FxzFGBeOgPdXl8hjB3cGy3LPekUJRJPx+J5599raR/TIDudUj85KLgP6B7Fhf7sNBgrlPZVwG+7xUuhRFAcsOMBj0LEJvLiilKNoQGghYX8Zut2thdprBhOlMe70OVFWBwzE8NzM+6y6KAqrVEmq1EmRZRiQSQzqdt6R+jzueesVQd5bdbgeapsLl8iASiSIUihozSAcBnkmaI5EYQqHI1ITgMqpciqJg+JEu+v2eRcz056awtjZewVJVVfA8Z/kShjEJlz7HR5IOy4f4fPp1IBCAz0ejXK5jMND9j+lPzAqjw+EYu3D7LPdRmcd0Z6eA3d1tQ9XTh1xuHZFIbOFfpicFCeFwFJFIbGzi47z8iFmNN4M83ZeYSUYCHo/PShT5fAF4PF7QtGNhtsqyjH7f9CNtK2Hg9fotPxIIhI5892iahk6niUqliF6vY+yjzBqZdj0YHHdMVVVFv9813p8WBIEDQZAIhcIIh83seW/kvfP7g5YgjNs9fVv/ZVO5HOYk/X4Xg0FvhJOcpGApSaLFRxhGv+b5YU7igdfrg8+n85JAIIhEIoRyuWFwEsboABjlJObCbZOXnDUnMY9nvd5BobCPSqUAVdWQSunJ5Vnn3QciawVwO70SJPVokDspCBDIB1K4Hl3F1XQOgz5vJKnmh6qpqHNtlAZ1lJn6UoLNqDuE65FVXIusIeubrlvC5CSmH+n1ulBVxZjljVi+ZFywJggCarUiarWywUniyGTy8PuDE3AS3Y/0em1omga324NwWOcc+q5L/XtAlqUhThI3OMl05+6lWFuwvb2NN7zhDfiO7/gOvPe97x35P7fbjUqlgje+8Y34sR/7MbzxjW/E5z73Obzvfe8b2UP38z//83j66afxm7/5m/B4PHjve98Lv9+PP/mTP5nZrvOSCDZbEfr9nhXhA7AIl+kkWXZgOVkzQ246Sa/XD4/Hd6SEfJKdiiIbWTRmxKmaf4MgCMupmsTMdKrHffA0TYOmaVBVFZqmQlU141odutb///B9ksSjUilBVVUkEpmR7NeioGdfm2ODhHA4NpZIHMZFkl2WJNFqrzIrN4qif0G43R4kkwn4fCH4/eGFfhGqqgqG6VsCK4OBPqTtcrmHsu6jalWqqhhLQQvgOBZerx/pdA6pVBqxWACt1gDdbhftti5EwLIDAHorZSQSQyAQBs9zaLcb6HRaRhusG5FIHNFo3HLGs+IyBnSHoaqK5S8ikTicTidkWRoiWwPr8z6aBPKNJIJcrqNCLMfZagYIwz5Ev7BDwSU94kPMTPxJAjyjfkQ98vO4+/S/p6HTaaDVasHr9SOXW1t4IHdakBAOR09twbpIfkSvqDAjvsQMtEhSX1eQy2Xg8QRBUYv1ybpYk+5Her02JEkCQZAIBEKWLzkssMIwA1SrRTQaVRAEgXg8jXQ6h0DAj0jEh1qtjUZD9xPdbguKogy1UkZBUTS6Xb3VkuMYaxl6JKIHcfMmIC5bQHcYB5ykC4qiEAqZnIS1kj+mLxnmJAd+xPQlPqulss338Ez9Nu519sEpAgK0FxmfqZyYQMwdgqIoVpLITDxzHDuWkwwnjeblJON8if50+uy+pmlWl9BhTqJpGnhFBCtxYCQerMyDlbiRa0biwUo8WJkDJ8+u8wAAbocTV8IruBJewWYoBzflOhNfMhBZlJg6yoM6ykwDZaYOQZEW9vw+2oNr4VVcj6xhNZgBNWVCVlVVDAY99HomJ9G7rFwuzyFOcsCRFUVBo1FFpVIEz7Pw+QJIp3NIJlMWJ+l0OlZimWUZqyKo88XgIU6i88loVA/izoqTnGtA9/jjj+MDH/jA2P974xvfiN/+7d/G3/3d3+Gxxx7Dzs4O8vk83vnOd+L1r3+99TiWZfGbv/mb+Ou//msAwLd/+7fjPe95DyKRyfvcD+M8nKcsSxAE3roMB1hm1ttskxwmXJNKEs9ip0kAh6t5HMdY7RL67hk3NA1jg7VZ4XA4sLq6ing8A5KcTLb2NJg7j44LEsLh2NTyzheJiB2GWS3Q22j66PXaYFkWJEka1YK4RWgWCVmWjZYq3Zmaczs+X8Bypn5/ECRJWsvKK5Uiut0WaNqJRCKOer0OSZIsAmH2nvf7ukJUv9+Bpmnw+fwG8YrD41ncupDLHNCpqq5iOuxLTMJlZr0JgrRI1rAvmXSudlpbzXNxmJiZ2XsTNO2Ew0GN9SOz+xICoVAQmczqqYtmp4EkicYX+7ggIYZgMDyViuBF9iOA/pk2xwQGA30mTlVVeDw+i7BMuqpgUhxk3dvG/F3XUNCkR9ozzY4NSRJRrZZQrZYgy5KhwKih3W4D0P2PWbGXZdnKnouiAIeDQjgcRTQaRygUXehOqcsa0GmaBkWRx3ISlmWgaeM4iV7Fd7mOfo/KqoK77V08Xb+N3V75xL/tctBI++LI+hK6gqIvAb+hnChJkpUkMvnIKCch4XK5FsZJNGgQoUByaPCGgnD6fRA02QrKWIkHYwRrnMxDXTKdjnvCuBJewdXwCnL+JMhDM/Tn4UvM9QlmBa/ENFBjmws5Fk6SxmY4j+uRVWyGVuA+RlzlJJicxPQlgjAJJymg221bgk6NRsPiJHqiLgaPx4Ner4t2u4F+v2twkoBViTsPTnLuLZcXEctwnoqiQBC4EQc5fDEVMQE9w+V2e48Qrkn3hA3DPEEbjQo4jjEyWn6rjWbaLy9N04YCPQaCwBu7A0mQpH4xbxMEMfbn0ftIkCQx8phJ23rMLx1JkiDLEiRJhCTp1/rPB7dFUYCiKNaXt/nlPk9Ac9GJmAmKIhEOe1Eq1VGv16zZQDPDZGajlyEwIwj8SNZdlmVDeS9stUN4PF7wPItqtQSeZ+D3633wDgdlEa+zshe42AGdmTE/zo8MtyoBOuHSK2IHhGvWXZmiKBiS8DW4XE54PH7Ll4yr5J0Gvd2TtciZqqqHfMFJfmPUt4y7b5r2QFVVDT9i+pDh26P+xDzG5pd3OBydKaDRNA0NvoEKV4JECBAECdoC1xYQBImAM4CwK4ywKwIfNb+qGkWRCARc2N7eR6NRR6fTgqLIcDpdFpGZpLthWpiVUNOPMIyekNN3aR7ImhMEaeykq8Dn88DvD8PnC4JlB4aw1bC9caPiv3h7TVzkgO5wwHYyJ3HA7fYMtV/rvOS0788m18Uz9dv4WuMeOJmf7MWOQcDpQ9ao4GV8caR9cTgd+t/Wu3okK7gzOclRnnHURwCAoEkYyBz6Moe+xKInMuhJDHriAD2RgaKd33c7SZBYDaRxNbyKq+E8wu7giY+/KJxEVmVU2dZBkDeooyP053pOkiCxFsjgWmQV1yKrCDhnExwaz0n0XZpmosjj8YLjWNRqesVOXx00zEkaYJgBCIJAMBi2fMmydtPZAd0cmMV5Nps9MMzxAZs5kwIcVLbGX3QFynm/eE3yVauVIYoCvF4fkskEWq0OBoOeVfU7mJPQB+In2Rm0TOhtDxLcbgdarR54XjgUrB0Eb7Isjc260TQNinKCpnUVPoqiQdO0tc9rUa/vojjP0zDOTr3lVFeH7PWWW/EyYQrODGfdNU0DTTuNNqcoYrEQ9vaKaLUa1gDxMiuK43CeAV2rNQDHDQdsHARBsK5FkR8552mahtPphtt91I84na65iao+r9RCrVZGp9O0BrppmkSr1R5RTtRnNoOWL5klAbUo6MdIhdtNotnsQRAEy4cM+xPz9jB5NUGSDsOHjPoTt9uDUCg60yJ2SZFQYkooDPZRGBTAK5MpFy4CNEkj5Awj4goj7I4g7NQDPQ81eWfCYV9iBlrttk5yll3xMiFJktUF0O22IYqCpcQbDOq+hCQV7O8X0em0oGnaUiuKx+E8A7pGoweW5Y5NJA8Lk4xyEg9cLpdxrd83DSeRVRm3W3o1br8/3z7g40CAQNwTHlpynUDcEz5SsQIAXhbQEQboCn10hD66wkC/iPrteWbXlgEv5baqcOuhHFyOyf3oReYknMSjzDRQYuooDKrY61WgzhEsZ3xxXIus4XpkdeoF5yZMVUozuDuJkzSbdQgCD5J0HOIkk2tLyqqM4qAOXhaQ9sURcvkn+j07oJsD0zjPer2MYnH3yN674wM299IU4I4jX8lkBqFQCNGoH+02A0lSDikn9sCy+uvVlRMPBDVOU06cxcZpKgyAThZNQqUHZ0dvm6RrEcHwJK9BFwZpg6ZJ8Ly40IXANO20hr9pml5IVv0kJ6+3ILXGzqSZGexlHFNT1twkZuY5SNM0wuE4otEYgsHpB4jnxXkEdICC27e/jl7vINkC6AtYD/sPt9sNp1O/vQyyDOhZzHq9gnq9YiSE/EgmM4jFknC7ndb5xHHCiHLiYNCziOK0yonTYpoKAwCj+j/OjzjHBG70wmwdiH3sD/ZRGOyjws5HYpYBJ+lE2BVBxBWxqnlhVxhu6mgF/CRfYiZs2u3G0mbSxkGf3eSGsu4d670PBkMIh01Rk7Pfd3YeAV2tVkKptDfCSQiCgNPpWionqbNtPFO/ja837oFXzn5XGk1SSPliSHgiYCTOCt6Ec7BlWiS9UVw1grjMlKIggPnZY9DvL5eTmFXZRXASt5/CU9vP4/nmDu53ChDnCKwjriCuR9ZwLbKKrD8xNrCfBAerVnRfwnEmJ3FaQmvTcpI238P9bgH3OwXs9suQjTVUFOHA6ze/Dbdim6c+hx3QzYFpnCfL9sDzA2iaAzStO8xFBkCT4CTyZWYPTiP1+hLSviWoMRj0rOCKpukhaXydoB2XlTBbMnn+MMEaX2GgKPoIWfV4PIjHw+A4GYDjzAn9OKiqOiJNK4qC0YbiMvrzF/e3RFEYUSgcXS1xEOhNimmydgevU8+4633j86lGTgpVleF2k1AUx8IUukRRgCgK8PtPblUZxnkEdCQJtFoViKICinKNZMbPCpqmod1uol4vo9NpgSQdiMeTSCQyIxLQp5H605UTD1RYT6oEq6o6pkrJW7ePrzC4DYEXL2KxEHheBUE44HA4zsQv66pwdaMKt4+O0Fn631wG3A4Pwi6jomcEeXFfDKl4ZCJfYooEjFeNjC8twNLPQRbJZAQsKy9IZEgXfzpNwOcwziOgY5guBIE5E04iKTKeb23jmfptFAbT7UtzECQ2olnU+u0HSqZ/HAgQ8NJueCn30LUHCU8Ym+EVBGdoH1RVBd3uqDr32XCSUWEr8/Y0n4vD3yHm2oa77T3c7eyBkWbvXKBJChlfHPlACjl/Ell/Ep4ZBZzMbrFpOImkyNjrl3G/W8T9TgFtoXfsYz2UC+94yQ/DcQqnsgO6OXBeilLTQJdFbR0hX8lkBj7f0Td/Fjt15cSeEeD1wTA9K/Ppdnvg9wfhdnsgiiJEkQfP8xBF/tQKw/BlXIXhorQNiKJgyeH3em1DuciNcDhmBDgRxGKBhdtpZpxNpUBzXpHnOcup6hmzUac6Tt0UmP14apqGwaBvkLKDFkhTqCQcji20rW4R77upcGWKVnAcA4qi8dKXvnJiQnORZ+iWAUHgUauVUa9XIEkifL6AkRBKjF32O62tJyknOhwOqyOAIIiRJNCwXDowfdfDWR5TURFQZIoo9AsoMgUIynwKdhcZcW8Ma4F1rPs34HdO9lkxhWRarQa63ba1182s3I1b5zAPFvHem7M2uvhNG6qqYG3tKtLp3MTPcZFn6OZBjW3h6dptfKO5NXUFLOoO4SWJG3hJ+jpyyRjabQYddmApJ5aYOipMY6HKicuA2+GEl/bAS7vhozwjAZuP9gwFbx54qMUE1KIoGMJuTWNlkGp008QMXrI8TnJY2Go8JxlNPHu93qm/QzRNQ2lQx53OLu60dk8MiCZFzB1GLpBEzp9E3p9E1D1Z19EknyVdFMaownUL2OtVoGhHW/iPw8+89M1wnxJw2gHdHLhoznMYPM9Z1bhR8pU8sf1qUcpXpnKiuYiU57kTWzlmqTCc514mhhlY6wzMwXtTmjYSiY4ISpy1nebOsAMp5wOnakIXwThwql6vD36/H/F4cG47OY412qka1sJ1t9uLQCAIvz+IQCA4s+AGMPvxNPfUdbstQ4FPAUXR1g7BccuKT8ILIaAz9+TUamV0u204HA7EYikkk+mxCaFF22oqJw77kpNmi2epMCz7mHaFrlWFq7JVaHMsJicJEg7CMddzHIaiKgt9vnFIeJLYDG5iPbgxtkVzrF2Kgm63bVXvFEUXJTB9SCAQPLELZBLM8t4frKDQfYmZdPD7g5YvmXb27kEK6ERFwnOtbTxTu40SU5/qdx2EAzej63hJ8gby/tSJO74A/bu4yXetAK88qKPGtZauIgno1bSA04uQK4CwK4CIJ4BsNAZScsBFuuCjPPBQbjjOoHPIVOc216Kcps59npzkcKBnwlRCHa7mTcpJzPPgbnsXd9q7KDONhdjtdriQ8yeRC+gBXsaXAD1F4CkqEnZ7ZSuI6wqDmexIeqP4sYe/79QWUTugmwMXwXkO43jypbdCXRQ7F4WztNUkF3oQ1zKWilPWF/hJQhwOB4FwxLtwOwkQU5EGvQIyWs3jONZaNg4AoZCpDplYiBKTKAro9TrWMmtz/s3hoKwAz7xMOuc16ft+HPEKBILWMvh5RA8e5ICO5znUamU0GhVIkgS/P4BkMotoNLHw9+m8sfDdfpqKKlu1grieOF/m2Et5kfevYC20ilv5axj0hIUeT0VV0BW76AgddIS2cemgL82nNjcOBAjk/DlsBDexElgFPeG6GU3T0O93LT8yPIOpE78g/P4QAoHplFQnfe95nrOqcGYXBk07EQ5HEQpFEQqFj/X/k+CyBHSKqoJXBPCyAM648LIAzrivJzC4096FqE5XNYt7wnhJ4gYejl890vY2rZ2SKqPGtEYqebMqJ/ppD0KuAEIuP8KugH7b6UfY5UfA6R8J1s7a341ykiYkSZpYnfui+GZVVQz14tF9pEc5SQL6ntTJOElfZHGvs4c77V3s9soLm0cmCQJJb8yq4OX8SQRd/hGxskq/ZQVwhX51bvXTpDeK7938diS90VMfawd0c+CiBHQm+arXK5BlCX5/EMlkZirydRZ2LhrLtlWv6DRHFB7dbi/MpeLmThITmqZBVDn0xSb6Ugt9qYWB2AYrd5eSAXcQFHx0GH46Yl18VBgux3TVL305KwNB4MAwXVQqVWiaimAwjFgsiWg0sbAZLbPi0u93jTbdg/Zcn89vkbKTRHZOet914tUyiFdnDPGKLOy1PGgBnaqqaLcbqNXK6PU6cDgoxON6Nc7rnSwhdFa2LhKL6kqoslXs9Lax298Br8wuvQ4AcXcCK4EV5P0riLgip1YqlgFZldEVOmgbAZ4Z6DHyYuaYKILCamAVG6EryPqyUwkUHHSB9KxAz9xXSFG04UNCRhUvcOx89XHHVJ8R7li+hOc5Qx0zaPmSRSo9n0dApxIKNJeCaquDgcBZQRovC+AV0QjYePCyaN0/baB2EijSgYeim3hJ4gay/uMFPhZx3rMSb8nim0uuOVmAh3IZFTY/Qs7hwM2PoMsPmpz8u+IsPp+CwI+0UuqqrF5j51l0YmGyi+6bFUU2AjsWg0EX1WoVmqYhGAwjHk8hEolP/D3OyyLudwu4297FVqew0HMY0FdlrASSCHi9eK66s5A5z4wvjs1QHpvhPDK++MS+0Q7o5sBZBHTmDjVZliHL0pFrXf1vmHxl4PXOtndjHjvPA4u21ZwF02X6W5b62kEr5YECmqqpYKSOHrRJLfRFPYCT1PmI3CJAEU746TB8Q4Genw7D6ThZXMA8nvV6F/V6DY1GFb1eBwRBIByOIR5PIhyOLVR8RlcC1Z22nn3vWW0YNO1EIBCyWqy8Xj9Ikhx530VRQq/XPZZ4hcNReDzLWbFx2QI6VVUN32H6jwNfIoo8ms06ZFlCIBBEIpFFLBafS9jmsviSeXxznatjp7eNnf4OOJk9/ZeOs4GkkPPlkPevIOfPw0Md/axelOMpKqIR4BlBnthBh2+Dm2O1gtvhxlpwHZvBK0h4plfvAwBZlowAr2cli1RVF9kxV2WYgZ65SmL4mA4GjFXNN5NBTqfLqObre6eWJT50lgGdqqn4651/wNcbW1PN8CwKCU8EjyZv4lZs89SZIGB5572qqTOrHI7DMuzUOUnPCuI4jjU4SdhKLM8iGnRRfMlpOOAkHdRqNTSbNYuTRCIxxGIphMPRiTmJrCoo9CsoDGoo9KsoDeoLD/BmgZdyYyOUw2Yoj41QFl56NiEoO6CbA9MEdA4HAb/fiUajC54XoSiHgzP5CNkyHzMOesaWhtvtQSKRmZt8mbgsH3RgcZl1humj2ayj1apDFIWhuSq9bUEjFKPi1kRf1AO4gdSBhot9fA6DJt1WcOenI1Z1jyb1L9Vxx1MUBTSbdTSbVTDMAA6HA9FoArFY0ljQuwRFNENk54CY9Q31Q9LYHxVCKORHuVxBp9OBpunEy8ycB4PhM1F9PK+ALhh0o17vgOf1HYujCZ+jwZr5mGERomE4HA5QlBORSBSJxOwJIU7m0OAaaPB1NLg6umIXlMMBJ+GCy+GG2+GGm3LD7dBnS1wONzzGzy7KBQexHFXU0zCNH9FnNZp6ENfbnqta5af9WPHrVbiUN31EwUySJLDsACzLgGUH4DgGoigsVGYcgKEq6h2ZXZlWIRcAeJm3grsiU0BxUJypM8FP+7ER3MRm6ArCrvDUv2/CXI9g+pF+v2spMuurMoIIBkPQNAmVStVKBukJPN2XTLNnU9VUlAZFNPgGCILA9fCNsYH5OJxlQPePpWfwucKXFvL3JgVNUrgV28Q3JW4g44tP9b1xWTjJouw84CQ1NJt1SJJocRKzlXKcgMhJz6e3NY76Ek3TFu5LDouweb3ehc/LC4KAVquGRqMGlh3A4aAQjcZn4iSqpqLBdVA0ArzioDb3YvNJQIBA1p/Qq3ChPNK+2EK4lB3QzYFpArpicRuFwt6R+83ATL9QQ9fUyH0Ox+jPJEkuhUxfFucJzJdZZ1kGzWYNrZa+BJKiaERjcXhDHmhOSa+6SW30pRYE5cGWSnY5vPDTEQScEaQiabiUCJw4OlvGcSyazSoajRoEgQdNOxGLJRGPJ5e6gFdV1RFiNhh0IcsyAoEQQqHI1MRrUTiPgE5VZXz5y18Yu+Caoig4HOP9x/D1wWP065mqIaqMJt9Eg9ODtwbfwECabeDbhJN0WgGffu22rj2Ux/jZAy/lgdMx/3ynidP8iKZpaAttK4ibdbaMAIGEJ2m1UoacenuU2T44TLgYZmCpdxIEaQkERCIhcJy0UCJmzrEcVaOjh1ToTlbIPQyKIuH0EXh69xu417mHOjedOIaJqCuKzdAVrAc34KNn7zwxIYqCNYfX7/fAsgO43W6EQnoFLhiMTDWmoJ8bLWx1t3C/uzXSaut2uPF9m98PD+U99XnOMqD7xPOfxU6vtJC/dxrS3hhekryBh2KbcDlm2y14WTjJPHaayQczsWx+v+rJ0wT8/uBEflqWZcOP6L6EYQ6CN8AUHvHD7/cjEPCCZRe5h07fHawHjwxkWa98EQQBt9s74kO8Xt9Es66nHVOOY9Bo6JU785jF40nEYqmZW6IZiUNxUEOxX0NhUEWFacw9BwcAPtpjBHA5rIdyM69IOAl2QDcHpgnoFEWEpokQBAUE4bDI1LJ2dU0Dfa5Jr4h0uSZklQMBB2iHCzTlhpNywUV7hpZzO40g82z2NR2HaR0oyzJotfSsF8ezIF0q3GEn4FEgYIC+1ISizb608kGCk/Qg4koh7Eoj4krBT0et99rMIJqOVJYluN1ew5Eml76Y1+EgEA570e1yC2u17fU64HkOqVR24t87j4DO4SAgyywGA37EjzgcswVmk0DVVHSFrlV5a3ANtIX20pURT4LL4ULQGUSADiLgDOi3nUEEnUG4pgz2jvMjHaFjBXFdsTuTnTTpRM6fw4rRSknBYQVtw4TLrJ7StBNerx9erw8+n35tZrjPSlhrMoXc4VUoOlEbDoQO29oX+7jf28J29/7MxzLtTWMjuImsPwc/Pf1M5zg4HEAk4kenw051TFmJxXbvPra699AW2sc+7kWxF+OlyZed+nxnGdD93zv/iC/XnlvI3zsMU/lxM5THS5I3kPbFZ3oevX22b+28VRRpyN/RIzzkonCSWT6fZmK52axDEDg9sWxUm06ahzP3eJrBG8PoPsWsQJu7PE0fYvoUUyTlLHyJJIkjipbmbUXRORZJkkOdAQeK28Oz85PaabammsdykZxEVhVUmSYKA72CVxzUJtp/R4BAPpDCptFKmfRGJz43TU4iCDySyczEttoB3Ry4KKIo02C42tFl6+iKDfDoQ6EFqLQAjTzBNo0AoRKARoLQCBAaCYJwgIQDDoKCg6BAkTQcJA3a4QTloEGTLtBGQOimfHA7fHA5PCAW0Ls+yTHleRaNRhW1ThGM2oHmEgG3AolkoWK58wMECPjoMIKuGELeEHhBxDFdb1ND01TwygADqQ1Wnn//ymmgCCfCrpQV5AWd+qCupmnodttGtbMBVVXg9wcQi6UQiyVA07NlZU+0ZUGfJY7Tz41GowpRFOD1+vHIIy99we+hYyTGqrqZ17J6eRIdTtI5EuDp1wEEaD3YO2kPXYs9COJOIuqn/f3VwBrynhx8qg+8kbFm2YGl3ma2OZpEy7w+6fNynt8hRxVyWUNI6aAi5XK5LWLm9weQz6chCNqIrZqmoSW0cL+7he3e9sxzh0FnEBlfFllfFmlvBs4zqP7Iqoz9/h62uvdQYkoTJTRuRG7iW9OvPPVxZxnQdYQ+PvH8Z09sLSMJAm6HCx7KDQ/lhJtywU254HEY19TBtXnb7XDB5aCnDqhMTjK8f9JMIOhqyAGEQkEMBhxEUYAsS5AkyaoADYMgCCvxrAd75m0zGT1827nQefBJzyW900XvDuI41moZjEYTCIUiR46foigjSSDzWlV1/kLT9CE/4ofb7TnxtZ3nyqeDQI+xqnkcx1qvx+FwWIGe3+9HOp0AQENVJ2x9VlX0em00GjW02w2oqgq/P4hYLLkQTqJpGrriwKrgFQc11Fk9wWkmMzZCeawHs3BT0/0tjmNRr1fQbNYgigJ8vgAefvjRhXMSO6Abg4se0JmLp/v9HtpMDV2hDlbtQqF5KLQInBS8LdUwgCbccJIeeCg/vHQQHjoAt8NnBX00OVs5XtVUtJkqKp1ddPgqBGKgv1ZiuacvTboQoKPw01EEnFEE6Ch8dBgk4Vj6e6+oMhi5i4HUBiO1MZA6GEht8Mp8LXAngSQohJ0Jo4KXRsiZADQCnU4TjUbVWAqsIRSKIBZLIhSKLGQNAjDfZ0mWJTSbddTrFTBM31jtkUQ8npq4rcXEZQ/odGEfBl2xgzbfRt0I3uYR97jocJJOBJxGVY/WA76gO4ABuni2chsNbrb9RTRBI+VKIqpF4BQocMxBJpqiqCOEy+PxTk0mL0pScBimQu4BMdNvH8yqueD3hxAMhhAIhEd2YZnrHba7W9jp70JSp1s8bYIAgbgnbgV4CU9yYrGLSdpta1wVW90t7PS2IU0poPDda69H0ps69XFnrXLJyyJKbBUqpUAVASfhHAnUnORyKv5me7G+W1Kfj2bZATRNA0EQRjugLmDj8wWMwATwein0+wI0jbDGTTRNs4I7SRJPuS2ObVM3d+O63V643W643R643R64XJ6FKoTzPGe0U9bAsgxI0jESxJm+QFFkMMzAuPTBMANLvRXAkSSQz+efKUC5aL5E0/R2zcOBHs+zhrCRPj8fCISMS3CiOUJFUdBuN9Bs1tDptEAQBEKhiHXcF8VJNEJFKOwB0xOhKNNxTUmS0GzqInQ6J6EQiyUQj6fh9weWwknsgG4MLlpAJ0miEbxV0eFrYJQOZIo73+BtRhAg4SK9cFM+eCi/Xtkzrs3Az0W7QLp57Df20WQq6HA1cFpv6cGblwohYARufloP3k5aFXBezlNWJTBGcDeQ2mBk/bagLJ6wEyARdMatCp6fjKLX6aLZrKLf1yuIbrfXmHmLIBgMT/2FaWLa46mqKrrdFur1KjqdJjRNQzgcRTyeRiQyu2rnZQnoJFVCT+iiK3bRNa57YhddsQd1SSp3pEbApbhAagQUUoVMKFAIBdqSP5tnCQdIhBCCj3fDI7pAgoTT6YLP54fPFxghXIsgxxeNhJ0ETVOgqjxKpSq63Q4YRq8G6SsFzAAvZM3eKqqMwqCA+737KAz259obRZEU0t4Msr4sMr6sNas49rHHHNOe2MP97ha2uvdmmg31UT58c/pbsBpYm+jxl2UP3bTQBa76YJieUYHrW4kOt9tjqY/6/frnxZwlYxizlbAPlmWBQ9VQgiDhcJAgSQdI0gGHwwGSJI3r8bfNINC8qKoCRVEgSRJ4ngPPc1aVCNDbn80AbzjQc7vHB3uHj6cg8Gi16mg262CYPkiSRDgcQyyWRDgctSqTZuA2XJk052Z9voDhT/zweHwLqyheFl/icBBwOBQUChV0Om30+12rMuvzDQd4oVNFnCRJRKtVR6NRw2CgcxKP54CTBAJny0k6nRYajQo6nRYAIBSKIpFIzaUkbgd0c+C8nOdw2brN1tDhqmCUNkSShUILAGm/VYuAg6ARoCPwGxU3vQIXgWPCZbgmLprzlFTBqOaZwZ5+veiVCwE6irArjQAVB8nT4Po8ut02RFGwVguYYgTTZKImOZ4mMajXq9acn9frRzyeQjyeXEgr6EUK6DRNAyuzeqBmBm9iF12hA3bZFTcNcKlOeBQXfPAh5ooh7osjGAwhGPSi22UgSQoURYakiuBlHrwiQFB5CIoAURMhqiJETYL+T4YMCTIU4PxGdMeC0Aj4ZS8Ckg9RMoKAL2QFcLNmyyfFRfMjJ+GwrYoio983d8bpOyg1TYPD4Riq4IXg8wUgaxJ2+7u4372PClue2xYv5bWqdxlfdkR5cthOVuCw09vBVncLNa46/WsmKKwF13AldBVpb+Zcqv3nzUlMNUVz/s1syaUoeqTypvt70grezKCG43TbD2bAAggEAkgkIuj1WEiSDEVRjGBMhaoqxkUde//o7eOTVzTthNPpBE27DDJNAFAtlWBB4Ed+fzjYMyt8Pp8X0WgAOzsF1OtVDAY9a+VPOBwDTdPgeXao8qYHbyRJWskf6TdWRQABAABJREFU048sa9WOicviSw7baVZ4zXVdw8q1Ho/XCO7CCAZDJ1bfJEk09ky2x3KSUCgCn2/xnETXHjA5iQyv149EIoVY7Gw5iR3QjcGinaemaVA0CaLCQ1R5CDILRuiBE/vgJQaCwkPSeMiaCI1UoJEXj/BcVjhJNwLOOILOGAJ0DAFnFB7HdOXu43BZnKcMHhLVwX5zFy2ujL7UWujzuxxeBOk4fI4wSMEJqa9h0OtDURQ4HA4EgxHLmZ6kgHXS8RRFwZqL4zjWUuJMJFLWcmxN0yAoDHpiEz2pgZ7YRF9sQtUUhFwJPBR5FTzU6Y7xvERRVJeAvXoZba4zFLx1zmzOjVIpI3jzIuqMIulLIejXyfjwl+i8572maRBVEZzEgpU4cDILVmLRE7roi30M5AFYlV26OAuhAQHVjxSdRN6/gqAvDJ8vMLWs/7y4LH4EON1WVVXBMH2LlPX7PaiqMrKaJBAIg3RR2GN2cb93Hy2+uRDbIq6oFdxlAikwZBdf2f8adnt7M1WsM94MroSvYjWwBnrKZJ+JyxLQmaI5PM8ac5SsIaJzMANFkqQRnAStIM7hoMBxzEg1iuP0RJPZamlWony+wEg1apHrAA4qc3qSQRQF48JDEIShn4Uja16cTteIkJ2q6sHi4XZO8/W4XG5omgqWZSEIh4O3wNBrPXuF5sviSyaxUxB4I8DTk0Vmi6rL5baqd8FgCC6XZ+xxNoNEM7jTd1AqcDgoBINhi5OcJKxykp2CIKDZrKJer4LnWUuJMx5Pz7UzehzsgG4OTOM8RY0BXBxa3Q54iYOockbgxkGQOYgKB0kTzm23GUU6EaRjCLkTSIVTGDA8JFmEosn6RZWhaBIUTdGvVfng/zQZiipBNW6fp/rdJHCSHgTN4M0ZR5COndgyOS8uq/OUVAEdoYaOUEFbqKIn1hf+3vqoMLxkCA7RDYUBhJ6sV3xc7qEAL2ypc42z0+yTN2f3CIJENBpDPJ5GMBiGoLLoiQ30xQZ6UhM9sXliNTLkTOAVye899Xw464CuwlTwhco/zKwSOAtIjYRbccGn6cFbwptENBCDz+c/df7gTFQZNRWszKIv9tATe+gJPXSFDnpiD4zMQJ3RnxIgEKWiWPOv4Ur0KryuxX7xzoLL4keA6W01K+o6KesYrVWyRY6DwRBorws9YoAaX0OZKc21yHxehJwhXAldxWZoE74FKG5etIBOb0M0AzYzeOOswATQBUt08Qp915jH44Hb7QVN05aC6+E5sNHgLTBRK+F56Q/IsmwFe6IoHAn4RFHAMC0mCAIOh8PaHXwQ2Abg9Zqv9eyDt3G4LL5kphEDSRwJ8FhWb5mmaedIi+Zxaw3MZJMZ4JntmS6Xe2Rk5DRO0mo10GhU0Ot1QJIkIpE44vHUWOGbRWFSP7L8Lb0PKFRNwTON/y8a/P55m2JBF/CIWUFN0BmH2+EflcYmZ/+gq5oyFATqgaCkihAUBrzMgFcG4I3bgsJA1qYbNJ8GLod35LUGnHG4HafvBbKhnycJzwoSnhUAuvhKV6yjLVTQESroiLW5Z7AYuQMGHf0HH0D6HPCQQUiyF3W2h+r2HgiFgt8XRCgURjAYQSQSsdQ1q9UKms26rq4ZCCK7nofDCzBKG1viF9EvNyGpwlQ2dcU6RJWD6wKdJ6Ii4nPF/9/InquFQwPcqh68RegwEt4kEoEk/P7gUlsJ5wFJkPDTfvhpPzK+0ZUTB22oPfTFHvpSDz2xr1f4pD6UMedu2pPGRugKVgOrcFPus3oZL3gQBGEQ/AAymby1DNls0Ww0atZevoDLjZT3RUCAxIBk0JRaqHFVyEteOeNyuLAR3MSV0BXE3AfLsUVRNGa9zJkvBrncGhKJ9FLtmRd6CxiDVqsBhmGGKm6sFZQAMFoKPQgGQ6CouDWvpihGG7Ukodttodk8ECIBDubAgsEwMpm8VY1apLLksqCrZeqqmD7f+IDdbDM1gztZFkFRBAAKHo9/RADIxtnB3N8XjSYA6Gu5BoODAG9vbwuapo2tJDudesutGfTl8+uQZRm9Xge9nh7g1Wp6G7jPF7ACvHA4DE3T0Om0Ua2W0WrVoaoqAoEQNjdvIBKJn7q/U1cSHk2EaJqKRx552cLPIzugmxHbvWfONZijSbcetNFGNcoZh9ux3P5sknCAJBygyckUhGRVtAI8XtEvwnDgpzATBQ4uh89qmTQDuItEyi87HCSFqDuDqFvfi6JqCnpi06rgdYQqZG02pToTKhQwahsg24AfgB+g4ISseNEZUCCaNKi7HrhoNzhpAMKrwpkmAVpATdlHSRSB+UwACQco4mIFMH2xt7BgjtAIuOGGl/DA5/AiQOl73GK+BIL+0IUN3qYFQRDw0T74aB8yvtFdPpqmgZM59MQeOJVBJBiATw2BJha/7NXG9NArOfoC4lQqa+3dGlZHZEo64QnChaT3JlQPwFAcWkobbXEx7eIkSOT8eVwNX0XOn4ci6SqExeauRbzMAMbhoODz+RGNJhAMhhfy95eJ7e27KJeLAA4CGJKk4HS64HTq7YJ6lUocWU9hgqKokXUAZnXO5XKfyRzYeYMgCONY6T7jslS9XmigKMqaYwR05Utzv+Fg0EerVUelUgAAI4A3A7wAfL4gKMpcK6HvVBQE3qre1WollEp7IEkSNE1DEAS4XB5ks6uIx1NwucYnBQ+Ct4MWZJY9WADv8XitgHEZnyE7oJsRXbF+Zn9reA4sSJsBzcV3qhTphJ90wk9Hxv6/pmmQVGEo2NMDPQUSIv4InGoQXkcULsdyF1rbGAVJOBB2JRF2JbEOfTfeQGobwZ0e5Inq/G1RMkTIDtEK8AA96BrZI7jAIu/V8MvgIC+Wy/NQXpAgp2ohdBEuBGhdnj/kCiPqiSDsjsJHX3yfsGwQBAEv7YWX9tpE7BKAIAhLhCIWSwI4IEWmAMdg0APNaUghjCQZhuLXwFI8OloX7JTKvjF3HOv+dcTJKGROAlPq4Rnmi1bwpq+iCCAeT1mtgyfN/V5EDFfhNE2Doij6XlmSOmF328ES78v0Wm3YMKHP64dHki66GuuBEmu5vG/NRbrdnhExH6/Xj2Qyg2QyY7WK9/sdkKQGvz8Cj8c/8tk4UDMdFf85CN70BfDxeNpYBO+fWW1zUlwsdnOJEHTG0eSLC3kumnSBJt1wOvQdbk7SDZfDC78zuvQ5sPMEQRD6a3a4EUTMut8mYhcLBEEi4Iwh4IxhNXDLaHnroSvW0RPr6Ip19MXWQuZEF7kU3kFQCBhJkIzvCoLO+MKee1Hw0l68JPEovlz/0sj9JEEi6Awi5Awh6Awh5ApZt2ddtmzDxmWA3jKlt2makGV5JPs+6PcQlDwQCQm8SwTvFNFDHzKOtme6STdSjiRCUgBaWwZTa4FBCxSlt90lEmlrJsrpPLqg/rJhc/M6bty4Bp5XQBDUpWiFtGFjGaBpJyKROCIR/bvfFEoZXrnRbNYO7Us8aNXM5VYRjfrRaPTQ7/eHKm+jwZu5ikL3JQF4vb6lB2/jYAd0M2LV/zDafBkdsXbk/xwEpQdmRoBGO9xwkm44HR7j+uBnmnRPvCzVho2LAL3lLQQfHULWdxWA3qbZF5voig0r0GPl3pnZ5CDoI225Xur4PVUXCS+KvxhroVWIFAuRU+GngvDTftsv2LBhgKIoa67FhCgKQ9n3HgZMHyzBgnFwkJwKHCoJn+CBV3GDppzw+DzwJQ5EOx6E4G0c9FY0OyFqw8Zh6GszdMGfRCIF4KDSZvqSbreFalUv1lAUBbfbjcGAAaANrd3Qq3lm5e2iJE3sgG5GOB1uvCz5evBaF7RbhcgBpOaCk3RfuLYuGzaWDZJwIORKIuRKWvdJioCuUcHrGYHeInbiUQStV96ccSuA81LBS03Oop4oIpEVm4TZsDEhnE7XiEiCKbgyGPTAcQwCAS8cDjfcbh+czsUsgbdhw8aDBZIkjapc0LpPliUMBn2wbB8kqSGVysLt9sPrXdwS+GXAjjzmAEmQCNIxREI+tFWbiNmwMQza4ULck0fckwdgtDsoAz3IE/QqXk9qniiMQxHOgzUURvukh1rMHkEbNmw8OBgWXLHb9m3YsDErKIpGOBxFPB6/VH7EDuhs2LBxJiAIAh4qAA8VQNq7CUDfNzaQ2uiKdQykBkhKA6V54Kf0mb1FLYG3YcOGDRs2bNh4UGEHdDZs2Dg36OIfMQSdMTurbsOGDRs2bNiwMQMubjOoDRs2bNiwYcOGDRs2bNg4EXZAZ8OGDRs2bNiwYcOGDRuXFHZAZ8OGDRs2bNiwYcOGDRuXFIRmbsazYUHTNKjq5IfF4SChKBd/5uey2AlcHlttOxeLi2Cnw7G4PNc0vuQivPZJcVlste1cPC6LrRfBzkX5EpuTnC8ui53A5bHVtnM6GyaBHdDZsGHDhg0bNmzYsGHDxiWF3XJpw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cUdkBnw4YNGzZs2LBhw4YNG5cU1HkbcBGhKCpaLWaix5IkgWjUh1aLgapqS7ZsdlwWO4HLY6tt52JxUexMJAILe65JfclFee2T4LLYatu5eFwWWy+KnYvyJTYnOT9cFjuBy2Orbed0mNSP2BW6OUGSBAiCAEkS523KibgsdgKXx1bbzsXisti5DFym135ZbLXtXDwui62Xxc5l4LK8dtvOxeOy2GrbuRzYAZ0NGzZs2LBhw4YNGzZsXFLYAZ0NGzZs2LBhw4YNGzZsXFLYAZ0NGzZs2LBhw4YNGzZsXFLYAZ0NGzZs2LBhw4YNGzZsXFLYKpc2bMwIURQhCPZHyIYNG7ND0zQMBgNo2sVVe7Nhw8bFh81JXtiw33kbNmbAYNDHc889DVVV4XZ74PcH4fcHEQgE4fH4QBCXQxXJhg0b5wdN03D79rNoNusgSXLEj/j9QVAUfd4m2rBh4xKg3+/hueeehqZpFifR/UgIHo/X5iQvANgBnQ0bU0IURdy9+w14vT5cu3YVlUodvV4XjUYVAOBwOEaImc8XBEXZHzUbNmyMolTaQ7NZx8MPPwyG4dHtdlCrlVEq7QEAPB6v4UdC8PuDcLs9NjGzYcPGCERRwN2734DfH8DVq1dQqdRO4CQh+P0BOBw2J3nQcCHe0f/6X/8rPvShD2F/fx+rq6t4xzvege/+7u8GABQKBfz6r/86nnzySXi9XrzpTW/CO9/5TjgcDuv3P/axj+EjH/kI6vU6HnnkEbznPe/BrVu3zuvl2HiAoaoq7t79BjRNw82bL0I6HYXXG4Ysq1AUBQzTR7/fw2DQRbVaRLG4CwDwen2GQw0hEAjC5XLbxMyGjRcwWq0GCoUdrKysY2NjA+02g1QqD03TIAi85UcGgx7q9QoAgKKoET/i8wVGvgtt2LDxwoKqqrhz5xsAgJs3H0EqNY6T6H6kUjnMSUJWN4DNSS4/zj2g+2//7b/h3e9+N375l38Z3/Zt34a//Mu/xM/93M8hnU7jkUcewU/+5E9ifX0dn/jEJ7C3t4d3v/vdIEkSP/3TPw0A+MxnPoPf/d3fxa//+q/j1q1b+NCHPoQf//Efx1/91V8hGo2e86uz8SBB0zTs7NwDw/Tx0EPfBJfLNfL/DocDwWAYwWDYejzPcxgMeuj3u+j3u6jVygAAmqZHnKnPFwBJ2hpFNmy8EMCyDLa2nkckEsfKyvrI/xEEAbfbA7fbg0QiBQCQZRkM0zOCvB7K5T0UCgoIgoDX6x9przrsl2zYsPFgQtM0bG/fAcsOcOvWo3A6J+EkrOVHer0OarUSAICmnSPt3jYnuXw414BO0zT8p//0n/Cv/tW/wpvf/GYAwNvf/nY89dRT+OIXv4hisYhSqYRPfvKTCIVCuH79OprNJn73d38X/+7f/Ts4nU48/vjjeMtb3oLv+77vAwD85m/+Jl772tfiU5/6FN72tred58uz8YChViujXi9jY+M6AoHQqY8nCAIejxcejxeJRBoAIMuSEeDpDrVQ2IGqqiAIAj5fAH5/EKlUBm63d9kvx4YNG+cAWZZw58434HK5ceXKjYmy4hRFIRSKIhTSk5SapoHjGMuPdDotVKtFAIDT6YLfH0QoFEEikbaz7jZsPKCoVotoNKrY3LwJvz9w6uN1TuKDx+NDMpkBAEiSzknMxPNhThIIBJFMZuF2e5b9cmzMiXMN6La3t1EsFvGGN7xh5P4/+qM/AgD86q/+Kh5++GGEQgfk+Vu/9VsxGAzw3HPPIZ/PY2dnB6985Sut/6coCi9/+cvx5JNP2gGdjYWh1+tgd/ceUqmc5QhnAUXRCIdjCIdjAHRixrIDi5g1m1W02w088sjL7Lk7GzYeMGiahnv3noOiSLh586Uzz7GYlTmv149UKgsAkCTR8iP9fhfb23egaZr1/zZs2Hhw0O22sbu7hXQ6b1XyZwFN04hEYohEdE6iqupQsqiLer2KVquJF71odn9l42xw7gEdALAsi5/8yZ/Es88+i3w+j7e//e14zWteg0qlgnQ6PfI7yWQSAFAuly3Cm8lkjjzm+eefn8s2ipqs1OxwkCPXFxWXxU7g4tkqCDzu3XsWwWAIm5tXrTaERdkZCoWspAXPc3j66Sext3cP168vZg70PI7nY4/9Fp544lN44xv/X/jFX3y3df8TT3wKf/7nH0e5XEI6ncGb3vRD+KEf+t9H7PtP/+l9+LM/+9iR5/yhH/rf8bM/+wsAgFKphA9/+P/CU099Ef1+Dysra/jhH/4RvP7133sGr246TOJLLto5fxIui60X0c7t7Xvodtt4+OFvgt/vA7A4OynKDY/HbX1Hbm3dwd7eFiKRCLxe33yGG3gQfcne3h4++MHfx1NPfRGapuHKlav4N//m3+HlL//mM3h1k8PmJOeDi2gnz3O4d+9ZhMMRbG5eAUEskpOQcDpNTrICjmPx9NNPYW9vC9euPTS/8Quzczos248M4wtf+Af8zM+8w7j95WW8nLE414BuMBgAAH7xF38R73jHO/Cud70Lf/3Xf42f+qmfwkc/+lHwPI9gMDjyO+Z8gCAI4DgOAOB0Oo88RhCEme0iSQKRyHRfgMHg5ShHXxY7gYthq6Io+Pu//xIoisK3fMs3HznXgEXb6YOqvhhf+cpXkMtlkM/nF/bMZ3U8//Iv/xL/9b9+GgDgdFLWZ+nxxx/HBz7wAQCAz+fD/v4ePvCBxyCKrDUTCwDb21sAgEgkMnK8E4kYIhEfOp0O3va2H0e9XgdFUXC73bhz53n82q/9Cnq9Ft7+9refyeucBNP6kotwzk+Ky2LrRbGzUCigVNrHrVu3sLGxcuT/F23no4++GJ//fA/37j2Hf/bP/tlCxVMeFF/S7Xbx9rf/JJrNJlwuFxwOB5555mm8851vx0c/+tGR7p/zhM1Jzh8XxU5ZlvHVrz4Fp9OJb/7mVyydk0QiPijKI3jmmWeQy2WQy+UW9twPih8ZBsuyeOyx37J+nvZzOw/ONaCjaX3Hzk/+5E/ijW98IwDgoYcewrPPPouPfvSjcLvdEEVx5HfMQM3r9cLtdgPA2Md4PLOfKKqqoddjJ3qsw0EiGPSg1+OgKOrMf3PZuCx2AhfHVk3TcOfOsxgMBnjxi18GhpHAMNLS7fR6w0gk0vja174GknTPdS4DZ3c8W60WPvKRP8QTT3zSWpIsijLabQY8z+GDH/wgAOCXfun/g+///jfiYx/7E/z+738Ajz/+f+H1r/9+JJNJBIMe3L59GwDw+7//OK5evTbyN9ptBh/72J+hXq8jEoniv/yXP0M8Hsdjj/02Pv3pT+EP//DD+Bf/4s1zkddFOuBJfclFOecnwWWx9SLZORj08bWvfRXJZBrhcBLtNmP93zLtvHLlJp555kt4+umvYXPz2um/cAoeNF/y2c/+3+j1erhy5So+9KGPwOl04e1vfyu+/vWv4eMf/3PcvPniuV7HonyJzUnODxfJTn1v5TfAMCy+6ZvOjpP4fBHE40l89atfA0m65p6ne9D8yDDe977fRbFYPPb/Z8GkfuRcA7pUSu/7vX79+sj9V69exd/+7d/im7/5m3Hnzp2R/6vVatbvmq2WtVoNV65cGXmM+dyzQpanO8kURZ36d84Dl8VO4PxtLZX20GjUcPXqLbhc3mNtWYada2tX0Ot1cPv2N3Dr1ksWoja17OP5W7/1H/H//D9/i2xWz+CVSkWoqgZZVnH37j3wPA8AeM1rXgdZVvEv/+WP4MMffhwcx+Hzn/88vv/7fwC1Wg3tdhsEQSCTyY211+v141Wv+jZcuXIVkUgMiqLhla/83/DpT38KDDNAt9s/Utk/T0xzzM/7nJ8Gl8XW87ZTkkQ899zX4PH4sLZ2DYqiAdCOPG4ZdrpcXqyubmJ39x4CgbA1JzMvHhRf8trXfhde85rXgec5uFxetNst9Ho9AEA8Hr9Q57fNSc4XF8HOYnEXzWYd1649DKfTc8ac5Bp6vadw+/azuHXrJQsRW3pQ/IiJr3/9q3jiiU/C6XRahaazPGfOtSn44Ycfhs/nwzPPPDNy/507d7C6uopXvOIVePbZZ63WTAD4whe+AJ/Ph5s3byIWi2FjYwP/9E//ZP2/LMt46qmn8IpXvOLMXoeNBw+dThP7+9vIZlcRiyXO/O87HBSuXn0ILDuw9sZcdHg8HrzpTT+Mj3zkY0gmRxMqw1LqoqhX2QmCsIasd3d3AMDKhFEUhX/7b38Mr3nNq/CWt/xL/K//9T+t33/DG34Av/u7H8Db3vb/tu57+umvANDnEQOB09W+bNg4C5g7ojRNw/XrD5+LDHgqlUU4HMX9+7etz95Fx1n5EgAgSRJerw//5//5f+AHfuC7sbe3i1e96tvwYz/21mW9PBs2pka7re+tzOXWEI3Gz/zvU5TOSQaDns1JxvgRSZLw27/969A0Df/qX/3Esl7SiTjXgM7tduOtb30r/uAP/gB/8Rd/YQwnfxB///d/jx//8R/Ha1/7WiQSCfzMz/wMnn/+efzN3/wN3v/+9+MnfuInrD7Wn/iJn8BHP/pRfOYzn8G9e/fwy7/8y+B5Hm9605vO86XZuMTgOBb37j2HcDiKfH793Ozw+4PI5dZRKu2h1+ucmx2T4t3v/lX8zM+8C36//8j/raysWcIM/+W/fBQsy+KJJz6JwaAPANa16TwlScL+/h4AYGfnPt773l/C//yfnx37d5988gv45Cc/DgD43u/9AVum3caFwe6uvrfy2rVbR3ZEnRUIgsDmpr4e4f7921br0UXGefiSnZ1tKIoCQN8T2O12F//CbNiYASzL4N49fW9lLrd2bnYEAiHkcmsoFnfR71/8z8dZ+pE//uM/ws7ONt7whh/Ai1/8kmW+rGNx7rI9P/VTP4V3vvOd+MAHPoDXv/71+OxnP4vf//3fx7d8y7fA5XL9/9l78yjJ+qpKdMc8z/M8ZkaOVfXVNwDSgjY+EQS7AaUVtJeI/Ryw0UZk8fopg0uUFkUE+iHdik+bXuJCW104NG0rvtbGD/mGqhwjI2Oe53mOG/e+P25EZGZVDjHlUFWx16qVlZkRN39x494T+5zfOXvjt3/7t0GSJN7+9rfjox/9KN7xjnfgJ3/yJ0fPf/vb3473vve9+NSnPoW3ve1tSCQS+N3f/d2FqfgCU4EgCPh8u+BwuHC5Vq89OTAaLZBIZPD790EQvYufcI04b26Nw+HgR3+UthH5wz/8r/jO73wNfuM3fnU0Rzs8z0tLS/ie73kL/s//8yfx1a/+f/jLv/xbPPfcKwEAv/3bv/XQcZ9//uv44Ad/Fr1eDzabfVFVX+DGIJNJIptNwW5fGsu38jJBxzMPKpUS0un4ta5lHFxHLPngB38ef/mXf4t/9s9eg3v3XsL/9X+9/5FIfhd4vHHkW8kb27fyMmEy2SCRSAechLjWtVyEq4ojgYAfX/zi/wuVSoWf+In3nvLXrgY3wlTiXe96F971rned+jubzYYvfOEL5z7/3e9+N9797ndfxtIWeIJAURQCgX30eh2sr9+9ET5wDAYDLtcqdnZeQDDow9LS2rUH9Gnx9re/AxwOF1/5yp+i2+3gTW/6F/ja1/4Gu7vbkEppwvva174Wt249M+o753A4eMtbvhf/9E/PI5GIo16vj6pt//AP/x9+4Rc+iF6vB6PRhF//9c/OLCCzwALzwJFvpXEm38p5QiZTwmAwIxYLQSqVQyR6dFuT5x1LAECppOcLf/iH/w3+4R/+F/x+HxKJOMzmhxVJF1jgKjD0rSSIHjY2boYP3JCTbG+/gFDIB7f7+gvf02JeceTjH/9FEASBn/7pn7vWkY/rvzoWWOCGIB4Po1wuwuPZgEAgvO7ljMDj8eBweHB4uItcLgWt9tE1Cv6O73g93vSmfzGqgv3BH3wRAOBw0KJGL774Ig4O/LDb3VhaosWShlXAoUUB/bhvjpI5m82OT33q/4FGo73ql7PAAg+h02nj8HAPYrEUVqvr4idcIcxmByqVMvz+fWxsPD1XK4Orxjxiyde+9j/xj//4v7G87MH3fu/3P/Q3HlTQXmCBq0QsFkSlUsLKyq2ZlSXnCR6PD4djGX7/PvJ5JTQa/cVPuqGYNY6UyyXs7+8BAD70oQ/iQx86efx/9s+ewb//9x/GG9/45kt/LdfecrnAAjcBhUIOyWQUFosDcvl8lODmCaVSDa3WgEgkgFZrdhnc68A73vE2vOEN344//EPaoPN//I+/QqGQB5fLwytf+S0AgC984Qv46Ec/hE984pdRr9fRbrfx3/7blwEAd+7Qu6alUhEf+hCdzGm1Onz607+1SOYWuBHo9/vw+XbBZDKxtLR2LSIo54HJZMLtXkW320Ek4r/u5UyNecWSfD6Pv/zLr+D3fu8LSKWS6Pf7o2OqVCrYbPZreX0LLJDPZ5BKxWG1uiCTKa57OQ9BpdJCo9EjHD5EqzWepcZNwzziCJfLhUajPfFPLpeP/oZGo72yZHyxQ7fAE49Go45g0AuVSgOD4ea211itLlSrFfj9+1hfv3vjyOJF+K7v+m78p//0/+C3fuuz+OIX/9+Reu2/+Tc/MbIZ+LEf+zH8r//1v7C3t4Pv+Z7vBMBAt9sBn8/He97z0wCAL33pv44EC2q1Gn70R//1ib/zhS/8VygUN+8DcIHHGxRFIRTyod1uYm3tKXA4Dxv+3gQIBELYbG6EQj7IZMprUfGdFfOKJW9607/An/3ZHyMcDuH7v/8t4HK5aLVaYDAYeO973/9I72Au8Oii0aghGPRBrdZBr5+fkfe8YbO5UatVEAjsY23tqSeSk2i1OvzJn/zlieO+9NILeO97fxwAHvrdZeLROvsLLDBn9Ho9+Hw74POFcDiuf+D4PLBYLLjdq2i1mojFgte9nInxgz/4w3jXu/4NdDo9ut0uXC43/u//+yP4gR/4wdFjbt26hf/4Hz+PZ599Bfh8AVgsJp599hX47Gf/M5aWPADo2bkhWq0mcrnsiX8k2b/y17bAAqlUHIVCFk6nByLRw6pqNwkajR5KpQahkA+dTvu6lzMx5hVLBAIBPvOZz+NNb/oXUKnU6Pf7WF1dx6/+6qfwutf9H9f18hZ4gtHrdeHz7UIoFMHhWHokOEmz2UA8Hr7u5UyMecWRmwIGtZBxegj9Policby2NjabCYVChFKpce2mk+fhUVkncHVrJUkSBwfbaDYb2Ni4Cx6PP9Hz57lOkiTR6bTRbrcgFkvOre6n03FEIgF4PJuQyy9Wc31U3vubsk6NZn5DzePGkpvy2sfBo7LWq1xnuVzEwcE2jEYLLBbnRM+d9zp7vR7a7SYoioJUKj/zcQTRw/b2i+Dx+FhdvT0WcVy895NhXrFkwUmuD1e5TpIk4fXeR7vdwvr60ye80sbB5XES6WjG7DQkkzHEYkGsrNwaqz108d5PhnHjyKLlcoEnFtFoELVaBSsrtyZO5qYFQRBotZpot5vHvrbQ6bRGEtl8vnCgaHV6u49OZ0K5XEIg4MWtW8/c2NauBRZ4EkD7Vu4NfCsdV/I3KYpCp9M+EUuG/z8uJe50rkCj0Z16DDabA5drBfv795FMRq/V32qBBRagfSvr9RpWV29PnMxNC4LoDWJH60Q86XTaI04iFIqwvv4UmMzTOYnBYEalUkQg4MXm5jPnJn8LXB4WCd0CTySy2RQymQTsdve5VexpQFEUut3OCZI1/NrrHXnJcbk8CARCyOUK8Pkm8PkCMJlMeL1biET8cDpP386nZYM92Np6AYGAFx7P5o1uy1hggccVl+1b2e8TaLVaDyVt7fZRAYjJZEIgEILPF0IuV4LPF0IgECKViiEc9kEslpyp2iuVymEyWRGPhyGVyq/dL2+BBZ5UDH0rHY7lud+HwwLQsIB8PJ4c97fl8fjg8wUn4ggAeL3biESCcDiWTj0+zUlWsL39AoLBAywvry84yTVgkdAt8MShVqsiHD6ERmOYyQKAJPuoVCrI5QpoNBondtwoit6eZzCYEAgE4POFkErlI+JF92KfXu06EixQQKU6Xb2RJpArODjYRiaTgF5vnvp1LLDAApOD9q30zsW3stVqoVwuol5vnCgC9XpHsvlcLg98vgBSqRxarXEUS7hc7qnkyW5fQr1eHYgonS1YYDLZUamUEQh4sbHx9I3w31xggScJ8/Kt7Pcv5iRMJnOQrAkm4CQuhMOHkMnkUCpPF1HicnlwOj3w+XaRzSah091cMZfHFYvIvcAThW63g8PDXYhEEtjt7qmrSK1WE/v790eEi8Phgs8XQCyWQqPRj6pbXC5v4r+h0ehRrZYRDPogEknOlLyVy5XQ602IRoOQSOQ3XohhgQUeJ9C+lYWZfCspikIweIhUKg6ArnQPyZZGo4dAIBwQLsHEpsK0YMEadndfQiwWhM3mPvVxw+r6zs6LCIcP4XKtLKrrCyxwRZiXb2Wz2YDXe3/UBcThcCEQCCEWy2bmJFqtAdVqacRJzhpRUSjU0OmMiERoTiIUiqZ+PQtMjkVCt8ATA5Ik4fPtAgCWltanltjtdNrwerfAZrPx3HPPgiAYAOYnb81gME5U19fW7py5VovFiWp1aBR89tzdAgssMD/My7cykQgjlYpjdXUVQqEMLNbpu23TQiQSw2p1IRLxQyqVQ6FQn/o4Pl8Au30ZgcA+ZDLlmXN3CyywwPwwL9/KISfhcLh47rnnQBBMzFPEnsFgwOHwYHv7Bfj9+1hdvX3mWq3W45zk7Lm7BeaPhW3BAk8Ehh5RzWYDy8sb4HKnExLp9brwerfAYDCwvn4HCoUCbPb8B4DZbDbc7jU0m3XEYqEzH3dkFNxGNBqY+zoWWGCBk2g2ad9KpXI238pUKo5EIgqbzQmXywU+X3ApO2M6nREKhQrB4MG5FgVqtRZqtQ7h8CHa7dbc17HAAgsc4bhv5fLyxtTiZt1uF/v7W2AymVhfvz3gJPPfqxlyknq9ikQifObjmEzayqDdbiIaPZu7LDB/LBK6BZ4IZDIJ5PMZOJ3LEIunk5ImCAJe7zb6fWKgjHm5KlRisQQWixPpdBzlcuHMxwkEIthsLmSzKRSL+Utd0wILPMmgfSt3wecL4XRO71uZy6URjQZgMFhgNl+uuiSDwYDT6QGTyUIg4MV5TkV2uxscDgd+/z5I8ubKiS+wwKOOdHp230qCIHBwsAWS7GNl5Ra43MvlJBKJFBaLA8lkDJVK8czHCYV0Z0Amk0CpdDZ3WWC+WCR0Czz2yGSSiEQC0OvNUKunayUiyT58vh10Oi14PLfOnGubN/R6E+RyJQKBA3S7nTMfp9EYoFCoEQodoNM5+3ELLLDAdOh26d35fr+P5eX1qdubi8U8gsEDaDR6WCxXY3PAZnPgdq+iVqsgkYic+TgWiz0wCq6fW4VfYIEFpkc6nUA0GoTBYDlT+Owi9Pt9HBxso9vtYGXl6jiJwWCBVKoYCEJ1z3ycTmeEXK5EMHg+d1lgflgkdAs8tqAoCvF4COHwIXQ6I6zWyQx/jx/n8HAfjUYNHs/mlYqPDKvrDAbj3Oo63eO+DAaDiUBg/9wq/AILLDAZWq0m9vZeRq/Xxerq9L6V9GzJHpRK9eB+vTrxEYlEBrPZjkQigkqldObjxGIpzGb7oAp/9uMWWGCByUBRFGKxICIRP/R609QFHZIkcXi4h2azDo9n80rFRxgMBtzuFQC4kJMccZeDBSe5AiwSugUeSwz70xMJWrjAZptO0ZJWoTtApVLE0tLatfg0cThcuN2rqFbLSCaj5zzuqAqfTMaucIULLPD4ol6vYm/vHhgMJtbXn4JQOF1Bp16v4eBgBxKJ/FI868aB0WiFVCq/sLpOV+GHj+ud+bgFFlhgPJAkiWDwAMlkDFarc0ZO4kW1WsLy8gbEYuklrPZ8DG2TKpUSUqmzuQb9OA+q1RLS6fgVrvDJxCKhW+CxA60ctTOYmfPAaLROHTgjkQDy+QxcrpWZ1OxmBW0AbEM8Hka1Wj73cUajFfF4CPV69eoWuMACjyFKpQL29++Dzxdgff3O1DtzrVYDBwdbEAqFWF6eXmF3VgwtCoaFqvOq6/TjSIRCvkV1fYEFZkC/T8Dn20GhkIXLtTq1mBJFUQiH/SgUcnC7VyGTKea80vEhkylhMFgQj4dRq53NNejHmRGLhdBo1K5whU8eFgndAo8Ver0u9vfvo1otY3l5AxqNfupjJRIRZDIJ2O1LU/e5zxMmkw0SiQyBgBcEcXbV3GSyQSSSwO/fR79PXOEKF1jg8UE2m4LPtwOZTInV1VtTq9nSkuLb4HB48Hg2r91ahMvlweXyoFwuIp1OnPs4h8ODUimPXC51hStcYIHHB0NOUqtV4fFsQq2enkvE42Fks0k4HMtnGnxfJcxmO0QiMQKBfRDE2VzDbHZAIBANOEn/Clf4ZGGR0C3w2KDdbmFv7x46nTbW1u5ALldOfax0OoFEIgKz2Q6dzjjHVU6PYdWcJPvnVteHVga9Xg/hsP+KV7nAAo826NnbMEIhH7Ra48Afarok7LjNycrK5qVYnEwDuVwFvd6MWCyIev3sqrlSqYZWa0AkEkCz2bjCFS6wwKOPdruJ3d2X0e12sbZ2Z6YdtVQqhmQyCqvVCa3WMMdVTg+aa6yBIHrn7uQf2St1EIksOMllYZHQLfBYoNGoYW/vZVAUsL7+FESi6awJACCfzwyGls0wGq1zXOXs4PH4cDo9KJUKyGSSZz6ONgpeQj6fQTabvsIVLrDAowt69vZwVMyx26ebcwGO25xcjaT4pLBYHBAKxfD7986trlutLnC5fAQC+yDJRXV9gQXGQb1exe7uvYFn7VMzianRNie0KuYs3peXAR6PD4fDg2Ixd+5OvkAghM3mRi6XRj6fvcIVPjlYJHQLPPIol4vY27sPLpeP9fU7M8n3lkoFBAJeaDR6WK3OaxEuuAgKhRo6nQnRaACNRv3Mx2k0OqhUWgSDPjQai+r6AgucB3r2dhe5XApOpwcmk23q+//I5qSNlZXNK5MUnwQnd/IPz6yus1i0UXCr1UQ4HLziVS6wwKOHcvlo9nZt7ampZ2+BI5sTrdZwZTYnk0Kl0kCrNSAcPn8nX6PRQ6nUwO8/QKvVusIVPhlYJHQLPNLI5TLw+XYglcqwunobHA536mNVq2UcHu5BoVBduaQ4QO8OdDrtsargVqtz0JO+d25Put2+BDabg2984xuoVMpzXO0CCzw+6PV68Hrvo1otwePZnGn2digpTtucbEytijkL+v3+WN5PfL4ATucyCoUs8vnMmY8TicSwWp1IpeLY3d1dzMEssMAZyOXSODjYgUymwOrqLXA407dZVyqlgc2JBnb70jVyEvLCx9psLvD5gnM5CW2vtAQ2m4V//Md/PFfgbYHJwb7uBSywwDSgKAqpVAyxWAgajX7mBKzRqMHn24FEIoXbvXbpgXMYKBuNOhqNGppN+itBEJDJFPB4Ns9dw7C6vrPzIsLhQ7hcK6c+js1mY339DsJhH3Z2XoZOR3vfXLcwwwIL3BTQoiVbIAgCq6u3Z5IBP7I5oSXFr8LmpN/vj+IHHU/qaLXoKvna2p0L16BSaVGplBAOH0IslkAgON3TSqczgcEAIpEQUqk0nE7Ptdi4LLDATQRFUUgmo4jHw9BqDTMnYPV6FT7fLqRSOVyulSvnJI1GHc0mzUnkciWWlzcu4CQsLC2tYmfnJUQiATidy6c+js3mYH39DoLBA2xvvwy93gyz2b7gJHPAIqFb4JEDbSfgRyaThMlkhclknynYtVpNeL3b4PMvR1L8KFDWTiRww7kVDocLkUgCnc4EFouNaDSATCYBvd587nEFAiHs9mUEg15IpQpoNLozHifAq171KuztHSASCaJcLsDp9EAqlc/1dS6wwKOGRoP2hmMyaY+5WVojhzYnhUIWbvfqTKJMZ6Hf7z8UR1qtJgC6+i0UiiGRSKHXm5DLpREIeLGx8TTY7PM/6m02N2q1Kvz+fayvP3WqCAyDwYDJZIXdbsGLL76Evb170OtNMJsXBaIFnmzQdgKHyGZTMJvtU1slDUHbnGxDKBRhaemyOclRIWiois3l8iAUigechIVoNIhsNnWhQJxAIILN5kYo5INMJj9THVwgEOLVr341dne9JzjJokA0G+aW0BEEgXq9DrlcPq9DLrDAQyBJEoHAPorFPOz2pZkVKDudDrzeLbDZnIGk+Gy3BB0oWyeqXI1GbdSCwOXyIBKJodebIRKJIRRKwOWebBPtdNqIRkOQShUQCk+vlg+h0ehQrZYQDvsG1XXhqY9jMBgwGi2QShUIBg+wv39/sVu3wBONSqUEn28XAoEQHs/GTO3awPxtTgiCeGjnrd1+MHmTD2IJfe8fJ35SqRzb2y8iGg3A6fSc+7dYrGF1/WVEIkE4HEtnPlYsFmNz8y7icbpDolQqwuVakLEFnkyQZB9+/z5KpQIcjuWZFSg7nTb297cGNicbM38+UxSFdvs4J6ELQQ9yEoOB5iQikeShWNhutxCNBiCVys/kGENoNHpUq2WEQj6IRJIzi2TDApFUqkQweDAoEC1262bBVOyVIAj81m/9Fmw2G9785jfjG9/4Bt773veiWq3iueeew6c//WnIZIvgvsB8QRA9+Hy7qNdrWFpah1Kpnul49NzMFgBgZWXyXneKolCv15HLZVGtVs8IlBIYDBaIRBKIROKxSKPV6kClUkIg4B1Uy8+vztntS6jXj1fXz348ny/E6uodZDIJxGKhxW7dAk8k8vkMgsEDSKUKLC2tzUwg0un4QBnTMVWRqdfroVwuoVarjhK4dpsWDWAymRAKRZDJ5DAaLRCJxODzhRfGBT5fAJvNhVDIB7lcdWG8FArFsNlcCIcPIZPJz/W5YjAYMBjMkMuPk7HFbt0CTxZ6vR58vh00m3V4PBuQy1UzHo+2OWEymVPZnAw5STabGcQSuhA0nMufnpO4UKmUEQh4sbZ259zYw2AwYLcvYWeH5iQXPV4gEGJt7Q7S6ThisfBit24GTJXQffrTn8bv/M7v4N//+38PAPilX/olyOVyvOc978Hv/u7v4td//dfxi7/4i3Nd6AJPNjqdNg4OttHrdbG6emvmm73fJ3BwsA2C6GFt7Q54vMkkxYcJVKfTBkBL9wqFYhgM1mNVrumGoZlMFtzuFezuvoxEIgyLxXnu44cqdLu7LyMWC8Jmc5/7eAaDAb3+iIwtdusWeFJAURTS6Tii0SDUah0cjuWZ25lom5MADAYzjMbJJMXpjgP/yOCbTt7EkMmUMBrFo523adu3NBo9yuUCQiEfxGLpQ90AD0KrNaBaLSEYpKvrF6nzHZGxxGC3blEgWuDJAD17S3OIWWdvgZM2J2trdya2OanVKvD790diSDweHyKRGCaTddQNNC0noTkGzUmSySjMZvu5j2ez2XC717C39zLi8RCsVte5j6cLRBbI5apFgWgGTJXQ/cVf/AXe97734Z3vfCcCgQAODw/x8Y9/HP/yX/5LyOVy/Oqv/uoioVtgbmg2GyNz3rW1py7c8r8IJEnC59tFu93E6urtiY+XzaZGAgJ37twGRXHAYMw36IhEEphMNsTjYcjlqgsTWJFIAqvVhUjED6lUDoXi4t3LxW7dAk8SKIpCNBpAOp2A0WiF2Tzb7C0AlEr5kc2JxTKZzUm32xmpYa6uroLPl4DD4c9V/IBWlVvG9vYLCAYP4PGcL2xAP96D7e0X4PfvY3X19oUJ74O7dfv79xdkbIHHGo1GHQcH24PZ2zvg82fjJLRlCm1zsrZ2e6JZXoqikM2mEIn4IZFI8dRTdy6Fk4jFUphMNiQSEcjlygsTWLFYAovFgWg0CKlUPtbu5cO7dcXFbt0EmKo0mc1mcfv2bQDA3/3d34HJZOI1r3kNAECv16NWq81vhQs80ahWy9jbuwcOh4P19dmTOYqi4PfvoVarYnl5YyIDcpIkEQr5EAr5oNHosbHxFDQazUyyxOfBaLRCLJYiEPCea/w7hE5nHFW4hjuHF2G4W7e5+TS4XC729+8jHPYvZMkXeKxAkiT8/n2k0/SMm8XimDlxom1O9qFQqCdW2a3VKtjZeQmdThubm0/B5XJBKBRdipIdh8OFw+FBpVJENnu28e8Qw+p6vV5FIhEe++8MyZjV6kImk8L29gsLWfIFHjtUKiXs7d0Dl8sdCCnNXmD2+6ezORlyknD4EFqtAevrdy6dk4hEEvj93rE4wrATKBA4GMtGBTjardvcfBpsNgd7e/cQiSw4yTiYKqHTarWIx+MAgL/927/F6uoqlEpa0evll1+GXj+9h88CCwyRz2fh9W5BJBJjdXXyFoQHMZQUL5eLWFpam2gnqtvtYH//HnK5NByO5bm0al0EBoMBl2sFvV4P0WhgrMc7nR4wmSwEAt4zjYJPw3C3zmZzIZdbkLEFHh8QBD0rWyoVsLS0PrOQEnCkjknbnKyOnYhRFIVMJjEyHd7cfPpKqs8KhQparQHRaGCkinkeJBIpLBYHkskYKpXi2H9nuFu3ufk0OBy6QLQgYws8LigUsjg42IZEIsXq6p2ZhZSO25wsLa1PFAs6nTb29u4hn8/A6fTAbl+6dE7CZDIHnKQzESdhMBgTc5KjApETmUwKOzsvolarzLL8xx5TvftvetOb8Cu/8it497vfjRdffBFve9vbAAAf+9jH8JnPfAZvfvOb57rIBZ48hEIhHBzsQqnUwOPZvFB2+yIM262GwU+hGH94ma6mv4hOp4O1tTszq1hNgqGwQS6XRrGYu/DxHA4HLtcKarUKEonIRH/raLfuGXC5vMVu3QKPPFqtFra3X0az2cDq6q2ZhZToY9I2JwLBZDYnJEkiGDxAOOyHVmscCDHNRggngdXqApfLQyDgHcso2GCgVXEDAS96ve5Ef2uxW7fA44ZEIgq/fx8qlRbLy/NRn4xE/CgUsnC5JrM5qVbL2Nl5Cb1eF+vrT0GjubpNFIFACKvVhWw2hVKpcOHjORwuXK4VVKtlJJPRif7WYrduMkyV0P3Mz/wMfuRHfgQMBgM/+7M/i3e84x0AgO3tbfzIj/wIfvInf3Kui1zgyQBJkmi1mgiF/Njd3YXRaIHLtTKXqlMyGUU6nYDN5oZafbpf24OgBRSG1XQhNjefnnnweRpoNHooFCqEQr6x2hakUjnMZjsSiQgqldLEf4/PF2B19fZit26BRxa0amQR//t//2/0+wTW1y822B4HQxNyDmcym5NhNb1QyA2q6e5Lr6Y/CBaLBZdrBY1GbSxixWAw4HavAMDE1fXh8w0GM27dWuzWLfBogiRJNJsN7O7uIhwOwGi0DrpgZrt3KYpCIhFGJpOEw7EMlepsRdkHn5dKxbG/fx9CoQgbG3cnGhuZF7Raw2hmdpxij0ymgMlkRTwenmqXbbFbNx6m2vb43Oc+h9e//vX4sR/7sRM//9KXvjSXRS3weIMgCLTbTbRa9D/6/y10Oq0RaVhbW4NCoQNBXFxJPg/9fh/h8CHy+QzMZjv0etNYzyPJPkIh+nl6vQkWi/PKCdgQJ4UNfBcKGwB0r3u1SssMS6XPAjjfz+60v0n3v6sWSpgL3EgMzXGPYshRLCGIHgBAIpEMEq/ZZ0rK5SICAS9YLNZENieVSgl+//5IQOE6CNgQx4UNZDIlJJLzC1TD6rrXu41UKgar1T7x3+TzF0qYC9xsEARxShxpotNpjziJ07kEjWb2dm2CIBAOH6JQyMJicYzd8dPv9xEK+VAoZKHXm2G1TibCNE8cF08KhXxYWlq/cC0mkx3VKq3EeefOs1P9zYUS5vmYKqH7/Oc/j/X1dbhc50uRLvDkgqIodLudE8GR/n/rREWHy+VBIBBCJlNAIDCBzxdAIpFAp1OgVGrMtIZGow6/fw/dbgcu18rYO3OdThs+3y5area5z+t02iiVuiiXGyCIPkiSBEWRg6/UA9+TIElq9P15j1EqNTAYzCcCJIfDhdPpwcHBDrLZ1IVzQMP5u+3tF3F4uA+N5lXjn7hjGO7WLZQwF7gu9PsEWq3WQ0WgdvuoAMRkMiEQCMHnCyGTKcHnCyEWi2A0alCptGYqDJEkiXg8jFQqBplMAZdrZaxWyeMWCVKpHG732qlJIEmSKJfLqFTOjiPnx5bTHkOCxWLDbl96SDHPZLKNktPNzacvJEO0hYIF8XgYCoUCCsVkxSHgaLdOoaAFEhZKmAtcNY5zkgeTt16vN3rckJPI5UdxxGDQoNkkZi4wNxo1HB7uodfrwe1ehUqlHet57XYLh4e7aLdb5z6v02mjWOygUmnOlZOoVBro9Sc5CZfLhcOxjMPDXeRy6QsT0yEn2dl5EX6/FxrNK8Y/ccewUMI8G1MldG63G6FQCK997WvnvZ4FHjH0+320262HKuTtdnM0p8FgMCEQCMDnCyGVysHnC0ffn/ZhzmbP3s6QySQRjQYgEIiwsfH02OqY41TT+30C8Xhk4B11dhsSg8EAk8kEg8E89pUx+p7+Gf0YNpsDJpMJkiQRiwXR6bRgty+dCKBy+ZGwgVQqv/A1cbk8uFx0Euj3+6FSTTf7t9itW+CyQZOt7kMV8lareaIAxOFwIRDQcUSrNY6SOC6X+1CFmM1mzryr3um0Bwp0dVitzodIzVk4Xk03GMxnWhpUKiVEIv4LhUqO4sXpsWT4PZPJGsUSWiH4ZXg8myfi2LCVcnv7RUSjATgcyxe+nmF1/eBgD1rt+LM+D+L4bl08vtitW2D+oDlJ80QRaPg9RZ3OSYZxhM8XPPSZxmYzwePx0GxerDR9FobjG7FYEEKhGCsrt8a2JqCLL/tgsdhYX3/qVBVMgiAQj4eRySTOPdZZnOTkz05ykn6/j2g0iHa7DbvdfSKOKZVqaDT6kV3SRa+Jx+PD6fTA59tFIBCYiZMsdusexlQJ3bd/+7fjk5/8JP7+7/8eHo8HQuFJYslgMPCe97xnLgtc4Gai1+shHg+dkMHmcDiDipYEarUOAoEQAoEQXC7vyloDCKKHYNCHUikPnc4Eq3W8VslxqukURaFYzA/mQAjYbA7Y7RbUam2QJOMBgsWY+jXncmkEgwfodrtwu1dPBCir1TVqpVxbu3Pha5PLVbBY7Dg4OIBWW4HNNr0S1oO7dZVKCaurt2ZWH13gyQVFUSiXC4hEAiOrDQaDAT6fJlsajf4E2ZpVHGkSFIs5BIM+sNlsrK3dGXt+dpxqerfbRTQaQKGQhUQiw6te9Sq02yQo6jTSNV0c6fW6ODjYwd7efSwtrZ0QXeDzaWGDcPgQcrnyQt9KJpMJt3sVe3v38Pd///dYXl6DUDjdPPFpu3U2m3vsdvgFFjgNvV4XsVgIuVx69DMOhws+XwCxWAq1Wn8tnKTX6w3UtQsTjW/Q83IxxGIhyGQKuN2rYLNP4yQ5RCKBASdxwW43z52TZLMphEI+9HpduN0rYDKPOInNdpKTXPQ3FAo1zGYbvF4vdLoqrFbX1Jzkwd26SqWM1dWrFZu6SWBQk046A1hZWTn/oAwG9vf3p17UdaPfJ1Esjtfux2YzoVCIUCo1Zt6Ov0zMa51DE8t4PASKomA0WiGRyCEQCB4KNle91lqN7s/u9/twOj1jK9rR1fQDFAo5GAyWUz2q2u0mwmE/KpUSFAoVbDY3RCLhpb335XIBh4d7EArFWF7eOJFc1utV7O6+DJPJBrPZfuGx2GwmGo0Stra2IBCIsLS0Bh6PP9P6Wq0m9vfvg8ViY23t9lwC6E25lzSa+c04jRtLbsprHwfzWmu73UIk4ke5XIRMpoBOZ4RAIAKPNx9z7WnXSZIkIpEAstkklEo1HA7P2IlkuVyE378PNpuN5eX1h6rpw+6BeDwEBoM52PUzQKkUX8p73+/3cXi4h2q1BKfTc6J9nKIo+Hw7qNdruHXrmbHuYZIkEAjso1QqwWZzQas1zvRe0erDQaTT8bkmdTflfppXLFlwkrNxdE+FAQAmkxUSiQx8vnAuBaBZ1lmtluH374OiSDidK2Ora/f7BILBAxSLeRiNVpjN9ofus1ariXD4ENVqGQqFGjab61I5SamUh9+/D5GI5iTH+V6tVsHe3j2YzXaYTLYLj8VmM1GrFbC9vQ2RSIylpfWZC8PNZgNe7xbYbM7ckrqbci+NG0emutq9Xu80T1vgEUetVkUkcohGow6NRg+LxXEjKiHHK1liMe0LNW7C0m634PPtotM5vZpOkn0kkzEkk1FwuTwsL69fWM2eB+RyFVZXbw8q7C9jZeXW6DVNKmwAAGazGRTFxv7+NnZ2XprYh+9B0JWx29jbu4+9vftzS+oWePzR7/eRTEaRSsXA4XCxtLQOhUJ1bQP+x9FqNeH376HVoluetVrDWOuiKArJZAzxeAgymRJu98pDBa56vYpQ6BDNZh1arQEWiwNsNudSXzeLxcLy8jrC4UMEAl50ux0YDJZRtd7p9GBrixZbWl6+WNiAy+Xila98JV5+eQvhsB/1eg0Ox9KJiv0kYDAYsFqdAIBIxA8GA9DpFjt1C4yHWq2CcNiPZvPmcZJkMop4PAyJRAaXaxU83ngJS6vVxOHhLjqdDpaW1h8qTB+Pn1wuDx7PBuTy8W2YpoVCocbKym34fNvY27sHj2dzxEkkEhmMRuuIk4jFFycgVqsVAAde7w52dl6E2z0bJxEKRVhdvYX9/fvY3996InfqZpbtq9VqCAQC6Ha7CznixxS9XnfQp/wyKApYW3sKTqfnRtwsvV4XXu82YrEQjEYr1tbujJ3MlctF7Oy8BJIksb5+96FkrlwuYGvrBSST0YEXyjNXkswNIRZLsb7+FCiKwu7uy2g06qPfmUw2iEQSBAL7Y993YrEEGxtPQygUYX//PlKp+MRS5MdBm5HfRr9PYH///sReVQs8WRi2B21tfROpVAxGoxW3bj0LpVJ9I5K5XC6NnZ0XQZIUNjaegk433u5Tv0/g8HAP8Tgdgzyek9VrgughFPJhd/dlAMD6+lNwOJbn1tFwEZhMJhyOZRiNVsRiIUQigdF9z+HQwgblcuFEq9pFx3M6l+ByraBQyGFv796oXXYaDJM6vd6EcNiPTCY59bEWeDLQ7XYRCHixt3cPDAYD6+s3h5N0ux14vVuIx8MwmWxYXb09djJXKhWwu/sSKIqOQQ8mc6VSAdvbLxyLn89cSTI3hEQixdraUyBJEru7L6PZPMlJBALRRJxEIpFiY+Mu+HwhvN4tpNOJmTiJQCDCysrtAS/cOiF28yRg6v3ob3zjG/i1X/s17OzsgMFg4Mtf/jL+83/+z9Dr9fjgBz84zzUucE042R7EmKhifRWoVGilNgBYWbkFmUwx1vOOV8/kciVcrtUTrRmdThuRSAClUh5SqRwez+bYoirzBp8vwPr6U4OduntYXl6HTKY4IWwQiQTgdF4sbADQc44rK7cQiwURjQbQaNTgcCxPPUgsENBJHV0Vu4/V1cVO3QIPo9VqIBz2o1otQy5XwWZzjS0KcNno9wmEw37k8xloNHrYbO6x74dWqwmfbxfd7sPVdIqikM9nEI0GQVEkbDb32EnivMFgMGCxOMDl8hAOH6LX68DlWgWTyZxY2GCI4Zy0z7eLnZ2X4Havjh2DT1uf1UqrZofDhwBwoZLvAk8eSJIctVcymbSdj0ajvzGcZKgey2AwsLp6e+wdJ9qXLoJEIgKFQgWnc+UUTuJHqVSATKbAysom+Pzr4STDubUjTrIBqVQ+mLNdwfb2S4jFgrDbl8Y6HofDHXGSSMQ/4CTT7/rTO3U0J/F672Nl5fbYFjOPOqbaofvHf/xHvPvd7wafz8f73//+UUa9srKC3//938fv/u7vznWRC1w9qtUydnZeRCTih0qlxa1bz10bGXkQFEUhFgvC692GQCDG5uYzYxMJghhW0+nqGd0LTgdOkiSRSsWwtfVN1OtVuN2rWFm5dW3J3BAcDherq7chkUhxcLCNfD4DgN4hG5p/l0r5sY83JE9u9ypKpTz29l5Gu92aen3DpI4getjf31rs1C0wQr9PIBoNYHv7RXQ6bSwvb8Dj2bgxyVyjUcPOzksoFvNwuVbgdHrGTuZKpTx2d18CQGFj4+6JZK7ZrGN//x6CwQPIZArcuvUc9HrTtcdPnc6IpaV1lEpFeL1bI78+m80FDoc7sYG4SHS06+/1biGVik1dYR/GJZ3OhHD4ENnsYqdugSMMOUk0GoBarcPt28/dmAIzSZKIRgM4ONiGSCTB5ubTYydzBEHA59tFIhGB2WzH0tL6CU6STEYHnKQGt3sNHs/1JXNDcLk8rK7ehkgkgde7hUIhC4DeIaPNv5Mol4tjH4/JZMJmc8PlWkGxmMPu7my7/sOkrtt9snbqptqh+9SnPoXXve51+M3f/E0QBIFPfOITAIAf//EfR7PZxJe//GW8613vmutCF7gadLsdRKNBFApZiEQSrK/fHasf+qpAy4jvo16vwmJxjOZBxsF51fRqtYxw+BCtVhN6vQkmk/1KFfUuAj0Ls4FQyIdAwIterwu93gyNxoBSqYBg0Idbt6QT7Y6pVNqHKuzHlfAmwTCp29sb9q8/OVWxBR4GRVEoFHKIRmn1NZPJBoPBMrONwLzwoLXJ5ubdsUnSedX0I0uTOPh84USdA1cFpVKN1dVb8Pl2BrMwt8Dj8eByrWBv7x6SyehYwgZDHO36hxCNBgcV9vET4+NgMBiw2VwAKIRChwAYYxsvL/B4guYkARQKOYjFdIveaXZC14V2uwW/fx/N5mTWJgAt5HF4uIter/vQLFylUkI47Ee73YReb4bZbAOLdXM4CZvNhseziWDwAH7//oiT6HRGlMsFBIMH2Nx8ZiIeQO/6i3B4uDuaq5s2fh7N1G3B66Vn6q6qzf26MNWn6/7+Pt72trcBwEMX7qtf/WokEud7YSxw8zDcnbp//5uoVEpwOJaxvv7UjUrmisU8trdfRLfbwdraHRiN1rEDZ7GYx87OSwBwopre69G9+LRiIwsbG0/DZnPfqGRuCHp2xQOj0YpolG6ZBACn0wMACAZ9E1fHhUIxNjbuQiymd/8SiejUFXaBgK6K0f3r95+YqtgCJ9FsNrC/fx+BwD7EYilu3XoWJpPtxiRzBNHD4eEuIhE/tFoj1tefGjuZo6vpOw9V04fzgffvfxPZbBIWiwObm0/fuGRuCIlEhrW1O+j3+9jbexnNZuOEsEG9XpvoeMM5OHrXvzDTrj+d1Lmh1RoRCvlOWOMs8ORguDt1//4/oVotw+n0YG3tdG/Y60KhkMPOzosgiB7W1u5MVGCmd6JeBoPBxMbG06Nkrtvtwu/fHyg2srG5+TRsNteNSuaGYDKZcLlWYDBYEIkETnASiiIRCk3OSUQiMdbX70IolMy86y8UirG6egvdbhv7+0cdCY8rprpCJBIJcrncqb9LpVKQSG7ODbfAxTheCdLpjDCb7TeqkjFsZ8hkklAo1HA6JxMUGPq60c/1jAhYNptCLBYCg4Eb14t/Fo5mYbgIh/3odruDVrFl+Hy7yOXSE1e02WwOPJ4NxONhxOMhNBo1uFyeqT5ATvavb2Fl5da17tSRJIl2u3mqGesC8wVBEEgkwkinE+DzBfB4Nqfe8b0sHLc2mVSxdthS3Om0T1TT2+0WwuHDE5Yms9qCXAUEAtFgPnd7NJ9rMtkGs8n72Nh4euJdNnrXXzTzrj89s+0GAIRCPjAYDGg0+omPM0+0202w2Zwb9dn4uKJSKQ44SetGdsyQZH9gbZKCUqkZiByNv76hr5tSqRm1eT9oaTK0GXkUOInV6gSXy0UkQgskOp0e2O3L8Pv3RrPJk4De9d8c7frX67WJ2uGPgzZyvw2vd8hJbl/rtUSSfbTbrUvhJFO9qte97nX4jd/4DSwvL2NtbQ0A/aam02n81m/9Fr7t275tnmtc4JLQ6bQRjQZRLOYgkUjhdj8NkehmEV9aRnwfrVZjKlGBfD6DYPAAGo0eDscyGAwGGo0aQqFDNBq1gdSx85FrD9TpTOBwePD79+D1bmF5eWMqYYMhhokirZzpxe7uy1haWp9qfvDBpO66Wh1KpQIiET8IgsDdu6+6MTtEjxuOi3+QZB8WiwN6vflGne/jQkiTWpsAdLLq9W6j221jbe02hELxaAfhqi1N5gl6FuYODg934fVuweVahcu1ip2dFycSNjgOoVCEjY27CAT2cXCwDbPZPlE3xRBHSR2FYPAAAK4lqev1egPD6hRsNhf0evOVr+FJwXFBMolEhqWltRtXjGu1Gjg83Ee73YLDsQSNZrI5vlwujVDIB63WCLvdDQaDcaalyaMEvd48msPt9bpYWlqHWq1DOExzkkmLXMNEUSSSIBikOcny8vpU89ci0YNJ3a0rT+ooikKpVBiMIfRx9+6r5p6sT/WKfvZnfxb379/H29/+dqjV9AfY+973PqTTaRgMBrzvfe+b6yIXmC9IkkQ6HUciEQGLxYbLtQKVSnvjKkHZbBqBwAG4XB7W1+9OnGwWCjkEAl6o1To4HMvo9/uIx0PIZJIQCkVYW7sDiUR2Sau/fNCzMLdHalNLS2uoVssIBPaxtvbUVO+nUqmGQHAXPt8udndfgsu1MhVJPc0T5qo+oI4bVkulCng87huVXDxOaDRqAz+yKlQq7aBSO5tB7LzR7XZwcLCHarV8pknveSAIAgcHW2i3W1hdvQWhUIxyuYhw+HDk62Y0WqdWir1unJyF2YPN5obF4kQk4odcrppqh402Vt9AIhFBPB5Go1Gfatd/qK5MUbjypO54FweAUUFxgfljOPKRTEbBYrHhdq9CqdTcKE5CURRyuTTC4UNwuXxsbDw1cbJ5vMBst7vR7xOIxULIZlMQCsVYW3tqLF/ZmwqVSgsOhwufbwf7+/fhdq8MOIkXq6u3p3o/VSoNBALhYK7uJbjdK1NZNdBJ3dFM3VUmda1WE5GIH5VKCTKZEna761KubQY1ZXNqt9vFn/7pn+L5559HuVyGRCLBc889h7e+9a0QCG6Ggtm06PdJFIuNsR57U5zkL8JwncFgFMHg4aCVwQyTyXajWhkAgMEgEY+HEI/HoVbrYLcvTUyWisU8Dg93oVJpR35J0agf/T4Js9k+F8W5m/LeN5sNHBxsAwDMZgeCQS/MZvtI2GCadRIEgWDQi1KpAJPJBpPJNtX5otX+7oPH4w8C6NlJ3azn80HDapvNBYVico8zjWZ+LePjxpKbci2NAzabCZGIg62tXaTTCQgEQtjtSzOZwl4G2GwmCKKJl16iZ2ddrsll9fv9PrzeLbRaDays3B60FflRLNKWJnb70swquDflvacoCtFoEOl0HHq9Ga1WA81m44SwwTRrLZXy8Pu9o13Mac4XRVEIhXzI5dJwuVagVuvOffys53RehtXziiWPMycJBCIIBuniCM1JrDdqXozNZkIi4eHFF19GLje5tckQhUIOfv8e1GodnE4P8vksotEAKIqE2eyYi4r4TXnvm806vN5tMJlMmEx2BINeWCwOGI3WqddJEAQCgX2Uy8Wpd/0Bugi5v78FPl9wYVI3D06SSNAiWVwuDzabC3K56tI4ydQJ3eOMxzF4djpNpFJRZDIZSKVy2GxuCIWi617WCXS7XRSLOWQyCfR6XTidy1AqtRc/8QGUSnkcHu5BoVDD5VpBMhlBIhGFUqmBzeaa2w7CTXrvaTPTbXS7HSgUKuTzmYGojXTqdV7k1zcuGo06vN774PHOD6CzrLNUyiMSCaDX6868Y7JI6M5Gv99HsZhFPB5Gv9+HyWSHTme8UTugFEWhWi2jWMwhm01BLlfA6VyZmJD3+30cHGyj0aiPdpj39++DokhYrW6oVPPZQbhp730qFUc0GoBCoUa1WoZUKsfS0hoYDMbUaz2uMOxyrTxkmDwOJknqpl1nr9dFNBpEPp+BSCSG3b4EsXj6HZNFQnc2HuQk8yiOzBvdbgflcgGZTALtdgcOx9KFxYTTcLzA7HR6EI+HkUrF5t7VcJPe+06njYODbfR6XchkShSLuVGn1Syf9ef59Y2LYVInEAjg8VwOJykW84hGA+j1ejAaLTAaLVN7611qQvfZz372zN8xmUwIhULYbDa8+tWvBpc7/odoKBTCW9/6VvzCL/wC3vrWtwKgFTU/9rGPYWdnB0qlEj/8wz+Mf/2v//XoOSRJ4rOf/Sy+/OUvo1ar4dlnn8WHPvQhWCyWSV/WCJMEz3w+jWazCplMBYlEcaOITb/fR6GQRS6XQr1eA5/Ph83mgkw2eYXgstDr9VAs5lAs5lCtlsFgMCCXK3H79iZ6PcbEQalcLsLn24FcroLLtYJ4PIR0OnGiOjQv3KTgCRwp8NVqFfB4fDAYDGxsPA0ejzPTOsvlAvx+LzgcDpaW1qcqBDQa9E7deVWxac7n8VYGuVwJm809s8fZdSR0AIlg0As+XwSlUntjfNqGaDTqyGZTKBQy6Pf7MJvNMBisYDJvxpwHRVGo16soFLIoFvPo9brg8fhwuZyQy7Xo9yf7mCPJPg4OdlCvV7GycgssFhte7xZYLDZWV2/Nta30psURACgUsggEvBAIhGg2G3A6PdBo9DOttd8nEAgcoFTKw2SywmSarPUVoN/nYPAA+Xzm3KRu0nXSghQJxOPh0TzxpLNRp+E6ErpcLoVWqwaZTA2JRH4jOUk2m0KjUYNAIIDV6rxhnKSLYjGPQiGLWq0CBoMBrVYLk8kODmdysaMHC8xDgTer1QWDYb7zmDctlhBEDz7fDur1GrhcHphMWtGTy2XPtM5SKY9AwAsOZ/pd/3q9Bq/3PgQCETyezblxkmazgUjEj2q1DIVCBavVdWWcZKqE7ju/8zuRTqfR7XbBZrMhl8tRLpdBEAQYDMZIYtTtduP3f//3oVRe3IPf6/Xw/d///djZ2cGv/Mqv4K1vfStKpRLe8IY34J//83+Od7/73bh37x4++tGP4sMf/vDINuGzn/0svvjFL+LjH/849Ho9PvGJTyAej+MrX/nKRMnkcUwSPOv1CuLxECqVCthsNlQqLdRqHUQiybUFqAfJl0ymgMFggtNpRaXSuvYbnSB6KJUKKBSyqFRKAACpVA6VSguFQg2BgDfVzV6pFHFwsAOZTAm3exWRiB+5XBp2uxs6nWmur6HX6yKbTYLLZYGimGCzueByeeDx+GCzOdf23pMkiUDAi2IxN1CGM2BpyTNzkG+3W/D5dtHptOB0rkCl0kx8jItaHSYJng+3MrihUEzeV38ariOhYzKBRCKEeDwBkuxDIpFBrdZBqdRcW0v0g+SLw+FCo9HDYDDCYFBfO2mgKAqNRm2UxHW7HXA4XKhUGqhUWshkMiiV4onXSZLkqDDi8WyCyWTh4GALXC4fKyubU7XenfcaqtUiWq3aiThCxxLe1BXdeaBSKeHwcBcA/Zm+ufk0xGLRTLGE3vWPIR4PTb3rfzypc7tXoVI93MUxSSyhPUj9aLUa0Gppled5iWRdR0JXr5cRi4VQrVbBZnOgUmmh0eggFIqvkZPUkM2mkM9nQZJ9yOVK6PXGG8VJ6CQuh2qV5iQymQJKpQZarRYajXyqa75cLsDn2x0VmMPhQ+TzGTgcy3P3V6Q5SQJcLhsUxTrGSXjXzkn8/n2USnkwGAzodEa4XMszc5J57PrX61V4vVsQCERYWdl8qNV3kjhCqzxHkMkkwOXyYbe7ppr1Ow2XmtD9xV/8BT784Q/jF3/xF/Fd3/VdYDKZoCgKf/M3f4MPfehD+NCHPgSXy4X3ve99uH37Nn7pl37pwmN+8pOfxP379/H888+PErrPf/7z+OIXv4ivfe1ro6D/yU9+El/96lfx1a9+Fd1uF6985Svx/ve/H+94xzsAANVqFd/6rd+Kj33sY3jTm9406UsDMF17QzyeQSZDB6xerws+XwiNRgeVSgce7/JFAvp9AoVC7iHypdUaBknG9VZuCIJAuXyUxFEUBYlEBpVKC6VSfYIkTbPWSqU0SObkcLlWEQ4folDIjirL8wJJ9pFKJZBMRsFgADweD61WGxR1tE4GgzEiZcOAyuXyT3zPYrEvLcDSszABpNO0H+Tq6iZcLtvM732/30cweIBiMQeDwQKLxTHxazgvqRvnfR/6fUUiARAEAZPJOnfD6utsucznq8jlssjlMqhWS2AwmFAq1VCrdZDJFFfyoXwa+dJoDFAoVDO13c0DFEWh2ayjUKB39Tud9oC0aqBUaiCRyEbnaJp1kiSJw8NdVCpleDwbYDKZ8Hq3IRQKB1Xc+e1I1utVRKNB1GoVCIVC9Hq9h7wb2Wz2KHbQceR4XOGDw+Fe6g4M3S5N+zcJhWLcufPMVEnygyiXi/D798Fmc7C8PPmu/0VJ3TjvPW1YHUShkIVYLIHdvjR3j7PrbLmMxzNIp1MoFGhOIhAIoVbroFbrrkS4iCCIUUGo2ayDy+VBo9FDo9HfGE5SKuVRLObO5STTrvN4gdnlWkEodIBiMQ+XaxVq9eSjJGeh3+8jnY4jmYyBwWCAx+NOxEmGceWyOUkk4kcmkwQArK3dgtNpnQMnOdr1n0bwCjg/qRuXkxQKWUSjQfT7BIxGGwyG+ao8jxtHpir9fuYzn8HP/MzP4I1vfOPoZwwGA9/xHd+BfD6P3/zN38Rf/dVf4cd//Mfx8Y9//MLjffOb38Qf/uEf4k//9E9PWB688MILeO65506Qvle+8pX4/Oc/j3w+j2QyiUajgVe96lWj30ulUqytreGb3/zm1AndNBCJxLBaXbBYnKhUSsjnM0gkIojFQpBK5VCr9VAq1XNVQqMr1MPduCPytby8/tDgZavVRKGQQr/PAJfLB58vuHTVwX6/P0jiciiXC6AoCmKxFFarE0qlZm4fKtVqGT7fDqRSGVyuVQSDXpTLRSwtrUGpnHwn6TQMpdnj8TB6vS60WiNsNju0WgWKxTra7Q663Q46Hfprt9sefN9GrVZBt9s5cTwmk3mCmB0PtvTc2/S7MkNjXg6Hi1gshIODXZhMk/f9PwgWiwW3exXptATRaBCNRg0Ox/JE7QQikWSgfrmFg4Otc/vXH0Sz2UA4fIharQKFQg2bzXWhFDJFUej1ujdOefEssFisEenqdDooFDLI5TIoFLLgcLhQq+kOgHlLeZ9GvgwG84h8DTH0SiqX6Sowh8MftdJcJprNxmAnLod2uwU2mw2lkk7ipFL5XIgIXUneQ6VSwvLyBgAKXu8WxGIplpc35ha72+0W4vEQCoUcBAIR1tZuweGwoFxuotslRnGDjiNH/6rVCrrdNvr9/onjcTjcB4gaTdYEAuHMc9IikRgbG3ext3cPzWYdwaAPSuXdmY4JAHK5Ehsbd3F4SKvpWq0uaLXjtzgyGIyBeTEFv38fAGPsrgFa5TmBRCICJnN8v69erwcmk/nIqJmKRGLYbC5YrU5UKsXB5xfNSWQyBdRqHRSKy+AktWOchIRcroLZbIdcrjxxjul7OgWSZILD4V0xJ8miXC4e4yQuKJXquX1O0AXmXchkCrhcHgQC+6hUSlhaWp9qJ+k0DDlJLBYCQfSg05lgtdqh1cpn4CSnF48kEtlM18lxThKPh+H17syJk7CxtLSGVCqGWCw08KtbnsgiQSyWjtQvDw624fHcGvu1Npt1hMN+1GoVKJUaWK3Oa+UkU7HGVCoFm8126u9MJhMSCXpnQKfToVKpnHusarWKD3zgA/j5n/95GAwnt6DT6TSWl5dP/Eyr1Y7WkE6nAeCh52m12tHvrhrDGTC5XAmCIFAs5gZStV6Ew0wolRqo1bqZSMi45GuIWq0Cn28HJEmCJI+qDCwWG3y+YPSPxxOAz+eDzxeCzZ6uWkOSJMrl4iBgFkCSJEQiMSwWB5RKzdwNd2u1Cg4OdiAWS+FyreDwcA+1WmWU1M4DlUoJ0WgQzWYdCoUaVqtjcI5oEstgMMDhcMHhcM+s8A5v4oeDawfNZgPlchG9XhcA7Q3ldHomVuR7EEajFUwmC5GIH3/3d3+HtbXbEAhmSwQYDAYMBguEQjGCwQNsb78wUA01j329iEQSrKxswuulA+hprQ7HMa1hdb1eQzh8iHa7ibt3v+VGzZKMAx6PB6OR3oFsNOrI5zPI5dJIpeIQCsWDxE87dQvgaeRLoTidfAH0vR0MHqBQyILJZJ6IJTwe/0QsGcYTHo8/9Xmni1B0EtdqNcFisQaJvBtS6XxngyiKGimoLS+vj5I7mUyBpaW1ubQ+EkQPiUQUmUwCbDYHDscyNBo9OBzW6FwzmczR+TsL/T5xLI4c/et02iiXG+h2O6P3Rqs1wGp1zUTGeDw+NjefxtbWC0ink7h3jwmr1T318Ybg8wVYW3sKkYh/1FHhcCyPPQ/DYDDgcq0AAPz+PQBrFyZ1lUppYFjdHNuw+rjfoMXinPvc02WD5iQqyOWqE5wkEPCCyWRBpaI5yfHd7UlBEMQgPqXQbDbA5dKxS6PRn0pc6SLsLijqJCdhs9kDHvIgLxHMwEn6A06SO8ZJJJfGSY4XmJ1ODw4P91CvV+HxbEAmm9wC5DSUy0VEo0G0Wg0olRpYLI7BOZqWk7SPxZHTOYnLtTKTkjGDwYDJZAOTyUQ0GsTXvvY1rK/fBp8/OycxGq0QicQIBn3Y2vomzGbHRErmdFK3Ca93e5DUbZ4bMwmCQDweRiaTAJ8vxMrKrbH42tBvsNtt4+7db7kZPnRutxtf/vKX8a3f+q0P/e6P/uiP4HA4AADhcHiUgJ2Fj3zkI3jqqafw5je/+aHftdvth+bghu2LnU4HrVYLAE59zEWJ5EUY3hgXgcVinvh68hhcGI0mGI0mtNst5HIZZLNp5PMZcLk8aLV0+4FQePEH2HDoP51ODlqhKCiVKthsTigUD5OvIYrFPA4OdiEWS/GqV70CtVobjUYD7XYL7XYLrVYL7XYT1Wp5dPPSr4dO9gQCwYmvfL4QHM7JfuxhEpfP07Ms/X4fQqEIZrMNarV24oHV887pcdRqVRwcbEMsFmN5eQ0HB7toNOpYXx/v5roIjUZ9YHJahEQixebmXUilR751465zCA5HAKHwbKJGkiTa7RYCAR+83i2YTFZYrY6ZiKvZbAGbzUAgcIitrRdhMJhgt8/uy6ZSqSCXP4dIJDRqW3K7VyAWj9caIJfLsb5+B7u793BwsIO1tVujpG54PmnfnwzCYdqI02ZzDpSizl87QfQQidBiOLTf4C1wudcngz1OLLnoWpLLZZDLZXA63SiVCsjlMojFgohGg1AolNBq9VAqVWMlHgTRQy6XQTqdRLPZAI/Hh9lsG7Rnn1417PeJQStiCaurG3A6bcjlymg06sfiSAu1WgW5XPqhZI+OH8IHYongofey3W4hn88in8+i0agPCKd6MI+gnOi6Hff+pCgSPh9t0eHxbIAk+zg83IdKpcby8trM98pwRygWC4MkKZjNtoE0O2uidQ7BZnPB43EBnE3UaIKdHVWPl5fXxr43T/+bPDz11HPY2noR8Xgc2WwOq6ubMx2TPi4Ty8ur0Gr1CAToApHFYofJZB37vHs8q/D5AL9/HywWA2q19qFz2um0EQr5USjkIJXKsLLy7Fi+pqVSAcHgITqdNkwmK4xG09jv07xxGZwkm00jl6P/8Xh8aDQ6aLX6sT6zKYpCrVYZjZpQFAWl8uhePYuTFAo5HBzsQSaT4RWveO4EJ2m1miNuchonOR47BALh6P+ncZJS6YiTkGR/UFi2Q62eTHRqkvuzWqULzBKJFMvLK9jf30Wr1cD6+u252Lo0GvSOULlcglQqw9LS3RNeupfBSVqtJoJBH/b378NstsFisc8UEy0WG9hsJoJBP+7ffxFGowV2uxMMxqycRA2ZTI5oNIhoNIBikeYk4/oXKxQKrK/fxu7uffh8Q05y8nzS3pRpRCIB9Psk7HbXWO2VBNFDOBxEJpOESCTG2totcDjz3+mfaobu7/7u7/Ce97wHy8vL+M7v/E6oVCrk83n8z//5P3FwcIBPf/rTMBgMeNe73oW3ve1t+MAHPnDqcf70T/8Un/zkJ/GVr3wFMhl9UXo8ntEM3Zvf/Ga85jWvwc/93M+NnuP3+/Hd3/3d+JM/+RPEYjG8973vxf3798HnH1VZfvqnfxrdbhef+9znJn1pAOg37TJ7iUulEuLxOFKpFHq9HuRyOcxmM4xG40PJabfbRSKRQDQaRa02VIWywmKxnHjNpyEWi2FrawtarRZ37969sEpLEASazSYajcbo3/D7drs9ehybzYZQKIRIJAKTyUQ2m0Wv14NYLIbRaITRaIRYPN+WsAdRLpfx/PPPQyKR4KmnnsKLL76IZrOJ5557DgrFbMlcu92Gz+dDNBqFUCjEysoKDIbZFc/GBb1bEMDBwQGkUimeeuqpmc9nrVbD17/+dfR6PQgEAty9e3fm8zREqVTC1tYW6vU6HA4HPB7P2DsCpVIJ3/jGNyCVSk+0V1cqFezs7KBUKsFoNGJ1dfVCf0ta0jiBvb099Pt9eDwe2O2zffjMisuMJd1uF8lkEvF4HOVyGRwOBwaDARaLBXL5yQ6AYdyJRqNIJpOgKAo6nQ5WqxUazfny+51OB//0T/+ERqOBZ555Bmr1+S1DFEWh3W4/FEOG/44newKBACKRCEKhEJVKBZVKBUwmEzqdDkajEVqt9lJb3CiKwr1795BMJnH37l10u11sb2/DbDbj9u3pjHCPHzuVSsHr9aLZbMJqtWJ5efnCuD1P1Ot1vPTSS6jVavB4PHC5ZjO0pSgK29vbiEajAACn0znR/X4e+v0+Dg8PEQgEIBaLcevWrbFjFEmSuHfvHlKpFO7evTvq2qHnfoPw+/1gs9lYW1uD0Xix31er1cLu7i7S6TRUKhU2Nzcv/TPtPFwVJ0kmkyAIAgqFYqBkaziVk8TjcUSjUdTrdQiFQlitVpjN5guv7Wg0iq2tLRgMBty5c2cqTjKMKQ9ykmEcYTKZyGQyIAgCEokEBoPhSjjJ8c+yO3fu4IUXXkCr1cIrXvEKyOXymY7darXg8/kQi8UgEomwsrICvV5/pZzE7/fD5/PNjZNUKhU8//zz6PV6EAqFePrpp0d5wKw4zklcLheWlsb3Mi4Wi/jGN74BuVyO5557bvS8crmMnZ0dlMtlmEwmrK6uXni9UxSFeDyO/f19kCQJj8cDm812aZxkah+6559/Hp/5zGdw79499Pt9sNlsPP300/i3//bf4plnnsHf/u3f4h/+4R/wwQ9+8Ey1yR/6oR/CSy+9dOL3zWYTXC4Xr3jFKwatAnJ84hOfGP3+61//Ot71rnfh61//OhKJBL7v+74Pf/3Xfw2r9UiS/gd+4Afg8XjwkY98ZJqXhn6fRLXaGuuxLBYTUqkA1WoL/f5kw50k2UexWEA2m0apVASDASiVamg0OrDZHGQySRQKuVHlS6czQi6/WBiBJrZRRCJB6HQGuFzLYLPZU68ToD8YT+7q0Tt7dPBXQa3WQigUzSXAXHRO6/Uadnfvgc8XDqpgOyCIHtbX74xdjTkN/T6BRCKGRCIGJpMBi4U2ID/r5pvlvR8H9XoNPt8eOp027HY39PrpjEeH6yyV6tjZuYdKpQwAMBjMsNkcczFxpduSYohGw+DxuHC5PGO1RQJ02+zu7n2IRBI8++zT2N8/QDIZh0AghNO5DLn8YlLXbDYQCPhQrZahUmnhcLinFiNSKObnzzhuLJn1Wmo2G6MOgG63Az5fMNi1U6NSKSGdTqLVaoLPF0CnM0CrPb0V6kG0223s7t5Dv09gbe02xGLJTGulKArdbhftdvOBWNICj8eHWq2FUqmayzV50TppkuJFNpvG8vIaut0uwmE/DAYTHI6lmWJZtVoZ7I5VoVAoYbef7ft52XGEJElEoyEkElFIpXIsL69O3WY2XGswGMX+/jYoigKPx8fS0ipkMvlc1tto1OH3e1Gv12AwmGC1Oseas6UoEgcH+ygWh7uHfGxtbaPTacNgMMNiGa+9kvbhC4PFYsHhcEOt1k59LcwrllwVJ6F9JvPI5dIolUojTqLV6sFisQa7cTkAFJRKDfR6w1hiTTSxjSAaDUGvN8HpXAKbzZojJzna2TvOSWbhA0OMcz7r9Rp2du5BKBTB7fbA690BQRDY2Lgz0xwrPW4QRTIZA5PJgtV6vu/nZceSWq0Kn28P3S7tyafTTVfoHq6zWKTPW7VKd9QZjRZYrY65FIhIkkQiEUUsFh5Y2HjG4hIA3Ta7u7sFiUSKZ565i709L1IpuuPH6VweK9Y1GvTMcbVagVqtg8MxvQfyuHFkZmPxbreLSqUClUo1cdaZyWROVFkA2hLh/e9/P77ne74Hf/Znf4YvfelL+Ou//uvRG/zJT34S/+N//A/89//+39HtdvGqV70KH/zgB/F93/d9AI5ULn/5l38Z3/3d3z3Va7oOE89erztoNcqg2awDoFuVtFrDYM5ivDkZWuEwiHQ6fsLr57oVpSbBeWttNhvY378HHo8Ph8ODw8NdUBSFlZVbU5uS0q19acTjYRBED3q9CUaj9cIB7as4p/1+H9FoYGCQrILTuTzxzNTxdfZ6fSQSUSQSYQB0b7zDsTS3ecNWq4lQyIdajQ5iVqtrLAnwWq0Cr3cbJNkHi8Ua27D6pH0BH3a7e+xE8iw8ysbiQ1PtfD6DYjEHkiTBYDCgUKih1Rommt1tNuvwerfBZDKxsnJr1Kb0qMSS89ZJm1QfIpdLwen0oNNpI5GIwGi0wGyeXL11iHa7hWg0iFIpD6FQPPDYOp9EXNX5rFRKCAYP0O/34XAsnSr3fxGOr7Ver2N/fxvdLv0ZrtUaYLGMl3xdBIqikE4nEI+HwGZzYLcvjWVLMhRJKRZzAGjpeZvNBYHgYkJUq1UQCh2i1WpApzPBbL44AbwIj7KxeLfbRaGQGXAS+m/ThSID1GrdRJxkqHBoNtthNFofKU5y0TqPe6w6HMsjTrK6entq/zG6tS+FRCIMgiCg15sHnOT86/GqOMnQEkqhUMPhWJ7Y5uNBThKPh5FM0rv+tIbA8tzmDWlOcoBarQqNRj8oEF283mq1jIODnREnMZvt0OkunsujOUkYqVQcfL4AdvvSzCNAl2pbANAX3P7+PprNJk47xLPPPjvNYU+0XBYKhZEP3Y/+6I9ia2sLH/nIR/DRj34Ub3nLWwAAv/Ebv4EvfelL+OVf/mWYTKaRD92f//mfT+0lcx3B8ziazTr6/T7EYulExOK4aIHN5oZef+S99qgET+DstbZaDezt3QeXy4PdvgS/fw8MBgOrq7enqjhTFIVKZThc3IRKpYXF4hj7WFd5TkulPIJBHxgMwOn0TJSAnbbOUqkwEBKgrxuVSgubzTUXj61hghyNBkfqVirV+W19ANBq1VCvl6FS6S80rKbbhAqIRPzo9bowmWxzsy94lBO6k3+7j1qtDJFIMvH7Ohzs5/FoEZrjXRSPSiw5a50URSEc9iObTcLhWEa73UQqFYfZ7IDJZD3niGej1+shkYggm02Cw+HCbHaMvbNzleeTIHoIhQ5RLOagVutgs7knSloeXCtBEPD791GpFAcknU6+5qXkR8+++VCplKBUamC3uy+8luldtii0WhX4fOmFpvK9XhfRaBD5fAYikQQOx/zsCx7lhO44Go06SHI6TjL0RXU4lqDVGi91nZeB8QrMAtjtLvh8e2CxWFhZuTU1JxkKnrTbTajVOpjN9hvJSYrFPEKhAzAYTLhcnokSsNPWWSzm4ffvg8Ggr5tJCsIXYZggx2JBMJlM2GxuKJUXc5Jms4pGowKVygAm8/w4SXOS/MBSqTdX+4JLtS3Y2trCT//0T59Qkhz2eA+/7u/vT3PoE1CpVPjt3/5tfOxjH8Nb3vIWaDQafOADHxglcwDw3ve+FwRB4Od//ufRbrfx7LPP4nd+53fmZgx6HZhGkpyeP9hFtVo+02z1UUar1cT+/hY4HC5sNhcOD3fAZnOwsnJrqm3sRqOOaDSAarUMiUSG9fWnIBZLL2Hl84FCocbmphTBoBcHBzsDiWLH1Op7CoUKGxtP4+BgG91uB6VSAZVKEVaraywJ7/PAYDCg1Rogl6sQifgRCOyjUMjAbl8694NJIpHBajVe+GHUbrcQifhRLhchkylnqoQ+zmCxWFPtvA4/WCUSKZaW1q/N2PwyMPRozGaTsNuXRiqfDxbAxgUteBJHMhkFRWGg+Gq6VkPw88Bmc+B2ryKfV44EU1yulRPCCpMdjw2PZwOJRASJRAQAcHi4C4VCDbvdPbM0N4/Hh8eziUIhi0gkgPv3vwmr1QmN5uz5IZqwOUeEETg9oTsieSEAgMOxBI3m6malHyVM07rY7xPw+XZRq1XmaiF0U9BqNbC/fx9cLh8WiwMHB7vgcLhYXb01VWG00aghGg2iWi1DKpUPBD3m64s4TyiVaojFEgQCB/B6t6HXm2CxOKdOYJRKNTY27uLgYAe9XhfFYh7lchE2mwsq1fRtzwBGhuYKhQrhsB9+/z7k8izsdve5nEQqlcNmM43FScJhPyqVIuRyJWw297Vwkql26H7gB34A+Xwe73nPe6DX6099A5977rm5LPA6cN3VsEnR6/VwcLCNVquJ5eX1U7d3b8I6x8WDa223W9jbuwc2mw2r1Qm/3wsej4+VlVsTJ+6dThvxeBj5fAZ8vgBWq/Mhz75p13kVGPqARaMB8PkCuFyrF37YnrdOgiBGcu1CoQjNZgNSqXxif7nzUCrlEQ77QRA9WCyOM9sWLjqfdOU9hkQiCg6HA5vNBYVCPXcC9rjs0E2DbDaFUMgHpVINl2v11Nh+U9Z6ER5cJ0VRiMWCSKXisNncaDRqyOczcDiWodUaLj7gMQzNZGOx0MCX0gCTyTYVkbuu80kr6npRr1dhMtlgMtkuvJfOW2uxmIPfvw8OhwuSJEFRJCwW50T+cueh1+shGg0gn89cGKMubpOrIRQ6RKNRg0ajh8XimEt3woN4XHboJkWv14XXu41Op4Xl5Y1TFR5vwjrHwWnrpAvM98Fmc2CxOBAI7A/k6zcn9tLrdNqIxUIoFLIQCISwWJznqoROutbLxrA9OhYLgs8Xwu1evXBu8HxO0hvs+pdGnEQmU8DhmMxf7jwUi3mEw4fo9/sDTnK6PsE4nGRoacLhcGG3u6FQzKc74TgudYdud3cXn/zkJ/Ed3/Ed0zx9gTmi02nD690CQdCiBTe5ojMN2u0W9vfvj3qYDw/3IRSK4PFsTrRzQBAEUqkYUqk4WCwW7PYlaDSnFyNuMhgMBvR6E6RSOQKBfezuvgSLxTGRD9xxsNlsLC9vjHrYJRIp2u3WVP5yZ0GhUEMikSMeDyESCSCfz8LpXJ5oJ5r2j6Llw4f+UY+Kwe+jAIqikExGEY+HodUaYbe7H6udClqUIYRUKg6r1YlqtYxyuTBVN0O1WkY0GkCjQftSWiyOqed3rxO0D9yd0e5apVKEy7U6dSFHqdRgY0MIn28HFEVCLJYO/OUycDg8M58jDocDl2sFarUWodAhtrZegNlsg14/flsT7R8VQiaTHJi635l6d3KB09Fut0bz0KurswmV3UQMOQmbzYbJZIPfvweRSAKPZ2MiMSeCIJBMRpFOx8Fmsx/ZHWLam9YMmUwOv38fOzsvwmp1jjVvdhrYbA48nk3EYiGkUjFIJDI0m42p/OXOglKphlQqRywWRCTiH3lgTiJgUy4XEQ770e3SoktGo+3aOclUCZ1Kpbr2hS9wUrRgff2px67tbJis0saRNvj93oG/y8ZE11+1WobfvweC6MNgMMNgsDzybWRCoQjr63cRi9E+cOVyES7XylQtTgwGAxaLY2AW7gWPJ4BMphjMldDJ16yFAjabDbudFmIIhXzY2XkJBoNlZDR6FrrdDqLRAAqFHCQSGZaW1mdSDVvgYdCiBQFkMokTogWPExKJCJLJGMxmOyqVEqrVMpaW1scS2hii3+8jHD4czVqtrs7HW+o6wWAwYDbbIZMpEAh4sb39Iux299Rt10KhCBsbd3F4SFfYdTojyuUStrdfmNucq0ymxObmM0gkwqOdDYfDc64n3nBHNRql/aOGhPNRK+jddDQadRwcbIHFYmNt7c5jx0mOF5gNBjMCgX1IpXIsLa1PxEkqlRL8/n2QZB9GoxUGg3kuyr7XCaFQjI2Nu4hG6cJtuVyE07lypsr9eWAwGLBanRAKxQiFDsDnDzlJYJR8zVoooJPo5QEnOcTOzoswGq0wGs/3wOx2O4hEAigWc5BK5fB41scSXboKTHUFveMd78DnP/95vOIVrxjLFHuB+eM80YLHAa1WCzs7LwMADAYLQqEDyGRKLC2Nb/Q7bAWIRgOQSuVwOj1z27K/CaBnRVyQyxUjU16HY3nqWQWVSgOBQACfbxelUgF2+xIymeQg+TLPZVdMIpFhY+PpUZsCPSy//BAxpltLaTNmJpMJp9Mz82zfAg/jPNGCxwWxWBiJRAQmkw2VSgmNRg0ez+ZEymPtdguHh3tot5uP5bUokciwufk0wmE/gsEDlMtFOBxLE7ePARjMNm+O1JZVKi24XDUSiciIjM26K8ZisWC10rM1waAPu7svQa83wWx+WPK81WogHPajWi1DqdTAanVNbWmywNmoVErw+XYhEAjh8WxcSgvrdeKowMyEXm9CKHQIuVwFt/v01vTTQHtTxhCLhSCTKeB0emaeM71JYDJZI6XpYNCL7e0X4HQuT92GqFZrR5ykXC4OOEkCu7tDTmKbeV5ZKpVjc/OIkxQKOTidD8eoI+XdMFgsJlyulZln++aNqRK6SCSCQCCAV7/61VhaWnrIXI/BYOD3fu/35rLABR7G4yxaANBGxvfu3QdFUdBqTQiHD6FSaeB0rowdOPv9PkIhHwqF7MCDyHmjbrx5YlixDoV8ODzcg0ajh83mnir5EgrFWF+/C79/D+HwIaxWF0iStgYoFvNwOJZnluBlMpkwm+1QqTQIhXzY378PjUYPp9MNgJYP9/t9aDbr0GqNA/+oR1fk6KbicRctAAC/349oNASj0YJyuYh2u4mVlVsTJRTlchGBwD5YLDbW15+aSrTqUQCLxYbLtQK5XIVQyIetrRfgcq1Mdb/T6rYuiERiBIO+QZv8BmKxMPb27kGnM8Jimd0DUySSYGPjLlKpOBKJ8KgQpVarB/LqASQSMXC5tLjKrJYmC5yOQiGHQGAfEokcy8trj/xu04M4XmDWavUIh/1Qq3VwOj1j8wra5P4AxWJuZnuUmw65nOYkwaAPPt8utFoDrFbXVJxkeI8fHu4hEvHDanUNPIMjKBTycDhmtwUYchKlUoNQ6AB7e/eg1RrgcNCcpFotIxDwodmcn6XJZWAqUZQf+qEfuvAx/+W//JepFnQTcJMHkMcRLTgNFEUA6IEkWWAyOTcukPT7fTSbddTrVWSzKQAUNBo9YrEwNBo9HI7lsddMV9N30W634HR6LkXxs1arIBLxg8NhQyiUQCyWQiKRXWviMbQLoNfFg9u9ArFYOtU1OlQDTKcT0Gj00OvNCIcPJ/aXG+fvHMkJs6DRqJFMJiESiWG3L12L8uiTIIoyjmjBaaAoCq1WDTKZCP0+EyR5s+IIRVHodNpoNGqo1crIZFIwGs0olUro9bpYWdkcu334wWq627069/t76FlUqRQhEIggFssglcogEIiuNUZ3Om0EAl7UahUYDGaYzQ4wmcyprtNGowafj/bmcrtX0WjUj/nLzU9EoN1uIRTyoVotQ6XSoNmso93uwGi0XNhGdVl4EkRRMpnkoOiqhdPpmYKTsMFksm8kJ2k0ami16shmU+j3+1CrdUgkotBqDbDblybiJD7fLjqdFlyulUspnlWrZUQifnC5HIhEEohEMkgk0mvnJNlsCtFoAFwuD273KkQiyVTXKEmSiEYDyGSS0GoN0GqNiERopd5J/OXGWXMmk0QsFgKbzYJaPeQk87U0mQSX7kP3OGOS4Fkq5dBoVCAQiCESyS6tZ3xa0QKKopDPZxCNBkAQBAC6JUYkEg9ueglEIjG4XN6VBVSaFDZRr1fRaNRQr9dGZupMJhMSiRRqtQqBQAB6vQlWq2vstZXLRfj9+wOxj/W5V9NJkkQiEUYyGYNEIoVEIkY+X0C32wEACAQiSKUySCT0v+top2i3m/D7vWg0ajCb7bBa7VAqxVN9wOdyaYRCPohEYrjda6hUSiN/ObvdPbdkme5L96PRqMFkskKtvr7h8OtI6BgM+sOKyeRALKavncsioMdFCzyezbFnETqdNsLhQ5TLxcGaGRAIRINYQscToVB0pZL9BNFDvV47EUsIogcA4PP5MJlMiMcTIEkSq6u3xp51oKvpXhSLeRiNVpjN9rlfj/V6DYHAPrrdDsxmM0qlCur1KiiKAovFHsQXOaRSGYRC8ZUnJHRCG0c8HoJAIILbvQKJRDJVstDrdXF4uIt6vTYy2g2FDlGpFMf2lxt3zfl8BvF4GDKZFBaLExzO9bXZX0dCVyxm0WrVwOeLIRbLLm3MgKKokaCOTmeCzTbe5/Sw8BiLBUechMPhDOKH+Bo5SQP1em0QR6ojM3UmkwmFQgEeT4BkMj5xx0+pVEAgQKu/XsYMOEmSI8EnqVQGsVh0gpMIhaIBH5EPOMnVt8K2Wk34/ftotRowm+2wWGxTc5JsNoVw+BAikQRu9xrK5cIxf7klqFTzSZY7nfZA/KoGs9kGlepsq5TLxpUkdJVKBS+88AKy2Sxe//rXo1wuw+F49LeRJwme1WoRyWQUlUoFAO1yL5XKIZUqIJXK59Krf1y0YFx5aYC+iUIhH2q1ChQKFSQSETodAr1eD71eF61Wc0R+jpK8o0RvXgG10+mg0ageI160SSmAQVWa/nsCgRBsNgelUhbxeBRmsw1G43ivlU54Y4jHQ5DJlHC7V+ZemWo2GwgEvGi1GjCZ7LBa6aBULNbRbLZQrZZRq1VQq1XQbrcAADye4ESCx+Pxr+T+oBPPCJLJKKRSGZ555ml0OtRUFdt6vQqfbxcAsLS0Dh6Pj0jEj2IxB6VSM/WszYO4KTLW15PQUYjFAshksiCIHhgMBiQS2SCWyCESSeZC6GnRgm0wmSysrGyOVYCiZwfig9kBNhQKJQQCHlqtDrrdLjqdNtrtFoYfJUKh6AQxEwrFcxHRIklytItPx5IaOh36PmOz2RCJ6J3yYewC6PlAkqSwsnJr7GJbu90cVNM7cLk8c6+mD4tziUQEQqEYy8urMJm0KJUa6HbpBLVWq6BaLaNer4IkSTCZzFEXgFQqh1gsubLEudGowe/3otttw253Y3V1CeVyc+J7lCRJRCJ+ZLMpaLVGWK3OkREvgJlmbR7E4xZLJuEklUoByWQU1WoVAO3lN4wjUql8LkVGiqIQDh8im03BYnHAYLCM9bnWbDYQCvlQr1dP4SQdtFqtUziJZPR1HpyEoih0u51RAWhYDCJJ+jo5yUlE4PE4qFYLCAaDE4lGHS/Cy+UquFwrc2/Tazbr8Pu9aLebsFgcMJutI07SaDRHfKRarYxiJZ8vGPGRq+Yk8XgYqVQMUqkczz77NNptcqr7s1ar4PBwDwCwvLwBLpeLcNiPUikPlUoLu31pLuf6UYsjUyd0n/vc5/D5z38e7XYbDAYDf/RHf4RPfepTKJVK+MIXvgCp9OaaNF+EadobcrkyisUSarUyqtXyqLpDKwYeBdNJq5DHRQvs9iXodBeLFtDeGLSqG5fLh0KhQjabBJPJRL/fx/G3nMFggM0+asEkCGKUbLFYLAiF4hFJEonEF978BEGg0TiqctXrNfR63cG54oDH44HN5g7IKQWCINDtdtHrdUYBFQBWVlagUhnGuon6fQKBwAFKpcuppp/0WRHA5Vq5sG2g2+0Ogimd5A2vBw6HO0jw6GqZQCC81GBaq1UQCHjR7xNwONxQKKYb4u126Qp7o1GDw7EMjUaPQiGLUOgQTCYTLpcHMtls8ymPWvAcB5O2XBaLdVSrNVSr5UGBoIx+vz/YuT6Z4E36Pg6FlPh8WkhpnFhUr1cRCtGzAxqNfrCzXgOHw0av1zvxWBaLPUrcSJIcETOAJhF0wiUZVeLPS/IoikK73XpoF5+iKDAYDPB4fHA4PLDZLDAYDPT7/REpPL4ukUiE1dVbYLHGi7uXXU0/vntuMllhNNrA5bLPvO6HSeyQlNVqFfT7BBgMBkQiyeCakEEsll3qTEe/30c0GkQ2m4RWq4XN5gaTOV0RJ5tNIhz2QyyWYmlpDQBGQiz0/K9r5hmsxy2WTMNJstkySqXSKJa0WvTz+XzBiQRvGk7i9++jVMqP7eE4nMNOpeLg8fiQy1XIZJJgsZggiD6Om78fcZIjjnDESdgPdReNy0no3bfTOAkfbDYduyiK3vU/jZPY7W7odKaxzhFBEAgGvSiVChMV4cfF8d1z2vttBUKh+AJO0jmR4A2vBy6XdyLBu2xOQs+jeUGSfTgcS1AoNFNykg58vl00m3U4HB6o1VoUClmEw4dgsdhwOj0zz9Y9anFkqoTui1/8In75l38ZP/ZjP4Zv//Zvx9vf/nb88R//MfL5PD7wgQ/gTW96E37hF35h4kXfFMyjX73X66JarYyCabvdBAAIBMJRIJVI5OfOIR0XLXC7V8eqFB/36zIYzOj1esjl0tBqDXj66TuoVFpotdrodjvodDrodjvodtvH/t8ZBbvTwGAwwOXyRgSNzxeg0aij0aih3W6dIHEMBhMU9fBNwGKxwOFwweXyBl+54HC44HB44HK5EAqFMBhUY91ErVYTh4fDavoKlMr5mjp2Om0EgweoVsvQ602wWByjyvgkNztB9FCrVUcJXqNBk1M2m30smMohEokvIZiSSCRCiMfjUCjUcDiWp5p/I0kS4bAfuVwKOp0JVqsTvV5vcH5K0OlMA6GD6XYOHrXgOQ5mnaGjKAqNRn0QR0qo1SqDHRsWpNKjBE8oPP+6GZo+SyQyLC+vX0iYj/t1CYVi6HRGxONhAMDKyjpsNhPy+QqazdaJ2HE8rnQ6LZz38cJms8HjCSAQiCCRSEAQfdTrVbRaDXQ67dFzh6/rtGOdFkeG3wsEfBiNGlSr7Quvp+PtY5dRTT8+S8Lh8OByrUAikQ7Ow/jX/bA1bJjc1WqVUbwWCsUnugEuQ2WwWi0hGDxAv0/C4ViaeveSrrDvgsFgjlrjj+Z/uYPzM70S5uMWS+bHScrHOAm9Y0NzEsUglpw/B04QBHy+HdTrNSwtrY61o0r7dR2i2+3AYLCg2+0gn89ApzPi7t3bI05ynI+c5CfjchIhRCLxgJPU0GjUJ+QkvGMx5IiP8Pk86HSqsXeTWq0GfL5d9HpduFyrE1mjjIOz5luBaTjJUYLXaNQGx+CMYsiw3Xv+nKSPeDyERCIxU5cPSZIIhXzI5zOj8Zxut/MAZ3NO3d3yqMWRqRK617/+9XjDG96An/mZn0G/38f6+jr++I//GOvr6/iDP/gD/Kf/9J/wta99beJF3xRcxgByt9sZJHh0xazTaQOg25OOJ3hDEtHrdXFwsI12ezzRgl6vO/ANy0AikcFksiEWC6HZrMNuX4LRaBr7wiRJEr0e3Uo1DKitVhOtVhPdbgcE0TuVXDEYDLBY9C4cj8cHj8d7IEjSROsiwj/uOS2V8ggEvOBwuFhe3pirue/Qt+i8as8sN3u/T5PXYUCt1aqgKJqoK5VqGI3Wub2e4ToPD0MIBA7AYDDgdHogl0/+QTMkppGIfzQkLBCIkMkkEY0GwePx4XKtnOsJddE6H5XgOQ7mLYpCkiQajeM7ePR1w2KxT1Tdj1dZj0QLLlaKpSgKxWIekYgf/X4fZrMNABCLhSAWS+F2r0IoFIy1Voqi0O8TDyV5zWYD7XYbvV53VHl/EMOiDx1HBKcSreOdBbOcU4IgEAh4US4XLsWHr9vtIBTyoVwunqr2Nst1T4vAtE4keMPPFoFABIPBPFeLBTabCaGQjRdffBnFYh5qtQ42m3uq5LfT6eDwcBfNZgMWix06nQndbgeBgBf1ehVGowUmk30qMva4xZLL4yRHCd4RJxEf4yRHO7/dbgcHB9vodDrweDYuTLi73e7IN0wqlcNotCIWC6LZbMDhWIbBYLwSTsJmc0ZF6LOKP+dxkkmupWKR5iQ8Hg9LS+tz5yT5fAbhsB9sNq1I+yAvnA8nKaNaraBer404iUqlgdFonZtGxHCdPl8QgYBvZE00jQrt0OIoEglAIpHBbl+CQCA8tatq2nU+KnFkqhJkMpnEc889d+rvnE4n8vn8NId9rMHl8qBWa6FW0yISnU57FEiLxTzS6QQAWqJVKpWhWCyAJPtYXb1zrmjB8QFjAHA6PeBwuPD798FkMrG29tTE5JrJZA6I1NnD1CRJq1I2my2IxXRV7KpmOo5X0xUKFZzO+VbTCaKHUOgQxWJurv3Yx8FisSCTKUZJ4nGinskkkc9noFJpYTLZ5vahoFZrIRRKEAz6cHCwM5WUMIPBgE5nhFAoQjB4gO3tF6HXm2Ay2SGTyREIeLG39zJMJttjaVB93Ri2Xg6LNiRJol6vjmJJNBoY7PxyIJXSBaJsNjWWaMFx0ROFQgWLxTnyDpum0jkkU2w250xxIoqi0Ot1UKtVRy3eHA73yq6bZrOBw0O6mr68vDH3anqxmEMo5AODwbiU4zMYDPD5QvD5wlHrW6dDt1YVi1kEgwdIJCIwGq1Qq3VzmcPk8XhYWdlAOp0a+budRi7HOc7a2m1Eo6FBO2cadrsba2t3RjOG5XIJLtfK3FtfFxhyEh3Uah2ABzlJDul0HMCQk8hRLOZAkiTW1u6c+37QnCSFaDQ0KB7Sn89+/97I+mNScj0uJ2k06mi1WhCLJeDz+VfKSeLxMJLJKBQKNVwuz1ytG3q9HkIhH0ql2Yoo5+EsTlKplJDNppDLpaFW62AyWcHnz4eTaDQ6iERSBAIHODjYHtiZOCfmJHq9eWBC7sPOzovQ6UwwmWyQyRQIBPaxu/syTCY7jMbxZj0fVUx1RRgMBrz88sv4lm/5lod+t7OzA4Ph4p7qxwW5XAbRaA0ikQxisXzsC5HH40Oj0UOj0Y+ktofBNJ/Pgs1mY2XlzrkVkWazcUJK3mJxIJfLIBg8gEymgMu1Ohdp+dPAZLIgFtOzG1cJupq+j3K5eCnV9HK5iGDwACRJwu1evRTLg9NwnKgbDBZks6mByWV2kNhZx1boOw9cLg8ez8ao/atSKY/sDSYBbUT8DNLpBBKJMPL5LKxWJ1ZX7yCVogfBS6UC3O6VuQX/xxn9PoGXXnoJHA4fMplq7CSeyWSOqun0cfonErxxdp1Ikhy9j2w2Z1RZpluZ25d6H9DtUnyoVFevRFgs5hAIHIDH42Fj4+5cr1OCIBCJ+JHPZ2Zqc54GdIcEXTxsNOpIJCIIhXxIJqNzS+wYDAY0Gj2kUrqIs79//6H2r3EwNCLWaPSIRA7h9W4NzL+dkMuV8Pu92Nl5ERaLE3q96bEmY/NCNptGNFqfIycpIZ9Pg8PhYnX19rlJVbNZRyh0iHq9Co1GD7PZgVwuhWAwfGliZUMwmazRZ+hVgiB68Pv3UamUJhKIGRflcgHB4AEoirpSv9DjnMRoHHKSGPL5DNRq3dy6iLhcHlZWNkddPpVKCS7X6sQbEbRB+DNIpeJIJulCpNXqxNraU0gkIojHQyiXC3C5Vi5Njf66MVVC973f+734zGc+Az6fj2/7tm8DADSbTXz1q1/F5z//ebzrXe+a5xpvNFgsFsrlMmKxGBgMJmQyBZRKNeRy5dgzDHSVVQA+XwCt1vDQ7MiDoAeMo0ilYuDx+FhZuQWRSDIawr0sme3rxlE1vQePZ2OqlsGz0O/3EYsFkckkIZUq4HJ5rsVyAKADqV5vglZrQC5HB9GtrRcGbQ+2mavVw122IRmjq1e0QMNkZIwJo9ECtVqLaDSIYPAA2WwKdrsbMpkSgQC9g2e1uqDVXr0NQaNRQzIZRbPZxK1bz9zw+4FeWywWRiRCt4koFGooFGqIxeMLoDxYZR2KiJyFWq2KcJgWPdHracPUSqWMnZ2XwOVysb5+97HbHaGr6SEkkzEolRo4nZ65qHAOMRz6JwgCTqdnri2Pk0IkEmN5eR3N5lFil0hEBtYg+pkTOx6Pj9XV2yOBhnK5NBJomHSdq6t3UChkEY0GsbX1TRiNNqyv30EiEUE0GkC5XIDT6bk0Gf6z0O/3kc9nkE4noNXqYTBYrvTvTwoWi4VSqYRYLAYmk+YkCoUacrlq7KLCaZzkvGuY9lOMIJ2Og8cTYHX1NoRC0aCVuXgpwiA3Ac1mHT7fLgiCmLtxPS1EFEA2m4JMpoTTuXyNnIQFvd4MrdaAbDaNZDI61y4iepfNNNpR29t7GUajdeJrhslkDmIbzUkCAS8kEilstiUoFCoEAl5sb78Im80FjebqbQjq9RpSqSharSY2N+fPSaaaoaMoCh/+8Ifx5S9/efQ9g8EARVH4nu/5Hnz84x+/FhPPeWGafvVkMod8PodSKY9ajZYLlkhkUChUUCjUc6sIVCpFhEL0gLHRaIXRaB3IbO+BILpwuVZOHVS+Kb3A4+C0tRYKOQSDXvB4Aiwvr8+1wjL0g+p0OrBandDpjGPdaFd1TkmSRC5HB9FutwOlUgOTafzE7rx1HpdWFonEcLlWpw7O1WoZ4fAhWq0mtFojjEYLkskostkU5HIlHA7PuR448zifBNEbka/hTAiHw8WdO68YOyZd5wxdPl9FsVhEqZRHqVQAQfTA4XAHcUQFqVQxl9hKEARisRCyWdrE3eFYhlAoRiwWQioVg0KhhtPpObWt51GJJaet82Q13QmDwTy3D9XjflASiQwu18pYycdVns9ms4FEIoJiMQculwej0QqNZvzE7ry1HpdQN5sdU59bgiBGyQGfL4DNRnuu0mIsBOz2JahU56v1znpOKYpCvV5FOp1AqZQfFVktFgeMRuvYx7nOGbpkModcjuYk9fpxTqKGQqGa22focdETk8kGg8EyEisjCAJu98qpxddHOY4AQKFAtzTz+QIsLc2bk1Th93vR63UmKoheJScZdhH1et2Ju4jOW+dQpT2RiA685qbv8qFFAv1ot5vQ6YwwGCxIJCLI5dKQy1VwOpfP3XiZFyfJ5TJIp+Mjb8DL4iQz+dCFQiF84xvfQLlchkQiwbPPPovl5eVpD3djMOsAcq/XRalUQKmUR6VSAkVREAhEUCrp5G4a1aBer4tIhB4wlkhkcDiWIRAIkc9nEAr5Lgwqj0rwBE6utdfrj0jmvKvpw1m8ZDIKoVAMl2tlomTmqs8pSZLI59NIJIaJnXqQ2J1fDR9nnfV6FYGAd+Kk9rQ1ZjJJJBJhMBiMgbEvB6GQDxRFweFYPrNlZNrzSVHUaPawVCpgKIEtEIhgNtuhUKgmei03RRRlSCqLxTxKpTw6nTaYTBbkcuWg4q6ceI6CFj3JIRIJoN/vw2JxQKczjhKdarUMq9UJvf5sMv6oxJIH19lo1HF4uIt+n4DbvTqzzcZxPOgHdd75u2idV4FmszFoSxomdhZoNIYLCcZFa502qT1rjZEIPaOnUKhgMtmRSsVQKGQvVMab9px2u13k82lkMskR+WIymVCr9TCZrBPvkNwUUZRut4ty+SQnEQpFoy4AoVA0cbzvdjuIRAIoFnOQSuVwOJbA5wuRy6URCh1CIBBiaWntkeckD66ToihEo0Gk03GoVFo4HMtz4ySzJjPXwUmmKTaPs85ajeYkkya1p60xk0kgHo+AyWTCYnGAzWYjFDoEcL7/5SychJ49HHISGkIhzUnk8svhJDMldMeRy+WQzWaxsrIy1/aV68A8FaX6/T4qleIgwSug3yfA5fJGO3cSiexC1blcLo1oNAgGA7BaXVCrdYOgEkAmk4RarYPdvjQ3pabrxnEfnYODXVQqpQtJ5qQ46QdFC3hMuvNxXeeUTuwySCaj6HTaUCjoxO4s8Zxx13m87VQmU8DpnL7ttNvtIhajVVdFIgnMZhuy2fS5Q92Tns9Op41cLo1sNnVC1nqoyDVp29cQNyWhOw5arr452rlrNGpgMBiQSuWjWHLRe9VutxAO+1GpFKFQqGGzucHj8VCrVXF4uDua0bhI3OJRiSXH15lOpwaFLyGWl9fn1rZ3lh/UtOu86vPZajWQSNCzuhwOF0ajFVrt2YnduGs93nZqt7unbjs9XoAgCAJGowU8Hh+RSOBcZbxJzilJkiiXi8jlUiiXi6OfH+1g6qYW17gpCd3JYxEol0solfIolwvo9/sDTqIedAHIz32vhkrHsVgQDAYTNpsLKpUWFEUhEgkgm01Co9HDbnefe94exTjSanXg9+8NCl+uuc51tlpNBAL7aDTqU+sDXCcnmSSxm4STzKvttNvtIBoNolDIDjiJHZlMEuVy4Uz/y0nPZ7vdQj6fRjabPoWTTD8uc6kJXb1ex8c+9jFsbGzgne98J/7qr/4KP/dzP4d+vw+73Y4vfOELj7QwymVIBAP0RV+rVUa7d91uBywWG3K5EkqlGjKZ8kRS1mw2EAr5RgPGw92ObreDw8M9NBo12GzusSoXj0rwBOi1MpkE/umfvjmopq/NbBA5xHl+UNOs8zrP6biJ3aTrPC4M43AszSSIUatVEA770WzWoVbrIBKJEYuFT5VdHmedJNlHsZhHLpdGtVoe/ZzFYkGnM0GvN83sv3UTE7oH0em0R0WiWq0MiqIgEklGyd1x2wJa9CSORCICNpsDu90NhUL9kAXF0tLaWB+W133djws2mwmZTIB797aQTM6/mn6eH9Sk67zu89lqNUeKpnRiZxkkdifP1WQ+V/MThjk+ozVMtAqFLKrV8qnKeOOss9lsIJ9PI5fLgCB6o7ERWmLfAqlUMTNZv4kJ3XEccRK6UNTtdsBmsyGX03FEJlM8wEnqA05Sg0ZjgNXqAJvNQafTxuHh3sgmaZz5pJtw3Y+D4TpjsTT297dBkuRYha9xQcvuD21/eAPbn0ebkyQSEXS7HSgUapjND3cRTbrOUqmAUOjgwi6fcUCPhvjRajWg0eghEIgQj4dO9b8cZ539fh+lUh7ZbAq1WmX0cxaLDb3eBJ3OeGWcZKqE7qMf/Sj+7M/+DL/4i7+IN73pTXjd614HhUKBn/iJn8CnPvUpLC8v49d//dcnXvRNwWUFz+OgKArNZn2U3DWbDTAYjNEAc6fTHomeOBzLo+BRrZZxeLgHBoOBpaX1sZOR677RxwFJkiAIArVaCcGgb9CyMb9qOm046UOlcrof1KS4KeeUJEkUClkkEpFBYqcaJHaSqdfZ6/UQDs/HuoFOHJKIxcIAAL3eNDDJrp4gwheZa+dyaRQKGfT7fTCZTJAkCYFACIPBApVKO7e53UchoTsOgiAG7VQFlMtFkGQfPJ4ASqUKIpEEiUQUrVYDer0ZZrMdLBYL/X4f4fDhwOCXNomfxxzVTQDtf9cHSfYGPlhF2GxO6HTzqaaP4wc1CW7S+Wy1miPBAw6HC4PBAp3uKLGbZq3HrRum9b88vr5IxI9KpQSZTAGRSIJUKv4QET5rnQRBoFjMIptNj3a5hxoAGo0Ber1prt5hNz2hO44hJ6FbvAtotRojoTeFQoV2u4VUKgaBQAiHY3lEfCuV0sgmaWlpbexk5CZd92eBJEkAfXQ6dWxv70AoFGFpaW3OnOQAlUppKsn+B3FTzulFxebpOEkXodDhXKwbht518Xh4IBJnQqVSQr1ehcFggdlsH4OT1AacJPsAJxENOInmyjnJVAnda17zGvzUT/0U3v72t2NnZwff+73fi9/8zd/E61//enz1q1/Fhz/8YTz//PMTL/qmYJLgCfTB4zFBEAz0T/fIHQvtdmuU3NVqFTAYjJHoCZPJBEVRSKfjiEaDkErlcLtXx876CYJAOh1FpVICwACTyQKLxQaLdfSVzT75Pf315M/GJUN0YtYDQRCnfu33j38//H9vEDxpmM1mmM1OUNR82hmOkwqHwzMXP6ibEjyHGBLNRCKKTqcFuVwFs9kGmUw29Qf8Rebqk6DX6yIWCyGXS0MgEEEikSGXS41a1aRS6Yl19npd5PNZ5HJptFoNMJksUBQFiiIhl6tgMJghkcjmrhR1HQkdi8UAm02i3e6DwZjeX4gkSVSrJRSLBZTLefR6vYEB/PLow7TdbuHwcBftdgsOx/LIh2ocVColJJMRUBQJgDmID+fHDTq2HP1s3A+5oTH5+XHkKH4cjydDcLlcLC+vQSSaj5T5PEnFEDctjgB0S3oiMUzsODAYLNBqjeDxOFPOps2vmEZRFEqlAiIRP3q9LtRqPRqNGprN+khNkcNhnZjDrtUqyOXSIy81NpsNgiDAZnNgMNDqfZchp38dCR1F9cHnz4uT5AddABUwGLSCoMFgGXGSVCqGWCwEqVQx4CTjnUOC6CGViqFaPZ2TsNmnx5LL5CS93oPc5CQn0Wr1sNmW5kbSC4UsQqHDmUy1H8RNiyUPJ3aqgT/c9JxknsW0Xq+LaJQeDREKRRCLpSN+Qh9bcgonyQw4SXPASei5SoVCDb3edK2cZKqE7tatW/jCF76AZ555Bv/xP/5HfO5zn8Pzzz8PsViM559/Hj/xEz+Bl19+eeJF3xRMEjxjsQCSyTiYTCYEAhFEIglEIjFEIgkEAuFUN3+v1wNAjRK2fp9AIHCAUikPg8ECi8Ux1gUzbKmKx8MgyT7MZjM6nWHg6qPfJ459pf9/Hk4LqEwmEwRBnCBXx4Pgg8+njYbZo68s1snv2Ww2BAIBzGYdyuXmzEGp2+0gHPajVMrP3PbzIG5a8ByCDnpZJJMRtNstKBQqrK+vgqI4U62z02kjGDxAtVoeGEw7ZjJsrderCIf9aDRqkMuVaLfb6HRasFqdWF/3IBSKI52me9sBWhGq2+2AwWBAqzVCrzddqo/MdSR0JEnghRe+DoqiwOXyRjFk+HWalg2KotBut8DnC0bxolTKIxDwgs2mE51x571areZAOr4IiUQKlUqJRqM9IEP9wf1/FEvO+1hhMBinJn0kST1U8Dnr+Q/GETabMyCCRz/j8bgwmXRoNHoz35/D4kYkEgAwe9vPcdzUOALQpD6ZjCKXS4PN5sBstmJ1dRnVanvitc6z3R2gW51SqRiSySjYbA4kEimKxTxEIgk8njUoFGIcHgaRyaTQ6bQHCRsFgiAgEklgMJihUKgvVZH7OhK6SMSPdDoBJpMJoZDmJELhrJyEngcaxiGCIKaySRqqIyYSYZAkBbPZhE6nh16PeICP9GfmJMeTtbM5Cfsh/vEgJ+HxuFCr5ej3Wej3Z5ecoDnJIUqlwoXiPpPipsaS07qINjbWQJLsqTnJPNrdhzg+GiKXq9BuN9HptGGzubC2toxQKIZ0OnUKJ2FCpzNAp7sZnGSqhO4Nb3gDfvAHfxDvfOc78Za3vAUikQhf/OIXAQD/4T/8B/zDP/wDvvKVr0x62BuDSYInfQ11kU7nUK1W0WjU0W43AdDEgw6kR+RMIBBNdOG1Wg34fHvodjtwuVagVJ6uxvMgyuUiotEAWq3mQDTFBb1eee6NTlEUSLJ/gpidFmCHXwmCGFU7z0/S6K9Xqfp2JCYTAIPBhN3uhlKpmWvl5KYGzyGGJDSZpH1PVCotzGb7VIGH3iFOIBajPdJcrpVRS+e0a8vl0ojFguj3SYjFEtRqlVE7IJfLA4PBQKfTBpfLg15vgkZjmHk3ZBxcV8slj8dAPJ5GrUbHkUajjn6fTmqOJ3lDcnaeBcSDoL3Xwkgmo1AoVHA6V8Y6lwTRQyIRQSaTBIfDhdXqhFarg1IpvmDWkTw1XjxYQDr+lcFgPhBLhvHkZCxhMplXKuFNi8kcolIpQaXSwGZzzzwTcRnrvEwME7t8PgMejwez2QalcjqhE1r8YShINbn/5Wlri0RonzqhUAyC6KHX64GiSDCZTPB4fHQ6HZBkH0qlBnq9CWKx9Eo8qK4joWMyKQA9pFJZ1Gq1MzjJsFg0OSdpNus4PNxDr3e2TdJpKJcLiESCaLebA9EUJ3S6izkJHR/G5yQURZ6SqJ3OTa4yjhwXk2EyWbDZ3FAq1XO7DlPVCnayKcgkQoiZXKgFIqiEIrBukIXYcIctmYyi3W5BrdbCZJqek8wqSPXg8ej3JwSKIiESnc1JeDw+dDoTNBr9jeIkUyV0v/d7v4df+7Vfg8ViQTAYxCc/+Um88Y1vxE/91E/hb/7mb/DzP//zeOc73znxom8KZu1X7/f7aDbraDRqA2JWQ6t1PKAe7eQJhRIIhacH1KHPCY/Hx9LS+li9/a1WA9FocFBJl8Fmc0EkkjwSpGGIWdfaajURCvlQq1Wg0ehhtTovpZ3mUTmnLBYDjUYJ+/te9HpdaDQGmM22qUhps9lAIOBFq9WA0WiFXm+eKaARRA+xWBjZbBI8Hh8ikRD1eh3dbhdisRR6vXmmD716vYZ6vTqRDcNNmaGjKAqdTvtEHDme5HE43BO7eCKR+FRRk16vh0CA9l4zmx0wGi0Xngu6kp5EPB4BRVEwmej3+ry5gpuGeXiRpdNxxOPhgZjM0lxatee9zqtEr9dGOh1DMpkEny+ExeKY2BYEeND/UgKbzXVCjGAaDNswO502JBIpmEwGKhWakGm1dBV92tmnobm4RCKdiDTelBm6fp8YFYmG7aknOcl4hedxbZKOo9lsIBoNoFIpPZKcZB7rbLUaCAaHAndHYjLzQK5exx/cfxF/FzjEg2SeyWBALRJBK5ZAJ5ZAK5ZAKxZDK5JAJ5FAIRCCeQ1m7ywWUK+X4PV60ev1oNUaYTJZp+QkR5YxJpMNer15pjnEXq+HeDyEbDY14iS1Wh29XhcSiQx6vXmqmDdEvV5Fo1GDTmca+zmXblvw53/+5/jmN7+JV7ziFXjjG98IAPh3/+7f4ZWvfCX+1b/6V9Mc8sbgMgaQj5K8I2LWatF/g8FgDNo1jwJqoZBFOp0YW5mt1+shkQgjk6GJsdXqhEJxRIQfleAJTL9WkiSRSsWQSETA5fLgcCzPTR3zQdBDsRWIRDz0egCbzZ2pDfEycdy0OpGII5mMgqJIGAyWqRIykiSRSISRSsXBYrGg15uh05lmSuwajRoiET/q9RpUKi10OuPUSl8AHTQTiQjK5SKEQjE2Nu4+cgndaThK8o7iSLNZG7Un0kneURxhMlkjxVLae+38+4GiqNHufrvdgkajh9nsOLEb+KjEklnW2WjQan7DD16Lxf6QpPW80O/3QJJtEATAZvPAZnOuZPdoGgzPaTSaQjgcQLVahlgshdXqnCohq9erCAZ9aLUakEoVMJttMyV2w8+AZDIKPp8Pvd4EpVI3NcHr9/vIZBJIpeLo9wm4XKtQqcZvtb0pCd3pxzy/8HxyhESMfD6LTCYxlk0SQLdpxuORUbHOanWdIMJPQhyhfeWiSCajDwnczYpqu43/tnMff+ndQ4+cbliSzWRCIxLTyZ5EQid6YvHo/zI+/1Ji0UlOEhtwEsBgMMNgsEx8v9L+l2Gk00NOYoFeb5wpZtfrNUQih2g06lCrtdDpTDN1JdVqFSQSEVQqJYhEEqyvPzV3TjI3H7rHCVehKEX/nT6azcaoYkZ/PUryaIPn85XZjoych5V0G/R600PVtUcleALTrfU4MaBVimyXlmBVq2VEo0E0GrUTP+dwuODx+Kf+43J5lzqrcR4ePJ8E0UMyGRsEPzZMJtu53lNnodPpIJWKIptNgclkQa83zbRjx2IxIJMJpprPGaJWqyKRCKNSKYHPF8JkskKl0j6SxuLjgqIodLudh3byhuIgQ0uCi3Ynms06IhGapEulclitrlO9DR+VWDLNOkmyj3g8MlDzEw3U/KYvLJwHgiCQSkWRTidOzPgwmUxwuXzw+fzR1+OxhMUav3193jh+Tnu9PiqVEmKx0Gj2xGJxTOy1RHvN5ZFIRAaJnRwmk20m4stkAkqleOo57H6fQDqdRDodQ7/fh0ajh9FonXiH7yYndKf/nfMLz+PYJA2NnBOJCADAZLJBp3t0Ocm066zVKgiFfGi3WzAYLDCZZmstHqJDEPjz/V38t537aB7zOrsM8NlsaMQS2OVKfLtrCXeM81EKfvCc9no9JJNRZDIJsFhsmM02aDTTcJI2kskYcrnUXIrN8+EkFcTjEVSrJQgEQphMtonHfy49ofuTP/kTKJVKvPa1r4XX68XP/dzPIZFI4Lu+67vwkY98ZKL5jpuGqwqep4EkSTSbdbBY7HNbLOlKegHRaBDtdgtarQFms/3MLetHJXgCk6213ycQi4WRySQgEonhcHjONNieFc1mHbFYCOVyESKRZDADoEI2W0Sz2UKn0z7xr9vtnHg+l8s7N+G7LJJ21vnsdNpIJCLI5dLg8fgwmx1QqSafM+x2O0gmY8hmkzMldrNco8erX9MGzSEetYTuNAyTvHa7BYlEdu4HI11JDyObTYHPF8BqdUIuP7ul5FGJJZOus1IpIRTyodvtwGSyjdT85o0h4U0moyBJEkajBR6PG4VCFY1G86E40um0TiR8LBbrzDgyTPguC2e1BhcKWcTjYXQ6bWg0ephMtomTH1q9kk7sms3ZErtpr1GCIJDJJJBOxweJnGFkZj4NHrWE7jSQJF14ZrPZ4PPP5ySlUgHRaACdThtarfHc1v7HNY4QBIFYLIRsNgmRSAKnc3mm2a4h+iSJvw348KV7L6E42Em9arhUanzf5h08a7HN1Kp5HieJx8ODWV0BLBb7VJ/jQ9uvYbHZYJgusZvlGq1Wy0gkIqhWyxAIRANOMt34yLhxZKrI/4UvfAGf+MQn8N73vhevfe1r8ZGPfASl/5+9/45uLS/v/fH33lu992Zbbsenn+lDGcLADJNhMrQ7hBBCIDdACCE3uSlwk18yXCaQhBQW4WYl+TIhwCSXDhnKTWgJZWZomT6nzKmustV71+6/P7b2lmTLtiTLtnzOfq2lJdmW5I+2th69n+fzlHwev/ALv6A4eu9973sHeeprHpIkt001q1YriERakfS5ud671V1N5PNZLC9fAcexCIdnEAiM74pTtN7IHDp0HC6XB1otBZPJBLtd7NoWXRAEMAwNmu509ur1GorFXLObqQRBEIrD53C44PMFd1WYAYBeb8DMzBEEAuNYXV3CwsIFxOOrCIenYbf33kJZp9NjauoQQqGJZrqTtPsXCIwjEBjblfpFGSn6tdw0miYcOnRs6M1vDiIEQSgCfzPkgeOxWAQAgXB4Fn5/aN92kvcLjmMRiSwinU7AarXjyJFTQ51FJiM3BFhbWwbD0PD5ghgbm4TJZITRaITZLECv3/h/RVHqzLjejtB0A4VCDjTd6OgqKnXmM8JoNO04dbkXCIKAx+OHy+VtdjBcQSaTQiAwhlBooufPP0EQcLm8cDo9yOeziEZXcOHCaVitdoyPTw0tVa0bsiMXj69BEHj4fEEEg2Ho9RtrUq81SJLqQZOUsbKygHK5CLvdicOHT/a9U3s1kM9nsLR0BTzPYXJydiizL0VRxBOrK/j0s08iWixu/4BdZCGbwV8+8l2EHU684dQNuG1yeqhNV/R6A2ZnjyIYlDTJ/PwFmM2rmJiY6at8Rq83YGpqDqFQGLGYVIYTj6/tOIuoF9odOXluYXv5024ycJfLu+66C+95z3uwtraGu+66C+9///vx5je/GV/84hfx4IMP4gc/+MFurHdP2M9o2Fa0z/GSIumzcDhce9qpaS/Ybq0sy2BlZR7ZbBp2uxNTU3O70jK2PQ1Ao9FgbGwKXm9AEbw7PaY8z28QaI1GHcViDhRFwe8fG4pD1Os6y+UiIpFFVCqlZsrdzEA54wxDK9ExeWhnMDi+7evo53gOM/q1nqthh24r5BS31dVF0HQDfn8IY2NTPY/zOCi2ZLt1SschjeXleYiigHB4Fl5vYOhfvKIooljMIRJZQr1ehdPpwcTEtOI0DqN5C8syG2xJuVxEo1GHzebE2Fh4KA5RL2uV5p6uIR5fBUGQzeZJob5T4OUdH2nHrgKr1a7s2G33HvV6TOW1SmmvPHy+EEKhia7NhQbhatih2wqGobG2ttzUJCZMTs70PDj+arEjAMAwDFZWriCXy8DhcGFqam4ow8fPJxP4v888gUvp1Lb3JQkCr5g7jNfccAoryRzixSJSlQpSlTKSlTIy1Qr4IVdYBa02vP7k9XjZzCFo+6h76/W9L5UKWF1dRKVSht3uxMTE9I40STIZB0kSzWDz9o5dv5pkbW0Z5XIRJpMFY2OTO2qe0s6u7tCtra3h9ttvBwA8+uijIAgCd955JwBgZmYG2Wx2kKdV2QQ5kh6NRpp57LPw+a69SLoc4Y5EFgAAs7NH+66P6gWe55FIRBGPS4W6w+ic1A2KomAymTdEMqV0gTXEYquIx9fg94cQDI4PtVV6N6xWO44fv6GZyruEc+eegcvlxcTEdF8Os06nx+TkISU6JgsmOTq2kzmAnUZzb6NfVwPtkXSHw4UjR07CaLz2Iuk03cDy8hUUCjk4nR5MTR0amohvp1IpIRJZRLlcbH6+bhx6TZ68u6/T6TsaisgOaywWae502RAKTcJud+7q50Wj0WB8fAo+XwjR6ArW1paQTEYxNjbZl8Ms7dh54HS6UShIjt3Fi2dgtdowNjbVk2O3GRzHIpGQUisFQYTfH0QwODxH7mpHEPjmd1QEJEkqtXXXoiaRxiMtgiAIpWnOTj9fK/kcPvPsk3hqbbWn+79gYhJvufEWTHvccDrNmLa4NjggvCAgV6shWSkjVS0jVS4j2XT4UpUysrXqhi6Z2xEvl/APP/0hvnj6Gdx38nq84tBh6Ie4+2WzOXD8+I3I57NYXV3EuXPPDDR+SdYkwaCURRSPy1lE8o7dYJpEFEUluCw7cnNzJ4bmyPXLQEfe5XIhk8kAkBy6mZkZBAIBAMClS5fg8fQ2l+RqIBJZwhNPRKHRaKHV6qDV6qDT6ZvXnT/36xDIX8irq0vNFB0pJ303U9hGlUajjqWlyyiVCnC7fZicnB26gyMb57W1ZXAcC78/hFBosFa6O0FKFziEsbEw4vE1JJMxJJNR+HxBBAITu5oGRBAEnE4PHA63cizOnHlSSQ/r51hotTpMTs4qqZgtxy6EQGCiZ8du1IzmbsCyDP7zP38CUUSb7dC32ZDWz4N0QWQYGqurS8hkkjAaTThy5BQcjt7Taq8WRFFEMhnD6uoSKIrC3NyJnmd79kO9XsPq6hLy+QyMRjOOHDkJu723bIphQRAE3G4fXC5v0yGK4NKlszCbLQiFhhc93gydTofp6TkEg2NYXV3G0tJlJBJrmJiY3rJGs9vrkG1SoZBTHDuLxYbx8UnYbL07qJIjJ9khURSbqZVXlyO3srKIJ56IKZpkMz0yqCbJZtNYXV0EyzLw+8cwNha+JjVJ+3gkj8ePcHh2R8FKQBpB8IXTT+MHXUYQdOOo149fuflWHPMFtr0vRZLwWizwWiwAghv+zvI8MtUKUpWK5PRVykhVKjiXjCFfr2/53JlaFf/0xE/w5TPP4nUnTuGVh4/BuMNjIdMe2OnUJP2POmg5duGmYyfZgl6ziGRammQZ5XIJZrMFhw+f6Muu7QYDOXR33HEHPvKRj+CnP/0pHnvsMfze7/0eAOChhx7CP/zDP+D1r3/9UBc5yni9fpjNBhSLFdA0DZpuoFIpgWEYiGJnhISiqC4irdPA6nR6UBSFSqWElZUFVCqlZiR9d+o6Rh1peOQq1tZWoNPpdkWIyqk9q6tSg5mdDOAeJvIg51BoohlNjiKZjMHjCSAUmtjV9REEAZ8vCI/Hh0Qi2uwclUAwOIFgcLyv+j7pdcw2o2NrymuRjehmBrmbI9ev0ZQG03IjLzg0Gi2OHTuGTCYPmqbBMDQqlSIYhlG6VcoQBAGNRrupUJN/1mp1Shv3eHwVJElhampu2y51Vyu1WhWLi5dQrZbh84UwMTE99FoKhqERja4glYpDp9NjZuYoPJ7hZxF0o8GxyNWryNUryNaqoEgSk3Y3JuwuxSGSP09XrjwPo9GEUKj/LrD9YjCYMDd3HJVKCaurS7h8+fmBRh1Ijp0bDocLxWIOa2sruHjxLCwWG8bGtt55ZNmWIweISmplP2KQ53kQBDHyu1Berx8Wi7GpSaQ0/nK52Icm2fgzRVEol0uIRKTRMk6nG+HwzJZNUq5W1o9HOnr0uh2PRyrTDTx8tvcRBBN2B95y0624dTw8tM+ulqIQtNkRtHV+Jhmew/fnL+Mr584gXa1s+RyFRh3/8vQTePjsabz62Am86ugJWIYUgJY1idvtUzKo0ukEQqGJvjOodLrNgs1bZxFJ6fN5RKMrqFRKMJutOHz4ZM+lT/Jz7JYmGaiGjqZp/Pmf/7kyh+7++++HVqvFK1/5Spw8eRIf/OAHYTYf3DSeYeSrS28aD5alwTAMWJYBw9DNa6btmu7oYAZIRciCwMNoNGNycnYos9QOSr460Frr6moCV65cRK1WQSAwjvHxqaGnPe4kR3uvjynPc0gmY4jH18BxLNxuH0Kh8LbF58NYpzTqQGqxvpNRB4AsrlaRSMQAiM2U0gkYjQY4nWbkchXkclmsrbWM5tjYZF9GE2jNtqvVqrjpptt6Xuuo1dAJggCWZdbZDnrd7+iOJjsyJElCFMVmg4rJoTgwB8WWyOvMZktYWVlGPL4Kvd6ImZnDOx5ivR5pBIEkDEiSRCg02XODmV6OJ8vzyDeqyNYkh01y3KrItt3erIX5MU8Q/+3ojTjiaUXlpa6wERSLOej1BoRCYXg8/m3XO4x6P2nUwSJqtSqcTjfGx/sfddD+XNHoMiqVMsxmK8bHJ2G3u6DVUnA6zUil8lhbi2ywNf04cu2z7cbHpxEMjvf82FGqoZOF5Hr90c2ubKZJTCYzwuFrS5O0r7NQKLSNRxrH2NjONEm/IwjcJhPedP3NuGN2rmszkt08ppwg4LHFefzr2ecQL5d6eoxRq8XPHTmO1xw7CYexFYAexjq363HQ33MxzWyoKACiTZPoFU2SzWa72pp+NIk0224ejUYNN91022jPoaNp+qroCrWXBcgtx69TpGk0uqFGdg+K8QQAghCRSq1hcXERJpMF09OHYbEMT2QD60cQWPruogQM75jKLebli9G4sa6uHZ7nkU4nEI+vgmFoOJ0ejI2FN3VEh/nerx91MDY2NfB5uj5qLjkdfly6dLmZxjCY0ZSaBy0jnY7DaDRhcvJQX+/tqDl0vSII0oxBWahJu3sc3G7vUHdzD4ot0WhICEIDzz13Go1GHaFQGKFQeKg7LPIc0FhsBYIgIBCQBuP24ziTFMDrRCzF00hVyoqD1rpUUKIbO17rUU8QrztyI455W45dtVpGNBpBPp+BTqdHMDgBny+waQOTYdq8YYw6kJ9rfdR8YmISLFvH0tIyJEdu62yAzZ5XbsPPMDT8/jGMj0/2lZ0wSg5dr2ymSbRa3VB3cw+SHbFa9Th9+hzi8TWYTBbMzBze0ZDpfkcQmHU6/PzJG3Dv0eNb1qgN65jKQURZk5hMFiVDjBcE/HRlCf969jmsFPI9PZ+OonD34aN43fHr4DGbh65J2ruQj49PDVzHyLJss3mKFAAKBscRCHhx6dIVVCqlnrIBuj9vq6Gh0WjG1NShvppU7bpDR9M0Ll261NzGl55CEATU63U89dRTB3pswah2lNoJm80PEkUBgiBCEITmbUH53fqfN95HaD5H6wLIt7Hu52736X4/hmmA4zhMTEzB59s4kHQndH74DZiYmB64zX0v773cgU42jHI6nXRpgKalL8z1uFyeZkvzzcdRCIKATCaJWCwCmm7A4XAhFApv2H3YjXO0VqtibW0J+XwWRqMJ4+PTA9fktNe18Dw/cPMGWVxHo8sACIyPT8HvD/W9poPq0O0V69fa+ix32o2tbMlm95HsADaxFfLvsI1Naf1cqZRhtdowNXV4qG3UZYekVd8s1Zj2WotVous4nVjF6eQqzqWiaHAbd1d3iyPuAP7b0Rtx1NNKva3VqojFIshmU9Bqtc2BvKENzstuzF1NpWKIRiPgeW6guhiZ9XUtFEUhGByDz9d/I6ZarYqVlXmUSgU4HC6Ew7MDlTwcRIdur+hfk0i2pv3njbZl+JoEEJuOLYvx8akdjUeqsyweWbiCf7/4PGKl7UcQaEkKrz52Aq8/eX1PqYv9apKWHml0/Nxdk3ibmkSyo4Io4qm1CP717HO4kklvuzYA0JAk7pw9jF+4/gYcmwwOWZO0gvQmkxnj41MD17TJweZkUtYk9man4EE0SRRraysgSQLj49MDlTzsqkP3+OOP43d+53dQ3GQmhtlsxlNPPdXv044MV5vxbDTqSCTWUCzmwHG8Yvx2sjlLkiQIggRJEgAIEETnpfN36PK7jfeRf9ZqNTh69DAYBkM7pu3b8xSlwfj4JLzenXXloigCFosOyWQO9Xp9nbPWurQfZ4Igodfrla500uw5+bYBWq0O+XxGcdKcTg/Gx7d27GRxGYtFUK/XYLM5EAqFlS5wu3mOynUxpVKhGRmf3kE6Dg+djgDPU+D5/s7NQiGHlZUFNBq1ZvOg3tvwr0d16LojdZlNIZlcA8sy4PmWkBoU6bNPNu3JIPYDmzyGAEkS8Pu9sFrdfZ9PWx2DzpTBzhEEWz1utZTDc4lVnE5EsJhP991Rbtgcdvvx347ehGNtjl2jUUcstopMJgGSpJo1Ja3RKbt1nkqdhaVRB1KKcP87nTJSULAOn8+JapXtc7A4i7W1ZSSTMRgMRkxOzvbchr8bqkPXnUajjnh8FaVSfoQ1ifSZoCgSJpMBbncAGs1gGWixUhHfvHgeP1i4jFqX1PgNr4UgcMfsHN50/U3wmHufMTyIJiFJsoseMSg/a7U6pVsuw9AbHDtRFHE6HsW/nn0OzycTPa2TJAj87LGjeM2RExizOnp+fb1QLhexurqEcrkIi8WGiYnpgUe2iCIPvX5QTZJtapI6/H5JkwxaN7erDt2b3vQmFItF/P7v/z7+3//7fyBJEq9//evx2GOP4fOf/zw++9nP4sYbb+x70aPC1WI810ddJyYmwPOAKEpipyWkJCPYut1+3fl7+Xe7yTCPaaNRQzIZQzqdgCgCwaAkFAbNe+c4DsViDvl8FsVivqNhRXv78M0cNo1G09PxW7/7JqVVTsK8hXGXUoQyiEYjqNUqsFisCIUm4fF44HJZdvUclUTuEqrVMmw2ByYmpvseaDzI+95o1LGysoBCIQur1Y7JyUNbHqNeUB26TgRBUFJ8pXPRDZ/PA5rmNrUlnfaC7HIfskM07QbDPKaCICCXSyORiKJaLcNqtWNiYmbLEQQMz+FCOo7TyQieS6wiV+/tO2WvmXP58bqjN+KEt7WbLY9Oac2SlEanyHWuu3WeSrW6q0gmo5Bm2E3A7x/r2173+96LoohUKo61tSUIgojx8Un4/TvPDlEduk46NYkO4fAEOE5s2pFueqO73ei0LburSQY9noIo4tnoGr5x8Xk8G1vr+XG3jofxlptuRdjRW2CU41gUCnkUCtlm0J5T/ra1JpGctv40SQLRqOzYbcwiOp9M4F/PPtfX6z3pD+Leo8fxgonJoQ0pl3br81hdXW5qEmdTk/T3eRzkva/Xa4hEFlAo5GCzOTA5eWjH2SG76tDdeOON+LM/+zO86lWvwle+8hV84QtfwJe+9CUAwPvf/34kEgl8/OMf7/dpR4aDbjy71UUEgyF4PLaRWudmDKfwPodEIopiMQ+NRgufL9DsXtR/Kk+9XkOhkEU+n0W5LO1Km0wWuFxu+HxucBxAUVJXsGF/sQiCgGw2hWh0RRHTkmO3+Qdcfv3RaKRZU2LB4cNzMBhsEHbxrZdrTtbWllCv1/pueNDP+87zHKLRCBKJNaWLpjpYfLjwPI9UKo54fBUsy8Dl8iIUCsNut43cWrsxjGPKMDRSqThSqRhYloXN5kAwOL5pXWe+XsXp5CpOJ1bxfDoGhue6POtwIEDAYTDCZTTDZbQ0r1uX8+kYvj1/DlWW7un5Drl8eN2RG3HSN6a8tlazgFhz5yw49OyJbjAMjVgsglQqDo1Gi1Ao3FcTpn4HAsvNk7zeAMbHp6HTDWdUjerQSVQqZcRiK8jns9Dp9AiFwggGg3C7R1+T9Hs8qwyD789fxrcune+5eQgAHPX68NabXoDj/q1HEIiiiEajvqkm8fs9YFmAorS7pkm2CzYvZDP48tln8Xhkpefn9ZjMuOfIcfzs3BHYDDsfyg60gtyrq8toNGrNjKepXdEkHMchGl1BMhmFTqdHODy754PFB3Lorr/+enzyk5/ELbfcgqeffhq/9mu/hmeffRYA8OMf/xh/+Id/iB/96Ef9Pu3IcFCNZ7lcRCwWQaGwsXPZKK1zOwZdK8dxSKcTSCZjoOk6TCYLAoExuN2+viKtgiCgXC6iUMiiUMih0aiDIEjY7Q44HFLbbL3esKfHVB6qHo1GQNN1OBxujI9v79jJ50SxmIdWq4PPF4TPFxqaYNns/7Y3POh1DESv+f+ZTBKrq0vgeQ7B4ARCoYlNmzgMwrXu0HGc1E01kZC6qXo8foRCYSWtcJTWuhWDrlOqvSshkYgin8+AIAh4PAEEAqENQ9gFUcRKIYPnEqt4LhHBSjE7tPXb9Iaujpq7+TuHwbRtRLvOMvje0gV8e/4sKkxvjt2M04v/dvRGnPK1aoXkQdzJZBQcxzV3aUO7PqS80agjGl1Rap7Hxibh8fi3/Z+9vPc03UAksoBcLgOLxYbJyUNDb751rTt0pVJB+f4xGIzKmIyDpEl6XedqIY9vXjyPRxavoMH1HsgZtzvwlhtvxQsmNh9B0K5J8vksaLoBkiRhsznhdLrgcLibu217d0w3OnYbg80r+Ry+cu40frS8CKFHV0NLUnjp9AzuPXoCs+7hzAiVdcPa2jIYhobH48f4+NS2TZh61STpdAKrq0sQBL4ZrJgYau+HXXXoXvOa1+BNb3oTfvmXfxm5XA633XYbvvnNb2JmZgaPPvoofvd3f1dx8A4iB8l4yoXgsVgEpVJh09lC+73Ofuh3rbVaFclkFJlMEqIowuXywu8PwWKx9Sw2WJZFoZBT0hZ4nodWq2vOPXLDZnNsSPvZj2Mq1zHFYitoNOpwOFwYG5vcMr1RoyFBUTwuXZpvpp7Kx2gMFot11wSZnKoXja6A41ilk91mjSO2O56VSgnLy/OoVstwubwIh2cG6oq3HdeqQ8eyLJJJqTmNIAjwegMIBjfOOxyFtfZCv+sUBB7ZrJRWWatVYDAY4feH4PEEOmq5aI7F8+kYnktEcDqxiiK99dDd7Ri3OfHCqRl49VbYdSa4TZKzpuujm+J2NDgW31+6gG9dOYsy01vHzBmnF689cgOu908oNoIgRNRqBSwsLKJalY/RGDwe/9Bn+rUjNWFaRj6fgcFgwsTEFJzOzXfkt3rveZ5vjiFYhUajQTg8s2uz+K5Fh06uM43FIiiXizAazRgbC29oPrbf6+yVLc8lQcBTa6v45sXncSYR6+t5D3t8eNXR43jJ1EzXwAzLMoomKRTyEAQeOp0eDofkwNntjg2BzP04puuziLoFm+OlIr5y7jQeWZwH10ea0FGvD/cePYEXT05DMwQHSWrCFEcstgKO4+DzBREKTW4a4N7ueJbLRayszKNarcDt9mFiYmZXOv3vqkP38Y9/HB/72Mfwnve8B295y1vwhje8AVarFW9961vx4IMPQhRFfPnLX+570aPCQTCeoiiiUMghGl1BtVqGyWTB2Njkplu8B8V4Ar1HRfL5LJLJKEqlQtvuU7CnTnOiKHakUlYqUmqE2WxVhteaTJYtv+SH2cK7QFeRqBaQrhVh0Ohw0hOGSbv565B3waJRybGz210YH+/u2LWvs9GgkU4nkUxGQdMNmM1W+P2hvncx+4Hn+eb8vAh4XkAgEEIwGN7QtGSz48kwNFZXl5DJJGEyWTA5OTtwkXMvXGsOHcPQzXopSZD4fEEEgxMDO96jQq/rpOlGs842Do7j4HC44PePKc19cvUqlgsZLBeyWMyncCmbBNfD8N9N10WSOOoJ4nr/BG4IhBG02/fseA7i2E07PHjtkRtxQ2BCme+Wy1VQKBSQSESRy6VBkhS8Xj/8/rGBukH2SqVSwtraMorFfLMJ01TXznObdVDM5dKIRBbBskxzdz889Nmm7VxLDp38nRyLRVCtlpvzQ8Obdho8yHakTDfw3SuX8e3L55GqbD1su+O5SBIvnZ7FvUeO45DH2/E3SZNUkc9nUShkUamUAbRrEjdMJvOeaJJBkHfBYrFIW7B5qmPXO1Ot4GvPn8F35y+D7mMX02k04ZWHj+Luw0fhHIJ9kTRJFLHYKkRRgN8/hlBoYkPTkq00SSSyiGw2BZPJgqmpQ0OfbdrOrjp0giDgwx/+MDKZDD784Q/j7NmzeOc734lCoQCLxYKPfexjuPXWW/te9KgwysZT/lKKxSKo1ao9z8U4KMYT2HqtLMsinY4jmYyBYWhYLFb4/WNwubzbOiSCIKBUKihOHMPQIEkSdrtLiXr1k4o4SOF9makjUS0gUc1Ll4p0u8F3dr7SUxq8OHQUt4dPwKHfPN9bcuzSTceuBrvdibGxyQ7jspm4KRRySCbb6wyldMzdmiXJcVyzk90aCAIIBicQCIwprdHXr1MQBCQSa4hGIyBJEhMTU/B6+2/52y/XikNH0w3EYqtIp+MgSRJ+v9TRcLs604NiS7Zap5zZkEzGkM9nQFGUtMtkcyDRkB24DFYK2Z4dn62w6Q243j+B6wNhnPCGYGw7xvvy3nMsvr90Ed+aP9PzjLtJuxuvP3ETXnH8OAqFmrJWhqGRTMaQSsXBcSzsdif8/jE4HP3Nj+yHUqmA1dUlVCqlZoOa6S1tXrVaxsrKAsrlIpxON8Lh2aHOZtyMa8Ghk7+DpC7L1Z5bvB9EOzKfTuMbF87jsaV5MHzvQR23yYx7jhzDz84dgb3tvJM0SR75vLQTJ2kSCna7Uwks91P3PwrHdH2wuVsWUYNn8ZPoMv716Wf7qjPUkCRum5zGvUdP4LBnsHFT7XAch3h8FYnEGgiCaGqScSXI002TSLv7EZAkhYmJaXi9gZHRJH07dGfOnEE0GkU4HMaJEyeU31cqFSwuLmJmZgYWy866zO03/RhPlqUBMOA4AhqNDhqNdlfeXHlbW45+2GwORbj38v9G4YPeK93WWq1WmmmVKQAi3G6fkjK4GSzLoFoto1qtoFIpo1TKQxAE6HT6jlTKQXemtjqmVbahOGuJah7xagHJar7nBgUyFEHilsAh3BE+BZ958wiQ7OhHoyvN0QVOjI9L58d273293uoEKgi8krLa67nVLyzLNEdIxEBRGoRCYfj9Ieh0GiX6n8mksbKyCJquIxAYw9jY5MAtf/tlPxw6iiLAMBXU6yw0Gh10OsOu7ZjW6zXE46vIZJKgKKo5c2xs25Q5QRTwVGwF5zNRsODBswIAAhRBgCQIkAQJiiRAQLomCRIkIf+9eZskm/clQBFSdzqq+TeDRgub3gCb3gir3gCLTg+SGPwYdDvveZ5HJpNEIhFFqlJEkRBR0WiQYhqIlLI915n1QtjuwvX+MG4MhjHl8IAcID1wEFiWQa1WBc9Lu41b1ZfSHIdHli/im1fO9Jw6Ou3y4Gcm5nBraBo2fac4zWbTSCalTqB6vQF+fwheb2BXPrtyUGptbQm1WhUOhxsTE1MwmSzKMU2l8lheXkQqFYfRaMLk5KEdjFXpn/1w6Fi2AYBtapLeuxj2i1xDFY+vNrNEnMq4nO0QRRGXsyk0CB4anoDTIKUabzU0e98ggXPZOL7wxNM9t+WXOe4P4FVHT+CFzQ6OnZqkhFKpAEEQoNcb4HC44XS6YLXujibpF0EQ0GjUUa/XYDSa+u7U2HLsIm3B5ilYrTZlndlcBU+srOCbF8/31RkTAA65Pbj36An8zNQMtDvcZWdZBtFoBKmUpEnGxsLNXgMtTZJOpxGJLIBhaPj9sibZm/N16A5dqVTCu971Ljz33HMQRREEQeDGG2/ERz7yEQSDwR0tdtTox3jGYitYXV1WfiZJEnq9oXkxQq/XN68NzUYa/Z0A61uGOxxujI2F96Ql/H6hfNizZaTTKSSTUZTLJeh0eiWtcn3UimFkQykZy1qtAqYpzihKA7PZArvdCYfDDaPRNJQvOI2GhMGiwYW1KKKlHOKVPJLVAuLVPMrMzupq1kMAOOWdwp2TpxC2eTe9n+TYZZqOXRU2mwPh8DSmpsa2fe85jkMmI6VjNhp1mExm+P1SU5ndSEui6Qai0QjS6Th0Oj0mJqYwNubHmTPnmi1/nZicnB3qQOhe2A+HThQ5PPPM4x0tp+X20t3siE6n7/scrtUqzZbhaWi1OgSD4/D5Qj29t+fTMXz+7ONYLeX6+p87gQABi07f4eRZdUbl587fG2Ba19FNtiO5XAXL6STOROaxkEkiydSR5Rg0dpA22Q0tSeG4N4QbAmFcH5iAyzj8TmrtcByLer2GWq2Ker3avK51jFLRaFpDwrf67mF42bE7i0Kj1tP/pwgC1/kn8JLwHK73T3SIKrmpTC6XbjaVkdIxd+OzLO8QSU2Y6nC7fQiHp0DTFVy6dBkAMD4+CZ8vtGtBks3YD4dubW0J0WhE+ZkkqTZNsvHSvybhkUpJmoRhaDidboRCkz03lFkt5PH3P/khLmdSG/5m0xvgMZvhNpnhMVvgMZvhabvtMpmHUksFSPVvhUYduVoN+bp02Xi7jmKj3nNDDwDQURReNnMIPzs7B49Wq2iSarWsDOzeTU3Sry2Ru2a225B6vYpGo94xr87hcCEUCvedWrg+2Gy3OxEOT2NyMtSxzmixgG9duoDvL1xGvYdZfTI2gwF3zx3FKw8fg8e8M/siaZIVpNOJZqfKaYRCPpw+fRbFYh52uwuTk7O7mlbejaE7dB/84Afx8MMP413vehdOnjyJxcVFPPjggzh16hT+6Z/+aUeLHTX6MZ7tgxxrtRpourHhIrQVgVKUZkvjKourzVqGDzpjS0ozTEEQAIKgQFHUQEO/1/+dJAloNFJ7XK1WO5Rug4LAoVTKYGlJ6khktdqbaZVSETzD0B1GslqtbDCUZrO1ebFArzfs2FgyPIekkiopOW3Jah75xt7PlppzBnHn5HU47Axt+rpaM+lWmgOQnXC5fHA4PNt+gctF7clkFIVCDhqNBl5vAH7/2K40IanXa4hGl5HNpgEABoMBExPDa/nbL/uVcmm3G5FM5lCtdrcj8jkus5UdaW9XXamUEItFOlqGe72BnsRtolLEF889gWcTkW3vu99QBAmb3gBrm8OXq1ewlMuAHrLzJuM0mHB9IIwbAhM45gkNtMOwnQjjeW6d4yYJrvbzwWCQIuhyJF3uxplIrCGdToAgSPj9QQQC41vWGDM8h0eXL+EbV8707NgBgFmrwwvHZ/CSiTnMOFupUAzDKCnyLMvAarUjEBjbsqHJoMg7Rmtry8qxCQRCCIWmNtTr7hX74dB10ySNRgMM07oeXJPEEI+vgWUZuN0+hELhnp10XhDw/86fxeefewbsgJ9HAoBNr4fTYITLYIDTaITbaITLaILbaITTaIJNr0eNF1HmWJRZBoV6o+Wk1WvI1+rI12soNuoYfIz5RjxGE35mbAzX2W0Q2+y1RqOByWRt0yXD0STd2C7NnKYbHTZEutQUx02j0cBoNCs2xGg0wWg0oVDIIx6PoF6vwWKxIRSa2LQ2cjPWO3YulwtOp3eDJqmzDH6wMI9vXnoe0WKx5+cnCQIvCk/hlYeP4mQgtGlGRC/U6zWsrS0jl5M1iVEZQ7ATCvUanliNIFOr4rpACCf8vaVrDt2hu+OOO/Crv/qr+O///b8rv/vWt76F9773vXjyySdhMu2tx7qbDDNfXRRFcBy7QZzJhpWmGx1REI1GC73eAJpudG0Z3i/1ehULCxdRrW4s3O0c7Ctfi8q6219Dr5AkBa1W2+HkST/rlNQPUQREUcpH5jgGDMOAZeVrGizLgiRJeL1+OBweCIKAWk124CodhlI2kLIDN8jORTucwCNVKyJRaaVKJqp55OrloRr/YTBudePOyetwnXdy09Q0qVYoh2w2iXRaipY7nR54vf5NZ2m102jUlXRMnpfalfv9Y7DZHEP/QqLpGgAWRqMNgrD3jpzMqNbQCQIPmqa7OnuyvZAhCAJ6vQEkSSkdG9tbhm9HlaHx9UvP4nuL58H3X2Z91WLQaBG2u3DCO4YbAhMI23cedJDf+0ymhEql0iG2arWqkmkAAHq9ESaTqSm2zDCZTDAYTFu+pwzDIJGQmt4IggCPJ4BQaBwGw+bfKQzP4bGVy/jmlTN9D0QPWOx4ycQh3DZxCO7m0GFBEJDPZ5BIRFGpSNkWUjpmcOjOliDwKBSyCAa94HlqXzNSRrGGTtYkjcZ6G1IHTdNgmM00SR08zzc1ycSW5896pF25x3A5k+75MQeFabMZNzlsmDWbodPqOhy3YWiSftBoSDgcJiSTOZTLlQ27brIjT1FUm+NmUm5vVTIkpThnEYutolIpwWg0IRgMw+3evn/B+ucpFrPI5VJNTULC5XLD4wl09IIQRRGn41F88+J5PLUW6Ut/eUxmvGzmEF4+O4dxu6OPR3bSaFRBEByMRvvAM3wZnsOTqxH8YOEKno2tdez2vvWmW/H6k9dv+xxDd+hOnjyJf/7nf8Ytt9yi/E4eWfCNb3wDs7OzPf3Dg8BeFiCLogiGYZToGU3XwTC0Utsy6I4Iy7JYXV1EOi3lfJtMZtx0040oFKqo16X/wTB004BLl3ZBKL02rZL2pdXqodPp2q4lR00UpaL4RqOufDHIz8VxLHiehyAIWzqF0k4fBYrSQKvVQKvVgqJIlEolsM2td41Gu2HnbSeGkhcEZOolZcctUckjXs0jUy/1lV6xU1wGC4IWJ/xmJ4JmJ6w6Ax6PXcZzqWWIPZowj9GGO8IncUvgELRdWp3L52gymUMymUA6nUS9XoVWq4Xb7YPHE9h255fneWSzSSQSMdTrVRiNJvh8UnfMYQmyYacFi6KIarWMer0Or9ff8+NG1aHb/n9xTYev3rGr53R6NrQM3wxOEPCDpQv42sVn+673vNowaLSYtLsx5XBj0uHBlMODgMW+o8gv0F6bIomtRqOGRqOGWq21I6bT6TeILYPBtKPUZ47jkEpJ8wVZlm1mfUxsOcuS5Xn8MHIZ/375dN+OHQHgqCeIl4TncHNwUmkEU62WkUzGkMkkAQAejx9eb6CvMTPbMWxbwnEs8vksrFZbX47MKDp02yFpko2BI41G07cmGcau3CiiJQhc53Dg9vEJTHu8Q9Ek/SI75u07942GnHYtpe6TJKnstLV23czQ6XY2cLx95rFOp0cwOA6vN9izfZLP0UQih2QyjkwmiXq9Bq1WB4/HB4/HD5OppUkS5RK+fekCvjt/CVWG2eKZNzLn8eLlM3P4mamZvgeW72SW6cV0Ej9YuIIfLy+hxnZfs4Yk8fk3/+q2acRDd+iOHj2KL33pS7juuuuU3/E8jxMnTuArX/kKjh8/3tM/PAiMckep7RAEAclkDGtrSxAEAQRBIByexdjYOFwuy5br5Hlece46Hb6G8jO/rrMTRWnA853tZwmCaO7O6TqcQIrStH3gCYiiAI5jwbIsWJZRbgsCB5vNBp3OCKPRsmNDWecYLOQTbQ1K8khVi+DFvXu/HHoz/GYHgmYnAmYHAhYn/CYH9Js0C8jUSnhk9RyeiF/puUW6VWfE7RMncNvYURg1m3fRE0URtVoFmUwSmUwKHMfCZDLD4/HD7fZv2elTHlaeSERRKEhDlB0ONzwef7MBw3CbWAwCTTeary2JRqMOg8GE6667pefz56A6dDtBFEWcSa7hC+ceR7yyfZqLRa+HhqDACwIEUYAgiuBFUbm9l0GRYWDU6JqOmxtTTefNZ7btyHnrpTZFq9XBbDbD6XSAonTQ6aQUp90stpdSExOIxaS6bJvNoTSz2OwzwvI8/mttAT9avYJLmf4aQwCAjtLg5uAkfiY8h2PeIEiC3NCxWK83wuv1w+Px7zi1exifJ0EQUCzmkckkkM9nIYoiZmePwuPZ++DQQdQkV+OunNdowl0zs/jZw8fhsGw91miYtBy3Wtd6WYIgmk6bBR6PEwShhU5n3LXUThmpLnsV2WwKGo0Gfv8Y/P6xbYO8m2mSdDqJbFbWJBZ4PH54PD6lZ0KDZfHY0gK+cfF5RAr5vtaqIUncPD6BO2YO46ax8Z4aqfT7WUqUS3h0cR6PLM4j0WP3zn9541u2dTT31KF7+OGHOzpeHnQOovGUZ8BEIgugm22orVY7ZmePNgufh7NOjuM6HD6OY9c5bzvv9DmstZboGn4QOYufRC/uWXTQojW07bhJjlvA5IBxi5lyW1Gia3hs7Tx+snZhw2iDzTBQWtw2fgy3jx+HTW/a8nh2Ey12uwterx9Op3vLmkiWZZDNppBOJ1GrVaDRyDt+fpjN/X/Z7eR953keuVwamUwSpVIBJEnC5fLC4/H3nR56rTl0a6UcvnDuCZxLRbe9r1mrx8+fuAk/f/MtKBcbW86JFJSL0HT2mrcFAbwogKZpNJgGaIYGzdBo8DwaooC6wKPGc6hxLMoMjRJdR5lpoETXUWXoHac+m7S65s6bR7l4zdaBnbf22pT2WrftalPkFKf9nBsmjcBZRa1WgdlsRTA4odQqd0OjIdGgOHzz7Gn8cPkK0rVy3//XZTTjxeOzeEl4DiGrQxkhkckkkctlIAg8rFY7PB4/XC7vQM7tTiLr64NdRqMZXq8fbrevpxmn7VyLDl2vu3IEgF+46UZM2VxIlsvIVKvI1CrIVqvIVKsoNIbbWKxXNCQJh8EIp8kEl9EEl9mMMbcDU1YnjnkDO96h3wqe59alXHfWyxIEAYPBuGHXzWAwgiCIfXvvabqBeHwVqVQCBCHNMt1qN3d7TZJDOp1EoSBpEofDBY8n0NQkJERRxPPJBL558Xk8vrrSdwDRqtfjpVOzuGN2DrPure3ddsezyjD4ycoiHlmYx/lUf8Gu6wIhfODue7e9n7pDtwMOkvEEpJb+kcgCSqWCUhc3OTnbMbNrFNbZKztda4mu4XsrZ/DT2KUdDQDeCqNGh6DFiSm3Fy6tDT6jHQGzAxbd7sw2qnMMfhq9iEdXn++5g6aGpPCC4BxeMX0dDo8Fe+hyySKblZyiSqUEiqLgcnl7Soeq1arIZBLIZFJgWQZGo0nZ8et1rt0gc/1aQjANQRBgszmaQtCjzLfrl2vFoSvRdXz1wjN4ZPnStum9FEHgFTPH8dojN8JhMu6bLeEFAZV1Tl6Zlq5Lzesy01B+p9dqMW51Iqw4cG54TdbBU7V5HuVycYPztr42Ra5v66U2Zb9ts/Q5yiMWW0WpVIDBYEQwOAGPx79hx719rSzLYz6Xwo8iV/BEdAl1rr9UKEAaWv6S8BxeODYDq94AnueRz2eQTidRKuVBkiScTg88Hv+2s1Y3W2cvx5RhaCU4Va9XodFom6lf26ejb8W15tD1uisXtNrwOy99OX7m2Oym62R5HtladYOjl6lVpOtqta8xIxqShNNogtNogsvUee00GpXbVr2hw2nbreNZq1VRrVY2rZeVHDdTRyDIYDBumQWz37aEZRkkElEkkzEIAt9snDOhNGnqd50syzZr7ZKoVsugKA3cbilQK2uSTLWipGMWG/3PDB23O3DH7Bxunz60oUvmZuvkBQHPxaN4ZOEKnlhd6WsmISAFM140OY13vfC2jrmEm7ErDt3x48c7ZsyJoognn3wSJ06cgLntQBAEgX/5l3/paQGFQgF/8zd/g0ceeQSVSgVHjhzBe97zHqVW76c//Sk+/OEPY2FhAcFgEL/927+NV73qVcrjaZrGX/7lX+Lb3/42Go0G7rzzTtx///1wuVw9/f9uHBTjyTAM1taWkE4nQFEUeJ6HzebAzMyRDZGR/f6g98Ogay3QVXx/5Sz+a4iOnJ7SKPVtcqqkVOtmhFZL7fkxZXkOTyXm8YPIOWTqvW3pEyDwgok5XOeexJTN35GOuRmNRg2ZTBLpdLKZDmVopj/4txzIK3fIzGSSyOczTSfL2dzx82yZY9/r+16vV5XUDIahYTAYlbUNowvn1e7QsTyP/1x8Hv926TnUue13fW8IhPGLJ25F0OrY87XuhGGuk+M4JJNRJBJr4DhuqLUpo3Q8pY6oq8jnM9BqdQgExuHzBZVdss3WyvAcnktE8KPIFZxLRfuOmFMEiReNz+Du2ZOYdEid5GiabjZzSqLRaK+vCWzbWbGXYyo5j1lkMgkUi/m+G0b1wrXi0LV25Z4Gu0X3CALAq4+dxC/feAvMBt2O19lg2Tanr4pMtYIay8CmNyg7bLITZ9UPVrYx7ONZKhUQja6gVCoAaK+X7Wx0NEi97KjYEp7nml3a15p13G4Eg2FYrbaB11mv15RSim4p2pwg4LnYWtPJivSdlUUAuC4Ywstn5/CiiSkYtBuzJ5bzWTyyMI/HluaRr/e/gxyy2XHH7BxeNn0I3j7mdQ/doXvrW9/a8z8HgE9/+tM93e/tb3870uk0HnjgAbjdbnz605/Gww8/jK9+9asQRRH33Xcf3va2t+G1r30tHnnkEfzN3/wNPvGJT+DFL34xAOCP/uiP8NRTT+Ev/uIvoNPp8MADD8BsNuMzn/lMX+ttZ9SNpzStfg2xWASACIKQtqAnJ2c6duX2e52D0u9aC40qvrdyBo/HLw/syGlJCn6zAwHZcTM7ETA74TSYRzKyLogCzqRX8P2VM1grZ3t+HAEC41Y3DjmDOOQMYsbu37SOD2jVzGUySWSz6b7SoTiOU9Igy+UiSJKCy+XZNA1yq+PJsiyy2RQymfZInQ9erx9m8+A7Lt24Wh06URTxdHwFXzz3RE+pcuM2J9586kU47g3t+VqHwTDWKTty8fgaBIGHzxeE3z+mpDiNyjqHTfvweZIk4fePIRAYg9Fo2HathUYNj68t4keRKwPNLTziDuCVh07ihsAEyOZ3W7VaadqgJDiOg8lkUdIg188kBTY/pt3smcVig9frh8vlG3rt4n6NLbA7TCgV63tyPq0W8vi7nzyGKz3syv3WbbfjuD8AYDTP+24MrQSkzZEzmcwIhSbhcDgHziTZzbUOi/XD561We7Pbsnvbng6b0S0zZ70mqdA0frKyhB8sXMbF9MZ5h9th0Gjw4slp3HX4CE5OhvD/njmD71+5gqV871pLxqLT42emZ3DHzBzmPL01J1vP0B263WBlZQV33303Pve5z+Hmm28GIL1Zd999N1796lcjm83iwoUL+PKXv6w85j3veQ8KhQI++clPIplM4uUvfzkefPBBvOxlLwMALC0t4Z577sEXvvAF3HjjjQOta1QdOrnmIRJZBMPQMBpNqNdrm+7K7dc6d0qva803Kvj+yhn8V+xyzw1OKIKEz2SXatuaTUr8ZifcRsumrf93us7dRBRFXM7H8P2VM7iSj/f9eJIgELZ5ccghOXhTdh90m3zByOlQmUwSxWK+OVoigEBgbNvOb41GXUlpouk6dDq9sqsmj+RYfzwFQUChkEMmk0ChIAlDub7P4XDv2pDgq9GhWy5k8Pmzj+NSdvscf5vegNcfuxm3Tx7u+pkYhfO+F3ayTo7jkEisIZGINh25EEKhib5rqHZ7nbsNw9CIx9eQSsUhiiL8/gDC4XGQpAGiuL0wiRSz+MnqPH6yuoAS3V9E22e24mdnTuBnwnNKh8yWTUgqTZnsdhc8HrnmVzpf1x/TRqOuRPdputFzxoGMIIoo0w1QJAGLrvcsgL106Fiex/995gl8+9IF8IKASacLR7w+HPX6ccTnR8Ay3MAXLwj4enNXjttmV+41x0/izTfc0jGncZTP+3Z2sk7Z+YhGV1AuF2EyWTA2NrlrM1ZH9ZjKPR5isQiq1TLMZgtmZqah1Zqg0eygWznPI5fLIJNJNGvnqTZNIn2u46UifrA4j0cXryBV2Ti+azegCAI3j4fx8plDuGU83FMDlq3o1Y7sXiutHnA6nfj4xz+OU6dOKb+Ta8BKpRKeeuop3HXXXR2PedGLXoQ///M/l6LNTz+t/E5menoafr8fTz755MAO3ShSqZSwsrKASqUEs9kKsdlUYHp6btNduauVfKMi7cj16MgRAK73TeOO8CmELC5Qu+QI7AcEQeCIawxHXGOIlNL4/spZnE0v99w4QhBFLBdTWC6m8N2V06AIElN2Hw45g5hzBhG2eaFpNkahKEoRQQxDI5WSOtQlkzE4HC4EAuObNiAxGIwYG5tEKBRGpVJCJpNEMhlFLBaBxWKFxxOAz+dvRtBLSCbjzW5XHMxmC8LhmU2j8Sqbk69X8fCFp/HjyJVtzwkNQeLuQyfxmsPXKwL6WoPjWCQSUmqlIIjw+4MIBnfHkTsI6HR6TE7OYmwsjGQy1hx7EANBEDCbrbDZHLDZHLBabV0bKIXtboTtbvzC8VvxfDqKH0Wu4Jl4pKdMilS1jM+e/S985cLTuH3yCO6aOQ6v2QqXywOXy9NRXzM/f76jvsbhcIBlWSQSMSSTcVQqJZAkpfzdarVv+51JcyyeT8fwXCKCM8k1FBo1kASBO6aO4i3XvXjkvnO/fekC/v3C88rPy/kclvM5fOfyRQCA3WCQnDuvH0d9Psy6PZsG77ZjtZDH3/7wB1jIb70DG7Ta8NsvuR3HfIGB/s9BpZsjd/jwib6HcV8tEAQBl8sDp9ONUqmARGIN586dgyiK0Gp1ih2x2519lU1QFAWv1w+v1w+abiCViiOViiGZjMLpdCMQGEfAasebb7gZb7r+JlxIJfCDhSv4ycoS6mxvTeb64ZDbI41ImJ7pqTZu2OyrQ2ez2ZSdNZnvfOc7WFlZwR//8R/jq1/9KgKBTkPg8/lQr9eRz+eRTCbhdDo3NF3w+XxIJPpvrTwIKyuLePLJOCwWG8xmK6xWO8xmy5bdAfuBpmmsri4im03BYDDBbneiWMz3tCt3tZGrl/HdlTN4Mn6lZ0fuBv8MfnbqegTMzt1f4D4Ttnnxq6fuRKpaxA8iZ/FUYr7v0Qy8KGChkMBCIYHvLD0LLUlh2u5XUjQnrB5QJAmdTo/x8SmEQmFkMkkkElFcvHgGJpMZgcD4pgOsCYKA1WqH1WrH5OQhpYZlefkKVlbmYTQaUatJ9TJeb7A5j2brepmtEEURvMCDIqmR/SJleR7fmT+LJxcvQAQBSqOFRqOBRqNpHsPBuy9ezMRBrxsr0o1bQ1N444kXwLvFTLKrGY5jEY+vIZmMQhRF+HyhpiN3bTq269FotBgbm0Q4PAWdDohEYigUckil4ojFIiAIAhaLTRFlZrO14/NPkSSu80/gOv8EqgyNp2LL+PHqFVzOJrf933WOxXcWzuE/Fp7HzaFJ3D17AnMuP7RardImXaqvkZoypVJx6PUGsCwDQRBgtzsxO3sMTqd727qkTK2M04lVnE6u4nw6vsHxFEQR31u6gBmnFy8Jzw12MHeJZ2NrW/692Gjg8dUVPL66AkBqEjLr9jSdPB+OeP1wmbbOtOAFAV858yy+dPY5cFvNlkX3XbmrHbnB0NraihJ8P3z4JByO4dRkHnQIgoDd7oTb7YbVqkckEkM+n0OpVEA2K6VG6vUGxcGz2Rw9B9P0egMmJqYxNhZGJpNCIrGGCxdOw2SyIBAYg9vtwwl/ECf8QbzzBbfhidUV/GDhCk7H+6/5bcdlNClDzMOO7XWmKIoQRXFXMoxG6pP2zDPP4I/+6I9w99134+UvfzkajcaGL1T5Z4ZhUK/Xu37h6vV60PTOhuJqNL0d7GBwDEajDul0BtFoBILAt0UvbYp47bXTnwzP84hGI4hGI6AoCsHgOLLZNCqVEmZnj8Dv33pXThAFpGslRMtZRMs5xCt5cOBh15kQMDkRtDgRsGxdI7ZfUBTZcZ2tlfEfS8/h8djlnj54BAjcFJjBK2duQMAyfEdOFEXU6zWk03mkUgBNsxCE4WUu6/UGWCxWmM1mEH2mgQJAyO7EL5+6Ha+auxmPrEiz7CpM/92fAIAVeFzOx3A5H5PWRmkx6wxgzhXEnCuEcasLodAYgsEQisU8YrE1LC5ewurqIgIBqe5mc1FMwu/3w+/3g2GY5o4cDZvN1feogXbqTAPPrF7G6eQyFqtZMCKPKbsPv3TipQjuwvmwHVvZElEU8bePfx/PxiN7uKIWk3YX3nrDbTjqDfb8mPWfz1Gll3WyLItYbBXx+BpEUUQgMIaxsfCeOXIcxyGfzyGVWhu6HSFJEmazBVarbWg72xRFwmIxYnx8AsHgWLPNfxXFYh7FYgGJRBTR6ApIkoTNZofd7oTd7oDFYlVsmV1jxCsOHcMrDh1DolLEf86fx6PLl9DYpkGPCBFPxZbxVGwZ004P7pk7hReOT0NDUrBaLbBaD2FqahbFYgG5XBoOhw02mxuaLWqEBVHAQi6NZ+MRPBuPYLXYW83fcjGDl2mO9H7ghsB2msRj6S/wxQkCLqVTuNRWY+S3WHHM78dRnx/HfH5MOlsZLcvZDD7yg+9iubR1M66QzY7feenLlFq5zbia7IgoiigUclhdXUa5XILFYsWxY9fB6dwbR07+HEqahNgVTWK12mAymQbSJOuhKBIajQYejxdOp9QEieNYFIuF5iWPdFralDEYjIodsdudPdhmUtEkhUIe8fhqU5MsIRgcQyAQgtmgwx1zc7hjbg7ZWhWPLszj+/OXsZLvbbadjqJw29Q07jx0GNcFQ9tmfQkCj0KhgHw+g1wuC0Hg8YIX/MzQz419raFr57vf/S7e+9734qabbsLHPvYx6PV63Hjjjfhf/+t/4c1vfrNyv0cffRS//uu/jieeeAIPP/wwPvGJT+AnP/lJx3O94Q1vwA033ID3ve99A61FFMWeD3Q6nUYsFlMex7Jscxg3A5puDeKmKAp6vTRgW6/XQ6vdelZbKpUCy7IIh8NgWRbRaBQejwfXX389jMbOrdw6SyNSyLRd0lgrZsH0EJk3aHQYt7swbndjzObGuF262A2mfXf0UpUivn7+Cfx4+WJvO3IEgdvCR/C64y9A0DZc4S7laueQTCaRSqVQq9VAkmTfjvp2SDOtaCWC43A4Oi5GY//NGARRRLSYxfnUKs6n1nAxFUWN3VnAQ8aiM+C4fwIn/WGcDIThNdtQqVSwtLSEtTVJJIdCIczMzMBmsw3lf3YjVcjhh1fO4bnEMiK1AoQuCYYTdg/+7O5f2rXau25sZ0tixQLe+aV/3rP1yNj1Brz9RbfjzrljuzpXaVRhGAYLCwtYXl4GAExOTmJ2dnbon+du1Go1xY5ks1kIggC9Xj/085LjOLDNtCKTydRhR+x2+0Bd9LZD6nJbRDabVS48z0Oj0cDlcsHtdsPj8cBm6xyDUmVo/Mel5/Fv555DstJb914AcJvMeNXx6/Fzx07B1mOKU42h8cxaBE9EFvHk6jJKA8w7+/UXvwyvO7l3JR29aJJUuYx3fvbzyFZ7q//vBT1FYcpug8doxH/F4uC32ZV748034Z0vuQ2GbQZLXy2Iooh0Oo3Lly+jUCjA4XDg8OHD8HoHa37RDzzPI5vNKrakXq+DoqihB6NEUUSjOQ6AoijY7XbFjjidThgMuzO8XOpy27IjlWb9m9VqhdvtVi69vN5yuYzl5WWsrq4CAMbGxjA9Pd2hSURRxJVUGt86fx7/eeEiCl26WN40MYF7jh/Dyw/PwbTN/200Gsp7k8lkwPM8TCYTfD4fxsbG4HQOP7g8Eg7dZz7zGfz5n/857rnnHvzVX/2V8gbde++9uPvuu/G7v/u7yn2//OUv40Mf+hCefvppfPvb38Z73/tePPfccx1v6u233463vvWteOc73znQenheQKnUm5GXaoFi4PnuDocgCOB5XrkIbSkcFEW1XTQdHwo5KhGJLIHnOUxNHYLPF0C+UUW0Iu26ybtv2Xr/w123w6TVI9hs0R+0tC7mPgrCByXbKOP7kTP48crFnnbkSILALYFDuHvmBvjM9qGtg2EY5PNZ5HIZFAp5CAIPvV4Pp9MDl8sNl8sFh8OCUqm+6fs/CDzPo1Ipo1IpoVyWruVh8VqtFhaLDVarrXlt3TICDUjRMJvNqKxTEAWslXO4kovhSi6OhXwCdI9Dy7fDa7JJNX3uMczYvChmM4jHo2AYGna7A6HQxKYF4evXuRWiKGIlE8fTa5dxsRBHku1NxHzo5W/ZtqmB0zl4iud6trMlK4Us7v/uV4b2/7ZDQ5D4ubmTeN3xm2DY5ryRkQdnV6uV5tykGkwmA7RaAwwGqW3/KKYmdjufWJZBNLqKeFwaoh4MjmFsbGJXazNFUUC5XEIuJ9mSer3WTD1yNGeseeH3u4ZuR+T3rVwuoVwuoVIpoVqtQBAEEAQBk8ncZkdsMBq3D+L18xkFpO+/arWMYrGAQiGPcrkIQRCg0WiU9Ey73QGTScoUEUQBT8dW8K3LZ3tKx5TRURReEp7DPXMnMWZzblhnslLCs/EVPBuP4GI60XcqejvHvSG892de2VP92bBsSa+apMGy+PqzT+FsPIqVcgUFpv/ZgIMw1tyVO7bNrhzHccr8tVqtAoIQodXqYTCYYDZbtp2zth90O+flJh+rq8uoVMqwWm2YmJja9dRKhqGbmiTbpkkMcLnccDrdcLnccDjMu6xJSk1NIgWFtVodLBYrrFZZl/SvSXqBYWhl965YLKDRDMSYzRbFjthsji071bIsi2Qy1qZJnAiFxjdoEk4Q8MzaKn4aWUaVZTDn9uBlM4fgs2xekiCKIiqVsvL+VKuSLrfZ7HA63TCZzKhWK8jns2BZBjfd9KKez5Ve7ci+O3Sf+9zn8IEPfABvfetbcf/993e8wPe///2Yn5/H5z73OeV367tcvuxlL8NDDz2kjDGQu1x+8YtfxA033DDQmnazy6Ug8KhWKyiXi8qHg2ummhiNpuaXqx35Yg7zqVXQeg04kx6JWhHxSg6NIQnvQbHqjB1t/X0mOwgC4AQenCCAE3iwAg9e4MGJrZ85+XeC0PpZlP8mNB/PgxU4rJWzPTtyN/sP4a6p6+E17Xz3R0pbqKBQyCGfb30gLRYbHA43nE4XjMZWiuqezg5jGVQqpaZRLaNaLSm7vwaDEWazFRaLZExNJkvHl+J26+QFAavlDObzcczn41gqJvue4dINAgQmbB4cdgYR1JhBlauoV6vQ640IBMbg9QY6dgm2WyfLcbicWMJzySXMl1MoCv2JFYNGhwde8ovQU1t/2exll0tBFPEnj3wNkR5TvXbCTd4QfvnGl8Jt2nz+Dc/zypBbWXTValUlEKXRaGEymSGKPCqVCuSvD41G2zGTTbo2bfvFvpu0n0/1egPx+CqSyRgAAoFACIHABLS7tJPAcRyKRcmOFIs5cBwHjUYLh8MFp9MNu73Vrnwv7YggCKjXq4o4q1TKaDRqAACSpJqp3i1bsr5+ZadrFQQBlUoJpVIBpVIBlUqpozGCJMyc0On0WMqn8R8Lz+OJ6OKWO0PrOekbw72HT8HlsOCxy5fxbGwF8Uqx77W2Y6Y0OOb04bbpo7gxNNWzENvvOXSJYhmX0klcSqdwMZ3EYjbT17Hcjs1q5URRBMPQiv2QbYkcmCQIojk024BSqQyWZZTfSwO1WzZEHqi9XxlD7ceTZXkUCllEo1K3RovFhvHxSdhsvQ+97wdZk+TzWRQKuQ5N4nS64XC4OwIxe2lLGIZBtVpSbEm1Wu7QJHJfiUE0SS/QdEOxI6VSQRnKbrHYFDuyvpZXRhAE5HIZJBJrqFbLMBgkTeLx9KdJeJ5HsZhHoSC9PyzLgKIoOBwu2O0uaLU6lEoF5PNZNBpSVpfcldfl8vT8Wg/E2IKlpSW85jWvwctf/nI88MADHX8zGAxIJBK477778Ku/+qu477778Oijj+IjH/lIxxy697znPXjuuefwoQ99CEajEQ888AAsFkvPc/C6sRdjC0RRRJVtIFsvI1nOIVHKIlMtIteooMTRqIpsz50KrzXkHbm7Jq+HZ4eOHM/zKJUKKBSySuSEJKUPpHzZLHq/ny2CpTSIuuLcVSpl1GoVJTXHZLLAYrE2jZsdwaAHhUKtp3VyAo9IKY0rTQdvuZjaUURbRkdpMGXxwEvoYaUFODUG+P0h+P1j0OsNXY9ntV7F2dgCzmUiWKrlUBe3TyPuBkkQ+PnDL8aLx45ue9+9HltQphv46qWnsZBPo86wwKCffFGqCRIE6SIKAggA42YbXn3iFhz1j7fuKopgWQa1WgXVarUpvCpK1BNAM2puhslkgckkXWu1Omi1FJxOM3K5MiqVmuIA1us11GpVxUEApOitPCy3XaQNc/bSZmg0JIxGCufPX0IiEYXkyI0hEBjfFUeuXq8pdqRclhwIk8miOHGbzUvc71bjHMehWi132BJZYEvRd5tiS2w2G7xe+9DWKgg8yuVSM+qeR60mpVUZjVIDMJvNCV6nwyMrl/CDpYuoDilVvBcCehNOeoJ4QfgQ5nxjuzo/ajuGpUlojsN8No2LqRQupZO4mE6iPGC/gZDNjt++7XYc9nhRr8tOW1Vx4vhmyYdGo+mwIXLQR6fTtAVcaNTr1aYtqSm3OU56DoIgm85dK2hkNJqg1+9Oul87Gg0Jh8OEhYUVRCLLqNUqsFrtGBub3FGt92ZImiSPfD6HQiGrOAl2uxwMcm1qv0ZDk5SatqSbJpFsSb+apJf/LTl4eWUHj+c5kCTVEShaHxiQdtVKSCTWkMtlQFGa5qzR0KaahKYbip0vlQoQRREGgxEOhxSok+opW3pSo9HC6ZR2UG0250Cp7gfCoXvwwQfx0Y9+tOvf7rvvPvzlX/4lHnvsMXz4wx/G8vIyxsfH8du//du49957lfvVajV86EMfwne+8x0AUrrl+973vh3lpw7LeNZZGtlGBblGGbn6uutGpacat2Fh0GjhMJiRqhZ31NFnPyEJArcG5nDX1PVwGwf/oqRpuhlRyaJYLEAUBej1BiXiZbXae0r72G8hth5BEFCrVToiZrJAl1JF3bDb3bDZHH2ltTA8h5ViSnLwCnFESumhnENmSgcfaYCPNOCoexxz4VmEw0FcWYrg6dUruJiPYpUugcXgx9ZlsOCkdxIvDB7uuSHK1TKHTnbaKEqDRqOuOG2y6JLFEkVRXQXXZl88261VEAQ0GrUOYVar1UC3zSHT6fRtwkxy+ChKIzmi7U6pKHb8TroW192n83ftP5dKBRBEy5Eb5o6hIAgol4tKdLbRqIMgSNjtDjgcbjgcrp66EI+aHZF2VzZG3wVBAEDA7XbBZpMi0MPussyybJsoy4NhaKWDptFiw6VaCY+tLSBWKQz1/wKAhiAwY3bgev8YXjB1BF6rY8fPOWoO3XpEUUSsXMKllOTcXUynsFrYujEEAeCO8CTuCgbB0nXU660AjsFg3GBLdLruc8a2W6fck6BlQ1pBIzljgCTJLrt5BogierAb3WzLRlsiiiI4jkG5XN41R05yEnIdmkR2EhwO14HWJFKqfsuWyLu0BoOh7fX1p0m2QxTFZqq3ZEfkTACdTq84dzaboyNYT9MNJBJRpNNx8DwPl8uL8fEJTEwEEYnEkc2mkc/nUK9XlW7dsl6k6Try+QwKhRx4nm/qSWlMQy8jUrbjQDh0o0o/xrPE1lBCFZF0BulqCblGBbm65LDVub3JX1+P22BFyOpCyCJdxiwuuIxmGAwk6jSPeLmIeCWPZDWPeLWARDWPXL08sjuCFEHi1uAc7pq8Dq4+HTme58GyTDP/Oo9CIadEga1Wu+LEDZLSMWrGsxscx6Jer6BeLyMWi4OmG0pKgNPpgd3u2jLnvBs0x2KxmMDlXAyXczHEq711htoOO6mDkdAgxdd24MIBYxY3TnrDOOkJI2Tpv6bhIDp0PM+BphsbLo1GA41GTUmN1OsNGwRXv1FulqXh8dhQrbJ9rZXn+aajV22KNOm2nCrTKwRBgCRJEATZdk0oP0u/I5pzE11wOn0AdtYARBJ1LFiWRbVaaQov6ctbq9UpdsRmc/QdgT0IdkTu7FutllAu55HJZCCKIkwmS7N2x9ORjj6s/9lo1FEs5lEq5VEqFcDzPEiSQpYi8Ewxg8vFzI7+h5XS4IjdgxtDk7hpYg7GITfFGXWHbj2iKCJXKeFCIo6LqSSu5LJYLhbANAeHe3Q63BPwIWzutCHydT/nPkGI0OsJsCwBnu9dfcjpnO02RL4tbDHgvBste9HdlhAECYoiYTIZ4HR6YR5Cjf5GTZJFrdbuJLiUVMp+OQi2hGVZNBrdNIkbTqcHDodz6BkcPM+jXG7V39Xr0mfJZLIo3TMlp5kCz3NIp5NIJNaUtUmNnbTKe2MymVAqFZHPZ5RdOrPZojhxw7aFqkO3A3oxnpzA49PPP4Kz6ZU9WtVGtCSFoMWpOG7yxaBpRR2q1QpSKWlIs7QFTcJs3lgnwQo8kk3nLlEtIF7NI1nJI08Pr2NWv1AEiReGDuPO8HVwGaW6H0EQmsKKActKAovjmOZ16/fy7XYDT1GajhqWnUbrD4LxBFrrzOUqKJfLyOUyyOezzaJ0AjabQzFEgwxQLtE1abRBLobLuShKTP9d43YCSRCYsQeaTtykcq4Myig6dIIgNJ20Omiabl43lNvybhsgOTx6vUG5GI1mmM0WGI3mvp331uvgkc1KM77kOg6DwQCzuVUnMej8TY7j0GjUlGYdWwssoucvyq2OqSiK4Hlug91gWUZx3Npvc+ta6pvN1qYT54LJZNnRl/dBsSNAa63pdBHZbKZZ25Nti0pLomwYUen1yOlR7VH3HMvg+UYZF6tFcD3OJg3ojTju9OOWiVkcDkzsSrdPmVFz6FqduNfbEenCMDTaJaFWqwWl1aMiitDq9Jj1+mE2W3eU6litlts0ieSgm82Wpg1paZJ+n19Ou6PphmJHOm3JetuyczsCSLa5XYd03t5oT9o1iUajUXapBgmu9rvWUaFdk5RKZeTz6zWJs9ngxbMrDbfkBityNgDLMiAIElZrq/7OaDSjXC5AEGjo9RYAJAoFqbFVq+FJSzvt5kxo1aHbAb0Yz/9Yeg7fXnpmj1YE2PWmDY6b12QD2WUmyHrxpdXq4PcHMTYWQDKZQakkdSmSI+NarVYxpLJRlQ1LnWMUR0/a1ZOcvfIORDtJENCQFDQEBQ1JSrdJCiQIkAC0BIlxiwOH9W7oBbLNKDJK0W3H85EUtFottFotNBpd19tyLc8wRcZBM57r10nTDeTzWSXKBEhC1eXywOn0DBQhFEURyWoBl/KSc7dQSOxKarGWpHDUPY6TnjCOeyZg1g7PmO6XQ2cwkEgkMqjV6ht22uSaJpl2h239RavVDe08l8VXJpOCIPCw250IBEIwmXRIJNIol6V0vFadhLnDlhj2ePyJHL2n6QY4jgFFiSiVKqDpzkAPx7Ho9tWn1eqg0bRshmRHtB2/NxiMQ+2KeVDsCNB9rYIgKIX/+XymWTeiUSLuUgOY4TtNHMcpUfdELo1n8kmcqxZRW9fQSUeQmDJZccobwq3hOfidnj07J/fDoSNJgKJ4pNN51Ot1NBrtDltjQ5Bzvf0wGAzQ6aTbw3rfeJ5r0ySVDk2SSGSaTeLKbZpEpwSK5OYaO3V2BlmzbHspSkCxWAHDMBuCyVtrkk57st62qJqkmybJIJfLKHXIcgOYQTXJdsjZB3KgSHLihOaOnBM2mwXxeAL1equpicvlgcPh2rOmX6pDtwN6MZ6fOP2fOJ9dHer/JQDY9Wa4jFa4DdaO3bftWq0D3cSXCz5fEA6Hq6MAWf4AddZJbOycuFWXoirbQKJSQImpgSJkp6zlnK132EgQ4FkWPMuCbQqu9kt7BFzaYdCDorRtBnBzZ22QXYFBkT781WZBbB6iKIDnBQzzU6TVajsKv3eyswL0ZuQ5jkU+n0M+n0GxmIMgSDn8cvTJYrEN9MXDCTyWiylp9y4fxWopC3HA5F6z1oATngmc9EzisCvUU9vwQdgPh04QODz11E8UJ0On02/qsA0Sve4HjpPEVzrdEl8+XwBeb7BrofhWnRMpimrbweveObEf5NTHdpHavnPJMI0NOwwaTcuObGZDNBodNBrNnjqfUifMPIrFHBqN6tDtSKuTYKspzU6bSPRS91StlhXnriWCnM10KveudRal6QZyhRyeWF3AlUIKVr0BJ/3juGF8FuYtOrvuJvvh0K2szDebAEmOxVbBn910kuRzQd6NEwQBDoesSdxKc6VOTUIrDTU2dk40dQSdTSbzjuquBIFv26XcOuuBJMk2O9HSJN0dNt2ezzqt1aooFHZTk+gUG9Je8zwovWgSlmWV5iItTWJSUrw3azK1U+ROvHKqN8exzV07KbNrP8ZqqA7dDujFeP77wlP4/sqZvp/bqjPCZbA0nTYLnAYr3EYLXAYrHAYzNH06J7L4SqXiqNVk8RWE1xvo2ALu5QPUW+fEVsezdnEgCIISGe92ad9hIAhiS8FqNBrgcllGJsokRaBbXacYhm52wpSiNzTNQRCG9zGS6wPaOw7qdPoN3QINBlNPEdRBRmsUiwUlDYLjWKVOSO7UNKhRq7E0ruTjuJyL4nIuhmxj6xmKboMVJ71hnPJOYsru67ojvRk03UCxmAPDMBgbm9zzVuNA70KMoghoNAIqFRoUtbeCANhefLUfu94CBJt3TtTp9Bui7/J5LKdCrq8DZJjW9fqUJXk3wWDotCMmkwkej21k7AgANBp1JU2xXC4269DM8Ho9YBh+qHZEEHjU61JjGlkUy00kWt0CTc2Og70FCfq1JfV6TXHuKs2B4VLtshQoMvQ4DLxfhrlTITe/KZUKSnCrV/bDoQN4aLUAw4gAqD1v9y9pkiRSqQRqtQp0Oj283sAONUlJsSW1WlXRJFKqpk0pIdkNTWI2m+DzOYfWkXEYyN/RckMmWZM4nTvoV4IAAQAASURBVC5YreZd0CQN1Ou1DZqkPfAs25NeAuz9fj5bnT+zXTSJp+9Gb70y7B1PufkNx7EYG5vs+XG92pG93cO+injZxAnM52OIlDqLsk0aPVxGC9wGK5zNa1fTYXMaLEPZVeguvtwYH9/ZYMtWRNcEr9cPoL1zomRQC4Uckkkp+kdRGhiNRjAMs6GxgWwc5QHp/eww7Ne8mXYYhlbm0ZVKeQiC3AnT0zSajq67nsOkJchahd+5XAY0vabcR66Rko2p7OjtxLhJXwyS8ybXrchpEKlUvGOsg9Vq7yvqb9Lqcb1vCtf7pgAA2XoJl5rNVZaKCfCiKHWm9EzipDeMoLn3+T6troM5FIs5pfuaw+Ea6DjsJVLdgA08v7fOR0t8xVGrVaHT6REMTjR34wbfSdNoNEotAtBKhZSdvEqlhGh0RXHOpNQj6QuvPYWpfYdhvR3ZboeBovZ/QLEc7ZWdOKkTplQjMjk5C4fDDbPZtKt2pDWiorMZTS6XVo4/RVEd0Xf5tlar3ZE9lr9PQqEJsCyjOHerq4uIRBZgMpmVIFG7Y7/ftLoO5hT7r9XqYLXufN7pbiOliu1t2p38PZFOJxRN4nS6MTExBbt9WJpEGlq+vnNiPp9VdiQ1Gg0MhuFqEo2m93q73UQeKi7txBUUTSKl/0ndFHdbk7QaW7U6GGezqY5jrdcbN+zm7VSTUBTV1F4eiKKIcrmo2JJOTeKG1WrrS5PsJpImKTRtSV7JXHE43EpQYpioO3Rd6DUaxgk8kvU8oAM0HAW71tzRkGTYcByHTCaJdLolvny+IDyewLbia5iRBo5jO1rQ6nQ66PVG6PV66PVG6HT6HX149yMPXHKSK8oWf3snTHmo+Pp6oP3KV5eHP7c7erVatSPiaDC0ZvZYLBaMjwfQaAg7Wqecay7v3MmFwRqNFlarDRaLHVarbdNhntsxyPGUuuDJwqugCC+5yNxud/Sd5z6KTVGGiSy+Uqm4IuqdTjd8vmBP4mtYa5XTl+UUK4Do6rAN+qW3X59PlmWb52QWhUIePM8p52S3WUT7tU65iYS8iye3ha/Xq20D4zUdwsxqtWJiIohisb6jtfI8h0Ih39bqW0pvk3Zc7E17Yhu40UD/WQlSHaBsS+SdCLnroN3ugsnUf73TqDVFGTYcxyKTkTKE6vUq9HqDshu3XWr1MNcpdZ+VHDxJk+g3OGyDapL9/HxWq+WmJumtO/f+aRJuQ8fRbppEdvQsFgsmJoKo1/mhfIfk81KzEvkYabXaDjuy15pEDiqv1yQOhws2m7PvVGc15XIHjJLx7C6+PE3x1fvuxUEplgX2bq08zyttgwuFnDKzy+FwKp2ntnIGRu2Ychy3QZjValWlPtFmc8Dt9sHl8gylmFdy7Esol0vNHdyS0qlwvTDrpW6ql+MpCDxKpdYunLzjYbHYdiS82rlaHTpJfCWb4qvWl/ja67UOg71apxzokGdblstSaqHZbGkGg9xbdsIcteMpp7l1OnpSCrgoitDr9XC5vHC5vEOpY5GPn9QYQ7In8sxCnU4Pi8Wm2JH1tdyb0csxbTRqKBSkUTZyIwR5TtWgwms9V6ND165Jstk0ABEOh/uq1SR7uU6e59pSKbNgWbav7tyjdkylsUmdged6vaZoErvdAZfLB5fLO5R6zq01ibXNlth76p7Zy/GURyLItoSm68oICrvdBYfDuePmN2rK5QGnm/gKhSbh9fp31FTgWkfu7CinLYiiCIPBBI/HB4dDqo/Yj6LXYaDRaGC12mG1ds7KEQQODFPBykoES0uXsbx8BQ6HC263H06neweRS23T8XUDkIuzK4oxzeXSSCSk9FC93tCsv5QMaq+t3luzqORduCJEURJeDocLExMzsNkce94B7aAgp6dIAaEMABFOpxuTk7Ow2XoXXyqdyDs68jBgmm4ozT+mpw83G1EdTDvdnuYGeJTfS6MzaiiXc1hbiyIeX4Neb4TH44Pb7Ru4A53cHdVkMsPvDwEAWJZpE2VFRCKLEEVRGbvTLsx6bbIi1eG0duHk9vZWqx3j41JqoNG4t11ZDxIs29IkjYakScbHJ+H1Boba9fVaQ97R2ahJAkpZw0E9J6Xsne6ahKbL6zSJW9Fhw9IkcsMuyZYUu2oS2Y70GgiWNUlrF65Tk9jtM7DbHUOfpdcLqgraI+TubBzHtV1z4Hm242f5trx17HR6MDl5CDab48B+qPcTuQNULpdGPp9Fvd4a4DkxMTNwYb5UG1OFKNIol+t9DUbdDq1WN9QccJ1OB79/AhaLC7VaHdlsGtlsCvPz55XcdI/Hv+NzTI6Cmc1WAGMApLx/2ZiWy5KTJwkzChaLVTGmFosNmma6Ms/zyOdzXYWXXJNxrQovURSVWYydtoRtsyetn+WmAHq9URVfO4TjOKVuo1jMQxD45pe4lJItFeb3VwMmpz3mcsO3IwRBwGAwDS3YQZLSnKZwOIhgcBK5XA7ZbAqJxBqi0RWYzVa43T643d4dO7NarQ4ulwcul+RQyrXc5XIJ5XIRmUwS8bjUZVruyGy1SnZEdixl25/NZpVdOFEUFeEl7cLtj/AaBbprkvV2pLsmmZpSNcmgyIHPbDaNQiGLer3W/H5zIByeUVIp+0UQ+AOmScKwWt1NTZJCJpPClSuSJnG5vHC7fTs+x9rnLsuahKZpJVDUXZPYleBzS5NwzaZ4UlfiliZxYGJC6l2x1yN6uqGmXHahn/QGnmfBstXmjJLNxVW3WSWAdMJJbbU10Gi0oCjp2mg0wuPxD018jdpW/FYMY62SE5dCNptGo1FvG+Appy30/iXOMAxqtUrzUkWtVlEabuwWBEFu6ERnMvXeja6dzY5nvV5TDClN16HV6uB2e+F2+2E272xY8mYIAo9qtdKRXiWnX0iv1YBcLtdM7TIoKQvr6452k/3qcslxNWQyBTAMs6XI2sxkt+xIy5ZotVLEcpji66DYkmGsk+d5FApZZLMpFArSeWmxWJVUyn5SaaRocW2DLWlvj74bSB1yTW0d6SSbMsjnqfscOikAk80mlWNkszng8fjhdHp2ZfdcbrLTbkdkh4OiNLBYrM3OfHITGkfTlrg21B3tJvuRcsnzDFi21kWTyHakf00izV+UMlmuNU0yjHXKtV5SMDUNmm5pErmuttfPSXuTI9mWVKtVpeHGbiF1yDVtaJ40fE2SbGqSRlOT+ODx+HrO6ukXnueVMRly8Fm2yVKTOT3y+byiSeTSDikYNFqaRHXoutCP8VxbW0I0GgFJUooB7LzudNTW32ev0vtIEjCZNKhWWYjiaEfVBjWg9XoNuZy0+1Sv15TdJznSs92xFgQBjUa9w0hKgktyOEiSaqYGWWAymWG1WuF221As1oYYDZOEitxFSs45FwS57TjVIc5ko7rVMOleZ0dlMilksylwHAuDwdg0pP5day0u/2+abqBcLjYbY/AwmaywWp17Krza2a85dM8881/geaHDbqy/lsXVentCUXvXnlwQODidZlQqzFCjwMNmUDsiCDwKhZwSQRcEobn7JNWN9dKoo11wVauS89Zo1BRnXBqrINsRG/x+F0ql4UbV5S657TW1NN1Q/t7qkGvqcPS2spPbHVOOY5HLZZDJJFEuF0EQBJxON9xuPxwO165+3/E8r9TNVKtl2O1WGI02mM22feueuR8OXSSygHh8bVtN0tIlqibZip04dHLQVAos10BRmubOs7enekNJk0ifYcmOVDrq4ts1idlsgdVqgcs1fE1C0/SG5kntmqSzq6VkR3aqSSqVMrLZJLLZdFOTmJT07t3WJPKojGq1BECAyWSDzeaAXj/amkR16LrQj/GkKAIOh2nHXb+GiSSS68rA8EqlpMyTA6QP4NbDulvDMvfSwMv0Y0AbjXrTiUujVqsoLffdbi/s9s0FBMexbREuyVi2d3eTZqxYYDbLDpxlQ8rBXjZdkGfTycZUvhZFue24ZlOj2s86RVFEsZhHNptCLpeBIPAwm62KId3NdL1hH89qtYJMJolGo4bDh0+O9Bw6jYaE3W5EoTDML+Kdw/Nc26BfyZa0OpcR0Go1HXZDthndBu7updMJ9Hc+CYKAYlFy4vL5LASBh8lkUZy4zQSE9OW/UXDJx0ie+2Y2WzqCQe1pfnvbdGFjh9x6vdbRdtxgMLbZEMmOGAzG5s5N72ulabopZlOo1SpNMeuFx+Pb9bqgYR5TnueRy6WRy6Xh9Qbgcnl7fux+OHSjqkkajbqyE9I+4xbYTJN02pD2v42qHQEkTSJ9f6ZRq1XbNIlvy8HUHMcqwR/ZjrRrEikI1NIjJpN53zXJ+q6Wm3XIbQ9CS+9j/5okk0kin89AEARYLFa43X643d4Do0nkVNtMJgmabmBu7sTQNcm1mTw+RAiC2PcmGizLtIkuyVjKbaD1eiMsFit8vgA8HgcKhQpomgbLSikYciRZvt0+tFdGitx1ijXZ+Eq51UYYDIY9q0WQak4kJ65aLYMkSTgcboyNhZtR4FY0Vt4Bao+U12oVRcDIBflmswVer18xlqPUZIMgWu3c5WJfoP21yUZVKv5NpxNtRlULs9kMt9sFnc4Ms9m6ZZcsgiCU+pKpKSndLJNJIRJZxMrKAux2p9IpcxRrTxiGaaZsJFGrVaHRaOHzBfd7WT1BkvK8o/1x6OSaI3mHo1IpKanFJEnBbLY0ay1tsFgMyOfLoGm6aTvY5hd8RbEt6yEIYoMwa7+t0+lhMBgHSuEZBLmxSTabQj6fAc/zMBpNCAbHuzb54Hm+zY7ItqSqBFXkQbteb0ARXPu1y7wZFEUp9SHtyB1ypaCRFIlPJmPK+yjX45nNZvj9Xmi1Juh0W782vV6PUGgCodBEs5ZNcu7S6Th0Or2S3r3TrrS7gSiKKJUKyGSSSndpm82xqzsDw2KUNEnLlrQ0icFghNncXZOwLKMEW1k2D45jt9Uk6+1JS5MY92xndnNNMrVhZ1r+3m7ZEcmWtDQJ2aZJAooTN6qaxOlcr0nqHRlG5XIR6XRc0SRarbYZLHNCrzfDZOpdk0j19Vlks0lEIgtYWZmH3e5U0rtHZY5lOwxDN+1eEvW6pEnk5k/DRt2h68IotQhej1yD1G4s5TQajUYLi8WqdAGzWKygKA0YhkGjUQFFiWg0OAAkKIoESVIgSarjNiBCEHhwHNdhYDe73X76aLU6GAwGxZjKF73e2Jcx6nZMGYZR0ikrlZLyIXe7pa5IFEW1Gcpyc/BouaNGRavVdUTJTSbLjpprjGoNgJw6KqdINBo1VKtlNBrSeWI0mmG12mGz2ZvDSLdvYMCyrHL8y+Vis6OfSxkePQyhs5MUuXw+i0xGquGR07w8nsCWEdHNuFrHFrQjR1jlAFC1WkK1WlHEk8lk6bAlRqNJiTA2GjUYjVrQNA+AaNoOEhRFKbdJkmw2b2nV72xuT5iOeh7JeWjZjnZb0o+z1+2YykJd3nHhOA4Gg1EpwjeZzABadRXtdkR2bqUukOYNtqTXbou9rHNUYFlm3W6eNDdQFEVQlAZWqw1WqwM2m72nkQJyy/tMJoVcLgWO42A0mpTaZqvVPhRnZPC0/SrS6aQyLNlgkGrZPR7/QDPxrsaxBeuRAx0tW7JRk8izwFqahEajUQVFiaBpDqLYXZNI3+tSmrekSZiOYLRkR1o/d9cksi0xwGAwwWAwNJ293jTJZseTYWjFiWtpEik7qLsmke1JRXFu2zWJvIu/k+Yao2pLWpqktaMnnSeSEyulntthtTqammT7XTdZk2QySVQqpaYT7VJ0yaAzLNsZ9HjKjmcmk0CxmG9qEqn5nMOx/azX9agplztgVIynPJ+nfedN3tImCLI566tlLHU6PViWUUSIfN3Ktya7Rru6QRDrDaws1FrGliBIkCQBgiCb3ff4ts569Y5if41G2yHM2sXaemdPPqapVB6pVEpxIgiCgN3uhMslGUyeZ9e91pah1On0MJstzQ5HFphM1p6MRD+MqvFcj0ZDwuEwIZHIIp/Po1wuolwuKsNz9Xqj4txZrfZtu1nRdKO5q5FFpVJqPodBce6kMQL9i9t+0zAqlRLS6SRyuRR4nofFYoPHI6Vh7GTO3tXo0EnzeTp38WW7oNcbFLElz/oiCDRrSFt2RErxlb4uCILYtDnLetodve63KZAkAYBoPq8AnufBsgwajYYyk0z+v3JGwHo7sln6US5XQT6fV5w4lmWh1xuaTpwXOp0B9Xq1w47IDQakHfyWHTGbrdvWmfXLQbEjgLRWm82A1dW4YkvkWU8kSSrdJm02BywW65ZdP6U0V+l9KRZzYFkWBEE25zdJtmTQ3bt+jinLss3mUElUq2VQlEapH7ZYdjZn72pz6GRN0r7zJjejkToKWmA22xRbotXqmpqk3PFdPUxN0q5NCIJs26EUwfMtTdJo1BV9IB2njZqkWwC6/XjW662duHZNIgWWXc0B5xXFgavVKkqwar0mMZutQ08XPCi2pJsmKZWKiq03GIyKHulVk2QyKRQKGVQqZQDrNclgMyX71SRyB95sNg1BkDSJ1+uHy+Xb0Q6r6tDtgL02nnL74Hq9hkajpkREK5WyUnhqNJo6olwGg6mZc93dUGq12g5nxm6XCu/z+SoYhoMg8OB5HoLAQxCErrd5Xmj+bqvbPBiG7hB3BEFCp9NDp9OCJDVKGpncbp1h6HXOnqZDmOl0OlQqBaTT0twsm82hOAlyHv5GQ2ntMJZ70Zr9IBnPzSKMUhvwAsrlImo16ZzXanVNB0+Klm21i8lxHEqlAkqlPIrFvOIkms1WxZj2Otuvt2HAdWQySSUPXafTKxH0QedgrecgO3RyJFS2I3JASH5f5A6A0u6bTRHdciqhbEfqdWnN8m5U+2fLZrPC5bIil5O66K23B4Ig9H1bEl7Mho6PGo0WOp2uWcsrOQftDl+77ZHTgGRhJp0PHKLRGBiGhlarg9PpgdFogiC00iflY0OSpBIpl1+rwTBc560bB8WOAJt1uZRGCpRKxaYtKYHnOWWMiZwNYLHYNxU1chfAYlGyI+VyEYIgQKPRdogyvb63cQjbHVNBEFAo5JDJJFAo5AAAdrsLXq9/R3Ow1nNQHbp2TSLrko2axNxhSwwGoxJQbg8EtWfIdNoRO/x+Z1dN0m5T+tUk8k5euyYhSUmTaLXrNQkPlpUcvs2cPaPRCKvVhGg0jmIxDwDKbrKkSWpKIEg+NnLTI1WTdGdrTVJs2pKi8j2k0+k7HLxeNIlsS2QncXc1SULpzKnXGxRNMqwUbdWh2wG7ZTylwayNDsdNTo1rNyZyUbqc8mQ2W8BxXIfgqtU2N5Ry5GevimWlNrosGKYBhqGbO3R02+1GWyMFCcnp0zWjapJx5Xmh2U6Zg9lsBkVpm0X8tS6Gsv21Dr4bsxMOuvFcD8exioNXKhWVovX2geVWq2PLkQY03VAMaamUB8dxIEmy6ZRLxnQzY7zZOjmOa6ZWJFAul0CSFNxuLzwe/640VzgIDh3Lsm02RHbe6h27WRSlgdFoatt9s0Kj0a3bjSp3pBJKtRvtu1HmDV98u3neywGidtvR+TOt2ILWeqQOfbLDJwlAKdVTDhYBJGi6rtSptJy3zp23/ajlOih2BOhtrbJzJouycrmo2H+TydKRDbCZyBUEoSns8igWC80OuIDBYGqKMseWM+Q2S7etVsvKrj7HcUpd6G41fBp1h667JpFsyWaaRNrFN6/TJBvLG9YHWden9u++JmG66hGGaTRr9rppkpbD1551xPOc0mSM5znU6/UOTbI+G0jVJFvTnyYpKk6ebAfaB5bL6d6DaBI5UDSIJpF39aV0z9HQJKpD14WdGk+pwHyjgaTpuhI1oigKBoOp2UFMutbrDSBJCoLANXeiWg5ce871doay13XuJXLNzkYD21B+Xt9IwWAwbohy7SSVbtjs9zHtlZ3kgUuzWYoolQrN2hkBJEk1a2fsirPQ7X2Ra67ao+6iKEKr1SmG1G53KOdv+zpZlkexmEM6nUQ+n4UoCgMVP8v1Wf1EykbFoZPrL7rZkvbPitR+3tRmT4zQanUd84pkO7IxlbD12ermvPW61r1ETqGShdlGu9JYF52nmq9TElvSa93/IbAy+308+2GQtcqNEtodPLnGymAwNYWZbUunmmVZJepeKuWVwb4Wi1UJFFksNuWx7eusVmvIZFJKx1utVqdE0OWaye2Qd74NBkNfw+NHxaGTdtvqG4JANN3oqklkeyJpEhKCwCvZMcMqb9jv814QhE2cvpZdWa9J9HqjYktUTTI4O9MkLQevUikpQ8FlTSLvGHfLBpCCOhXFjqzXJPJFDu60r5NhuI5um6IoNjVJAE6neyQ0ierQdaHfIZ61WhHZbEGZNcSyLSOg0+mg0xmas6O0oCgSAAGe55tDyeWi3s7GANJjh5dzfRA+6IIgNFOoOAQCHlSr7MiuFTgYxxQYbjpftVruMKbrO5fJzXi6NUgQBB6lUlFJz5RTPI1GM+x2B1wuN1wuGxYXV5BOJ8CyLIxGkyK+tgtcdKvVYBgaJEnhllteMtJjCyiKAMNUkEiklSGxjUYrAESSJPR6A3Q6PVojAKQ6ETnFSG42sr4xQKtr2nDqwEb9vJfTxXiehdNpAcNgpEZBrGfUj2c7w1qrPHtSvrR3U13f2Gv9514OdLRH3XmeB0VRSiaA0+kEwGJpaRnFYgEkSSpNCbab/yUNgK+uy4iRshXC4VkEg+M9v879cOg4jkG93tIk9XqtwzGRyiH00Gp1oCjNJpqEQbfh48MsbzgI572028/AaNSA4wgAo9dFsZ2DcEyB4WsSOd1b0iTSOWswGDvKlLppEp7nUS4XFTsiaxKTyQybzQmXywWXy4aFhWWk00lwHAuj0QyvV9rV306TMAyj7GDLdoRhaFCUBjfffNvQNYnq0HWhH+O5tHQJ6XRSKfAHoGzVrzeGgCSuNs5sap+50mrhPcwUkIPyQQcOzlqv9XVuNVtI3gFqb9qzvoU7yzIoFlv1d3I6nEajhdvtU8ZIdDN6DENvaP4jp9BQlKZDcFgs9p5rb4D9ceh4nsEzzzwOgOiY1yZ3iuw2ykAeDtxtBlz77WG3zr/Wz/thc1DWCezeWqX0vc6mPfLnWavVKc5de6dEGXkIsWxH5Kg9ANhsDmVXv1vEvuW8tXc0bc3SklOWZXvSvgvYC/vh0C0uXkQmkwJFaZRmQ/1rko235cD0sDgo5/1BWSdwcNa625pkfdOeTk1iU0oQ1g8KlzRJXrm0bJBWaZS0tSbpDCjLj9doNEp2iFRXbOsps05GnUO3R0h51dpmtEsWV5sP7G7NmlJROdhIDTNMyi4a0GqQII/VKBbzSCZjAFoNOdqj7x6PDx6Pr5ke2IBeT4Ig9JAbn8mpulsZSmnwuV8RXtt1xBpFpB04PUQRXYI83W8ftNeoorIZGo1GSXeSoWka1WpJsSXRaGSTJmGSLbFabRgbm2zWXZfh97tB0+KG5i3rm/+0nDdzs6Yu0EwdtIzkXKvtkFKut9Yk7QFkVZOoXC20axKvNwCgXZNItqRQyCGZjAJobxLW2smTM4K20iSSbSq3Nf9p1yRaZYag7MDt1WxV1aHbIePjkzh16vjIR0RUVPYCuXW5NLh4DMDGlvmpVByxWARAZ8t8u90Op9OJWCyFUqmkNP+RU5j301DuNlqtDq94xStUO6Ki0kSv10Ov98Ll8gLo3jI/nU4AaDW5kZ07m80OmqYRj6dRLpc2OG9yCrJkS6wwmcwH0nnrRjg8jeuvP6naEhUVrNckEtJ4idYs52Qy1mWMjw12uw0OhwPxeLqpSTq7yUuapGVH5J4W+6VJVIdORUVlV9FotHA4XHA4XAA2DrWuVEpYXc0iEhE6HiMZyuBIGEoVFZX9Re7CKjUyCQLYONQ6l0sjkVjreIy88+bzBZWdt90eRaGiojK6aLUbNYk8AF62JaurSx2aRB4F5vcHm+mTUvOfUdIkqkOnoqKyp8jzwvR6A9xuHwC5IU4dOh0BUdSAJNWUQhUVla2hKEppXy4jDaSvwuWygedJCIJqR1RUVDaHIAhl7uB6TaLXkxAEDShqdLqZboYaplJRUdl3pLQIK/x+/4GsgVNRURkNpAHybjgcjr5GDKioqKjIyJrE5/P11VRtP1EdOhUVFRUVFRUVFRUVlQOK6tCpqKioqKioqKioqKgcUFSHTkVFRUVFRUVFRUVF5YCiOnQqKioqKioqKioqKioHFEKUB7OoKIiiCEHo/bBQFAmeH/15LwdlncDBWau6zuEyCuukqOHFufqxJaPw2nvloKxVXefwOShrHYV1DsuWqJpkfzko6wQOzlrVdfa3hl5QHToVFRUVFRUVFRUVFZUDippyqaKioqKioqKioqKickBRHToVFRUVFRUVFRUVFZUDiurQqaioqKioqKioqKioHFBUh05FRUVFRUVFRUVFReWAojp0KioqKioqKioqKioqBxTVoVNRUVFRUVFRUVFRUTmgqA6dioqKioqKioqKiorKAUV16FRUVFRUVFRUVFRUVA4oqkOnoqKioqKioqKioqJyQFEdOhUVFRUVFRUVFRUVlQOK6tCpqKioqKioqKioqKgcUFSHTkVFRUVFRUVFRUVF5YCiOnQqKioqKioqKioqKioHFNWhU1FRUVFRUVFRUVFROaCoDp2KioqKioqKioqKisoBRXXoVFRUVFRUVFRUVFRUDiiqQ6eioqKioqKioqKionJA0ez3AkYRnheQy1V7ui9JEnC5zMjlqhAEcZdXNjgHZZ3AwVmrus7hMirr9HqtQ3uuXm3JqLz2Xjgoa1XXOXwOylpHZZ3DsiWqJtk/Dso6gYOzVnWd/dGrHVF36HYISRIgCAIkSez3UrbkoKwTODhrVdc5XA7KOneDg/TaD8pa1XUOn4Oy1oOyzt3goLx2dZ3D56CsVV3n7qA6dCoqKioqKioqKioqKgcU1aFTUVFRUVFRUVFRUVE5oKgOnYqKioqKioqKioqKygFFdehUVFRUVFRUVFRUVFQOKKpDp6KioqKioqKioqKickBRxxaoqAxIOp1EuawBRRmg1RpAEAejE5KKisro0GjUsbCQAEnqYDBYoNGoX8sqKir9IYoiUqkEKhUdSNIArVavapJrDPWbQ0VlAJLJGJaXryg/azQaWCw2WCw2WK12mM1WUBS1jytUUVEZdTiOxfPPn0ajUVd+ZzKZm7bEDqvVBr1eDRapqKhsTTIZxcrKgvJzS5NIdkTVJFc/I+HQfe1rX8PHP/5xrK6uIhwO47d+67fwcz/3cwCAtbU1/Omf/imefPJJmEwmvOENb8Bv//Zvd5yYn/3sZ/GpT30K6XQaJ0+exPve9z4cP358v16OylVOqVTAyso8gsExXHfdSaytJVAoFFCplBCPr2JtbRkAYDZbFGNqsdig06kRMxUVFQlRFDE/fwEcx+KOO+5AoVBV7EipVEQqFQcAaLXaDjtiNltBkmq1hIqKikSxmMfKygJCoQmcOnVc0STlcgmxWASCwIMgCJhMlmbQWXL09Hr9fi9dZYjsu0P39a9/Hffffz/++I//GC996UvxjW98A7//+7+PQCCAkydP4h3veAempqbwhS98AZFIBPfffz9IksT//J//EwDw1a9+FX/913+NP/3TP8Xx48fx8Y9/HG9729vwrW99Cy6Xa59fncrVBk03cOXKeVitdkxNHYJWq4XD4YLF4gAgibR6vYZKpYhyuYRCIYdkMgoA0Gp1sFrtikE1mSyqMFNRuUZZXV1EsZjHiRPXw2w2g2EAnc4Iny8IQNq9q1RKKJdLqFRKWFtbhiAIIAgCZrO1Q5jpdLp9fjUqKir7QaNRx/z8edhsTkxNzWyiSaqKHSkUsoom0en0HXbEZDKrmuQAs68OnSiK+Nu//Vv8yq/8Cn75l38ZAPDud78bTz31FJ544glEo1HEYjF86Utfgt1ux+HDh5HNZvHXf/3X+I3f+A3odDo8+OCDeMtb3oLXvva1AIAPfehDuOuuu/DlL38Z73rXu/bz5alcZfA8j8uXnwdJkjh06HhXwydFwcwwmczw+UIAAJZlFGNaqRSxuroIURRBkuQGYabVavf6ZamoqOwxmUwS8fgawuFZOBzdA48ajRYOhxsOhxuA9H1Zq1WatqSIXC6NRGINAKDXGzYIMzUbQEXl6kbWJBSlwdzcMRDEZprEApPJAr9/vSaRAs+RSKcmke2IxWJTNckBYl8duqWlJUSjUbzmNa/p+P0nP/lJAMCf/Mmf4MSJE7Db7crfXvSiF6FSqeDChQsYHx/H8vIyXvziFyt/12g0uOWWW/Dkk0+qDp3K0BBFEUtLl9Fo1HD8+I19GTmtVgeXywOXywMAEAShQ5hJ4m4VAGAwGDE+PgW327crr0NFRWV/qVbLWFy8DI/Hj0BgrOfHyTtzZrMVgPQ4mqaVQFG5XEIul24KMwp2uwOzs0dBUfueiKOiojJkRFHEwsJF0HQDJ07cCI1mZ5qkWi0rGQHpdAKxWLsmmYbb7d2V16EyPPbdoQOAWq2Gd7zjHTh//jzGx8fx7ne/G3feeScSiQQCgUDHY3w+SejG43GlG1gwGNxwn4sXL+7BK1C5VojHV5HNpnDo0HGYzZYdPRdJkkoDFWAcoiiCYWiUy0VksyksLFyC0Sjt8qmoqFw9sCyDy5efh8lkxvT04R3voun1euj1XkVsCQKPSkUSZtFoBMvL85idPTqMpauoqIwQsVgE+XwGc3MndqwVSJKE1WqH1WpHMCg5izTdQKVSQiaTxOLiRZhMZhiNpiGtXmU32FeHrlKpAAD+8A//EL/1W7+F9773vfjOd76D3/zN38RDDz2ERqMBm83W8Ri5iJOmadTrUmew9fUDer0eNE3vaG0aTW95xBRFdlyPKgdlncDorTWfz2J1dQnj45Pw+/3K74e5Tq3WBLPZBK/XhzNnnsbCwgVcd93NQ+lKtR/H88Mf/gs8/PCXcd99P48//MP7ld8//PCX8cUvfg7xeAyBQBBveMMv4hd/8Zc61ve3f/sRfP7zn93wnL/4i7+E3/u9/wUAeOyxR/AHf/D7G+4zN3cYn/70F3bjJQ1ML7Zk1M75rTgoax21dQqCgPn58xBFEceOnYJOJ339DnedJFwuF1wuFwwGA65cuQCXyw2v17/9Q3vgarQlAPC97/0nPv3pf8bS0iLsdgfuvvse/Pqvv3ukahNVTbI/jOI6s9kM1taWMTExpWxyAMPWJGZYLGZ4vT6cPv2UokmGUWN3tdmRD37wAXzzm/+26f/+ylf+HaFQaMivaCP76tDJaWvveMc7cN999wEAjh07hvPnz+Ohhx6CwWAAwzAdj5EdNZPJBIPBAABd72M0GgdeF0kScDr7i3jYbIP/v73koKwTGI21VioVXL58Hj6fD9dff7JrRH3Y67zllpvxox/9CIlEBCdPnhza8+7V8fzGN76Br33tKwAAnU6jfJYefPBBfPSjHwUAmM1mrK5G8NGPfhgMU1OaHAHA0pLUetnpdHYIKq/XrTxXq5OoGRZLa8fU7/f1/dndTfq1JaNwzvfKQVnrqKzzzJkzqFTKePGLXwyn07nh78Nep8Mxg2q1iMXFyxgfD8BkGl50/WqyJZ/73OfwgQ98AABgtVqRTqfwmc/8C3iewZ/8yZ/s+mvsBVWT7D+jss5yuYz5+QsIBAK47roTe6ZJfvzjHyORiODEiRNDe96rxY74fO6OYD8gacdqtQqz2YyxMS8cjt3XJfvq0MkH4PDhwx2/P3ToEB555BG84AUvwOXLlzv+lkqllMfKqZapVAqzs7Md91l/cPtBEESUSrWe7ktRJGw2I0qlOnheGPh/7jYHZZ3A6KyV4zicOfM0tFodpqePoFDoPCd2b50UpqZmsbh4BUajVclzH/jZ9uh45nI5fOpT/4SHH/4SRFEEADAMh3y+ikajjo997GMAgD/6o/+N173uPnz2s5/G3/3dR/Hgg/+Ie+99HXw+H2w2Iy5dugQA+Lu/exCHDs11/I98vgoAOHfuPADgXe/6H3jjG9/U9T6DMkyHsFdbMirnfC8clLWO0jrj8SgikQgOHToCQNdxju7mOicmZpHN5vDkk0/h1KkbuzZN6IerzZZUKmX81V/9FQDg/e//IO6999X47nf/A+973/8P3/3ud/Hud//OjnbphmVLVE2yf4zSOjmOxenTT0On02Nycm4PNYkG4fAMlpbmYTRa4XS6d/RsV5sd+Y3f+J/4jd9oOYAMw+Ctb30TqtUqHnjgTyGK2h3pkl7tyL46dCdOnIDZbMbp06dxyy23KL+/fPkywuEwbr31Vnzta19DpVJRovD/9V//BbPZjKNHj0Kn02F6ehqPP/640hiF4zg89dRTePOb37yjtXFcfycZzwt9P2Y/OCjrBPZ3raIo4vLl58EwNE6cuAkAueladmOdHk8QuVwOV65cxKlTN0On2/m8mN0+nn/xF3+GH/7wEYRCUsOGWCwKQRDBcQKuXJlHo9EAANx5593gOAFvfOOb8YlPPIh6vY4f/ehHeN3r/htSqRTy+TwIgkAwOLbpeq9ckQI9odD4yJ/P/axP/XwOn/1eZ6lUwNLSFfj9IbjdgT21IwCJ2dmjOH/+OaysLGN8fGooz3q12JIf/ehHaDQa8Hp9uPvue8FxAm6//U5873s/Vso7RuUcVzXJ/rLf6xRFEZcuPQ+WZXHy5N5rEp8vhHw+i8uXL+C6626BVrvzdOSrxY6s56GHPomVlWW84hV347bbbt+z82Zfk4INBgN+7dd+Df/wD/+Af//3f0ckEsHHPvYx/PjHP8bb3vY23HXXXfB6vfjd3/1dXLx4Ed/97nfxN3/zN3j729+uRM3e/va346GHHsJXv/pVzM/P44//+I/RaDTwhje8YT9fmsoBZ21tGYVCDocOHduXQmCCIDAzcwQEQWBh4aISXRpljEYj3vCGN+FTn/osfL7OHfL2AaYMI6VNEwShdOBbWVkGACUSptFo8Ou//qu4887b8Ja3vBHf+95/Ko+n6QaiUald+4MP/j1e8YqX4L777sUnP/mP4Hl+116fikq/yHMrLRYbwuHZ7R+wC1itdoyPTyEaXUGpVNiXNfTLXtmShYV5AIDX68Pf//3/wStf+TK89rV34+Mf///AsuyuvT4VlX5ZXV1CsZjH3NxxGAx7n/5JEITSYGlh4ZKqSdrsSDvZbAaf/ey/QKvV4n/8j98Z9kvakn3vZ/ybv/mbMBqN+OhHP4pkMonZ2Vn83d/9HV74whcCAD7xiU/gAx/4AN74xjfCbrfjzW9+M37zN39Tefwb3/hGlMtl/J//839QKBRw8uRJPPTQQ+pQcZWByWbTiMUimJiYVmZA7QdarRazs0dx8eIZJBJrCAYn9m0tvXD//X+yaROXiYlJmExm1GpV/N//+xDe8Y534Vvf+ndUKmUAUK5l48myLFZXIwCA5eVFPPDAH0EQePzsz96DxcUFCIIU8VpYuAKj0YR0OoWHHvonZLMZ/MEf3N9lBSoqe0v73Mq5ue5zK/eKUCiMYjGPhQVpx7+fFuf7wV7ZkmKxAAC4cOF5nD9/DmazGYVCAV/84mdRKOTwv//3n+7yK1VR2R55tFE4PAu7fWP97V6h1eowO3sEly6dQzIZRSAwvm9r6YW9siPtfOUrXwbDMLj33tdscCJ3m5Fo2/O2t70N3/ve93Du3Dl8/etfx1133aX8bXJyEp/61Kdw5swZ/PCHP8Tv/M7vbPhifMc73oFHH30Up0+fxmc/+1kcO3Zsr1+CylVCtVrB4uJFuN3ekXCg7HYngsFxrK4uoVot7/dytmSrjpxarRa/9mvSXMgvfvGzuPvu2/HRj/610hhJLuyem5vDa197H379138T3/nOo/jmN7+PF7zgRQCAT3ziQQCA0WjCz//8G3Hffb+Af/u3/8R//Mej+O///R0AgH/7t68hkUjs2mtUUemF9rmVhw+fHEp60k6Qo+s8z2Np6crIR9f3ypbIh0EURXzgAx/Cd77zKN73PqlByne+8y2sra3uyutTUemVQedW7hYOhxuBwBgikUVUq5X9Xs6W7JUdkWFZFl//+sMAgPvu2/sswX3foVNRGRVYlsWVK8/DYDBhevrIjmdEDYvx8WmUSgXMz1/AyZPDGWWwH7zxjW+GVqvDv/3b18AwNF796tfhBz/4Hp5//ixsNjsA4GUvexmuu+4WJedcq9XivvvegCee+C9Eo2uoVCqYmprG7/3eH3Q89y/90lvxL//ySYiiiCtXLm6YX6mispfE42vNuZXHdjy3cljo9QZMTx/G/Px5pNNO+HzB7R80ogzLlsi1+TabHa94xd0AgHvueRU++tG/RrVaxaVLFzE+vv+BPZVrk865lXMjo0kmJmbaNMlN17wmke3ImTPPoVAowO8P4Nix4XUD7RXVoVNRQWtGFM/zOHbs+pEyUCRJYnb2GM6dexorK/OYmTmy30samLvueiVe/erXKVGwz3/+MwCA6Wmpvujpp5/GpUvzmJo6hLk5qfstx3EApBx2g8GAlZVlzM9fgclkwotf/JKO+wCAxWLds9ejorKeQiGH1dVFhEITcLt92z9gD3G7vSgWA1hZmYfVaj/Qg4KHYUumpqYBSDU0giAo2T9yHc0ozR5TubYQBAFXrpyHKAqYmzsBkhw9TfL8888gElnA9PTh7R80ogzDjsg8+eTjAIAXvvDFe7b+dlRrpaICIBJZRLlcxNzccej1hu0fsMcYjSZMTc0hnU4gm03t93IG4s1v/nn83M/dgS9+URrQ+R//8S1ksxnodHq86EW3AQA+9alP4QMfeD8+/OEPoVKpoNFo4Ctf+TIA4IYbboJGo8Hjj/8UDzzwR/jgB/83lpeXAACf+9z/BQBYrTYcOXJ0H16digrQaNQwP38eDocL4+PT+72crkxOHoJOp8f8/AWlFvWgMSxb8qIX3QaKotBoNPDZz0o25Ec/ehSlUhEkSeLo0b2PsquoAMDKyjwqlRLm5k50NPAYFUwmM8LhWaRSceRymf1ezkAMy47InD17GgBw5Mj+lH2pO3Qq1zzpdALJZBRTU4dgszn2ezmb4vH4USjksLR0GRaLbSQdz624555X4eMf///w4IN/j8985p9RqUj59+9857ths9kAAO9617vw2GOP4fz5c3jta+8GQIBhaBgMBqVj1D33vAr/+q9fQCwWxa/8yi/CYDCiVpNmvPzGb/wWTKbRGSyucu3AcRwuXXq+2Tjg2MikR62HoigcOnQMzz//LNbWlvat++ZOGJYtcbs9+JVfeTseeuif8I//+Pf49KcfUmzJa1/7ejV1W2VfSCZjSKXimJ4+DKvVvt/L2RSfL4hiMYelpUswm60j6XhuxbDsiEw6LQXbp6Zm9vR1yKg7dCrXNOVyCUtLl+H1BuHzhfZ7OVtCEASmpw+DojRYWLgw8o0N1vOWt/wq3va2d8LvD4BhGMzOHsL99/8JfumX3qLc57rrrsM//MM/4tZbXwiDwQiKInHrrS/E3//9P2FuTko1tdls+Lu/+0fcc8+r4HZ7wHEs5uYO44EH/gyve93r9+vlqVzDiKKIhYWLYFkahw+f7IjajiJmsxUTE9OIx9dQLOb2ezl9MyxbAgDveMe78Hu/9weYmAiDYWgEAkG8853vxu///h90+9cqKrtKuVzEyso8/P7QyNe5SprkCAiCxOLiwRiv1M4w7QgA5POSLbXb98cJJ8SD9g7sATwvIJfrbaq7RkPC6TQjn6+O9HDMg7JOYO/WyjA0zp17Bnq9AceOXd93W/FhrFMURdB0A/V6DY1GDY1GHS6Xd8vWxOVyEefPP4exscmeBgUflPd+VNbp9Q6vBq9XWzIqr70XDspa93Kda2tLiEYjOHLkZN+jToa1To5jm3akjnq9BgAYH5/a1K6JooiLF8+iXq/i1Kmbe+rEqb73/TEsW6Jqkv1jL9dJ0w2cO/cMjEYTjh69bh81iWRD6vU6aLoOt9u3ZfZSsZjHxYtnMDExjVAovCfr3AtGZZ292pHRDiOqqOwSgiDg8uXnAaBZcLy7m9Ucx6HRkAykdN1y4OSYCkmS0Gi0yGRSOHXqJhgM3RsWWK12jI1NIhpdgd3uHOmUDBWVq51cLo1odG/mVsoBoPW2pF6vgeNag7D1ekOz0QePqam5rs8ljTI4grNnn8bi4iUcPnxyZNNEVVSudgRhb+dWtjRJrcOedGoSChRFIZtN4eTJmzcdaG63OxEKTWBtbRk2mwMWi21X167SHdWhU7nmkGdE1WoVHD9+I3S64cyIEkURDEMrxrFlKGtgWUa5n06nh8FghM3mgM8XgtFogsFggk6ngyAIOHfuaVy5cgEnTty4qVEfG5tEsZjH/PwFnDp1y8ineKmoXI3UahUsLFyEyzXcuZU8z3cNANXrdYiiFCkmSRIGgwlGo2RLZDsipQVRSCZjWF6+ApvNCZfL0/X/6HR6zMwcweXL55BMxkZizpWKyrWGKIpYXJTmVh4/fuPQ5lbKmmS909aLJjEaTdBqdeB5HufOPY35+Qs4fvyGLTTJFIrFQlOT3Kx0ilXZO9QjrnLNkUxGkckkMTNzdEct7ovFAtLpKHK5Imq1KhqNmtI1jiAIRWx5vQHFQEpia/OPXXvDgtXVRUxOHup6P4IgcOjQMZw9+xSWly+PdBMGFZWrEZZlcfmyNLdyZmbwuZUcx2J5eRnZbB7VqiS8GIZW/q7V6mAwGGGx2OD1Bpp2xQSdTr/l/5QaFuSxuHgJZrNl0yZKTqcbfv8YIpEF2GwOtamQisoek0gMZ25loZBvapICarXaJprEBJ+vZUcMBtOWY5o0Gg0OHTqG8+efw9raMsLh7g0/SJJsapKnsbw8j9lZtdv0XqM6dCrXFMViHisrCwgExuH1+gd+nkwmiYWFi9BqtTAaTTCbLfB4fIqR1OsNAws8s9mKcHgWKyvzsNkccDq7R9dbg4IvwG53wetVO7KpqOwFoigOZW4lx3G4ePE0arUqDAYjDAYj3G5fWwDINPDuO0EQmJk5jLNnW9H1zWxSOCwPCj6PkydvGqmZVyoqVzOFQg6RyCKCwZ3NrUynE1hcvASdTgoAmc1WeDw+xY7sRJNYLDZMTEwjElmEzeaAw+Hqej+DwYipqTksLl6E3e6ExzO4xlLpH9WhU7lmaDTqmJ8/D5vNuWmUqRfy+SwWFy/B5wvg1ltvRqFQG3rBrN8fUqLrJ09u3g7Y7fahUMhhefkKrFb7pjnuKioqwyMSWUC5XMTRo9cNPD5Eqpk5h0ajgZe+9KXgeWrodkSj0XZE1ycmus/Gk6Pr5849g0hkcdO6OxUVleEhaZILcDhcm342eyGXy2Bx8RL8/iBuueWmXdEkgcA4isUCFhYu4tSpm6HTddckHo8PxaKkSSwWm6pJ9hB1bIHKNQHPSwXHFKXB3Nzg6YmlUgFXrkiDgw8dGjzNajuk6PoRkCS17YiCqalD0GoP9qBgFZWDQjqdQCIRRTg8O/DcSkEQcOXKBVSrZRw/fkqZebQbWK12TExMIxaLoFjMb3o/k8mMyclZJJMx5PMHc1CwispBQZpbeQ5arXZHJRNSLf15uFxezM7uriaRn39hYfMRBQRBYGpqDhqNdsv7qQwf1aFTueqRZ0TRdKM5I0o70PNUq2VcvnwOVqsNhw4dB0Hs7sdHMvRHUS4XEY2ubHo/itLg0KGjqNUqWFtb3tU1qahcy5TLxebcygD8/sHmVkoNEC6hWMxhbu7EwE5hPwSDE7DZHM1Zecym9/P5gnA43FhcvNRRx6eiojI8hjW3slIp4fLl52GzOTA7e3TX6+i1Wh1mZ4+iVCogFotsej+NRoPZ2aOoVEqIRpd3dU0qLVSHTuWqRhB4XLnyPPL5DGZnjw5c8F+v13Dx4lkYDCYcPrz7Yw5kbDYHxsenEI2uoFQqbHo/i8WG8fEpxOOrW0bhVVRUBqNQyOHixTOwWGyYmpobSDyJooiVlQVksynMzh7dtBZl2EjR9WOKkNwqui41eCHV6LqKyi4gZQudQ7GYw+zsMRiN3ccTbUe9XsWlS2dhMpn2ZPSSjDSiIIy1tWWUy8VN72e12pvaJbKldlEZHqpDp3LVwnEsLlw4g2Ixj8OHT27auns7aJrGxYtnoNFoceTIqT1vxxsKhWG12jE/fwEsy256v84o/Ob3U1FR6Y90OoHLl8/BZnPgyJFTA4unaHQFyWQUU1NzO2qAMAg6nRRdLxbziMfXNr2fnBlQKhW2vJ+Kikp/sCyLCxdOo1Qq4PDhk3A6B5tbSdMNXLhwBlqtvqlJ9raJ0fj4FCwWG+bnL3TMv1yPrF0WFi5ueT+V4aA6dCpXJTTdwPPPP4dGo45jx64f2HCyLIuLF88AAI4evQ5a7WDpmjtBHlEgpWptHV2fnT0KURSwtHRJja6rqOwQURTx/2fvveMbuev08Ue9d8nqxbLc7d0km15ISCAJkMCPcHB0jnZ3HNzROe6OfrQ7INT70o7QD7hQLwQIIQkJkGyS3eyue5GsYklW710aze+PkbT22pLVvPYmfl4vv2Rbo9FHo5n3vOvz+P0erK0tQ6nUYGRkqmvnKRDwwedzw2AY7Lpds1dIpXJotUZ4vU5kMqmm20kksk3bpc/jCg9xiKcnCoU8FhZOoVgsYGLioq6r8+VyCUtLM6DT6Rgbm+56hKQX1H0SgiCwtrayq09CEASczubbHaI/OAzoDvG0Qzabwfz8KZBkFZOTF0Eo7I5wgCAqWF6eRaVSrrHZ7czqdD5QFwBOJGIIBHwttxscHEU8HkUotHEeV3iIQzy9QLVH2rG+7oReb8bgYHdtlgAlc+J226HRGKDT9U+AvBsYDBbw+cJadr2y63YOxyIIgjiPKzzEIZ5eyGbTWFg4BZIEJicvhkDQnf4tJXMyC4IgMDZ2pCnT5PkAh8OF1TqKeDyCUMjfcrvBwRHEYhGEw4HzuMJnHg4DukM8rZBMxrG4eBosFhuTkxeDy+2uP71arWJlZR6FQg5jY9Nd97n3EzKZAhqNAevra8hmm2fN5XIlBgZ0cLsdyOWy53GFhzjE0wMUC+UCgkE/BgdHYDBYug7m4vEIHI4lqFQamEzWPScu2A10Oh3DwxOoVMots+aUlMEYSqUi3G77eV7lIQ7x9EAyGcPCwhmw2VxMTl7UNY1/XeakWCxgbGz6QMgByOVKqNWUr5HNZppup1CooFJp4Hbbkc/nzuMKn1k4DOgO8bRBNBrC8vIshEIxJiaOgsVid7WfumhwOp3CyMhU19m0vYDROAg+X4DV1YWW2XWTyQoul1uTMjjMrh/iEO2iUqHarJPJGEZGJjEwoO16X5TMySJkMiUGB0f2PZirg8qajyIWC7fMmnO5fFgswwiHA4hGQ+dxhYc4xIWPSCSI5eU5iMUSjI9375PUE0zZbBqjo1Pg84V9Xmn3MJmGwOMJYLcvtKzkm802sNmH8kp7icOA7hBPC2xseGG3L0KhGKjNuXRHXFKnFE8kYhgenjgvlOKdgMqaT6BcLsPlWm2aXWcwGLDZxlEo5OByrZ3nVR7iEBcmisUCFhZOI5/PYmzsKGSy7oiUgHNlTrrXmdorKBQqDAxo4XLZW1bylUo1FAoVnM4VFAqF87jCQxziwkR99tbhWIJSqe5p9vaszEkcw8OTEIkkfV5tb6B8kvFdK/l1nySfz8LtPvRJ9gKHAd0hLmjUacA9Hge0WmNNjLu705okSXg8DkQiQVito10Tqew1uFweBgdHEI2GEIkEm27H5wthMg1hY8OLQOCwd/0Qh2iFXI6ava1Wq5iYuBgiUfdi3/slc9IpzOYhcLm8ltl1Sih4BAwGEysrrbPwhzjEMx11n4SavTX1VJmvz/FSMifj503mpFPweGcr+a18EoFABKNxEH7/OoLB5tsdojsczLvMIQ7RBqrVKhyOJQQCXpjNtp7nU/x+DwIBH8xmG5RKdR9XujsIgkA6nUQw6Ecu17wXvQ6lcgAqlQYu12rLnnS1Wge5XIkTJ07A5XIctjoc4hA7IJVKYGGBmr2dmLiop5nZYrGApaUZsFjnX+aEJEkUiwXEYmGEQhu7ssrR6VTWvFgswONxNN2OyWTCZhtHJpPCn/70J6TTzRkyD3GIZyqq1Srs9oWGNInBMNiTT0LJnFBzvAqFqo8r3R1nfRJfW7P4KpUGSqUaTucqCoV80+00GgNkMjlOnDgBt3vt0CfpI86voNYhDtEnVCoVrK7OI51OYnh4AnJ5b8YuGPTD63XBYLBAo9H3aZU7gyAI5HIZZLNpZLPU4+agjM3mYHr6UjCZrS9Ps9mGdDoFu30Bk5MXg07f3tJBo9EwNjaJWCyI5eVlRKMRDA2Nds38eYhDPN0QjYbhcCxCJJJgeHhy1+uuFShK8VkAey9zUg/e6jYkm00jl8tsma2tVqu72jM+XwCz2QancwVisbSpPp5IJMHRo5fC6VzBzMxJaLVGGAyWA1t9PMQhzicqlQpWVuaQyaQxPDzZte5tHYGAFz6fG0bjYE9zvO1gN5+Ew+FievrYrskpi8WGTCaF1dW6T7LdNlA+yTRisQBWVlYQjYZhtY5BKDw4XAUXKg4DukNccCiVilhenkWxWMTY2JGe59wikRBcrlVoNHrodKb+LLIGgiC2GMlcLtMwlDQaDXy+ECKRBBqNAQKBEAwGE3NzJ+FyrcJmG2+5bwaDgeHhcczNPQW3ew2Dg8M7bkej0WGz2cDjibGysoj5+VOHztghDgHKaXK7HVAoBnpq1wYoh64uczI5eVFfKcXPBm/pTfYkA4Kggjc2mwOBQAiNxgA+XwiBQAS/3wOPZw1isRR8vqDl/lUqDVKpOJzOFQgEoqYMegKBENdccw3m5haxvu5CIhGF1XqYIDrEMxvFYhHLyzMol0sYHz/S85xbOByA2+2AVmvYA5+k0rAfdVtSKJzrk0gbPgmdzqj5GA5YraMt981gUJX8+flTWF9fg9ls23E7iml3eJNP8hR0OhP0evOhT9ID+hbQVSoVZDIZSKXSfu3yEIfYBmo2hRL6npi4aFdHZTckElGsrVGDyybTUE/tEZVK5ZwsVytDKQKPx9/ReFksw3A4liCTKZpmy+vg84Uwm21wuVYhkUhbVir5fAEmJy/GxsY6vF4X4vHoYbXuEM9IkCSJ9fU1bGx4odUaYTT21hpFyZzMoVDIY3z8oq7lUuprKxTyyGYzyOXOJoPqs2tU8CaCVks5XAKBaEf2PJNpEMlkHA7HUtNseR31Obm5uZOw2xcxMXFR0+3pdDqMRgskEgXW1pYOE0SHeEYjl8tieZmqyk9MXNyzxFE8HsHa2jJUKg2MRmtP+9ruk6Qb7ZA0Gh0CgQASibRmS5r7JGbzEJzOFUilil0rjwKBCCaTFW63A2KxtCWxlEAgbPgkPp8b8XjksFrXA7oK6CqVCr72ta/BbDbj9ttvx+OPP45/+qd/QiqVwuWXX44vfelLkEgOFhPPIS58pNNJrKzMgcXiYHR0umeh73Q6idXVBUgkclitox07dJlMGrFYAOFwFJnMWUNJp9PB51OGUqczQiAQgsvd2VDuBIViAPF4FE7nKkQiya6Z/oEBLZLJONbWqOw6h8Ntui2NRoNOZ4JUqsDa2vKhM3aIZxyq1SrW1pYRjYZgNg9BozH0tD+SJBuU4mNjRyAQdEYpThAV+Hw+BIMRpNMp5HKZRvDG4XDB5wuh1RohEIggEAjbpj6n5uPGMD9/qtG61Qr1ObmFhdPwep0wmYZabk8liC6B3++Bz+c+rNYd4hmHVCqBlZV5cDiUT9JrVZ6SOVnoWuaktU8ihEQig05ngkAgBI8naHv/KpUGiUQUTucKhEIx2OzWNkit1iOZTGBtbRlTU6KWvhqdTodeb4ZMpoDDsXxYresBXQV0X/rSl/Ctb30L//qv/woA+PjHPw6pVIq3vvWt+Pa3v43Pfe5z+NjHPtbXhR7imY1YLAK7fRFCoQgjI1M9zbkAQDabwfLyLAQCEYaHJzoynHVKYq/XBQaDUQve5NDphI0sVy/ZfhqNhsHBYczMnIDDsYyxsemW+6PRaLBaRzA7S2XXx8eP7moID6t1h3gmYvPsrc02vmsFfDecpRSnNOs6bbXK53NYXZ1HPp8Dh8OFQCBsOFx8vqjnGTyBQAS93gyv1wWpVL7r+oRCMYzGwVqrpmxXVj0ajVZzxpSH1bpDPKPQz9lbgJI5WV6eg0gk6VjmhCRJ+Hxu+Hzumk8i3AOfZASzsyfgdC5jZGSqDZ9kFLOzJ+BwUD7Jbu/P5x9W63pFVxb33nvvxbve9S686lWvgsPhwOrqKt7ylrfgta99Ld75znfiwQcf7Pc6D/EMRjDox+rqPGQyOcbGjvRsOAuFPJaXZ8Dl8jAyMtWR41F3CL1eF4xGC2655RYcOXIMFosNKpUGfH77Wa9WYDJZGBoaRSoVRzDoa2v7Ogudz+du6z3q1bqpqWNgMBiYnz8Fj+eQdeoQT0+USiUsLp5pVNL6EcydlTkZg1TamcxJPB7B/PxTAIDrr78el156FYaHJ6HTmSCRyPtGqKLTmSAUiuFwLG0hTGkGjcYAiUQOh2MJpVKxrfeoV+sMBgsCAS/m5k4ikzlkwjzE0xOBgA92+wLkchVGR6d79knqMic8Hr8rn2RlZQ4+nxsm0yBuvfVWHDlySd99EhaLjcHBUSQSMYRCG21sT/kk6XSybZ+kXq2bmroENBod8/NPYX3deeiTtImuArpQKISjR48CAP74xz+CTqfjWc96FgBAo9EgnU73b4WHeMaCJEl4vU64XKtQq/Ww2SZ6zvqWSkUsLc2AwWB2bIjz+Rzm508hlUpgZGQSJtPgnmahJRI51Go9PB5nW7TBIpEEBsMg/H4Pksl42+9Tr9YZjYMIBLyYnT10xg7x9EI+n8PCwimUyyVMTFzUM5EScFbmxGIZhlLZfnBI2TUXVlbmIRbLcOTIMYhEe5eFptFoGBoaQ7lcbilNsHV7qgXd4VjaVfpg8+soZ+wY6HT6YYLoEE87UEmcNbjddmg0BgwNjfXsA2yWORkbm+5IgDyXy2J+/imk0ymMjk7BaLT0JXhrBplMgYEBLTweR0u5pDrEYin0ejN8PjdSqUTb71Ov1hkMFmxsrNcSRIdxxW7o6kwcGBiA1+sFADz44IMYHx+HXE61Zpw6dQoajaZ/KzzEMxKUnssyfD4PjMZBmM29EZYAQLlcxtLSDEiSrFGKtzeLAlAtn3NzVDZ9cvKSloO+/YTJNAgOhwuHY6ktx0inM0IslsLhWEK5XGr7fQ6rdYd4uiKdTmJh4RTodDomJy8Gn9/ZjNtOCAR8DZkTtVrX9us2Z9MNhkEMD0/0nN1vB1wuD2bzEMLhAGKxyK7bs1hsDA2NIZVKwO/3dPReh9W6QzwdUZ+93dhYh8k01CefpISlpZkalf8RMJntV+Wj0TDm558CjUbH1NQlHXcIdAuTaQhsNqdtn0SvN0MkksBuX0S5XG77fQ6rdZ2jq4Dutttuw6c+9Sm88Y1vxMmTJ/GSl7wEAPCJT3wCX/7yl3H77bf3dZGHeGaBIAicOHEC4XAAVusYdDpTz4aTIChK8XK5jLGxIy2JQzaDYsNzYnV1HhKJDFNTvbNYdYI6sUE+n4XP59p1eyq7Pg6SJDvKrtexU7XuUET4EBcqgsEg5uZOg8fjY2Liorav+1aIRIK1DH1nMie5XBZzc/Vs+jT0+t7tWidQqTSQyRRwOldQKu2e7KkTKHi9LqTTyY7e67Bad4inEyqVChYXZxCNhmCzjUOr7Y1Iqb7PpaVZEEQFY2NH2iZUqVcJ7fYFSKUKTE5e3FRmpBNUqyQK5QrS+SKi6Rw24mm4wwnYA1GkcoXGdgwGA0NDY8hm020le2g0Gmy2cZBkFWtr3fgkh9W6dtFVavAd73gH+Hw+nnzySbz73e/GK1/5SgDA7Ows3vCGN+Af/uEf+rrIQzy9UddYyudzKBRyiEZDKBTymJg4AqFQ2vP+63Nv+XwOExNH2w7IKpUy7PYlJJMxGI2D0GqN59UBq4MiNrDA63VCKlXsSmzAZlPZ9eXlWWxseGEymTt6v3OZMBcWTkGrNcBg2NsW00McoldUKhUUCjnk8znk81lsbHihUKhgtfbeGgVQWfG1teWOZU6o1y2Bw+FhauqSvjhgnWIzscHa2jJGR1sTGwCAwWBBKpWA3b6I6eljYDI7Y/E7y4S5Dp/vkHzpEBcGNvskpVIesVgY2WwWo6PTkEhkPe+/UiljZWUexWIBExNH27YH5XIZDsciksk4TCYrNBpD4xo+49rAX1Y8yJbKSOeKKJYqKFUIlCoEygTR+L3xvwqBYu2xRBCoEK2TLS+5YgLvvv1acFhMCIXiRiulVCrf9XpmszmwWsewsjKHYNAHg6Ezbb2dmTCN0OsPyZc2o6uA7qtf/SpuueUW/N3f/d2W///4xz/uy6IO8fQEQVSQz+cbDhf1SP1dz9rU6XWvvvpqVKtMVCq9ZXQzmRTs9kVUKmWMjk5BIGhvViWXy2JlZQ6VSgWjo9O7sr31ApIkQZJVVKvUI5PJ2uZo6XRGJBJROBxLmJo6tmubllQqh1ZrhNfrhEwmhUzWuV7fdibMGKzWUYhEh87YIfYPJEmiVCrWgrbcFnuyuaWHw+FgaGgIarURBNFZVvhcVKtVeDxrCAZ9tQCxPZmTeoV/Y2MdCoUKg4OjHc3IdALKjlA/1WoVdDp923uxWGxYraNYXp5DKLSxa7toPbs+O3sSa2srGB+f6nhdVLXOBJnsUCrlEAcL5/okdTtSKOQ3+SQMSCRiTE9fAg6n9+6cdDoJu30RBEFgdHSq7RbwbDaD1dX5RkWvHlj6Yyl85v/+jEcWXT2vrRV+9vgCXOEEPvfa50HE40CvNyORiMFuX8L09LFd7ZpMpoBGo4fHswapVNalT3IuE+ahVMpmdBXQff3rX8fk5CSGhlrr1BzimQfK2SqdE7RRP5tnulgsNng8PkQiCQYGtODxeOBy+WCzOWCxGJBIBIjHdycCabWOjQ0vvF4nBAIhxsePtt1uFY2GsLa2DC6Xh7GxIztmz6rVKgKBAIJBArlcEQRBoFqtolqtNhwqKkirNoK1rf87+/e5LQgikQQjI5Nb+unrxAazsyfh8ThgtY7u+jnq2fXl5QVotc0Fx1vhsFp3iP0CQRAN52pr8JYHSVKJHhqN3rAdYrEUPB4fXC4fXC4PHA4LMlndjnQf0OXzOdjti8jnszCbbVCrdW0Fc+VyGXb7AlKpxLZs+mZksxmEQt4u7cjZRNC57Yx1m3Eum6dUepbYoH7MWoHD4cJqHcXq6jwCAT/k8pE2jtp21BNEh9W6Q5xP1BNAddux2S/Z7JOw2RxwuTyIxVIMDOgatoTP50IuFyIez/aUYKbkjtbh9TohFIphs4237ZNEIkE4nSvgcvkNX6ZUIfCDR07jvx88iWJ5d/bafuDkmh9v/Nov8JU33IYBiRA221mfZHBwd7tgNFqRTiexvDwPrbY7HoLt1bpTh9W6GroK6Gw2G5xOJ66//vp+r+cQFxCq1SoSiei2THndsaDRaOByKWdLpdJscbb2kgigXC7B4VhCMhnvKBNMZdPXam1aAxgcHNkx65RKJeByrSKfz4HH4wGggUajgUajg06ng0ajgU6ng05ngMlk1f5HB52+eZutf9f/V60S8HgcWFg4XRNPP2vwuVweLBYb1taWIZXKIZe3DtLodDpstnHMzT2FkydPYmhoDEB31YGdqnWHztgh+oVcLot0OrnFjmymzGex2OByeRAKxVAqKVvC41EJoL1sg6YcqVWw2WxMTl7Stmh4NpvG6uoCCILYkk3fDIKowOt1IRDwg8VigsFgbrEjm23JuXbk7O9nt9lqW+iIxcKw2xdRKhWh1Rq3vLfJNIRUKgGHYwkTExftah/lciXUaj2cTjvkcjE4nO5YOQ+rdYfYS1SrBOLx2LaK21afhA8ej9fwSSi/hAcGY2efpB/2pVwuwW5fQioVh05ngsHQHhtltVrF+voaAgEflEo1BgeHQacz8ITdi0//8hG4w4me19YpHIEY/ua/fo4vv+E2DGnkMJmG4HKtQipVQCZrTcxC+SQTmJs7iZMnT8JqHUOXVB47VuuGhsba7sJ6OoJGdjqhCOArX/kKvvGNb+Cyyy7D6Ogo+PytGT4ajYa3vvWtfVvk+QZBVBGLtVcdYjLpjSxwr+2Be4l+rzMej8DtdqBYLIDJZDWy5PWgjcfjg8PhdmUMe1lrMhlvkIEMDY213Sq5NZs+BI1Gv23t5XIJHs8aIpEghEIxhoZGYDRq+v7dU5o0dTbO6S0tGSRJYnV1Ael0AtPTl7Y1SJ3JJLCysgAGg4nh4Unw+Z23OmxGLpfF2toycrksRken+jJTAByca0ml6t8NoV1bclA+ezvo51rL5TLW19cQDgdAo9HA4fC22JK6PekmAdTLOgmCgMu1ikgkCKVSDYtluO1WyUgkiLW1FfD5fAwPT27LwpMkiVgsDLfbAYKowGi0YHJyDMlkvq/f/eZ2T43GAJPJusWmZTIpzM+fgl5vhsFg2XV/FMvfEqLRMAwGM3Q6c0/Obr1i4fO5IJHIMTzcuyxNHQfleuqXLTn0SVqDJEnE41G43XaUSsW++iS9rjOZjMHhWAJAVczbvV+WyyWsri4gk0nBZBqCWq1DJJ3D5+99FPedXu14Hf2GiMfB51/3PFxk0WJlZQ6ZTBpHjlzaFnt4Oh3HysoCWCw2hocnwOP16pNk4HAso1DIYXR0ui+yNMDBuZbatSNdBXRjY2Otd0qjYXFxsdPdHhgcGs/mKBTycLvtSCRiEItlMJuHeg4QzkU3ayVJEj6fCz6fB2KxFENDY22zRmWzaayszKNarcJmG99mcEmSRCjkx/q6EzQaDUajFSqVBiwWY8+++1KpiOXlWRSLBYyMTG0xUOVyGbOzT4LPF7VFbMBk0sFmA48//gQKhTys1jEoFN21YNZRrVaxsjKPVCrRt6DuoFxLhwFda/RjrWevKRcAqj14YEDb1ypNt+vM5TJYXV1AqVSExTIMlao9GZ7Nc3abs+mbUSjk4HLZkUzGIZMpYDbbIBDw9/S7DwR8cLvtUCgGYLWObjnGXq8LPp8bExMXtzUby2DQEIsFsLS0BIlEDpttrCOq9Z2QSMSwsjLX16DuoFxPhwFdc/Rrnfl8Dm43dU1JJDKYzba+MlF3u85qtQqfzwW/fx0SiQxDQ2NtSyVlMimsri6AJKuw2SbAF4jx0+Nz+H/3PYFssTVDLYtBB5/DAovBAIfFBItBB5vJAIvJAIfJBItJ/c1mMMBmUY8sJoP6X+2HVXuewaDj+w+fQjC587nHZjLwiVc8B9eNGjEzcwIikRjDw5Nt+SQsFonHH38CxWIRQ0NjkMt7k4KqVgksL88jk0n2Lag7KNfSngZ0T3ccGs/tIAgCfr8HGxvrYLHYMJttkMkUe9Lu1Olai8UiHI5FpNNJGAyWjmQOwmGqN53PF2B4eGJbNj2TScPlWkU2m4ZKpYHRaAWLxepqnZ2izs6ZTicxNDS+JQhLJKJYXp6DxTK8K7FBfZ2RSAqrq4uIRsPQao0wGgd7+v6ooG4O6XQSIyO9B3UH5Vo6DOhao9e1ptNJuFx25HKZ2jU12JEm5F6tkwoyN+B228Hj8WGzTbTtGG7OppvNQxgY2DpnV60S8PvX4fd7wGZzYDYPNbQsz8d3H42G4XAsQiSSYHh4slHxJEkS8/OnUKlU2iI2qK91bc2D5eUFMJlMjIxM9qztl0hEsbIyD6lUDput96DuoFxPhwFdc/TDJ/H53AgEvI1rSirtv0/SzTqLxQLs9kVkMqmOGbJDoQ24XKvg84UYGZnEciCBT/3iYSz7W+tH0mjAS66cxIdecRPIcrVv330wkcE/fvvXcARiTd/3fS+8Ds8Z02J1dR6DgyMYGNC23Gf9mIbDSaysLCIej3TUitoMVFA3h0wm1Zeg7qBcS+3akZ4HmdLpNEKhEIxGIxgMxp4xeB1if0C1MlDtleVyCTqdEVqt6cB8z/F4BGtry6DTGZiYuGhXSv86NmfTVSoNLJbhLU5EpVLG+roLoZAffL6go333C0wmE6Oj01hbW4bdvoByeQgaDaV/QxEb6NomNgDq+jHjEAhE8HjWkM2mYbNNNALUTkGn0zEyMoWVlTmsrMz1Jag7xNMXm1uWBQJq/uGgzGBWKhWsrS0jHo9ArdbBZBpqO6jIZFJYWZkHAIyPH91mJxKJKFwue2OWTac7//ZToVCBxWJhZWUOi4vUfG59/rBTYgOAYqybmroEq6vzmJ8/Bat1dBv5SieQShUYGZnEyso87PZF2GzjhzN1h9gR9ZZlj2cN5XIZOp0JOp1xWzV8vxCLUT4Jg9G5T+J22xEKbWBgQAupyoDP3PMYfvHkAnYru4zqlPiXF1+Pi61aSIW8ngjlzoVaKsS3/v7FeNd3f4unnP5tz5Mk8B+/+hNCqUvwvGE13G47xGJpW1IMTCYTw8MT2NhYx/q6s+aTjHdd9afTGQ2fZHl5tq/tlxcCug7oHn/8cXz2s5/F3NwcaDQa7r77bnzzm9+ERqPB+9///n6u8RD7hHyeag9KpeKQSuUwm9vXS9lrbB4WlkoVsFpH2w5MNmfTLZZhDAxoG1khkiQRiYTg8ThQrVabztOdL9Dp9Fr7KBtutwOlUhFGIzULYzJZkUrF2yY2AKh2aK3WCD5fCLt9EXNzJzEyMtn1IDEV1E1ieXkeKytzzzgDeojdQZIkgkEfvF5XTQttGCqVdt+uqXNxVtqkguHhiV3Jhjajnk0XCEQYHp7Y0uZdLBbgdjsQj0cgFksxOjrd11awTiEWSzExcTGWlmYwP38KY2NHGvNFZvMQnM5VSKXyRuVwN3C5PExMXAyncwV2+yKy2XTDNnUDqVSB4eFJrK4eBnWH2Bm5XBZutx2pVAIymQIm09CB8kk8HgeCQT9kMiWs1pG2A5NSqYjV1QVks2mYLcN4wpPEF7//YySyhZavE3DYeOutV+CvrpwEYw+vFRGPg6+88TZ88CcP4IFZx47bfPuhpxBMDONFI6KGT9KOLagzaZ/1SZ7qqerPYGwN6sbGjpz3ZPx+oasz4LHHHsMb3/hGcLlcvOc972nQro+NjeF73/sevv3tb/d1kYc4vyCICjyeNczOnkCxmMfIyBRGR6cPjOEsFPJYWDiFYNAPs3kIIyOTbQdz6XQKs7MnUSjkMT5+dAsFeS6XxeLiGaytLUEsluLo0cug1e5MNX4+QQVvQzCZhrCx4YXDsYRqtVqruI0hm03D7/d0tE+JRIapqUvAZLIwP38a4XCw6/XR6QyMjk5CKBRjeXkWqVSi630d4umFVCqB2dmTcLsdUCjUOHLk8m3tiPuFOinHwsJpsFhsTE8fazuYq1arcDpX4HSuQKXSYHz8aCOYq1ar8PvXMTPzJDKZFGy28UbwtN+os9UyGAwsLJxCOp0EAKhUWkilcqytrWyhct8NdRtUt01LSzNbtAA7hUymwPDwBBKJKOz2xW1SDId4ZqJSqcDtdmBu7iSKxSJGR6cwMjJ1YHySfD6H+flTCIU2YLHYMDw80XYwl04nMTf3FIrFAjgKM/7158fx0Z8+tGswd+tFw/j5e1+Jv756ek+DuTo4LCY+9crn4q+vnm66zW9OreK/n9xAJB7v2CeRSuWYmroEDAYD8/OnEI2Gul5rPagTCERYWppt2LmnO7qq0H3hC1/ATTfdhC9+8YuoVCr4zGc+AwD4+7//e+RyOdx99914/etf39eFHmLvsZl9rVKpQK83Q6s1HqgsaSQSgtO5AhaLjcnJizuqLDXLpm/uxedwuBgbm4ZEsndC4t1CqzWAzWbD4VhCuVzCyAgVROn1Zvh8bkgk8o5EvzkcLiYnL4LTuYq1tSVks2mYTNauvu9neqvDIbaiVCrC41lDNBqCUCjC1NQlB4pOultpE6CeTZ9HNpvZNi+yWdJEo9FDr7fsqURLN+BwuJiYuAgrK/NYXJyBzTYOuVwJq3UUMzMnsLa2gpGR3YkN6qCq/gbw+YK+VP1lMiWGhyewuroAh2MJQ0NjB+oedIjzB5IkEY2G4PGsgSAOpk8SDgfhcq2AzeZ0JG1SJ4Zyux1gcAT4ozuHn9z9GxDV1v2VZpUU7///noXLbYZ+LL8jMOh0vPeF10ItEeJLv31sx22eXNtALJ3F31YBiUQOobB9O3Bu1T+TSW9j5217rQwGRkensbw8i6WlWYyNTT/tK3Vd3WkWFxcbsgTnHuhrrrkG3/3ud3tf2SHOK3K5LFyuVaTTSchkSpjNQ22LXp4PEAQBt9uOcDhQ04gbbqobcy5IkoTLtVrrTdfBbKbmYzZTHZfL5QN5szgXCsUAmEwWVlfnsbBwBqOj09DrzTVq5EVMT1/a0XwOnc6A1Tpam6tzIJfLYHh4oiuSimdyq8MhKFSrVQQCPvh8btDpdFito1Aq1QeiIlfHZmmT0dHptqVNgK3zchMTFzVmALdKmogwNXWsbcduP8BksjA2dgR2+yJWV+cb5EpW6whWVuYRDgd2JTY4F/WqPzVXd7rWWtseQ+i5kMmUsNkmYLdTQZ3NNn6gzqFD7D1yuQxcLjvS6STkciVMpoPnk3QrbVKtVhs+iTPLxPfun0Mo1XrujcNi4k03HcNrrrsILOb+zQvSaDS87oaLoRTz8dG7HwKxQxXdEU7hsw8X8S4aEzddfU1HPkm96r/ZJ7HZxrv2SbYGdUc6SnpfaOgqoBOJRAiHwzs+t7GxAZHo4GRiD9EalUoFPp8LgYAPXC6vYwfnfCCXy9ZoxAsdO4gkScLhWEI0GtqSTd8sv0DNB9oOTPvGbpBIZJiYuAhLS7NYWDiF0dFpDA2NY3b2BNxuB6zW9ogN6qDRaNBo9LUM+wJmZ082qn+dYnNQdxCyYplMGqlUvCOWsUN0h2QyDpfLjkIhB7VaD4PhYFWnSJKE1+uC31+XNhkHm92+k5BOp7C0NAM+X1Br82Y3mDEpSRNgcHAEKpXmgjjX6HQ6hocn4Hbb4XKtolwuQq+3QKXSdERssBn16h9V9V9GNpvpuuovl28O6hYxNLR/QV21SiAU2oBQKOmo4nCIzlGpVOD1uhAM+sDl8jE2duTAkW1lsxnY7ZS0idU6BpVK3fZr6z7J8roP/7ecxEnX7q2F109Y8J7br4VOfnCCkRdcMgq5kIf3ff8+5Erb26zDmSI+8ftF0Nh8PPeKSzvad73qLxAIsbq60Jir66bqfzaom8Hy8gzGxo7sKxlXJpNCKpXck3Geru62N910Ez7/+c9jZGQEExMTAKgvIBAI4Gtf+xpuuOGGfq7xEHsAivwjiPX1NRAEAaNxEBqN4UBVp+otCS6XA1wuD1NTl3QkQEmSJNbWlhGNhmCzTUChUKFarWJjYx0+nwcsFgvDw5N7Jr+wl+DzKZbAelA3MjINs9kGp3MFMln7xAabIRZLMTV1rFb9O90gjOkU9aBuP1sdyuUyvF4nQqENCAQiaLXG8/r+zyRsJv+gaPGP9Uxj32/0Im0CUImB5eUZCAQCjI4eAYPBQDabhtO5s6TJhQIajQaz2QY2m4P1dSdKpRKMRitSqURHxAabUa/6C4ViuN32WoZ9oqPguQ4qqBvH6uoC6sLM59NW17s4PB6KkMpmmwBwGNDtBeo+icezViMks0Kt1h9In8TtdoDH42Nq6lhHs7EkSWJ5dQH/8+gifr8SQZloPSOqlYnw3hdei+snBntd+p7gqhETvvH3/x/eftevEc3ktz2fKRH40K+eRJXBxS2XTnW8f8onuQSrqwuYnz/VSJh1inpQt7Q0i6Wl/QnqyuUS1tedCIcDEArF0Gr73zLbVUD37ne/G2fOnMHLXvYyKJWU4/iud70LgUAAWq0W73rXu/q6yEP0F9lsBi7XKjKZFORyVa2VoT0R7vOFcrmM5eUFRKMhDAxoa22S7ZftSZKE07mCSCSIoSFKSDuZjMHlsqNYLECjMUCvNx8Y+YVuUJ+BW16ew9LSGQwNjTWIDY4cEXfVosBmczA+fhHcbjuczhWKdcts6/imul/96/WKidfrBEmSMJttW4hvDtE/UMK5bvj9HjAYzNp1NnDgjnUsFsHq6mLH0iZ1ZLNpLC3NgMcTYHR0utHCHQzun6RJP1FnmWOxOHA6l1EulzA4OIKlpRn4/R7o9eau9qlW68DnC2oZ9pMYHp7sqt1JLlc1KnUAzltQR4nAO5BMxiCRyPadpfTpjGw2XfNJ0lAoBmAyWbcwxh4EVCplrK4udSVtAlD3poXlBXzy3hNYCrVur2Qy6HjNsy7CG288Bh77YCeJxvUq3PUPd+Af7/o1PJHt5CMlgsQHfvoIshXgjis7D+rqVX+Xq171T3d87AGAwWBibOz8B3UUy7MfXq8LAGCx2PaMGKxrYfFSqYRf/vKXOH78OBKJBEQiES6//HLccccd4PEujNa1Zni6ingKBCzMzMwjEPCBx+PDbLYduFYGAMjnM7DbF1EsFjE4OLpFULsdUA6XHaGQH1brKORyFZzOFUSjIYhEElgsw+Dz26/0NcNB+e6rVQJ2O3WjMZms8PvXIRSKG8QG3a7zLImMEMPDk13dYAmCwPLyLLLZzK796wdFsPpQWLw1mEw6SqUMZmfnaskRPXQ684FqrwQAOh0IBDxwOp2QyShpk071jXK5DBYXz4DD4WFs7AjS6STW1pZRrVZhMFj6ImlykL77RCKG1dUF8Hh8iERiBIN+TExc3Ggz7GatmynZ685MN4hGw7DbF6BQDOwa1PVyTAmCgN/vwcbGOlgsNsxmW9ddHIfC4s1R90nOnJlDMOgHjyeAxWI7cGRaTCYdQAknTpxEpVKp+RSddcCQJIm5pQX8+z1PwhHNtdz20iE93v+i6zCo7nz0ZT+/+3gmj7d/517MrzdvIf37516GN910KVgsRsfrrCdr3W47hEIRbLbJrqr+lUoFy8uzyOezGBs72rKFuj8+ySpyuSxUKi2MRsue+iRdB3RPZ3RiPBkMGqRSPpLJ/IE1nqVSEdFoEIGADwRBQK+3QK3WHahWhkqlgng8gmg0hGQyAalUgqGhMTCZnQURJEnC7XYgGPRhcHAEcrkKy8uzyOWysFiGoVT2r4JwkG6cm4NYuVyFWCzcmBnsZZ1nSSDIWoa980oEFdTNIJfLtsyKdbvOzYQUfL4QFstwT4PP+xXQicVcpFKFfT+XmoEkSSSTcYRCPsTjVNXCbB7qqA16r0GSJLLZNKLRMGKxMCqVMszmoa507+oyJlTV+ggSiRgcjiVIpXIMDo70XEEoEwR+9tQC/vfkHELpLOR8HgZEAqjFQqjFAqhFQgyIhY2/5XzeealMURXJWdDpDDAYDJBkFVNTx8BgMLq+RjeLJqtUWlgsnVf9ASAaDcFuX4RSqYbVOtr0eHSzTorlOQKPx4FyuQSdzgSt1thTF8d+BHQXkk+yseFtJEfU6v3Te90JlUoZsVgE8XgYiUQcIpEYQ0PjHROzkCSJmcUFfORXj8OTaC5FoBDy8M7brsGtFw13fRz22yfJl8p4/w9/jz8vuZtu85IrJvBvf3UDlApRV+tMp5O1FmxgeHiiK5+ECupmkM/nMT5+pOlsXrfHczPLs0AggsVi66kauKcB3Ve+8pWmz9HpdPD5fJjNZlxzzTUdRdBOpxN33HEHPvjBD+KOO+4AQDFqfuITn8Dc3Bzkcjn+5m/+Bq997Wsbr6lWq/jKV76Cu+++G+l0Gpdddhk+9KEPwWjsfmamE+Pp8TgQDgcgl6ugUAxAJJIcCKNEOV8xhEIbiMejoNPp0Ov10GiMoNMPRgmfICqIx6O1IC4OkiQhEkmgUqkxNmbr+IZEkiQ8njUEAl5YLMOQy1VYWppBsVjA2Nh038vr+208z0VdV8vrdYLL5aFUKmJ6+lIIhYKe1rlZiN1kGuqqhZEgKlhaqmfFdg7qOj2e5wpWGwyDW0Tiu8V+BHQkWcETT/wFQqEICoUaCsXAgZnHKpWKCIcDCIU2UCoVwecLMDY2Ci5XDILY/3wgSZLI5TKNIK5YLIDJZEGpHMDIyBAIgtHxeZ/P57C4SOnTjY0dRTwehtO5umsg0e56H1x24r8eehzeRKrt17EYdAyIzgZ7arGACvhEZ4M+MZfTl/tPoZDH8vIsyuUyqlUCAwNaWCzDPdu8etWfzxdiZKS7qn87QV2n68zns3C5KMFqqVQBs7k/gtX7EdC53XZEIkEoFCooFGoIheID45MkEpRPkkhQPonBYIBabQSdfjCq+1RiOYpY7KxPIhZLYTYbIRTK0aksIkmSOL2wgA/+8jg2UsUdt6HTaHjpVVN4y82XQ8TrLUl0EHySClHFJ3/xMH715GLTbZ49OYivve3FKORKXa2zH1X/SqWCpaWZmibxzkFdp8ezWq022ivpdBqMRmtfSLL2NKC7+eabEQgEUCqVwGQyIZVKkUgkUKlUQKPRGkLjNpsN3/ve9yCX7146LpfLePnLX465uTl86lOfwh133IF4PI7nPe95uPHGG/HGN74Rp0+fxkc/+lF8+MMfxkte8hIAVHD5gx/8AJ/+9Keh0Wjwmc98Bl6vF/fcc09X5VigM+NZrVaQSITg8axTwpAcLpRKNZRK9b6wJu7kfKlUWmg0GqhU0n0PPgiCQCIRRTQaRiIRA0lWIRSKoVCoIJerwGZzus6urq87sbGxDrPZBrlc2RC5HRs70lcKcWpQPlITziTBZLLBZnO2/XA4nLalFfqJcDiAtbVl0Ol08HgCHD16CeTy7rJhdVSrVayvryEQ8EGpVGNwcLijmUZg91aHTr53Su/Ljnw+i4EBLQyGwb4FQPtVoSuVMnA4nIjHowAooVWlUgOpVH7eq+k7OV8KxQAGBrSQSCSQy4X7bktyuSxisRCi0TAKhTyYTCZkMhUUChXEYmlXbT0ANTu1sHAGTCYT4+NHEYmE4PE4oFbrYDbbero5z3gD+OKDxzHrC3a9j1bgsZiNoE8nFeHZI4O4wmoEvYs1l8slLC/PIZfLNCQelEplzw5jJpPC6uoCSLIKm22iqxa7SCQEh6N5UNeuLSGISk2D1Ac2m9Nor+wX9iOgq1bLSCTCB8YnKRYLCIcDCIcDNZ9EiIEBLdRqDVQqyb7bkbM+Sajmk5A1n2QAcrkSfD6vq3OeJEmcmJ/HB39+HOFsacdtZAIevvD652PK2D5LZrP3isXC8Ps9oNNpYDJZYLG2+yNsNve88AaQJImv3/8kvvnAiabbHBvS4c7XPQ/CLvkbqKq/A6GQHyqVBhbLcMf3yd2Cuk58kmQyDrfbjnw+h4EBHYxGS8ct/s2wpwHdvffeiw9/+MP42Mc+hltvvbWh6fXAAw/gQx/6ED70oQ9haGgI73rXu3D06FF8/OMf33Wfd955J86cOYPjx483Arqvf/3r+MEPfoCHHnqoMZ9x55134r777sN9992HUqmEK6+8Eu95z3vwyle+EgCQSqVw3XXX4ROf+ARuu+22Tj8agO761WOxDOLxOCKRIGKxMAiCgFAohkqlhlw+sKfzJZTzFUUoFNjmfAkEop7mqPqBarWKRCJWM5hRVKtVCATCmsFUbWth6GatXq8LPp8bJtMQ5HIlFhfPgCRJjI0d6esgezqdhMezhkwmBalUDplMglQqg0KhgFKpiHJ5q+FmMBhgs7mbDOp2A7sXznoiEcPKyhxIkoReb8LFFx/py3cfiQSxtrYCHo+PkZHJjttPWrU6tPO9b29lGO47jfh+z9Dl8wVEo2FEIgFksxkwmUwoFANQKtWN63mv0Mz5ovQPmdvWer5tST6fQywWRjQaQj6fA4PBgEymhEIxALFYuuVa6madhUIei4tnQKczMD5+BKHQBnw+N7RaI4zGwa6P/Xosif/64+N4cNnZ1et7wRUWAz502w1QiTpvjSUIAqur80gm42AwGDh27EoMDMh6/u77UfWPRIJwOJagUmkwODiy5fW7fffnClbX2yv7bYv3c4Zus08SjYZRrRIQiSRQKtWQy1V77pPE41GEwxtIJGKg0xlQKgegUmkhEAgPgE9C1HyS8CafRNRILG++r3WbYD4+O4cP/vw44vntlP4AMCAW4P+9+YUYHOiNxyCdTsLtdiCbTUMmU0AqFe/ikzB39Eeo/1G+Sr+ug58/Po9P/eIRVJuEGRaVFHe+7vkwq6Rdv0c4HIDTuQI+n5r175Tgrx7UFYt5jI0d3ZL8b+e7LxaL8HgciMXCEArFsFhsXckrtMKeBnS33norXv3qV+PVr371tud+/OMf47vf/S5++9vf4t5778WnP/1p/OlPf2q5vyeffBJve9vb8Mtf/hI33HBDI6B785vfDLFYjM997nONbR999FG8/vWvx1/+8hf4/X689KUvxe9+9zsMDp6ldX3FK16BkZERfPSjH+30owHofQC5WiVqxiyAZDIOGo0GmUwJpVINqVTeN4es7nyFQhsol0sQCIRQqbY6X3VEo0FEo0EwGCyw2VxwubzGD5PJ6ruTWK1WkUzGEYuFEYtFUK0S4PMFjdbUVpnCTg2oz+eG1+uC0TgImYyqzNFoNIyPH+2bEGmhkMf6uhOxWBh8vgAm0xAUCsUO330V5XIJxSJlTOs/xeLZ3yuVrQaeyWRtCfLkclVfBsMzmTQWFk6DJKu49NJLweGI+nLjzGbTWFmZB0FUYDINddxS0Cwr1up7p1oZfPB6KcFqo3GwrfctFPJIp5MdUR3vd0C3+bPncllEIkFEIkGUyyVwufxatn2gb+d2PeFyrvNVTwhtRrlcgsu1CjodYDI5NVvCBZfLB4ezN8mJQiFfC+LCyOUyoNMZkMkUUChUkEiaVy87tSPFYgELC6dBp9MxNnYEwaAPGxteGAyWrpgeASCRK+Cuv5zET59aQKXTfq0+QsLj4l+f9yw8e7Rz+nOSJGG3L9ZsHx833HBDX+azNlf9pVI5LJbhjs/pZkFdq+9+s2C1TKaE2by7YHW9AsLnCztKEB4UUhSCIBCPRxCJBGs+CR1yuQJKpRoSSX99klBoA+FwoOaTiGoJIdW2bpVIJIBYLHSefRIqiIvHozWfRNgI4pr5JN0EdH8+PYMP/vw4UsXKjs/r5WJ89c0vhL4HXblCIQePx4l4PAI+XwiTydp3n6Qe9NXHibrBwwtO/MsPf49ihdjxeSGXjU++4rm4Zqw7GwucrfoTBAGzeagjrWKAmpc8O55zNqjbzScJBLzw+dxgMBgwGq1tve9e+iRdpWg2NjZgNu988PV6PXw+HwBArVYjmdxOY7oZqVQK73vf+/CBD3wAWu1WzatAIICRka0iyQMDA401BAIBANj2uoGBgcZz+wE6nQGFYgAKxUBt+DeEcDiIlZW5xmyHUqnpqg2w7nyFQhtIJls7X0B9rsoDr9cFpVKJUqmEZDKxJWtDpzO2GFMulwcOh3LSWKz2DWudNKEexBFEBVwuH1qtAQrFwJ5QPtc/m8FggVQqx+LiaTCZLIyNHekL7XG5XIbf70Yw6AeTydpV2JxOp4PD4bZ0EKpVYptBrf+dSMQQDPqh1RpgMAz25CALhSJMT1+C2dmTOHHiBHQ6AwwGa883SoFAhOnpY3C7HQ1piMHBkba/XyaTibGxI1hamsHi4kzLoWTgXMFqXU2wunUrw2a9QQ6HuiEdJBKgdkElD6wwGgeRSsURDgfh97vh9TohFksb2fZu2mgKhXyjGld3vgYHR6BQDOy4v0Ihj6WlGVSrVSgUcqRSCRQKeVQ3BSpsNmcHW0I9dnL8i8VCI4jLZtOg0+mQShXQ6021FtT+tg0ViwUsLp4BjUbD2NgR+P0ehEIbMJuHoNF0rhdUrFTwvyfm8O1HTyFT3LndajPGtCooBDwEkhkEU5m2XtMJkvkC/vnnv8eLjo7hnc+5GvwOqNBpNBpstnHY7UAsFsYDDzyAiYmjYLN7a9+j0+kwm20QiaRwuVYxM3MCRuNgR9U6pVINkgTW1pYAYFulbjO2ClbzMDo6Dal093GQzXqDQ0NjF6R0AYPBaLRdlkpFRCIhRCIBLC/PgcViQ6EYgEql7ko/kvJJojWfhKrkKhTqmk+yfX8kScLnc8Pnc0OlUqFYLG7zSRgMRsNunGtLOvFJqtUqUqkEotEQ4vEICIIAj8eHTmeEXK7ak+/yj0+dwQd/fhy58s4BjEUlxVff/EIMSLobAymXy/D53AiF/GCx2LvKxbTjkxAEscUXOeufFBo+iU5nhF5v6fg+ev3EIL72ty/CO75zL5K57XOEmUIJb//OvXjbrVfidddf3JV/IhSKMTV1DB6PA2tryw2fpN0W47rPuLg4g6WlMxgfP9ryWkgkYnC77SgU8tBo9NDrLbtWvKvVKvx+D/x+DzgcXsdBZ1ufo5sX2Ww23H333bjuuuu2PffTn/60US1zuVyNAKwZPvKRj+Diiy/G7bffvu25QqGwbQ6uXk4tFovI5ykhw5222S2Q3A0UVe3uYDDoWx6374cHPt8Mg8GEbDZTc6Aoxkk+X4CBAQ1UKvWuwUehkEcwuIFgkKrGUbSto1AqB5rOaVFabHZsbPhgNlsxNTWOdLoAgqiCIAgUCnkUCnnk83kUCjkUCnlEIimUSmcvOjqdAR7vrEE9+zu/cdyTyQQiEWqWpVIpg8vlQavVQ6kcAJ8v6Pik3e2Y1uHzebC+7oTRaIFMpsDCwpmaNtvRrqhhN6NaJbCx4cP6uhsACaPRAp1uK+NZu+vcDjrYbBaEwp1vdn7/OtzuNaRSCYyMTPQksSASiXDppVdiZuYp+P1exGIRjI1N9zxTyGRyMDo6AbVaA4djGbOzJ2E0mqHXm9oy+EwmG1NTRzE/fwZLSzOYnLwIEgmVAawfz2KxAKfTjmg0DLFYgrGxy9paN8VGuIJisQCdzgij0bwvs4x1tGNL2jmXFAolFAolKpUKotEwQiFqVtLlskOhUGFgQA2JRNbyeqtWq4jFIggG/UgkKOdLpdJArda2bF2lqr0zYDAYuOiiS6FWy5FK5VGpECiVSigUcjU7Qv1ks2lEIiFUq2edGjabU7Mf/HNsCQ8MBqPmaIYRiYSQTidBo9Ehk8mh1xshlys6/g7bvT6LxSKWlmYAAFNTR+HxuBAOB2GzjUGt1rZ87bmokiTum1vFVx56AhvJ9K7ba8RCvO2mK/GKa44ik6FsMwBkiyUEUxkEUlSARwV62drvaQRTWRQqO2f/W+FXZ5Zwan0Dn3jxczCpa31vPhfj41Nwuezw+dZx6tQTMBgsMJnMoNF6S5QMDAxALpfD7XbA7bYjGg3BZhtt20ZptVowGMDq6hLodDqGhka2fPcU3XkAbrcDBFGF2WyFTrd7e2WlUobb7Wzcq6enL95XSv1++iQmkxlGI+WThEIBRCJBBALeWpdP3SdpfQ/N53MIBjcQClEJIZFIDJttrOaT7JxwIUkSDgel4WixDGFycqyJT5Jr+CatfJJz7Un9vp9Mxms+SWSTT2KoBa2d3U87uc//7vhT+PAvjqPQpJI3qlPia3/3IsiFnSdDCILAxoYXXi/FIGkyDUKrNfTFJ2Ey6eBwWACaBeAeeDxOJJN1n6SzQPiSIR2++7a/wj988//gj2+3iyQJfPm3x7G6EcVH/vrGrrT36j7JwIAaDscKZmdPNPy29nwSDqamLsL8/GksLs5gauoicDhUBbV+PAuFApzOVcRiEYjFUoyNTbVlp+LxKNbWVlEsFqDXm2Aw7I0Gclctl3/84x/x1re+FSMjI7j55puhUCgQiUTwhz/8AcvLy/jSl74ErVaL17/+9XjJS16C973vfTvu55e//CXuvPNO3HPPPQ1nbnR0tNFyefvtt+NZz3oW3vve9zZeY7fb8YIXvAC/+MUvsL6+jn/6p3/CmTNnwOWezT68/e1vR6lUwle/+tVOPxoA6gTeyzmVarWKcDgMr9eLYDCIarUKlUoFg8EAjUbT+KKpkm4AHo8HkUgETCYTer0eZrMZYnHrUj1BEDh9+jQ2NjYwPT3dtKLa7LW5XA7ZbLbxU/+7HkQDVBaNTqejXC6Dx+NBp9NBp9NBLN57Vi2n04n5+XnYbDYolUo8+eSTEIvFuPzyy3six6ACKj+WlpZQKBRgMpkwMjJy3oXXk8kkTp06hVwuh4mJCZjN5p6OabVaxVNPPdWoXNtsNgwPD/fFqBAEgZWVFaytrUEoFOLIkSOQydqbCyiXyzh+/DhyuRyuuuoqiMViEAQBp9OJ1dXVGjHFOPT63SmtC4UCFhYW4Pf7IZfLMT09DZGov73snWKvbUkul4PP54PX60U2mwWXy4XBYIDBYNiSMMhms/B4PFhfX0epVIJMJoPJZIJWq901sxiJRHDixAkIBAJcfvnlbV8LJEmiWCxusyH1H4I4G+xxOBwUi0XQaDSoVCrodDqo1eo9Z/osFAp47LHHQBAErrjiCiwvLyMYDOLiiy+GTtcZc9pxuwef/L+HMevdnfBExGXjLTddgddfdwm4XTgvJEkikStgI5GGP5HGRiKFjXj99zRWAhEkcs0p0pl0Ot5x69X4+xsvB6PDjHskEsGTTz5ZmxMX4pJLLtn1ftQuYrEYZmZmkM1mYbPZYLPZ2rZR6+vrOHPmDMxmM6ampkCj0ZBMJjE3N4d4PA6dTofx8fFddXIpB9aHhQWqhWt0dBQWS+eViX7ifPkk6+vrCIVCIEmy4ZOo1erGd0AQBILBYMMnYbFY0Ov1MJlMbfkkp06dQjAYxJEjRzpiIicIYkcbksvlDoxP8uP7H8W//e+fUW7C/HtsSIfvvPOlkPA7lz3w+XxYWlpCsViE2WzGyMhI16R/3SKRSODUqVMoFAqYmJiAyWTq+JgGExm8/os/xZy7uY2cNA3gG2+7A0Zldy2eAFWNr/skYrEYR44cgVQqbeu1pVIJx48fR6FQwJVXXtnwSRwOB+x2O1gsFiYmJqDT7d5JkM/nsbCwgI2NDSgUCkxPT++YyO8XutahO378OL785S/j9OnTIAgCTCYTx44dwz/+4z/i0ksvxYMPPog///nPeP/739/0xHvNa16Dp556asvzuVwObDYbV1xxBWg0GqRSKT7zmc80nq/P0D366KPw+Xx46Utfivvvvx8mk6mxzSte8QqMjo7iIx/5SDcfDQRRRSqV331DUJG7WMxDKpVvZFc7QaVSRiQSRii0gXQ6VWuNoGbgqMxXGSKRGBqNrmkr1PZ9VrC0NIdUKonR0Yla/3pv66yjWq1uqexVKmXI5Yq+UiPvttaNDR/W1lag0xkhkUixvDwPkUiC8fHpngKUZJJiTsxk0pDLlTCbrS2zef06ps1AEARcLgcCAR9kMgVstrGujPjmdfp863A4VgAAXC4Pw8PjEIu7N5ybkcmkYbcvI5tNQ6s1wGwebKuqUqmUMTd3GsViEePjY7Db7cjnC9DpDDWmqNb7IMkqNjZ88HicoNPpsFhsUKm6b2eQyfqnq9auLen1XCJJEplMCqFQAOFwCARRgVAoglyuRDIZRzKZAIPBxMAAVY1rt/oRiYSwsrIAiUSK0dEpMJnMvpz3JEmiXC5vqexxuTwoFMq+MYPtts5SqYS5uVMgiAomJo7C5XIgmUxgbGyyI+HgtXAcX3rgMTyy2lx7qQ4mnY6XHJvA3153KWQCXlvr7AbJfAGfvPcR3L/oaLndxSYt/v1FN0EnbS/xUV9rJJLAzMwp5HLUXJdeb4LRaOlLgqharcLrdcPrdYPL5WFoaBQSibSt1waDG7Dbl6DR6MDhsOB2u8HnC2C1DkMi2T3JlMtl4XCsIJVKQKEYwOCgradkXr9syfn0ScrlMiKREMLhQM0nYTaqbqFQAJVKGWKxBGq1ruZbtOeTLC7OIpNJYXSUur7655MQKBQKjU4jgiAgkykgFPaHQKqddd798BP41D1PgmjiTl9uM+CLb3g++JzO7t+JBDVukM1moFCoYDZbW7aJng+fxOm0Ixj0Qy5XwmYb7bgbKl8q42N3P4TfPLXSdBuZgIvPvPZWXGbrvN19M9LpFByOZWSzGeh0RphMg22dr+VyGfPzp1EqFTE2NobVVXuj48dgMLfVXrmx4YXH4wKDwcDgoK0nDeR27UjPwuLUTFYSCoWi4wxWMBhEobA1i3jzzTfjPe95D174whfiV7/6FX784x/j/vvvb3wJd955J37/+9/jd7/7HUqlEq666iq8//3vx0tf+lIAZ1kuP/nJT+IFL3hBV5+p1wHkbkG1PFIECJVKBUol1YfeSYtAuVzC0tIsisU8RkamGi0iB0GfpF20WmsotAGncwUajR5CoRgOxxIkEjmGhye6zqDm8zmsr68hHo9CIBDBZLK21Vpzvo4pVa5fBgAMDY1CKu2MVvvcdWYyKSwvz4IgCJAkWZtLG+wL6xlJkggEvPB6XWAyWRgcHG5rvfWh5Gw2A4lECpPJ1tZ5n04n4XKtIpfL9o0q+CCRonSD+kxLOBxEMhmrse1qoVAoO5o9Cwb9cLlWoVAMwGodbVxfF4otabXOcrmMxcUzqFTKGBmZgsdDscSNjEy15fgDQDSbwzf/dBK/Or3Y1JHbjBtGLHjrDVfArJC2vc5eQJIk7p1dwWfv/wtypZ2Z9gBAyGHjn2+5DrdM2nbd5+a1lkoVuFyrCIepqj+Hw8Xg4Ejbx2835HJZOJ0ryGRSGBjQwmi0tmWj6vcIJpMJo9ECpVK7672BIIiafIEXbDYXFoutrfm63XBQSFG6RT6fa/gk1SoBpVINlaozn6RUKmJ5eRbFYhGjo1MNco2ngx0BgB899DjuvO8kqk1MwHXjZvzHq24Bh9X+/TWXy2J9fQ2JRAwCgQhm81BbpCTn65jGYhE4ncug0eiwWkc7vlYYDBrufmIen7r74aYMmAw6De++/Vq87KqpnruTKJ/EDTabDYtluK31lstlLC2dQS6XhUQig9lsa2vmMp1OwulcRT6fhVqtr8389+Zb7SnLJUDdLBYXF5HL5bDTLi677LJudrul5TIajTZ06N70pjdhZmYGH/nIR/DRj34UL37xiwEAn//85/HjH/8Yn/zkJ6HX6xs6dL/+9a+7btfZL+NZR/14dnoSbyYtGB2d7ph+9aCg2Vrr+moDAzoIBCI4nctQKFSwWse6CubK5RK8Xmq4mM3mwGi0QqFQtX3cz+cxLZdLWFtbRiIRg1qtg8lkbds532mdpVIJKytzyGbTNQppKviSydqvTLRCoZCH07mKVCoOhWIAZvNQG5m8Kmi0Muh07q6C1eVyGevrawiHA32XL7jQA7rN6KZVazNpgVqth9k81BEl/EFBs3VWKmUsLs6gVCpiZGQSbrcDhUIOo6PTbTlNhXIZ//PELL53/HTLQKmOSe0A3n7TlbjIuPM83l4fT288iQ/934OY84dabnfrpA3vu/laCLnNK1I7rTUU8sPpXAWDwQBBEFCpNDCZrH2ptFLzb354PE4wGAxYLDbI5apdX5fPp6FWK5DLVVoe0zq9vtttR7lcgl5v7qt8wYUe0NXRvU+Sw9LSLKrVKsbGjmwJBC90OwIA37n/UXzlD6fR7G518xEbPvbym8Bqs3JdKpXg87kQCm2Aw+HCaByEXH4wfZJSqYi1tWUkk3FoNHoYjda2r5v6On/92AL++Qe/Rzq/s+g6ALzo0jG8/8XXg83srfpP+SRU9V2pVMNkGmojRiBApxOg0Tht+CQleDxriESCNYKx4b7JF+xpQDczM4O3v/3tW5gk645D/XFxsblKfCtsDujq7/WJT3wCCwsLUKlUeMMb3rBFLoEgCNx55534+c9/jkKhgMsuuwwf+tCHYDB0X6rdb+PZDbLZDJaXZ8BgMDE6Or2N3eegrLMd7LTWs/TUVHbQ7bbvqD/UDgiCQCDghd+/DhoN0OvNUKv1Hd/Ez/cxrTs3bvcaOBwubLbxtlrnmq2zWq3C5bIjHN4Am81BqVSEXK6C2WzrS38+SZI1UWY7AMBkak0n3M7xJEkS4XAA6+trIEkSRqMVAwPavs5HPJ0Cuk5BkiRcrlWEQhswGgeh1Rq7Fm3eb+y0Tqod/QyKxQKGhyfhclGOPEUU1Pp7J6pV/HZuFV975EmE0rt/pzqpCG+9/nI8Z3yo5fl5Po5npVrFt//yFL71l6eaZsQBQCsR4iO334iLOww+0+lkTfeSOofqrc+dOKOtUCwW4XavIh6PQiZTwGIZbkkk1s4xLRTycLvtSCRikEjksFhsfRfefroEdN0gk0ljeXm2xiA43Re92f1As3V+9TeP4L8fnmv6uhddOoZ/e8kNbc2onvVJPKDR6DWfRHdB+CTBoA8ezxq4XD5strG2mFI3r9MZiOPd3/stHMFY0+0nDSp87nXPh0rcWwsz5ZME4XY7QKPRYDYPtWQIbdcnCYU2sL5OaYyaTNaOpZx2w54GdK94xSsQiUTw1re+FRqNZseT7vLLL+90twcGF5rxTCbjWFmZB4/Hx+jo1I6VkIOwznZx7lqj0RDs9kWoVBpwODx4vU5oNHqYTK0dpXNRv5i9XhfK5RLUah10OnPXldz9OqbUnMcS8vksjMZBaDSGrh3GujFyuVbB4/FRLpdAkv01SuVyCW63A9FoCGKxtCmd8G7HM5vNwOVaQSaTrmXYrD2zme6EZ2pAV61WYbcvIh6PwGodbaqTcxDW2g7OXedm/cOhoTF4PA4QBIHx8SPg8Vo7CqF0Fv/6i/sx42uP8OQN1xzDSy+ZbCurfD6P54w3gA/d8yD8ieYMnHQaDa+76iK8+dpjYJ5TWWi11mKxiNXVeeRyGfD5QmSz6a715XYCVU2LwOWyo1olWiZzdtOPqkuasFgsmM02yGSKPSHNeKYGdMlkDCsrCzWfZHrHe+xBWGc7OHedJEniC//3R/zg0eZFi5dfM41333Yt6PTW51TdJ1lfd6JSKUOt1kOvN3Vd3d4/nyQDu30JhUIOJpMVanVrErNz15ktlvDhnzyAh+adTV8jF3Dxudc9D0fMnTEP7wTKJ6EYtCUSGQYHR3a0Ubv7JGclTVQqDYzGwX31SboK6I4cOYI777wTz3nOczpe2IWAC8l4RqNhOByLEImkGBmZaEpCsd/r7ASb1xoKBbG6ugCFghJS9vs90OlMMBgsHd2Ak8k4PJ415HIZyOVKGI3WnrOx+3lMKeIAJzY2vBCLpRgaGmuasW5nnalUAqurC6DRaBAIREgkohCJJLBaR8Dl9kerJ5GIwelcQaVShl5vgVZraKuVr1KpwOdzIRDwgcfjw2IZ3lP68GdiQEexgs0hk0ljeHi8Zevtfq+1XWxeZ7FIzRbn81lYrWNwu+0Nzbnd7MCp9Q38yy/uRyzbmpSCSafjZZdO4fVXXwwJr/0A5nwfz0yxhM/d/xfcO9uclAAAJrQqfOyFN8EkP9uGuttaq1UCTucqIpEgZDIFMpk0CILoWF+uFSqVMjweJ8LhDYhE4poG5taAvNk6KU1Lij5cozFAr98b+vA6nokBXTQagsOxBLFYhuHhiabHd7/X2S42r7NcJvCpn/4BPzux2nT7N954DG+5+fJdz/VkMga3ew35fBYKhQoGw+AF75Osr68hEPBBIpHBah3tyCepVkn894Mn8PX7n2z6Hkw6De+9/Wr81dVH+7LmeDwKl2sVlUoZBoNlW3K8lU/i9ToRDPrB4wkwODjctfB6O9hTYXGFQrGnRvAQ7aEZacHTBdFoBHb7IuRyFZhMJvx+D4zGQeh0pt1fXANJklhfd2JjYx1CoRgTExf15cIrlCtY3ghDnRVBzRWAhr2lRD4XdDodJtMQJBI5HI4lzMycgNU60tZ8yU4Qi6WYmroEKyvzSKXi0OlMiEZDmJk50Qi+ej2/pFI5jhy5DF6vE+vra4hGQ7BaR5q2upEkiVgsXNOPqsBotEKj6bw19hCtsZm0YHz8yJ7emPYDBEFgeXkOuVwWg4PDcLmoea+xsaMtGQxJksT/npzHFx54DES1tXP03PEh/MP1l0Mv6w99/15CyGHjw7c9G1cPmfDp3z2CdGFnEfOFjTBec9dP8a7nXoMXHhltKxij0xmwWkfB5wvh8TggFkvB4XBq2fAgBgdHe9LVBCgRYKt1BErlAJzOFczOnoROZ4JO11wDs1QqwuNxIBoNQySSYHh4sud1HGI7AgEv3G4HlEo1BgdHnla2mqhW8eEf3Yd7z6w13eZtt16J1z/7kpb7IUkSHs8aAgEvRCIxJicvhlB48O3GbqDT6TCbbZBI5FhbW8bs7AkMDo62zRhMp9Pwt8+5DCNaJT744z/sOJ9cqZL41K/+glmXDx942c1g9Ug2IpMpIBZLsL7ugsezhmg0jMHBkaajLCRJIhoN1bo7qo1q5EE5z7uq0H3zm9/EAw88gLvuuqtjgcELAQc9G7YbacFBWWe3YDLpKJUyOHHiBKRSSlA4EgnAYrFBrda3vZ9yuQy7fRGpVBwmk3XX1sR2QJIk/rBix3898ihSRWqQl81gYEIzgCM6LY7otBjXDIC3x/pZm1GplLG2toJ4PAKVSgOzeat2UyffPUVLvIJoNASNhmqb2Njwgs8XYHBwpG83nkwmBadzBblcFlqtAXq9BRwOq7HOdDoDl2sVqVQCMpkSZvNQX9q22sEzqULXirSgGS4UW8Jk0iEWc/Hoo48hnU7DYhmCx7MGNpuDsbEjLVtjCuUKPv27P+E3c62rWEcNGrz9xisxpVf3tM79Op7BVAYfuechnPT4W253w4gF//q866EU89teazIZh92+AAaDBb3eBL9/HcViHlqtEXq9uS9OULVahc/nxsbGOrhcHgYHRyASSRrHNBZLw+fzYn3d1UiC9UIf3imeKRU6kiTh9brg93ug1RpgNFqfNj4Jk0mHUMTF337xbjww31ya5J9fdB1edvV0y32Vy6WaT5KAyTTUuMf2c60H4ZiWy2U4ncuIx6MYGNDCZBrqyCdZC8bwru/+FuvRZNP3GFOL8J+vvhX6ge6S2OcinaZ8knw+C62Wkidgszf7JGm4XHakUgnI5SqYTEPnTZ94T1suP/CBD+C+++5DpVLB8PDwFlFvgGJC+u53v9vpbg8MDrLxbIe04CCssxek0wksLc1CIpGBRqMjFgu3nOnZCdlsBqur8yCICmy2ib5QaSfzBXzh4T/jYXvzDB1A0e2OqFQ4otNgWqfFtFYDUQvmuH6g3ovvcq2CxWLDZhtvBF+dfvd16QGPZw0SiRw6nRFutwO5XAYajR4GQ3taLrvhXDphm20UJpMOs7ML8Pk8YLM5NfrwzmQaesUzJaDLZtNYWpoFk8nE2NiRtgPmC8WW0OkkVlcXEIvFYDRa4fU6GzM9rWZUNpJp/PPPf4+lQKTpNjqpCG+/8SrcMNJZ63ezdbLZNJTLwCat9fMGolrFD5+YwdcefhKVFpVIlZCPj73oJtx6bLTt775QyGNlZR7FYgGDgyMoFHLw+z0NiYN+tU7nchmsra0gm01DrdbBYhkCk1nF6dNnkM1m+iZp0imeCQEdSZJwOlcQDgdgMlmh1bYnGH6h2JEqSLznu7/GwwvrOz5Pp9Hwwb96Nl546VjL/WSzaayszKNarWJ4eGJPxgYqlSLkctGu7K7nA3UCM7fbDjabg6Gh8QYTdVtjILkC/u1Hf8CjK56m7yHns/Bvt12K6y460jefhJqvdYPN5tZ8Ei1mZ+fh8633VdKkE+xpQPea17xm122+//3vd7rbA4NOjadUykcikdvzC2gzacHg4AgGBtofDk2lYsjlUmAwOODxBODzhQemTFwsFpHNppDJpJHJpJDJpKBUKlGpVJFIxDA0NA6Fov0sTCQShNO5Ai6Xj5GRyb5Udp5wr+MzDzyMaC7X8WtpAAYV8loFjwryFIK9qWwXCnnY7YvIZtMwGCzQ6UxgsRhd3TgTiRjs9kWwWCwMD08gmYx3rC/X7prrdMJsNhvlcrnWQmXsSDetX9ivgO582RHgXCKlnUkLdkK5XEYw6AWfzwGDwQGXKwSbzT5vFY9WqFaryGYzW2xJuVyCyTQIj8cJoVCMkZHJlmL3T7i8+LdfPoBkvtB0m2ttJnz09hv7kqTJZtM1gqMc6HQGRCIxRCIJRCIJhELxebXRS4EwPvirB+GOJVpu98brj+FNV18CBtpbG0EQWFtbQiwWgV5vhkymhMu12rG+3G6oM+6trztBpzNQqZRrkia2fWtp26+A7vz5JARWVxeRTMYwODgKlaq9SvUjiy584/fHEUrlIOVzoJGKoJNLoJGJoJYIoZEKoZYIoZII2qb87weyxRLCySw2Ygn4IjFsxBI4bt/AUjC14/YMOh2feMVz8NwjrTUcw+EAnM4V8PlCDA9P9L3bhJqpd2Fjgwo6eTx+w46IRJLz1t2yE/L5HByOReRyWej1Fuh0xrZ9EqJaxX/d9zi++8dTTbdhMWh4wxUWvOz6K/oWaOXzOTidK0inkzWfpAKdztiyrXsvsec6dE9ndGI8vV4nQqGN2oUjhVgsBY/H77uD0wlpwWaUSkW4XHbE4xHweDwUCoWGpgyfL4BAIAKfL4RAIIJAINhzB7pSqSCbTSObrQdvaZTL1AwHi8WGUCiGWCxGJpNEPB7H8PBE24HD5qFcqod/uOfPUyhX8PVHj+NXsws97edcGCQSHNFrMK3V4oheA41I1Ldzplqtwu93w+fzQCgUY3R0AlqtsqtMKJVhn0OxWITNNgYeT7BFX85isfVNbyoWC6FYzEKl0oHF2r8b0H4EdNVqBadOPQ4Oh9uwI1TrWO+O7rlol7RgM+oVYI/HAZIkwWAwUCpR1y2TyYJAULchIggEQrDZnD0N8kiSRKGQRyaTqtmSNHK5TEM2h88XQiyWQCIRYnl5GRIJ9Vmb2QOSJPHDJ2bwlYceb0nr/6Zrj+FN1x4DvQ+t236/Bz6fG3y+ABMT4wiFokgkEkink6hWCdBoNAiF4k2OmbhlMNoPFMplfPGB4/jZqdb2zjYgx0dvvxHDA+3Z5vrn9XpdkMkUsFpHa7MolL7c4OAIZLL+JIiKxQICgXUolXKIxcpd9aP2EvsR0NX1OcViKYRCyR76JOWalmmm7ft0hajiC7/+M370aHO6/82g0QCFkA+1VAiNRAh1LdDb/LdCxG8pDUCSJDKFEiLpHMKpLCLpHCKpLCKpHCLpLELJLMKpDCLpHArl9kvkHCYD//maW3HtmLnpNtVqFW63A6GQHyqVBhbLcN8Dglwu00gKmUyDkMsl8PuDSKUSyOepBDSbzWncU0QiCbhc3nlNwlGt0S74/esQiSQYHZ2ARqNo2yf53elVfOynD6FYrjTd5uYRJd7wrGkMDg73LUEUjQZRLuehVOrAYp2f9sqdcF4CumQyiRMnTiAUCuGWW25BIpHA4ODggcjW9oJOjCdBlJBKRREIhJBOJ0GSJJhMFsRiaeOn14tnM2nB6OhUW6QFZ7OVLjAYdEilchSLedDpDNBodJAkCYIgUCoVUSoVG0EejyfY5JwJwecLuy5lV6tV5PNZZDJnA7i6gaHTGRAKReDzBeBweGCx2CDJKsrlEuLxCHK5LMbHpyEQtEfQUC6XsLq6gEwmBZNpqC+MaovBED51/0PwJpr3cfcLKqEA01oNjui1uEivg0km7Xmf6XQSDscSKpUypqenwedLu3JuCKICh2MZ8XgEBoMFWq0R0WgIbrcddDoDQ0NjfWlpPSgtOPsR0DEYNBQKKXi9fiQScZRK1HymQCBq2BGRSNJzW0kg4IPbbe+ISGlztlIqVaBaJUCnAzQatZZqtYpyuYxSqYBKhbrhng3yzgZ6vQR55XKpkQCq2xOCoN6Ly+VBIBCBx+ODzeaAwaCjXK6gXC7A7/dCLlfCah1r+lnzpTI+/puHcf+io+n7CzhsfOz2Z+O6YUtX69+MQiEPh2MRmUwaOp0JZvMgFArRFlr0XC6DdDqJVCqJdDqJSoUiCBAIRFsy791KruyGP6268PHfPIx4rnmlksWg4++fdRleefmRtrS2ACAej8BuXwKHw8HIyBRoNDpcrhUkErEdZ226xdPNlnTik1QqRaRSUQSDIaTTKZAkCRaLBZFIColEWiOq6d0nWVqaRblcxMjINESi3Sug4VQW7/nOPZjzNdcb6wYMOh0DEkEj0JPwOIhn8wjXArZwKtcyEOgGPDYTn/+bF+CyoeYz/aVSCaur88hm0zCbbX3XS62PRqyvO8Hl8mv3YfGW875cLiGdTiGdphJF2WwGAGWfRSIJxGKqEMHnC86L355KJeBwLIEgCBw5Qvkk7V6fS74w3v293yKQyDTdZkojwt9ePYjp8am+tLReaHak64Duq1/9Kr7+9a+jUCiARqPhpz/9Kb7whS8gHo/jrrvuglh84bL2dNuvXiyWkcmkkEolkEolkM2ma8aUvS3AaxeFQh5LSzMdkRacq41RLpeQSMSg0WhQKlVQKBRQKhUbTkIddDoDdDqtEezVweFwwecLa9li8Y5BHkmSKBYLyGbTSKeptsl6xhygqm9MJgt0ej2YrKBcLqF6zswGnc4Al8vFxRdfBIDd1kWUyaSwsjIPgITN1ntveoWo4ocnT+H7T7YW4ZVwubjj2BRm1wOY2wig0MebxrROg9dddgwXG3oLTCuVCjweO8LhIBQKFczm4a6cwM1EPDKZEkNDYzUylmWkUgloNHoYjYM9VUQvNOPZDrqZoSuXCRSLhYYdSaUSKJdLDUkJiUQKkYgK8NrN9nZDWkBVej3w+6l5RqVSjUDABxaLBYVCjnQ6i2KxsCUhVAeDwQCNRkO1Wm1c4wwGAzweH0KhGEKhGAKBCBwOd9s6CIJoVPHrtqRexafTGWCz2bXEFLX/SqXceH4z2Gw2dDoddDpL00TGeiyJ9/3893CEmzuZgwop/vMlt8CskLY8Xruhrvno8TjAYrExNDS2hcCj2Xlfr0am04lGgFcP+KnWKmnDOWsltt0pIpkc/v3eP+KxtZ1nh+q4yKjBR267ETppe9dNPp/DysocyuUybLZxSCQyhMMbcLu3Hpde8HSzJb35JMmGHclkKP1BFosNiUTW8Ek6acnL53NYWpoBAIyNTe+q4QgAjy3a8YGfPIREfjtz4YUGEY+DL7/+BZg2N5/pT6eTWF2lqtzDwxN9Zw4uFgtwOJaQTieh0Rhq9176rud9pVJBJpNCOp1EOk2dD/WOi82JIoFAtGethZVKBW73KiKREJTKAZjN7Xf5xDN5/PMP78PJteYkTgMiLl52RI0bj441jku3uNDsSFcB3Q9+8AN88pOfxN/93d/h2c9+Nl72spfhZz/7GSKRCN73vvfhtttuwwc/+MGOF31Q0K8BZIKo1LKs1I04m6WMab38LRbLGrTOO6FT0gKCIOD1Omt6XQLodEb4fB6USkWMjIzDZrNsWefmCl39p1gsolQqNBy1cwOuOuqOFYvFRqlUQKlU2ubUbQaDwQCLxWm8hnrc/jeDwejoIqqLYvP5QoyMTPbs0KzHE/jUHx7CUjDccrvLzUa8/+YbMGwYQDyeRaFYwWokghnfBmY3Apj1B5CusWD2gimtGq+97BiOGbtnw2Iy6cjnk5iZmQGNRofVOtp1r3ksFoHDsQQOh9uYTwwGffB41sDh8GCzjTWVIWhnnReS8WwH/SBFoRz63JYAr1KpgEaj1Rx5yilrdhPuhrRgs16XVmsAAPj965BKFRgdHYdKJd1SUapUyjXbUazZg2Lj72KxsGPABVAEWkwmCxwOF9VqFcVioVF5awY2m7PJZtTtB2eLHWGxWLvOaTzq8OCD//dAU9p+AHj26CA+9IIbIOD0JhZbKpXgdC7vWInq5rwvFgubKngJFAqURh7VsitpnBe96lqRJIm7T87jSw8eR6kFY4uAzcK7n3sNXjA90padqlQqcDgWkUjEGgzElJN6tnLZCxPm082W9MsnoRz6JJJJyo7kclS1g8Phbkk6N7uPZjIpLC/PgsViY3T0yK4sf+VyGd/47SP4zqPLqD4NhntkAh7+35tux4hu55GXetLG7bZDIBBheHiir0mWeuu7220Hg8GE1Tq6pTum0/O+Wq02ArxUKolMJolqtQo6nX5Ou3f7ycN2wGTSkcslMDMzCzqd3lGXT5kg8PlfP4qfPDrbcruLdGK86rJBXHH0aFMZgnbWeSHZka4CultuuQXPe97z8I53vAMEQWBychI/+9nPMDk5iR/96Ef4xje+gYceeqjjRR8U7BWjVKVSqWVZ68aUeg8ul7fFmLJY7I5JC2KxCNxue0202Qw2mwuncwUcDgfDw5MQiYRdnZiVSmVTsEdV4PL5HIrFAiqVMkiSrGWGWOByeeBy+eDxeFucLBaL3VEbTTvHlOpNtyMU2sDAgBZms60ng0OSJP5vbgFf+8txFCvNHRcuk4m/v/ZK3D453tJhrJIkXNE4ZvwbmN3YwIwv0BWhSh0TGjVed9kluNTUufRC/XgGArHaAHscAwM6mEzWrtqbcrksVlbmUS6XoNebodHoa21kS8jns9DrzdDpTF2v80Ixnu1gL1guSZJEPp9tOGXpdAIEQYBOp28L8EiSIlJKJNojLSiXS/B41hCJBCESiWEwWOH3u5FMxmEwDHY00H7umjcnjvL5LLLZLAqFPMrlEgiCClAZDCbYbDY4HD74fKqFcnPyh8lktX1eNTumVZLEtx89hW888iSa3fxoAP7hhsvx2isv6rkVKRaLwOlcBkCD1Tq6bVasH+c91Vp1tkWz7qjLZEro9eauHZo6HOEYPnzPg1gJRltud8OIBf/yvGdBxt89kNxcNRaJJLBYhsHj8RuzhTyeoDG32ymebrZk73ySMlKpsxW8fL65T5JIxLC6Og8+X4jR0amWVRWSJOEPBvDxn/0RT3jiTbfjMBmwaRUIJDKIpru/P+41xDwOjll1eMcLroZBsXO1rVqtwuVaRTgcgFqtg8k01NcgiJICoOSJlEp1rbK1dVas1/O+Wq022r3rP5VKBSwWGzqdCQMD2r58prM+SRQrK5SMg1qth8nUfpfPr55cxKd+8TDKRPPPyWbQccuoEn/z7GMwGztnJL7Q7EhXAd309DS+/vWv4+qrr94W0D3++ON405vehNnZ1tHzQcb5YpQql8tbsu6FAmXQuFw+isV8W6QFxWIBbrcd8XgUUqkcZvMQgsENBAJeyOUqWK2jHVe99hu7rbVUKmJ1dQHZbBoWy3BHbJ87IZLJ4rMPPoInPK1bi8bVA/iX5z4bBqmkrXVuBkmS8CdTmPFvYMYfwIx/AxupdMdrHVcP4LWXX4LLTe3JVZy7znKZQCjkb+hxDQ2NdcUAV6lU4PW6EAz6wOXyYbHYIBJJ4PO54fdTZCxDQ2MdVQgOyjl6obFckiSJbDbTsCPpdALVarV23bNQLpd2JS3YSnoCmExW8PkCrK4uoFolaq1x8sZaD8L3tBt2WmemWMJHf/0QHl5xNX2dmMvBv7/oJlxlbY9+vRmo1iI7IpEgZDIFBgdHdtS+24vjWalUEIuF4fd7UCwWIJMpaoFd9+d2mSDw338+ie88dgqtvAa5gIcPPP96XGtrThaxGYlEDG63HYVCHhqNHnq9BcViHnb7EorFAkymQajVnXUoHJRz9EJjuSyXS5sCvHij8svj8VEo5CGRyGGzje/qkzx25gw+e/8cNlLNu1R0chG++Y93wCAWUfNeFQKhVBaBRBrBRAaBZAbBRAbBTY/JXO9dL5sh5nGgFPGhFAugEvOhFAmgrD2qxNT/NTIhdGppy3OpWCxidXUeuVwGg4MjHUkstYNEIoq1tRWQZBUWy0hT1u9+n/f1ed6NDS+i0VAtsDPWArv+jFeUy0Sty8cJDofbUZfPrDuA93z/d4jskgxQCdh47ZVW3PGsq/bNJylVCPz+zCp+89QKvLEULhvS4x+fdxWkgt3bnfc0oLv55pvxohe9CG9961u3BXTf+ta38JOf/AS///3vO93tgUGnLJfhcABSqRxSqQISiazrE71UKjaMKZPJhMFgaZoNoQZiffB6XWAwGDCbKWpmqmUl1VCwr98ED8oNrh20Wuvm3vSRkcme6agftq/h8w/9qSESvhPoNBped/kxvPLYRVuG/3s9puFMFrObAjxXrHkm81yMqVV47WXHcIV598Bup3VSVMJLyGbTjYpaN5m3XC4Dl8uOdDrZEAAvlYpwOJZQLpdgNtugUmn2TSuRJMlGcNMu9ovl8qmnjoPPF0AqVUIuV4DL7U7agqLvTze6ADQaQ0vSgnw+C6dzFel0EgrFAMzmIcTj0UYr87k02xeKLTl3na5oHO/72e/hiiaavmZ4QIH/vONm6GW92ZX68H+lUoHFYoNSqW56Dezl8axWq4hGQ/D53CgWC5BKFTAYug/smEw67PE43vGDe+FPtE5Ivfjicbz9xqvAZ+8+H1PXpPT53GAwGDAarZDLlVhfp5JGYrEUVutY20K+e3FM61XwTgLL/WG5dCASCUEqVdR8EmmPPgmVKGKx2DAYmlc56iQd9zx+Bt990otCi+N+9YgJn37NzbDo22c6BCgCo0aA1yToyxbLkPA5UIoFUIr4UNUelWIBVLWATSUWQCHig8vanQ1xt3MplUpgdXUBdDodw8OTDa21foAgCHg8awiF/JBIZLBaR1u2cO6lLcnnKQ3JSCQIFosNrdYItbq7wG6ndeZy2a66fMKpLP75B/fhjDuw67bTWhHe+YKrcMQ2dN58kngmj58en8fdx+e2VaGvGjHiK2+8fdd97GlA941vfANf/vKX8Y53vAM33HADXvCCF+D73/8+YrEYPvjBD+L1r3893vKWt3S62wODTlku4/EQ/P6NmpYQHRKJHDIZZUz3goUsk0nD6VxBLpeBWq2DwTCIfD7bcgj3QnHCgJ3XSvWm++F2OyAUijE8PLFjtrtdZIolfPmRv+D+5dWW2xmlEvzLc5+NMfVAW+vsBcl8Ab9bXMZPTp1BooUO1maMDqjw2ssuwZWW5savaetZjfTC53NDIBBhaGgMPF7nQQRF7xuCx7MGgqjUWjN0WF93IhzegFQqh9U6uuv31ddsWKmIQMCHUGgDBFHBZZdd13bAul8sl/l8Em73OuLxGEiyCh6PD5lMCZlMAYGgf7IWddTlLfx+SjB1cHAYIpGk0TbUrJX5QrElm9f5hwUHPnrPQ8iWmpMy3DJhw789/1ng9mCzN+tBiUQSWK2ju2aEz8fxrFdg/X4PCoU8pFI59HpLx85nfa3eQByfue8v+L8zSy23N8rE+MjtN2Ja354+WbFYhMfjQCwWhlAohsUyjEqlBIdjGdVqFRbLMJTK7ba42Tp7PaYkSSKRiMHv9yCTSUGhUMNmay0gvRn7xXKZSITh8/lRKOQ3+SRKyGTyPRFXz2RSsDuW8ZMTTvx+JdJ0OxoNePNNl+LNN10GNrs7fdTdUK2SoNP7ZyubnUt1JnG32wGxWAqbbbwnn+RcZDIpOBxLKJWKMJmG2mLJPB+2pFDIw+dz1wI7FrRaIwYGdH0Zq6HkDTrv8iGqVfziiQX81+8eRyrfuorLpNPwwiNG/NMLb4RoFz3gXo6nPRDF//x5Br89tYJSizGeP33szeBzWl+TexrQkSSJD3/4w7j77rsbf9NoFDviC1/4Qnz6058+MKLV3aDbfvV0OoN4PIJ4PNJgkxKJJJDLlZDJlD2LO25uc+PzBRgcHIFAIGqQUgiFYths4ztmcC4UJwzYvtZqtQqncwWRSLDWZ23t6fw67fXj0394CKFM6+/4/5uexN9efUXTLN5eHdN8uYx75hbxk6fOIJ7Pt/WaEZUSr7n8ElxtMW8z+rutc+uNw4qBge6YNSuVCvx+NwIBH9hsLiyWIZAkibW1FQDA4OAI5PLm+on96P+Px6MIBLzIZOpCsDQolRRFf7ufab9n6IrFMpLJOOLxCBKJaGOGoR7cicXSnu1rMhmH07mKUqlQE3E31aQ/5pHL5TA4ONy0behCsSVMJh1iCQ+f/uXD+O8/n2y6HYNGwz/deCVeftl0T0HzZj2ourzHflWmm6GefPH53JsCO3PbnQ7nrvXhFRc++dvW8gZ0Gg1/c9XFeNO1l4DZptOXTMbhdtuRz+egVuug0eixvu5CLBaGQqGCxTLcMjDp9ZgWCnkEg36EwxsNxmc2mwObbaItiv469nOGLhbLIJPJIBaLIh6PNEjZxGJpw5b0wydZX3fC4fHgO09tYDGwswA3QLFDfvzlz2notl1IduTcdRIEAadzBdFoCBqNASbT7qzB7aKXROv5PKaFQh5+vwfhcABMJqvWitleYLfbOuuSS1SXzxBUqvYkH+LZPP7f7x7HL55caNkWDgAKPgv/eMtluO2Ko33rnqhWSTy64sH//OkMHrd7d92ex2bi9x94/f4GdHU4nU48/vjjSCQSEIlEuOyyyzAyMtLt7g4M+jGAXCoVkUhEEYtFkUrFQZIk+HwhZDIFZDJlR7ofJEk2WqAIogKDwQKNxtAIdCijoofR2DzQuVCMJ7B1rdlsruFkWq0jUCrby/TuhFKlgm8dfxI/PT3blAwBABR8Pt530/W4zNx6hmavj2mhXME98wv4yVNnEMu1F9jZVAq89rJjuGbQ3FG7baetHa2Qy2XhdtuRSiUglSqg05mwseFBPB6FSqWByTS0o/Bnt8czl8sgFAogHA6gWiVq+2JCqzVgYEDfscjofgd052aB0+lkLVEURbFYAIPBgFSqgEymgEQi7+jzlcsluN0ORKMhiEQSDA4Og8cTIJGIweFYBIPBxPDwRMuWvAvFluTKZXzk1w/hj0vOptvI+Fx88v97Lo6ZdV2/z056UJ2QkOzH8Twb2HlQKOQgkcig11t2DVZ2Wms0m8Mnf/MI/mR3t3ztmEaJj73wRlgU7bHZVatVBIM+eL1u0On0BgW5y2WvMeONNuY621nnbiAIArFYGMGgvxH8AKgdG3NX1PMHiRSlVCoiHqeCu1Qq0fBJqISzAjxeZz5JnYjNHkrjW096Eck0D+pHdUr856tv2UIocqHYkXPXWSwWsLIyj0Ihh8HB0bYqxu2i11GI/Tim9cAuEgmCwaDuu2q1vmVg175P4kAoRHX5DA6Ogs1urwI6vx7Ef/zqT5hfD+267VGDHB946XNh1WyfMW/3eOZLZfz65DJ+9JcZuMOJttYIUNXqv7/58l23Oy8B3WaEw2GEQiGMjY31RRh0P9FvRqlKpYJkMoZ4PIpEIgqCIMBmcxqVO5FI0tSQFosFuFx2JBIU6YnFMgwOh4t8PofV1QUUi3lYraNQKFoblQvFeAJn1+p0erG8PA86nY6RkcmeBvrt4Qg+ef9Du86pXW+z4p03XAsxd/fM5fk6psVKBb+eX8SPT55pmylzSKnAay67BNdaLWB3wErY7vD1bqjf8D0eB8rlErRaI9hsNjweJ1gsFqzW0W16gZ2ys0WjIYRCGw22WADg84XQ682QyRRdZ0wPUkC3GdSAerYR3OVyGdBotC0Z92ZBOEmSCIcD8HjWQKMBJtNQIzni93vg9bpqhAdju7PXpdKgsemoFglwmSwIOWxwmIzzIkx7LsoEgWS+iFShiFS+UHssIpkv4GenFuCNN68YjGtU+M+X3Ay1uHsGyM16UFqtAQZD57pH+2mbqes0DJ/PjXw+t2vw0irx8KszS/j8Hx5FvoUeJ4fJwNuefSVeemwS9DbPl1KpCI9nDdFoCAKBCHq9CYGAryUzXrvHlCRJZDIphMMBRKOhhkwPjUaHWq2FRmNse25vJxykgG4z6j5JLBZBIhFDtUqAw+E2Es67+ySriMejOBks4XuPr6HSgmnw9mNjeP+Ln7Wt0+VC8Uk2rzMajcBupxJfIyOT4PN7Y4+tg2rf9GN9vTeysv08psVioVGxOxvY6cBg9Ja8jcejWFtbBrB7l89mVKsk/u/EIr78u+NIZFuPsDDoNLzsynH8w63XbKmW7bbOQCKN/31sDr94fGHXVs/NsGnkeOONx3Dz0eG2tt/TgC6TyeATn/gEpqam8KpXvQq//e1v8d73vhcEQcBiseCuu+6CVtsb8+B+Yq8oggEq65hKJRqZsnK5BCaTWcu4KyGRyMBgMBpZX4r0hAmLxQaZTAkajYZYLIK1tSWwWGwMD0+2JTZ+oRhPgJonSiRCWFhYhFgsgc020fUsIlGt4n9PzeDbj59ApYmmHgAI2Gy8/fprcNOIrWda9L1CsVLBvfNL+NFTpxHNthfYWRVy/M2Vx/CiS6eRTLbHetYOPXK7IAgCfr8bGxtesNkcaLVGRCJBZDIpaLXGLcQ/7Qgsp1IJhMMBxGLhLbqHCsUAtFpDT0F/HQc1oDsXxWKhEdylUgkAgFAoqgV3ykabTi6Xhcu1gnQ6BaVSDZPJChaLjUqlDIdjCYlEDHq9GXr99nbdxueoVnHPzDL++88nEUpv/zwMOh1CDhsCDhXgCdjsrX9z2Nv+3/hf7f+VKhWcJTcFZvVALZkvInlO0JYqFJFrMRPXCrcfGcX7brkWnC7P63P1oIaGxrYlKNrFQbDN5wZ2YrEUBoOl41lsbzyJj9zzEGZ8wZbvd4XFgA/edgMGRO1LEqRSCbjdduRyWSiVGnC5XPh8nh2Z8XZnSi4hEqGq+oVCvjEywmZzoNOZoFSq+5KYPt8BnSscx29OrYCkAXqpCKNaJYY0CrCZzT/LWZ+EsiWUT8KqBXdnid42E9cQYOCXS3HcP9e8Ksti0PG+F12HF18+saNdOQjnfTuos4bOzS3C7V6DRCKDzTbet1nEUqmItbVlJJNxqNU6GI3dyQnV17rfx3RrYMeARkNV7Db7EJ2us1wu1XyS1l0+OyGVK+Br9z+Jux+bQ3WXcEch4OBdL7wOtxwdrmmk7rzOWU8Q//OnM3hgzgGiA4HFa8fMeNV1R3HZUGesvXsa0H30ox/Fr371K3zsYx/DbbfdhptuugkymQxvectb8IUvfAEjIyP43Oc+1+luDwz2MqDbDIpuPN0I7uqkKmKxDKVSsUZ6oofBYAGTyQRJklhfd2JjYx0ymRJW62jbJzWDAXA4dGQyRZAkvWO2rr0AQRCoVCogiDIqlQoqFeoxlYojGg1DrzdBr+9cO6QORySKzz74CJZDrUXCLzbo8M833YABUWfZtv0ynqVKBb9ZWMb/nDyNSLa989Q2oMRrL7sE1+wwY7cTKIc1BLd7tWeHFaBaSdxuO5LJOMRiKfh8IYJBH3g8PoaGxsHnC5oez2KxgHCYcr5KpSLodHqDuVKt1kOt1vVVvPVCCeg2o1wuI5GIIh6PIpmMoVqtgsvlQSAQIRYLg8PhwmIZboi3ZrMZrK7Oo1KpwGYbaylp8KTLh88/8CjsoVjH6zpoYNLpeNdzr8ZLLt7ZyWwH/Ux4AAfDCaujXlmnArssxGIp9Hpz49pvq1WqWsX3j5/B1/90AkSLJJqYy8E/33Itnjth62h9waAfXq8TAA1qtQ6JRGwbM95O66xWq0gkYgiHA0gkogBotUCuCpFICp3OAIlE3tf74vkM6ObXg3jz1365TUeVyaDDplFgXK/CmF6Jcb0KNo0CnB1mw+s+SSxGBXeFQp3oTYZCoUDp1PFkuPOBBdgDze2BWiLEZ15zCyaNzUckNvskAB002v76JHVG5HN9kmqVQDabRCAQgE5nasn02Smi0TCczhXQ6XRYraOQSnduIW4XB8mWUIHdOsLhjW2BXTfrrCfRXC570y6fVlj2R/Afv3oEZ1y7s2FeYtHg/S++AaMGZWOdhWIFD86t4Ud/PoMZT+uE1WZwWUzcfukYXnHNEZhV7a93M/Y0oHvWs56Ft73tbXjZy16Gubk5/NVf/RW++MUv4pZbbsF9992HD3/4wzh+/HjHiz4o6CSgy+VSKJfzoNPZ4HKFPbFaFgo5xONRxGKRRltUvexeLpdgt1MCjCaTFRpN+wLTiUQM6+trW1rTKBFfBhgM5g6PZ39nMps/x2BQbVaUEdwalNUfzw3WNv9OkjtfyCwWG9PTU+DxJF0ZpWKlgu898RR+cupMy4wMi8HAm6+6HHccnWq7/Wcz9tt4lggCv11Yxo9OntqV4KWOMbUKf3vVFbjI0N7M0OaWMo3G0Jhj6Qb1WVCPx4FSqQiFYgCZTBrFYh5G4yAMBhPkciHi8SxKpTJisQjC4QBSqQRoNBrodAYIogIulwet1gilcqAnLZxm2I+Ajk4H4vEgKhWAxxN0NM+y/T0JpFJxxOPRhhTB5lmMcDgAp3MVPB4fw8MTTVnE3NEEvvzQcTyy2no26kKBQsDHf9zxXBwxdK8RFY9H4XT23pK8GfttR3YCda1SgV0ul4VIJIHBYIFcLm97rUuBMD58z0NwRlq3ud8yYcN7b74WYl77SZlyuVRj0Q2AxxNAIBAiEglCKBRhaGgcQqGgsc5UKl2rxgVRqZTBZLJAEBWQJAmVSgONxtBWl0s3OJ8B3ft/eB/un3G0tT8GnQ6bRo4xvQpjehXG9SoMaxXb2iLz+Vyjckej0eArcvDxX/4FmUKp6b6vsBnwiVc+FzLBznaFJEkkkzF4PGvI5892mmz1SXbySxhgMlv7K9t9ku1+x3af5OxjM3eYw+FgcHAYEknzxFcnKJfLcLvtiEZDkMspkp9+MKIfRFtSLBaxseFBKLQBOp0BjUYPg8EElUrS1ToLhTzW1paQTm/v8tkNJEniN6dW8MV7H0U005qXgE6j4ZXXHcFbb78a//vwGfzPn2YQTGbaXqdaIsBfX30EL758HGJ+b+RDexrQHTlyBHfddRcuvfRS/Nd//Re++tWv4vjx4xAKhTh+/Dje8pa34NSpUx0v+qCgk4AuHN6Ax7OGSoWaG2CzORAIhBAIRI3HXqlsM5lUTeC3WhP4bW+oPJ/PwuNZQyIRg1gswejoCDKZAkqlMgiisqlCRjT+3vpI/d7tmCWViWHVAkNW4+9WjwwGE6wOZr7OxVNeHz7/0J/gSzafnQEAm1KBf3nuszGo6D4jdlCMZ4kgcN/iMn548jRC6fYMzuVmI9581eUYUu5+g9pK+sDD0NB4R6QP56JaJeD3r8Pv94DJZEEgENbOUSnGxkbg8XgRDgcbs6b181AikUOr1UMslu1pJnc/AjqAwOLiDFIp6ryl0ejg8wVb7AiPx++J3bJarcLttiMU2oBKpYHFYtsxIE7li/jvv5zE3SfnW1ZYLiQc0avx6TueC6WwO8e9XC7B5bIjFgtDIpHDah3pW1X4oNiRnVBPwlCBXQZisRRTUxOg0ThtrbVQruD/PfwEfvzkbMvtBkQC/OOzr8Rzxq1btD53QyaTgsu1imw2A4lEhnw+h0qlDIvFBoGAA5fLjXQ61XD4S6UiWCw21GodBga0bd2bA8k0fvjEDJ5w+cBhMvDqK47i5jariuczoHvnd36DRxZdXb8Hg06DVS2vVfLOBnk8NgtEtYqv3/8kvvVgc7ZYAHjjjcfwd8+9rOl3mMtl4fE4Gp0ao6PDu/gk2/2Suq/VDc71OdrxTTgcdiPR2Ov1SZERheF220GSJCwWGxSKgb7dzw6yLSmVivD71xEK+UGnMzA0ZIVcrgZJdn5PI0kSGxvr8HpdtS6fsY7mGdP5Ir75hxP48aMzHbVMtoMpoxqvuu4Inj1lBatPfCJ7GtA973nPw6tf/Wq86lWvwotf/GIIBAL84Ac/AAD8x3/8B/785z/jnnvu6XS3BwadtlxKpXxsbESQSqWQzaaRzWaQzWZAEGeDPD5fuCnQE7XF1kNpr23A7bZDIBBheHiiLSeiXC7D53MhGPSDw+HCZLJCpRroyiiRJAmSrKJS2dnAVqsEGIy6AawbQVYjU9YNujFKqUIBX//L4/jt4nLL7eg0Gl5+yVG87vJjPV9sB814lgkC9y2t4H9OnEYg3Vr0FwBoAJ4zOozXX3EpNOLdDQYl/LnYMS17MxQKebjdDiQSUfD5ApTLZZTLJbBYLDCZbOTzWdDpdCiVamg0evB4e5NFPxf72XIZDidrdiTTsCWFApXFptFo59gRIXg8QVtBXrFYwOrqAnK5DCyW4R3F3isEgZ+fWsQ3/nQCqUL7A94HGWIeB3dcPIE3X9vd9b6VTIYGs3morw4YcPDsyE6oB3Z+vxvZbAZyuRJ6vaXtytYTLi8+9us/7jh/uRkWhRRvuPoSPHdiqO3Arn6f9HqdqFar4PMFDdkgPl+ASqWMUqkEPl8IjcYAhULV1jWzkUzjO4+dwj1nlrfMX9MA/Ncrb8OlZv2u+zifAd19p1fxrz+6vy/vVwedRsOgWgY2g4FFX/PRBQGHjX9/+U24fmJwx+fL5RK8XjdCIT84HF7NJ1F17ZNUq9WmQR/Vjs/cIXjrzifp1/VZLBbgdK4imYxBLlfBbLa1zdrYLi4EW0JpxHoRDPrBYDCh15uhUmm6SlZms5RUTKGQg9E42FHnGgA4AjH8x68ewck1f8fvvRkMOg03TQ3hldcewbS5+w6QZtjTgO673/0uPvvZz8JoNGJtbQ133nknnv/85+Ntb3sbHnjgAXzgAx/Aq171qo4XfVDQjxk6kiRRLBY2OWbpLUEei8XelH0X1oK8s8EaQRBwuVY70l6jaJ798PncAEjodGZoNHrQ6fQL4kKvo5O1kiSJh+1r+PIjj+6q2WaQSvDeG6/HtK4/F9xBPaYVoorfL6/ghydOYSO1e2DHotPxoulJvOrSiyHhtW4N2CycLBCIYDBYIJH0VjFLJKJwuewoFgsQCATIZrNgsdjQaPRQqbRdt6JUKmUEAj5kMimMjravMXbQZugIgkAul9mULEo3WpW2Bnn1St7WIC+ZjMNuXwSdTsfw8MSO7GmPOjz4wgOPwRVN7LpWs1yCNz37MmSyRaTzRWSKJWSLJeqxVHsslqnfC9RzRI9kykw6HRIeF2IeB2IuB5LGY/1/1KNk0//kQh70aikSifbIgM5FoZCD07mKVCpRI5MZ6ktb1LbPdkDtyE5gMGjI5RJYXFxCsViASqWBXm9piwkyXSjiM7//M343b991W5NcgjdecwmeO2EDs01Hr1wuw+t1IhTaAIfDbVRzZDIFNBpDS+bGzfAn0vjOY0/h1zMrTYm0Xn7pFN713Gt23df5DOhIksQvn1zE9x853RF1eq+waeT4zGtuhUkp3fZcXXqC8kkAvd4MtfrC8kl6XWddgHx93Qkmk9UguNsLXEjHlMOhYXZ2HuFwEBwOD0bjIORyZce+RLVaxfq6E4GAF0KhCAbDIMRiaUcSHPfP2PH5Xz+KUKo9v78OEY+DOy6fwEuvmoJWtvu1Xi6XEQh4kc2m98Qn6Vq24Ne//jWefPJJXHHFFXj+858PAHjnO9+JK6+8En/913/dzS4PDPaKFIUkSZRKxS0BXjabQaVCMbVRQR7lmFEDyXkMDu6uvUaSJBKJKDyeNRQKeQwMaGEwWLa0k1woFzrQ/lpD6Qy+8PCfcdzlabk/Bp2GV1xyEV596cVg90BesBnFYgHBoA9sNgM0GhMsFgccDhccDhcMBnPfCWcAKrC7f3kF33vyKQTbaMUUsFl4+SUX4Y6jU+Dt4rim00m43Q5ks2kIhSLo9b0FdtSN34t8PgOZTAWJRNF1e2GlUsbGhhfBoA/VKlmjk29/kP2gBXQ777ce5J0N9PJ56n1oNFptrkgEBoOOQMAHsZhiZjs3IHGEY/jiA4/huHN3EVQxl4M3X3sML7t8CgNKcdtrJUkSxUoFmWIZ2SbBX6ZYqgVtHIh53C1Bm5jHBY/V+TXVrc2rs/l5vW6w2eza7ExvZAXNQFW+wsjn0wAYW+wIm83pWUC+36gf02g0Db+/xnhIVKHR6KHTGdti/rt/wY7/uO/PbVWBjTIJ3nDNJbhlsv3ALptNw+/3QCwWQi7XgMVqrzXWF0/h24+dwr2zK7u2Gr/52mN483WX7rrP/ZItAIuOx+ZcmPOEsOgLY8kXhi/WegyhGzzv4mH82x03gMfe+r1vnpcuFgtQq3XQ6y1b7M+F4pP0ss5cLoO1tRVks2mo1ToYDIM9ESi1QiufpF+MnP3C5mOaSqWwvu5EIhGDQCCC0TjY9ljRZqRSCXg8azWfRAyDwdzReEauWMZ/P3gCP/zTmZYyHABgUkrwimuP4rZLRncVBQfqgdw6AgE/ALIx+9cuzrsO3dMJ54vlEtgc5G3NwLNYLNhs47v2BedyGbjdDqRSCYjFMpjN1h1fc6EYT2D3tRLVKn41u4BvHX8S+XJr2vJx9QDe/exnwarsj0NWqZTh93sQCPjAZDLB5XKRzeYagtYAwGAwGoZ0p5+ddFn2EgSquG91Fd94+HhbTpSCz8frLj+G502Mtmx7oobb4/D53MhkUrWKnblrprh+MD0GAl4EAj4AJAYGdA39u05wIQR0O78XgVwui2w23ajoFQp5aDTbA9p4Lo9vPHICvzi9uCuVM4NOx19dMoE3XXsMEh73grEl3awzk0nB6VxBLpeFVmuAXm/ZE13V+rVTJ6sSi8UoFIoolbZen2w2p6kdYbM55z1xdO4xrVQqCATWsbHhBY1Gh15valRgWiGUzuLff/1HPO7aPZEAAEaZGK+/+hLcOjXcVmDXyXfvjSfx7UdP4TezK21VktViIb756hdCI9ndThwkHbpUroAlfwSL3jAWfSEs+SJYjya7Wg+TQce7b7sGL71qats5mM2m4XY7kE4nIZHIYDIN7dia+3S2I9VqFT6fGxsb6+ByeRgcHOlKmL4dlMtl+P1uBIP+Ln0S3nnXjt7pmG4OyCQSGYxGa8ez+nXCHa/X3Qjs9HpzR8lmVziOz/zqzzi+ur7tucttBrzy2iO4ZtQMOn33/ZXLZWxsrCMYpAI5tVoPrdbQMa/Gngd0v/jFLyCXy3H99ddjaWkJ733ve+Hz+XDrrbfiIx/5SN97g88nzmdAtxPqX0mrE5Bi+XIhHN4Al8uDyTQEqbS5I32hGE+g9Vqd0Rg+9+AjWAiGWu6Dy2LiTVdejhdNT3Q0ZN8MBEEgGPTB7/eAJFGr+lBMTbFYBoVCCcViHsVisfZY2PKz+TKjBq154HA4DYNK/U499pu5sX48PRsx/PDJU/jZmdlt1NY7wSiV4I1XXY7rrK2rW5Q+XBxe79nATq83tzwfW62z03P03OyXWk0Fct2SEV2oAd1OIElyy3dQqhD435NzuOsvTyFTbM5UV8e1NhPefuNVMCuke77WfqOTdRIEAa/XiUDABz5fCKt1pC+ahjshk6Ey0qlUAiKRGBaLDWazrsbuWkGpdNZuFAoFlErUY7FYaHRzANT9gc3mbrIdZ500LpfKyvc74Gt2TEulInw+D0IhP9hsDgwGC5RKdcv3r5Ik7ptfxX//+Smsx9sLLPRSMV5/9cV4/tQwmC2c0Ha++/VYEnc9+hR+N7faViDHoNFw69Qw/uH6y6FqUz/vIAV0OyGdL9aCvBCW/BEsecNwRxItX6MSC/Cfr74FR86ZFSqVivB6XQiHA+By+TCbh1rS8D8d7QhABSZO5wqKxQJ0OtMWhuF+giAIBAJebGysgyQBnc4Ig8EIpbLukxS3+SHNfRJWyyR0v9ffalQpHo9gfd2JQiEPhWIARuMgOJzOWCLPJptdyGTSHSebSZLEQ/NO/PzxecSyeUwZ1XjplZMY1rbXKlsulxpdQgC6DuTq2NOA7q677sJnPvMZ/NM//RPe8pa34OUvfzm8Xi9e8IIX4Be/+AVe9rKX4T3veU/Hiz4o2O+ArhXOint6QKPRYDBYMDCg3fWCu1CMJ7DzWkuVCn548jR+dPJ0S4FwALjSbMLbb7gW6g515XZCnRTB63WhUiljYEALvd4MFovd9jElSRLlcqmpYS2ViluMq0gkgU5n6nk2rY5z1xnOZPG9J07it4vLu1ZnAKrK+bdXX4Gjem3L7erC3z6fC+l0CgKBsBbYKdr6HN2IjfbTaNaxHwFdOJvFRjaLYr4MOZ8HhYAPCa9/FRiSJPHHFRe+/OBxeBO7t14NqeR4501X4fJBw7bnLhRb0u46E4kYnM4VlMvlGtlPZ4P17aJQyGF93YVYLAwejw+j0QqpVN4Rqy9BEC2dtPqMNkAljtRqHdRqQ99m/3Y7pvl8Dl7v9s/Y6nhWqlXcv2DHt/7yFDyx9gI7nVSEv7nqYrxgemRHsptW6/TEkrjrL0/hd/Orbdk/Bo2G50+P4G+uuhhGeWdVloMe0O2ETKGEZX8Yi94wlmqP9SDvpqkhvO9F10Eh4je2r1YJbGx44fd7QKfTaz6Jbtdr6OlmRyqVMjyeNYTDAQiFYlitI3tC5EX5JBvwet2oVMpQq3X/P3vnHedaXeb/T3rvPTOZevu9lEsTcBVkETsr6iqriCD28lMXd13FFXvDskVWFimyCyiwWFgba1dQhEu7cPvUzKT3Xk7OOb8/Tkkyk5lJMslM5t7v+/Wa12TS5puTkyef5/k+BV7vSE81SaVSbrq/0WiG1zvSUW3aaqy1ToZhEIuFEQg0vsbRju1YqyyiToLN3WkSYUdOArfbC7fbt2772/cul5deeimuv/56LC4u4tJLL8WnPvUpvPnNb8Z9992HW265Bb/97W87XvSgMIgOHTfwNYaFhVlUqxU+J3207dzorWI8geVrPRgM4eu/+QMW0qt/2Vs0GnzgxRfi4m0T6zY6Qg0AFykqwmZzYHh4vGlmV6+OqZB2y0XkS4hGQygUuKiS1zsCi6U9h2glVlqnP5XGbX9+HI/MzLX1POePjuAdF5y3Zvpq3bGbRy6XgVbLOXZrvY52j+dSo1nfkeuNaN1oh+5/njqEr//fo8t2CRQyKex6LWw6LRwGHew6LewGLex6LX9ZB7teC5NGveocxWPhOL756z/hKX9ozfVatGq8+8Xn4vIzdq2Y2rZVbMla66SoKubnp5FIRGE0mjE+vmPFmXzroVqtIhCYRywWgkKhXLZ71cvjWavVREGWy6URjXLvOZd+PLzuUQvtrjWfz8Lvn0Eul4HBYILPN75myhnNMPjlkWnc/shTmE+m21qPx6THNRfsx6tP39nk2LVa53wijTsefQoPH55qz5GTSvGq03bg2gv2Y8iyvJFQO2xFh64V1Ro3vqhxGLnQgn9hYQYUVYXLNcRrkvZKCk4WO8Jpszjm50+AYRj4fBNwOj09Dwq12r0aHh7bAE1SRCQSQrGY7zr7ZintrlPYhQwGufRHr9cHt3u44xTR5cFmA4aGRtYMNre7zmqV0yTRqODIDcHt7l0grV070lUxz+LiIl784hcDAH7/+99DIpHgkksuAQBMTEwgkUh087RbklqNQjKZRKXCQCpV9GVrPZ/PYn5+Gvl8FmazDTt3ngaNRrv2A7c4+UoF3/7DY/jfQ0fWvO/Ld+/Ae154Pozq9Q1wBLiGH37/DPL5LN9MYlff0q8ALnVKSG0wGs1wONzIZlMIBPw4ceIQNBodvN4R2GyOnn5JjFjM+OwrL8OhUAS3/vkveC4YXvX+j8378Zd5Py7btQPXvOCcFXdAJRIJTCYLTCYLstk0FhfncOLEIWi1Ot6x67yTFcAJcGGODWc0h1c1mtVaDY/NL2AukcRpXg/2tzlMfSPJlMr45q/+1DLli6IZhDJ5hNYYZiqXSmHTa+HQa2Fb4uwdXAzjJwePYS35qpBJceW5p+HaC/ZDr+7NfLVBhWVZxONR+P1ct8WJiZ1rpgd2w9L6Mp9vHC6Xt+cp1Y1wLdq5xlpWqx1e7wjC4QAiEe7H4fDA6/V1nMLUKXq9Ebt3nyHWCR4+/AwsFjt8vvEVv7tkUilevnc7Xrp7Er86MoM7Hn0Ss2t0XQ1l8vjSL/6IO//0NN52wX685vSdUMqbj+9sPIU7Hn0Kvzwy3bYj9+rTduCaC/djyNydI7eZUFTvNcnSY5rLZeH3TyGfz8FisWFkZAJq9cmvSZZSqVQwN3cC6XQCFosNY2PbezafspGl9WXbtu1Z1yzYtViuSTziTtfx489Dq+U0idXaW02yFJlMhqGhUTidXgSD8wgEuFrBTkcdCJrEaDSLwebjxw+1HWxeiWq1wgeXQ5BKJfB4OE2yWU1ounLorFYr4vE4AM6hm5iYgNvN5VMfO3YMdnt/WrIOIgsLcwgG64XdMpkcSqUSCoUSSqWK/8393XhdOxGGSqWCxcVZxOMRaDQ67Np1elfdf7Yivz5yAp/7318hUSiuej+vyYi/v/hFOMu39kygtSgWC3y3pQS0Wj127Tqtb93tVoMzPlaYTFbkchkEAvOYnj6CQGCOd+ycPQ0c7PW48C9XvAaPzflx258fx2wyteJ9WQAPHz2O35yYxmtP24s3n33mqqMOjEYz9uw5UzSiJ04chkbDOXbttijmol9+RKMhSCScI+fxrGw0WZbFo7Pz+PYjf24a2/CO88/Fm8/Zv+b/20j8yQyoNTpqrUWNYRDJ5hHJtjdUfimX7JrABy9+Qde7EFuJcrnEjyJIwWZzYnR0ct0pukthGAbRaBCBgB80TfMdIEf61t1uNRQKJXy+cXg8PkQiAYTDi4jFQrDbXfB6fX0V4RKJBGazFSaTBYlEFAsLszh48Ak4HB4MD4+uKHxlUiletncbLt09gd8cncHtjz6FmfjKNgkAwtk8vvLwH3Hnn57CNRfsx+vO3oMT4Ti+/tNH8H+HptYMaABcYOQ1p+/E2y7YD6+5fwG8fuP3z/KNoThW0yTC3+1rkjIWFmaRSET578hTR5M0ws0+DMLvn4VMJsP27XtgtTp6/n+KxXxTB8jNOt6Nn2VOk/gxNXUEanV/NMlSFAoFRke3weUawuLiHObmTiAcXoTPN95RgHjlYHNnjl19SDrnyHE7h0Ob3k20q5TLT3/603jkkUdw4YUX4v7778dHPvIRvPvd78add96Jm2++Ga973evwiU98oh/r3RA6SW+QSgGlEojH0yiVyqCoKqrVKv+7AoriLjNL6r5kMq5Fdd2wNhvYbDaNUGgBUqkMPt8YHI71beFvZnoDy7Jg+B+aYUGzDJglv7nrWZQpCv/1xFP44/Tsqs8plUjwxv2n4+pzz4ZasT6hVKmU+ZSoMFQqNT8PZe3I00Ye03yea8WdSsWhVKrg9frgcKxdO9npOmmGwa+OTeHOvzyBaH7tz4BOqcAb95+B15+xD9o2GiHlchksLs4hm03zjl09yrd0nUujX9yO3OpGcy6Zws1//BOeXAgsu00ll+HH73jbmqMrNjLlMl+p4jXfuhuF6urdWvvBLrcdH7n0Quz3rV4buZStmCpFUTQ/imAOcrkC4+PbYTbbevr/uBS0KBYX5zqa0baRx5OmaUSjQYRCi6CoKmw2B7zekTW7KfdircKc1GBwHgzDjTrweNZ2dBmWFR276Viyrf9l1qqRKZXRjrqRS6W4/IxduOaCM1fsXCmMBtJodB2l5W5GyqVUCigULBKJzBJNUmnQJlWwbDuapP53JpNCKLQIuVyG4eFxOBzuLatJOmHpOovFAmZnjyOfz8Lp9MDnm+h5sKZSKWNxcQ7xeGcz2jZWk2QRCPiRTiegUqnh8fja3jVb7zoLhTwWFmaQyaSg0xkwMjIBo9HcxauAGGzOZtPLsoiWrrNSqYjBZalUJqZWdvL+c/Opcx0FAPpaQ1epVPCFL3xBnEN3ww03QKFQ4GUvexn27duHz372s9Dpel8MulH0Ol+dZVnQNL3MoLb6W3D8hJ2IXkV20+USYpUiEukCylQNFE2DomlUa3T9Mv/D/c2gStdA0Yx4W9Nv/nE1hgHNcA4Z57AxnIPGO28M76z1kh0OOz56yYuxzbG+neDGEQQymZzf2m/PSQI25wupWCwgGPQjkYhCoVDC4xmG0+ldNbrazTqrtRp+9Nxh3HPgaeQqa486MGvUePPZ+3H5vt1tzfoTdh4zmRQ0Gi1/7F2wWvUIh5NYWJhHNBps22jmyhXc9fiT+NFzh1ZNq/qfa6+CVbf6rsRG19D9adqPz//s94jnV9+N7hUOvRbvveg8vPK0HavW3q3EVhNiCwthTE0dRaGQh9s9hOHh8Z626a6PIJhFsZiHxWLjUwvb+w7cjOMpNB0IBv2oViuwWGzwekdaDp3v9VprtRpCoQWEw4uQSqXwetsbdcCwLH53bBa3PfokpqLtOXaroZBJ8Tdn7MLbLtgPl3Flh5YreeDSCycmdsLhcK9436UMag2doEkag87C5dU0icfjg9fr68nona1mRxKJHPz+OQSDfqhUaoyP7+jaiVgJbgSBH5EINxZpaGiso9TCzdEkeQQCfiSTMV6T+OB0enquSVoh2N1CIQez2Qqfb7zt4NRSGh07IYvI6XTymiQBv5+rg5ZKZfB4huFyDXWkzWmaRii0gFBoAQqFEmeccd7gDBZvRaVSWTMauRXYzAJkmq6hWq2KaRLrgWVZHAyGcPeBp1vuWGw11HI5rn3BOXjdGfvWNYqAYWiEwwEEgwtgWQYejw8ez3DHX1Lree9ZlkWtxrUo54qPuRlU1WoFOp1+TSetXC4hGPQjHo9AJpPB7V7ZwKxnnflKBd978lk8+OxzqNJrjzpw6nW4+ryz8bJdO9p6j5Y6dna7DYuLAUil0raMJs0w+Onho7jjsSfWnLG32+XEzX/72jXXtBldLiEFgoU8pgMJRLJ5JPJFxPJF/ncB8XwRqUKprdSxlVDJ5XjrC07HW88/c9kg4E4YRCHGsizfKZYFy3J/S6VAMhnG9PQMNBotJiZ2rOmwdEo+n8PCwgyy2TT0eiNGRiY6nje13uPJMIxoOzg7Uu+c63R6Vn3NDMMgkYgiGPSjXC7BZLKI3ez6sdZGuFEH84hGQ1AqVWJdzFoih2FZ/P74HG5/9Ekcj3Rer6+UyfA3Z+7C1eefuaojV61Wsbg4i1gsDK1Wh9HRbR0L+EF16NqlHoyuQi6X9zQ9eVDtiPBb+JHJJJDJaDzzzLMol0vweHwYGhrtaYoh1/wjgFDIL44g6Kb5R/80iWFNJ61UKorBZplMDrd7qC+apNW6k0muWUyl0rpZTCdwWUTzyGZT0Gp1sNmsWFxcXFNnrb6+GPx+rnmQ2z2MoaGRjvRm3x26SqWCY8eO8Vv33FMwDINSqYQDBw6QsQWbCMuyeNy/gHsOPI3nQ5HNXk5POMc3jI+85K/gMXYvyFYbQdANq733nGGsNPyUmwxktVppSsPlZkpx6baFQg4ymZx3aLyrfvArlTLfXSkEqVQKl8vLNwqpv6ZenKOxfAF3Pf4kftHmqINhswnXvuAcXLRtoq1doHw+i2BwHsViAS6XFw6Hd02j+WwghG/98U+Yjq8t6na7nPj8q14Gi3ZtIz+oc+hqDINkoYR4vog47+TFcwXEC0XEckUkCkXE80UkC6Vl79Er9m7H+y4+b1UB2/5rqkKtliGT4VIZWZYBw3Dp08Ll+m+Wv235dfXHMU0Cqtk5a/X3Ugdu5fORa6M+CpdruKcCrFwuYWFhtqE9/3jb4zmWstp7L3Sba/xptiNlUBS15PnkUCpV4ogDk8mK4eHRVR07QXQEAn6USoUVR6f04/uucdSBWq3B8PBYWynvLMviDyfmcdsjT+JYJL7m/1HKZLhi/2689fwz4Vxljhw3GiiAQGAeUqkEw8PjXXct3OoOXT+RSgG5nBHtSN0msEvsRWu70dq2CHZoqf0AltqT1jZmZfR6I8bHt3e9A9SKpZqkcQRBN7SnSZY7bMLfjWm4rTWJj9ckKzt2lUoZweACv5slhcu1vONjP85RhmEQj4exuDgPiqqK+q7bJjW5XIYPdBV5TeLpOOhfKOQxPz+FXC4Ds9mG0dHJrhzNvjp0f/nLX/ChD30ImUzrNvI6nQ4HDhzo9GkHhq1qPBmWxSMzc7jnwNM4EVv7C24rYFSr8P4XXYhLd2zrOl9/6QgCq9UBn298XS3KWZZFqZSHVEojlcqiVCqLhrJarYBespulUCihUqmgVKqhVKqgVKr4v1Wi0RReX6NB5KJCPrjdqzt21WoV4bDQyh9wOj3weHxQKlU9PUfnkync9tgTeLTNUQfb7Da8/fxz8YJRX8/y/yO5PP7z0cfwu6mZNf+/RavBOy84D5ftaj+9cFAdurb/J8MgVSwhlisiV65gxGpasTaoEwqFPIJBLrVmLaRSKSQSKf9bAqlU2nCdpOG25vsAEkgkEkgk4M8X4W9Ji7+xwvXc33K5FF6vE5UK27v27fwA7ZVGEHQDw1BgmAqSyQxvR5qFViNSqazJbnB2RN30tyC2BCdtcXEe5XIRJpMFQ0NjMBhWd+zS6QQCAX/L0Sn9/L4rFPJYXOQaQGi1OgwPj7fVHp1lWTwyNY/vPPIkjoaXf++p5DJcsX8Prj7/DNj1q6fBplIJ+P3TKJdLcLmGMDzc/migVhCHbjk0TSMWCyEUWlx2fi+F+zxLG+yHpKXdWHqf1WzGUluxsp0Bf87LYDLpIJNpQNO9SWhrZwRBN8/ZrElKTc4awzRrkkabsVSPKJVqKBSKJZrEj1gs3BBsHlrVseNq4Bf5rtTNo1P6eY4yDM3X6nJNqVyuId5J7vxz3O06KYrC4uIsotEQ1GotRkcnYTZ332Cvrw7dlVdeiUwmg7//+7/HQw89BKlUite97nX4wx/+gO9973u45557sH//YHWT64StZjxphsFvT0zjniefwfwqHQq3Gpft2o73vPB8mDXdGblarYZYLIxIJIBKpQyj0QyfbwJ6fXdfsrUahUwmhVQqgUwmiVqNG+KrUCiaDGErZ62b3YHljt3a2/0URfHd7AJgGBoOhxs+3yg8HntPz9Ej4Shue+xxPL0YbOv+p3ncuO6Cc3G6d+UGHGt9lspUDfc9/Sy+/9QzqNRWT/+US6V4w5mn4S3n7Ieuw9Tlre7Q9Zpcjts9TaeTUKnUGB4egdfrQj5fAcOgpaAaBHo5kymfzyIcDiCVikMqlcHrHYHb3d0IApZlUSzmkUolkE4nUShwnVilUikUimbbUb+s5oVQ57VL9d23eZRKgmM3umpqKDe3iRudkstlxNEpLhdX59rP8zSXy2BhYRa5XAZ6vRE+33hbqY4sy+LRaT/u+vMzeC4QgVmrxiv2bcdbzjsDdv3qdbOlUhHz89PIZJIwGs0YHd0GrXb9fQCIQ1enVquJDXlqNQoOhwvbt0+iWKTAsmgZ5BkEW9LbOZEUr0mC/O65BT7feNdjkWo1Cul0Uvyh6fY0iVKp6urYtnbsVg82UxSFcHgRkUgADMPA4fDwmsTW13OUGxuziFCI60JfHynQvg3t9L0XOhwvLs4DYDE0NMaPqllfdkhfHbr9+/fj85//PF71qlfhBz/4Ab7//e/j/vvvBwB86lOfQjgcxq233trp0w4MW8V4UjSN/zt6At976hkEM9mePrdCKoVCJoNCJoNSLqtfFn/Xb5dJJJBJpZDyv2VSCaQS7reMj8jLxL+F+wj3X34frUqJi/dug4qRdnVMi8UCIpEA4vEIWJaF1eqAy+WFXm/syIixLItyuYR0OoFUKoFcjtuR1mr1sFissNnsGBpyIZst9/W9X9pZqZ3asuYvzxq8Xg/sdjc0mt62435qIYDbHnscRyNr79oAwHkjPrz9/HOxw7m8oc1KnyWWZfH7qRnc8qe/IJpbuzX/+WMjeN9fXYBhc2e1TALEoasPYg0G/chm01CrtRga4tpTKxSygVrrSqy/No1GIhFDOBxAsZiHWq2By+WF3e7u2LGiaRrZbAqpVBLpdAIUVYVMJoPJxNmR0dEhFIu1nu0AtEKoNeEcuwKMRjOGh8fWrPlrrHNVqzWYnJyAXm8F0L825UsbzXQqfGssA7fDiHS6uOp7X6vV+NlWASiVKoyMTHY9k6oVxKHjnI5wuDnI6PH4oNfrBmqdK9GL41ks5hGJBJs0ids91HFNL6dJiqIdadYkNl6TODdAk3QebK7VauLoFJqm4fV6YbO5odH0b54e0NxoRiaT8YGp9oJxnbz3mUwK8/NTKJWKvNM61rOa074OFmcYBi6XCwAwOjqKEydOiLe97GUvw8c+9rFunpbQJpVaDT89dBT3Pf0sYm20lgcAk0aNqy84GxMWK2SQiI5Zo5MmOGpymayr7ne9Qi6XwmLiPkTtIqRVRiIBZLPppm5LneRQMwyDXC7DO3FJVColSCRSmExmjI1xrc6Fxj9yubSn3fJWQqVSYWxsO7zeEQSDCwgE/AiFFlft/iiXy8XucYlEmE9BCEKnM8Dl8vZsbsxZviHcPPxa/Gl2Hrc/9gTm1tghfty/gMf9C3jx5Djefv65GLGYV73/dDyBb/3hT3g2GFpzLT6zCe9/0YU4b9TXyUsgNMAJ6SQCAT/y+Sy0Wj22b9/T9TD4rUilUkYkEkQsFkKtVuO7p522rJ6snecR7Eg2mwLLslCrNbDZnLBYbNDrjZBKpZDLpVCr1SiVCsC62t6sjkQigc3mgNVqRyrFOXaHDz8Do9GMoaHRFXfBDAYTdu06HYVCDqHQAg4fPgypVAq73QWXa2jFQeHrXasw9yqZjGNxcRbPP/8UrFY7hofH1uwgqlbIV32vhNqlhYVZMAyNoaFReDy+vs7SOtWgqCpCoUW+DIBtKgM4FRDSKsPhAHK5DBQKJbzeETidno6EvqBJuB39BCqVMqRSKYxGC8bHd8BstorHdOM0iRrj45wmCYX8CATmEQotrhps5rp2jsLtHkY8zmVOBQIB6HQGuN1DsFodffn8cTPsJuF2DyMYnIffP4NQaBHDw6Ow29vvILoS5XIJfv80UqkEDAYj9u07q+sd1/XSlUM3MjKCY8eO4ZxzzsH4+DhKpRJmZmYwMTGBWq2GQqF9IU5on2K1ioeeP4wHnn4OqVKprcfYdFq8cf/peO0Ze+F1mgc+GtYpFEUhFgshEgmiWq1ArzdicnI3rFZ72x9UiqqKKQuZTBI0TUOhUMJiscFsnoTRaN4QI7kWSqUKY2Pb4PX6EAotIBjkWn+vNp+Ni0j5sGfPTszM+BEMLmJm5hj8/hk4nR44nd51d6aVSCR44cQYzh8bwW9OTOO7fznQNNC7FX+YnsUjM3O4bNd2XH3u2XAbmw1gplTGHX95Aj89dHTNJiw6pQJXn3c2rjhtH+QyIsi6QRAfgYAfxWIeer0RO3fug8m0dg3TyYCwIxmJBJFKxSGTyeBwuOFyDbVd1yKkZnK2JIFisQCJRAKDwQSfbwIWi7Wvg7zbRSKRwGp1wGKxI5VKIBCYx5Ejz8JgMGF4eGxFx44bbLwParUUx45NIRwOIhIJwmSywOUaaqverZu1Ck5oPB7B4uIcDh48ALvdheHhMahU6o6fM5fLYH5+CoVCHjabEyMjE6eMk7ERcI26FhGNhvjxS8sbdZ3MtNIk27bthsXSuSbhyjtSYBgaSqUKZrMNFosVRqO5q3TvXrM82Dy/ZrBZJpNhaMiHvXt3Ynraj2BwAdPTR+H3T8Pp9HYchO9krePjO+Dx+LC4OIfZ2RMIBhcwPDwGm83Zse2iaRrBIPd6FQoltm3b3VYzp37SVcrlrbfeim9/+9u4/vrrcdVVV+ENb3gDDAYD3vrWt+KWW24By7J44IEH+rHeDaHd9IZnA0H87MgxFKgqLGoNXAY93AYD3EYDPEYjLFpNT3a6suUyfvDs8/jhwUNtzQQDALfBgL87+wy8bPdOKGWygUvDWI121loo5Pm0yigAFjabEy7XUFv1cVzxcEFMW8jnuXRVnc7AO3E2aLW6gRri2Ypqtcp3uAxCIpHA5RqCxzO8zLFbus5SqYhIJIBYLAKGocWUVIPB1BNjRNE0fnb4GO5+4ikkimvPVlNIpXjNvj24+gVnYcRjxXd//wTueOwJ5CvVVR8nAfCKPbtw3fnnttW9sl1OpZRLYRh2IMB18zIazWLb+pXOhc0+79ulnXXSNI14PIJIJIhSqQCNRguXawh2u6utIE6tVkMmk0I6zdXD1WoU5HI5zGYbv8NkXTM9c7OPp5DdEAjMo1jMw2AwiTt2S8+BxrVWqzUkEjFEIgEUCjmoVGq+G5x7XY1EVoOrUQkhEJgHTdfgdHoxNLS8K2CrY1qtVuD3zyCRiEKn02N0dFvHIyY65VRKuWw9Sse74rmw2ed9u7S7zkIhh3A4gEQiCgD8Dra3rd0arq62wNuRBPJ5LiCq1xt4W7JVNEkFodACIpEQpFIJH2xe7tgt1yQFhMNBxONhsCwLi8UupqT2y0EqFvNYWJhDOp2ARqODzze2rFNxq+MpfGf6/TN8OcswPJ6Rvgb9+1pDxzAMbrrpJsTjcdx000147rnn8M53vhPpdBp6vR7f/va3ce6553a86EGhHeP51EIA//jQz1bdPVDKZHAZ9PAYjXAZ9fAYDXAbjXDz1xnVqxemJotF/M8zz+HHzx1GaUlr6pXwmU14yzn7ccn2bU27FZv9Qe+EldbKMAxSqTgikQByuSyUShW/y7R2CgPDMMhm02LaQrVagVQqg8lkgcVig8lk7Xju36AcUy61RehwKRGjY0JXp5XWWavVeDEbQLlcglarg8s1BJvN2RPjVKZq+NFzz+N7Tz7bViBCLZfDZTJgPrF2Y599Hhc+8KILscPpWPc6l3IqOHRCi+dgcAGVShlmsxVe70hbAndQzvu1WG2d5XKJT6sMg6ZrsFhscLmGVnVkGx/bWFfLsiw0Gh0sFivMZlvHImRQjme9w+U8CoU8DAYjhobGmo7JSmsVmsYkkzFIJBIxHbMXjUVawc3tWkQotACWZeF2DzcFs5Y6nlxGgx9SqQw+33hb8+56wang0BWLBXH+mEKhaBgsPdiBjHZZbZ2CJgmHA8jnOU0itLhfq6siw9C8Jkm21CRms7XjXc1BOaaCY1ffpRV27NrRJFyJCKdJ9HC7h2CzOfq2I9nchMmA4eFxmEyWluvM53OYn59CPp+FxWLH6OhkV1kCndI3h+7gwYMIBAIYGRnB3r17xevz+byYdqnX97fIsd+0Yzw//fNf4g/Ts+v6PxqFAh6jQXT63EZud8+q1eDXx6fw00NH2xrmDACTdhvecs5+vGhirOVA50H5oLfD0rVSVBXRKJfCQFFVGAwmuFxDsFpb1/Vw8xCLKBRyKBTyKBRyKBbzYFkWKpVajJ5zaQvdp+j14piyLItKpYxSqYBSqYhSqSg2X+g0yl2vWQiAc+y8cLt90GhUq65TaEAQiQSQTichl8vFdLNeGKt8pYoHnjmIB545iDJVW9dz2XU6vPvCF+CSHZN9E2Sb4dBJJCwCgVnUagzf6VADlUoNlUrdVWfDldfDtQwPBhdAUVVYrQ54vSPQ6dq32VvFlixdZ+vz3AOXy7vieV6tVlEs1u1IoZBHtVqBRCKB0WjmU6Bs6/qc9Op40nQNpVIRxWIBpVIBtVoNDoe74513zrFL8o5dDnq9EcPDozAaLWs2xKlWq4hGg4hGQ6KtdruH+laDWatRCIUWEA4HIJFI4fH44HYPQaVSwGzWYnp6HrOzU6hWK3C5hjA0NNrTz9NabIZDl07Hkc+nIZHIoVSqRTvSbWfDlSgUcggE/Eil4lAqVbwj525beG9VOwIsP8+NRjNcLu+K5zmnSQpNdqRRkwiZQQaDaaA0SbFYRLlchEajhdO59mzYpayURaRWd6NJVrfV60Ho6ruwMIdCIQej0cLv2JlhsegQiaQwNzeNWCwMjUaH0dFJ0enbCHru0GWzWbz73e/GM888A5ZlIZFIsH//fnz961+Hx7NyK/KtSDvG8/MP/xq/OTG9QStamd0uJ646Zz/OHxtZ1VhvFeMJ1Nfq94cQDC4ikYjytRROuN1DTYM9VzOUAKDRaKHTGaDV6mEyWaDRaHv2pdbJMeUGBFd5x63QJLyEAeMymQxqtRbFYh4SiRQulwdu93DH+eRLi9E9nmHs2bMTxWJtzXWuZ+diLVLFEu598mk89NxhUExn56BCJsOb9p+Ovzv7TGi6mCfTCZvh0AEMFhamkUqlUamUm4bOy2RyUZS1+mk3NbCxZbjd7oLX61uzuUQrtootEdYZi2UQDoeW7UTb7c4m8VmtVprsSKGQA0Vxab8ymRw6nR46nQF6vREmk6VnKTadt8ameftRFO1JsVhomumlUmkgkXCfZ73eCK/X1/Hgc6FBzuJi3bEbGRnD+Lhvze6R69m56IZqtYpgcB7RaIhvCOVDoZBFPB6HyWTF6OhkX5q3rMVmOHSpVAyxWAj5fEE8fwVWsyONs1BXo7HrqUqlgdfrg93u6tgR2Wp2JJnMI53OIBJZfSeaYRgUi4WmQFCxWFimSXQ6TpOo1YOhSTg9UlxDk3jhdg91qUnqWURe7xB27+5EkwR4TULDYrHD5fL2RJMsRUg/X1ycRalUhNVqh8Nhw9TUFCQSCYaHx+B0eje8Tq7nDt1nP/tZPPjgg3j3u9+Nffv2YWZmBrfccgtOO+00fOc731nXYgeNdozn04tB/MOPf7pmw4Z+ceaQF1edsx/7h9c+uSiKwvz8caTTXCpb43Dfxpkv3G2rDd1sNexXCoVCAblcAYVC2XRZLl+901gjLMuCoqqoVquoVIqIx8NIp9NNdRlSqQzFYqFJcJVKjYZSx4suvejE9TOveSXjSVHVJuMoOG7CsHGpVAqNRgeNRgutVsdf1kGp5L5QKaqKcDggzm2x213weHwdCxJh/ks4HADLMnxbYyfMZtuaX740TSORiCAc5mqL1Got3G6uZft6j2kkl8d/P/EUfnHkWFufnxdNjOE9f3U+PMbOWjx3y2anXFIUjVqNQqVSbvopl7nh9ZVKGY1mWy5XtBRoarUaUqkM0WhoWcvwbgbYcm3vo5ifnwHD0KItaB7oK11iO5bblJUG+8pkMigUy+2IQqFoO+rPsixomgZFVUHTFAqFNPz+haZaUb3eiFqNarIjhUJeFL9yuVwUXFot91ulUvftS3y1FPNyudRkQ4rFIiqVekMspVLVZEO0Wi3Uai1kMpm40xYK+ZHLZaHRaOHx+DrucCtEywOBeb7zqRY2mxNWq7Ot86hQyIkt2wGIgbl+dIKrVMpYXJxDPB6BTqfDyMgEjMbuB/qul81OuaxWa8vsSONPrVYv5ZBIJKs6fMViAYHAfNNcQputuyYQFFXF7OxxZLNp/n93q0laDQtfrkm4v7vTJDRNAaAwMzOLfD7XQpPkm+xIa00i2JON1yQsy6JWo5psiODELdUknC3RipcFJ79arfCaJAiWZbr+HmkMNtc1iQtms7UtTSKUiJRKRWg0On6MTHv1zp3Asizi8QgCgXlUKmW43UPwekf7Eoxqh547dC95yUtwzTXX4G1ve5t43c9//nN89KMfxRNPPAGtdvO7d/WKdo3nUwsB/Pj5Q5hJphBOZ0FvgHP3glEf3nLOfuzzuNe8L8MwCIUWEQjMgWVZyGQyMAyDpW85J8hkS37XDSxnLLmTfPkPA4qiUKtRy54X4CLbCoUCMpmM/8ByxpRlWTAMA4bhxKswpFvAZrNBrzcDkIgGs9FQarU6aLUbZyhbQ0MmYxAOx/mdQc6JE74kJRKJaBwFsaXR6NoWh9yuSgjh8CIoqgqLxQ6v19fF7BoaxWIac3PzyOdzkMnksNkcsNvd0OsNa7b3zuUy4lDlevc/77o79vlTadz1+AH89sRMy9vHrRa8/8UX4qzhoXX9n07ZbIeu3chqtco5eZVKCdVqBeVyCZVKuWmnBuA+3+ttGV4s5jE9fRTFYoFfr3zZZ1YikYj2Q/i8N4oz4Qu70X40/k3TNVAUJQ7HbX5uaYMdkUMqrZ+zLMuApmnQNGdLGnc3lUolbDYH1GodKpWyKLyEz6hcrmgSXDqdoeepaWshkwFKpQThcBy5XE4MBJXLJfEYKRTKJhsiCK+16pQEcrkMgsEFpNMJPj1uGA6HpyObyTWTyiGdjiMYDIKmaej1RjgcLlitzjXTsVp1/xPSMXvdrpxla7DbTchkSpu6+7PZDt1ar52ma6hUKqhUSi0dPnpJyYdOZ4DXO9L1rD6GYRAMLiAYnG9Lk8hkMtGG1DVJ4znbuSaRy+WQyRSQy1fTJLUmZxcATCaLOLpECCyXSsUmTSIEkrnfug3XJCxLQyajEYkkVtEkS4PJ2g41SZDXJBSfsu/rODjDsjQKhRTm5vwoFHKQy+Ww2Zyw213Q6dbWJFxH4gBSqQRkMnmDJuldczQAkEoBg0GFQoHaEnakbYdu3759+O53v4tzzjlHvC6ZTOLCCy/ET3/6U0xOTna30gGkG+MZS+QQTucQzuYQznG/Qw2X4/lC1xOGJABeNDmON5+9v+VA5qUI28bz8ydQrXJRZ59vHKefvgfpdBHlchXVaqXhp4xKpdJ0XaMokkgkUCiUUKlUUCq5XHzhR6FQgKIoVKsVXkxyzyUYVIZprwZQgDO2clSrFTG1tzFFQTCUG9myd2ltinC5ns4igVqtEUWWYCjVak1PhCHXwCKCUGgB5XKJ70Tog9HY3lysxi/4XC6HeDyCeDyKarUCtVoDu90Fu921Zm760vlcJpMFdrsbVqttXe/HVCyO2x97An+ZXwAAmNRqXH3eWbh8356W9aDtUioVEY9HUC6XsG3b7rbfi0F36NaCYRjx80hRVZhMlq5bhlNUFX7/jLi7otFosXv3afB6HUgmcygWy012o9mOlEEtaebEpY+qmmwIV+ejAssyvKNa4QVlBRRVEZ28Tsq9pVIZ5HK5KO4AwXkzNDlwG+m8La2XrduTEliWEdfYaEMEm9KrrpHFYgGh0ALi8QjkcjlcriG4XENtR56F8zQezyIejyEWiyCTSUIikcBiscNud8FksqzqoAkjMiKRoDgz1G53weFwdZUCvNo6e/V5SqUSSCajsNtdsFjW/g4WGHSHbi0aMwVkMnnXaW7Cez43d4L/PEowOjqOfft2L9Ek5RZ2hPtb+IwAnCZptiHcj0qlglyuaMj2KYtBLoqqolardaFJFFAqFSgWSwBY0SlauvO2kTMMabq2JOWauyxoEomE0yRLd916qUlisTBCIa6pltFo4TVJe+dH4zmazQqaJAKKqkKt1vKaxNmFJrHC4XD1LEjU67RgQZNUKmVMTu7quSZp26HbtWsX7r//fpx++unidTRNY+/evfjBD36APXv2tPUPtwL9MJ5VmkYsl+ecPN7Ra7ycKi6fKyeVSHDJjkm8+ez9GLO2V4BZKOQxPz+FXC4DAPxg4N3Q6/Ud7QDUarUVjavw03jqCE6fQqGEUqmEQqHifzf/LZcrIJFIxDQAiqJ4Q0vxTmCVTzO0QCJRQqXSbpihbLc2RYiS6/V6uN12UJQEHZaEdQWX8hZHKORHoZCHVquH1zuyYnMYgZXSMLLZNOLxCJLJGBiGgcFggsPhhtVqXzXyzzA0EokYotEQ8vksZDIZrFYH7HbXukYf5KoVlFCDU60DujyetRqFRCKGeDwirs3h8GBkZOKUceh6AcMwCIcXsbg4D5ZlIJFI4PON891TV2+MsfR5Wjt8dduydEdOJpM32A7VErtSv06Ifgs7cxRVFQNJQqqUTqeBTKaGRlNPH+o37damCGJLp9PD5bKBprndx41AmBUWi4UAAE4nV6+7loBaaRxAIhFFLBZBqVSAXK6A3e6E3e5es9V6sVhAJBJEIhEFTdeg0xlgt7tgsznXld603s+TMFMwHo8gkYiJaxsb297WaByBre7Q9YJCIYe5uamG8UB6bNu2B3q9bktoEpqmoFBIIZUqoFbr+YDyRmuS5hKORk0iOG4ajXaTNEkMweACisU8v4PrW7MJ0sqaJIVYLIJUKg6GYWA0mmG3u2C1Olbd7eRKRKJ87WiO1yROOByudY0+6MVniaIoJJOcfSwUuAwpp9MDn298MB26Bx98sKnj5VZnM4xnmaqJu3mRXB4mtQq7XM5lA5dXolqtYnFxFrFYWDxJfL4JuN1DkEgkPTfyQn55rVYT89U3o7C3G1rVppRKRZTLK9WmcBFzoTZlo9a5EoIzFgz6kc2m+cL0Ydjt7pZfNGutk6ZpJJOcE5TNpiGVSpui7au9r+VySYyuVSplqFRqccev0/SHbo8nwzDIZJKIxSJIpxNgWRZms5WPpne+e3gqO3RC0MDvnxZFg15vxOTkLvH97PVaaZoWO0cqlcqe7b73+5gurU1p3HVbrTalsV52I9a5GhRVRSQSFGssbTYnPB7fiuMGVlurMEsrHg8jHo+iVqOg0ejgcHAO2mrpvgzDIJ1OiDt+APjPsLut+ppO1rkalUoZ8XgEsVgElUoJSqVKtGfdNFU5lR26arWChYVZxOMR8VwfGZmEy+XdAE3SWb3camzE8eQ0ydJgcnO9rEqlbqpv4y5rm+zlZmqSTCaFYNCPXC4DtVoDj2flZjlra5Iaksl4kyYRgsZr7QIKu2DxeATVamXTNEk6nUQ8vlSTuHlN0pk9a9eO9CQcuJmT0U8W1Ao5xqyWtnfiBOp1cvMAn9Sp0xkwOblz3TVOq9GY8jDoCLUbQh1eq9oUs9naVW3KZiCRSMR8/nw+h1DIj9nZE1hcnIfbPdRxe2GhLs7hcPOCJop4PMzPFVKKxrCVyFOrNRgeHsPQ0ChyuQyfGsqdj53U13QKJx7zYvporUZBq9XB5xuHzebqeKYggYukz89PI5fLiPVvIyMTogDrF9xu1eDXYAuiJZ1OrFqbYrHYROHVz2YqvUChUGJ4eAwejw/RaEhMxzSbbfB6fR0N3pZIJHwa2jb4fBPIZFKIxyNYWJiF3z+zaoq2INisVgcoqiru+J04caij+ppuqNVqYkBLOPetVgfGx7f3pZPeyQ7D0A2ahEOvN2JiYmfPa5wa2VqapIpYLCzWuZXLRfE2hUIJrVYn2pGtoknMZivMZivy+SyCwQXMzh7H4uIcPJ7htuYSNiLUxdU1SUT8USpVsNmccDjcLb83NBotfL5xDA+PIZfL8Kmh3PloMJjEHb9+aJJCIS9qp1qtBq1WD59vAna7s+uyh07oaIduz549TTPmWJbFE088gb1790Knq4s9iUSCu+66q60FpNNpfOMb38Dvfvc75PN57Ny5E9dff71Yq/fnP/8ZN910E6anp+HxePDBD34Qr3rVq8THVyoVfPnLX8YvfvELlMtlXHLJJbjhhhtgtXbf2WorRMOEre6FhVk+v10GhmExMjIOl2to2ZfQoETt2qFXa6UoqqFVLivW3zXuuq2nNmWQjmmpVBTFGNcEw8uPPFB2tU7OOOX4lCPOOOl0+oZ0qJWNE03TSKUSiMfDyGRSTfU1ZrN1RYHUzjqr1YrocJZKRSgUCthsLl7s9Wb+5am2Q9cYSZfJ5KDpGgwG04oCbJDO+9Xo1TqXtu/n6mX1PauXHaTjyTAMEokogsEFlMtFGAwmeL0+mEzWrndVajUKySRXb9dpija349d5fc1a6xSccy7lPA6WFdK7hJTz3uwSn0o7dCzLIpGIYWFhBtVqRey06vO1DgoN0nm/Gr1cZ3P7fs7RXbrrdvJokgJCoUVek8jEkQfc7ml3miSfr2uSTlK0OU0SRywWQTabgkQihdVqg93uXjULqZ11VioVJBLcrn65XOSD4E4+CL6xmqRth+6tb31rRwv47//+77bu9/a3vx2xWAw33ngjbDYb/vu//xsPPvggfvjDH4JlWVxxxRW49tprcfnll+N3v/sdvvGNb+C2227DBRdcAAD4+Mc/jgMHDuBLX/oSlEolbrzxRuh0Otx9990drbeRQTee+XwW8/PT/HwfNarV8qoCbLPW2S3rXevSAdsulxcez3DPIySDeEy59sKLiERCYnvh4eFReL32rtdZTx8II53m0qG44mP3mt3OVquvWeqArXQ8BWMcj0eaHESHwyUKzV5yqjh0NE0jFFpAKLQAbvyABAzDrCjANnOt3dCLOqqlA7aHhkbXTEPe6HX2A6GxVjDIdaHTanXweHxwuVywWg1dr3WlFG2HwwOVauWdlUYHrJ36mpWOaWNKqOAgCimh/RhYfKo4dLlcFn7/lNjWv1I5eTRJb+qoqggGuQHbgARu9xBfj9zbNviDeEwrFU6TRKNBsCzgdLoxPDwCj2e9mmR5irbD4V5z3iYXFOZsEBcUVvI7fssdsNU0CZcSGkY2m+YdxPbKVLqh5w5dP5ifn8dll12Ge++9F2effTYAznBfdtllePWrX41EIoEjR47ggQceEB9z/fXXI51O4/bbb0ckEsHFF1+MW265BRdddBEAYHZ2Fi9/+cvx/e9/H/v37+9qXYNqPCuVChYWZpBIRKFUqvl23TX4fK135TZrneul27UuHV7pdnvhdvv6NjtkkI9prUaJtTG1GgWHwwGdzgi93gStVt+1waEoColEFPE4V+DLzeQZgsPhXjWFYaUUSS665lq2k0hRtJjCmUjEwDA0DAYjH0HvfbpEIye7Q8dF0qNYWJhFtVqBVqtDsVhYU4BtxlrXQ7fr5By5BAIBv+jIDQ+P9S39bpCPpzC2JBj084OkVXC73VCr9dDpTF3bVuF5Gz/fNpsDbvfwmmNZarUaH20PN6VINtbXNB7TUklII4+gWMz3PYWzkZPdoatUylhYmEUiEYVKpQbDcOND1goKbfQ618N61lmtVhEK+RGNhiCRSOByDcHjGe5Z19perrXf1DXJImo1Gk6nA1qtoQeapJ6iXSzmoVKp4XYPw+FwrZrmKWiSWCyCRCIipkgKGQBLdxIpim7ZSK5fKZyNbGgNXbdYLBbceuutOO2008TrhOGQ2WwWBw4cwKWXXtr0mPPPPx9f+MIXwLIsnnzySfE6gfHxcbhcLjzxxBNdO3SdUK1WkU5TYJj+tdFvjKRLJFIYjWZks+m2BdjJDmc0G6Nfw32Jfm0l5HIFhoZG4fEMI5GIIptNwu+fBcMwfPtpE4xGM4xGMzSa1TvRNaJQKPjo4hDy+SzC4QAWFmawuDgHp9MNl2uo5fnI1dcYoNMZGuprwg31NVa4XG7I5Q7Mz88hGg2LBc0ez3BXBc1bCW5HJIVqlYVU2r/zNpfLYH5+WnRUAG7XZHR0W99r5QYdYVcqEJhHsZiHwWDCrl2nn9J1VBKJRLQThUIOsVgYsVgMxSJXH6XV6sTbDQZz26Km8XlHRycRi0UQDi/i0KGn+fl0wyt275XLl9fXxGL1+hq73Qmn041SKYPZ2XmkUgm+xseGoaHRrpqsbCWq1cqGaJJg0I9QaBEymQwGgwm5XIZoEp5qtcIHl0OQSiXweHxwu4f65shtBQRN4nYPI5nkUh+XaxILr0m0HWgSpaj5OE2yiPn5KSwuzsLh8MDtHmq5+96oSUZGJsQmJgsLM/D7p2E2W+FyeSCT2TA/P79Ek/gGUpNsqkNnNBrFnTWBhx9+GPPz8/jEJz6BH/7wh3C7mwdoO51OlEolpFIpRCIRWCyWZakaTqcT4XC47+sHgEDAj2BwAVKpFDqdAXq9EQaDEXq9cd0pfsK0+oWFWdRqFCwWO/L5LPL5LEZHJ9fclTvZWW40uQ/1qWw0lyKVyuDxDGHPnh1IJHJIp9PIZrkfv38GLMtCLlc0GdN264H0eiO2bTOiWp1AJBLgh6AHYLHY4XYPrVgfw3XRtMFisTWNGTh+/DCOH0fPxiBwg5CLqFYrMJu7r6ndCGo1CgcO/BkMw0ClUjfYEdOard/boVIpw++fQTIZg0bDFdynUgkYDCbs3n3GwH0xbSTEkWsPnc4Ak8kEi0WHcDiBZDKJbDaNZDKOcDgg3qfu4JnaqkWTyeRwu4fgcnmRSiUQDi9iauowlEoV3O4hOByeFR1FlUqNoaFReL0j4piBSCSEYJCbaanXGzA6um3dYxBqtRpyubQ4eH6QWVzkHK1mTWLiNcn6vhubNUkNVqsduVwGhUKOBIXAaRIhtVIqlcHr9fGbX/NNAAEAAElEQVSaZHAbmmw0MpkMHs8w9uzZ2UKTTDdoErP405km2QOfj5tPx2mSRVitdnH3fyVNYrXaYbXam8YMHDt2CMeOcTbKZuM0yXrGIHCapIBqtdoXTTJQZ9lTTz2Fj3/847jssstw8cUXo1wuL+tWJ/zNzfkptexmp1KpUKlUll3fCXJ5exG8ycltGB8fQSgURSaTRiIR4WtSuA6ARqMJBoMJRqOpo6hDNpvG7CyXky4UacdiERiNJmzbdmbHXeFkMmnT70FmrbVWKhUEAn5EIkFIJFIMD4/A690YR05wEpLJONLpJJ/22tvUBqVSBYNBEPSGdb8u4TgqFHJYrVaxYRBNc2mNmUwamUwK8/NTYFkWCoWS76JphslkgVq9eqc+uVyD8fFtGBkZRywWQTC4gCNHnuVn0gzDbneuGBGXy1UYGhrG0NAwqtUygBqUSh2A7gwmw9DIZNJIJhNIpRKoVMpQKlU455zzIZFszrnfji2RydS45JJLEAiEkcmkkc1mkUzGwLIspFKZeD5w9sTY9jlRq9UQCMwjEFiEXC6H1+tDIhFDJpPCxMR2caxJJ2wVW7LWOoURDQsLcygU8jCZzNi370yYTJ11Gu6WWq2GTCaFVCrBjzrorR3hBL1eDA508v2zEsKx1Gq1fKTaC5ZlUS6XkcmkkMmk+U63C5BIJNDrDaItacfBczqdcDqdfPfeRSwszGJxcR4ulxsez/Cq33sWiwUWiwWTk9uRy2Vgs5nBsvKuj2u5XEIymUAyGUc2mwbLspic3Am329vV862X9jXJdkxMjIqaRHg/AK4DIGdLOtckmUwKs7NTKBTysFrtkEpliMcjMBrN2L59f8dBoZPFjgBcwCwQ8CMcDkEmk8LnG+NTK/svsYVxIalUom+ahAsyGjZck8zNTQFgoVQu1SRrlQVoMTGxDaOj44hGwwgGF3D48DPQ67k5eTabYw1N4sPQkA+VSgkSCQ2VSgeW7YUmiaNS4Xb5zj77/J4HPwbGofvVr36Fj370ozjrrLPwta99DQDnmFWr1ab7CX9rNBqo1epltwOc4Ndouo84S6USWCyt5/AsZXp6GtPT0+LfnCBWiAN1Y7EIotH6bqFEIuFbgkvEn1ZUq1WYTCbs3bsXs7OzKJfL2Lt3L8bGxtYVHTAat04kfulaS6USpqen4ff7IZPJsG3bNoyPj/c9tZIbWplANBpFJBJBqVSCTCaD3W6HWt37QvpisYhQaBF+P9cSXafTwWw2w2w2w2KxwGAwdNWFrdV7b7cbAfgACO27k0gkEojH45iePgaA+6zZbDbYbDbY7fZVP1t2uxG7dm1DLBbD7OwsTpw4Ar9/BmNjYxgdHV1jnEB7n7mllMtl8b2Jx+OgaRoajQZutwtWqxVarRYWS+/q4jqhXVtSrVbx6KOPgqIo8Tq5XA6WZcW5g5lMSryt0X4IX0yt7AJN02BZFhMT46AoCn6/H1arFWeccUFTZ+JOEMqut4otWbpOlmURCoVw4sQJ5HI52O12nH76abDZbH1fS6FQEM/VRIKbT2QwGGCx9L6QnqZppNNphMNcRz25XM7vsFlEe9Kt/Vr+3uvh9doBCB1yC4jH47zdDGFxcR5SqRRmsxl2ux02mw0Wi2VFUWWx6ODzuVEulzE/P4/5+XmEQgG4XC6Mj4/DZlu98YHNtnodXisYhhEzf6LRKPL5PKRSKWw2G3bv3g2tVgur1bopI1E60SRTU1OYmZlpuKauSSqVMsrlUteaxGw2Y+/evZiZmUG1WsW+ffswOjp6SmiSVusslUqYmprCwsICZDIZduzYjrGxsQ3TJMK52m9NUigUEAwuoFarAQD0er1oQ8xmM4xGY1dpzO1qEsGWTE3VNYlgR2w225qaZPfu7YhGo5idncXx44ehVqsxNjaGkZGRvmkS4b1p1CQejwdWqxUajQYWS286YDayqU1RBO6++2584QtfwMtf/nJ85StfEQ/wK1/5Slx22WX48Ic/LN73gQcewBe/+EU8+eST+MUvfoGPfvSjeOaZZ5relBe/+MV461vfine+851drYemGWSzpbXvCK41a6GQQaVSA8O0jooIzl2lUkGlUkalUgHLcvdVKJRQqVRQqdRQqVSQybhhmCqVCrlcDuFwgN+V29X2rhy3i1RCsZhHoVD/4Qa9ci1ydTquTa5WO3izkmQyKYxGDbLZEmia+xJaXOR25GQyLo2h39GvarWCVCrJ78SlwDA0VCoVLBY7rFYbTCYzFApF0zp7CRf1LiGX41Jsc7ksCoU8WJYVc78NhnqK72opCUuPZ7vUahSy2QzS6RSy2TQKhTwAbudZiJSZzZZVU4uLxQKCwUXEYpyAcDhc8HpbDy5ud53CvJdkMo5UKoF8PgcAMBhMsFpt0On0KBQKSKXiyGYzkMsVOO+8C9veoWtXOLVDu7ZEIgHS6Rjy+dKKdoQbZF1DpVLm7UlZdAClUqloQ5RKNT+gm5slp1KpMD8/A4qqYmxssqNduVqN4u1HQbQjxWIBSqWCb7WtFe2IRqMbqNSipedTva36HIrFAkwmC0ZGuGYn/YJlGWSzWaRS3E5PqVTk50iaRVui0+n6ZkcAThTl8znRjuRyWVAUFwgVsgEao++rNRLoxpYIOwjCDl4mkwZN1yCVSmEwmGA2czM19fqVG5QwDI1YjBunUCwWoNPp4fFwjQ9aCcl211mrUbydTyCdTohDqS0WG8xmCwAJMhnudoqqYnx8O7ze4bZeN9A7W9KJJikW8ygWs21qkjKvS9rTJNlsFpFIkN+V29X2rpyQ2cLZj7xoUwRNItiQQdQkrc4lTpPMIxIJbagmETJP0umkmJ5vtdpgsdh5TSLvqyYplUqiHcnnGzWJFHq9vqFUwNA3TSLYkEwmhWKRaxTEaRJuB28tTVIo5HlNEoFEwnXd9HiG161J8vkcb+cTKBQ4TWI0mmCx2MTGY6lUAtlsBgqFAuee+8K2z/F27cimO3T33nsvPvOZz+Ctb30rbrjhhqYX+KlPfQpTU1O49957xeuWdrm86KKLcOedd4pjDIQul/fddx/OPPPMrtbU745SgnET6uFyuQzKZc5YKxRK6PVGFIt5UFR1zQ6WNF1DsVjgjXhBHJ4tGHJuSKUeer0eJpMeiURavA9N0wA4Mdg4m427rINSqdwUoyoc03A4Ab9/HrEYZzTd7mG4XEN9MZpCx6N0OolUqv6B1OuN/Je7bVl6ykZ3lGIYBsViXhRnhUJOPG9kMjn0egP0egPfzdIgGrVezvXL5dL8blFaHIaq1epFB89gMC0bGiw8NhoNIhIJgqKqMJkscLuHm1r8rrZOmqaRzabE94eiqpDJZDCZuGGmSqUKuRyX1lAqFcTh6xaLHRaLraN61q3U5ZIT63U7ks/nwDA0JBIJtFo9lEqlWCu3WrMClmVRqZR5O8KJrWIxj2qVS10XBmdzg6N1kMslSCbTKBQKqFTqQlOpVDXZEK1WC41G2/Kc6DfCMU0m84hGIwgE5lEqFWEyWTA0NNrR0OxO4EQHl0qZySRRq9UglytEO2IymZucps3oTFepVFAoZBtsSR4Mw30faDS6JlvSWMPZi7UKtlaom8lmM2AYmm+MYOaFWeu0KmG3OhxeRDqdhFyugMvlhcvlbfqMr7ROIVCWTnPCOJfLAOBsmMVihcFg4hudLRXNdlgs9o7rZ7ZKl8tGTcLZkewyTVIo5FCrURgZmYDTuXKtXK1W4wPdeVGbLNUkXCqwHkajHolECoVCoaUmEWazCZcVio3XJI3Hs1AoIhj0IxYL87VgPrhc3r4M/RY+J4IDJ2gSg8EIs3nQNIlgS3Li94FcLhdrODlb0g9NUkU2mxFtSbMmsTRokuVBH4qqIhoNIRIJgKIomExWeDxDMBrb1ySZTEq0FYImMZutMJmsUCg4TZJKNQbyrGL/gH5okk116GZnZ/Ga17wGF198MW688cam29RqNcLhMK644gpcc801uOKKK/D73/8eX//615vm0F1//fV45pln8MUvfhEajQY33ngj9Hp923PwWrEZLYIpiuI/FBnkctzw1dHRbeKXGsuyqFYrYoRLMJSVShmAILi00Gr1fJRLD61WL279L10n93xVlEoF/qeIYrHQZHhlMtkSYaYTh3H3y6iyLAuaphCLBcQ0BrfbB7e790ZzdSfBBrPZumrqxCC0CK7VKOTzORQKOdGo1mrcro1KpeabFBgxPOwBw8hB0737uFerFT7qzu3gUVQVEokUBoNRNKZL2xEzDINkMoZweBGFQh5qtRZu9xDsdhdUKkXT8axUykink0inE8hk0mBZBiqVBhYLZzAB8O9dnB9kK4fZbIXVaofJZO16OPBWcuiWIuyGCHakVCrC4XA3NSugabopCCT8FgS9QqFYZkcahcPStdI0jXJZsB9FlEoFFIsF0RkEAJVK02RDhGHc/ew2KJMBpVIWR48ea3DkxmAwdJ6OtxprOQlms23V9viDYEcaBT1nS3IoFrkdeaEWT6czwmQyYXR0CIUC1bO1MgyDQiEn2pJ8PguAs1+CHTEazcvqdkqlIsLhAOLxMFiWhd3ugts9BK1W33RMq9UacrmM+P5UKmVIJFI+ms9FzwuFPFKpOHK5DFiWhU5n4IWXfV21h1vFoWsFRVWbdmNkMjlGRyebNAkXBCq0oUnq9mR1TVJpsiHC5aWapB400oqOXr+QySRQq6U4dOgIotEwZDI5PB4uuNyrAfQCgiYRnLhGJ4ELBg2+JqEoStQjgi1p1CRcNoAJPp8HNC3royZJgaIovjO8ibcjlmVNxhiGQSIRRTgcQLGYh0ajhdvN1f4rla00SQKpVBLZbAosy0Kt1vDvDVd7LdgZQZMIDtxGaJJNdehuueUWfPOb32x52xVXXIEvf/nL+MMf/oCbbroJc3NzGB4exgc/+EG88pWvFO9XLBbxxS9+EQ8//DAALt3yk5/8JCyW7gvbN3vmC03TvIPVKLjyYvRKLpcvM5JcFHxlcdTuOgUj3ezkcUZVOFXkcoVoSFUqDQAWDMOAZRkwTOPl+nXC39x1re8jXAa45jdcSo23p0ZzNSfBbLatGM1pxSAYz6UIX4r1iFkWxWIeDMNAqVSJIqWT19nu/y2VCqIxzeUyYBgGcrkCJpMZRiMnzIT2wVyKQhah0CJSqTjkcjncbi+Gh71YXAwhmYyL6RRGoxlmsxVGowWVSklsSEPTtb68pq3s0DUinAtLBZcQeQewTHDpdPo1xVG7a6XpWlOgqFjk7IiQ7ieRSKBWa0RhJpPJ12U3lj5OsFcWixVe7+ia8806gWGYBichyRfP150Es9m26qDsRgbRjgCC459vsiXVakUcOWA2c5+7dl9nu9RqNbFmNJtNiecr12VTSM+s1+zUahQfaQ+iWq3AaDTD6x2GWi3HwkIAqVQSDENDqVTxwtgKhUIp7qIWCjlIJBIYDGZYrTaYzb17TVvZoWv+//XPcqMtqWsSRVMASKfTQa3uvSYRbIigT9rTJM22pFtNolAo4PH44HT2Q5O0dhIsFlvTub4Wg2hLhPevMejcrEm4LJqN1SQW8UfoWivMxgyHF5FKJSCXK3hN4sHiYhCJRD37h0sVt8FoNKFcLiOViiOdToCm6b68pi3h0A0q/TaeQnHySj9CNAPgcoMbjSQX4eos7YATz2kwTBVSqQoajb7jtEUhCr10N4+LdkogkUjFmh2pVNJwWdpQdM393Xi/Vo9TKBSYmBhBLlfp2ChxdUYUKIoCRVX5y1UxciM4CQaDqSmVshsG0Xi2QioFWLaC+flFJBKxpt0si8UOs9nS891PQfAKwkxIF6nnulvEuVXlcgmRSACxWBg0TfPNG6x87rkeuVwGqVQcmQz3ZSe03bda7esaSLoSW8WhE871cnmpDSmhUqmgWi2Lgkcmk4sOm+C8aTS6jr9suBlXcRiNOkilKigUnde61GrUst28UqkIhqGX2I2VbcRK92m8Ti6XweNxgmHkXdkRhmFAUVVQFIVarcrbFArFYh6ZTBI0TTfUW9lgNJq7EnpbxY4AAE1XUS7nsLgY4ANivdvNWolKpdwUda/VuPo7rqU5Z0s0Gi0/fiKOcHhRrKvV641iChTD0EilhE5zZUilMt4Gcu9fP1L5t4pDxzA0X0tXavhdFi8LzTAAQK3WilqkvuvWnSZhWQpSqRJq9fo0iWBDuMyAdjTJynaj+T5SyOUymEw6KJX6rjod1jWJYEvqmiSdTi1zEiwWK9TqU0WTLCCRiPd0N2slBE0i2JF6TwCtWH/H2fC6JolGw2AYGnK5Qtwl1Wp1yzSJVqsTnbjN1CTEoWvBeo1nc8Hx8h8hQg1wUWqlUihArv8Ikev1nNRcl80wYrEw/wUmFVMX1GoN9Hojn+NsgFarH5hhq43HlKJo0HRtiYO28uVGZ1hAIpFAoVCKTpzJZO3Jl/dWMZ5Lj6eQl59KcbtgjfVmZrOtL13chGLmbJYTZkJajl5vbIi666BSSZHPV5BIxPkUKC79SnjvLBZ732emDYpDx6Uf15psR7lcRrVa/93Y9EAul0OpFOyHGkol95urh1WtqxNdJpNENBoShzTXHUWZaEOE2s1BmdO19JhyDlqjc7a6PWnVUEIul/M7+jbxy329X95bxY4AzWstl6tiehFXb0ZDpVLzzV46rzdrB6GuqDHq3jxqhUurAmhYLHqEQjHE4zGkUgnUahQUCoUovIzGlbts9opBcegGRZNUKhXEYiHEYtyQ5mZNol1WuzkImqRVamg7mkSwNY3OsICgSYTsE6JJ6k3O1lsD3y4URYl6JJNJidkHer1BDBQ1apJ4nNMkQko4p0m49Q2KJiEOXQs6MZ7VagmFQhrpdBalUknsQNdIK+Mo/KxHaLViqfji2i474fF44fN5EArFkU5nxIL4YrHeOZFrnmIUjapK1d4wx/WslaKoZTsLFFUGw9AolbjdylanqEKhhEKhgFyuWHaZ+12/XiqV9el10NDplMhkettRSi5X9DQ6tZqRL5dLonMn1P5wjWC4DnzdRgrXolwuNdXf0XQNMpkMarUahUKBT1+zwGq1iylSG8VmOHQymQT5fBKxWBLlckn8TAgpTQA3JH4lO6JSqXu+w7BUfGm1OjidHrhcHpjNWiwuRpDJ1G1JY+dEwckTgka9jrYupXmHoSzaYYapoVTiBGvjsRSQSmWirVhqN+RyJf83d1kul/dFYMpkEmg0MqTTxZ7aEUE09tL2rWRLGIYRa39SqTgoihIbwQgd+PrRGKc+t4qLugsZGBqNFtVqBTRNQ63WiMKrH07mamyGQzeImiSdTiAaDSOdbtQkQ/D53AgGY8hkMmIteKMmEWo3BVvS7+6XdU1SanB2K6BpCqVSGdVqtStNstSe9EuTsCwNvf5k0CTxpnpkg8HIf4b7E9Dl0kKXahKuUZNarUKhUIBUKm0KfPd7NEUjxKFbB50Yz1CIa6evUKgaWv1q+MsaKJWqDYkyVSplcTeOE196OJ0e2GxOyOXyVb+Iu+mc2A6NOwyNOwt1wdW8wyCTycXdBYNBB4aRQCaTtxRWm9F9U2g4wXU1qrfL7wcqlbqpy5dWu3ZNwkq0G7WjKIqPuHOpBAzDQK3Wim2RV2vssB64MQQ55HJpADS0WiP0+u7S13rBZjh0LFvDwYNPQiKR8mJL09Jh6/d5XxdfIaTTSVF8OZ0e8f1faTexWq0u6ZyYEz/fq3VObIdudhjUag0MBm4grFSqEG1I3XlTbtoOADdUPMnX8yZbZhb0gnpjq+YOxgpFd42t2rElQn2s4NyVyyVeDFl5UWZd92DilaCoqthYxWIxQqMxQqncvDlnm+HQBYPziEZDUCpV/I59sz3ZaE0SjYZAUVXodHo4HO1pEm6sQTudE40dCevG0S8r/Qg1c8L/U6k4OwLIIJPJlzhn3G9htMNGs1J37n6gUqmXdTDuvyap8nYkwac3MtBotKJzp9P1Pr0RqNuwXC4NiYTZMpqEOHQt2OwC5HZpLb5cvPhqPtE7WWc7nRMFg6pWa0FRrYVWuVwWO+cBwqys5UJ16Q7DIKUNMAyNbDYtphVxaSIymEwW2Gx22Gwm5PPlHnZq4oRxvZFEoUmsqtVasVtgo1Fdzah1czyFlrxCsW99PpOQrmTuuSjo5fvOdR1MIpNJgqIo7N27v23DPygplxsJJ75CiEbDovgSAkJL6ys7aWbQ3DkxK+6gNHZOFKLvwjpa/XSzw7DZx3Qp5XIRqRTXkElIFdRqdbBa7fB6XSgUKj3t+MZlOazU2Eq+rIOx4OitRjfHtFQqIpWKI5mMN8xnMou2RGiU1Et69d5zO49pZDJJZDJpeDw+OByuth8/KCmXGwXDMEinuQyhTCYJqVQGu70eEOp2ncs7J2bFVEahc6JgSwRNIgSPlwaSmzVJ66wHIWV9Ncdzs+A6YabFdOfG7tw2mw1Wa+81SaXS3H10uSZpDhqtNoMOWL8mSaUSS5qi2WAwEE0yOFNgCW1TqZQRjXKpUJz4MmB8fAdsNkdPmlvUC0C51vCtuhQtLMw2RbIA8MNH1byBNcJmczbtVm7WzlqncMXKXMQrm001zSJq7IQpfNjl8v4aemGuT6Mwi0SCopPNdQusG1VhZ2896SkymQxWK1cLI3R/EgxpNMoNeDcauRkvBoNx02swOcc7IxrMcrnE58Mb4XC4N21dg0xdfAWRyaRWFV/dwKVx6/iBrR4A3JdyoZAT21kLIyyWolAoRFtiMBg3JethvTAMI+5UpdMJ8Zw0mSwYHd0Gs9nKB7L6Jxgbmz3Xm0jUhVkul0YsFhIdPYVCuWw3T6PRriudl7NJI/B6R1CtVsSdO79/GvPzU9Bq9TAazfxAYuOm12CWy0Wk09w4m1wuLXbjM5msPR95cbJQLpfEDKFmTeLsya6GQrG2JkkmW2kSqTgg3WAw8eNxNjbroRdUKhUxM6ixO7fN5tgkTUIt6WBcQDabbtIkghZpDBr1SpMIDU4EWxKJBEWnVrAjm61JuHTwtGhLuE7IXPMbp9PTl/OOOHRbBE58JfjIlyC+XHA63T0RX6shtBdXqzWw2ZziekqlAsrlMpRKJVQq9aYM/ewFXMpfXox4CfOXDAYThobGxK5Tm/Xa5HI57zg1D0KmqGqTUS2VCmI7f0AYzqqFTqeHy+WARmOCRNL5l6vQptxoNGNkZBLFYgGpVBzZbAoLCzN8vYNU3GkRDGo/694EcSqkrWWzGbAsI7Ym9/km+NlVxMQthRNfIcRikb6Ir9XgAgHcuSTAzbvKQSIBv8Om3rTUlvVCURQymSSEoeJCJ0yz2YaRkQkYjZZNe211kaUFYBevZximoYMx1xo+nU4iHA6I91EqVXzarB6ADyzbXcqkUqkSB4ELaaepVKLJsRcCgpwdMfWk8cxqCDsegi0ROjcbDCYMD4/BZLL2pXvnVodhGD7AF0I2m4JMxmkSh4PLEOonp4YmyYnjDBo1ic83BrPZtuYuWD+RyxUrapKlHYyFdv5AfWC8TqeD2+2ERmME0Lk9FOrZuODYpNjoLZNJwe/nNAmXBWJosiX9rHurzyPlgsrZLNcFWNAkJtMETCZzX4bQCxC1M+CUyyVEoyHE42FQFAW9fuPE12oIH5Z+O5P9Qti+56JewgBPrpW/xzMMs7l/dR69gsvfVzaJY66ou9rg5HEO33PPhfndASvsdifMZltX50+9UF0PYEysweSGz2YQj0cQCi0AqHdSNRhM0OuN6xZFqwkvn48Ir9Woi68gstm0KL6cTg+02v6Kr7UQWv9vRYS0UiF6LnRl1ekMcLuH+9bGupdIpdKGndQ6QspmY9AoGg0jEPBDrVbDanXCbnetY+yLHDabUxTklYowPzODXC6LZDLGCzMZP4yYE2V6vXFdgZpG4SXswrEsyw8yt8Jstmyq4z3olMtFRKPcblytRkGvN2JiYiesVgfRJOuApmvIZOqplLUaJWoSr9cHk8myJTSJyaQUh2wDK2uSgwcPQiKRwGy2wmZzwWKxdtU4idMk3Ps+PDwm1mAKdmSpJhH0SO80SQrpdAqZTF2TGI1m+HwTMJutG+p4E4duwGAYBjTNDVblIl+DJb62MpVKWUx/EqInarVWdHA6GeA5qAgNIYSoEMDlgWs0MkxPzyMaDWNq6gikUi59wWZzwmSydG1wpFKpaByBYXGYteDgCQYV4HZnGh08vd6warSKE15FXnilWggva9ezv052uIZENKrVMuLxCGKxyECJr62MUFfFnZcJcSSMyWTB+PgOmM3WTU8b7AVSqWyZQJbJJGCYMmZm5hGJBBAM+qHV6mG3c47Zel43l1LrgM3mAMA5lEKDnVwui0gkhEDAD4BrsiNkAggpuavZsLrwSopjUzZTeG0lGIZBrVZDLteoSeRwOLjduKWBAEL71AMLzZrE4XDDbLbCYDBt+XNydU0yh2g0gqmpw5DJZLBY7LDbXTAazevSJAYDZxc8nnp6rmBH8vksYrEwAKHxXz2rSK83rvq9KATwhKCyUAutUqnF8RObqUmIQ9cnOCNIoVarib9pWrgsXF9bdp/Ggl2DgYiv9VIuF5FIxJBMxsSZa9yOzkRX80ME41AsFlCpFBEOS1EuU2CY3jUzUCiUYs55r1JG1Go1vN5hOJ1elMtFxONRJBJRxOMRKBQKPtruXHcny8Y6Srudi7zTNM1H3jmDGgotimmhwqgMg8EIs9mMWk3Fv1/1JjQSiRRGowkjIxMwmU4t4SU4ZkvtRK1GNdiT1r8FiPhaPwxDI51OIpGIiTPXOIHCDQLmmgR1ZqNpmpu/VC4XEQ7TPbcjUmm9trbbbnRLkUgksNvtkMk0GB3dhnQ6gXg8ioWFWfj9MzAazbDZnLBaHetOd5ZKm9NzhdbiuVyW/8kgGg0B4FLAGoWZyWRCNpvF4mJAbH/OCS8NzGYbzGYLDIZTKxjUSpMstyNraRITJid3wWq192UMxalAqVREIhFFMhlvGio+MjIhplJ2QqMmKZcLCIdlPbclSqVy3R1yl8JpEh+cziHxmMTjEV6TKGGzOWCzudbdybIxPddu5xoa0XStIViUQSi0IKaFarV6MRvAbDaDopRIJGJIJLg0+rom4UpQzGZL38Y7dQrpctmCTjpK5XIpJJNRftZR3RC2GkoLcLsU3EwPOeRyBd9FSfhdv6xWa7tOZWnFoHVqWo31rrVcLiGZjCGRiKFYzEMqlTXMQ7K0LTQYhkaxWOB/8vxPQfzgc4OclWAYtuVcmm6pVqticbdMJm9oUFBvVtBJLvhKx1OoHUwkIkgkYqCoKlQqjRht7+X510hj90PBoAqjMgTUao2Y/rTRwmszulxKJCxCoXlks7kmO9JqKC13f0mTvZDJltqS+m+hYL5XbBVbst51MgyDTCaFRCKKVCoBhqH5rpQOWCw2aDTt1XYJu9aC/SgU8nxASDjnJdBo1GBZ9NSOcIPUm7vRNdoQrVYLlUrT0bmx0jGt1Wq8zY0im03zqVQ2MfuhX5kPQkdmIRsgn882ffdKpZzwEnb0+z0AeCmb0eUym00ilYp1rEla25H6ZY1G21PheqrYEYDTJFygMopisSBqEqvVDqOxfU1C0zRfm5ZHoVAQbYrgdMvlCiiVij5oksq6O+Q2sromyYkB51qNEusk7XZX3z6/dU1StyOtNEl9F860oQENMrZgHXRiPFOpGFKpGFhWmJm2sriSyfozmHYtuOYZecjlQLXKQCqVb/pMt9XoxoBWKhUkk1EkEjEUCjlIpVKYzTa+C9Tqudn1HO9mI1kuF8X7CJFurVYPnY77rdGoYbXqe/6F1Bhxa2xUUC4XG7rRKVoa1VZfDO3Ojspm04jHI0gm42AYGjqdga9xcfQ9hYyiKJRKOSgUEsjlWigUvfl/LMuCZZmOjO9mOHQAg/n5E6hWa012RKFobU+kUumGf26FOYzlch46nRrVKivaEmFY7iDRjR0R0imTyRiSyThougaNRgur1dFWkENozFB33IQgEOeYCwEanU4PrVYPrVYHg8EAm83QF2ErdMgVbIiwtuUdchs70q3cja6dY1qtVvhoexTFYp7vTscdv/WkUrWDcI6WSnnY7WZIpSowTG/+H8PQkEg6+9xthkOXTEaRTsebNAkXRF7upBFNsjbdOnSVSlkMLDdrEifMZksHmiQvBpUbnQy1WitqEcGW9FeTlJpsCNeAprRKh1ztujWJEFBr1CR2uxNWqxNKZf+argEQj79SKYFCoYVcPviahDh0LdgqM19awTA0XxBan9lSqZRXfUzzoMzmoZncAN76ZZlM1ndj2+4xrVarYlQ4n882FNiu3PSD6+hWbDKSjQJHJpOJjlvdSOpaPtdGv/f1bnTLjaoA142uPrpAo9HCYDDAbje2vU6GoZFKJZFIRJBOJ8GyLIxGM+x2FywWe986R/byeFYqZTF9o1qt4pxzXkjm0HWAsKsktAQvFLIoFPIrRvkBLkVuuQ1pfVlwSvtJJ/Py6k5cDLVaDWq1RnRCVkpTpahqk9NWLOZRKjUGgTTLbIkwI6+bdfaS5R1yi02Op1QqbTlfSqvVdCQYS6WCGG2vVMp8KhWX3t3PZjG9nEOXySQRj0eQSiXg843D4/G1/fhTbQ5dK4TU4rotaUeTNGsPwWZshibp5HhWqxXRiatrEps4XmAlTcJ9/pptiZCdwWkS/RJbom3pEGyeJmkOGrXSJI2jUAwGfUeahKZpMb07k+E0CTcL2LnlNEksFgFNUzjrrAvJHDpCHWGbuHEWi9DeViLhBvdaLDaxpsDttiEez6BUqqBWo0BRFCiqyl+u8n9T/OBIqqkOR0AikSwzqkJ+skrF/e5nq3iKokThJaT2mEwWTEzsXPbBFr5IuLlXeVFwCTEMlUoNrVYHl8srGsz1zEnpN83d6Bzi9cIXQqNRTaXiTfO9dDodX/TLtRpebZivVCrj89cdqNUoJJNxxOMRzMwcg0RyHBaLDTabi9/5HJwmMjRdE9eazaYhlUphtTr6NvPlZEJIXWu0JcLnX6VS8x3E7NDrjTAajbBYdIjFMiiXy6KtEGyIcFkIlFBUtaUjKJPJm4SZSqVqsiP9/CyyLIt8PstHf2OgKAoqlRoOhwc2m6PJ2ajPvOJsiSC8KIo7PtznUg+DwQyXa0i0JYNcn7Vah9xGYVYqFcToOCDMgrJCo9FDrzdBpzOsagM0Gh18vnEMD48hn88hkeCCLOHwotiQymZzbngq5Gpwu3x5PiDEpX1ptTr4fBNwOslMy9VoTKcXZk0KmoTrQqmHxWKHXm9YQZNUl9kTIV25G00i2JP+apIqksk4EokocrmMqEkmJ3fBbLZ1oUn0oh3R6fQtg0CDwsodcpklgeciksk4KpW6JtHr9fwweOOamkQmk4kdcQUNmEhEeU1yAhYLl95tMg2WJhFS0ePxCHK5TN81Cdmha8GgRsO4iHmuyVgKX7QajRZ6vZGfu2GARsN9wIQt+1IpD5qmwDCcsyeVSiGTySCVypZclkEmk0IqFaJeLN95kwHD1FCrCQ0aKNHYVirlJkPL1QDWhVnjTzttd5ceU8GpSCZjyGRSAACj0QKbzQGr1Q65XNEwsLguuoRoOTfguB4l1+n0K6YCdMKgRUKXwuXbF1GpFEFRJcRicRSL3HmtVHKDVrmBvqa2Go1UKlwqVSIRFWsTjUYTTCauzfd6WwB3czy53ZUUYrEIUqk4GIYRdxO7bSZ0su/QCaMmGm2JEFHlun5xNoT7sjVALlegWq3yn6scSqUi3+1QsCV1m8HZEWkLWwIwDNfghWHohkYvlBhIqlbLqFTKorgRGuwsDRi16+wtPaZCfQZ3DnM1o/Xie6fYzVEYWFy3J3lx50qpVDWlXWu1+nU7noNuR4TdWsHBK5XySCa5GXsSiUQUZNyPcc05S0IqFbfrxX1m1WqtOFeqF13iujmm1WoF8TjXmKFUKkChUMBmc8Fud3U9V+1k36GrVCooFLINtiTfoEl0TbZESFeupxHmwTCdahIpAE6PsCzDN3RptCVVVKtVVCqlpvpjuVzRZDvUai3UanVbmqTV8RQ0iVAzCqBhx8jGa5KaaD8EWyKUcQiahEu9Fko4ThVNwtUPU1QJ0WhM1GkqlbrBjrSrScoNmqQgNlISbMl6G6h1q0mW2jej0QKHg8tw6qcmIQ5dCwbBeApdeATHLZ/PigXuCoVSbPsutJWWSiV83UbdqREiP5zx4La5KxWhcxUjCivh8mrpVI1IJNIGAcc1Bmms6xFGL3CGdbmzt9TRa9zZ45o9SKHXKzEz40csFkEmkwLLsjAYTHwdhgUUVWkSXMsNpYGfl2aARtObDm9LGXTjKdC4zlKpglwuI/4UCjn+PgreweOM6VrpUNxw8QSy2ZTYQY6bQWMRfzodLN7J8SwWC2JKJUVV+Q5WbtjtzlUjfe1wMjl0wswtIW1SiJjX7YJeHAiv0xmgUqnFVMJGp0b4DHPdBA1QqRSoVKqo1egltoT7u92vlUbRJkTXuboeSUOHz1pLZ0+pVDfYkfplpVINqVQKuVwKs1mLxcUIotEIkskYn/angNXq4DsxKkS7KUTOhaZHSqWqwY5wtqTTc7odtoodAeprTSbzyGa5hkbZLGdLhHNEpzM0CbPVmiVwqVTcIN5MJsV3kJPwWSVcoEiv77zzbrvHlKZppFLcrn4mk4JEIoHFYofD4YLJZF13FP1kcuhqtZpoE4Rd/FaahLMlegCSZZ8tIaC4MZpECZmM+94XRi9QVHuaRNAlXKqnVMxIiMW4YFA2mxJLEWw2B4xGC6rVSpP+EoJkXLaUDjqdQdQmRJM0apIy37U2zWsSbkdXoRCGl5t5TbJ6E6rG4eL5fFYc6i3YEZPJvAGaJIx4PMprEi0cDhdsNhdUqvXV3xGHbh1spPGkKArlMje8VfhdKpXEDmjcLCB9k7GUyeRilEswIKVS3VBqNDpRgAjF90qlvK0i1FZGtVGoLb2em3VV4X/KYhpS/fjIG0SajP8/deO6tL26Wq2BQiFHNpsBwzDijqNMJhcj54KhFLb7BadWp9P3rD13O2xF47l0nTRdE1uA53IZ0RDKZLImUbZaahVN08jlMshkUshkUuK5qNXqeENqgcFgWjMytdbxpKgqEgkufaFQyEEYTMxF0Nc3bqGRrejQMQyDSqXcZEeE34KDolZr+M+TUdzFr9WoZbtRwmdSoVA22RHBoVEoZGuutW4jBGHWaD+arxdsChddr/C7/hWx0ytQT6tSKJRN2QPCTl9jFzaAi/ZqNBo+XasIuVwBo9EMtVoNmmbEtMnWzhv3ux/OWyu2ih0BVu9OVy6XkMulRQevWq0AEGbG1YNFKzVYEp4jk0khm00hm02DpmnIZDLRjphMlq52Z5f+n1wug3ic6+7LMDQMBiPsdndPxi00shUdukZN0mhHhLo3YdB7oy1pT5PUP19cPWm/NEmtyY4sTdPkNIlKbAjDZQ/QvCahlmkSjUYDtVqFRCIBlmVFh5XTJCU+oNyoSfRNdqTdbri9YKvYktXWWavVxO7XuVwa+XyO1yRyfr4c5+TpdPo1NEma1yTpBk2ih8lkFjXJWo1J2tMkUcRiERSLeV6T1Hf1N1qTEIeuBb02nkINxnKxVWoyHpwI0YrtpfV6I5RKFUql5TtvQD3KVXfcOEPZ6iTfqA86wzANDh6Xjtn8d0VMX6qvrbnbFhdZUaBS4e4PNBrK5p23zcwtPxmM51IYhmkwplwLX4ahxQHigoO32gDOarWKbDYlOngUVRVn7QiirNUOYKt1MgzDF0NzDVoAwGy2wm53962Gb5AdOq5r4XKnrXH3SiaTiTaE64TGCQwuLbm+89ZYeM85b80OzUrCeyPOe5ZlxZ05wW4stSsUVW1y4rjd/cYmCVxggqvnKIsOIlcTqG+ym5203O41W8WOAJ2ttVIpN+zgpUXRK6RWCeneKzloQp2jYEfy+az4+LqDZ26ZMtdqndz8Ta4urlIp87MyXX1thz6oDl0rTSJcbkxVbNQkgtZQKlViQKS1Jlnu0AyKJuHsSPuahOtqCj5jQCIGjwCiSdZDt5okm80gn+eC/Z1pkgoymbSoS9arSVKpBOLxMNLpZMOIlv71FSAO3Tro1nhWKlWUSqVlBrKxtavQPYwzkhqoVCrIZFy6IsPQYqOSclmI/HRuKNda52Z/0Ou7euUWQq0CmqZgMBigUmnFyN5mG8pWDNIxXY31rFOYVSdEy7jUqlpDul499bdVvrpQJC8Y0mw2DYZhIJfLl0XdG9O5MpkMYrEIkskoarUa367YBZvN2Zb4FoqyC4UcGIaB2z3U9mvebIeOomi+Zqm4zHlr3AGvdzTVioX/crlC3AEXxIfQQr+xDqweKdfzIq393ahBOe+FJh7NDl/dAaSoCriZSfqmwFc7dbwbyaAcz3ZYz1opqtqUoik0y2iVrteqDq9WqzVE3VOig6jTGWAymWE0ClF3aUOaXBqRCJeanc9n+aYuTjgcLuj1xra+U7gUZC5d0Gy2rdj1tBWb7dCVy1UxeNxoR5ZqEsFp41KWVfzwaCm/A17ld+1W0iT1tOStrklaBaApinP4uK61XACIe61Ek3TLetYp1IA3OnitNIleb2wZLBI0iWBHcjlBkyia6u+WapJ0Oi3u6tM0p0kcDhes1s41CcuycLm8bb9m4tCtg06HeMZiIWSzOTFyAwgDHrlUQy7SA7Asl+JG0/Wt/VaHX6FQLksBWm/O9Vb5oANbZ62n4joFYyikZzYO4GzVUGNp2poQbROMqVDDJwztNBp1WFhYRKlUhEKhFCPoq4koYfZXY7qPUCcGAHq9EXv2nDnQYwskEhaBwCySyRSKxaK4m8TViqn4tGUZbwMkTWnLFEWJjQga4QYGK6HVapelTa6HU/G87ydbZZ1Ab9fKpVZxomx5k6/mhhqt6mcqlbKYnpnJpFGrUZBKpTAYTDCbLahWSwiHI2BZBiaTlW9KYFs1zUpo/tOYESPUiclkckxM7IDV6ljx8UvZDIcuk0kgFgshl8uhWq0Plhc0SWO9+1JN0jiIXkDY+VapVKIzcyppkq2yTmDrrLU/miSNXK65yZdcLm9KDW71/beWJjEYtFhYWES5XIJSqRI1yWozSdfSJAaDCbt3n0HGFgwaqVQC6XSaf6O4NB8AYtclAHzkvD7bTaPRtZyvolAoeOdvsKI+BIKAkOYrjHsAlre8j0RCqNX8AOot74WImVarh9FohtFohs83jlqNQjbLRd3T6SRisTCsVjtGR7e1HEJcN5T1mq9GQ6nRaMXho0Ktxlpd9waBWo1CNBpFrUaLwR+gnhpVqZQhkUib7IZarRGbTjTaEOHyILVvJhCWIpfLYTbbYDbbALRueR+LhQHUW94LgSKhHMHp9MDp9IgDxQVRtrAwB51Oh9HRcVgsrYcQNzexWO686XR6sT5Xp1t/N9ONgmsMkVlDkyiabIVWq2tpQ4gmIQw6zZqEy8QRNIlgSyKRIAKB+hiexqCzTrdckwjpmalUgtckDoyNbV9RkzQ2JCwWud38lTWJvm8jbQZf6Qw4VqsdSqUcDCOBTNbouNXnKxFjSDiZkcsVMJutMJutAFoPpV5cTIgdy4TOikLkzGKx880IuK6E6XQRtRoDhmGWCa5SqdFQ6hpEl76vhrLfyOUKeL1elMsUZDIFlg7iFhw0YksIJyuNwgzwAFg+lLpxvqbQcbVxXI/X64PX64NMJhEHoFMUzbfXr3dbLBTyovMmRPEdDpcouLaK89YKq9UOlUohapJWw7i36msjENqhlSYRmuoJtiSZnAXLMmLTnkZbYrXaYbOtpUnqzX+WaxL3pmgS4tCtE4vFhomJkYHf4iYQNgphfphKpYbN5gTQmD/OGdNcLotoNASg3jXNYDDCbDYgFksin2923oQaKIdjcwxlv5HJZNi7dy+xIwRCA43ddgUoqto0hiMUWhTrQ4VOrkajEbGYBPF4ArlcrmlnSqfTi3ZEaPJxMjk4Vqsdk5OjxJYQCDwSiUQcR9GsSQpidlEul1lDk2SbRoEJO29Op5tPRdat2TWz3xCHjkAg9J16ypQeTs6eioNXhYhZLBZBMLggDn93Ot1i2uRmG0oCgTAYKBRKWCw2WCz1VE2uYUdj9D0GpZJLJXQ6PU2dW08m541AIHQHp0m4TCGB5lmLXMp3XZMY4HR6xYDyIJY0EIeOQCBsCjKZXMxdB7AsvYFAIBDWQoiWazRa2O0uAIBMJoHFoiO2hEAgtI1cLhe7XHJ/by1NMnguJoFAOGUh0XMCgbBeJBIJsSUEAmHdbCU7Qhw6AoFAIBAIBAKBQNiiEIeOQCAQCAQCgUAgELYoxKEjEAgEAoFAIBAIhC0KcegIBAKBQCAQCAQCYYsiYYVBTwQRlmXBMO0fFplMCpoe/A44W2WdwNZZK1lnbxmEdcpkvYtzdWJLBuG1t8tWWStZZ+/ZKmsdhHX2ypYQTbK5bJV1AltnrWSdna2hHYhDRyAQCAQCgUAgEAhbFJJySSAQCAQCgUAgEAhbFOLQEQgEAoFAIBAIBMIWhTh0BAKBQCAQCAQCgbBFIQ4dgUAgEAgEAoFAIGxRiENHIBAIBAKBQCAQCFsU4tARCAQCgUAgEAgEwhaFOHQEAoFAIBAIBAKBsEUhDh2BQCAQCAQCgUAgbFGIQ0cgEAgEAoFAIBAIWxTi0BEIBAKBQCAQCATCFoU4dAQCgUAgEAgEAoGwRSEOHYFAIBAIBAKBQCBsUYhDRyAQCAQCgUAgEAhbFOLQEQgEAoFAIBAIBMIWhTh0BAKBQCAQCAQCgbBFIQ4dgUAgEAgEAoFAIGxRiENHIBAIBAKBQCAQCFsU+WYvYBChaQbJZKGt+0qlElitOiSTBTAM2+eVdc9WWSewddZK1tlbBmWdDoehZ8/Vri0ZlNfeDltlrWSdvWerrHVQ1tkrW0I0yeaxVdYJbJ21knV2Rrt2hOzQrROpVAKJRAKpVLLZS1mVrbJOYOuslayzt2yVdfaDrfTat8payTp7z1ZZ61ZZZz/YKq+drLP3bJW1knX2B+LQEQgEAoFAIBAIBMIWhTh0BAKBQCAQCAQCgbBFIQ4dgUAgEAgEAoFAIGxRSFMUAoFAIBAIBAJhC1Kt1vBfd/8OB56ahlwuw47tHuzeNYy9e3zwuC2QSLZGDRhhfRCHjkAgEAgEAoFA2GLQNI1//vT38MST0+J1h48s4kcPPQEAsFh02LvHh727fdi7x4cd271QKon0Pxkh7yqB0AU0TWN6+ghkMgnUaj10OgN0OgOkUpLFTCAQ2ieRiOHo0YNQKjXQ6QzQ641QqdSbvSwCgbAFuPX2XzU5c0tJpQp45NGjeOTRowAAhUKGHdu9nJO3x4e9u4dhtfZuVA9h8yAOHYHQISzLYnb2GFKpBCwWCxYWZsEwDCQSiSjIDAYj9HojlErVZi+XQCAMKIVCDsePH4bBYEChkEAotAgAUCpVDXbEBK1WR4JFBAKhiV/++lk88OCfO3oMRdE4dHgBhw4viNd5PBZxF2/fHh/GxpyQyYi92WoMhEP3ox/9CLfeeisWFhYwMjKCD3zgA3jFK14BAFhcXMTnPvc5PPHEE9BqtXjDG96AD37wg5DJZOLj77nnHtxxxx2IxWLYt28fPvnJT2LPnj2b9XIIJzmh0AISiRh27tyL7dvHkUzmkM3mkMtlkc9nkUzGEA5zwkylUi8TZiSfnUAgUFQVx48fglarw4UXXohstoxSqczbkQxyuSz8/hmwLAupVAqdziDaEb3eCIVCsdkvgUAgbBLHjgfwtW8+1JPnCoVSCIVS+NWvDwIAtFoldu8cFnfxdu8ehl5HsgYGnU136H784x/jhhtuwCc+8Qm86EUvwk9/+lP8/d//PdxuN/bt24frrrsOY2Nj+P73vw+/348bbrgBUqkU/+///T8AwA9/+EN89atfxec+9zns2bMHt956K6699lr8/Oc/h9Vq3eRXRzjZSKcTWFiYhdc7ArvdCQCQSKRiyiUwBACoVCrI5+vCLJmM8cJMBr3eAIOBE2V6vRFy+aZ/DAkEwgbCMAyOHz8ElmWxa9dpYoBSoVDCarXDarWL9ysU8qIdicUiCAa5yLparWmyIxqNlgSLCIRTgGQyh0995j5QFN2X5y8Wq3jy6Rk8+fQMAC5N829fdwGuu/aviY0ZYDZVSbIsi3/913/F1Vdfjbe85S0AgPe+9704cOAAHn/8cQQCAQSDQdx///0wmUzYsWMHEokEvvrVr+I973kPlEolbrnlFlx11VW4/PLLAQBf/OIXcemll+KBBx7Au9/97s18eYSTjFKpiKmpIzCbrRgeHlv1viqVCiqVAzabAwDAMDTy+Rzy+SxyuSwikSACgXkAgEajE1M0DQYjVCoNMZoEwknM/PwUCoUcdu8+AyrVymnZUqkUBgNnFzwe7juzUimLdiSfzyIWCwMAZDK5aEeEn8ZMFgKBsPWhqBo+/fn7EYtnW97+hc/+HXZs9+K55+bxPJ9aOTUdBk0z6/ifNO697xHoDRpc+bcv7Pp5CP1lUx262dlZBAIBvOY1r2m6/vbbbwcAfPrTn8bevXthMpnE284//3zk83kcOXIEw8PDmJubwwUXXCDeLpfLcc455+CJJ54gDh2hZ9RqNRw/fggKhRKTk7s7drikUhmMRjOMRjMAQZiVRFGWy2UQjYYAAA6HGxMTO3v9EggEwgAQiQQRjYYwPr4DBoNp7Qc0IJFIoFZroFZrYLe7AAA0XWsIFmUQCi2ApmnIZDLs2bMfWq2uHy+DQCBsMCzL4t9u/hmeP7TQ8vY3vv4CXP7qc5BKFWC7aB8uvmgfAKBcruLYiaBYO3fo8AKy2VLH//+O7/4aZ505jh3bvet6HYT+sOkOHQAUi0Vcd911OHz4MIaHh/He974Xl1xyCcLhMNxud9NjnE4uzS0UCompah6PZ9l9jh49uq61yeXtFYQKhaODXkC6VdYJDN5aWZbF8eNHQVFVnH762VCrlQDWv06FQg+9Xg+AM461GoVIJIy5uSmYzRY4ne7Vn6BNBu14rsRWWWentGNLttJr3yprHcR1ZjJpzM9PweMZgtfLpWevd51yuRIqlQ02mw0AZ6+KxQKOHTuEmZmjOP30syCV9manbhCPaSu2yjo7gWiSzWGQ1vmjhx7HT3/+VMvbzjlrAu9/78sBLF+rXq/G2fsncPb+CQCcjVhYTOD5Q348f2gBzx/yY24+tub/r9UYfP5LD+K2/3wPtJruG74N0jFdja2yToFNdejy+TwA4GMf+xg+8IEP4KMf/SgefvhhvO9978Odd96JcrkMo9HY9BghPaVSqaBU4iIMSqVy2X0qlUrX65JKJbBYOotqGo2arv/fRrJV1gkMzlqPHj2KVCqBc889Fy6XY9ntvVynw2EGRZUwO3sCw8Nu6HS9i65v5PH8zGc+g3vvvRdvetOb8NnPfla8/t5778Vdd92FQCCAoaEhvOUtb8HVV1/d9NhvfeubuOuuu5Y959VXX40bbrgBALCwsICbbroJTz75JEqlErZt24b3vOc9uOSSS/r7wjqkU1syKOd8O2yVtQ7KOkulEp544hCsViv27z9jWdfKXq7TatXDaNTgkUceQTi8gL179/bsuYGTy5YcOXJEtCUqlQoveclL8I//+I+igzwIEE2y+Wz2Og88OY1/u/lnLW8bHrbhX75+LUwmLYD21mq16nHG6aPi35lsEQefm8czz87h2WfncPB5P0ql6rLHLQYS+M/v/BKfvfFNXb6SOlvFjmg0cnznO9/BD37wA0QiEfh8Plx33XV4/etfL96HZVl8+9vfxv333494PI7JyUl85CMfwcUXX7xRL3FzHTqhS9d1112HK664AgCwe/duHD58GHfeeSfUajWq1eYTSnDUtFot1Gqu606r+2g03Z8oDMMimy22dV+ZTAqjUYNstrSuHOV+s1XWCQzWWuPxKKampjA6OgGlUo9UqiDe1q91Dg9PIB5P4MCBJ3HaafshkawvOrTRx/OXv3wY9913HwCgWq2Jx+y7370dt9xyMwBAq9Vhbm4OX/jCFxAOR/HOd75XXOehQ0cAAGazGQpFPVijUKiRShVQKpXwtrddg0BgEQqFAkqlCs8++yze//734z/+41aceeZZ61p/p8JpNdq1JYN0zq/FVlnrIK2Tpmk899xTkEikmJzchUymnu7Uv3XKMDo6gdnZKWg0Blgs63dQTjZbMj8/h2uvvQrFYhEajQa5XA4/+tGP8PTTz+Cuu+6BWr0+wdkrW0I0yeYxCOuMRNL4yD/chVpt+f/XqJX4/Kev5M+R0rrWum/PCPbtGcFVf/di1Ggat93xa9z7/UeW3e+HP34cZ5w+hksu3tfV69lqduQjH7kev/zlwwAAvV6P6elpfOITnwDDSHHppZcBAL7znVtw++23ivc5evQo3ve+9+E//uM7OOOMM9e1/nbtyKY6dC4XVwOwY8eOpuu3bduG3/3udzjvvPNw/Pjxptui0aj4WCHVMhqNYnJysuk+wnN3S6sPzmrQNNPxYzaDrbJOYPPXWijkceLEEdhsDrhcwyuupffr5ETf4cPPYG5uFj7feE+etd/HM5VK4rvfvQ0/+MEDYFkWACdEajUG5XIZ3/0uVxv7sY99Eq95zWvxve/djZtv/hd897t34PLLXw+Xi0unnp4+AQD413+9BZOT25r+R63G4KmnnkIgsAiHw4m77voedDo9brjhH/DII3/Ab3/7G+zbd2bfXmM3dHLMN/uc74StstbNXifLspiePopSqYg9e/ZDIpG3XE8/1ulweJFMJnH8+BGcfvo5TU7NejhZbMl3v3sHisUizj77XHzta/+GcDiEd73rGszPz+GBBx7A3/3dVX17jZ1CNMnmslnrLJer+Pin7kU6XWh5+z/94xUY8Tma1tabtUpwzVtfgmeencPhI4vLbr3pGz/Gju1euF3mrv/DVrAjf/rTn/DLXz4MnU6H//iP2zE5uQ1f+9qX8dBDP8DDD/8CF198KcrlMu69978BADfc8Gm87GWvxKc+9XH87ne/xp133oavfe3f+vYaG9nUxNC9e/dCp9Ph2Wefbbr++PHjGBkZwbnnnovDhw+LqZkA8Nhjj0Gn02HXrl2w2WwYHx/HX/7yF/H2Wq2GAwcO4Nxzz92w10E4+aAoCidOHIJarcX4+M4N7zppMJgwPDyGYNCPbDa9of+7W7761S/iwQfvh8fjFeuDBGZnp1EulwEAl176MgDAlVe+BRqNBjRN47HH/gSAC8akUilIJBIMDw+3/D8U1bgjz70vgrE2m8moEsJgEQotIpGIYmJiJ3Q6/Yb+b4lEgsnJnZBIgOnpo+LnZNDZKFty5MhhAMCLX/wSKBQK+Hwj+Ou/5iLujz76h768NgKhXViWxU3ffAhTU+GWt1991UV40Qt39+3/y+Uy3PBPr4dWuzwQVChU8MWvPAia7s/ohF7QCzvyi1/8AgDwwhe+WAwKfehD1+M3v/kTvvSlrwEAnnvuGZRKJcjlcrz0pS+HVCrFq17FNXt86qkDG3aMNtWhU6vVeMc73oGbb74ZP/nJT+D3+/Htb38bjz76KK699lpceumlcDgc+PCHP4yjR4/iV7/6Fb7xjW/g7W9/u1g39/a3vx133nknfvjDH2Jqagqf+MQnUC6X8YY3vGEzXxphC8MwDKamDoOmaezYsXfTWn97vSMwGEyYnj6KWo3alDV0gkajwRvecCXuuOMeOJ3NO+SNrdmrVS5tWiKRQCbjkgTm5+cAAMeOHQPAdat917uuwSWXXIirrnojfv3rX4qPP/fcF2B4eASxWBSvfe3L8YpXXIJHH/0jzj33BXj969/Yz5dIIHREOp3EwsIMvF4fbDbnpqxBoVBiYmIXMpkUwuHApqyhUzbKlgjP1Vi2oVQqmp6HQNgs7nvgUfz2d8+3vO2FF+7C1W+5qO9r8Lgt+MgHX93ytucPLeCe7/2x72voll7YESFLUKVS42Mf+wguueRCvOUtb8AvfvFT8fF+vx8AYLXaxGaNLpeHf+4qwuFQH17dcjZ9ovH73vc+aDQafPOb30QkEsHk5CT+/d//HS94wQsAALfddhs+85nP4I1vfCNMJhPe/OY3433ve5/4+De+8Y3I5XL4l3/5F6TTaezbtw933nknGSpO6Bq/fwa5XAa7dp0OlUq9aevgouu78NxzT2J29ji2bdsz0PPpbrjh0ys6vz7fKLRaHYrFAv7rv+7Edde9Gz//+U+Qz+cAQPwtiDCKorCwwBnJubkZ3Hjjx8EwNF760pdDpVLj85//Ct7//negUCiIYqxUKqFYLEKr1fb7pRIIa8LNrTzMz63sTdp0t5jNVrjdQ1hYmIHRaN7wncJO2ShbsnPnLhw7dgQ//emP8ZKX/DXK5bLo8AnPQyBsBn954gS+c8evWt42NurAx//himWNlfrFX19yOh4/MIVf/vrgstv+657f46z9E9i3d2RD1tIJvbAjqVQKAPCTn/wIEokEKpUawWAAX/7y5wCwePWrX4tCgcsibHQSGy8Lt/ebgejFee211+LXv/41nn/+efz4xz/GpZdeKt42OjqKO+64AwcPHsQf//hHfOhDH1p2El933XX4/e9/j2effRb33HMPdu/u3xY04eQmGg0hEglgdHRSnBm3mahUaoyP70AyGRcHCA8qq+1kKhQKvOMd3FzI++67B5dd9mJ885tfFRsjCY7q9u3bcfnlV+Bd73ofHn749/jZz36D8847HwBw2223AABCoSA+/OH3QSaT4zvfuQs//emvcOGFf4Xnnz+Iz3/+U/18iQRCW6x3bmU/8PkmoNFoMTV1ZKDTpICNsyVve9t1fDOEWbzhDa/BVVf9LbLZTNPzEAgbzcJiHJ//0v+gVYa0Xq/G5268Elpt92MDuuH/vf+V8Hgsy65nGBZf+MqDyOc7n2vXb3phRwS0Wi3uvvsBPPzw7/Ca17wWAHDHHd/pz8K7ZCAcOgJhEMjlspibOwGHwwOnc3AGZ9psDjgcbszPT6FUaq/T2SDyxje+Gddf/0/YsWMXxsbG8YEPfBg7duwCABiN3IDliy66CJ/4xD/j6qvfDoVCAbVajSuu4NKnA4FF5PN5fP/7dyOdTuHSSy/D7t17YTKZ8fa3vwsAcODA4ygWt+4xImx9hCYoFFXBjh37xBSczUYqlWLbtt2oVsvw+6c3eznrole2xOVy4+abb8WFF/4VvN4h/PVfvxRve9t1AACDwdj6nxMIfaRQKOOfP/19FArLR29JpRL88yfegKGhjR+podOp8cl/en3LmWyRSAbf/LefbJkaXYF27Ag3Kxg455zzMDIyCqlUKtqRaDSCVCopjpdqHJdWqZTFyxuVETEY3zQEwiZTrVZw4sQh6HQGjI1tG7jo7OjoNuRyGUxNHcHevfs3LNWi11x66cvw6lf/jRgF+9737gYAjI9zXWqffPJJHDs2hbGxbdi+net+W6vVAHC1MGq1WkyfanyPGo9HpVImaZeETWNxcQ7pdAI7d+6DRjNY56FGo8Po6DbMzh6HyWSB1bp8ruZWoRe2BABGR8fxz//8ORgMBgDAf/4n18Z8YqLeOZtA2AgYhsEXvvID+BfiLW9/13Uvxblnb2t520awe9cwrr36Jbjtzl8vu+23vz+E887djpe99MyNX9g6WMuObNu2Dc8//zxKpbqDJtTZAZz28Hq5pkvJZAIURUGhUIgd+ZVKJdxuz4a8lq2pCgmEHsIwDI4fPwQA2L5970A6SzKZDNu27UapVMDCwuxmL6cr3vzm1+MVr3gJ7rvvHgDA//3fz5FIxKFUqnD++RcCAO644w585jOfwk03fRH5fB7lchk/+MEDAIAzzzwLcrkcw8M+AMBvfvMrBIMBMAyDBx+8HwDgcrlhsZD6WcLmkEjEEAz64fONw2zevMHULMuuGC13ONywWOyYmTneFFHeSvTKlvz3f38Xl1xyIT70ofegUqkgFovil7/kutq9+MUv2ZwXRzhlufO/fovH/nK85W2X/vXp+NvXX7DBK1rOm/72hTjz9LGWt/3rt36KQCCxsQtaB+3YkZe8hLMDTz75OJ599mkAwM9+9hAAYGhoGCaTGaeffgYUCgVqtRoefvhnYBgGP//5/wIAzjrrnA1rrEd26AinNCzLYnb2OIrFPPbs2S92Tx1EdDoDfL5x+P0zMJksW65F/8tf/irceut/4JZbvoW77/6uOI7kne98L4xGLr3p3e9+N/7whz/g8OHncfnllwGQoFqtQK1W4/3v/xAA4E1vegv+7/9+gVQqiSuvvAIqlVpMRX3HO96zKa+NQCgW85iZOQqr1QGPx7ch/5Oq0QhEUvAHEvAHk/AHE/AHElgIJcGwLPZuH8LH3/sq2Cz1lB+JRIKJiR04ePAApqePYPfuMwYuI2EtemVLLr74Etx11204fvwYXv3qS1GtVvnuxrvw6lf/zWa9PMIpyO/+cGjFjpE7d3hx/YdeMxCfU5lMio//4xV453tvQTbXXDdXLlP4/JcfxL994+1QKAbfvWjHjlx22WU466xz8NRTB/D+979TbKQCAO96F9egUafT401vegvuvvu7+MpXPo9vfeubyOfzkEqleOtb375hr2fwjziB0EcikQDi8QgmJnZBrzds9nLWxO0eRiaTwszMUZx2Wu8GBW8EV111DSiKws9+9r9IpZKYnNyGK6+8Cq94Rb0l8umnn46bb/5P3HrrLTh27Cgoqopzz30B3v3uD2D79p0AuKjYbbf9F26//T/x9NNPIpNJY9u2HXjrW68RZ0gRCBsJRVE4fpybWzkx0fu5lbl8GfPBhOiw+YOcAxeMpEAzK9etPHFwFh/89N34zpeuha6hiYJcrsC2bbtx5MizCAb9GBoa7el6+02vbInPN4KvfOWbuOWWb2FmZgomkxkXXXQJ3vWu94kpWARCv5meDuOrX/tRy9ssFh0++6k3QaUanPPR4TDh+o9cjhs/e9+y244dD+LO//ot3nXdSzdhZZ3Rjh2RSqX4+tf/Fd/+9rfw61//H7LZLLZv34FrrnkHLrroEvF+73oX17H/oYd+iGQygcnJ7XjnO9+DM844c8Nej4TdalWMGwBNM0gmC23dVy6XwmLRIZUq9HXi/XrZKusENm6tmUwKR48ehNs9jNHRzusl1rNOlmVRqZRRLpdQKhVRLhf53yU4HG74fCu3Oa9Wq3juuQPQ6w3YsWPfmuJxq7z3g7JOh6N3jn27tmRQXns7bJW1btQ6WZbF0aMHUSwWsG/fWR2POhHWGY/nEIykMd/gsPl5Jy6VWV+jn0su3I1PffDyZbZiYWEWwaAfe/fuh16/dhMQ8t53Rq9sCdEkm0e/15nJFPCeD96KSCTT8n9/46vXtD0SoDeapIhSqdSkSZxOD4aHx5Y95pv/+r/43589uex6iQS46UtX46z9Ez1f50YyKOts146QHTrCKUm5XMLU1GEYjRaMjLQ2Or2ApukWBpL7m2U5AyGVSqFWa6BWa/kZJ37odAZYrfaWz6lUKjExsRPHjz+PSCQIt3uob+snEAir4/dPdz23cjGcwvf/9y84NhPCXCCBarXWlzX+5k9HcM5pY3jVS85oun5oaBSZTApTU0ewb9/ZA9ORk0A4FajVaHzmCw+0dOYA4P+9/1U9n+9W1yR1LSI4bs2aRAuNRgOlUoVAYB46nQEWS3Nd8Hvf/TI8+9z8siYuLAt86aYf4rZvvwcmk66n6yesDLHehFMOmqZx/PghyGRybN++/hlRLMuiWq2IRrFxx61arTcdUCiUUKs10OuNcDjcvMHUQqlUiWtgWRY0TWNm5hh0Ov2KAtFiscHlGoLfPw2j0QStdrAHBRMIJyOxWBjhcACjo9s6nls5NR/Bhz57L/It2pP3g3+985fYu2MIY0P1QJEwyuC5557E/PwUJid3bchaCAQC8O1bH8Yzz861vO3yV5+DV7/y7K6et1mTNDptyzWJRqOFwWCC07maJqmJZR5KZT11W61W4p8//ga870PfAUU1z7ZMJHK46RsP4XOfvnIgav9OBYhDRzilEGZEVSpl7N27H3J5d3npLMtibm4ahw5lkcvlxEG9EokEKpUGGo0WNpsTGg1nINVqbVvRb6FhwXPPPYmpqSPYs+fMFY3hyMgEstk0H10/C1LpxnRSIhAIQD6fxezscTgcbrhcnc2tXAyn8A9fvL/nzpxMJsWQy4JEKo9Cqfm5K9UaPvOvP8Ytn78aKmXd7qnVGoyPb8f09FGYTBbY7a6erolAICzn5w8/hR/++PGWt51+2ije/56Xd/R8DMNgdnYGzz+fRT6fb9IkQgaQ3e4UnbbONMkuPPfcAUxNLW+iNDnpxruueyluvuUXyx77p8eO4aGfHMDfvObcjl4LoTuIQ0c4pQgG/Uil4ti+fS+02u5SAViWxczMMSQSUQwNDcFkskKlqqdMrnfsgdCw4PDhZ7C4OLdiPZ0QXX/++acwPz+D8fHt6/q/BAKhParVCo4fF+ZWbu8oAh1L5nD9F76PZKa9mqhW6HUqjHhtGPHaMOq1YWTIihGvDV6nGXK5DI8cOI4bvvaDZY+b8cfwrf/6Da5/x8uarrfbXUink5idPQG93gi1WtP12ggEwuocPrKAf/n3n7a8zekw4sZP/m1HXSIFTZJMxjA0NASz2Q6VSg2NRguVSrPuHTKFot5EKRCYX1ZP97rXvgBPPDmFx5+YWvbYb9/6ME4/bRTjY851rYGwNsShI5wyJJNxLC7OYWhodMX6tLVgWRZ+/wzi8Qi2b9+NnTsn+1IwazCYMDw8jsXFWRiNZphMlpb302p1GB2dxNzcCX5QcHevi0AgtMd65lZmciV89Iv3IRxrXTPTiEQCuB0m0XEb8dowyjtuZqN2VZH2V+fswOtefjZ+8IvlDQse+tXTOHvfKC4+vzm9cmxsO/L5rJgZMIjzOAmErU48kcWNn71vWYoiAKhUcnz2xithMbdfQsGyLObnp5BIRLFz515s3z7eF01iNJoxNDSKQGAeRqO5KcVcIpHgH69/Ld75nm8jlW4OVFWrNXzhy/+D//i3d0KpHJxOnScjxKEjnBIUiwVMTx+FxWJfV4vuYNCPcHgRo6Pb4HS6e7jC5Xi9PmSzKUxPH8Vpp5294ogCp9ODTCaJ2dlj0OsNTTnuBAKhd3Cp1if4uZVndjS3sliu4mNfvh9zi/GWt+/e5sH5+yfFXbdhj6UpNbJT3vPml+Dg0QVMzUWX3XbTrT/Hzgk3PE6zeJ1cLsfk5G4cPvw0AoH5VTvtEgiEzgmHU/jYDXcjkcy3vP2jH/kb7NjeWfp2IDCPSCSI8fHtsNv7uws2NDQqlnlwY5Pq9slq0eNjH30t/umT9yx73MxsFP952y/xwfe9sq/rO9UhITjCSU+lwqVHqVQqTE52PyMqEgmKO3wb0VlSIpFgcnK3WPe30oQRiUSC8fGdkEikq96PQCCsj2BwAbFYGOPjO9tq8y9QpWr45NcexJHpUMvbz9jtw7/d+BZc8/q/wiUX7MbkqHNdzhwAqJRy3Pj//gaaFvOr8sUKPvvvD6FWa94lMBiMGB4eQzDoRzabXtf/JxAIdaamQ/jAR27HwmKi5e1XvvGF+OuXnNbRc4bDi2LwxenszBHshromYTAzc2yZ1jjv3O14w+vOb/nYH/74cTz2l+N9X+OpDHHoCCc1xWIBhw8/DZZlsGPHPshk3W1KJxJRzM2dgNs9tKFDeJVKJSYndyGTSSEcXlzxfgqFApOTu5DNphEKLWzY+giEUwEhrWlxcRZDQ6NwONpvHFKjGXzu3x/Ck8/Pt7x9YsSBb3/xamg17e/2tcuI14YPX3dZy9sOnwjijgf+uOx6r3cEBoMJ09NHUatRPV8TgXCq8dTTM/jwR+9EcoWdufPO3Ybrrvnrjp4zFotgfn4aHs8wPB5fL5bZFiqVChMTu5BOJxCJBJbd/o5rL8XkRGv7+JWv/wiJRK7fSzxlIQ4d4aQlm03j8OFnIJfLsXfv/q4L/dPpBKanj8Jud2FkZHLDW/CazVZ4PD4sLMwin8+ueD+TyQKPx4fFxblV70cgENqHYRhMTR0RxxO0GrC7EizL4uvf+QX+8HjryLTHacI3PnklzEZtj1a7nJe/+DRc9qK9LW+758eP4YlnZ5uu46Lwu/jxKcfJjj+BsA5+/dvn8E+fvBvFYrXl7b5hGz75T6+HTNa+HE+l4piZOQqHww2fb2LDNYnFYoPbPQS/fwaFQrODplTK8cmPvwEq1fLgeSZTxFe+/iMwzOAOE9/KEIeOcFKSSMRw9OhB6HR67N59Ztd1ZblcBidOHIbJZMX4+I5Nm6cyPDwGrVaPqakjqNVWHj5cv99R0HR/hhQTCKcKtVoNR48eFDvjdpJqzbIsbrnnt/jZ7w62vN1q1uHrn7gSDquhV8tdkY+8/TIMu1s3VvrCf/wvEunmnQOVSo2JiR1IpeKIxcJ9Xx+BcDJy///8CV/48oMrNijZNunGN756DfT69oPN2WwaJ04chsVi31RN4vNNQKPRYWrqyDKtMTriWHHswoEnp3H///x5I5Z4ykEcOsJJRzgcwNTUYVitduzceVpbs1ZaUSjkcezYc9DpDNi+fc+mdn0TRhTUahRmZ1eOmgv3o6gK5uaWtxAmEAjtUa1WcPjwMygWC9i9+4yOO8je+9Bj+P5PWs+Z0utU+NrH34ShFZysXqPVqHDjh/4GCvnyWZWpTBFfvPknYJhmm2K1OuBweDA/P4VSqbgh6yQQTgYYhsF//OcvcMt3/m/F+5y9fwLfvOka2GztB3QKhRyOHXseBoMJ27bt3tSB3VKpFNu370G1Wm2pNV71irPxohfubvnYW2//FQ4fWbmEhNAdxKEjnDQIIwXm56fgdg9jcnJ3105YuVzCsWMHoVJpsGPHvoFo4c0NAN6JZDK2atRcrdZgbGw74vEIEonlHe4IBMLqlEoFHDr0NGi6hj17zoTBYOro8Q/96mnc+r3ft7xNpZTjK//4t5gc3di5TDvG3XjvVS9peduB5+bw/f/9y7LrR0cnoVSqMTV1hKRJEQhtwLXpfxD/84PHVrzPpZechi9+7s3Q6dRtP2+pVMTRo89Bo9EOmCbhtMZSTSKRSHD9h18Du325w1qr0fjYJ+5GqdQ6DZXQHZt/RhAIPYBhuK5LodACRkYmMDrafa1btVrB0aMHIZPJsWtX9zt8/cBmc8Dp5KLmxeLKg4ntdhdsNgdmZ4+jXC5t4AoJhK1NLpfBoUPPQCbjam+1Wl1Hj//Nn47gG7c/3PI2uUyKz1//OuzbOdyLpXbM6152Nl549raWt9123+/x/PHmJgcymQzbtu1CqVTAwsJsy8cRCASOfKGMf7rhbvz294dWvM+Vf/tC/NM/XNHR4PBKpYyjRw9CoVBg587TIJMt32nfLOx2FxwON+bmTizbyTcatfjEP74OraTY3HwM/3bzzzZolacGxKEjbHlouobjx59HIhHFtm2719XxiaIoHD16ECzLYteu01ec/dYrCqUKnjq+iHt/9RQ+dfvPcd1Xvo/rb/4xnpla3j1KYGRkEiqVGlNTh8Ewy4eTAlx0bGxsB2QyOY4fP0yi6wRCGySTcRw5chBarY6fM9dZ7e1fnpnBF27+X7TKiJZIgBve/xqcd8ZEj1bbORKJBB97z6ta1u3RDIvP/duPkcuXm67X6Qzw+SYQDi8ilWrdcp1AONWJxbP48PV34JmDcy1vl0iAD7z35XjXO17a0e4aRVVx9OhBSCQSXpMM3nDu0dFtUCpVLXfyzzxjHG9+04taPu6nP38Kn/viA8hkVg5OE9pncLYeCIQuqFarOHbsOZTLJezceRpMpu5rUmiaxrFjz4GiKOzZcyZUqvbTIdohX6rgmD+Ko/NRHPVHcNQfxUI03fK+jx2ax03vew0u3Ld8uC8XNd+DQ4eewvz8NMbHd7R8Drlcjm3bduPw4Wdw6NAheL1jPXw1BMLJRSQSwNzcFKxWByYnd3Wc0vT8sUX88zd+gBrdOnjy99e9DJdc2LqmZCMxGTT45w9ejg9/9l4wSzzPcDyLm279OT7zkdc2ZTi43UPIZJI4ceIo7HYzgMHZISAQNpt5fwwfu+FuRKOZlrcrFDJ8/B+uwMUX7evoebmmTM/xqd/7u27u1m8aNYnfP42xse1Nt7/trRfjqWdmcOTo8kD1b39/CE8/M4sPf/DVePGL9mzUkk9KiENH2LKUy1xOOcMw2LPnTOh0+q6fi2EYHD/+PEqlIvbsOQMazfraiGcLZRxbqDtvx/xRLMZaG/tW0AyDz//XL3HPP18Fi2H5WrRaHUZHt2F29jiMRjNsttb1OAaDCRMT2zE7O4V4PIHx8Z3rOk4EwskGy7JYXJxDMOiH2z3U1WiS6fkoPvbVB1Cptu4s+84rL8Lll+7vxXJXhKZpFIt5FAp5FAo50HQNExO7WqaMn7Hbh2ve8Fct59D9/vFjeOhXz+BvXlpfrzDK4OjRg/jjH/+I4eFRuN2+gajjIfx/9q47vrW6fD/ZO03StE2aNKt73MHee08VARVwgBNR9AeioLIUBUVRhiKoIAKCogKyQZbMy7i7u2l2mzZ7z3PO74+T5La32U3v7YU+n08/vb3n5OTNyTnved/3+77Ps4a9iZ3Ddvzour8tWdnOQyTi4aYbPocN6w01HZckCUxM7EQqlcDAwMa6ZZdqBUVRSKWSiMWiiMcjiMViaG5uQUuLquzrRCIx9PpOWK1TkErli0ik2GwWfnT1p/G1b/6hqHxDMBTHDTf9A8cdM4jLLzsdTU21tbmvgcZaQreGfRLRaBjj4zvBZnMwOLhhWatpFEVhamoUkUgIfX3rIRLVRiMejCYwPO2mV9/sdAI3412+Dpw/HMfND/0Xv/jGWUUDzJYWFUKhACyWCYhEkpIOX63WQqNR4cMPN2N4eDPa23Vob9etBWNr+NiDJElYLBPweueg05mgUmlrTuZc7gC+9/O/IxpLFd3+2TMPxoWfOLQR5hawK3mLFBK4/PwKg8GAUChCIpGA1TqJrq7iq4IXfeowbB62YeuIfcm2u/76Xwz1aBYRt3A4XGzYcCC83hlMTk7B5/PCZForEK3h44s33x7FTTf/C+kShRylUoJbbroIJmNxoe1SIEkSk5OjiMUi6OtbD6FwZe6xXcnbLj8Sj0cL0kgcDhdsNgcWyyREIknFeeLW1naEQkFMT49DJBIvisva1Qpc8Z2zcNPN/yr5+rXVuuWhYQldNptFNBqFTCZr1CHXsIaiCAR8mJoagVAoRk/P0LJ6yimKgsUygUDAi56eQUilsqpe886wFc+8M4Ix+zxcNay81Yr/bZvGU28P4+wjlrZqMBgMGI092LnzQ0xNjWJgYGPJJK2pqQkbNhwIu51eiQgEvDCZ+taCsTV8bEEQBCYnhxEOB9HZ2QelsragCwC8/giu/Pmj8JeYATn92PX4xoXHLYtenCCyuWBrVwKXTC5M3sSQSJqgUmkhEokhEIjAZDLh8cxhenoMcnlz0RV8FpOJa791Fi75wX0IRRYTJ6UzBG6840nc87MvQsDfNUfMZDLR29sLobAJExOjawWiNXxs8eRT7+PO3z+7RO4jD72uBb/42UVoba2NITcfk4RCfvT0DNXMsFvuuKlUYpEficWiBQ05LpcHkUhc8CNCoQRcLhcEQWDnzs0wm8cwOLhf2fucwWDAZOrBjh27YpKFvu/4Y9eByWTiN3c8jUikOFnb2mpd/agroctms/jDH/4AvV6Ps846C5s2bcLll1+OcDiMgw8+GHfccQeamhpzEa5hDQsxPz8Li2UCcnkzurr6wWTWP8tBURQcjml4PG6YTH2QyyvrTCXTGfz8wf/ixffH637fWvGbf7yO/Xu00LbIlmxbOCfndFqh05UmXGAymdBqDZDLmzE9Pb4WjK3hY4tMJo3xcbrFut7Z23A0ge/9/O+YLTE3c/TBPbjyq6fWlMxls9klK295lloGgwmhUASpVAa1WguRSAKBQFjy3lUqWxEM+mCxTEIiaSo6f6NUSHDNpWfg6l/+c8k2m8uHOx/4L77/9dOXbBOLJRga2h8ulw0ulw2BgG9ttW4NHwtQFIX7HngFDz+ytF05j3VDOtx0w+cgkdTWJklRFGw2M7zeOXR19UMmU9RtYyIRX7LyRhA0iRqdvEkKfkQkEpckgMsz3Q4Pb4HLZUNHx9K5/oVgszmLYpLd9z/26EFs3GDAHb97Fq+VYQNdW62rHXUldHfccQf+/Oc/44c//CEA4KabboJMJsNll12G+++/H7/+9a/xk5/8pKGGruHjDYqiMDNjh9NpRWurGgZD97JFNWdnHZiddUKv70RLS+XqvMsTwtX3PIVJp3dZ7wsALCYDRnUz+vSt6NO1oU/XiuYmES655VEEIoupfxOpDG68/wXcfeV5YLOWBm9isRQdHUbY7dOQSmUVHwIikQSDg/tjZsa+tlq3ho8dkskExsa2L2v2Np5M4we/eAyWEr7ggCE9rv322UXv190RiYRhsYzD7w8UkjcmkwmhUIymJjna23UQicTg80snb8VAr+B3Y/v2D2A2j6Ovb11Rn3nY/l04/4yD8I9n3l+y7ZlXt2P/IQNOPGJpQMVkMtHRYYRCoYTZvFYgWsNHH9ksgdtufwrPv7i15D5HHdGPH119Drjc2juHXC4b5uZcMBi6S87FlwJJkrDbbRgdDSMUChWSNx6PD6FQDLWa9iPlkrdSEIkk0Gj0cDqtkMkUFVcNJZImaLUGOJ1WSKWyJQUzZbMEd9x2Mf7xz3dw+53PlJw/XFutqw11JXTPPPMMrrjiClx44YUwm82YnJzELbfcgk9+8pOQyWT45S9/uZbQraFhoCgKVusk5udnodUa0N6uW3YyNz8/A4fDAo1GD5WqsibUphEbrv3TswjHi8/JlAOLyUSnphm9ulb06VrRq2tFl6YFfO7S2++Hnz8RV/3+P0v+f8f0LB584QNcfPrBRd9DpdIiFArAbB7DunUHVGTDWlutW8PHEbtmb9l1Ew2kM1lc++t/Y2Rypuj2/k41brryHHCr0Jman5+F1ToJkUgEuVwBgUBcWHlbro8D6Gq5ydSL8fEdmJtzlfR1X/vcsdg26sD4tHvJtl//6Xn0d6qhURVfxRSJ1lbr1vDRRzyRwnU3/h3vvT9Vcp9PnHUQvnXpaWBVUcjZHW63Cy6XDVqtAW1t7TW9Np1OYXJyBLFYBCqVClqtHgKBCEKhpGEyB+3tOgSDfpjNYxgaOqCiPm97uw7hcLAQk+yeRDIYDJx84gZsWGfAb+54Gm+/W7rraW21rjrUldDNz89jw4YNAIDXXnsNTCYTRx99NABApVIhEok0zsI1fKxBEASmpkYRDPpgNPagtVW97GP6fPOwWCbR1tYOjUZfdl+KovDXF97HH558u6i21O5gs5jo1CgLiVufrhWdGiV4VYqIHrXehE8cOYQn39y5ZNufnn4Xhw7q0a9fupqYZ6HbseNDmM1j6OtbX1VAuLZat4aPC4JBHyYnRyAUitDTs66uQIcgSdx011P4YIe16HaDVolfXH0+hILyBRWSJGGzTWF+fhYqVTv2338jQqEEstnG60XKZAq0tWlgt1sglcqLEhtw2Cxcd/kn8NVr7kc8sZiFLp5I48Y7nsTvfvJ5sNnFA9W11bo1fJTh80fw3Svvx9h48SIOAHzlkhPwufOPrKsQ4/XOwWabgkqlRXu7rqbXRiIhTE6OAADWrdsPOl07AoFYw33JwhjDbjfDZOqten+zeRy9vUNFz01zswQ/veGzePnVHbjzd8+urdYtA3V52tbWVjidTgDAK6+8gv7+figUdJvXli1boFKVpzddwxqqQV7kOxwOoLd3qCHJXL7C1NzcCr2+q6zzjSXT+OG9z+DuJ0oncxIhD586eh2uvvAE/OWaz+GV334TD/zwAlxz0Yk45+j1GDCoqk7m8vjOuUcXnZcjSBI33P88kulM0ddxOFx0dvYhHA5iZsZR9fvlV+sGB2ma8uHhzXA6rWti5Gv4yMDjcWN8fCekUjn6+jbUlcxRFIVf/+kFvL6peCVZpZTiVz/8DJoqzM2k0ymMjm6Fx+OG0diDzs7eFU96dDojeDw+zOaxkve1ViXHlV85tei28Wk37n3ktYrvk1+tU6s74HLZMDy8BbFYdDmmr2ENexWuGT++cPFdJZM5FouJq7/3SVzwmaPqSuYCAR/M5jG0tKig05mqPgZFUZibc2F0dBv4fAHWrTugYQQqpcDnC6DXd8LjccPvrzx6wuXy0NnZh1DID7fbWXI/BoOBE49fj/vuvQyHH1o+UXz19WFc/NXf4X9vjNRs/0cdda3QnXnmmbj55pvx1FNP4cMPP8R1110HAPjZz36GRx55BN/4xjcaauQaPn6Ix+PYsWMzMpkM+vs3QCyWLvuYdCVrGE1NcphMvWUdp30ugB/84SlYZv0l9+nSKHHPNZ9BE5/X0GqYkM/FDRefgq//6h8gdmPQsrkDuOvfb+J7nz2u6GvzMzdOpwVSaVNNDn5ttW4NHzXQxEdW2O0WtLSoYTTWN3tLkhT+8PCreOaVbUW3K5pE+PWPP4cWRXnJk7wPYjCYGBjY2BC/Vg2YzIXEBlZ0dBQnTzrxiAFs3mnFM69uX7LtH8+8j4PWG3HGiRsqvNfaat0a9k2EQjHYHd7Cj8Phxc4RB6IlVo34fA5uvPYzOOjArrreLxwOYnJyBHJ5M4zGnqp900K5lbY2DXQ60x67t1paVDmypQmIxVJwueXn8WQyBdTqDjgcFkgkTWV9Xq2rdcceTa/WyWRrq3VAnQndd7/7XQiFQrz//vu48sorccEFFwAAduzYgUsuuQTf/OY3G2rkGj5eiEYj+OCDHWAwGBgc3K8hgprxeBTj4zshEknQ3T1Q1vm9sX0aN9z3PGLJpQKYeZx4YA+uv/gUtKtkCASKU5YvB0MmNb502sH48zOblmz752vbcOQ6Iw4dNBR9rVZrQDgcxNTUKNatOwBsdvn2r4VYm61bw0cFFEVh586dsNtt0Gj00Gj09VXQQzH8/PfP4L1t00W3i4U83PrD86EtMWOWt2VubgZ2uxlisRTd3QM1ExMsF4uJDZpLFnu+/cUTsXPCBZvLt2Tbz373FA7cYAC3wvxM/v3WZuvWsNpAEARm3cFC0uZ07krgwuHiVPrFIJeJcPNNF6Knu7Z5tzxisQgmJnZCIpGiq2ugat+USiUxOTmMeDxet9zKcpCXS9qx4wNMT5dupVyIhTEJPX9X2vflV+v222CsOFv32v+GsXXb2mxdHgyKqmYyaDF+//vf45RTTkFnZ+dK2LTXQRAk/P7qgnQ2mwm5XLQiPcuNxGq0k6IopNMpJBJxJBJxJJPxAtWuRCJBT88QmMzlSyXSjmQEHA4P/f0bSg7zkiSFPz/zbtEkKg8mg4HLPnUkLjhpf3A4rBU9p1mCwNd++Q+M2OaWbFM2ifDwtRehSVw82U2lktix40NIpTL09w9BoRDXbCdJkoXVOoFAuOKrdavlGm1pqU1Yvhyq9SWr5bNXg9VoK0FkkUgkCj6E/okhlUrCZOqBUlnfGMDmnVbc9Lun4QsUbxvkcdn41Q8/g/V9HSWPQZIELJZJeL1zUKk06OhYXE3fk+eToiiMjGxFJpMuS2xgts/jGz96AOkMsWTbwRuM+NUPP1PVTHEesVgEZvM4ksn4HikQrZZrtFG+ZC0mqR2xWBIOp6+w0pZP2lwzvmW/n6ZdgVt+dhE07fXJCoRCAUxNjYLH46O/fz1YrOrinPzrmEwmenoGIRItvr725HcfCPgwMbETBkN3VSQuyWQCO3d+iKYmBfr6BquKSSiKqrhal8dKrNatlnupWj9SV7R8zz33YHBw8COb0K2hsSAIAsnk4mArmYwjmUwU5jkYDCYEAgH4fCG0Wj0GBnoRiaSWdRNRFFWoDkskTejuHigZwETiSdxw/wt4a4el5PGaRHzc9NXTcVBf5aFliqIKPyRJgqLIRb9Jktrt/3b9LZXKwOcLwGaxcP3Fp+ALP/sbUpnsouN7QzHc8vDL+PnXzihaHePx+DCZejE5OQy3ewYKRU9Fm3fH2mrdGlYT8gUg2o8s9ieZzK7VdA6HC4FACJlMAYOhAyyWoGY/kiVIPPDPN/FgmflZFouJn/zfp8omc6lUEhMTw0gm66+m035ksY8o5jd2/5vFYkMub17kH6olNujUteJbXzgRt/35hSXb3ttmwd0Pv4qvf+7YqlcV1lbr1rDS8PsjeOrZD7F9hw12hxc+38qQ8/X2tOPnP70Aclnt1y4dk1jhctkhlcrQ1TVQVTJHURTcbmdBmqira6DmOeDlxCRNTXLwePxFx5PLm9HaqobdboZUKoNAICz7/ny+AEZjL6amRjA/PwuForuizXWt1l1+Jo4+8uO5WldXQtfV1QWLxYJjjjmm0fasYR8FRVHIZNJIJhOLVtsSiTjS6V1U/xwOB3y+EGKxFEqlqpDE8Xj8QnDAZjNziVftEgF5pNMpmM1jCIeDFdutpmd8+MEfnoJjPljyeL26Vtzy9TOhbqb7v+PxGFwuKzKZFDKZ7CInmP93vWCx2OjtHYJE0gS9SoHLzz0Ktz7y6pL9Xt0yhec2jeL0Q4s7L4VCiba2dlgsU9BqVQDqE2Ffm61bw54ESZJFk7ZkMr6gAMQAn0/7jpYWFQQCIfh8IV0IyRVtFlZXa8G8L4yf3vkfbB8rPcTPYjLwo8vOxKH7lS5q0tX0EbBYbAwM7Ff0fiFJEk6nAzt3+pBOZ4oma3U00RSgVLbBaOxZVIDJExtYLBOQyRRQKFqKvvbsEzfiwx1WvP7e0iDqkf9sgssdwDWXnlGR0TOPtdm6NawEslkCj//nPTzw4KuIx0uPSTQChx7Sg2t/eC4E/NrbpVOpFMzmUUQioZrklwiCgMUyDp/PA7W6Ax0dxqKvi8ejcDqtyGbTu8Uku3xJvWCz2ejpWQeJZPH8m07XWZAmGBjYWPE+bm5uQTisxvT0JDQaFarlZaxptu6n/8DXvnISPnveEVUd+6OEuhK64447DrfddhveeOMN9Pb2QihcnJkzGAxcdtllDTFwDasX0WgEc3OuQrCVF7JkMBjg8fgQCIRobm4tBFsCgQBsdmM0UcohGPTBbB4Hg8FAf/8GSKWykvu+8uEkfvrXF5FIFWeOBIDTD+3H9y84AXwuGwRBwOWywu12gcfjQ6VqQzpNAGCAyWSCwWCCyVz4713/t/jv4v9HkgQmJoYxOrodXV39UCiUOOfo9XhrhwVv77Quse1Xj76GjV0atCuLz8PodJ2IRsPYtGkTenoGIBTWR8JQbLVOo9E3RBNwDR9vkCQBt9uFSCSERCKOVGrXw5rN5kAgEEAkEkOpbM35kcUFoEbirQ8nccvdzyBcpr1HKRfjx986C/sNFpc8WVxNl6Orq79oNT0cDsJqnUQiEUd7eztEIiYoilHBRzAWbCvnW5jw+TyYnh5DJpNGd/filYClxAZLkzIGg4GrvnYaxqdn4faGl2z/33sTsLl8uOnKc6Brb67m9AIovlrX3T3QkFnpNXy8sHWbBXf87llYbZ4VOb5UIoBe34LuLhWOPLwfG9Yb6mSy9GJ6ehxMJgsDAxurJitLJhOYnBxGMplAV1d/UbFxgsjC6bTB7XZCIBCira215piknC8hCAKTkzsxNrYNXV0DkMt33essFgudnTTZ0syMHVqtoeJnysck7777Lnp6BiEUVtdOmF+t238jvVr31julV+vu/dNLYDIYOP/cw6s69kcFdc3Q9fX1lT8og4HR0dG6jdrbWOtXL49MJgOn04L5+Vnw+QKIxdIFSRsdbC2n4lqvrXS124LZWSdkMgVMpt6SxAMESeIPT76NB1/4oOTxWEwmvnve0Tj3WJrVLRDwwmYzI5PJQKPRoaNDj+ZmScO/e5IkYTaPwe/3FPrTfaEYLvjJgwjFlgaaG7s0+N0VnwarxDknySzM5lEEAgHodJ1oa2tfVjBMkiRcLhtmZuxlK4a1YrXcS2szdOXRKFspikIw6IPNZkY6nUJTk3yRH+HzhcsSxa3FznQmi3v/9hoee660PwCAQ/frxDWXngGZtHh7EUEQmJ4eh99fupqeyaRht0/D652DWCxFZ2cPOjpUK/Ldh0IBTEwMQyAQoLd33SJ/mMmksWPHBxAKJWWJDXZOuHD5DQ8tYdzNQyTg4UffOhNHHFC5hWp3xGIRTE6OgqJI9PdvaFhSt1rup7UZutJYjp0ebxh/+OOLePW1pXqttYLJZECtkqOjQwld7qdD2wxdhxJNTaJl2UmSJByOabjdLshkzbmYpDqfFgz6MTU1mlsdG1qiH0lRFPx+L2y2KRBEFhqNHlqtboViEgJTU2MIBLxF9YCdTitcLhsGBvZbsopX/HiZnL5wEHp9F1pb1TXFENXO1l369VNw3jmHVX3c3bFa7qVq/UhdCd1HHWvOszgoisL8/CycTgsoioJWa1x2ctAoW5PJBKamRhGPR9HRYYRKpS1pVyiawHX3PYdNI/aSx1NIhfj5V8/Axm4NkskErNYphEJ+yGQK6PVdudaulfvuKYqC3W6G2+1Ce7sOWq0Br2814+p7ni66/zc/dQS+cMpBRbex2Uw0NQmwZct2zM46c21Y3WAy62vBzGN21gm73Yz29g5otctP6lbLvbSW0JVHI2xNJuOwWs0IhfxoapJDr++qOIOxUnY63QH85I4nMT7tLn0sFhNfu+BYnHfaQWAyi1/nyWQCExPDSKUSMJn60Ny8uJUx7z8dDgsYDKCjw4SWFtWKkyvFYlGMj+8Ak8lEX9868Pm7znMw6MP4eGVig2de3YZf3fs8yDLhwhc/fQS+9OkjS56fUqB1+baBJBuX1K2W+2ktoSuNeuzMZLL41+Pv4q8Pv45ksnRXTTEIBFw6WetQQqdVFv6taVeAyy3drFbv+aRjkhHE4zHodCa0tWmqekZSFIWZGXuOjVaBzs6+JZ1NtP+cQigUgFzeDL2+Czwef8VjEqt1CvPzM0vGWCiKwvDwFmSzWaxbdwBYrPKxRT4m2bx5G9xuF1paVDAYumteCPD7IxVX67759VNwbp1J3Wq5l1aUFGUhIpEI5ufn0dHRARaLVfGLXMO+iUgkBKt1CvF4FC0tKnR0GPc47XYp+HweWCzjYLM5FbWdJhzz+MEfnsasb2kLUR6DRhVu/tqZUDYJc21BdnA4HHR3Dy4hGVgpMBgM6HSd4HB4cDimkcmkcfSGbpx5+ACefnupoOa9/3kHhw7o0dOxtCUDoFsmTaZuCIViWCwTiMdj6OkZXDLoXAvUai0ACnb7NAAGtNr62lHW8PEBQRCYmbFjdtYBDoe7R++pYvjvWyP49Z+eRzxRevZG3dqE67/zSfR3qkvuEwz6MDU1Bjabg8HB/ZdU06PRCKzWScRikZz/NC1r9bEWiERiDA7uh7Gx7Rge3ore3qGCj5TJqiM2OOO4DVApm3DjHU8iFClO7f7Av97ChMWNH112FiSi6v0Kl0uzD4+MbMPo6LaGrtSt4aODDz40487fPwuHc6mcxu7YsF4Pk7GtkLR1aJVQNkv2mJ/xeudhsUyAw+FicHC/JWyUpUAQWZjN4wgEvNBodNBoFj9TSZLAzIwDMzN2cLk89PQMLWqBXEkwGAwYDF3gcnlwOi1Ip9MFXU8Gg4Gurl1kS0ZjZRI2JpOJzs6eRTFJd/cgeLzqZZYUCgl+cv1n8fh/3sNdv3+u6D6/v+cFMJkMnPPJQ6s+7r6KuhO6TZs24Ve/+hV27twJBoOBxx57DH/84x+hUqlw9dVXN9LGNexFZDJpOBwWeDxuCIXiqpfU9wRIkoDNZs4xJrXAaOwpyWIJAM9vGsPND/13CWPkQnzyqCFccf6xiMfC2LFjBKlUEiqVFhqNfo8XKxgMBtrbO8DlcjE9PY50Oo3LP30UNk84MbPbTEuWIHHD/S/g/ms+Bx6n9DlQKtsgEIgwOTmMnTs3o6urH01NpfWzKkGt7gBFAQ4HrdG1ltStoRjy7UF2uxmZTBrt7Tqo1R17rQCYSKZxx1/+i2dfWyqgvRDHHdqH733tVIiFxROUpdX0/kU+KJvNwOGwYn5+BkKhqKb5mUaCx+NjYGA/TEzsxOjoNnR3D0AmowPBaokNDlhnwH2/vATX3vY4RiZniu7zzmYzvvGjB3DTlefA2FGcbKUY8knd6OhWjI5uw8DAxmUVm9bw0YF7Loi773kBb7xVeYzHaGjF5Zedjg3rDStvWBEQBAGbbQoejxvNza0wGrurliRIJOKYmBhGOp1Cd/cgFArlou3BoA9W6xTS6RTU6g60t+v2Skyi0egKMUkmk0ZXVz9YLBb4fCF0uk5YrZOQyRSQy5WVDwjkSK3yMcmH6O4eKMt7UMymcz5xCJgMBu743bNF97nr7ufBYDDwqU8cUvVx90XUNej0zjvv4Mtf/jL4fD6+973vFVi4+vr68Ne//hX3339/Q41cw54HPdjvwrZt7yEQ8MJg6MbQ0P6rJplLJGLYuXMLPJ45GI3d6OrqL5nMZQkCv/3H67jh/udLJnMcNgvXXHQirjjvKNisExgf3wEOh4uhoQOg05n26sqzUtmG3t4hRCIh2C2j+NHnTwCzSNI0PePD3Y+/VfF4dMV+fwiFYoyNbcfsrGNZTHrt7fSs0MyMHS6Xre7jrOGjiUQihrGx7ZiaGoFQKMb69QdBqzXstXtq2uHB13/0QNlkjsth43tfPRXXf+cTJZO5bDaLyclhOJ1WaDR69PQMFXwQRVHweOawbdv78HrnoNd3YmjogL2SzOXB4XDQ17ceUqkc4+M7MT8/C2AXsUEsFsHMTOk2dABQtTThodu/hlOPWVdyH6c7gEt//Fe89u5YTfbxeHRSR8/gb1tEjrOGjx/S6Qwe/NvruPird1VM5kRCHi77xqm453df32vJXDwew/DwZvh88zCZetHZ2Vd1MhcIeDE8vBkAMDS0/6JkLi99Mj6+EzweH+vWHYiODuNejUlaWlTo7V2HcDiAsbFtyGTo9tfWVjVkMgWmpycWSclUglhMEyUJhSKMjm6D2+2sOSb55NkH49vfPK3k9jt//xye+M97NR1zX0NdK3S//e1vccIJJ+D2229HNpvFrbfeCgD4xje+gXg8jsceewwXX3xxQw1dw55DOByEzTaFeDyG1lY1tFrjHmsPqgQ6UHLDZpsCj8cvOIFSCEYTuOaep7Fl0lVynxaZGDd/7Qw0Cwhs2/Y+WCwmOjv70NzcumpWm5qaFBgY2IDx8Z1gZefwuRM24OH/bl2y36OvbMHh64w4uL+8Vh4d3K2Dw2GB3T6NWCwCo7G37odEezv9fg4HreNXDdvVGj7aIIgsXC4b3G7XHm8PKgaKovDUy9tw5wP/RbrMKr1Bq8T13/kETGVWmPLV9EwmhZ6ewUXV6Hg8Bqt1EpFICM3NLdDpOouySO4NsFgs9PQMwmqdhMUyUVgtFYul0Gj0cLlsaGpSlC3c8Xkc/PhbZ6LXqMJdD74Mglg6W5JIZXD9b5/ABWcfiq989uiShE27gxZa3oDR0V3tl2srdR8/vLtpAnfd/RxmZgMV9z3lpA346pdPgkK+d2R08jGJ1ToFPl+AoaH9IRBUJ269UJdOLlfCZOotFIVIkoTb7YLLZQWLxc6xXresmphEJlOgv38jxsd3YGRkC/r61hf0b7dv/wDT0xPo6Rms2l4Oh4u+vvWw26dhs5kRjUZgNPbUFJN86hOHgKIo3HX380W33/G7Z8FgAJ846+Cqj7kvoa6EbnR0tCBLsPuXdcQRR+CBBx5YvmVr2ONIp1Ow26fh880XqKWr7f3eEyCILCyWSfh882hpUUGv7yp7swejCVz2m3/B7PKW3GdjlwY/vOAohHxO2D0xtLW1Q6s1lm3d3FsQiSQYGKAd6ME6Nt7TNGPStXSe4KcPvIiHr70I0gpzLPScngkikQTT02OIx7egp2ew7vmV9nYdKIqC02nNtWYUp3Vfw0cbFEXB5/PAbjcX2NfU6o69qjUWjSfxq3ufx6sVVo3OOG49Lv/SSeDzShew/H4vzOYxcLk8DA7uX5g7oyVNaPpwHo+Pvr71y2pnXinQszDduVkYK9LpFAyGbmg0egSDfpjNo1i37sCyvpXBYOCcUw9Ap74VN/z2CfhDxQk7/vafdzFpncO13z4bTZLq/MpaUvfxhWvGj9/94Xm8u2mi4r5dXSpc/s3TMTRYvni5kshms7BYJuD3e9DaqoZe31k12Vg2S7NPB4P+Jbp0CyVNVCoNNBrDqoxJxGLJgvncLejtHYJIJIHR2IPJyWF4PO4ljJjlwGAwoNd3QiSSwGIZRyIRr3nW/5xPHgqSpPD7e14ouv32u54Fg8HA2WcWJ5FbKVAUhdffGMHjT26CzebBhvUGXPGdM9HUVF3yXw3qukIkEgk8nuK6H7Ozs5BIVk8SsIbKIEkSc3MuOJ22HHlGL5TKtlVTCQJ20VtnMml0dvZDqSxO/pFHKJbE5bf/u2wyd+4x63H2gWrMOsZXZQJbDHy+IDcLswPnH9qGW58MIp0lFu3jCUZx6yOv4KdfOb2qYzY3t0AgEC6Yq+srzNfUinwS53RaF/29ho8H4vEorNYpRCIhyOVK6PWdez0YH52awXW3PYGZ+WDJfYQCLq78yqk48YiBsseambHD4bBALleis7MXLBYbFEUhEPDBZpvKSZrs/QS2EvIFFw6HW1ip6+zsLxAb2GxmmEyViQ029Hfg3pu/hOtuexwjU8Xn6t7fbsHXfvgX3HTlOeg2tFVl39KkbmNNZAlr2LeQTKbxyN/fxKOPvYVMhii7r0TMxyVfOgFnnn4AWKy9WCSKhjE1NYpsNoOuroElrLblkEolMTa2HZlMBr29Q4Xn7e6SJkNDB0Ak2jsrj9WCzxdgcHA/jI/vxMjINvT00PN/LS0q2GxTkEplNReJlcpWCIVCTEzQc3X0rL+i6tefe85hoADcXSKp++2dz4DJZODM0w+sya56YbXN467fP4fNWy2F/3vjrVEEQzHc/utLGvY+dSV0J5xwAn7zm9+gp6cHAwP0A5DBYMDtduMPf/gDjj322IYZuIaVRSgUgNU6hWQyjrY2DbRa/R4R/64WFEVhbs4Fu30aQqEIfX0HVHQOkXgS37n935hwFC86cDksXHb2gehSkAiH/DAYumvWQdmboNslN4DNHsFZB4bxr3edS/Z56YMJHLnehFMOLq8ZmYdQKMLg4P4wm0cxPr5zScWwFqyWpI4kSczOOhAM+tHfv2FVB9j7OrLZLFwuK9xuF/h8Afr61tX0AF4JkCSF+//xJm770wtF2wLz6DWpcN3ln4BWVX41bXbWAYfDUpARYTAYSCYTsNmmEAwuljTZV9DaqgaHw8XU1AjGxrajp2cIen0nLJZJyOXVERu0KCS4/foLcMdf/ounXt5adB+3J4TLrnsQV33tNJx05GBVtuWTupGRrRgd3YqBgY17rXU1Gg3D4bBAqVShpaW6pHQNlUFRFP735gju/P1zmJsLld2XwQBOP3V/fOXiExq6qlEraH4BJxwOC4RCMfr61td0z+dlOgB6Xo7PFyyRNDEae9DSotqHYhIu+vs3YHJyBOPjO2Ay9UKvX0y2VOtnEQrFGBraH1NToxgb24GODiPU6o6qj3PeOYcBFIW7732x6Pbbbn8aAANnnn5ATXbVglgsib8+/Dr+/cSmos+gHTvtCIViDbue60rorrzySmzbtg3nn38+lEra4V9xxRVwu91Qq9W44oorGmLcGlYOqVQSdvs0/H4PJBIpurpWXyUok8lgYmIUwaAPKpUGHR2mikF5LJHCd+98AmP2+aLb2+RifP3kbjQL05DJ2qDTmVaN/EItoGdhhvApNhc77SGMz0SW7HPrI69gQ1c7tK2yqo6ZFzB1uWxwOq2IxSIwmfrqavXQaPSL2i/zM3Z7CnkR+HQ6hfZ23Voyt0KgKApe7xzs9mmQJIGODhNUKs1eP9/+YAy/vPdZvLPZXHa/804/CF/73DHglmGGBfKai9OFZC7Pbrk3JE0aDbm8Gf39G3IV9q25FQOa2GD9emlV/jFPItPXqcZv73sRmezSVZZUOoub7noKY+ZZXHrhcWCzK7emLVypGxnZhoGBDXs0qctkMnA4pnMszyKIxau7g2NfgsPhxTU/fqGshlgefb0aXH7Z6ejr1ewBy0ojk8lgenoMwaAfarUWWq2xJl+XT+YoiiowucZiEVgse0fSpJHIz+daLBMwm8fQ0WGCydSL0dFtmJmx11XYZbM56O1dB6fTCofDglgsCpOp+ln/8z59OEiSwj1/eqno9ttufwpMJgOnn7p/zbaVQ174/J4/vgifP1pyP4GAC1ENEi+VULeweDqdxhNPPIF3330XwWAQEokEBx98MM455xwIBPtOhbIYPsoinj5fBE4nzUbIYrGh05lWFfkHQNtKUSl88MGHIEkCJlNfVWQKsWQa373jceyYni26vU0mxDdPNkKtlMNg6KqJGreUnXv7u6coCttHx/B/f/gv4umlQdQBvVrcfeV5aG4W12RnIEDPCXE4PPT0DNYt+ux0WuFy2dDRYayY1DVGsHrXikm9gtVrwuLlkbfV4XDDbJ5ANBpGc3MrdDrTXiX/iMaTePP9Sbzyzig+2GEtuyonFfNxzaVn4vADuioe1+12wWabglpNs7mGw3RXQ6MkTVbLd59MxjE2tgMkSaKzsw9TU6MQi6WLiA2qsXVkcgbX/eZxePxLi0x5bOzvwA3f/STkVVamk8kERke3gclkor+/clK33HNKr5jMwOGwAqBJntra2mt+Tu5pYfFoLIk33hxBU5MQ3V1qtCj3HqtqMVAUheERB5557kO8/OpOZIsk/gvR1CTEVy85EaeeXFpOY6WRv5asVifGx0dAURQ6O3trHkvIZNIYGdkGgshiYGAj2GwOnE4L5uZoSRODoXvZLLirwZfkC7kzM/ZCcW921omBgf0KBZF67PT7PTCbx8Hj8XKz/tU/1x/9x5u498//LbqNwQC+939n47RTliZ19dhpnnbjjt89ix07yzMGA8A3vnoyzj/38Ir7VetH6k7oPsr4qCZ0mUwM27fvQCqVRFubBhqNftUN2hJEtvAglUikMJn6q5qdSKQy+L87n8DWqeJsls0SHr5zeg/W9fWgra0xKwir6bv/9yvv4Zf/eLvotu+efwy+/Zmja7ZzoS5OZ2ffEl2carCQxaujw4T29o6S+y7nfO4uWK3Xd9W9YrKW0JUHRRGYm3PAZrNBIBA1pDhSL+LJNN7+cAqvvD2C97ZZiq4M7Y71fVpc++2z0dpcWYJlfn4GFstkoUPAbjdjbm4GEkkTDIbusgy71WI1ffeZTBpjYzuQTCagVmvhctlgNPYUiA2qtdUfjOH63z6O7WNL28HzaFFI8NMrzykr2L4QtSR1yzmnkUgIVusU4vFobsXEWHcXx55M6NxzQXzjsnsQXiD8vn6dHqectAFHHznQ0JWAWhEOx/HSy9vx9LMfwmYvPgqxEEwmA2edcSAu/sJxkErrKyY2DiT8fjcmJychlcrQ2dlXc+Eqk0ljdHQbstksBgY2gCAIjI/vBEEQ0GoNUKk0DSmqryZfMjc3A6t1EnK5EqlUEiRJYGjoALBYrLrtjMdjmJwcLsz81sKa/Mjf38Qf7yud1F11xSdw6sn7Lfr/WuyMRhP4y4Ov4Yn/vAeSLJ9WNTdLcOnXTsbxx5aWf1mIFU3o7rrrrpLbmEwmhEIh9Ho9jjjiCHC5+147Wy0JXSaTBIcDsFgCEMTqy40JgoDf74HHM4tIJIymJhl0uq6GBCKNAkEQCAZ98Pk8CAb9oCgS3d3daGlpB1E5PkMyncGVv3sSH44XDx7kYi6+/6kNOPzAAxpK0LCanCcA/Oie/+DlLdNL/p/DZuHJX34ZrVJxHYlSFmbzOAIB76LZoVqwsGKn05mgVhdP6uo5nzQhBd1eSVOwd0CtXp7g6t5I6FgsBlKpCBgMHlis1dluE4tF4fHMwuudB4MBdHQYoFSq93jlPJnK4N0tZrzyzije3WJGKl1agmAhGAzg8586HF/89JFgV0Gm4PG4MT09jra2duh0nbBYJuD1zsFg6EJra+2rNaWw2vwIQWQxOTmCcDgIiaQJ0WgY69YdCD5fUJOt2SyB3z/0Cv71/Icl9+FyWPjuJSfjjOM2VGVbMpnAyMhWsFgs9PdvLBlf1HNOFxJSiEQSGAxdEIuXp7u6JxO6X/zqCbzw0tai27hcNo48vA+nnLQR++9n2iNkIhRFYfsOG5557kO8/sZIRbKTPAYHOnD5Zaeju6t6dsRGY1dMMo9gMACKItHRYYBaXftceTabwejoNqTTaQwMbEQ2m8H4+A7w+UL09Aw2tKthtfkSv9+LqalRCARCJBJxtLaqYDB0L8tOmh10DMGgDxqNHhqNvurv5G+PvoE/3f9y0W0MBvD9Kz+JU07aWPi/auwkSRIvvLQNf/zzSwiG4mXfn8Vi4txzDsXnLzgGQmH13/uKJnQnn3wy3G430uk02Gw2ZDIZgsEgstksGAxGQRCwq6sLf/3rX6FQVDccb7FYcM455+Daa6/FOeecA4CWSPjZz36GnTt3QqFQ4Etf+hK+8IUvFF5DkiTuuusuPPbYY4hEIjjooINw3XXXoaOj9EpAJdSS0LlcVjidNnA4XCiVrVAqVasiWYrFopifn4XPNweCICCTydHV1QkuV7wqEk+SJBEM+uH3zyMQ8IEkSYhEEjQ3t6C1tQ0qVXNVN3sqk8VVv/8P3hstvrwtE3Lwg3P3w1EHH9zw1chsNgWJhI9kkgRF7f2W1WgihQtu/Cvmg0uv3V5dK+6/5rNgMmp/kNPzQg44nRY0NSnQ1dVXM3HO4qSuE2q1dsk+tTr5RCIOq3UK4XCgoYQUeyOho6gsNm/ehGw2i6YmOZTKNsjlyr0qHgvQgY3PN4/5+VnEYhEwWRywuRJ0dZkgFYmwp/o70pks3ts2jVfeHsPbH04ikcrU9PpmuRg//tZZ2H+wujkOj2cO09NjaG1VQ6frLAQQeX3KRoLJpMDhAIkEAQaDtSra30mSLCSwbDa7wK7L4bBqDsRe+N9O/OqPz5fV/jv7xP1w+ZdOBKeKubpdSR07t1K3NKmrxZfkibfy874dHaaGEVLsyYTuqmv+ig83Ly3o7Y5mhRgnnrAeJ5+4AcYqWUdrQTAYw4v/3YZnnvsQDudSWZ1SkMtF+PqXT8JJJ27YK/cASRIIBv25wvKumKSlpRWdnQYkk2QdyUcGo6PbkU6n0N+/AZlMGhMTOyESSdDTM7QiMYlUKkAySYAk974fAegV7/HxnWAymchk0ujtXQelUrnsluiZGTucTitksmZ0dlY/6//Q3/6H+x54peg2BgP4wfc+hZNPpAtMlfzIxOQM7vjdsxgZLd2JkMf+G4349mWnQ6+rng01jxVN6J555hlcf/31+MlPfoJTTz0VTCaTHgJ8+WVcd911uO6669DZ2YkrrrgCGzZswE033VTxmJlMBp/97Gexc+dO3HzzzTjnnHMQCARw2mmn4fjjj8eXv/xlbN26FTfeeCOuv/56fPrTnwZArxY+9NBDuOWWW6BSqXDrrbfC6XTiqaeeqnt1sJaEjsVigMnMwmy2wOOZQzabhVAoRktLG5qbW/co4cbuwReHw0VLiwotLSqIxaK9XrkhSRKhUAB+vweBgBcEQUAoFEGhaEVzc0shGK/2YZzOZPGDPzyNd4atRbdLhRxcc+7+OPqQgxsaGKdSKTidFni9c4X/Y7M54HJ54PF44HLzP/zC3xwOd4+sZGyecOKy3/yzaKD9+VMOxGWfOrLuYweDfkxNjebIUwYhFNZGokNRFBwOC2ZnHUWTumq/d1qw2g632wkul1dor2wU9lbLpVjMxdSUFfPz9Go6k8lCc3MLlMo2SCRNezTIicUimJ+nV+NIkkBTkwKRJAd3PfQmrE5vweb2Vhk0Kjm0bXL6t0oBjUqOVqW0qlWwcshmCXyww4pX3xnFmx9MIhpP1XWcYw7pxf9dcnLV81pe7zzM5lG0tKig03ViaopercoTnzQKtF7fPJxOC1Ip+rMxGIyC/+Dx+Av+vcunsFh7JumjizAWzMw4ANBERwaDqa7nyITFjWt//W+4veGS+3TqWnDV105Df1d7xeMlk3GMjGwDi8XGwMCGJc/Zan0Jrfc1hUQihtbWdnR0GJYUq+LJNB575n288f4EREIezj/jIBxxQHdFG4E9m9A9/uQm3Pn752o6bneXGiefuAHHHzcEuax+UjSSJLF1mxXPPPch3nhrtKZrg8Vk4pOfOBhf/PyxEO/htlA6JqGTOLqwTEAoFKO5uQUKRUvNq9ILkc1mMTa2HalUAn19G5BOpzA5OQypVIbu7sEGxyRJOBwW+Hy7yOBWS0wC0K2SY2Pbkc1mwGKxsf/+B6O1Vb7seDQQ8MFsHgWHw0V392DViykPPvw67v/rq0W3MRjA1Vd9CiedsKHkdx8Ox/Hnv7yCp5/9oGJRs7VFiku/fgqOPnKgbr+9ogndqaeeiosuuggXXXTRkm2PPvooHnjgATz33HN45plncMstt+CNN96oeMzbbrsN27Ztw7vvvltI6O655x489NBDePXVVwvZ92233YYXXngBL7zwAtLpNA499FB873vfwwUXXAAACIfDOOqoo/Czn/0MZ555Zq0fDUD9M3TpdBbBoB9e7xyCQR8oioJMpoBSqYJc3rxiN8/uwZdMpkBLi3rRDBGLxYBYzEU0mt6jK3QURRWSOL/fC4LIgs8Xorm5Bc3NrUUJK6pxoJksgWvufQZvbi9ekZQI2Pjh+QfhmEMOath5z2azmJ11YHbWCRaLBZ3OgNbWZvh8QSQSSaTTKaRSKaTTKaTTSRC79YtyONwlwdnCvzkcbkMCtTv/9QYefmlpmxODAVxw4gH46lmHgs+tr60vmUxgcnIYyWQCRmNPzYQ6C5M6vb4TKtWupK7S905RFPx+D2w2WrC6vV23Inpfq2GGLplMwOudg9c7h1QqCR6Pn+sAaKtpGLwWZLPZQkEoHo+Cw+GitVWNlhYVdky48eNf/xuJZLqqY7FYTKhbmqBVK6Bpky1K9lRKaUmGwyxBYuuIHa+8M4o33htHOJqs67OYdC048YgBfPLU/dEkElQdNPh8HkxNjUCpbINO14nJyWHEYhH09Aw1VCQ8HA7CbjcjFotCoVCip6cLwWAUiURiNz9C/ywEk8kqEqjl/6Z9SiODxTwpDACsW7cf9HpNXYFYMBzHT+54Eh/utJXch8lg4NOnHoBLPnM0hPzyxdBEIo7R0W1gs+mVuoVJXSVfkk6nYLdPw+ebh1gshcHQtUSDlKIovPH+BO584GXM+3YloiwmA7+97gKs76vcBbQnE7pslsADD76GRx97qywhUDEwmQwcfFA3TjlpAw47pAfcKp8P/kAUL7y4Fc889yFmZgM1vadEIsBZZ+yP00/dH+3qxhVKKoEkSYTDQfh884XCskAgRHNzKxSKliUxST0JHUFkMTa2A4lEHP3965FMJmA2j0Ema0ZXV39DY5KZGbq4yWaz0dFhRGurAl5vEMlkMudHkgU/UiwmWeg3dvcrjYpJgF0Mn8lkAlJpE4466kgEg/FlLzAkk/SsfyqVgsnUU3UHxV8feg1/efC1otuYTAauuepTOOXkjYu+e4Ig8dwLm/Gn+19GOJwo+to8OBwWzj/3cFzw2aMgqODLKqFaP1LXeu/s7Cz0+uKtKxqNBi4XTUzR1taGUKi8tggAvP/++/j73/+OJ554YpGG3QcffICDd2uVO/TQQ3HPPffA6/ViZmYGsVgMhx12WGG7VCrFwMAA3n///boTunrBZDKhUCihUCiRyWTg98/D45nD1NQIWCx2odouFkuXfZPsHnxxuTyo1Vq0tKiWzImRJImpqTH4fB4wmSzw+QLw+XzweILcv+mfRt28FEUhEgnB55uH3+9FNpsBjydAW1t7TsRatKz3yRIEfvynZ0smcyIeGz/6zME4+uADG+I4SZKExzMLp9MGgiCgVmuhVneAz+dCLheBxSoeMGaz2UVBWTqdLARq8XgM6XQKJLnrdQwGAxwOF83NrdBqDXXb/vWzD8N7ozZMOheLqlMU8PBLH+K1LVP4wYUn4OD+2qUE8q1XeWpiv98Dg6G76jkAuqXJCICCzWYGwIBKVZmKOh6PwWqdrEmwmqIoeDxuBIP+hj5E9wT4fAG0WgM0Gj2i0TA8HjfcbhdcLjvEYimUyjY0N7csWzOSoqhCQcjnmwdJkpDJmqHVGiCTKcBgMPDK26P42e+eQraGIJEgSDjdATjdS4M8FosJVUsTNG1yaFQyaNvkUCok2DJix+ubxhCoMIdQCrr2Zhx/WB+OO7wfBo1yUSBWDfx+L8zm0QJj5/j4DiSTcfT1rV82+1weiUQMdrsFwaAPIpEE/f0boFAoyvoRiqKQTqcXBWYL/Ugw6EMms7gFlcViQyAQQq/vXPYcmEqlAYfDwdTUKIaHt0GhkAKo/V6SSYX45TWfwR8ffR2PPrWp6D4kReGx5z7AG+9P4P++fAoO3a+z5PEEAuFu4uNLV+qWHJ8kc/eRDUwmEyZTL5TKtiXPo5m5IG7/y0t4d8tS2QuCpPDqu2NVJXR7Emw2C1+++AScf+5heGfTBP79xCZMTBZnfN4dJEnh3U0TeHfTBMRiPo47Zggnn7gBA/3aJeeGJEl8uGUazzz7Id56Z7zm5HHDej1OP2U/aNqZiEQCcDlH4fMKisYljYxJwuFgrrDsQTabBZ8vgEqlgULR2tAxmTzhSSIRQ1/fesRiUVgsE1Aq22Ay9Tbk85Akifn5WbhcVpAkmZsd7wCPt5yYJIpUKgWKWhyTcLk8NDe3QKOpPyYBAC6Xh8HB/TE8vAXhcAjbtm2DTleZZbgS+HwhBgf3x/T0OKamRuHzeWAwdFWMSb5w0bEgKQp/fej1JdtIksLNtz4OFpuJ8z5N5xejY07c8btnMT4xU9Gmgw/qwrcuPQ1azeJCRV5vMBwOoqurv+GdFnUldF1dXXjsscdw1FFHLdn2z3/+E0ajEQBgtVrR2lo+Ww6Hw/j+97+PH//4x1CrFw/But1u9PT0LPq//PFmZ2fhdrsBYMnrWltbC9vqBZtd3YWbHy7efciYzeZBo+mARtOBeDwGj8eN+fk5zM/Pgs8XoLWVFiitZeaHoihEo2G43bPweudAkiQUCiX0eiPkcgUYReajstksxsd3IBoNY3BwEIlECvF4HIlEAn6/B6nUrgo4k8kEny+AQCAsOFSBgP7N5fLKXnz5JM7rnYfX60EmkwaPx0dbmxpKZStEInHVF2+pcwrQFfwb738Br28tri8l5LFw7QWH4oTDD1r2zUKvCHlhs00XBnp1OmMhkShnJwCw2Vzw+VwAxasrFEUhm80ildq1updIxOF2OxEK+dHbW30Lwe7v+9Ovno7P//Thoqx/Lm8Il9/+b5xx2AD+7zPHQCaube6MzWait3cAPl8LpqcnsX37+7nVtuqJIozGLjAYDNhsU2CxGFCrtUXPZzabhcNhwcyMCwKBAAMDGyCXV57JjUYjmJ6eQCQSRltbOzicvTebVI0vKXctyeVyyOVyEEQP/H4vPB43rNZJ2GxmKBTNaG1VQSZT1PSwzWYz8Hjm4HbPIB6PgcfjQavVo7V1cUHosWffx+33v9TQWTmCIOFyB+ByB4BtyztWe5sMJxw+gBOO6EeXfvFqcaX7cyHo4f0RKBRKGI1dGBmhSQyGhvZriPZYOp2Gw2GB2z2bo90egFJJ21uNnRyOACJR6fuUJMmcD9kVoHm9HoyMbEVHhwFabfXEAcXQ1qYCgwFMTo7i9ddfh15vrImMIA82m4lvf/EE9HepcfPvn0GyxCyk2xvGD37xGE46chDfufjEku2yEokYQ0MbsXPnVoyNbcfQ0EZwONyi5zQY9GN6ehKJRAJqtQY6nXHJ3E06k8XDT7yLvz7+NtJlyHbkUmHVMUKjUO37KZVSXPi5o3DWGQdicmoWL7y0DS/9dxu8vtIyEgsRjSbx1DMf4KlnPoBW04xTTt6AU07aCDaLiWdf2IKnn/0QbnewJtubmoQ47ZT9cObpB6Bd3YSRkR2IxUIYGhpCLJZEPB5HMpmAzzdfaD8G6NXofAyyOCYRgsstn+zRSRwdk/h8C2OS9ppiklr8CEEQmJjYiVgsisHBDYhGIzmW3HaYTD0Ni0msVjOSyURuxtdYYAJvTEySQSqVKqzuxeNxzM46EQoF0NMzsKzkl83mYr/9DsKWLe/B6XTC5/NjYKA2Yfbix2Wir28QXu88LJZJbN/+AQyGTrS1qcue8y9/6XgwADxQIqm76eZ/gaKALVun8fSzmyvaoVbL8e1vnoYjDluauEejEZjN44hGI1CrNeBwGj8fX1fL5WuvvYbLLrsMPT09OPnkk9Hc3Ayv14v//ve/GB8fxx133AG1Wo2LL74Yn/70p/H973+/5LHyIuS33XYbAKC3t7fQcnnSSSfhzDPPxHe+853C/g6HAyeeeCIefvhhuFwufP/738fo6OiiYOb73/8+5ufn8Ze//KXWjwaAvqhXIvijZyZ8cDqdmJ2dBUEQaG5uhlarhVqtLjnUmclk4HQ6YbfbEYlEIBAIoNPpoNVqy2r+JZNJvPfee0gkEjjooIOKktMQBIF4PI54PI5YLFb4yf9fHkwmEyKRCEKhECKRqPDDZDLhdrsxMzODZDIJHo+H9vZ2tLe3QyaTNfQ8EgSJ7935JP7zxs6i2wVcFn5+ydE468Qjlv2+wWAQIyMj8Pv9UCqV6O/vR1PTntH0CYfD2Lx5M+LxOPr7+2Ew1M4sCQD3P70JN93/Ytl9FFIhrr3kZJx15FBd75HJZDA6Ogq73Q65XI7169dDIqkuAKYoCiMjI7BYLBgaGoLBYFi0zeVyYXR0FNlsFt3d3TCZKgvL02L0E7BYLJBIJBgaGkJz855r59kdK+VLkskkXC4XnE4nIpEIuFwuNBoNtFotpNLiHQA0I2gAdrsdMzMzoCgKbW1t0Ol0aGlpWfQaiqJw+30v4d6/LX3Q7W2oW2U49dghnHbsOgz2LJ/ue35+Hh988AFaW1vR39+P9957D9lsFoceemjV13IpEASB6elpTE1NgclkoqurCwaDYY+Q3ZAkiYmJCUxNTUGhUGDjxo0QCpfXrhsIBLBpE03eI5FIcOCBB0Ikqi/Am5h246qf/wOTlrmy+8mkQvzg0tNx9kkbS37XkUgE77zzDng8Hg477LBF8/OJRALDw8Nwu91QKBQYGhqCVLp01fLtD6bw0zv+A5urPJGHUiHG3+74OrTq6sjeGoHl+hGCILHpvUk8+fT7eOXVnUgmayMVAugkodbVuEMO7sa55xyK448dApfLRiKRwHvvvYdkMomDDz4YcvnSNuZ8TJKPQxbGJYnErja3fEyye1xC657NYnZ2FslkEnw+H+3t7VCr1Q2PSXa3+/3330cgEMAhhxwCn8+H8fFxmEwm9PcvfzUmEAhgZGQEgUAALS0t6O/vL3odrwRCoRA2b96MRCKBwcFB6HS1s30uBEVR2Lp1K1wuFxgMBvr6+mAymRry3aTTaYyOjsLhcEChUGD9+vUQi0vPh1IUhbvufh73/qm4pEE14PHY+PKXjsfFXzwefP7irplMJoPx8XFYrVZIJBKsW7euaqLIWlG3Dt27776LO++8E1u3bgVBEGCz2TjggAPw7W9/GwceeCBeeeUVvPnmm7j66qtLkpM88cQTuO222/DUU08VguWFCd1ZZ52Fo48+GldddVXhNVNTUzjjjDPw+OOPw+Fw4PLLL8e2bdvA5++qKn/nO99BOp3G3XffXc9HA0GQFftj82CxmJBKBQiHEzU5O4LIwufzYn7ejVAoACaTiebmFrS0qCCT0U4uEglhbo6ejaMoCgqFEm1t6kIrVDkkEnEMD28DRVEYHNwAiURSs50kSSKZTCKZpKtniUQCyWQi9/eulT0Oh4Pm5lYola2QSpdP3lDsnJIkhZ/85QU8/fZI0dfwOUzc+IWjcPyh+y/r/Wlh6ml4vfM5sc/Okue73u++GhAEAZvNjNlZF+RymlmyVnpjiqLw4Asf4PePv1WxXe7wIQOu+fyJUFehzVUMoVAAU1PjSKWS0Gr10Gr1Va0YURQFi2UKs7NOdHX1oq+vGzMz85icHEckEoJS2QqDobr2Sro6NwWCIKDTGaBWa+tqEZHLG9l+U50vWc61lGe09XjmkMlkIBSKCh0AXC4PmUwGHo8bc3OzudU4PlSqdrS2qopeU1mCxK33PoenXy69fHbsob0Q8rlwzAbgmPUjGK6vTbJaNMvFOP6wPpx4xAAGujVgMqurrFc6p8GgHyMjOyCTyaHXmzA6ugMAMDS0cVlVY7q1xg273YJMJg21WgOt1gAOZ2mL7Er6EQAIhYKYnBxBNptFZ2cvWlrqZzZksZgQCjl4++13EA6Hci3UBmg0urrutUyGwN/+8y7+8s83ka5Aa3/QeiOu+vqp0LQVn2WMx2PYuXMLOBwuNmw4ADKZCKOj47DbrWCx2DAauwqrogvh8UVwxwP/xStvj1a0d+NAB37wjdOha6+uSNQoX9LImCQWS+L1N0bw/ItbsXWbtSH2LYRcJsLpp+2PM07bf1HLWTwew8gI7VMGBpYTkyQKP3RMEs/9vTAm4UKpbIFS2bpsQqlq7k+SJDE6ugPhcBD9/esRDPrhctmh0xmXvTqeTCZgtdLznnRM0lWyS2WlYxKrdQpu9wzk8uZcTFLfbFjezqkpK8bHh0FRFEQi8bJXABciGAzAbKZjkko+iqIo/Om+l/Hg3/5X8/scdUQ/Lrv0VLSrF/sleuRjDlarGQRBQK83Qq3WFO2kq4Rq/ciyhcXT6TRCoRCam2sn/fj85z+PzZs3L7oo4vE4uFwuDjnkEDAYDMhkMtx6662F7W+//TYuvvhivP3223C5XDjvvPPw0ksvQafbNQ/0uc99Dr29vbjhhhvq+kx7Wlg8lUrmWhXdSCYTuZYRNpLJOHg8Plpb1VAqVVXfPNFoBOPjO8Bmc9DXtw48Hr/h+iR0i08S2WwWIpGkoVWv3W0lSQo3P/xfPPXWcNH9eWwmbvjC0Tju4I11v2c2m8kNF7vAZnOg1RoqUlfvCc2XYNAHs3kcAGAy9dbFsmeb8+OWv72CLSV0+vIQ8Dj4+tmH4bzjNoJVR3BGkiRcLhtmZx3g8QQwmXqqmj2iKHqebm7Ohba2NszNzeXmf7qqIqKg5QsmEQ4Hq56vK4fVQIpSDyiKKpAyBQJeUBQFsViCWCwKAJDLlWhtVUMqLV2lTqUzuPH2J/HWh1Ml3+dzZx+CH337TIRCiYKt0XgSM3NBOHOtlPnfLncA/lB1vnR3yKRCHHNIL44/rB/r+rQ1X5OVzmk4HMT4+A5IJE3Qao2YmNgJFouFvr4NhRamehAK+WG3TyMej0GhaEFHh7Fscrgn/Eg2m4XVOgmfbx7Nza05LajaJy7ytvr9UVit05iZoeViBAIRTKaeuuf17DM+/OqPz2PbqKPsfjwuG5ecdxTOPf2goiyq8XgMo6Pbcs9KColEAiqVBhqNHizW4s+bJUj8+/kPcN9jb1Yk+5E3CXHphcfj5KMGa3rW7UlSlDxquZ7c7gBeemU7XnxpG1wz/rrtYzCAA/fvxBmnHYDDDu0Bh7P4XEejYYyP7wCHw0Nf3zpwubwViUlSqSQIorExSSU7SZLE5OQwQqEgenoGEQz6MDc3U1Kep1pksxm4XDbMzc2Azeago8NYdN6zFlsbgUDAi+npCTAYdEwik9Uekyy0MxKJYmyMbnEHGNBodGhvr69AtDtIkoDTScckAoEIRmMPJJLiPoqiKPzp/pfxyN/frOrYWo0C37r0NBx80FLG20QiBouFnvlXKFqg13cuS29wRVkuAfrDj46OIh6Po9ghDjrooIrHmJubW1RVAWiNu+9973s4++yz8eSTT+LRRx/FSy+9VGhRue222/Diiy/i+eefRzqdxmGHHYarr74a5513HoBdLJc///nPccYZZ9Tz0fZ4QpdHnqDA66XlD1paVGWDr2IIhfyYmBiBQCBEb++6QkV4tQlOlsNCWzMZAr985BU8/r8dRfflspm48QvH4LiDqxOm3R0kSWJubgYzMzaQJAm1mh4urqYlak+d00wmjenpcQSDfrS2tkOnM9XUssVmM9HUJMSfnngbd/7rTcQrBC8D+jZc8/kT0a2tXS8FAOLxKKanJxCLRXJU4EtnVXYHzX45DY/HnUumKwtWEwSBmRk7Zmcd4HJ5MBi66nq47I59NaFbiGw2C79/HsGgH2JxE1pa2ioSRkSiSVxz6z+xo0zif+mFx+GiTx1Wk63xRAquueDiRG+O/rcvEF20r1TMx1EH00ncxgHdsqQPyp3TSCSEsbHtEIul0GoNmJjYCS6Xh76+9XVLzcTjUdjt0wiFAhCLpdDpOksGD9Xa2Wh4vXOwWifBYrHR2dkHqVRW0+t3tzUQ8GJychQABYqioFJpoNUa62opJUkKz7y6DX94+NWKEhU9xjZc9bXT0GNULdmWp0hvapKio8MELndpMr1z3Inb/vwCzHZP2fdhMIBPnLQ/vnL+0ZCIay8SrfaELg+KojAy6sSLL23Fq/8bRrRKdtlmhRinnbo/Tj9lP6hUxYtvwaAPk5MjEArF6O0dKhA57SsxSTk7acK5UQSDPnR3D8Lv98DrnYPR2IPW1vqE0emYhCbAoigK7e0dUKm0qyomSafTmJ4eQygUQFsbPY/KZNYWkyy0M5vNYmpqBKEQTaLF5wtgMvU2jIwqT0wTi0XQ1qZBR4dhSYEHoO+DP/75v3j0sbdKHovP4+CiC47GueccBi538TEIgoDLZYPb7QSPx4fB0IWmpuW3V65oQrd9+3Z85zvfWUQ8ku/xzv8eHa3cvlAMC1sufT5fQYfuK1/5CrZv344bbrgBN954Iz71qU8BAH7zm9/g0Ucfxc9//nNoNJqCDt3TTz9dtL2lGuythG658PnmYTaPQSqVo7t7YJEDWE12VsLCKvAv//YqHnt1a9H9OCwGbvzicTj+4PU1v0d+uNjhmEYqlURLixparb6mKsqePKd5diS73Qwul4+urr4lNNvV2DnjCeHWR17FGyUYQvNgMZm46OQDcPHph4DPrb2SnxfrdTgsYLHYMBi6oVAoK9opkwmrojIOBHyw2aaQTqfQ3q5De3tHTQ+UcvgoJHS1wuOP4Kqb/wGLo3iAy2Ix8YOvn45Tjh5qqK2JZBozc0HM+8KQSgToMaqqEpeuBqXspJO5HRCLJWhv12Fychh8vhB9fevqYg1Np1NwOq3weNzg8QTQ6YyQy5VVF+L29HefSiVhNo8iEgmjvV0Hjaa69miguK2JRAzj4ztzFXYqV1zphkxWXyDjC0Rx+/0v4fX3xsvux2IycN4ZB+Pic48En7f4e2OxGFAoxEvOaTAcx72PvIZnXt1e0Y5ekwpXfPkU9HXWF5gD+05CtxDpdAbvbJrACy9tw3vvT4IkF4eITCYDBx/YhTNOOwCHHtJdNtHweOZgsYyjqUmB7u7+RT56b/u8alHKToqiMDU1ikDAi66ugRyrtwednX1QKmtva87L8jgcFqRSSbS2qnNt2tUXmPZ0TDI3NwO73Qw+X4DOzn6IRNVpGRazk9a9tGJmxg42m41sNovWVjU6OkwNEWCnKAputwtOpwVsNgcGQ3fRjieKonDvn1/C3x97e8m2Y44awDe+djLaWmVLXpOPSTKZDDSaxkoqrWhC97nPfQ5erxeXXXYZVCpVUaMPPvjgWg8LYHFCB9DJ489+9jOMjIygpaUFl1xyySL9O4IgcNttt+Hf//43kskkDjroIFx33XXQautf6t4XEzq32wmbzQylsg1GY8+S72S12FkN8oH99fc8V1RPDaCTuRu+eDxOOHhdzcePREKw26cRjYYhkynQ0WGqk01yz5/TRCKGqakxJBIxaLUGqNUdFQPH3e2kKAqvbp7Cr//+KnwVZp+0LTJcc9EJOKC3PoruVCoJq3USwaA/x8hamk64mvOZSiVhs00hEPChqUkOg6Gr4bpsH7eEzuby4aqb/465EqLPfB4HN373kwUK+X3FlxSzMxoNY2xsO4RCMdRqLaamRiESSdDbO1S0YlsOBLFLl5LJZEKjMaC1tfLKcjV2rjQoisLMjB1OpxUikQRdXX1V3UelbKUr7KMIhfzg8QRIpRJobm6FXt9Z94rnG+9P4Lf3vQjvbqu4u6O9VYYrv3oqDlxnKGknSVJ49rXtuOdvr1bUNhQLefjqZ4/BWSfW13q+EPtiQrcQgWAUr7y6E+9umkAylcEB+5tw2in7LQloi2F21gG7fRotLSoYjUsZHvdlP0JRVEG2p7OzD17vHEKhALq6BioWLouB1qWcRiwWgUzWDJ3OCIFg34hJ4vEYzOZRJBJxdHSYoFJVJqoqZ6fP54HZPAo2mwOCyFZdEK4W9EziJEKhABSKFhgMXUt8FEVReOxf7+C+B15BOp1Fb087vnrJidh/P1PR49lsUwgG/WhqUuRikuWxdu6OFU3o1q9fj9tuuw0nnnhizYbtC9iXErqFVQ21WouOjuJMQXvbzlrAYjHwp2c24Z4nllZIALoye+OXjseJNSZzyWQCdvs0AgEvhEIxdDrTssSC99Y5JUkSTqcVs7MOSKUymEy9ZWfGStkZjiVx17/fxH/eKs4auhBnHTGIb59zFKSi2tuO8pVHq3UKFEVCp+ssOp9YqbXF7XbC5bKBxWJDr++CQlH9Kkgt+DgldCOTM7j6l48hFClOuNAkEeCW75+Hge72wv/tK75kdztjsQhGR7dDIBCira0d09PjaGqiuxlqWd2lh91n4XRakc1moVJp0d6uq7uKvDfPZzQaxtTUGDKZFPT6rmXNDdNt0xbMzjogEkmQTCbAYAA6XXEykqrsiydx7yOv48mXtlTc99Sjh/DNz5+AJolgkZ2jU7O47c8vYGSysn7UKUcP4RsXHAeFrDHEDPt6QlcP8u3zs7NOtLfroNUWZ2ne23ZWi2IF0enpcXi9c+js7IXHM4doNIyensGa2+sSiTgcjmkEAj6IRGLodJ01t0GXs3VPgSRJOBzTcLtdkEpl6OwsT+JWyc54PIqJiWFks1kIBEJEo2HI5cqq9OWqAc04Pw+bzQyKoqDXd5aYT6RyciGMojHJ7Kwjt6LIgV7fBbm8ea/GJHUldMcddxyuu+46HHfccTUbti9gX3GeNEPgBDweN3Q6E9Tq0qso+4rzBIA/Pf0O/vR0ceFZFpNemTvpkOqTOZIk4HBYMDc3Aw6HC63WUHG4uBrs7XMaCgVgNo+BJEkYjT1obi4+81bJzg/HHbj5of/C6QmVfT+FVIgrzj8WJxzQXde5y2YzsNvpOTmJpAlGYw8Egl2rAiUTz3AQFsskksk4VCottNqlBAeNxMclodu0dRrX/ebxklpgrc1S/OqHn4F+N3HUvX3dV4uFdoZCYYyNbQOPJ0BLixpW6wQUihZ0dvbVtKIWDgdhtU4ikYijubkVHR3GZRHw7G7n3jifNKPuFDweN+RyJYzGnpLjCtXY6vPNY3p6HDweLRIdDPoglcphNHbXXbnePubArfc+D/tMeUkBmVSIb33hBJx6zBC4PDZuved5/OvZD0BWCHMMWiX+75KTsXFAV3a/WvFxS+hIkoTFMgGvdy6nTVq6U2pvX/fVYveZ/nzMZTT2wOOZRSIRR2/vuprmvQiCjknm5+mYpKPDiObm+ooepWzdOzGJH2bzOCiKhNHYW3JVrRo7M5kMpqZGEA4HoVS2IRj05wrCJrS0lNeXqxaZTAZ2uxle7xykUhmMxp5FPqqUnaFQAFbrJFKpJFQqbY50aeWkaFY0ofvjH/+Il19+Gffdd9+ydW1WI/YF50mSBCYn6RYXo7EyFfXevtGrAUGS+Mtz7+GPT71bdDuTwcD1XzwepxxafTKXSiUxOTmMeDye62vWNmzWajWc02w2A4tlEn6/B0plG/T6riUrBVW1MmayuO+ZTXjoxQ9AkOVdwpHrTbjqs8ehTVFfsBIKBWCxTCCdTkGj0Rd6zXe3M51Ow243w+ebh1gshdHYDaGwuh795eDjkNC9+MZO3PKHZ0tSWxu1SvzymvPRWkTGYjVc99Ugb6fTOYedO7eCy+VBqWyD3U63pptMS8VfSyE/f2G3myEWS2EwdFU9w1qtnXv7fPr9HlgsE2AwmOjs7C262lCtrbFYFBMTO3NEU1rMzc0gm81AqzVApdLWFYzRot/v4KEn3qkow3LgOgNsMz54Kohp83kcfPHTR+D80w8Cu0GzmwvxcUroCIIoEFt0dvahubm17P6r5bqvhIUz/VNT45ifn4Ve3wWPZxbpdAp9fetr8gXJZAKTkyNIJuPQaPRQqeqT1yln6948p5lMBhbLBAIBL1paVNDru5YkO9XaSVEU7HYz3G5XIeH1eueKFoSXg2DQD6t1Eul0Glrtru9kaUySgt1OS0hIJE0wGLobJrNQDiua0P34xz/GCy+8UBD8XagBBwAMBgMPPPBArYddNVjtzjObzWBiYidisSi6uwfKMvsRJIl/v74dj7y8Gd5QDNoWGXo7WtGna0WvvhU92hYI+fXNOCwX84EIhq1zGLbMYsQ6hzHbHOIlVguYDODaL5yA0w6rPpmjtdFo0fmensGGBWB5rAbnCeQ12OZgtU6Bw+Ggs7NvUbWwFjsnnR789C/PY8JZvhIu5HHwzU8diXOOXl+VJtjuyLNB5emETaYeyGSywoPT5XLC6bSAwWBApyvVDrEy2BsJnc3lhTcUBZvJRJ9JDR63PkKnavD3Z97D7x98peT2db1a3HzVuSVZ/VbLdV8JbDYTbDaJt99+GxwOF3J5C1wuK9ra2qHXd1V9PREEXZX3+ebLtrUvx87Vcj7T6RTM5jGEw0GoVBp0dJgWBZu12JrJpDE5OYJoNIyODiNSqRTm5lwQicQwGnvq9scWhwe33vs8hidddb0+j6MO6sG3v3gC2pSNYdIrho9LQpfJZDAxsQPxeKzq1sPVdN2XQ36mf/PmrZiddaGjwwSPxw2CyKKvb31NAX0w6IfZPAoWi42ensGGFyhXyzml29LdsNmmwOHw0NXVt0jSpFY7PR43LJaJwuyzw2FZUhBeLgiCgNNphdvthFAohsnUg6amplxMEoHL5YTDYQWTyczFJMtfUa0WK5rQff7zn6+4z4MPPljrYVcNVrPzTKdTGBvbgUwmhZ6edWVpscfs8/jFwy9j1DZXch8GA9C1ydGna0OfrhV9uSRPJFh+n/JCxBIpjNrmMWydxYhlDiNWNzxV6lMxGMCPLzoeZxxRHZslXU13wm6fhlQqQ1fXQN2Mp6VAkiR8vjmIxXyw2QKw2bw9dnOXQjKZgNk8img0Ao1GD42GFjSt9RolSBIPv7AJf37mfaQq7L/OpMa1XzwZuhJiv5VA0wmPIxaLQq3WQq/XYscOulhBs3wZG/7dVcKeTugefvId/PHR15H3xFwOCwPdGuw3qMN+A3oMdLc3hPmRoij84W+v4dGnirczA8DhB3Th+ss/sYQ1cCFWS9BQDhRFIZmk2RdZLDaamhSYnXVAre5AR4ex6nuVrqYPI5lMwGTqrbjqUA+SyRhSqShYLD4EAvGKtu5Ug7z/dDgsEAiE6OzsLwSttX73JEnCbp/G3JwLLS0qKJVtsFqnkEjEoFZ31N2qRJIUnvzvFtz7yGuIJ8rLsOwOdWsTvvOlk3DY/l01v2+t+DgkdKlUEmNjO5DNZtDbuw5ice3sy6vVj9AgMT/vhMVigVZrgMfjBkVR6O/fUHULMUVRmJ11wOGwoKlJjq6u/roYdctamYtJJBIBWCwB2GzuXo9JEok4zOYxxGIRaLUGtLfr6opJAHred2KC1iLu7OxHKOSvSl+uVsRiEUxPTyAej6K9vQM6nWZBTNKOjg5Dw7+7SlhxHbqPMmpxngSRAZcLUBQH5Ar7pEQijrExmm65r29dSRakWDKNP/7nHfzj1a0VZweKgcEAOlrl9CqerrXwW1xlkpclCEy5fBixujFscWPE6obV7Uc9VxoDwDUXHYezj6xOZ46upo/D5/PUHLxVi0QilnNSu9jXOBwuJJImSCRNkEqbIBCI9oozpSgKLpcNLpcNYrEUnZ19EItFdT04HXM+/PT+Z7DdWl5wls9l4zvnHo1PHrWurs+cDyCdTitIkoRIJIZe390wB10r9mRCN+8L43OX/6FsCxmfx8FQjwb7Deqx/6AePSZVzfps2SyBW+99Ds//rzQBzunHrseVXz217LEDAV+O9pkFgUAEgUAMkUgMoVDcsLahepDJpBGNhhGNRhCNRhCLRUAQWYjFYojFUrjdM9BqDdBo9FUfMxj0Y2pqFGz2ylTT80yTLpet8DeDwYBIJIZEIsv5E+keDx7yiMWiMJtHkUwmoNN1oq2tHRwOqy5fkq+w5xk1vd55uFw2cLk8GI09dZNTzfvC+M19L+LtD6cq7sths/C5sw/BRZ88bEVXwBdibyR0BJEGl8vYIzFJPB7D+PgOMBgM9Pauq7oFLpPJwOm0IBIJgs8XQiikfYhIJAGXu/cSEZIkkUjEcn6E9ifJJM0ErdXqMTc3CxaLhb6+9VXPzhJEFtPT4/D7vWVJYpYDmmlyDPF4DAAdaHE4XEilTTk/IoNAINwr55UkSbhcNszM2CGRSHPyBsK6/Eg6ncbk5DBisQgMhm6IRJKq9OXqsTlPwkbHJBIYDF2LVhn3JPZIQhcKhfDBBx9gfn4ep5xyCoLBIIzGxgfQexq1OE+n0wKXyw4mkwmxuAlSqQxSqQxisaSh5yEaDWN8fAc4HC56e9eDxyueXP1vqxm/+vurmK9A9VwPtC0y9OnpBK9P14ZeXQvEAh5mvOFC8jZsdWPCMY9UhmjIe159wXH45NHVJXPJZAITE8NIpRIwmfpKkoTUi126K9Pg8fjo6emHWq2EwzGLQCCASCSEWCwCiqLAYrELyZ1E0rTHA95IJASzeQyZTAadnd3o6emsSt9tdxAEgUdfeAP3v7gT0WS27L6HDxnwo8+fhOam+nrKs9kUGIwsuFwRiMZcPnVhTyZ0Y+ZZfP1HtbWnCwVcrO/rwP6DOuw3qEenvrUsvXoimcYNtz+Jd7eYS+5z4ScOw1c/e3RJn5VOp2C1TiEQ8EIqlUEiESEQCCKRiBcSEYFACJFIkkvwJBCJRA2bV10IgiAQi9FJWz7wSqdpIWoOhwORSAqxWAKpVIpIJACHw1GRoGEh6ETLAafTAplMgc7OvoYnVfRq+hii0TC0Wj3WrRuA2+3L+ZEgwuEQMhl65UkoFC1I8JrA5e65FnmSJHIrbDNoapKjp6cfbW2KulZVFlbYe3oGwWKxYbFMIBIJobVVDZ2us67VOoqi8Nqmcdxx/0vwl+j6OGCdAf938cnoaF++yG8t2BsJncNhxswMLaVBP4PomEQkamxMEomEMD6+EzweD72966piH8yPB9jt06AoEu3t7YhEoohGo8hm6XELNptT8CP531xu4ztgKIpCKpXMFYDCud9RUBQJBoMBoVAEkUiKpiYpmprE2Lp1GzgcLvr61ld9DyaT8VxMkkJnZ1/DqPcXfga32wWHYxp8vgA9PQNQqZpht88gGAwuiknYbHYuRqX9SKOvh0oIh4Mwm8dAEFmYTD3o7e2sy4+QJAmbbQrz87Noa2tHR4cJ8/OzBX25zs6+ZTGFLkQ2mwKTSYDDEYEg9t7a14ondHfffTfuueceJJNJMBgM/POf/8Rvf/tbBAIB3HfffZBK904m2wjU4jxZLAaYzCyczl1BPUkSYDJZkEp3OVOhUFz3zRMM+jE5OQyhUIze3qGiwcWcP4Jf//1V/G9becHoRkPI5yKerK3lpRo0Cbn43ueOw0kH9Ve1/65qOidXTW/soCo9WzKOcDiQqwQZweNxllSZ8sFmOEw702g0DJIkcwm/tPCAFYslKxLsLkQ2m4XNNgWvdw5qtRodHZ1gMOp7zymrFXf+63/YNFl+ta5JxMfVF52I4/arvZ1ptbTg7MmELhZP4aL/u7dkIFoNxCIeNg7Q7Zn7Depg1LYU5hpDkQSu/uVjZSnbv/2FE3Du6QcV3ZYvYtAC8UzI5cpCyxGTyQKHwwWbzQaDwQBJkshmMwWBaQAQCESLAjOhsLaWQoqiFlTM6cCLrkIDTCYTAoEIfL4AXC4XLBYbJEkik8kgk0khlUoikYijq6sPzc3VCf0SRBZm8zgCAS80Gh00msZW0xfPlnDR2dkHuVxeVOcqlUoiEgkhEgkhHA4hlaKlJfh8wYJuANmKBLu7Ixj0wWymhb43btwAHk9Sp2h1Kldhj8Jo7IFS2Yb5+VnY7WZwOLzc/G99sUMkmsTdD7+ySDS8WS7Gt75wAo47tG+vFJr3RkKXj0kcjhkEg/mYhASLxVqU4C0nJgkEvJicHIVYLEFPz1BVkh2JRBxW6yTC4SDk8mZkMhlEo7T2JZvNAZfLBZPJAkVRIAgCmUwKRK6yRyd54kWJXq3XfSaTKSRueV+SzdJFSh6PD4FACC6XDw6HAwaDgWw2g0wmjUwmjVgsCoFAiN7edVUXdwIBH8zmUXA4XPT0DNalK1cOqVQS09PjuXlXLTo6jOBy2UVjkmg0XPAli2OSXQmeWCxd8aJzNpuF1ToJn28e7e10MgbUF5PMzc3AZpuCWCxFd/cACILA9PQ4IpEQ1GottFrjsj/PvhaT1JXQPfTQQ/j5z3+Or3/96zjuuONw/vnn41//+he8Xi++//3v48wzz8S1115bs9GrBcvpVydJErFYFOFwAOFwsHDzsFjsRQletS15Xu9cQS+pq2tgSTCUJUj887WtuOc/7yBRglAkj/ZmCdgsBpyeMCoQGe5xCHlsmNok6GqXo1/fivNOOxxkFhVvooUCuXQ1vb9uPahS8PnmYbFMgslczP5Wzc1OkiTi8SjC4RAikSAikTAIIptrrZIUVvHE4qaG251HMOjF9PQEAAZMpl7IZPVVqSOREJ569R387U0LvOFU2X3POGwAV5x/TE2zmPua86wG1fiSLcM23PrH5+FyBxrynjKpEBsHdNjQ14EnXtoMm6s4wQ2bxcQ13zwTJx4xUHR7LBaBxTKJWCyClhYVKArwet1obVVBq22H3x9CMplEKpVCOk3/5FeV8mAwGIVkLw8Oh5urfktyxQ0pWCw6kEunU4hEwohEgohGI7kVQPq1LBa74P9IkigEYwvB4XDB5XLB4fDA4/Gg12vB4Yiqup4SCbqank6vTDU9k0ljenoCwaAPLS1q6PUmsFjsqq97+tyEcr4khESCvq64XN6idm8+f2VaqzKZdI69zpdbUTPV1d5EkiSs1kl4PG6oVBrodJ1IpRKYmqJnbTQaHdrb9XUHY1aXFx9st6LL2IqBznZwOSsncVIJq2GGjo5J6CIjXWgMg6JIsNlsSCSyBTFJddeNx+PG9PQ45HIlurr6K35PJEliZsaOmRk7uFwe2traMTvrBAAMDg4gEkkgmUws8iPpdGqRzwDoAg5FUciHrEwmE3y+AEKhuHD98/mCgr+JRiOFZ248Hi34JnqGi1PYjyCy2D0MZjJZOT/CBY/Hg0wmRXOzGkDla3Lh2INc3gyTqa+hz/a8hprVOgkWiw2TqbfQslxtTBKLRQoJXiQSAkEQYDAYEIslhW4AsVi6YjGJ35+PqViL7K8V4XAQk5MjBeI7oVBcmP/l84Xo6upbVqv8vhaT1JXQnXLKKTjttNPw3e9+FwRBYHBwEP/6178wODiIRx55BPfeey9effXVmo1eLajWeaYzWbw7YoNYwoexVQ65eGn/OO1YwgVnGo2Gc8vfnIIjlUplBUe0ELOzDtjt02hpUcFo7FmyfdQ2h1sefhnj9vmydrKZDHzxtINw5edPQDyaQiSWwoTDgzH7HMbt8xizz8M6669r3q4esFlMdGkUGNC3YcjUjiFTOzpaZYXPV+1NlM3Svel0NX0XCUijkM1mYLVOweebh0LRAqOxe1F1rp6bPb/ikA/KIpEgMhk6ERcKxZBKm6BQtNSkaVMJbDYTfD4TH364GcFgoNCmUE97Uzqdwo7h7Xjk9Qm8OeYpu69KIcH1F5+C/bqra3Xb15xnNag+EKPgnA/g9XfG8eEOK3aMu5DOlG9xXQ4EPA5+esU5OGiDccm2hWxfAoEIWq0eMzMOxONRGAzdUKvboVCISwrALwzK0ukUUil6tSyVShQN1AA6yKLdT3EfRCdqvAUJ2+5/8wqV9TxquZ4CAS/M5jFwOLxcNb2xcjx+vxcWywQAwGTqgVy+K1ms97rPZjOLErxYLJI7HqewEtPS0tZQzUYWi4Fo1I+dO4eLMupWC4qiMD8/A5vNDImkCZ2dfeBwuIXinEgkRmdnf93fw0fNlzSSFKXemGQhsUdrqxoGQ2U9UlpDdKKg18Vmc+B0WiAWS9DXN1SyfZeiKGSz2ZwPSRb8SDqdyiV/yUKL5u5gMJiFItDuYDKZhWLPQt+xy6fQfy98NtZyLWWzWZjNYwgGfYtIQBqFhTJFzc2tMBi6FyVd9cYk8XisEI+Ew6HCuaXneZvQ3Nza0PmxfEzywQcfIhTKM+oa6+payktTJRJxGAzdUCrbkEjEMDU1hmQyDq3WCLW6PqmUfc2P1JXQrVu3Dvfccw8OP/zwJQndpk2b8JWvfAU7duyo2ejVgmqcpz8cx5d/8ShmfeHC/w0Y2nDMxk4cvaELBpW86AVEkgQikV3ONN/fTA+w7nKm8/MzmJ11or29A1rt4rnEWCKFe/7zDv752raKSdigrhk/vvh0dHe0lL0wk+kMJp0ejNnmMe6Yx5htHpZZX0VNsmqga5Nj0KDCgKENg0YVujTKslXTam6ihdX0rq6+RQFSI7BLtJuAwdADpXIpu10jbna6tSpRCMrC4SDS6RSkUhk0Gn1DesEX6ui4XM7cDCAvR5hSu5POV9hf3zKOR99yIhQv3XLLYAAXnnQAvnbWYRUr5Y12nrFkGm/vtMDti+CAXi0GDKqqXrcadOhS6SxGp2awZdiGzcM2jEzOVNTeqhZNEgF+cfX56O9UL9kWCHhhtU4hm81Ao9FDKBTDbB4Dk8lEd/dArmq7vO+JIIhcgJZENBpGLBZFMpnItVAKIBRKIBQKC4FWvppeK6qxc6Wr6QSRhc1mhsfjhkzWDJOpBxzO4vmbRl33dGvVrhbNaDQMFosFlUqLtjZNQz5X3taZGS8mJmhJArW6A1qtoa4VtXA4iKmpERAECa1Wj7Y2DeLxKMzmMaRSKeh0JrS1tdf8/e9rgVglrCTLZb4lb1dXEV0Y2D0mmZtzwe12VVU8XSjYLBZLodd3wu12weebL8hhFGsPrAUURSGTySCdTiIej+XasePIZjPgcnmFLgAejw8Oh07Y6iliVns+4/EYJieHkcmk0dXVX1ZOqh4Eg35MT4+DJEkYjd1FGXcbFZMkk4kF7d50TNLUJIdGo29IsXlhTOJ0OuBwTIPHE6Crq68uOROSJGCxTBYEwvX6LvD5AjidFszOOgtFo2qJbHa3c1/xI3UldCeffDI+8YlP4LLLLluS0P35z3/G3//+d7z44os1G71aUI3z/NUjr+Kfr28ruV3XJsfRG0w4ZmMnBg3qklpdBEEUbpp8gpfH7oP8FEXhta1m3Pb31+AJlic9EfPZ+NoZB+K8Ew+pmyY2mc5iypVL8ux0omd2+UCUoc6SS4QYNOaSN4MK/fo2SEWNvYn8frqazuU2vppOkgQcDgvcbhekUhlMpt6STmAlbnaKouD3e+Fy2ZBIxBqS2O1uJ00lPIpYLLqslc1QyI+do6P466uT2GYLlt23S6PEDZecii5N6cS7UQ+jbVMz+M9bO/HK5kkk07tWub796aNw4UkHVDzG3kjoWCwGSDIJkmSBwVgaeCdTGeyccGHzThu2jNgwbp6tq9iiUkrxqx9+dgk5RCqVgs1Gk540NclhMHTB7/fC4bBAKqVptvPyEavlIVcJleykq+mjCAb9K1JNX0hMpNd3oqVFVfT4K3U+U6kkZmYc8HhmwWSyoFYvP7FbaGsmQ2BmxgGXy7pE3qAWZLNZOJ1WzM25wOcLC2xyDgdNxiKVytHZ2VsV6UYxO/eFQKwSamW55PGYoChOXUQOBJHdLSbZFWsYDF1oa9OUfO0u0hMzKArQ6UyQSKSYnBzNkZXtkv5YLd9RJVRjp9/vgdk8niNLG6xazqAaEARRuBeamuQwmUrfCysXk3hyMUkcUqkMWq1hWYnd7nbmWToTiRg0Gn3dvjgY9MNmm0IymYBKpYFGYygUiLLZLAyGrpo0bVfLNbqiCd29996LO++8E9/97ndx7LHH4owzzsCDDz4Iv9+Pa6+9FhdffDEuvfTSmo1eLajGeV75uyfx1g5LVcdTSIU4ar0Jx2zoxAF9HeCVWanIZrOIRIKFtpk83P4wfvXoa3hze2XSk8P7WnHVhSdD3bL8tp7dkcpkYXZ5MWank7xIPAWVQoIBgwqDRhVUiuUzJ5Wyla6mW+Fy2SGXK9HZ2dvQdqJYLIKpqTGkUolcZVhT9rOs5M1OURQCATqxi8djkEiaoNUa6krsitlJzzXY4HLZIRJJ0NnZV1diTJIkZmedeOL1zXjsHQeSZdhNOWwWvnH24fjsifsVZWVczvmcD0Tx3KYRPPXWCJyeYNF92CwmXvntNyuuFO6NhI6isvjgg3dAkiQkkibI5UrI5c0lA4N4IoXtY05sGbZhy4gdExZ3RVmQTl0Lfnn1+VAqdn0+mvTEBYfDChaLBb2+E1KpHBbLOAIBX1Ga7dXykKuEcnbG4zFMTAwjm82gq6uvodV0kiThdFoxO+soSIeUC/BW+nymUinMztoxP08ndiqVJtf+VrvvLGZrLBaB2TyGZDKBjg4TVKryfrMUYrEobLZJRCJhKBQt0OlMSCTiFVclqrVzOSBJAn6/F2KxtKZgfe+wXE5jZsYBDocLubwZcrkSUqms7pnEbDaDcDgEDodTNohPJOIF1tLm5lbo9Z2IRMKYnh4Dh8NFd/disrKPgh+hKApOpwUzMw4oFC0wmXobqiMZjYZhNo8hnU6ho6PyavVKxySNKjaXiklcLitmZqrzm6WQj0lmZmxgsdjQ6UyQyRSw2egVY7lcCaOxe0mnRLV2LhexWBSJRLxo11cprGhCR1EUrr/+ejz22GOFv+kZCApnn302brnllr2qSbRcVOM8//7KFvzmH6/XfGwhj4PDBg04emMnDh8yQCIsv3qVJUj849Wt+ONTlUlP2pp4uOTkIZxxzGFLHtb7ivMEituazWZyvel+aLVGtLd3NKyavlAPSiAQobOzr6pK8544p3Ri58sldlFIJE0FJ9qIKlMkEs6tIqSg03WitVVd13lNp1PYvGMYdz21GVPu8qvH+3VrcN2XToG6eXG7Z63nM5Ml8Mb2aTz99jDeHbZVNQP69C++CmUFWYW91XIpFLJhsdjh9XoQCgVAURSEQlEhuSvHSheJJrFtzI4tw3ZsGbbBbF8837jfoA4/veIcSBasltOkJxMLBFONBRbCTCadY2BcuqK6r/iSUnb6fB5MT4+BxxM0vJpOV5pHkUjEodUaoFZX9lN76nym0ynMzDgwPz8DJpMJlUpbc2JXytZaOhvKIU/4YLdPgyCyaG/Xo6WlDTabecHcUFdFpsFGrfbHYlHMzjoQCHhBURQUihZ0dxcnESqGvcVyCaRhtTrg83mQSiXBZLIgkykglyshkyka2la8mPSED6OxG1KpDA6HBbOzDsjlSphMvftsTFLKzmw2g6mpUYRCAXR0mOqe0yqGha3gtRRc91xMsqvYXE9iVz4myXc2pKHXd5XsbKiEVCoJu30afr8HEokUen03UqkELJYJMBgMGI29kMvLF/IadT6z2Sy83jm43U6kUkkAwEEHHVV1nrRHdOgsFgs2bdqEYDAIiUSCgw46CD09PfUebtWgGueZzmRx57/fxD9f21qXYDYAsJhMHNCrxdEbOnH0BhNa5Yu/tGGLG7/428uYcJQnn2CzmDh5fRu+cOrB0OuK02zvK84TKL4cPzGxE9lsNteb3jgtoYV6UO3tOmg01bOr7clzSlEUgkEfnM58YieFRmOoKrGrZCdBELDbzZifn0VTkwImU09N7U0LEQwG8Kf/vI7H37WVbQkU8bm48rPH4rRD+msmw5lyefH0W8N4/r0xBKOJqm0bNKrw5x98tuJ+q2GGjiAIhEJ++P1eBIN+EEQWXC6vkNxJJE1lr9NgOI6tI3Z4/BG0t8pw+AFdhfNMENkc6YkLQqEIRmMPxGIpvN45WCwTFROdfcWX7G4nRVGFILPR1XRaDyrPribIiedWx662p89nOp3C7KwDc3OzYDIZC1bsKtOxV7I1FApgenocBJGFwUCvqNUTjGWzWbhcNszNucDj8aHTdYIgskWZ/eqxsxwymXQu+HIV9A2ZTCZaW9uh1epr6grZ2zN0mQyBRCKOQMCLQMCLWCwKBoMBqVRW8CX1+nqA/r6t1kmkUkmo1R3QaHQgCAJTU6MIh4NlE5191Y8A9CrL5OQwCCKLrq6Bulkai4EeicgzvtLth6s1Jqm32Fw5Jlk4e6yAydRb1YpaMdDX6BSSyTja2trR1tYOu30awaC/ov7lcs4nRVGIREJwu10IBn0FJlWRSAydzgSptPprZo8kdAvh8XgwPz+Pvr6+hi457w3U4jz9kRg+mHDi2bdH8P6oo+x8WSX069tw9IZOHDqoxzPvjOBfr2+rmCz2aqT47BF6HH7AfgU6/WLYV5wnsNjWuTmaIpnPF6C7u3HV9GJ6ULX2hO+Nc0ondn64XDbEYhGIxVJotXpIpcVJeGqxMxDwwWIZB0VRMBp7oFDUJ8xOkiTe2zGKW//+Jlz+8gnXcft14QcXngCZWFC+ahdP4sX3x/H02yMYtc3VbNOBvR247ksnLymaFMNqSOgWgiRJRCIhBAI+BAJepNMpsFjsXDtVM5qaFFX7XL/fC5uNJj3Rag2FeRhaPNqF5uZWGI09ZY+3r/iShXYmEqlckBmATmeCStW4anoxPahaOlT21vlMp9OYnaVX7IBdiV1+VrJeWxdqTSkULTAYussesxzi8RhstqmCdplKpYXLZcud69LMeLWeU4qiEAr5MT8/i0Bgl8wHjyeARqNDc3NrXV1Hezuh2/2zp1LJgh+JREKgKAoikaTQmlmtdEEmk4bdPg2vdw4SSROMxm4IBCJEo2FMTo6AJEl0dfWvWNK9J7G7nfnCF58vRE/PYF0r0cVAM7/Smoxcbn2kZXsrJqk1sas+JslLLiEXk9RHfkeSJObmXHA6bWAymdBqDQAo2O3TZfUv6zmfqVQSXu8c5uZmFkllNDe3QaPR1RXDrmhCF41G8bOf/QxDQ0O48MIL8dxzz+Gqq64CQRAwGAy47777oFYvZVDbV1Cv8wyE43hn2Ir/bZvG2zutKyK4nUeTiIezD1Tj6KGOqpzKvuI8AdrWpiYBtm3bAZfLUVWQWQtoPahxBIP+RXpQ9di5t85pPgBxOncldhqNHk1NSxO7WuzMZDI5rSkvlMo26PVddbfnxOIJ/ObRF/HMe5YSZPQ0mqVC/OgLJ+HojZ2L7CRJCh9OOPDUW8N4fesUUmXm84qhScTHqYf04czDB9GtrT45XW0J3ULQFNNRBAJe+P0+JBIxMBgMNDXJCxX3YpXMVCqZIz3xQSZTwGDoBo/Hz7VYjiAWi0Cn66yKUXBf8SV5Ox0ON8bGdja8ml5OD6oeO/fW+cxk0rkVu3xi1w6VqqNoElaLrQv1O5ejf5mf3bHbzchkMlCrtWCxWHA6rbnV0KXMeNXamUzG4fG44fG4C/IxANDUpIBGo4NYLF1W4r/aErqFyGYzCAb9CAToLgCSJMHnCwrJXbHPni+EOhz0LH9HhwktLTR78Pz8LGy2KYhEYnR1DYLHK7/yt7ev+2qxi5ExgunpKbjdLiiVbTAau+ui2S+GdDqF6ekJhEJ+tLa25zQeV46RcyWQ7yKii83RssXm2mKShfqdKuj1nXVzJ6TTKdjt0/D55iESSaBWd2B21lFS/7JaO0mSRCDghcfjRigUWPB6DtRqLVpb25fV5ryiCd2NN96IJ598Ej/5yU9w5pln4oQTToBcLsell16K3/72t+jp6cGvf/3rmo1eLWiE80xnsvhwwon/bTXjf9vM8IXjDbPvuPVanDQkh7GjA3p9V1WVw33FeQI0QcT09Di8Xl+uml7fkH0xlNODqhWr4ZzSiV0ALpcV0WgEIpEEWq0eTU2KmlsZFx7T652D1ToFNpuNzs6+ZbFsvrVtHD9/6BX4IuXFyM89dgOu/+qpsDp9ePKNnXj67WG4/ZGyr9kdTAYDhwzocdbhgzhyvbEuUeHVnNDtjmQysajiDgASiTSX3CnB4/HhdrvgdFrAYrFhMHRBLleCwWAUKOMBBrq7B6peoV4N1301YLOZiMUC2L59e8Or6ZlMBlZraT2oWu1cDeeTTuycmJtzAQDa2jRQq7WLCgS12koHquMIhZanfwnQreEulw1utxNcLg8qlQYez1xRZrxydhIEAb/fA4/HjUgkVJj/ZzKZaGlRQ63WNuw6Wc0J3UKQJIlwOAC/n/Yl2WwGHA4HMpkSCkUzpFJ5bv5oEpFICEplG3Q6EzgcLgiCgNVKU8a3tbVDp+v8SMUk+fnmTZveRzgchF7fVZeURin4/Z7cXBcTJlPPsgiaVsM5LdZFtHuxuZ6YhO6oMi9L/zKPcDgIq3UKiUQMLS0qsNkcuN1OCIWiRfqXleyMxaLweNzweudAENmCLxGJJGhv7yg8a5eLFU3ojj76aHzrW9/C+eefj507d+Lcc8/F7bffjlNOOQUvvPACrr/+erz77rs1G71a0GjnSZIURqxuvL6NTu5s7kDR/SrBoJLj/MM6oJVzYDR2Fypj1SCdTiCViiKVIsBgMMFiscFisXK/2WCzWWAyWQ2l7V4IiqJAEAQIIotsNoNstvTveJwO4mndq8YIbGezWdjtdE+2XN4Mo3GpHlStWA3OM49diZ0N0WgYIpEEGo0eMpkCHA6rLjtTqSTM5jFEIqG6WskWIhpP4uYHn8fLW6xl91NIhQhE4jXPpWpbmnDm4YM4/dD+qtoqy2FfSugWIpNJIxik5+5oUhUSbDYb2WwWbW3t0GqNYLPZhXkvu30aUqksJ0lQ3b1AkiSCQS94PFZJX8JisVaUFIskyQp+JP/vNMLhEFpbVbnCV2Oq6dXoQdWC1eRHgPKJXT220kyqM8vWv8wjkYjDZptCKBSAVCoHn8/H/PzsIma8YvOT0WgYHo8bPp8HJEmAxWKBIAhwuTyo1R0NF2EH9p2EbiHy54qeu/MVNCIpigKPx4fB0F1YiU4mE5icHEYymYDB0IOWlraq32dxTMJa4ENYYLPzfmRPxiS7+w/6N0kSiMUiuTbSgYZowwJ0TGKzTS1gXuypuzU5j9XkS5Z2EUmg0RjQ1CSvOyZZyHmwHP3LvH1zczNwOi1gMBhoaVEjEPAu0r8sZmc2m4HXOw+Px414PAomkwmSpABQaG5uhUqlaagIO7DCCd369etx33334cADD8Tvfvc73H333Xj33XchFovx7rvv4tJLL8WWLVtqNnq1oBbn6fHMIBDwgscTQigUQyQSg88Xlr3IrG4//rfNjP9tNWOnxV3xPXgcFj53/Hrsp2GCx+Wiu3ugavHFTCYDl8taGIAnK8z47R6Y5ZO9YkEbi8UGk8msKrgiiCxKXWpsNgdsNrvwm8fjYWhoAMkk2RCnFAr5YbFMVtSDqhWryXnmQVEUwuEAnM5diZ1OZ4DJpEMwGK9rsHcX2YMw195UHdlDMbz8wRhuefgVRBLLb0fmc9k4fv9unHXEIDZ2NW4Vd28kdACBiYlhMJlsCAS0IK5IJK676ECTqgRyFOIthQcMQdCr336/F2p1Bzo6jFWdt3zV1W43I5lMFCqRpUAnersCs1L+Y6FvIUmqYnCVzWZBksVbb5lM1iI/wuFwoNGoIRYr6tLj2h3ZbBYOx3SOPKi8HlQtWI1+BKCfHW63A273DAAqVxTQo61NXpetyyF72B35uR2bbQqZTBoKRSui0VCBGU+tbodCIcbcnB9u9yw8HjeSyUQuYaMDeYmkCSqVFnJ584olDXsjoZufp0kY+HwhBAI6JhEIRHV9RlpkOg6/3wcmk4G2Nk3hOwsEfDCbx8Bms9HTMwihsLrnQiaThtNpy8lorFxMkslkKhaQS2FhTELLNYjQ2qoBi7W8InAewaAPFsskCCILvb4bSmV95EG7YzX6kmJdRDqdESZTR90xyeysA07n8vQv88hk0nA4LPB43BAIRBAIBPD7vZBK5ejp6YdKpYDfH4XP54PH4y4w3nI4XGQyabBYrBzZiqYhz4NiWNGE7rTTTsNFF12ECy+8EJ/61KcgEonw0EMPAQB+8Ytf4M0338RTTz1V62FXDWpxnvF4BD6fG4FAEIkE3VbJYDAhFO4KykQiCQSC4kmeNxTDm9un8fpWMz4YdyCTXRysHNyvwxeO7wUR96KpSYGurr6q2MjoIdAZuFw2UBSFjg4DBgZ6EAolkErRji5fnVr472yWKLmNIAhks9miyRktXs4Gi7U4OVv6O/9vTsEJL6e/uhwymQzsdlp7RCqVwWjsaShF+Wp0nnnQiV0QLpcNkUgITU1N0GqNda94xuNRTE2NIZmsno69FHyhGH7yl+exadRR1+vXmdQ48/BBnHhAN0SCxjvQvZHQMZmA1zuDuTkPYrEICIL2A1wur+BD8r/rTfISiRgmJkaQTqfQ2dlbNekNTUxhRjgcyFHSd0OrbYPPFy74kur8RvF9dgedCHJK+JPiviUfyC1EI+9Pv98Lq3USBEFApzOitbVxLVer2Y8A+cTOCbfbBYCCyWRCc7MKQO0rnnmK+1rp2EuBIAjMzjowM2MHm82BQCDMEagowOVyMDc3DwYD4PH4SKWSoCgKSmUbVCpN1UXR5WBvJHSxWBh+/xz8/gCSSZqUqpaYpBIWUurLZM3o7Oyrqt04T0zhctkAAB0dBvT3l49JyvmNxX6nVEyyy29Ujk2KxySNvD8zmTRsNjN8vvllyXuUwmr2Jbt3EclktEC5SFRfTLJY/9K4bKKrSCQMq3US8XgUTU1yxONRUBQFrVaLmZlZpNMpcDhcMBg0oRSfL4RarUFzc9uKE0GuaEL3wAMP4Fe/+hU6OjowPT2N2267Daeffjq+9a1v4eWXX8aPf/xjXHjhhTUbvVpQb3tDKpVGLBbN/UQQi0WRTOaTPEZhBS/vVAUC0SKHGkuk8M6wDR+M25FKEzhmgxEqYRKhUAAajR4ajb7iBZsfTLXbp5FMJtDaqoZWa4BAwG/ojZ5veyJJEmw2B0wmc9UEOHmyApvNDIqioNd3Qqlsa3gVdjU7zzxoLaUwXC4rgsEgmprk6Ogw1bXKRgsmWzA764RE0gSTqbfuBJmiKDzxxg7c/s//IZnOVtxfIRXitEP6cebhgzCqqydXyLfV1DLftLdbLjMZAqlUMudDIgWfQhD0eeJwuIsCM5FIAi63fJJHa6+Ng8fjobt7sKogmq6kWzE/Pws+X5ATaG2uu12mGCiKAkkSyGYJMJmMoolZvWjE/ZlOp2C1TiEQ8EIma86RyTS2iLAv+BGAbjWam3NiZsYJJpOJ9nbdohWbWtAo/cs8kskEbDYzgkEfBAIRstkMuFwOKIouSLDZHLS1taO1tb3ivVIKBEGAwWDU9Hn3dstlMplGPF5/TLI7MpkMzGZae02rNSyaWyyF/Gqq3W5GKpUsyD/sKzFJozQNvd452O1mAIBO93GPSUJwOq0IhUKQyRTo6DBWvcK7ECRJwuGYXrb+5ULb5udn4XRaQJIkBAIh0ukUeDw+EokECCKLpiY5VCptUQK6at9jpWKSumULnn76abz//vs45JBDcPrppwMA/u///g+HHnooPvOZz9RzyFWDRvarEwSRc6iRglPdtZLHWNReJRJJIBTSDjUWi2BycgS09lpfVYOy8Xg0V0kPQiqVQ683FW6SfeFGz2M5tqZSSVgsEwiFAjnK7K5lz8qthJ17Emw2EzKZEGazDVYr3TLX3NwKrdZQV0IWDgcLwp+trWqo1bq6g1zHfBA33v980dZjJpOBI9cZcebhgzh8yAB2DVWwhYxbyWQCBxxwRNXOd28ndMWuJYqickledFGitzjJW7ySx+Xycg88C9xuZ9XaayRJwu12YmbGDoABjUaPtrb2QqC3L133y9EQmp+fhcMxDSaTCb2+GwpFYwbcG2nnngabzYRAwMKOHSOYm5sBl8uDVmuoKzhdqH8pFIqg0eiXTSKQb8PMi/cKhSK0tWmgVLbVXShYqNvX0UF3J1SLvZ3QldL4isdjJWOSpSt5u2KSiYlhkCSBzs7q9GBjsQhsNnOuS0QOna6z0B63r1z3y7UzmaTFrMPhIJqbW6HXd67FJLmYZGrKCqt1GqlUAkplG7RaQ10JWV7/MpPJoLVVjfb2jmW1P2YyGTidFszPzwKgdSiVyja0tWnqbu9cKO+QTiex//6HNzwmaZgO3UcJKz2AvCvJ25XoJRL0++WTvEQiDoFAiO7ugYpBN90DbIXHk6+kd0ImU6xY28BKo97B+zybH5vNgcHQDbm8fraoSu/l8bgxO2sHQLfFcbl88HiLf7hc3orNZtSC3Vd/PJ5ZOJ02ZLMZtLW1o71dV/MDhiCycLtdcLudIAgCLS20E63HGWcJEn976UM88vJmBCIJmNQKnHHYIE49pA/NTbU5z2KaOFqtoaZB9tWY0BUDRVFIp1O7reRFkM3uSvJYLBZSqWRuyLv8nCF97ryw26eRSiXR1tYOjcawZFB/X/El9dqZSMRhsYwjEgmjpUUFnc5UVZt7PUgmE3A6rQiHA+BwuEt8SP6n0WQd9WLhOY1EonA4LAgEvBAIRNDpjIvYdatFJBLKnYMgBAI6sVtO8kySJPz+eSiVMrBYgrrnJ9PpFGZmHIVZL5VKm5NM2HeExRsbk8QgFIrR3T1Q0c+n0yk4nVZ4PG7w+ULo9Z1LEsCPuh/Jz587nVaw2TSR3XIYLCu9l8fjxsyMHUwmAxwOD1wub5+ISdLpLDweN1wua47AS5OLSWrzudlsttAaTpIEWlvbl53YJZMxEEQSQmETGIz6fHD+uUrHJDFIpXSraS0snSue0D3++ONQKBQ45phjMDY2hquuugoulwunnnoqbrjhhrrbGlYD9iSjVB4kSSyqmrHZHGi1+rLMbPlKustlB4PBgFarR2tre9FK5L7iPIHabY3ForBYJhCLRdDWpkFHh2FFAqD8qo/DYUEiEUdzcwvk8iYEg2EkkwmkUslFWkYMBqOIUxUU/s3hcPaIcy12PgmCgNvtxOysAxQFtLd3QKXS1twLns1mMTe3MLFTob1dV2fbAwVpkxDxWKquFRU6kbMiHo/Vlcjlsa8kdMWwK8mjA7NkMoG2tvaK52FhJV0mU0CnM0EgKJ5M7yu+pFY7SZLE7KwDLpcNPB4fRmNPwxjtdkeeGMLjmQWHw4Ver0MkEkMiQfuR/LzXrs/CXuA7eIv8CI/HX1FW0YUodk4jkTAcjmlEIiFIJE3Q6Ux1sbzRiZ0N4XAgl9jpoFC01OUjl3ON0omcPZfIsQqC6/XIUuwrCV3x99yV5MXj0RzJUHlWQZIkMDvrzCUWTGg0hpIU/x9VPwLQ/nR6egLxeBQqlQZarXFF5qzyzz2Hgx6xUSpbIZNJEQyGkUgkkE4Xi0kWJ3l8Ph9cLv2bzd77McnMjAMMBqBW66BSaeqOSWZnnbnErv4uouV2efj9dCKXSNCJXF5wvVZU60fqinrvu+8+3Hrrrbj88stxzDHH4IYbbkAgEMB5551XSPS+973v1XPojy2YTBbEYmlVD8L8heJwTCOdTuUq6foVqyKvVpAkAaeT1iXi8wUYGNgPEklj6WLziERCsNunEY2Gc73afZDJmoo6pXSaDsiSySTSafp3LBbN6fvsmhdjMpmLnGvesUqlTSvWkpEHi8WCRkMXAGZm6AH3uTkXNBoDWlpUVQeIbDYbGo0eKpUGc3MzmJ11wONx15XYsdks8LhsxGPl9eoWolj1q79/w4oF4qsdDAajcD0pFJU1FtPpFBwOC7zeOQgEQvT2rqtbAHpfRiQSgsUygWQyAbVaC42mfDGtXhBEFrOzdCGFwWBCqzVCo9FCqZQu8iMURSGTSReSu4U/sVgE6XRqUcJXbHVPIBAuWxi7GkgkUvT3b0Ao5IfdbsHw8BbI5Up0dBhrIjyRSJrQ378ekUgILpcNU1OjEAhsuRW7+hK7WpBKpTA7uyuRo1uNNXUlch8FsFgsSCRNVa0k0HPrHjgc08hk0mhr00Cj0f1/e/8dJc1dXonjt6tzznl6whsVXglJSKSfTNByQEIkIcBeFmzMyhiOzQbjXWBh0ReMDLKQWcNyLLCxwQaMCRIHg21hjIE1wSCwACHxxgmdcw7VlX5/fOpT3T3TM9Pd0z09/aruOXOmp6dn5jPVVbfu83ye5z5POk1CZiVuIJ1OwGy24uqrr5+6hT1FrVZBPH4JjUYdTqcbJ05cCadzuCbZjUdKpbxStg/0NInJNMgldvthapIwkskt2Z09iaWlFfj9o/fYUk0SDEaVZHMulz5QFdE4IPo8j2RySw7k3FhbO3mguXmjYiKm+sIXvoC77roLb37zm5FIJPDoo4/i3e9+N17zmtfg2LFjeOCBB9SAbkZoNOrY2rqAer0Gl8uD06evOZBL2KKiWi1jff08ut0OotEVhMOxmWSpW60mEol1lMtFWCw2nD59zZ7NsFqtVra+Hb67wfP8UHKt16soFLIQRTLbi2SVpjfgdjfo9XqsrJxAKLSERGIDGxvnkckksLS0NlbZk1arU0wSaHYsn8/A5wsiElmeqrsoMDz7ddVV1x0KaV4O6GVDt8AwWqyunjywMcUigud5JBLryGZTsFrtOHPmhoma8/eDKIrI5dJIJjchCDxCoSVEIjHZWW8nb9HdfYPBOPScpjuxu3FJt0uSIhaLDdHo8tQG3O4GjUYDl8sLp9ODQiGLRGIDP/vZjxAIhBGNroxV9mS3O3HFFdeiXidmThcuPAGTaRPR6DK83unYu/eDZTtIpeLI59OKqHwyB3Ljol6vYWvrAhqNOtxuL5aXj8FkerJqknPodlksLa0hHF6amSaJxy+hUinBarXhiiuuVeYCDoNWq4XFYt2192s3TVKrVcGyGYiiCIahmuRgJYyjQK83YHX1BEKhKBKJDayvn0c6nUAstjYWj/UnmzOZFDIZco0frIpod/QCuU202y04nYcXyFFMxFiJRALPfvazAQDf/va3odFocMsttwAAjh07hmKxOL0VqgBAsoeJBM2kW/e9iC9X8DyHra1LyOczsNudOH36zEwCWpZlkUySHgCj0YTjx6+Yipgg9si2oS6TJCvPIZdLIZtNIpdLzSwg2g76P4bDS4jH13HhwuOwWu2IxdbGOs+0Wq0S2OVyKaRScRQK2an9H0eBNBcZ1AE2Hl8Hx3URCkURiaw8KcVruVzAxsYF8DyH5eXjCIWmN8uQgu5cJBLrYNkO/P4QotGVA4uJ/p3YYRBFEfV6FanUFs6ffxxmswWRyGwCou3r8vtD8HoDyGaTSKW2UChk5f6z2Fjnmd3uwBVXXItGo4ZkchMXL/4SySTZsZvG/0ECuS3k8xlotVosLZHywKPSr3jUwbIdxOPrKBZzsFievJqkfzwSSUZcM5OAlmU7SCQ2UChkYTSacOLElVPZud5fk3SRy6WRySSRzabg94cQDsdmrklMJjNOnLhS0STnzz8uz7A7NlYFjlarQzS6LFcR9SebQ4hGDx7Y0XtqMrmFTqcFp9ODY8dOz2xndi9MxFwejweFQgEACeiOHTuGUCgEADh79ix8vv1LfS4XVKsVZDJbEEUGWq0eBoMBer0BBoNhKiU7dM5OOh0Hw2ixtnZyrO3nywVUyG9uXoAoijPbUeB5DqlUHJlMElqtFisrJxAIhA+lR4Vk5Q3ynLcl5HJppYTR6w0gElk+0ADNUUB3IWu1Cra2LuGXv/zZRKMOtFotwuEYAoEIcrleKabPF0Q0ujL2zYAKY+JaSQO5U5dNICeKAs6dO4dOh4NO1+MQvd4wtb6Ger2Kzc2LaDbrcLt9ciZ9tjflo4hut4vNzQsolfJwOj1YWzs5k51wWoLYajXgcnlx6tSZmV+/FAzDwOl0w+l0K4HdxYu/RCKxgUhk+UCuj6P+/XA4Br8/jHR6Sy57SiESGXRMHQU2mwOnT1+zI7Cj/8e41wbLdpBMbqFQyECr1cmB3Pi9OkcV1Wp5F01inMp7LggCUqktpNMJ6HRarK2dgt8felJqkv7xSLM6DhzHIZXaQjabhFarm4MmIU62odCSfC8nJYw0STvrCjGr1Y4rrrgW1WoZ8fglPPHETycaddCfbKbtIYXC5FVEvUCOOGm7XB4cPz6fQI5iooDuec97Hu6//358//vfx3e+8x389//+3wEAf/mXf4mPfvSjeMUrXjHVRR5ltNstpNNptNsdSNJg06RWqxsQZgaDcejXw24kZG5JDvH4JfA8J5foLD8pM+ks28HGxgVUKkW43T6srp6Y+rZ/b+jpFiRJVExC5nW8tVodwuEYgsEIcrkM0uk4fv7zR+B2+xCNLs98KK7D4cLVV1+PcrmAeHwdjz32Y3i9AcRia2OJ38HALi2TaFYO7Jb3zWRuz34dBdKcBURRRD6fR73eAM9zA9/TaDTQ6/uDPONA4oh+vVvgRzLpl1As5mGx2J60PYbUCW5r6xI0Gs3Udt23o9msY2vrEmq1Cmw2x9xLgUklwzVoNhtIpbawvn5ODuxIwDXLQEan0yEWIw6ricQmtrYuKiXdPt94x54Gds1mHYnEJi5dOotkcgvR6GiBXafTVnYMtVodYjEyIP5yCeQoWq0m0ukUOh12qCbZT4/srUmyiMfXwfMcwuEYIpHYk3JHk4xHOo9qtQSPx4+VlRNTNwIUBEHZ5SbGZctju6xOEzpdr60in08r1Tcejx+RyPJEs23HgdPphsNxA0qlPOLxdfz85z+eaNQBCeyotkrJ5da9vv/9Ajt6HaRSW3Ig58Xx41fCZputJhsFE7lcsiyLe+65R5lD9853vhN6vR4vfOELcebMGbz3ve+F1Xo4mchZYBJHqVKpAZbtotvtguPoZ3bgMf2eKG4nWe0OkVarVdFs1uHx+BCLHTyTviiOUsDgMU0mE4jH16HVkj6fUYwexgG9OBOJDXBcF34/7fnYn5wP85iKoiiTSBws24bT6UY0ujKSUDzoOkmwkUEy2T/qYGVsW2HyuwTkcuRmwHHdgSzf9vEKhUIOqVQv+xWNrowVyNFgsFot49ix0wszh67b5ft4o4tul/BI/+Nut7tn4Ed5BADy+awsrNemMsx2Ubikf52NRgPr6+dRq1Xg8wWxvHx8ovN3L5ARBOsoFvMwmSxyz4d33+N92Mez3W4qYkyn0yMcXkIgEBkpeXXQtbbbLWXUgcVilUu6xx91AJDAOZncRLlchNFoUkoxGYbZ9t43ldJKvV6vJJjGCeRoeabL5R1rHM48XS4HNQm7TZsMcsnOwG+nJqlWK2i1GvB4/FhePnbgXe1F5BGOE7aNRzoBt3v6miSfzyCR2ADPc0of6iimJPPRJFtg2Q5cLg8ikeVD1CRk/JIgTD7qACCBM002U01Cq4h2apIsksktsGwbbrcX0ejKWMl1qjdrtcpMNMlU59CxLDvxgOGjhFlaBNMp8TsJdvBrvV6PWGxtapn0RSFPgKxVpxPxk5/8O+r1GgKBMGKxY1PdLds+gsDj8SMWWx2r9n0ex5SWHqZSxEHJbncqVri7kcM0bayprTAw+agDoGcSkUptgeO68HoDWF5eRTjsw/nzl7C1tQmWJdmvpaXxSBMAGo0aNjdJo77PF1yogG7U90gURXAcN8Ad23mE5zklaJ7WTsSicIlOx8DpNOMXv/gltrbWYTAYsbZ2Ek7ndF08Oa6LZHITuVxaHjezOlbp1byOZ6fTVkqhe/b80T2dCae11nq9inh8XRl1EIsdm9ihuNlsyIFdAUajCZHIMkKhMIxGDR5//JfI5TLQ6w1yIDfejmR/y4NWq8PJk1ePtc5FGFswXJOw24K/LgwGA2KxtantNi8Sj7jdViQSWZw//0t5PFIES0trU9ckZATBOjodMhZpaWltrGT+/DRJr4rG4XAhElk+NE1Crs/EgUYdAMOTzcvLqwiFvDh37hLi8Q2wbEeukloZe0ey0ahhY+MCms06/P4Q1tZOHZ2AjmVZnD17Vs7ukF8hiiLa7TYeeeSRhXa5nMfMl1ljmuuUJAmSJEEURUiSKH8NAJLyPfox/Dns+RqWbSOVisNkMmN19eTUy8OImLiEep2MIIjF1iYq4ZtMhAtgWRbdbu+DfN2Rv+7CYrHuG6RR8k+lttBs1mG12hGNLsPl2rkjMO1zlNT0byKbTSkNx7vNP9wPNNOWSsXR7ZKEEMuyE2W/ANIflUisI5/PwGKxYmXlxNjnz6IEdPPCtLlkkEd24w/syhfbX0O/1mgkZLMp1Ot1eRTB6lTL63ojCIiYoOVI4/6NSYfKcxzXxxvsDl4RRRHBYFguHd89SOt2WaTTZIA2oJF/Jja0SmHa732lUpKTak24XF7EYqsTu4y2WiSwK5UK0OsN4Lgu9HoDIpGY3HM0+vtCe7a3ti7J5kFLiEaXxy53W4SAbl6YvSbZqTUm0SQMo4EgsFhfX4fJZJ5J7/b2sUjLy8cmaquYdKj8oB7pDHzd7bKyvth7hlpvhNAWWq0GbDYHIpFluFw7d+Cnr0m6SCa3kMul5NLQlYn7DElgl1GSzT1NMlkg1z8ayGKxYWXl+Mw0yUQB3b/927/hv/7X/4pqtTr0+1arFY888si4v/bI4HIkz06niU6njmazA54XIEmiTH6EBCkR9j+322umuKk7FBoNgxMnjsPni0Cc4iFtt5tyuU9RLvc5tucIgv2w/b0XRXEHEQ6KrM7AHDryO/Ty8HGj0sNQLhfRbNZhszmwtLQCh2P3NUqShGq1jFRqC/V6FRaLFZHI4EDeWZ2jxFxgE/l8BgaDEdHoysRN4aIooljMguc7cLsDMJnGK9kWRRGZTBLJ5CYYRoOlpbWJTXPUgG53CIKAcjkPhhHRarEQBKGPG7bzhghRlJSvh71m1nA6nVhdPTn2+bQXdo4giMr9zZOVcG5/7yVJAs/zCmcMC9a2z6HrDQw2KuMOBEFAPp+GRqNBMBhFOLx3YMdxXWQyCWQyKUiShECAuNn1l9bN4jylGf5EgmTAvd4AlpZWJ24zaLWayOdT8HrdcDi8EMXxOKDZbGBz8wLq9SpcLi9WVo5PvBY1oNsd7XYDnU4drRZ75DUJGZK+jFBouuORyAiCdVQqZCzS8vLagSoI9tMkPR7pBW3DNEmPR0zQ6/UolQpotRojVQQRTVJCMrmFRqMGi8UmaxLfoWiSfifQaHRl4jYDokkyEIQu3O4AjMbxzF+IJknImkSLWGxtYn0004Du137t11CtVvF7v/d7+MpXvgKGYfCKV7wC3/nOd/A3f/M3+MxnPoPrr79+7EUfFVxO5EmHtFarZej1ejCMFhqNBgzDQKNhwDAa+TOjfCaPNQPP7fy69/ywDwDbvt7+ffoYO76v12vh8dimdkxbrSYymYQSeMRiawcyQ5AkCY1GDbVaCTzfRaPRBMuSEpV+kAZ044DIoh9Go2lX1zFKiInEphLYRaMr+waftVoFqdQWqtUyTCazYlNuMOhmeo622y0kEhsolfIwmcxYWlqdyE550mupXC5ia+siOp02gsEolpZWDjTQVg3odoLneXlIaxI8z8NkMqJ3zQ5yxF68sTuXkN8zjA+Gcwh2vGb71zodA4/HhkqlNZVjSm7wxNWMZTsTNeRvR7fLol4vg2VbqNUaSna8P9ilvZGER0zbeIR83s0Qh+O6SKfjyGZTADRyWeXSnr0mPM8hm00hk0lAEIQBF7hZnqfbe3XpiIdJDLAmWSfHcUgk1pHLpWEyWbCychwu18HKc9WAbidqtQqSyS3Uakdbk9DnqB6ZFo8A1LgmrgQesdjagUYQSJKEer2KWq0MQdhbk+zUI4OJoN00SaVSRDK5iWazAbvdgWh0dd/AjurPWq0Ck8kiO9MGoNdrZ3qOkvnBGyiXC3I/8+pEszgnrZ6oVIrY3LyIbpdFMBhBNLp6oPLcmQZ0119/Pd73vvfh9ttvx4MPPojPfe5z+PznPw8AePe7341MJoOPf/zj4/7aI4NFJ09JklCrlZFMkl0bs9mKWGwFJ06solptH5l17oZpHFNakpjNJlGrVeRm+OWxLbMpeJ5DtVpGuVxEtVoCz/PQ6/VwOp1gGJ3cQN4vskwHLu+iu2+JxIZSVrm0tLKviUCjUUMqtYVyuShbDq/g9OnjqNU6M33vm8064vENVKslWCw2xGKrYxkejPu+t9stbG5eRLVagsPhwsrKianYwqsBXQ8cxyGTSSCbTUIURfj9YcRiKwiHvUdurdsxrWPKsh1ksynk82nwPH+g0kBJktBqNVAuF1GplNBs1gGQncTeuIpBkaXXGw5sZLM9sAsGIwiHY3sGdsQsgNiU9/e5RqOBmb73oiggm00hldqCIIgIhSIIh8czPBjnvac7ronEBgAJ0ejqxPeJ7VADOoJeJckm6vWaXCGzihMnVqcaKM0C0zqetCQxk0miXq/K5cDLE5cG8jyHSqWkfAgCD73eAKfTAYbR93HJdDVJpVKSA7vRk81k5MgWKhViYLS0tIJTp47NXJM0GnUkEuuoVsuwWm1YWlobqypr3Pe+1Wpia+siqtUynE43VlaOw2w+PE0yUchIavODAICVlRWcP39e+d4LX/hCvO1tb5vk16o4IHpZlF5f1cmTV8Pt9kKv1x7K3JJ5g+M45PNpZLMpdLssbDY7jh+/Ah6Pf6z/X5IkdDptVCpFlMtF1OukvNhisSEQiMDt9sLpdE51J3E7NBoNXC4PnE43qtUykslNnD37mFLPPqw2HSD23qdOnUGr1UAqFcelS8SmPBAIw+8PT33kAwWZF0Nm2CUS6zh79jHY7Q4sLU3P3Acgu0XJ5Cay2SQMBqNyjj/Z5iDNEoN9VUAgEEE4vCTvBl3+PEKzy5lMEuVyAVqtFn5/CMFgdOzyO0EQUKuVUS6XUKkUwXFdaLVaOJ0ehEJReL0+BAKumQpwvd6A5eXjCIdjSKdJgJ7NJpVSzGEOenTkSL9N+b//+w+RSPjh84Vgt09err4XGEarzLDLZBLyetMIh5embtterZaxuXkB7XYLgUAYS0urI7kJqhgNvV5vsrNjtdpx6tTVcLmIJnkycPZOTeLAiRNXwu32TaBJWgqP9GuSUCgqa4XZaxK32wuXy6NUEZ09+3PYbHZEo6u7Bktk5MgZZXTKxYtnFU3i84VmpklsNjLDrlarIB5fx9mzP5dNmKZn7gNQTbKBTCYJo9GknOOHfX5PxIzLy8s4e/YsbrzxRqytraHdbuPSpUs4duwYeJ5HszlaJknFdEAbuJPJnvPh6dPXHKg/bNHQbDaQDv3q3gAAZQpJREFUzSZRKOQASPB6AwgGo2PNBhFFEfV6VQ7iSmDZNjQaBk6nC6urJ+FyeQdcXA/r2PYHdrVaGYnEJs6de2xPIxSAEP2JE1diZWUNpVIW8XgcicQmPB4/gsEI7HbnTP4Hh8OFK6+8DtVqCfH4Bp544qdwOj2IxVYPND+P2jnH4+sQRQHR6ArC4en2NDzZQe3ZifMhg1Boad8SvcsJgkCsqbPZFNrtJsxmC1ZXT8LnC45tc1+plFAuF1GrlSFJEkwmM7zeANxuL2w2h3LeHmaATAK7YwiHY8hk4shkUnJgR3fsdgYzDMMgGIzC7w+jUikgl0vhiSd+DqPRhGAwAr8/PJN5nTodHfodQSoVl4crp2TzmYPtoHU6bWxtXUS5XITd7sCZMzfMfLbnkwm0L5K4MbdgtztxxRXX7lmid7mh2awjm02hUMgCAHy+IILByFjn2aAmKYJlO2AYBg6HG2trp+ByeQaCocPVJF44nR452byBs2d/vm8VkdVqw8mTV6Hb7aBUyvRpEp+s1xwz0yRXXXUdKpUSEol1PP74o3C5PFhaWjvQ/DyiSdKIxzcgiiJisTWEQktz0yQTsfBLXvISfPCDH4QkSXjta1+LM2fO4A/+4A/wute9Dg888ABOnDgx7XWqGALa00EHHDqdbqyuju/qt6gQRRHlckF2sqvKxhykhGHULCvHdZWShWq1BEEQoNcb5CwUcSM6KoNnNRoNnE4PHA633IewiXPnfgGLxYZodGXXXSqz2YIzZ84gGIwhk0kjm03iiSd+CovFimAwCp8vMJYD3KhrpYRfKhWQSKzjscd+Ao/Hj6WlVZjN4zUY1+tVbG5eQLPZkEu/js0sq/dkRLvdUoYu63R6RKMrCAajMxHqRxGdTlsuq8xAEHi43V7FjWwUgUH7agmXFNFqNaHRaBRLfpfLM/Y5P0uQsTjHEArFZCOUJLLZlLwTO9zhkmEYBAIhnD59HFtbKWVGaCKxIYvV6FRKnneu1YCVleMIhaJIJreU4eTU8GAc8SQIAlKpLaTTcej1Bpw4ceWBepdUDGL7bDKn0zMTV8ijCqpJMpkkGo2a3PKwCr8/PHJSjGoS0t5RhigKMBiM8gxEDxwO19Tv15Ni0ioii8WCaPQahELLclIphccff1TZbaTzJKe9Vrq7SIaTb+Cxx34smzCtjDWyCiC9oJubF9FqNeDzBRGLrc1dk0zUQyeKIu677z4UCgXcd999+PnPf47f+q3fQqVSgc1mw5/+6Z/ipptumsV6DwVHvV59u9W72+1FJLK8p/X+Uayr3w37rZXjusjlSAkDx3VhtzsRDEYHXJR2gyRJaLebStlCo1EDQMoF6cVusdhGusHP+5iSXkkS2BGHy+GB3TAXvWq1jGw2iUqlBJ1OB78/jGAwcuBhsXutlRoedLusYniwn4Net8tia+sSisUcrFYbVlZOzFwcPJl66GgJTKmUH3lW17zP+1Gx3zoPeh3wPI9qtYxKhfTD8TwHnU4Hl8srixzPoQzrngZ4nlMCO1GUEAyG5cBuUKBsX2u321XKySgXh0LRiQwIRkWn00IisYliMberCdMwzisWc9jaugSe5xGJxBAOx2aerHuy9NBRq/d0mmoSH6LR5T13o47CeT8KRllnt9tFLpdCLpcGx3XhcLgQDEZGug5IX21T5pEiGg3SV2uz2WUu8cJisS6YJtlAvV6D1WqTA7ujp0lo8iGR2ADHdeH3h2VN0uO8YceTZTvY2rqEUikPq9WO1dUTE429GgczM0X52c9+hmQyieXlZVx99dXK841GQym7tNkm38I8Cjiq5LmzSd2PSGR5pOb8eV/o42C3tTYaNWSzKRSLOWg0Gni9QYRCkX3/f47rotGoo1olWa9ulwXDMHA6PXC5PHC5vEMz0pOucx6ggV2tVlHm2NGbyV7rHLYzEQxGZ1YaQwwIUkgmtyAIPILBCCKRZej1hoF1drs80mlSZnVQy99x8WQI6LY3qZOepdBIWdGjdN7vhd3WyfO8XFaZRKfTHnmnmsxZbaFeryh9tZIkwWy2wuXyKKWUh+XuOguQwC6JTCYBUZQQCIQRifQCu93WOmxngpZjzqpct9lsIJFYR6VSgsVixdLSmrIj0L/OSoXs7jcaNXg8PiwvH5+ZSNyOyz2gEwRecUTlOA5eb0DWJPvv1B6l834v7LXORqOGTCaJUikPjUYz8k410SQ1VCokIUQ0iRZOp1tJLE/Sy3lUjul+yeb9NUlS1iQC3G4fQqHozFpERFHsM2HiEQxGEYnEhmgSDqlUHOl0HFqtDrHY2sQjEcbF1AO6Wq2G3/7t38ajjz4qD23V4Prrr8f999+PcDh8oMUeNYxDnqnUJjKZZJ8z2c6Pg2YBe5bh/TbSsbG2iI/KhT4Ktgv7UimPTCaJZrPe17cRGmpNz3FdNJt1NJsN5XO3ywIAjEaTkj0nZQsH29I/6DHluC5arSba7Rba7aby2Gw2Ixxensjooz+wM5tJYBcIBPZtlBYEAcViFplMr3eIiNzxeodGhSAIsuFBHJIkIRRaQiy2DJ/PiYsXN7G+fkG2/I0iGl051NK/eQR0osjjZz97BIBmKIcYjaYDux3utJHujbYY51pYFC7Zvs52uyULhSxEUYDH40coNLxvgwRvTZlHCJe0Wg3l3udwuOQSKO+Bg4ODHk9RFNHptPs4pIlWqwVBINb/odDS2KVAPM/37dgJcmC3DIvFvO9ap9E7NA7q9Sri8XXU61XYbA7ZAt4Di0WHn/70MeRyaZjNVqysHIfT6Z7JGnbDPAK6ZHID2WxqxpqEBv7k/OgfbTEqFpVHaKtLNpsaSZN0u1STEA4Zpkncbi/sdudcNQmZf8kNcEi7TTWJBZFIbCKjD2KStqHMyY1GV+H3+0fSJDTxRtZgRTAYmZkmoZyXTicAAOHwEpaWluHzOXDhwgbW1y+A47oIhZYQjS5P1ZxpP0w9oHvve9+LL33pS/jt3/5tnDlzBpcuXcIDDzyAa665Bn/2Z392oMUeNYxDnhzXQatVRblcQ7vdRrfbAct2BgZdkkGNw4nVaDTtehGTQa9JxTI8EAjvGPQ6KhgG0Osl1GptCIK0x4wnDHnukJ16dAzMZi3Onr2ATCYJjuPgcLhkJ6ceoXS77EDg1mzWlbkrWq0OVqsNVqtd+Ww0mqb6v4xKnjzPod1u9RElIUme5wCQ4202W2A2W2E2W1CtllGvV+W5LbGJ6snr9SoSiQ1lx+7kyRMwm52QpP3LP6bl7jcKeJ5kvbLZJBiGgd1uR7lchtPpkS1/D7/vaB4BnVarQatVQT5fQrvdBssSHqHnCEDOk714ZLdZZDsHvVoRiayMVKI8/H/qwmLRo17vKFxC17f3nKfDa9oHyPXpcllw6dIWUqkEqtUydDo9AgFSykODnF7wVlcCOBq8AaQHtZ9HLBbbVAXFqDxCnXf7OaTdbqLTaStr1esNMJutsFjIdZPPZyCKIny+IMLh2NjXE00mptMJiKKAYDCCU6eOQxC0+wrGYe5+tBxz2v0xvREv62g2G3A4nGi1yHW3tLSGQCA8lz65eQR03W4H7XYV5XIV7XZHnm04miYxmUwwGPbWJMR1lA6fDyMcXpqxJhk+r/awQK/PTKaIVCqJXC4NnufgdLoRDEYH+sSIJqkPJIKGaxLCJ/PUJJRDqC5pt5vKkPHtmqRSKaHRqMFstiAcnkyTbK8iOnXqJEwmx0iapFarIJtNolwuQqvVyZokMhNNwnEc0uktZDIpaLVa2GxWVCoVuFxerKwcG7vXbhqYekD3vOc9D69//evxG7/xG8pz//AP/4Df//3fx49+9CPlBnI54KDlDZIkodvtotvtoNPpgGXb6HZZdDptZXBsP8jQ2EFibbebimV4MBiZKMtK11Is5rGxcR6CwI/98xQ9Mh0M+BiGgU6nh16vl7eod3+8XQRJkgSO64Ljuuh2WflzF51OC6VSARoNA78/iEAgAp1Ot2PnjRKlTqeDxWIfCOCmTZTDsP29FwR+W+BGBFf/cE+TyQKLhZAk+WyFyWTesdZ6vYpUKo5KhcySC4WW9u1tGgbye7ZQqZTAMFp4PD74fMGRSiq3z98iNuuRsWbLjQpqk8+yLYRCS3A4DjbQ9yA4SiWXgsCDZVmwbC/I6/8QBEF5LcMwQzPx2WwarVZj30b1/cBxXayvn0O5XBz7Z/uxW8Cn1Wqh1+vleWy78YkBOp1uYP2SJEEQhB1cwvPEXKDVasFqtSMYjMLt9qLTaQ0Irna72Re8WQd4ZNrB2zAM6ydh2c62LDkRX3SdOp1ODtysiuiyWKw7dgh4nkcul5ITY114PD6Ew8tjuf/S39MbLM/BarXB6w3KQ4L3Lg0bNn8rEAgjEIhMVOo+yt/KZpPweNwIBJag0czPQOKolFxSTbIbj+ylSWiQ12oRTaLR0DmGw8dd7Afaz7ixcWGumoQONd++NqpDOI5Ft9uFIHDguA4ymSwYhoHfH5Lvxbq+XbedmqQ/CWS12mEwGA9dk/A8ryR++hNBdJ0ajQYmk3mAQ/bWJERLGAxGhMNL8PvH1yS1WgXp9BYqlTIYRguv1w+fLzhSSSXRJEnkcqRFxOXyIBiMzsTRnWiSLXS7HYRCS7DbD3d3vx9TD+jOnDmDT37yk7jxxhuV50qlEp71rGfha1/7Go4fPz7ZSo8gZl2vLooiul12KLGybEeZUxQKRREMTm4Z3mw2cOnSWbRaDQBAIBBAt8vJZMWB4zgAvbef1DbrodPpoNPpoNWSIIw81kGr1UKjYQBIkCTyIYoieJ78Lp4nv7fb7UIUhaFrolkd+vPbodPpYTAY4PV6IAhkUCPJcnHK97fvvB0GUfZDFAW02y2wbBui2EWpVEaz2Ry4KRqNZlgsNMNFMuYmk2XsrFar1UQ6HUexmAPD0HMiOvaQXaNRg/PnLyGXy4BlOzAYjPD5gvD5gvtm7UVRQLFIyl5brQZMJrNc+hCaainkrEpwaJncqDhKAd1+4HluVx5h2Q5EUYTD4UIksjxxX6QoikiltpBMbgGQYDAY4fG40Wy20O12wfPcQGAJQOYNvZzI0Q1wCP0AejzQH5RRPul22YEdyn70Z+lFcefxYhgGer0BDocder0JHMeh2WwMBG8Wi1XZcTus4K0fvcRfC5LEoVgkPNJuN5X/SavV9gVuFuXxbruxu4EYAGSQSsXBsp2JzwmGATiuiUuXNlAuFyFJElwuD3y+ENxu77781mo1lHJMSZKUsler1T6XnYpxMC6PAEcnoNsPo2kSHUKhKEKh6NDSwlHQbNZx8eJZtNvkfzmYJtFCq6XXwXBNQvlkd02iAcOQ93QvTWKxkKBHo9Gi3W6h2awr3HQUNIkgCOh0iCYRBBblcmWHJiGBm2UgEWQymSfQJGS+bbGYg06nQzA4mSYxGIALF9Z3aBK/P7jvLhhpEckhm02i1WrKmoS0iBx1TULPsVlokpEDuiuuuAKf//znce211yrPCYKAq6++Gg8++CCuuuqqkRd31DHvBmR6M5+0LKXb7SIev6T0MBiNZlx55RksLQV3ZO2IcCIZOkLorPy4A5ZlB3aXyJq0MBqNcn2+ETqdXibM3g7bMBHWCwgHhZgokp2tYaehXq/fsfN2mES5W28Ky7aV15jNZphMZphMPaI0mSxTF4Ys20Emk1B2bf3+0Utd+s9RjhPQaNRQKGRRLOYgCAKsVjv8/iC83sCeN2pqzU7LMYkNMNnxm0aGbJrXUrfbRbGYRaGQBcuyeOpTnzXy+hYpoNsLNEia9AZH5lsWsLl5QeGBSGQFq6ur8HjsA2sVBEHhECoMB79mdwgqyiH0o5cdZ5Xdtu3BGsMw0Gq1YJjeUGIi4iSIIr8jsARo+RDdeaNlk9ZDs/7evTelqayXBG6Wvh188mEwHKxvcthaSqU8Uqm4vGtrQzi8PHL5bf952m6zKJVyyOezaDbr0Gp1SrZ9P3MYnueQz2eQzabAsh2YzVY5wRSYivX3tK4nWu5VKGRRKuWxtLSGcHhp5J9flIBuPxxck7CIx9cVTWIymXHlldcgGg0M0STdIXpkd02i1Wr7eMQEnU43U03SSwLNS5O0Bjik1WqCZTvKa4gmsfRpEgvMZsvU+Y5lO0in48jlMtBogEAgjFBock2Sz2dQKuUhCAJsNgd8viC8Xv++mqReryKbTaFUyoNhGLjdPvj9oakYu01Xk7AoFglfclwXN9zwzKlrkqmEshNMPlCxByYlTVEUkU4nkExuQpLIybe0tCq7CO68mDUaDQwGw55lLySLzA4N+FqtBnieV3bVbDYnDAYD9HpD32fjSNlkQRDkrFoXgIhQyId2W4AgzP7cGqc3xe32KGLLbrfB73ceSlO30WjCysoJRCIryGaTctlBCl5vAOFwbOT5T3Q2lt3uxMrKCZTLRRQKGWxsXMDm5kW4XF74fEG4XJ4d52H/z3a7LAqFLPJ5Ehjq9Qb4fAH4fKGZzKIaBdRpr1DIolIpgc6dWV4+Ppf+mXmDZLcno/hms46NjQvKWA+z2YqTJ6+Us9Q7+YkGJHvt9vI8r3DHdrHWajWg0WiUUi+73bmDR/R6w76JEho8cRwHUeThdtsgCAxE8XDe//7elP36ZYkduQV2ux2hkBeVSmvmPELcgQPwePyo1cpIpeK4cOFxmExmhMOxsea66fV6JTvfbrdQKGRQKOSQy6VhNJrh95MKgGECT6fTIxyOIRRaQrVaQj6fRSKxjnj8EpxOt7LjN68ZoO12U+G2bpdVDIT8/tBc1jNvTK5JhD5NIgHQIBZblYfY76ZJjHsG9aIo7hL0ddBq1ffRJEYYDIaxNIko8jCbdRAELRhGdyj3kmGapNVqotNpKa/R6w2wWKxwu71KMtlmO1xNsrp6EtHoijLHMptNyU6nMZjN42uS1VWiSfL5LDY2zmNz8wLcbi98vhCcTvdQTeJwuOBwuMCyrMxB5Lo1GIzwegPw+4Mjr2XaEEUBpRLRWNVqWUmCr6zMRpNMJaB7MoqlowSadd3cvKhkrywWG44fv+LA4rrfiGGWoGVYxNyBgdlsRqfTRH/5xUHR35vS63VrDZRh0d4UMkcmumtvCnntdBv7R4Fer8fSErkh5vNppNMJFApZuFxeRCKxsWa0MQwDr9cPr9cPjuuiUMihUMji/PlfQKfTK2Q4bC6fwWBEJLKMcDiGZrMuB3cZpNMJWCw2Zcdvkh6LcUB3DfP5LEqlnJLdW109uW92T8VO9GfSaeaanm8Hz3bq5H7X2d1caVBILaddLpJdHVaWeRDs1y/b35vicLj27E3R6ZhDv4dqNBo4nWRWXqNRQyoVx/r6OSQSG0q/7jjJALPZgljsGJaW1pQdrVRqC4nEBux2J3y+IDwe/47fqdFolFlbPE8cjfP5DC5efGLs/pqDguM4FIuEA3s7jgF5x3G6JaGXO/rn/tFrwmq14/jxKw5sdNXfKzxLUE0ySzfO0fpl9TCbLXA6iTEcLb8+OprEgFhsDZFIDLlcT5O43V6Ew8uw20ef0Uau+QC83sDAjta5c49Bp9PLSePhmsRoNCIaXUEksoxms458PiuvJw6r1S7v+AVmNkaFgu4a0l19qknW1k7KHDi7vz9WyeVVV101MGNOkiT86Ec/wtVXXw2rtXeT1mg0+NSnPjX91R4S5l3eMA4ajRo2Ny+i0aiBYbSQJHGoAJv3OsfBNNfa35DfbNZ39Kb0ShLG7005CseUWiinUnF0Oi3Y7Q6Ew8sDxhfjrrPVaijZaY7rwmy2KP12+2VOK5USCoUMKpUSAMDp9MDvD8Ll2r+/Zpx1djptFAq0pHK8nsD9cLmUXI4DQRCUuX+ABpIkygLs9I7s5rzXOiqmvc5ul0UqFUe5XJhqb8pROZ7tdgvpdByFAjF/oGZc/UmZcdYqCAJKpQIKhQxqtYpSDjVKifb269toNCnX9yjOdqOu86CctR8ul5LLcVCv17C5eQHNZh0Mw0CSJMRiawiFlhZSk0x7nbSUPZNJoNVq7NIv2zMpGScpehSOaU+TbKHTacNudyISWR645sddZ7PZUCoAeJ4buUSbXN9kx69aJdc37fkdVoW0HQfRJONy1l6YesnlTTfdBGBneeWw58cpwaxUKvjjP/5jfOtb30Kj0cDp06fx1re+VTFf+f73v4/77rsPFy9eRDgcxlve8hbcfvvtys+zLIsPfOAD+Md//Ed0Oh3ccssteOc73wmPZ34ueYcBlmURj1+SG1NJxG82W3Ds2Om5lbwdJVDSTKU20Wo14XC4sLS0OrPelHmBum75fEGUy0Wk01s4d+4xmM1WZeTBuLBYbFhZsWF5+Riq1TIKhQwSiU3E4+twONzw+4Nwu307yqEYhoHH44PH4xvIdp8//3hff01o4mw3zeAXClnU69VDz+BfjqCZ9Hh8Hd0uC61WB1EUEIsdQzi8pB5TkF6RVCqOfD4NhtHKu9Z2xehoXmWB0wa9fywtrSKdTiCTSSGdTij9uuOKEjLyhJgcsGxHybaPUqJtMpmxtLSKaHRFyXZnMqR0z2ZzwO8PwuMJTFRSLEmSUlVQLObA8zysVsJ3h1FVcLmCZTuIx9cHNInFYsOxY6fnMn7mqIFWUiWTm2i3WwOahAZulwPfbtckqdQWzp79OSwWK8LhZXi9/rF/J+l9PoHl5eNjlWgTTeKHx0OqkIrFPAqFjFyF1NuBn9SUiWgSwmt0U2WemmTkHbpZ4Q1veAPy+TzuvvtueL1e/PVf/zW+9KUv4aGHHoIkSbjjjjvwm7/5m3jpS1+Kb33rW/jjP/5j/Pmf/zme+cxnAgDe8Y534JFHHsH73/9+GAwG3H333bBarfj0pz898ZqOcjaMZtLT6Tg0Gg0YRgue5/YtizoKmZtRcdDhmIQ0t9Bu9wK5cUoRD2OdswLd7k+l4qhWib3w0tIyTp06jnqdnXiduwVTpATEtufPtttNOXPV60ehmav+spnd7LZpUFkqFSFJ4p5B5TTwZNmhq9er2Ny8KA/HNYNl27vuys17rZPgoOskgdwW8vmM7Dq8hGAwOlUXtWmsc1bgeQ7ZbEoZVeD1BrC0tIxYLDTxWocFUxaLTXbNDexp3CCKgtJfU63SHtnejl9/tn3YMWXZjlJW3um05KAyKJdwzSYJ+mTYoRMEAanUFtLpBBiGlA8LgoBYbHXHrtw81zkpDrpOOjoqmdxEp9OC0+lGNLrypNIkZFRBHNVqGUajCdHoMk6fPo5arXNATTIYTPl8AQSD0X2v51arqeymcVwXJpNF2fEbTZOQoLJcLkCSpJn3/U7d5XIW2NzcxAte8AJ89rOfxVOf+lQA5GC94AUvwItf/GIUi0U88cQT+MIXvqD8zFvf+lZUKhV84hOfQDabxXOf+1w88MADeM5zngMAWF9fx6233orPfe5zuP766yda11EkT0mSUChkEY+vg+O6sFrtaDbrsFrtI+3KHcULfTdMstbt2a9ZkuZB1nmYaDYbfSMPGNhsDtjtTjgcLthsjonLiWhpQS6XBsd15aHvS/vON9vuGCeKIux2J/z+EDweH4xGg3I8a7WaEgSOU/Y5DVzuAR3LdrC1dQmlUh5GoxmSREwGqIPfflnFo37eU0y6zu2BXDgcQzAYgVY73UDuoOs8LIiioPTHEkdKM+x2J2w2YkZgNE52PdJyx3w+jUqlBJ1Oj2CQzqfb+3f299e0282+/poQrFabckwLhSpyufxEZZ/TwOUc0O2mSWw2x0i7ckf9vKeYdJ20+iGZ3JIDOQ+WllZgs43eU3ZYaz0sNJt1pFJxxZHSZnMopiZWq31qmsTpdCMUiu47M5dokrISnNExP7Tn12jUK8ezWq2hUMjIrSik7JN6BRwVTTKbO9SIcLvd+PjHP45rrrlGeY424tdqNTzyyCN4/vOfP/Azz3jGM3DPPfdAkiT8+Mc/Vp6jWFtbQzAYxI9+9KOJA7pxUKmUkcsloNebYTbbZtLw2J9JdzhcYBgGrVYDsdjaVMwKFhk7SdONtbXTYzXiXq6wWm04ceJKrK4eQ6dTRzqdRSaTRDK5uY1M3WOVQdJyqEhkGeVyAel0AufOPQaTyYxQKAqfLzQ0S0WMGNxwOt1YXT2p7PhdunQWGxvnZYMWN+LxBJrNxr7GLJcTRFHAL3/5S0iSFhaLHWazZer/ryDwSiZdq9XB6XSjWi3DarXjiiuumZsT2FFBp9NGKrWFQiELrVaHpaVVBIPRy6akclIwjBbBYBSBQAT1ehmdTgO5XB65XAYAGYvjdLoUYTZqyWJ/iXan01JKPFOpOLzegDKfbhjIYGPikkmy7aS/JpNJwmIhQmtzs4tUKg1RFGC3O3Hs2Gm43b6p77AeNVQqpT5NYp/J/1urVbC5eRGtVqNPkzSxvHxsz125JwNIoJtDKrWJTqcNl8uD48dPzzSQWxRYrXacPHkVeJ5Fu11DJpNDOh1HIrEBhmGUhDMN8CbRJKVSHplMAmfPPgaTySJrkuAemoSYQwkCL/f89muSALxeF7a24mi1+hNHR1OTzJXZHA6HsrNG8fDDD2NzcxP/63/9Lzz00EMIhQZtggOBANrtNsrlMrLZLNxu944MYSAQQCaTOdDaRnUL6nZZbG5uotslTk5mswUOh1OxYTWbd7qajYpOp42NjYsoFvOwWGzw+QIoFHKw2ey46qprxyoT0WqZgc9HGaOsVZIkuY6a7Mi53R6cOnXloQZykiSi3W6D57sQhOllw/R6w4Gb8fthNFoRDvvg9YbA8wKazQaq1TKq1XIfmWrhdDqVgMtqHYWsGASDIQQCQdTrxClvY+MC4vENhEIRhMPRXZ3IdDoG4XAE4XAELNuRHamIKPN6fYjF1uB279+0vBskSUKr1US5XES3y2Jt7eTcyHcULpEkEcViEeVyGQCZkWS3O2QuccBmcxxonlw2m8bW1joEgYfPF0C9XkOtVsXKynFEo+MlhRaFS0ZdZ6fTRjy+iXw+A51Oh5WVYwiFDi+QYxjNTHiEDlefJvz+AByOFcRibXQ6HVSrFfmjrMzIJI58bjidLjid7pFc5Ww2G06cOIXV1TVksz2nPDIAfWnPOXlOpwNOpwNrayfkYCaLra0NmM0mxGIr8PkCBzIl4HkelUoJlUoJfj/Z2ZsHRtUkZAe+p0ksFqsslEmFxjCn1VHRbrexsXEBpVIBVqsdXm8AxWIOdrsDV131FFgso/fKXW48Ikki8vkc4vENdDptuN1enDp1lapJhoBqEp8vrGiSSqWMWq2MZHIL8fg6tFotHA6XwiOjapJQKIxgMCS3niSwsXEeicQ6gsGIPLt3+G6aTmdQNEmn00E+n0E+T3bkPB4fVlaOjWSkshuoJimVCuA4DmtrJ6auSY5UquonP/kJ3vGOd+AFL3gBnvvc56LT6eyYkUa/7na7aLfbQ2eoGY1GsCy74/lRwTAauN2jBUt2+wr8fjc6nQ7q9TpqtZo86JDc3HQ6Hex2u0ymdthstpGEQiaTwfr6OvR6PU6ePIlUKoVSqYArrrgCx44dm/ikcjgO5rZzmBi2VlEUkUqlcP78eTSbTQQCATz1qTfA5XLNfD3EIr+BbDaLbDariO9pg2EYOBwOuFwu5cNqtR744qfH0+OxIRYjiRJRFFGtVlEsFlEoFLC1tQ5RvAi9Xg+PxwOv1wufzwe7fe9smcdjw8pKBK1WCxsbG9ja2kIqFUc4HMba2hrc7r1EkBWhkBeSdCUkSZr43BYEAcViEdlsFrlcDu12Wy6ZC8PtPvjxmwTjcMlTnvIUhUfoRzK5pQyftlqtsNvtCp8YjfsPtGVZFufOnUOtVkM4HIZer8fW1hZcLhee/vSnwW6fvCRsUbhkt3U2m01cuHABiUQCBoMBV155JVZWVg4lkON5Hvl8HrlcDtlsVhHf04bJZBrgEZfLNZUdG4fDDIfDjECgd113Oh0Ui0WFSzKZpPxah8IjHo9n3wDP73fhqqtOK/fAX/7yMVgsFqyurmJ5eXnP9Xu9dhw/vgJRFAcGRo+LZrOp8EixWIQkSfL9e2Xk63maGE+TrCEQ8G7TJBVksykARJNQPTKOJkmn01hfX4fRaMSJEyeQTqdRLhdw5ZVX4tixYxMf60XnEVEUkUwmcf78ebRaLQSDQdx0041wOmfX7kFBeubrCo8cliZxu92wWA5eRbKXJikUCigWizs0ic/ng9frHVGTRNFqtbC+vo54PK5okmPHju2jGa0Ih72QpKsOrEkKhYLy/nQ6HWi1WkQikZlokiMT0H3jG9/A7//+7+OGG27ABz/4QQAkMNt+o+vthJlhMpmG3ghZloXZPDlJiKKEWq21/wsBrK+fRyqV2PX7PM+jXC6PfaExDINweAmiKOL8+fOw2ex4ylNuhMViRbXaHut3iaIIlm1Dr9cA0EGrHd2afx7Qahk4HGbUam0ly0SyX1nE46SMwePx4cSJK2Gz2SFJQLk8Wn/BuCDkUka5XESpVATLdsAwDFwuD06evAJutwOtVneqc67a7TYajRoymSw2NjYAkJuwzeaAzWaH3e6A3e4YOfs+7HgOwgCvNwyvNwxRFFGv1+QdvAqeeOIJSJIEnU6vZMqcTteeJYHh8AoCgShyuQxSqQRSqZQ8TmEJPp9/6GDq0da5E90uq7w3lUoJoijCaDTB4/EiFnNBEHhwXBflcnPkc36agm1ULhEEDj/4wb/u+Zpms4lmszl29YHd7sDx46eQTMbBsqyyK8fzmrGuG0mSwHFduYzIBlHUAlgsHgGIPX8isYlcLgu9Xo/V1eNyj5wWtVpnZuvpdNoolYoolwuoViuQJAkWixXBYBihUADtNjdVHhEEAY1GHfV6DbnceYgiSQyQAcQOeefXLieLRhMs+12jFosLFosLsdhxsGxH2b1LpVJYX18HANhsdoVHHA7nrr2JZrMTV111nbL7/8QTT+Ds2bMIBvd33RyXSyRJRK1WQ7lcQKlURLvdUkrEV1ePw2g0odlsoN3mx7pmpsUl42iSS5fOIZ1O7vp9YiZRQqlUGmsNDMMgGl0Gz/O4cOEC7HYHnvKUm2CxWFCpjLY2ClEU0em0YDAwOOqaZLdzSRRFuUpoA51OBx6PDydPXgWbzQ5RnKUmEVCtVhQuYVkWDKOFy+XGyZNXwu22T1WTSBLhrnp9uCahFSR2u32qmsTni8Dni2zTJGU8/vjjkCQJer0eDgfhEZfLvefOcySyikBgSZmTRzUJcQL3TVWTsCzRJOXydk3ig8PhBM9z8q7/6NfMqDxyJAK6T3/607jnnntw66234t5771V23cLhMHK53MBrc7kcLBYL7HY7QqEQKpUKut3uwE5dLpdDMBg80JpGbShdWTmGEyeO7fuGS5KETqeNVquJVquBVquhBKN6vR4Wi03+IPNHul0OW1sXwLKdgV65/dbFcV3lbzSbDbRaTXQ6vSGVwHRmsB0GBEFEt8vLPXKbYNkO3G4vTpy4UumtmEXjb7fbRaVCLsZqlVyQBoMRbjcZgEt7BmbVgGy3uxEIRAAQp7lGo45msy4HeSkkEpsAAKPRBKvVDpvNDpvNAYtl70yrIIgjrdNqdcBqdSASWYEoCnJ5XgW1WgXr6+dlMjXI5RCkRHNnUzADvz8Cny+MSqWITCaJc+cex8aGEcFgRB5cPDxTv9c6SdlCQyHLZrMOALDZHIhGV2Cx2NBut1CpFBVRQxqk59drOsox1+n0uOWWW1Aq1fe9cfA8L3NIU/ksSRI0Go08u6jHJTqdDoVCFhcvnoPVasc111wNs9kKQZAA7O6HRQVXq9WUeYT8HZ7nBl530BlshwF6PrXbLaVHTq83YGXlGAKBsDy/c/pcQh1nSbleL0hwOFxYXj4Ol8sDk8k8UyMDl8unrKXdbqHRqClcQkskGYaRbcEdCpcYDHvv/o7CJVqtAR5PAB5PQBmgTHkkl8sgmdyCRqOB1WqXgzv3ULMms9mG48evxNLSMWSzSWSzaaRSCbjdPoTDS7DZHLuuda918jynlFJWKiUIAg+9Xg+Xy4todAUajQbVagWJxBY4rgudTief3/PpNR1dkxzHyZPHx9AkDeU6p0PA9XoDLBYrLBYbrFYbTCYzut0utrYugmXZgV650TRJA81mj6920yQHmcE2a9BzSRRFFApZpFJbsibx4eTJqxW359loElbhkWq1rAQJLpcPLpdn5prE4ehpEo7jFA5pNutIp5Pg+Q0ARJOQJBFNFtn2dK6dRJOQRFVPk1y6dA4ARtIkgUAUfn8E5XJR7rP7BQwGI0KhKPz+8K67//tpElIySoK4VqsBALDbnYhGV2C12pT2j3SabP64XB4Eg9PvNZ17QPfZz34Wf/AHf4DXve51eOc73znwD95444344Q9/OPD6H/zgB7jhhhvAMAye+tSnQhRF/PjHP1bGGKyvryObzSrz8WYNhtHC4bBCELT7npik5rz3dbfbRaNRQ6NRlbMfCWV7VxTJYN8zZ546tFeOkPFOwUUJmWEYmM1W2O0OBINh2O12eL1OZLNFNBqUwIlrDyVWesPqEatFCfQOG6IoIptNIR7fHCBNq3Vvi/xJQIOESqWEcrk4ECREIitwuz0wm+dTsqfT6eFyeeByeZS1smxHIdRGo454nNj5A2TuDxVlVqv9wPN/SG+dW+kbEQQB9XoVtRrZwSsWScLFZLIor+vPulNrcbfbh2azgUwmgURiA8nkJny+EEKh6L5rFAQBtVoZ5TK5oXFcF1qtFk6nB8FgBEajCbVaBcViHvH4uiKaV1dPwu32ztyBalqwWCxgWWmkG5zD4VIei6KIVquBRqOmZDILhSwAyMGKuOdcOZ7nlOQP5ZF2u6nwgtFokneSInI/jh1msw7ZbEHmkhby+YzCPRqNRg70ehxCA715XEOtVhNbWxvK/LOVlRNyIDf9oJPnOWVHv1otged56HR6uN1eLC2twul0z8wtcy9oNBpZoFsBhAGQ66rZpMmiumImAJAkYy/AIwLtIKWa9JwwmcwIBMJKMFGrkR28TCaFZHJLvp/2enlNpl4lgNFoxPLyMUSjK8pcuscffxRWqx2hUBQej3/P95TeMymP1OtVAIQzQ6EI7HYXOI4k89bXz0EQBBiNJni9frjdvoWZdUl6j8bRJL1Zpd0uq/BIo1HdoUlsNgdOnTozlLNp0qA/ab1dkxD+cCAYjMiaxIFMhmiSdruJRqOGfL5fk+gHOITqknlpklyOnKfdLguPx49Tp3qB3DSxW+LSbieJS5fLOxPjrFFAkh57a5JSaR2SJMpJRqtSXWSz2WEyHUyTkHt/vybhZU1SGdAkvV5eN+x2l5Ls1mg0ihlTs1lHJpNEPL6ORGITfj/RJPv13AqCgGq1rCT+qSZxuTwIhaIwGEyo1yvKjFe627+2dgoul3doq9g0MNexBevr63jJS16C5z73ubj77rsHvmcymZDJZHDHHXfg9a9/Pe644w58+9vfxv333z8wh+6tb30rHn30UfzhH/4hzGYz7r77bthsNvz1X//1xOual0WwKIrKRcEwWgQCYTkDtjMjT7Ly5O8ZDEYlm0Y/bxdPu62T3ljb7aYs5Fpot5vodNoKqer1hgFSpUJtnBu8JEmQJBGiSD+Tj+3PEQt1Ful0Au02Ka2kOy/TBA0SaBDXHyS4XF64XO59s4NHxSJYFEX5ZtjbyWu3yXY+w2hht9sRDAZgNjtgNE73JsBxnBzckY9ul4VGo4HN5pCDu50OmhzXRTabQjabAs9zMgkuwePxwOOxoVxuotls9WUkK5AkEUajGW43eX8AKBkxlu3IZOqF2+2F0+k5kPi8HMYWsGxHPg+a8HoDMJutQ6sEWq0mul3Sb6zRMIro7+eS7cdyt7XyPDfAITQw5Hle/v0aZTevvzrAaDSNfE4SHtnJJT1O6T2n0Uio1UpIpVIwGIyIRGLw+6cbyNFjSs/F/iDB5fLA7fbu69Z2VHgEINcmFWWET2pKD6fJRMYVxGIR6PVWANM9js1mXeGRRqMGSZJgMBgHsu79nEznQWUySVSrZej1Bnn3PwKz2Qi324pisY5yuTzAFRoNA6fTBbfbC4vFhmazgXK5gFqNlsHa4PH44HZ7D5zIW/SxBVST1Os16HQ6+P2hXTQJSewM1yQ2WK1WGI2TaxK6q0dBNMlghZHZbBkrWTKqJtFoAIYRcOHCBbAsCeSIJpnuTu1eiUt6X9uv//SocEm/JqF8Qt8/rVYLm41oEovFCYNhuok+jusqiaJhmoQYrAxycrfLIpdLIZtNy5rEKyeJBjUJCbCLCleYTGZZL5LgtlIpolQqoNtl+zSJDy7XwRJ5CzGH7oEHHsCHPvShod+744478IEPfADf+c53cN9992FjYwNLS0t4y1veghe96EXK61qtFv7wD/8QDz/8MADg2c9+Nt71rnftY8KwN+ZBnpIkgec5sGwHLNuRSYwQJsuSvg6a7dguuEZxERt3naTkqj0gzNrtFjqdXv+ewWCEyWSGJEkyEUoD4qqfGMc9zcLhMILBJRiNB8vm9INlO3sGCXa7cyyxd1TIcxh4nley781mHbVaBTzPw2AwymJl+hlnkqlrK0Raq1UgCIKcMXYrZEoFvCiKKBZzyGQSaLWa8i5QANlsDq0Wuf4cDpdcUuIGy3ZQLhdQqRTB8zz0eoO8+9crg50GFj2gIz2zHfmjPZAIon0V/SVVVHD174ZMa62U1yiHtFotmUuaSqBAqwm0Wu2uSZ7+YG0cmEwmRCLL8HqDUzs/SE9HVQ4SSmDZthIkkJu7d6zZbEeZR6i4psEdKbNqKLvg9Pqb9i44qQSoKL287Ta5hiwWq5IocjicSjlXq9VEJpNUdqb9/iC0WtJ+IQgCDAajvKtAsuPVahmlUkHZ+ej/X3Zz5p0EixzQ0Wu30yFcQiqC9tYkVist9Z6VJmkNcEir1QLLHo4m8fkCCIeXpxrIEU1CeKRWKw8ECW63d+x5sUeZS6gmaTTqaLV6msRoNMHt9s5Mk3Q6g5pEFAVotbqBRBHdkRNFQR5/kkC73YLVakMg4Fc0iUajgd3uVFpvhmmSfn112JpkrgHdUcUsyFOSJAgC3ye0dn70N7HqdPqhgmuSE6TVaqBQyIBl2zAazbBYyNb39ozZKBAEYYBUScZTA4ZhoNEwYBiN/JkZ+tworzEY9PD7nSOTkiAI4LgueJ4Dx3XBcdzAY47j0O2ySobIbncq/XAHKUk8yuTZD52OgdNpxuZmEvl8HuVyQekJoRkkUgo2XXc/4gpak4m0jEajDkmSYDSalADP4SCue7VaBdlsUplr5HR6YLHY0WhUZRMJ0jdgNlsU4TXOnJpxcNQDOlEU0e2yu/IILXECaKkb2V0nYss2cW8KcRHNoVTKw2w2wmi0wGKxw2q1j33uSJIkOxX3kkWiKOzKE/Tr3uPdXtN7Tq/Xwe93olptj3R9UgFLOGN3PqHBKEko9PpqJ71+FoVHALJWo1GD9fU4isU8arUKAFK6R4XMQcu8h6Hb7Q5UAnBcVxFXVJRZLDbwPIdcLo18PgOzmfCM3e6Wh5gTE4lOpw2GYeSdDx/cbs/MSviOckDXr0k6nQ663Y4SvLEs+XqnJiFahOqSSftlm80GCoU0ut2OzCM22GyOsXbrKXqapClrEnaqmkSv18HrtaPR6I7MI6Io9nFHT4f0P6aapD9IcLk8TxpN4nCYsLmZRKGQV6qkDlOT0EoAgLQV0ESR0+mCVks1CUk2k+c9sFqtqNdrKJWIJpEkEWazVQlIRxutMD7UgO4AmJQ8Wba7Z8BGM9IAyUobjWYYjaahHwe1lqbiK5dLo9msQ683wOv1oFKpKrtsWq1uoN/KZhvdpWiWYBjAYtGhUKii02G3EWF3h+ga5uak0+mg0xmg1+uh0+nlhlnngcvxBv/G4pBn/zppeRNxYirIZg0MnE43PB7SZD2L80AQeKXOvVotKwE2NUVwu73w+13Y3EygUMgr5Ws2m0MJ4mYhFrdj3gEdxwl7Bmy0RJLCYDDuyiP7mVuMgmazLs8IzEIUBflGq0GlUlWcE0mfRI9LLJb59Jz2Q6vVwGYzIJ+votPpDAnWBh9vN3wBSECs11MeIZ9JBt0ztcGyi8IjwM61chynlDNSAymTyaz0zW4vt54GaK8WTRSRrLsInU6vZN09Hg+0WhGbmwl57lNX6WUkYtG1p1nDtDDvgI5qEhqw9fNIp9NRrl+AlOfvxiPT0SQ8isX8nppEp9Pt6N0cpQJplqDBRz5fUfTIbhwyqiYhHwY5IaFqkp4mIS6znU5LTrq45ZJF70zOA57n+yoBysp5SDSJWx6T4MLGRgLFYk+T2O0OheMOMuNyVKgB3QEwDnmWy3lks0k0m60BQaDRaIaQohlGoxFGoxk6nW4mgoeIrzQKhZwivgKBMHw+P7xeO8rlJjodVqltplvgdO3juhRNgnF2GCgYRqsQYY8UDXKwpu8TXeRj1i57HNdFvV6BwcCg3e7KroHTASmHs4xcArcf9iN5YhRAar9pxorsYpIgalaExbLsQNadnoO9Hhfy9w87yTCPgA4Qsbl5HpVKFSzbGSgH0uv1u/KIwWCcyblOxFcOuVxGEV9+fwiBQBhWqwVutxWlUgP1en2g34qWyhLnRLucKCJcMo3gsh/j7jBQ9HPF9sfb+YRhtDMNTElw0oAkddFqsVPlEYYhu7Nms3VqYmgvLiF26mXFspvnOWUXk5RFu2dyroqiOJB1p2WUAOTg0isHl7u7Yc4K8wjoSqUccrkUms1e/ypAeJXwh3FoMnkWmoQ6AOZyaRSLRJO4XB74/WH4/T54PESTtNusXNLb4xK6dqJJeknno6dJhukQw4Be0el0C61JDAbDVI2t9tMk7XYL5XIB5XLxkDVJR0kUVauVbZrErXDZUdUkakA3BOOQZ61WQqNRgUajg17fy5Tr9YZDu3n0xFcazWZjQHzRfoC9LqBhLkXNZmObS9Ggc+Je/xspp5p8h8FsNsPttoNlRTCMThFW8wRxnWrKrkZFNBpENDAMA3IFTe8yopdkf7lcvzX8uGUp42TtyMw2OiuL1PSbzVZ4PEQUTWtXYjvIOdOGXg8wjAnTMlwQRQEcx43VFzOPgE6jkZBOb4LjROj1RphMdIfNdCiDroHt4isLURQV8eV2e5X3fa/zabtzYqNRU673SZwT9ypT32+HwWIxw+12oNuVwDBaRVjNe+eQ53lUqyWln5fneXlNGsyCR4BhxlaET8bdGRinnK9erypcQuZ3amWjGFIFMK1die0gPZt1BAIecJxmasKWZTvQ6w1jCfN5BHTVahHNZnWumoTne5qk1WrAYDDC7w/B7w+NpUl6vZuEU+h4FlJCPuicOCtNYjab4fE4wXESGEanJH/mPZplN3fuWWuSgxpbAeNpEjKygcyapX2GFotV2SGbVTUIOQdbMBg00GpNkKTpvN+CIMi9g6P3HasB3QEwL0epcUC3qHuZLyK+AoEwXC7vjhN8kgbkvZwTiSCzyzPzWLAsC5ZtK+R4kB2Go1I2IIoCarWK4jrV7bKKjb/b7YXX60Mw6J76Ojmuqzh79Td/CwLJWBITiZ2kutsOyKTHk1jzllAqFZQ5TXQe37Sbfg+yzn70mqCJYK7VqmAYDZ761P/fyKQ/75LLwz7nRxFfB1lrt9vdkX3vd06kiSKNBjuE1kF2GI4KjwB0F7xnl09Ficvlhc/nQywWRqXSmuo6+42t+g1pthtbbXcLNJksuyYRJjmmtESSZNwL20xVCJdM21RlGu89NWahc+pYtoPl5eMIh5dG/h3zLrmcvybxyprEM1VNMsw5ke7gmUyWHcHbTk1i2JVHtmuSo8QjxAmzopQ5D7pze+Dz+RAIzEaTDHMw3m5s1UsazUqT8KhUyooRCTU86jdHm2ZwN01NQucaE03C4KlPfdbUNcnc59CpGA9EfGWRy2UU8RUOx3YVX5Oiv2Sq/2/3Z98LhazSyEp3EzweHwwG01x2GKYBmg2irlN0gCfpLRt0wtTpZpOhI2UbhoFZY5IkDSXVUqmg7FIwjFYRZoNWzpOdF1qtFh6PHx6PX3H2o2UQ2WxKCeztdgdsNidstoPNqpoU9CZHgzhq1EMs1lcHdpdUEJDm8Dry+Z74orPShomvg8BgMMBgINlU+rcHnRPryuwgmhm3WGxwu30DQuswdxgOCloGSG2uO522MotoZeUEXC7PwE7FLP4vOvdruyufKAoyh/SSRqVSASybUF5DdiYG55GS+VHjc17/DLxodEV2hiM7dxsbF7CxcUEJ7O12wiPzmLG1U3hVlNEJdO6W0+k51DUtAnieR6GQRS6XRrvdlEeELMPvD001UO/XJMFgRPnbVI80mzXk84OaxGg0wWr17Ugmz7viZxywLKtUBvW7c3u9/kPVJE6nQZn9BmzXJL3xEqVSXil1pwPj+5NGxNF4svNCq9XB6/XD66WapIJSqYhSibQ+9TSJUy71n6cmKaNSKaNa7dckLsRiazPTJGpAtwCgzjz5fGZAfMViq3A6pyu+9oJOpxsY6AgQcbBI5LgdNKtIyxZarQYAUq8dja7C7fZMrZftINBoNDAYjIq4oKClJP2kShzEcorFu06ng9frhdPphcPhmSjApg3KVJC2Wg1Uq2XU6zVks2kkk1sAyDBPm80pB3mOmQyT7pkikACO7ngQpyoPXC7iVrVIiYTDAs9zKBRyMxdfe6FXtmOB3x8EAHnek2bu19lBwHEcqtWSYhBCnTBdLi+Wl48dmXOSYbQ7knUAESH9wqzdbg4MjAfI9R2NRmC3e2AwTNbHYjSaEApFEQpFwfMcKpUyGo0q6vWaMnaAGHY5FB6x2RwzOXb980ir1bIivBwOF2KxY3C5PDPhsEUH1SS5XBqlUh6SJCnnudPpnpsmobPlLgdNQoeK92uSWGwVLpf3SJyTe2kSOnqLJp6bzToKhcGB8V6vBy6XD3b7ZLxInWqdTg9WV08o45mIJkkimdwEQAy7KI/Y7Y6J3N33w16ahCaCDuKEPCrUgO4IY7v4MhpNhy6+9sMiEicpJSzLWa+SXLagg8vlQTi8JPd3zNdZa1T0m++43V7leToTjszpaaFWK+PcucfBMAzcbh98vuDEN16NRjMgCOnfqtfJnKp6vYZ8Pg2A3HD7A7xJLO4BUmpB3DEJYdJhoQ6HSxYRqvDaDf3iq1jMA5iP+NoL8+5HmQT0Jk6z5/U6ad63Wu0IhZaUwdVH4fiOAjLwl1yn/eB5XhFmrVYDm5ub4LgLsFhs8PkC8HgCY/WD9EOn08PnC8DnCwAg1zktqavXq0in40pZl8Vi6xNmzolMdnrvGdmF6wkvs7ILZ7fPXngtKnieQz6fRT6fRrvdgtFoQjS6Ap8vBINh/g7ZJCm0eO8dub+VlcQyz3OKJolEYnA63QulSUwms2JIRNEbGN9Cp9NEvV7B2bO/AMNo4fH44PUGDqRJ+rmrVwVC9Ei9XkUuRzWJfoBHJjXZ4XleLn8lXEI0CaNoEpIMmr0rdz/UgG7OEEURPM/JH7z8waFerx5Z8bWIoGU+lUpRKaUxmSzw+QJK2cLldGypoYrJZJHrwK9GKlWQ7edzKBZzcpbMD683eCB78f6/5feHABCyI30OhEyTyS15zpimT5iRQG9YcoIIr6bSv9Jo1JShq8RUwa0Krz5Qx0fKH/Qzy7IoFLLodIj4Wlo6OuJrESGKonITr1SKstkH2b1eWzsFl8tzZJJt04JOp4Pd7oTd7lQs3NfX48jlMojH17G1dQl2uxM+XxAej+9AwlOr3bnj0m63FB6pVsvIZlMASBlYbxePCrOdiQEivHq7cKQXmgqv48ounAoCURS28Qh5XKtVUCrlAQButw8rKyem3rP0ZAIt7+3XJKRqISQnFi4/TUIrM3S6ANxuK1KpPLJZUnlWKGSh1+vh9Qbg9QYONGd2sAqEahJOThaRaoBkclOpDBlVk7RaTSWp3K9JPB6fvAvnnOsmhxrQTQFETAlgWVYhv0FxNUiM/a8ZZqsNELOApaUV+P2hIzEbbhHBsh2USnkUi3k0m3Wlr4pkT8a3vuV5Hq1WQ8lUt9tNaDSkYX2a3kLEkW6w5nwadeBmsxnR6AoikWV52DwJ7LLZFIxGE3y+ALze4FRmvZEBoR6lFIOSIRVm5XIRmUwSAOmbstsdcDhcaLVsSCYzSsP3k014SZKozETjeR6CwIHjyOft/NHPKdQwZzsYhoHL5cXqqiq+JgUN4orFHMrlQl8jfm+o+Dg7jDR7TLmk3W6C57tT5xGNhoHZbB7oqZ1kcPN2aLVaeL1+OJ1e8DyPcrmAQiGL9fVz2Ng4D5fLA683CLfbe+Cd1/7+u0AgDICUtlJR1mjUEI9vKI7MVqtd5hInikUBqVQatRqZHXWUhNesMUyTUD4Zxh/9n2mp/naYTBbEYmvw+YKqJpkQwzXJ5Pe3nibpcclsNcnkDrnDYDZbsLS0imh0Bc1mA8ViFsViHplMEiaTGV4v2b2fxk6XTqcfokkaCo/s1CROOJ1OWZOkUS6X+jSJGysrx5XKoKMC1eVyCMZxlMpk4ojHN3YNzHQ6HbRavTxUUqfMSRv8uveZvnbawusoOTXth4OstdtlUSoVUCzm0GjUoNFo4HJ54PEERrbKpjXglCSbTUKY1Nq4N8rBBqvVjE6Hmyp5siwrlyW0lOeIG51lB6mOskO1nz00FaulUh6CICilVF5vYKa7Dd1uV97FI+KM2lKbzRY4nW6l/Omwy/Hm4XIpSQJ+/vMfo91uD/0+wzDQanfyxW6fKY/MYgdzUbjkIOvsXRd5lMt58DwvBwSkId9sHs0qWxB4JQHUbPYSQfR+QXaZbHA6HWBZfqo8QlwBST8cDfhJkLdzFMqo5Yt7HdNul0WxmEexmEOzWVdMlbzewEyTCaIootVqDJRX9dz/SD+t0+mei/Cah8tlOr2FRGJzT02i0+n34RNVk1AcdJ1Ek5AgrqdJvLKpiQda7biapMcl/ZqEjHKYpSYZ5pDbPwqFmrBNR5MUClnF9M1qtSs7d7OsLul2WYVHGo2qPL6LahKPsnN6VDWJGtANwTjkybItcFwLHCdBo9FuI8L5zjyi5SrUmVKSeEiSBlrtzmHc/YN0541xCZTjukoQV69XFTc5j8cPt9u3ZxBHjQD6SbLVairOkTqdHhaLDVarFRaLDRaLDSaTGQzDzPyGRAXZdttxlu0oryFudP2BHiHVSWyXRVFEpVJEoZBDpVKEJElwOFzwegPwePwzd4tiGMBq1aPdFqZ2PGlgTB0WR8E8AjqGAZrNMlotFhrN9mSPbu7XJS1XaTbrsruuDgAji70ef/QP0p33buC41yednVYq5VEq5ZX5hTSI26sfjpoT0eQPDeLotUpLgAiH9LiEHK/Z8gh1o+vnEOqW2++Q2y/OaHXAdmfRUdfabreUMio6v42Wd1uts+8rFEUOPp8TtVpnKsdUFEVUqyVYLLa5zLS83DRJo1FDq9WQNQmjrHHYYO55c98k1yfRJCSI69ckXi9p8dhPk1D+6HFJT5Po9XqFPyiXUFfYw9Qk/Y7bOzXJYIXR5JpEQLlcQrGYRaVSUjSJzxfcV9tNAwwjwWo1TFmTNNHpdAb6C/eDOrbgkGC12uB2B49ElolkF0hDObXypSRgNlvgcNjRbnfAcTVw3PAyLYbR7gjythMsfazT6edmZsDzHEqlAkqlPKrVMgDA4SB9LMP6OIjg6m4jycZAxokKLmpmYLHY5tprRGyabbBabQPPkyC0P9BroljMIZ3uDUc1mcwKqdpsduj1fuyXumEYRhlTwPO8fEPK9ZVSeeHzBeFyeWbyvjMMA5PJhHZ7NOGyG3ieQ7GYRz6fQbNZl124jvboAoZhsLy8fCR4pLfj0eMSep0Q90E7BEEjZ4i74Pnh2eDdeEOvN8j80nus1Wrn8v7Q8Q2lUg7FYh4c14XBYITXG4TX6x/axyGKAlqt1g4uoeYdOp1OGbvQL7jmxZX9bnT9tvs0CO0XZ9sdcrVa3YAws9ttsNv337UfLKWqo1DIoVDIbSulCs5s18xgMB54d7rnLp1FqZSDIAhYWzullH4eVRwlTcKybN8MyhqazYaiSSwWcj61221wXBcc11WuoX5QTTIKnxwFTVIs5lCrVQAATqcbx46dhtvt3UWTsDuCt0FNYlWGaNMduHmWu+6tSQYdcguF3MDA9p4mIdVNBkNg311EhtEqYwro8S0Usrh06Sw0mvPyPODADDWJdiqahOM4JcHVbNYV98tp3/PUHbohWIQhntQNjAZujUZNsZcmZTx2xVXQarXDaNTD5bKgUmlBEMhbTg1ZCJly+z4eVsJB5r2YFVcjk8msfD1pln63Y0r6NYoolXKoVsuQJAl2u1PeQfIpREfLE5rNhrw72UCrVVeGFGu12oEMl9Vqg9lsHZsQjlrJCHWj2z6UnOM4AOS8oOYGDodz5LIxUkpFBFmr1RiYTzfNXpSDHE+aQc/ns8ruIhm0Ghq7l+fJNFic9nMRHiHCi2TOJaVZ3Gazw2p1yEN7zdDpNHC7bcogbNqvw3HdkflkO0jQYerjkd5jg8E00c16t2NKeyeKRRLEdbss9Hq9Uh5oszmU64Jky3s80mzW0W73SqFNJrPCJXQXf9x5eUeNR3rlXU30Vwd0Oi3lvKD3F7vdBbvdMZIRiiRJqFbLcnl3r5SKGlNNM7g7yDHtdNooFLLK7qLBYITPF4TPN35/8ZNpsPjgnFrCJYOaxCFzCRkAbjDsr0kIX4yrSfQwGk0DmoTqEr1+fMOevY4n7SEtFvOo1cp9VS1+uN1+5e/1NEmPR1qtRp8m0SlahOqSy0uTDFYH0HuAwWCAzUb0iN3uGnn+JMt25PLuLFqtJrRanVJJMc2SyINqkkqlhEIhg0qlBABwOj3w+4NwuWajSdSAbgiOGnn2G0pQsqSigswUsvWRpQMGgwHdblcmDUogDZlcNXI/jrbvM3nMMNqhz9PHdC2SJEEUBYiiCEEQZDe9NjqdzsDMIq1WNyDO+gM/nU6/64Xbf0xZlkOlUkSxmFO23G02B7xeElDo9YYdRNlsNpTdR73eIAe1NoUsJ7G73m+dR4E8dwMpa+kilcqiWq0ovWparU4J7ux2JyyW4S5x/aCZt2IxJ89sYmC3OxRnuoPYtE9SItdqNZDPZ1Es5sDznNz/F4TPF5g4k3k5B3Qc192xi0+vFZPJLIstwiUWC8nCkoCmd221201IkiRzBiPzhBZa7WiPNRpyjkmSCFGUIEkCBEEEz/PodlmZS9oD2dt+gdbPI0bj7sFe/zHlOJJBJiIgD5ZtQ6fTw+PxyYkJF0RRULiS/q+0j5UGt/08MmoP635YFB4RRREc1wHPt5HJ5FCtVhS+J7stTjnAc+5b2SAIglLeXa2W+uZIuuW+N9eB3DLHPaa0IqFQyKJerypW6n5/6EBug5drQEdK75p9SeVBTdIL3BxyhYhBKUnuT7KSZOPummS/x4AGAOGR4ZqkrSQ0gX5NQnSJ0WhR9MlummT78RQEQQni6Llrtzvg8QRkTaIHy7YH/td+TWIwGBUOUTVJFtVqWelVo2OOqCYZxemSVij1axKHw6n0z1osoyWuh2ESTUIqEqgm4WGx2OD3B+H1zl6TqAHdEMyTPEVRVJpfCVnSMgXyu3sZc7syuJnjun3kQQiEZkB0Oj2sVmLJ6vW6UK+3ZbcrQn79JCiKwsDz21+zF/R6PQwGE/R6g0y66Mvcc+h22W3BnnbHzh4Va0ajHhzXxMZGHOVyAaIowmq1w+Pxw2q1geO4vkC1rpRpUKLsBXD2mZYnLAp5DrshUbfJer2KRqMGURTBMIwym8XhcMFms++6+0bHClSrZXnAeBWiKEKn08PpdClGBOP0m4x6PLtdVsmgt9stuT8nAL8/qAQhB8HlEtBxHId2u6kEbs1mXel10On0A7v45L1m0Gw2lewx+UzWTo2ACJfYYbOZt3HJdh6hvDH4vCju7b7GMAwMBmNfKSYDSYL8O3h0u12wbGfAiY/OYSSjM3qBn9VqgdHI4OLFDeTzOXQ6LTmT61PMCPqDVVrqpNEwcra8xyOzLJlcFB4BdgbJLNtReKRWqyjnl8lk7qsGcO0pWOk8p2q1jFqtrLwPVqtdCfBsNsdYx3+UY0p3DKn5giSJcDjc8PtJf840gvXLIaAb1CS9XfztmoRySU+TDCZZqSbR6/UK5+ymSUZ5vL8mMchc0ivppoHfbppke8KI8IgVPp8Dly5tIZ/PolwuQZJE2ajDD4vFDo7rBav95ddEk9gHdImqSfbXJPV6TR4QzwwEeHvxwN6axK18jGP0NurxJDuGOeTzZESQXm+Q52uGYLFYxz4+26EGdAfAYZAnz/PodFpyL1RLftwGy/Yy0waDUclw2WwOmM1WCAI/ELgNI0qS9SFBn8FgmEqzLNmV20mqNKve/8Gy5DOtlafY3i8jSaIS8A0rw6JmHwyjlYdkz48oh2FRyXM7RFFEs9lAvV5RCFUQhD4bcEKoNptz1yZkURRlUVdWdgEBIuwokdrtrj2bmPdaJ82K5vNZ1GplaDQMPB4vfL7Q1OczLlJAR0t5ehzS4xJ6TWk0zMAuvs3mgFark4O9wZ038vpe8Nbjk97u7UHP+x6P9IK+/sRPt9sZ4JF+0QXQoM8gGzxoAUgDAd9223W6Y2AwGOX+t16fCsMwfTtvdqX8+jD7+RaFR4D919rtsjIPEB6h5xS1AadcYjLtXlrFsh1FlNVqZfA8r4wvoYmi/Uqz9lonGdmSRaGQA8d15fmZQXi9wYkHpO+GRQroSHncdh5pyQkUokmMRtPAzpvZbAXPc7u2N5AKmZ1J1sPUJJRHut3OjiBwUJMMJqGHaRKTiRgHMQyjtHVQnWM0mmQu6f9fD3cY+KJwyWiapN4X4PU0ic1mVyoBbDbHvpqE8kiz2QBA3sNeJYBzT5fR/TQJ6enLoFargGEYuN0++HzBuWkS1RRlhug1nbe2BW/tAZFC7V/JjSoqN49aFKHdbNaRSGwOJcpgMLKDKGcBjUYDrZaUZI7CUZQYu91OH6FSgu0oj7fnE2hWnuwukONFbiI2RCLLSrB62ER5OYNhSNmk3e4A0CvxpURaKGSQTscBkGwszZbZ7U4liKbDlZ1ON2IxsjtUq1WUgb7ZbEoJEPuz7nudr9R1kJQv5CGKAux2p2x8M3vXzaMEQeDRbrd3JIH6SxOJqYxFsVgmj83Q643odIjbbaVSQjK5qZRHUbtru92BUCgi70aN37sxDmip5qhvHyn16/aJs842ocbuEF+Eq3QAiBkSveFaLDY4nR5EIr2dt6NslrNoIIYyxF4c6M2MowFesZgDQHi+P8DrL9U2Gk0IBMIIBMJKWTUN8OLxS9jakqDXG/pEmXvfEk+O68rGLFm0Wg3odDp4vUFlV//Jcg70a5LtwVt/aSLVJGQ2mmWbJiGBWyKxMbS9IRiMKkHNLMfeTKZJ+B3csZ8moTt8LNuVObelBLbR6DKsVrviWKtiOiCahPAD0K9JKqjVqsjl0kiltgBArhqh5d6OoZoEoJqE8Ei5XEA2m5QDRIdS5j2KJumNVMhDFEXY7U7Z+Gb2rpv7Qd2hG4Jxs2EOhwmpVB7NZnOH2KIZITrk1Wg0bysDYOQSgP5mXw6dTnuXPrDJiPIoZm4kSQLPczuyaILAw+NxQas1wmSyHqiXYpY4isd0GKaRCWXZtiLK6vWqUlrVy9iSrK3FYhtaqtTptPuy7hUIAg+tVjuQdbfZrPB4bEil8shk0igUsuh2WXnoeXBkV7zBEmSSQT19+pqRRdu8duhcLguy2RIajeaOJFB/AogMebXAaDTJGWYy1oBeT/1GAhzX7Ssl1AzdjVr0xnuAOE9uF2oc14XFYoROR2y099oVmieO4vHcDQddKymt6gV4jUZN6cck52VvF3lYmaYgCANZd1oSbDZb+yoBnDAa9XA4TLh0aQvZbBqVSkmZ/+X3B+F07u+KRy3aeztPDYTDMXg8hz8CZVxNYrcbkU4X0Gg0d+zc0x1skgAiZYV6/aAmIX1og8YknU5nRx9Yf0XQuI7QR/G8pxzar0fITEOAYQxK5YKqSQ6GaWiSTqc9UO5NHTW37yJbrbYdrSNU0wxqEkHRJJRLrFaiSZLJPLLZfk1iht9PNMkobSXbS5AlScKpU2emrknUgG4Ixh3iubW1rnyt1WpBh3ZqNAw0GgmiSEiC5/kdZYi9n+nZ8dLa72n2gS3KhQ4szlqfzOtk2Y7ST7Ffn+f2XRDaOEzJlIo6o9EIk8mEarUqO2mSvri9smY9859eAEeJXavVwmq1w+FwIxKJHemATpJ4PProj9DtksCNlCTplWCNligTFzh+Rxli/89st/cmImR6fWBP5vN+FliUdQKz6c/qd0Xcr89zu5DmuK7CI9VqGRzXVbLudNfJarXD7w/C4wnsuotCTT4GSwcbym6NyWSRq0RiY/XpziOgS6U2EY9vKF8PahLCgZJEeGQvTbJ9vMiTVZMsyjqBxVnrbDUJ5ZKGkrzY3uc5TJM0GjUlUdRo1BWjJpPJKGsSHbxeP3y+/TTJoPlPs9lze9VqdbBabXA63QiHp69Jnjw1SzNCp9MZ+JrUckvQ6yWFEHcbmEkfz2tuigoVk4IaUdDSKprNpu6J9TopiwCGO7GSxw5EoysQBAG1WgX1egWAgGAwKmfQB7NqhCh7vaPDiNLrDSiiw2g0HckdmWEQRWmg5IkOg5YkCXo9EbcGg3nHjMj+x/MeGqxCxbjYXloF7HRiTacTezqx0t17krVvKUmiYNAPu90Lg2Ewg07mLO40/6HBm9lsUcYp0HK6aRikHBb655gBRJNQd+rebFnD0OSPqklULCqGa5KeE+t2TbLdibXHQ6sQBL5Pk4gIhZbgcAzu6tN79HbzH6pJyDxSO3y+oLKTPWtNogZ0B8Ty8hpWVpbAsgI0Gp3s8siowkrFkwrDBo5un5VYKGSVXrztsxLtdif8fj/cbitKpQZarQ6azfLAzls/URLBdXhEOWsYDAY87WlPQ6PBgmF0SrC2yP+TChWTQK83wO32wu32Ahg+K7FUyu86KzEYjGJpaRlutxXFYg21Wm3o2A0ASgmdzxdSzH8WKXgbhpWVY1hdXR7QJIv+P6lQMS6IJiFBG8X2WYk7NUlvVqLD4YLfH+jTJG3F9KeXUB50k/f7Q0pCeVqjKMaBGtAdEEajEW6358hvcatQcdjQanUDTckA2WXrz74nk1tKyQ/JjFtQrVaPHFHOGhqNBn6/HzqdyiMqVPSDuK4Ssx+fLwiA7rI1FC6pVsvIZlMACO/YbHZIkoB6va4EfnTnjXCJHRbLdOYIHjUYjaaFKLtToeKwodPt1CQsy6LZrClc0q9JLBYrLBbzEE1ih98fHvC0OAqaRA3oVKhQcWgwGIzweIyKsQCZHdOSy57qkCQBwWAEZrPtSBGlChUqjg7ozEybzQEgCgDgeU6pCGi1GsrOm9lsHRi7oUKFChUURqMRRqMfHo8fQE+TNBo1tFoNAAJCoShMJuvAKLCjCDWgU6FCxdxAbfMtFit0uoiaWVahQsVE0On0cLk8cLk8C2MOoUKFiqOFQU2yWDyipqxUqFChQoUKFSpUqFChYkGhBnQqVKhQoUKFChUqVKhQsaBQAzoVKlSoUKFChQoVKlSoWFCoAZ0KFSpUqFChQoUKFSpULCjUgE6FChUqVKhQoUKFChUqFhQaiU7YVKFAkiSI4uiHRatlIAhH3wFnUdYJLM5a1XVOF0dhnVrt9PJc43DJUfjfR8WirFVd5/SxKGs9CuucFpeommS+WJR1AouzVnWd461hFKgBnQoVKlSoUKFChQoVKlQsKNSSSxUqVKhQoUKFChUqVKhYUKgBnQoVKlSoUKFChQoVKlQsKNSAToUKFSpUqFChQoUKFSoWFGpAp0KFChUqVKhQoUKFChULCjWgU6FChQoVKlSoUKFChYoFhRrQqVChQoUKFSpUqFChQsWCQg3oVKhQoUKFChUqVKhQoWJBoQZ0KlSoUKFChQoVKlSoULGgUAM6FSpUqFChQoUKFSpUqFhQqAGdChUqVKhQoUKFChUqVCwo1IBOhQoVKlSoUKFChQoVKhYUakCnQoUKFSpUqFChQoUKFQsKNaAbEadPn8aDDz4472UM4JZbbsHp06fxl3/5l0O//+53vxunT5/GRz7ykUNeWQ+LsMZRMc45cBjny1e+8hW8+tWvxnXXXYfrr78ed955Jz73uc/N9G+Oi1tuuQW33HILGo3Gju+9/e1vx+te97o5rGq+ULlkMizCGkeFyiXjQeWRnVB5ZDIswhpHhcoj4+Ny5hI1oFtw6PV6PPzwwzue53keX//616HRaOawqkEswhoXDV/84hdx991349WvfjUeeughfOlLX8LLX/5yvO9978P//b//d97LG0AymcQf/dEfzXsZKvbBIlyni7DGRcOicInKI4uBRbhGF2GNi4ZF4RHg8uUSNaBbcDzzmc/Eo48+ikwmM/D8D37wA1gsFoTD4TmtrIdFWOOi4bOf/SzuvPNOvPKVr8Ta2hqOHTuG173udXj961+Pv/qrv5r38gYQi8Xwt3/7t/je974376Wo2AOLcJ0uwhoXDYvCJSqPLAYW4RpdhDUuGhaFR4DLl0vUgG5MiKKIj33sY3jhC1+IM2fO4IYbbsBdd92Fra0t5TWnT5/GF7/4Rbz+9a/Htddei5tvvnlmGYprr70WkUgE//iP/zjw/N///d/jtttuG8g0feELX8BLXvISXHvttbjuuuvwmte8Bj//+c+V799yyy2499578aIXvQhPf/rT8cMf/vBIrfFTn/oUrr/+erTbbeX1oiji2c9+Nj7zmc9MZa2j4CMf+QhuueWWfZ+bJRiGwb//+7+jWq0OPP/GN74Rf/u3fwsA6Ha7uO+++/Arv/IruP766/HqV78a//qv/6q89sEHH8Szn/1sfP7zn8fNN9+M66+/Hr/zO7+DbDY71bW+9KUvxTOf+Uy8853vHFrmAACVSgXvec978JznPAfXXnstfu3Xfg3/9m//BgCIx+O44oor8O1vf3vgZ97xjnfgP/7H/zjVtR4mVC6Z3xpVLulhUbhE5ZHhUHlkfmtUeaSHReER4PLlEjWgGxN/9Vd/hU984hN4+9vfjocffhgf/ehHsbGxgQ984AMDr7v33ntxxx134Gtf+xpe+9rX4iMf+Qh+9KMfzWRNt9122wAxdbtdfOMb38Dtt9+uPPdP//RPeO9734u77roL//AP/4BPfvKTYFkW73rXuwZ+16c//Wm8613vwp//+Z/juuuuO1JrfMlLXgKO4/D1r39d+Znvfe97KJfLePGLXzy1tS4C7rrrLjz++ON49rOfjTe+8Y34+Mc/jp/97Gew2+1YW1sDQMjlu9/9Lj74wQ/ioYcewm233YY3velN+Na3vqX8nlKphE996lP4P//n/+BTn/oU0uk07rrrLvA8P7W1ajQa3HPPPahWq7j33nt3fF8QBLzhDW/AI488gvvuuw8PPvggTp06hf/8n/8zfvaznyEWi+Gmm27CV7/6VeVnWJbF17/+dbziFa+Y2joPGyqXzG+NKpf0sChcovLIcKg8Mr81qjzSw6LwCHD5coka0I2J5eVl3HvvvXje856HaDSKZz7zmbj11ltx7ty5gde9/OUvx8te9jLEYjG86U1vgsPhwE9+8pOZrOm2227Do48+qmQxvvvd78Lj8eCqq65SXuNyuXDPPffgZS97GaLRKK677jq88pWv3LHu5zznOXjWs56Fa665BgaD4Uit0ePx4JZbbsFXvvIV5Wceeugh3HLLLXA6nVNb6yLg1ltvxd/8zd/gP/yH/4Cf/vSnuP/++/GqV70Kt956K3784x9jc3MTX/3qV/H+978fT3/607G6uorf/M3fxO23345PfOITyu/hOA733nsvbrzxRlx77bW47777cO7cOXz/+9+f6nqj0Sje9ra34fOf//xARg4A/vVf/xW/+MUvcP/99+NpT3saTpw4gfe85z04efKkstZXvOIV+MY3vqFkQr/5zW9CEATcdtttU13nYULlkvmtUeWSHhaJS1Qe2QmVR+a3RpVHelgkHgEuTy7Rze0vLyhuueUW/PSnP8Wf/MmfYH19Hevr67hw4QKCweDA644fPz7wtd1uB8dxM1nTmTNnEIvF8PDDD+PXf/3X8fd///cDWSYAuOmmm3Dx4kV89KMfxaVLl7C5uYmzZ89CFMWB162srBzpNd55551485vfjFwuB4vFgm984xv48Ic/PJM1H3Vcd911uO666yCKIn75y1/i29/+Nj796U/jt37rt/C+970PAPCa17xm4Gc4joPD4VC+tlqtOHPmjPL18ePH4XQ6ce7cOfzKr/zKVNf7q7/6q3j44Yfxrne9ayCzde7cOdjtdpw6dUp5TqPR4MYbb1SI9oUvfCHe+9734p//+Z/x4he/GF/5ylfw/Oc/HzabbaprPEyoXDLfNapc0sMicYnKI4NQeWS+a1R5pIdF4hHg8uMSdYduCAqFAs6ePat8LUkSAECr1eLjH/84fv3Xfx3lchnPfOYz8Z73vAdveMMbdvyOYZkk+ntmAVo+wLIs/vmf/xkvetGLBr7/d3/3d3jpS1+KeDyOG264AW9729vw9re/fcfvMZlMR3qNN998M3w+H7761a/i61//OhwOB26++eapr3Wvc2AYplkOsB8ymQze8573KA3dDMPgqquuwpvf/GZ88pOfRLPZVF77mc98Bl/+8peVj6997WtKPTtA3L62QxCEXf/Pg+J973sf6vU63v/+9yvP7XZdSJIEnY7knCwWC2699Vb83d/9HSqVCv7f//t/C1EmpXLJ0V2jyiWLyyUqj6g8clTWqPLI4vIIcHlxiRrQDcEnPvEJ/N7v/Z7yNW3y9Hg8eOCBB/A7v/M7+P/+v/8Pv/qrv4rrrrsOGxsbMyXGUXDbbbfhJz/5Cb70pS8hFovtyMZ9/OMfxytf+Up84AMfwH/6T/8JN910E+LxOIDZkvq016jVavHyl78c//RP/4SHH34YL3vZy2Zyoe91Duj1+gGCAoDNzc2pr2E3GAwGfOELXxgo86CgmS6fzwcAyOfzWFlZUT4efPDBgVk0lUpFOcYAcP78eTQajYGyk2kiEong7W9/O774xS/ikUceAUAa9uv1+kCpjSRJ+PGPf4wTJ04oz91555347ne/iy9/+cvw+Xx4xjOeMZM1ThMqlxzdNapcsrhcovKIyiNHZY0qjywujwCXF5eoAd0QPOtZz8KFCxfw0EMPIR6P48Mf/jAcDgeuv/56hMNhfPe738WFCxdw6dIlfOhDH8LXv/51dLvdua75yiuvxMrKCu6///4dZQMAEA6H8ZOf/AS/+MUvsLW1hU9+8pP49Kc/DQCHtvZprfEVr3gFfvrTn+J73/se7rjjjpmsda9z4LrrrkOlUsEnPvEJJBIJfO5zn8N3vvOdmaxjGDweD+666y78yZ/8CT70oQ/hiSeeQDwex7/8y7/gd3/3d/H0pz8dT3va0/C85z0Pd999N775zW8iHo/jz/7sz/Cxj30My8vLA7/vf/yP/4HHHnsMjz76KP7n//yfuP7663HTTTfNbP2vetWrcPPNNyukffPNN+PKK6/EW9/6Vvzwhz/ExYsX8d73vhfnzp3Db/zGbyg/d+ONNyIcDuPDH/4wXvayl4Fhjj59qVxytNeocsniconKIyqPHJU1qjyyuDwCXD5ccvSZbA74lV/5Fbz97W/HRz7yEdx+++342c9+hj/90z+FzWbDH/3RH6HT6eDOO+/Ea1/7Wpw7dw7vec97UCwWkUql5rru2267DY1GY0fZAAD87//9v+Hz+fDa174Wr3rVq/Av//IvymDFfpvgRVjj6uoqnvKUp+Cqq67akVGbFvY6B57xjGfgLW95C/7iL/4Ct99+O7773e/iv/yX/zKTdeyG//bf/hvuuece/OhHP8LrXvc63HbbbXj/+9+PZz3rWXjggQcAAB/60Ifwghe8AO9+97vxohe9CF/+8pdxzz337LjhvOQlL8Eb3/hG3HXXXTh58iQ+9rGPzXyw6vve9z7Y7XYAJMP5F3/xF7jqqqvwu7/7u7jzzjtx/vx5fPKTn9zhanbHHXeg2WzOvbRhVKhccrTXqHLJYnOJyiMqjxyFNao8stg8AlweXKKR5r0vr0LFmJAkCc9//vPxpje9Ca961avmvZyFxYMPPoh3vOMdA3X5KlQ8maByyXSgcomKJzNUHpkOVB45GFSXSxULA47j8M1vfhM/+MEP0Gq1hpZIqFChQsV+ULlEhQoVB4XKIyqOEtSATsXCQK/XK9a39913HywWy5xXpEKFikWEyiUqVKg4KFQeUXGUoJZcqlChQoUKFSpUqFChQsWCQjVFUaFChQoVKlSoUKFChYoFhRrQqVChQoUKFSpUqFChQsWCQg3oVKhQoUKFChUqVKhQoWJBoQZ0KlSoUKFChQoVKlSoULGgUAM6FSpUqFChQoUKFSpUqFhQqAGdChUqVKhQoUKFChUqVCwo1IBOhQoVKlSoUKFChQoVKhYUakCnQoUKFSpUqFChQoUKFQsKNaBToUKFChUqVKhQoUKFigXF/x+/SqUMlgjk4QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# https://seaborn.pydata.org/examples/timeseries_facets.html\n", + "flights = sns.load_dataset(\"flights\")\n", + "\n", + "# Plot each year's time series in its own facet\n", + "g = sns.relplot(\n", + " data=flights,\n", + " x=\"month\", y=\"passengers\", col=\"year\", hue=\"year\",\n", + " kind=\"line\", palette=\"crest\", linewidth=4, zorder=5,\n", + " col_wrap=3, height=2, aspect=1.5, legend=False,\n", + ")\n", + "\n", + "# Iterate over each subplot to customize further\n", + "for year, ax in g.axes_dict.items():\n", + "\n", + " # Add the title as an annotation within the plot\n", + " ax.text(.8, .85, year, transform=ax.transAxes, fontweight=\"bold\")\n", + "\n", + " # Plot every year's time series in the background\n", + " sns.lineplot(\n", + " data=flights, x=\"month\", y=\"passengers\", units=\"year\",\n", + " estimator=None, color=\".7\", linewidth=1, ax=ax,\n", + " )\n", + "\n", + "# Reduce the frequency of the x axis ticks\n", + "ax.set_xticks(ax.get_xticks()[::2])\n", + "\n", + "# Tweak the supporting aspects of the plot\n", + "g.set_titles(\"\")\n", + "g.set_axis_labels(\"\", \"Passengers\")\n", + "g.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plotly.com" + }, + "data": [ + { + "hovertemplate": "date=%{x}
GOOG=%{y}", + "legendgroup": "", + "line": { + "color": "#636efa", + "dash": "solid" + }, + "marker": { + "symbol": "circle" + }, + "mode": "lines", + "name": "", + "orientation": "v", + "showlegend": false, + "type": "scatter", + "x": [ + "2018-01-01", + "2018-01-08", + "2018-01-15", + "2018-01-22", + "2018-01-29", + "2018-02-05", + "2018-02-12", + "2018-02-19", + "2018-02-26", + "2018-03-05", + "2018-03-12", + "2018-03-19", + "2018-03-26", + "2018-04-02", + "2018-04-09", + "2018-04-16", + "2018-04-23", + "2018-04-30", + "2018-05-07", + "2018-05-14", + "2018-05-21", + "2018-05-28", + "2018-06-04", + "2018-06-11", + "2018-06-18", + "2018-06-25", + "2018-07-02", + "2018-07-09", + "2018-07-16", + "2018-07-23", + "2018-07-30", + "2018-08-06", + "2018-08-13", + "2018-08-20", + "2018-08-27", + "2018-09-03", + "2018-09-10", + "2018-09-17", + "2018-09-24", + "2018-10-01", + "2018-10-08", + "2018-10-15", + "2018-10-22", + "2018-10-29", + "2018-11-05", + "2018-11-12", + "2018-11-19", + "2018-11-26", + "2018-12-03", + "2018-12-10", + "2018-12-17", + "2018-12-24", + "2018-12-31", + "2019-01-07", + "2019-01-14", + "2019-01-21", + "2019-01-28", + "2019-02-04", + "2019-02-11", + "2019-02-18", + "2019-02-25", + "2019-03-04", + "2019-03-11", + "2019-03-18", + "2019-03-25", + "2019-04-01", + "2019-04-08", + "2019-04-15", + "2019-04-22", + "2019-04-29", + "2019-05-06", + "2019-05-13", + "2019-05-20", + "2019-05-27", + "2019-06-03", + "2019-06-10", + "2019-06-17", + "2019-06-24", + "2019-07-01", + "2019-07-08", + "2019-07-15", + "2019-07-22", + "2019-07-29", + "2019-08-05", + "2019-08-12", + "2019-08-19", + "2019-08-26", + "2019-09-02", + "2019-09-09", + "2019-09-16", + "2019-09-23", + "2019-09-30", + "2019-10-07", + "2019-10-14", + "2019-10-21", + "2019-10-28", + "2019-11-04", + "2019-11-11", + "2019-11-18", + "2019-11-25", + "2019-12-02", + "2019-12-09", + "2019-12-16", + "2019-12-23", + "2019-12-30" + ], + "xaxis": "x", + "y": [ + 1.0, + 1.018172278347936, + 1.032007866452698, + 1.066782783389724, + 1.0087731636550117, + 0.9415276737437316, + 0.99325918262539, + 1.0222821547641083, + 0.9788520214265992, + 1.0524482730908842, + 1.0303929312465263, + 0.926821104067592, + 0.9360932452590338, + 0.913638710861412, + 0.93380695379017, + 0.9734447261178653, + 0.9345146364100892, + 0.9509902470625956, + 0.9963982380519172, + 0.9674568868105002, + 0.9758943718805396, + 1.015668254641377, + 1.0169111849053498, + 1.0453898287179595, + 1.0483111519067918, + 1.0121753574512644, + 1.0344211867653972, + 1.0785588920381208, + 1.075011617811375, + 1.1236312044424703, + 1.1102129167272332, + 1.1228237368393843, + 1.0895729410299655, + 1.1074367837463466, + 1.1052048693141154, + 1.0567939333314087, + 1.0637798374890872, + 1.0579370795194665, + 1.0827776350267664, + 1.0500077089175164, + 1.007121903906116, + 0.9947651405743836, + 0.9720929301886708, + 0.959681788913054, + 0.9672663993407256, + 0.9630385756700248, + 0.9289168536315806, + 0.992923504040418, + 0.9404389054995582, + 0.945446952912676, + 0.8886892896888904, + 0.9408925313390586, + 0.9714034098401132, + 0.9591373489949891, + 0.9963982380519172, + 0.989802500200548, + 1.0077298024501202, + 0.9934950771344468, + 1.0103608540932627, + 1.0073850422758417, + 1.035165084150587, + 1.0363716889645844, + 1.0746032883264525, + 1.0936918990354445, + 1.064487521016258, + 1.095188886079836, + 1.1049145977684258, + 1.1216987538299403, + 1.1541874899828073, + 1.075456162061569, + 1.0562859304552756, + 1.0544986709579427, + 1.0283425342867192, + 1.001270175031893, + 0.9671666152648106, + 0.98468558802946, + 1.0178275181736574, + 0.980657443195294, + 1.0266368965939394, + 1.0387124690620373, + 1.025285100664745, + 1.1344366027859267, + 1.0832494231376286, + 1.0778240762422375, + 1.068379555417282, + 1.0445098208996275, + 1.0779056980467905, + 1.0931748145700046, + 1.12459294475006, + 1.115856106545024, + 1.1114649285805127, + 1.0968672799119472, + 1.10271900878617, + 1.129972884606169, + 1.1477913211905195, + 1.155602744537941, + 1.189742629754999, + 1.2110630442115171, + 1.1751993590303178, + 1.183927115646047, + 1.216279741365772, + 1.222820990588552, + 1.22441776261611, + 1.2265044859331442, + 1.213013658002661 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "date" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "GOOG" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Install with:\n", + "# conda install -c plotly plotly=5.9.0\n", + "# or\n", + "# pip install plotly==5.9.0\n", + "\n", + "df = px.data.stocks()\n", + "fig = px.line(df, x='date', y=\"GOOG\")\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j63HvaTz09lG" + }, + "source": [ + "## 4. Pandas\n", + "\n", + "From Wikipedia, \"`pandas` is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software released under the three-clause BSD license. The name is derived from the term \"panel data\", an econometrics term for data sets that include observations over multiple time periods for the same individuals. Its name is a play on the phrase \"Python data analysis\" itself. Wes McKinney started building what would become pandas at AQR Capital while he was a researcher there from 2007 to 2010.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "California 38332521\n", + "Texas 26448193\n", + "New York 19651127\n", + "Florida 19552860\n", + "Illinois 12882135\n", + "dtype: int64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "population_dict = {'California': 38332521,\n", + " 'Texas': 26448193,\n", + " 'New York': 19651127,\n", + " 'Florida': 19552860,\n", + " 'Illinois': 12882135}\n", + "population = pd.Series(population_dict)\n", + "population" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationarea
California38332521423967
Texas26448193695662
New York19651127141297
Florida19552860170312
Illinois12882135149995
\n", + "
" + ], + "text/plain": [ + " population area\n", + "California 38332521 423967\n", + "Texas 26448193 695662\n", + "New York 19651127 141297\n", + "Florida 19552860 170312\n", + "Illinois 12882135 149995" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "area_dict = {\n", + " 'California': 423967, \n", + " 'Texas': 695662, \n", + " 'New York': 141297,\n", + " 'Florida': 170312, \n", + " 'Illinois': 149995}\n", + "area = pd.Series(area_dict)\n", + "\n", + "states = pd.DataFrame({'population': population,\n", + " 'area': area})\n", + "states" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user'\n", + "users = pd.read_table(url, sep='|', index_col='user_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agegenderoccupationzip_code
user_id
124Mtechnician85711
253Fother94043
323Mwriter32067
424Mtechnician43537
533Fother15213
\n", + "
" + ], + "text/plain": [ + " age gender occupation zip_code\n", + "user_id \n", + "1 24 M technician 85711\n", + "2 53 F other 94043\n", + "3 23 M writer 32067\n", + "4 24 M technician 43537\n", + "5 33 F other 15213" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Y9Ku8QcY1gMM" + }, + "source": [ + "## 5. StatsModels\n", + "\n", + "\"`statsmodels` is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import statsmodels.api as sm\n", + "import statsmodels.formula.api as smf" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
deptRegionDepartmentCrime_persCrime_propLiteracyDonationsInfantsSuicidesMainCity...Crime_parentsInfanticideDonation_clergyLotteryDesertionInstructionProstitutesDistanceAreaPop1831
01EAin288701589037509833120350392:Med...71606941554613218.3725762346.03
12NAisne26226552151890114572128312:Med...4823638822432765.9457369513.00
23CAllier2674779251310973170441141212:Med...46427666168534161.9277340298.26
34EBasses-Alpes12935728946273323018142381:Sm...7012378032292351.3996925155.90
45EHautes-Alpes17488817469696223076161711:Sm...222364793571320.2805549129.10
\n", + "

5 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " dept Region Department Crime_pers Crime_prop Literacy Donations \\\n", + "0 1 E Ain 28870 15890 37 5098 \n", + "1 2 N Aisne 26226 5521 51 8901 \n", + "2 3 C Allier 26747 7925 13 10973 \n", + "3 4 E Basses-Alpes 12935 7289 46 2733 \n", + "4 5 E Hautes-Alpes 17488 8174 69 6962 \n", + "\n", + " Infants Suicides MainCity ... Crime_parents Infanticide \\\n", + "0 33120 35039 2:Med ... 71 60 \n", + "1 14572 12831 2:Med ... 4 82 \n", + "2 17044 114121 2:Med ... 46 42 \n", + "3 23018 14238 1:Sm ... 70 12 \n", + "4 23076 16171 1:Sm ... 22 23 \n", + "\n", + " Donation_clergy Lottery Desertion Instruction Prostitutes Distance \\\n", + "0 69 41 55 46 13 218.372 \n", + "1 36 38 82 24 327 65.945 \n", + "2 76 66 16 85 34 161.927 \n", + "3 37 80 32 29 2 351.399 \n", + "4 64 79 35 7 1 320.280 \n", + "\n", + " Area Pop1831 \n", + "0 5762 346.03 \n", + "1 7369 513.00 \n", + "2 7340 298.26 \n", + "3 6925 155.90 \n", + "4 5549 129.10 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat = sm.datasets.get_rdataset(\"Guerry\", \"HistData\").data\n", + "dat.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
OLS Regression Results
Dep. Variable: Lottery R-squared: 0.348
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 22.20
Date: Sun, 28 Jul 2024 Prob (F-statistic): 1.90e-08
Time: 17:03:47 Log-Likelihood: -379.82
No. Observations: 86 AIC: 765.6
Df Residuals: 83 BIC: 773.0
Df Model: 2
Covariance Type: nonrobust
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err t P>|t| [0.025 0.975]
Intercept 246.4341 35.233 6.995 0.000 176.358 316.510
Literacy -0.4889 0.128 -3.832 0.000 -0.743 -0.235
np.log(Pop1831) -31.3114 5.977 -5.239 0.000 -43.199 -19.424
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Omnibus: 3.713 Durbin-Watson: 2.019
Prob(Omnibus): 0.156 Jarque-Bera (JB): 3.394
Skew: -0.487 Prob(JB): 0.183
Kurtosis: 3.003 Cond. No. 702.


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/latex": [ + "\\begin{center}\n", + "\\begin{tabular}{lclc}\n", + "\\toprule\n", + "\\textbf{Dep. Variable:} & Lottery & \\textbf{ R-squared: } & 0.348 \\\\\n", + "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.333 \\\\\n", + "\\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & 22.20 \\\\\n", + "\\textbf{Date:} & Sun, 28 Jul 2024 & \\textbf{ Prob (F-statistic):} & 1.90e-08 \\\\\n", + "\\textbf{Time:} & 17:03:47 & \\textbf{ Log-Likelihood: } & -379.82 \\\\\n", + "\\textbf{No. Observations:} & 86 & \\textbf{ AIC: } & 765.6 \\\\\n", + "\\textbf{Df Residuals:} & 83 & \\textbf{ BIC: } & 773.0 \\\\\n", + "\\textbf{Df Model:} & 2 & \\textbf{ } & \\\\\n", + "\\textbf{Covariance Type:} & nonrobust & \\textbf{ } & \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lcccccc}\n", + " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", + "\\midrule\n", + "\\textbf{Intercept} & 246.4341 & 35.233 & 6.995 & 0.000 & 176.358 & 316.510 \\\\\n", + "\\textbf{Literacy} & -0.4889 & 0.128 & -3.832 & 0.000 & -0.743 & -0.235 \\\\\n", + "\\textbf{np.log(Pop1831)} & -31.3114 & 5.977 & -5.239 & 0.000 & -43.199 & -19.424 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lclc}\n", + "\\textbf{Omnibus:} & 3.713 & \\textbf{ Durbin-Watson: } & 2.019 \\\\\n", + "\\textbf{Prob(Omnibus):} & 0.156 & \\textbf{ Jarque-Bera (JB): } & 3.394 \\\\\n", + "\\textbf{Skew:} & -0.487 & \\textbf{ Prob(JB): } & 0.183 \\\\\n", + "\\textbf{Kurtosis:} & 3.003 & \\textbf{ Cond. No. } & 702. \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "%\\caption{OLS Regression Results}\n", + "\\end{center}\n", + "\n", + "Notes: \\newline\n", + " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Lottery R-squared: 0.348\n", + "Model: OLS Adj. R-squared: 0.333\n", + "Method: Least Squares F-statistic: 22.20\n", + "Date: Sun, 28 Jul 2024 Prob (F-statistic): 1.90e-08\n", + "Time: 17:03:47 Log-Likelihood: -379.82\n", + "No. Observations: 86 AIC: 765.6\n", + "Df Residuals: 83 BIC: 773.0\n", + "Df Model: 2 \n", + "Covariance Type: nonrobust \n", + "===================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "-----------------------------------------------------------------------------------\n", + "Intercept 246.4341 35.233 6.995 0.000 176.358 316.510\n", + "Literacy -0.4889 0.128 -3.832 0.000 -0.743 -0.235\n", + "np.log(Pop1831) -31.3114 5.977 -5.239 0.000 -43.199 -19.424\n", + "==============================================================================\n", + "Omnibus: 3.713 Durbin-Watson: 2.019\n", + "Prob(Omnibus): 0.156 Jarque-Bera (JB): 3.394\n", + "Skew: -0.487 Prob(JB): 0.183\n", + "Kurtosis: 3.003 Cond. No. 702.\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "\"\"\"" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit()\n", + "results.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
OLS Regression Results
Dep. Variable: y R-squared: 0.281
Model: OLS Adj. R-squared: 0.266
Method: Least Squares F-statistic: 18.94
Date: Sun, 28 Jul 2024 Prob (F-statistic): 1.14e-07
Time: 17:03:47 Log-Likelihood: -21.816
No. Observations: 100 AIC: 49.63
Df Residuals: 97 BIC: 57.45
Df Model: 2
Covariance Type: nonrobust
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err t P>|t| [0.025 0.975]
const 1.4091 0.079 17.910 0.000 1.253 1.565
x1 0.1960 0.105 1.867 0.065 -0.012 0.404
x2 0.6199 0.105 5.902 0.000 0.411 0.828
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Omnibus: 34.522 Durbin-Watson: 2.068
Prob(Omnibus): 0.000 Jarque-Bera (JB): 6.291
Skew: -0.123 Prob(JB): 0.0430
Kurtosis: 1.796 Cond. No. 5.19


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/latex": [ + "\\begin{center}\n", + "\\begin{tabular}{lclc}\n", + "\\toprule\n", + "\\textbf{Dep. Variable:} & y & \\textbf{ R-squared: } & 0.281 \\\\\n", + "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.266 \\\\\n", + "\\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & 18.94 \\\\\n", + "\\textbf{Date:} & Sun, 28 Jul 2024 & \\textbf{ Prob (F-statistic):} & 1.14e-07 \\\\\n", + "\\textbf{Time:} & 17:03:47 & \\textbf{ Log-Likelihood: } & -21.816 \\\\\n", + "\\textbf{No. Observations:} & 100 & \\textbf{ AIC: } & 49.63 \\\\\n", + "\\textbf{Df Residuals:} & 97 & \\textbf{ BIC: } & 57.45 \\\\\n", + "\\textbf{Df Model:} & 2 & \\textbf{ } & \\\\\n", + "\\textbf{Covariance Type:} & nonrobust & \\textbf{ } & \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lcccccc}\n", + " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", + "\\midrule\n", + "\\textbf{const} & 1.4091 & 0.079 & 17.910 & 0.000 & 1.253 & 1.565 \\\\\n", + "\\textbf{x1} & 0.1960 & 0.105 & 1.867 & 0.065 & -0.012 & 0.404 \\\\\n", + "\\textbf{x2} & 0.6199 & 0.105 & 5.902 & 0.000 & 0.411 & 0.828 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lclc}\n", + "\\textbf{Omnibus:} & 34.522 & \\textbf{ Durbin-Watson: } & 2.068 \\\\\n", + "\\textbf{Prob(Omnibus):} & 0.000 & \\textbf{ Jarque-Bera (JB): } & 6.291 \\\\\n", + "\\textbf{Skew:} & -0.123 & \\textbf{ Prob(JB): } & 0.0430 \\\\\n", + "\\textbf{Kurtosis:} & 1.796 & \\textbf{ Cond. No. } & 5.19 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "%\\caption{OLS Regression Results}\n", + "\\end{center}\n", + "\n", + "Notes: \\newline\n", + " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: y R-squared: 0.281\n", + "Model: OLS Adj. R-squared: 0.266\n", + "Method: Least Squares F-statistic: 18.94\n", + "Date: Sun, 28 Jul 2024 Prob (F-statistic): 1.14e-07\n", + "Time: 17:03:47 Log-Likelihood: -21.816\n", + "No. Observations: 100 AIC: 49.63\n", + "Df Residuals: 97 BIC: 57.45\n", + "Df Model: 2 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 1.4091 0.079 17.910 0.000 1.253 1.565\n", + "x1 0.1960 0.105 1.867 0.065 -0.012 0.404\n", + "x2 0.6199 0.105 5.902 0.000 0.411 0.828\n", + "==============================================================================\n", + "Omnibus: 34.522 Durbin-Watson: 2.068\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 6.291\n", + "Skew: -0.123 Prob(JB): 0.0430\n", + "Kurtosis: 1.796 Cond. No. 5.19\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "\"\"\"" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nobs = 100\n", + "X = np.random.random((nobs, 2))\n", + "X = sm.add_constant(X)\n", + "beta = [1, .1, .5]\n", + "e = np.random.random(nobs)\n", + "y = np.dot(X, beta) + e\n", + "\n", + "# Fit regression model\n", + "results = sm.OLS(y, X).fit()\n", + "\n", + "# Inspect the results\n", + "results.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "usHlQ_zd09lH" + }, + "source": [ + "## 6. IPyWidgets\n", + "\n", + "### 6.1 Lorenz Attractor: Lorenz System of Differential Equations\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "from ipywidgets import interact, interactive\n", + "from IPython.display import clear_output, display, HTML\n", + "\n", + "import numpy as np\n", + "from scipy import integrate\n", + "\n", + "from matplotlib import pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from matplotlib.colors import cnames\n", + "from matplotlib import animation" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):\n", + "\n", + " fig = plt.figure()\n", + " ax = fig.add_axes([0, 0, 1, 1], projection='3d')\n", + " ax.axis('off')\n", + "\n", + " # prepare the axes limits\n", + " ax.set_xlim((-25, 25))\n", + " ax.set_ylim((-35, 35))\n", + " ax.set_zlim((5, 55))\n", + " \n", + " def lorenz_deriv(tup, t0, sigma=sigma, beta=beta, rho=rho):\n", + " x, y, z = tup\n", + " \"\"\"Compute the time-derivative of a Lorentz system.\"\"\"\n", + " return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]\n", + "\n", + " # Choose random starting points, uniformly distributed from -15 to 15\n", + " np.random.seed(1)\n", + " x0 = -15 + 30 * np.random.random((N, 3))\n", + "\n", + " # Solve for the trajectories\n", + " t = np.linspace(0, max_time, int(250*max_time))\n", + " x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n", + " for x0i in x0])\n", + " \n", + " # choose a different color for each trajectory\n", + " colors = plt.cm.jet(np.linspace(0, 1, N))\n", + "\n", + " for i in range(N):\n", + " x, y, z = x_t[i,:,:].T\n", + " lines = ax.plot(x, y, z, '-', c=colors[i])\n", + " plt.setp(lines, linewidth=2)\n", + "\n", + " ax.view_init(30, angle)\n", + " plt.show()\n", + "\n", + " return t, x_t" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAHzCAYAAADW0+8yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZwU5R/H3xPb19xRR3d3qrQoiiKlgoliix0/u7sb7EIEQRREBZRSkG6kOTqv77Z3Z+b3xxy7d9yBgFyAz/v1utdtzO7OzM4+n+f7fb4hGYZhIBAIBAKB4LRGLu8dEAgEAoFA8O8Rgi4QCAQCwRmAEHSBQCAQCM4AhKALBAKBQHAGIARdIBAIBIIzACHoAoFAIBCcAQhBFwgEAoHgDEAIukAgEAgEZwDq8W6Ynp5fmvshEAgEAoGgBFJSYo9rO2GhCwQCgUBwBiAEXSAQCASCMwAh6AKBQCAQnAEIQRcIBAKB4AxACLpAIBAIBGcAQtAFAoFAIDgDEIIuEAgEAsEZgBB0gUAgEAjOAISgCwQCgUBwBiAEXSAQCASCMwAh6AKBQCAQnAEIQRcIBAKB4AxACLpAIBAIBGcAQtAFAoFAIDgDEIIuEAgEAsEZgBB0gUAgEAjOAISgCwQCgUBwBiAEXSAQCASCMwAh6AKBQCAQnAEIQRcIBAKB4AxACLpAIBAIBGcAQtAFAoFAIDgDEIIuEAgEAsEZgBB0gUAgEAjOAISgCwQCgUBwBiAEXSAQCASCMwAh6AKBQCAQnAEIQRcIBAKB4AxACLpAIBAIBGcAQtAFAoFAIDgDEIIuEAgEAsEZgBB0gUAgEAjOAISgCwQCgUBwBiAEXSAQCASCMwAh6AKBQCAQnAEIQRcIBAKB4AxACLpAIBAIBGcAQtAFAoFAIDgDEIIuEAgEAsEZgBB0gUAgEAjOAISgCwQCgUBwBiAEXSAQCASCMwAh6AKBQCAQnAGo5b0DAsHpgmFAVpbEvn0S+fkSkkTkT5YNZPnw7eh/iN53Og2qVzewWsv3OAQCwZmJEHSBoACPB/btk9mzRyrx/759Ej6f9K8+Q5IMqlY1qFlTp2bNI//rpKYa2O2n6IAEAsF/CskwDON4NkxPzy/tfREIygRNg/XrZRYtUli0SCEtTWbvXpmcnH8n1qeKKlV0atQwqFVLp3Fjna5dNdq21YTQCwT/UVJSYo9rOyHogjOeYBBWrZJZtEhl0SKFxYsV8vNPTLydToMaNXSqVzf/JyQYGIaEYYCum+74wreP/G8YkJsrsWePzO7dEhkZJxa+YrUatG2r0bWrRpcuGp06acTEnNBbCASC0xQh6IL/LF4vLF+usHChaYEvX64c01WuqubadmqqHvmfmlr0f3y8uQ5+qvB4YO9eU9x37TLd+rt3ywV/EocOHVvwZdmgZUudLl20yF+lSsf1UxYIBKcZQtAF/ym2bJGZNEnljz9UVq+WCYePrr7JyaYQHrZ2mzXTUZQy3NnjwOeD3btlVqyQWbjQ9Cxs335skW/c2DymSy4J07WrFgnKEwgEpzdC0AVnPLm58OOPFsaPt7B8+dEVuWZNnc6dTbHr2jVM/frGKbW2y4oDByQWLYp6HjZsOPoxp6bqDBkSYujQME2a6GW4lwKB4FQjBF1wRqJp8McfChMmWPjlFxW/v7gyN2yoFXFF16x5Zrqis7Nh8WIlEhuwerWMphU/Hy1aaAwdGmLw4DBVq56Z50IgOJMRgi44o0hLkxg/3sJ331nYt6+4L7lpU43hw0MMGhSmSpX/pmi53fDbbyqTJlmYPVspJu6SZNCtmynuF10UFkF1AsFpghB0wWlPfj5MmWJh/HiVJUuKl0xITDQYMiTEsGEhWrbUy82NbmAQxiAghQlKGkFJx2YoxOhWLOVUjDE9XWLqVJWJEy2sWFHcNe9wGPTrF+byy0P06qWdlksQAsF/BSHogtOW/fsl3njDynffWYpFpyuKQZ8+GpdfHuK888LYbKf+8zV00hUf+xQ3+xU3B1UvPilMQAoTkDQCaAQlzbxd8KdLJf+MrIZCjG7BZVhwFfyP0a2R+zG6hVjDSvVwDMm6A4lTr6zbtklMmmRh0iQLO3cWn2A0b65x991BLrooXOGCAwUCgRB0wWlIZqbEO+9Y+ewzC4FAUWFr3Fhj2DAzyOtUudTD6BxUPOxXPOxT3aaAq24OKB7CRxHo0sShq9QMx5p/Why1wrFUD8eeMivfMGDZMplJkyxMmaKSlVX0fRs00LjzziBDhoSxWE7JRwoEglOAEHTBaUN+PowebWX0aCseT1TIY2IMLr00xPDhIVq3/vcu9QzZxzprOuutmexT3BxUvEe1rI+FakhYDRWboRT7s6JgMRT8UhiPFMIjh/BIIdxyEO0kPksxJKpqLmqGTYGvGY6jTjgOp/HvFDcYhJkzVd5918rKlUXN8lq1dEaNCjJsWEhUpxMIKgBC0AUVHp8PPvvMwjvv2MjOjqq13W4wcmSIO+4IkJR08u8fRmerJZu11gzWWNPZp7r/8TWKIVFFc1FNc1E9HEN1LYZqYRcxhjUi2spJWMwGBgE03PJhkQ/ikUO4pRDZsp89aj671HyyFf9x7WPDUCKtg5VpHUihiu464f2J7JcBc+cqvPWWlYULi8YpVKmic9ttQa65JoTr5D9CIBD8S4SgCyoswSCMG2fhjTesHDgQFUdVNbjqqhD33hs86fSqbNnPOmsGa63prLdk4pPDJW6nGnJEtKtpMVQPu6iuxZCiOVHLsauwWwqyW81nl5rHbjWf3Woe+xXPMa37amGXKe7BFOqHEk5qwgGwaJEp7LNnFxX2SpV0bropxMiRQeLiTuqtBQLBv0AIuqDCoWkwebLKK6/YigRnSZLBkCFhHnggQN26JybkBgbb1VxWWQ+x1prBLkteidtJBtQLJ9AymELLYDK1wnHIpRCAVhqE0Nmnutmt5LHDksc6azrpiq/EbWN0Cy2DKbQOVKZFKBmHceINFVetknnrLSu//FLUrR8fb/DQQwFGjAiJ4DmBoAwRgi6oUPz+u8Izz9jYuLGoElxwQYiHHgrStOmJVTMLoLHYvo/Zjl3sVku+NmN0Cy2CybQMptA8mEyscWY0Ijcw2K94WGU9xGrbIbapORglzE0UQ6JZMJle/pq0DKac8ARmwwaZt9+28uOPKroefW3r1hqvvOKnbVtRgU4gKAuEoAsqBPn58PjjNsaNKyqm3buHeeSRAO3anZgopMte5jp284d9D145VOz52qG4iBVeL5xw2ljh/4Z8KcgaazqrbYdYZ8kgIGvFtknWHPT01aSbvwYxJzixSUuTeP11GxMnRi12STK49toQjzwSICHh3x6BQCA4FkLQBeXOwoUKd9xhZ9euqHu9fXuNRx4J0K1bcdE5GgYGGyyZzHLsYrX1UDFrtF4onm7+GrQKppCg/7fDskPobLJksdp2iFXWQ2QdEWSnGjKdA9Xo7atFnXD8Cb33okUK//ufrUgN+eRknSefDHDZZWFRnEYgKCWEoAvKDb8fXnzRxpgxFowC9Y2JMXjuOT/Dhx//wO+Twiy07WW2Yxf7VU+R51RDomOgGn18tal7gsL0X0HHYI01nTmOXayzZhR7vm4ont6+WnQMVMXC8S2Kh0Lw8ccWXnnFhtcb/SK7dAnz8suBE146EQgE/4wQdEG5sHatzO2324uslXftGubdd/3UqnV8AW8Zso+Zjh38Zd9bLEo9UbPR01+L7r4axBmlUCbuDOWg4mGOfRcL7HvxHnFOY3QL3fw16OutQ/xxntN9+yQef9zGTz9F3fCqanDzzSHuuy8g6sQLBKcQIeiCMiUchvfes/Lqq1ZCIdNys1oNHnkkwC23hI6rN7efML8405jh3EFYKmrpNQom0sdXmzbByuWaVna6EwkmtO9it6Xob9pqKJzvrcP5vrrHHR0/e7bCQw/Z2bEj+p1Ur67zxht+evc+/mUVgUBwdISgC8qMtDSJUaMcLFsWtcpbtNB4/33/cblgdQwW2vbxvWszuUog8rjVkOnsr04fXy1qaiIB+lRiYLBNzWG2YxfLbAeK5LnH6BYu9tanh6/WcZWd9fvh3XetvPOOtUjJ3jvvDPDQQ0HUE8+cEwgEhRCCLih1DAO+/NLCU09F11Nl2eDOO4Pcf38Q63EEU29Vsxkfs5HtltzIY4oh0ddXhwu8dU84Iltw4uRKAX52pjHXsauIsCdrDgZ5GtIpUO24sgW2b5d48EE78+ZFFbxTpzAffugnNfW/2dJWIDgVCEEXlCpZWXD77Q5mzYoO3nXq6Lz3no9Onf7ZKs+SfUxybWaxfX+Rx9sEKnOZu/G/KmcqODnSZS8/uLYU+05qhmIZ6mlMi1DyP76HrsPo0Raef95GOGxOAhITDd5918d55wkXvEBwMghBF5QaO3ZIDB/uZNu2qDv22muDPPnkPwdDBdCY7kxjunM7wULr5KnhGIa5m9IsVKm0dltwnOxUc5nk2sx6a2aRx5sGKzHU0+i40t2WLZO5+WYHu3dHr5Fbbgny2GOB4/LcCASCKELQBaXCypUyV17pICPDHKhTUnTeecdPnz7Htr4MDBbb9jPJtblIA5IY3cIgT0O6+WucdA1yQenwtyWD712b2XlEOd1evloMdTfCzrEXx3Ny4K677Pz6azQSvl07jQ8/9FG7tnDBCwTHixB0wSnnt98UbrzREVkvb9RI49tvfdSseexLKE8K8Gnc2iK50Ioh0dtXiwHeBv+6Faig9NAxWGo7wA+uzUXqxydrDq7Lb0GTf/CoGAZ88okZZ3E4+yEuzuCtt/xcdFHJjXMEAkFRhKALTilffWXhwQdtkZreXbuG+fJL3z+W/dxoyeSj2DVFotdbBVK43NOYqppIVj5dCKMzy7GTH11biiyV9PbVYshxWOurVsnceKOjSFOeG28M8vTTAREFLxD8A0LQBacEw4CXX7byxhvRgiOXXBLi3Xf92I9RZVXH4CfnNn5ybo2Uao3TrVyX35JWwZRS3mtBaXFQ9vB57Dq2WLMjjx2vtZ6XB/fdZ2fKlKhHpl+/EGPG+HE6S22XBYLTHiHogn9NMAj33mvnu++iA/Ctt5rBb8cqFJMt+/k4dg2brFmRx5oFK3FDXqvjrkQmqLjoGMx27OR71+YTttYPpzo++mjUBd++vcbYsT4qVRLr6gJBSQhBF/wr8vPhuusc/PGHOThLksGzzwa46abiHc4Ks86Szidxa8mXg+brDBjkbcgF3nr/ic5n/yX+jbU+b57Cddc5cLvNa6J+fZ3x470iWE4gKAEh6IKTZv9+ieHDHaxfb1Z+s9kMPvjAz8UXHz2IKYzOj64t/OrcHnksUbNxU35rGoWSSn2fBeXD0az1/p56DPQ2POYkbu1ameHDHRw6FM2Y+PZbH61aiQYvAkFhhKALToqNG81Bdu9ec5BNTDT46isfnTsfPS0tU/bxYdxqtllyIo+1CqRwfX5LYkWlt/8EJVnrLQPJ3JTf+phZDLt2mZPHLVvMyaPLZfDZZz569RJFaASCwwhBF5ww27dL9O/vjOSY16plukEbNDj6JbLGms7HsWvwyqYrXjEkhngacZ6vDpJwsf+n0DH4zbGDSa7N6AUlZCuHnYzKa0uqdvQBKTsbrr7awZIl5vKOqhq8+aafyy8XaW0CAQhBF5wg6emmmB/umtWqlcY33/ioUuXol8dftr18HrsuMngnaw5uzmtNvXBCWeyyoIKy0ZLJ6LhVuAsmeTZdYWR+S9oHqx71NT4f3HqrnV9+iVrzjzwS4K67gkhiXij4jyMEXXDcuN0waJCT1atNt2eTJhpTp3qPmWM+y76TcbEbIvfbBapwXX4LUSRGAECG7OW9uJVFWrRe5KnPJd4GR11X1zR49FEbn30WXaa57TYzq0KIuuC/jBB0wXERDMJVVzmYO9d0d1avrvPzz96jdscyMJjmTONH15bIY719tRjubiqi2AVFCKDxZey6Is1eWgdSuCG/1VEnfoZhtmJ97rloeuP99wd48MFgqe+vQFBREYIu+Ed0HW6/3c7335uDa3y8wU8/eWnSpOQoYwOD71ybmOncEXnsIk99BnobiPVyQYkYGMx07GCia1OkwFCVsJNRee2ofoxKgV9/beG++6KVi554ws+oUcdOmRQIzlSOV9BFN4z/MM8+a4uIud1uMHas76hirmPwZczfRcT8UndjBnkbCjEXHBUJifN9dbk3twMu3bzWDqpeXkxYRJqac9TXXX11iOeeizbxeeYZO599JpZzBIJjIQT9P8qYMRbef99cq5RlgzFj/EdNTQuj81Hsav507AHMYjHX5Denn69ume2v4PSmWSiZx7O7UiNsWhpeOcxr8UvZaMk86mtuuinEI49EewA89JCd8eNF4XeB4GgIQf8PMnmyyhNPRN2ZL78c4MILS04RCqDxXtwKltoPAGZa2k35renhr1km+yo4c0jRnTyU05nGQbPQUEDWeCt+OWus6Ud9zd13B7n77kCh+3Z+/FGIukBQEkLQ/2PMm6dwxx1RMb///gDXXlvy2qRXCvFm/DLW2sy2pxZDZlReOzoFqpXJvgrOPByGyt257WkZMBv0hCSd9+JWsMx64KivefjhIDfeaAbF6brEbbfZmTFDKZP9FQhOJ4Sg/4dYu1ZmxAhHpCnG1VcHeeCBkqOHvVKI1+KXRip/2XWFe3I7iE5pgn+NFYVReW3p4Dfz0jXJYEzcKhbY9pa4vSTBc88FuOoq81oNhyVGjnQwb54QdYGgMCLK/T/C/v0S557rJD3dnMP16xfis8/8JfaiDqPzdvxy1lvN9c0Y3cI9uR2oE44vy12u0IQ0yPJIZHgkMj0S2R4JA7AoYFMNLApYFbCqRsF/SHQapMQYIqe6AB2DL2LWscARFfIr85vS21+7xO01zczKmDzZDI5zOAymTPHSpo2o/S44sxFpa4IIug6XXurgzz9N9e7YUWPSJC8OR/FtDQy+jlnPPMduwBTz/+V0PmaK0ZmIYcDOLIm1+xTW7ZPZeFAmPV8m0yOR5ZXI9Z2cKjstBrWSdGolGdRK1KmVpFM7yXysXrKO4z8WyK1jMN61gVnOXZHHhrgbcaGvXonbh0Jwww12fv3VPFHVqunMnOk9ZkVDgeB0Rwi6IMK771p59lmzUEe1ajpz5nhIOkoDtBmO7XwXswkA1ZC4L7fjGd8tTddh0yGZtftk1u41BXzdfuWkRftksSgGrVJ1OtfR6FxHo1MdjUquM1+oDAx+cG7hZ1da5LFjiXogAEOGRGu/t2+v8eOPXmy2EjcXCE57hKALAFi9WuaCC5yEwxKSZDB5so+zzy45PW2l9SDvx62MFAC5Ia8VXQPVy3Bvyw5fCP7cqjD9b5UZG1TS3ccXThLvMEhyGlRyGSTH6FRymbeTXAaKBAFNIhSGoAZBTSJYcDsQkjiUL7EzS2Z3tkRQO77JQoMULSLwPRtpVI07cwX+F0ca38dsjty/Lq8F5wRqlLjtoUMS55/vjHQFHDYsxNtv+8VyhuCMRAi6AI8Hzj3XxbZt5qB3550BHnus5CC4nWouLyUsISiZYj/AU59LvA3LbF/LgkyPxG8bFH5drzJvs4o3dPTRv2qcTsvqOi2ra7RM1WlRXaN6vLk2/m/RdThYIO67siV2ZsrsyJJZtVtmS/rRP0CSDLrU0bikdZiLWoSpHHvmifvPjm1MjjHLCsuGxKi8trQOVi5x2zVrZC6+2ImvwJPyzDN+brlFVJMTnHkIQRdw7702xo41i8e0aaMxbZoXawntybNkP88nLCRHMfN9O/urcWN+qzOiApw3CJNWWpi0UmXJDgXdKH5MDotBj4ZhOtQyhbtlqk5KTPmIZYZbYulOhcU7zL/Ve2TCevF9liWDs+trXNIqTP8W4TPGNW9g8K1rI7OcOwGwGjL35XSkQTixxO2nTFG58UYzGESWDb79VvRSF5x5CEH/j/PTTyojR5oDndNpMHu2h3r1in/VfsK8lLA40hWrQSiB+3M6YuH0TgnanS3x+UILY5dYySlhLTzZpXNe0zD9mofp3kDDWcJEpyLgDcKqPQp/bFWYukZlawkWvCIb9GyoMfKsIL0bacineTKqjsFHsasjxYxcuoWHjhGY+eKLVt5801xAj483mD7dQ/36Z8YERyAAIej/afbtk+jZ00VOjilkb7/tY/jw4pXgdAzei1vBaptZqStFc/BodldijQqqbv+AYcDiHQofzbfwy99qMWu8QYpGv2Zh+jUL076WjnKaCZ9hwN/7ZaauUflxjYUdmcUPoFFljZvPCTG0Xei0jpgPFaRObihInUzS7Dyc04Uk3V5sW12HESPsTJ9uHnCDBhrTp3uJiyvTXRYISg0h6P9RNM1MUZs/34wAHjAgxMcflxwsNN61gd8KXJsOXeXRnC5UOw3T04JhmLxK5eMFVtbuK2rBWhWDga3D3Hh2kNY1zpx8ZcOANXtlflxjYcpqlT05RcW9kktnRJcQ13UNnbZr7T4pzCvxS9hlyQOgejiGh3I64yqh9arbDRde6GTjRvP7P/fcMGPH+k57b4VAAELQ/7O88060l3RqqpmilpBQfLs/7Xv4InYdYNZnvzu3A81ClcpwT/89hgG/rld56mdbMWu1cqwpaNd0Pn0F7XjRdJi5QWXMnxYWbi9aKcimGgxtG+Lu3kFqJ51+5yFXCvBi4iLSFR8ADUOJ3JfTocQloR07JM4/30V2tjl7feopP7fdJoLkBKc/QtD/g6xaJXPhhdEUtR9+8HHWWcUDhA7JXp5KWkCgIKL92vzmdD/Nmq2s3SfzxE82FqQVFbA2NTRuPDvIJa3CWP+DPTxW7ZEZ86eVKWtUtELBdFbF4IazQ9zTO0B8CQWFKjIHZQ8vJS4mTzYzNLr7anCtu0WJ286bp3DZZQ4MQ8JqNZg+3UuLFmeOZ0bw30QI+n8Mt9tMUUtLMy3Vu+8O8MgjxVPUdAxeTljMVksOAD18NbjmKINjReRgvsRLM6yMW2bBKLRGfla9MI+cH6BjbV3kIgN7cyQ+XmDl68UW8gPRE5Lk1Ln/3CDXdgmdkhS8smKHmsvLCYsJSqY4j8hvQTd/yTnqTz1l44MPzDiQxo01Zs4suSqiQHC6IAT9P8YTT9gYM8YcxNq10/jpJy+WEoKipju2M7GgElyy5uDprLOxU/FNWX8IPpxv5a3ZVjzBqEDVqaTz5IUBLmweFkJeAnk+eGeulQ/nWwmEoyeoXrLOExcGuKDZ6XPe/rLt5dO4tQCohswjOZ2pXUJ/gUAALrjAybp15ozlhhuCvPBCoNh2AsHpghD0/xBpaRLdurkIhSTsdoO5c0tOUdur5PNM4l+EJQPJgAdzO50WZV2X7pS5bbyDnVnRdfJYm8G9fQLccHYIW8Wfj5Q7u7MlXphh4/uVRWd5Z9cL89pgP/VTTo/19a9j/mZuQZ+BZM3B49ldiSkhK2PTJpm+fZ34/eZsZfx4L717i/x0wenJ8Qq6iAE9A3jmGVukJepttwVLFPMwOp/GriUsmc/19dWp8GKu6fD671YGjHFGxFyWDEZ0CbL4QQ+39xBifrzUTDQYPczPjFEeutSNpjAuSFPp/baLj+Zb0E+DpeZh7qbUC5lWeYbi45PYNegUv94bN9Z58smoVX7HHXYyMk4TV4RAcJIIC/0056+/FAYOdAJQubLOokUeYkrIPJvi3MJU1zYAqoVdPJl9VoUuHrMnW+K2CXYWFYra7lhb47XBfppWPQ2UpwJjGPDL32Z2QGGvR9e6Yd6+1E+dShXbWs+SfTyd+Bdu2YxgH+BpwCXeBsW2Mwy44goHs2aZ11C/fiG+/FLUexecfggL/T+Arptr54d55JFAiWK+Q81lmtPsZCUbEjfkt6rQYj51jUqvt10RMZclgwfODTDlZq8Q81OAJEH/FmHm3uPhhrOigZMLt6v0fMvFZwsrtrWepDu4Oa8NBc4mfnJuZa01vdh2kgRvveWnUiXzYKZPt/D116dxtR2B4B8Qgn4a8913KmvWmMLcooXG5ZcXrwYXQjPdkgWj30XeetQpIZCoIuAOwN0TbdzwjSPSurRmos6UW3w80DeIWnHnIKclLiu8cEmAH27yUivRFD1vUOKhH+1c+qmDvTkV15RtFqrEYE8jAAwJPopdQ6bsK7ZdlSoGb73lj9x/4gkbu3ZV3OMSCP4NQtBPUzweeOGFqHX+9NMBlBIEb7JrC/tVDwC1Q3H099Yvq108IdIyJPq+42LcsmiA06DWIWbf5aFzHRHMVJqcXV9j7j0eru0Stdb/3KrS9x0nf6VV3FnUBb66tA2Yndi8cogvYtdhlLCefv75GtdcYx6b1yvx6KPFy8cKBGcCQtBPU95/38qBA+bX169fiG7dioveJksWvzl2AKAaEiPzW6JWwK98xW6Z/h842ZZh7pvLavDuZT7GDPefdkVQTldibPDqoADfjfSSGm9a6xkemSEfO/hovoXji7QpWyQkrs9vSaJmCvR6ayZz7btL3PbJJwNUqWIe14wZKtOnV9yJikBwslS80V3wj+zbJ/H++6Ylq6pGkWjew4TR+SJmHYdrrwzyNCJVO77AirLktw0Kgz90kukxL8WmVTVm3eXh8vanT370mUTPRhqz7/bQs6G5fKPpEo/9ZOf2CXa8xesUlTtOw8KI/GhhpIkxmzgke4ttFxsLzzwT/Z088ogdj6dMdlEgKDOEoJ+GPP+8DV/BGvP114dKbBU5z76bQ6o5sDUIJXCer05Z7uJxMXaJhWu+cuAtSLk7u16Yn27xUi+5ApqD/yESnfDt9T7u7BkVwEkrLVw82smurIo3y2oRSqaHzyxdHJA0PotdW2Iq28CBYbp3Nycqe/bIvPHG6dlVUCA4GkLQTzNWrZKZONGM1E1IMLjvvuLWuU8KM9W1NXJ/uLspMhVnIDYMeO13K/d+b4/UGx/YKsT4kT7ihIu9QqDI8NgFQT650ofTaorj2n0K573rZNH2iueuvtTTmGTNvHi2WLP53bGz2DaSBC+/7MdacDyjR1vZtEkMgYIzB3E1n0YYBjz+eDQQ7v77AyQmFt9uhmN7JEe3o79qhYpqD2tw/2Qbr/wWPY6bzwkyZrhfFImpgAxoFebX273UKUj9yvLKXP6pg983VixRdxgq1+e3jNyf7NrMAcVdbLv69Q3uuMNcOwiHJf73P1uFjA8QCE4GIeinEb/+qrJ4sal69evrXHdd8daQuVKAmc4dgNkWdZCnYVnu4jEJa3DTODtfL4m6Op/u7+fZiwOib3UFpmlVnd/u8NCjYF3dF5K45ksHk1dVrBlY41AS53prAxCSzMqIGsUT6u+8M0idOubjf/2l8t13Fes4BIKTRQyjpxEffBAtivHEE4ESm69MdW2NtEXt4a9JFd1VVrt3TAwDHvjBxrR15k5bFIMPh/u4tbvoV306EO+Ab0b4uKSV+X2FdYlbx9v5bGHFKtQy2NOIKmGzcmKaJZffSnC9Oxzw0kvR3PSnn7aRk1NWeygQlB5C0E8TVq6UWbLEtCSaNNHo1694EZkDioc/7HsAsOkKF3sqTs75CzOsfLPUtMwtisHX1/oY1Kb4MQgqLlYVxgz3c3Un02VtGGYRmjdmWSuM29qGwvX5LSNV5KY6t5It+4tt17u3xsUXm5OTjAyZd98VAXKC0x8h6KcJH30UHXBuuilUYkrXZNfmSEW4fr66xBm24huVA2P+tPD2HHNfJMngg8v99G4sisWcjigyvDY4wF29osGYL8208fQvFWctukE4kR7+gqh3WWOSa3OJ2z3zTACbzdzpjz+2sn9/xQkcFQhOBiHopwEHDkhMmWJa50lJOkOGFHdTp6k5LLcdBCBOt3Ket05Z7uJRmbhC5Ylp0cpcL14S4JLWwjI/nZEkeLRfkCcvjFq+H/xh5bXfK46VO8jTEJduLgcssu9ji5pdbJvUVCMSh+L3S7z+esXZf4HgZBDRIKcBn39uIRw2rYdrrw3hOCK1y8BgomtT5P4ATwPsFeCr/X2jwl0To2L+wLkBru96+q6ZZ+uwMaywXpPZpslk6hLZukS2Yf7PMiSCBlgksAIWycAKWCWoLOukygY1ZJ1UxaCmrFNX0amjGMinqWF4e48QcXa4b7L5Hb/6u414h8FN55T/dxxjWBnkacjY2PUAjIvZwOM5XYulb951V5CxYy243RLffGM5avthgeB0oPxHfcEx8fngq69MS0NVjRIj29daM9hsNS2QKmEn3fw1ynQfS2LJDpmRYx2EC/LMr+sa5P5zK2CpsaMQNGBJSGFeUGF1WGGjJnNAPz6HVtAADxAp0wekaSW/Nl4yaKtqtLNotFM12lp0UuTTR1Cu7hzCEyTihXnsJztxdoNhHcrfC9PDX5N5jt3sVvPZZcnjD/tuevprFdmmUiWD228P8vLLNjRN4qWXbHz0UfE1d4HgdED0Q6/gfPONhXvuMQfLwYNDjBlTdLDRMXg6cQF7VDPn9tbcNnQIVi3z/SzMgTyJ3m85ySgo5zqwVYjRw/0oFXyBJ02TmBNUmRNUmR9U8B5nMR4Fg0TJIFE2sEkQNiCIRMiAIOA3JHKN4zfDW6sa/axh+tnCNFP006IE7sszrbw+y4yTkCWDT6/y079F+Yv6ZksWLycsASBGt/B8VjdijKKudbcbOnVykVHQS+D33z20alWB+8cK/nMcbz90IegVGMOAnj2dbNhgFvGYPt1Du3ZFB5rV1kO8E78CgLqheB7N6YJUjlXhwhoM/cTBX2mm86dbgzDjrvNV2KIxuTp8H7Awzm9hTfjoxVISJYOmqkYTRaepqtNY0ami6CRJBrES/+g29xiwT5PZo0vs1WR26xLrwwrLQzIZxtFnOrVknX62MINtIdqqFVfcDQMenWrjk79MsbQqBt9c56NHw/IPfvwodjWL7fsB6O2rxZXuZsW2+eQTC488Yk6ce/UKM2FC8VasAkF5IQT9DOCPPxSGDjVzajt21Pj55+JNJ96MX8Y6awYAd+S2o02wcpnu45G8NNPKGwWWWvV4nVl3eankqlguZMOAv0IK3/gtTAuo+EuYAKVIOj2tGr2sYc62aFSVjVIRU8OAPbrEipDCirDC/JDC2qNMLFqqGtfaQwy2hYipgN4OXYc7J9r5boW5RBRrM5g+ykvDyuVr7WbLfh5N+pOApCEZ8Ez2OVTXYopsEwjA2We72LXLPLGTJ3s555zyn4wIBHD8gl4BhwXBYQqnqt18c/H154OKJyLmyZqDVsGUMtu3kpi7WeHN2eY+K7LBh1f4K5SYawZM9quck+1kUK6TSQFLETFvo2o85gowK9HD2koe3o/zM9QepppSOmIOZsR4TcXgEnuYp2MCzEr0siLJzYsxfnpYwqiFmoysDSvc77bTMiuGB/JtbA5XrJ+vLMNbQ/30a2bGeeQHzIpyueVs7Cbqdvp76wFmWMMU59Zi29hs8OCDhVLxXhIR74LTj4o1IggipKVJzJxp+qlTU3UuvLD4euQc+67I7V6+WuXagOVgnsRt4+0YBWvFD58fpHOdimHh6AZM8av0yHZyS76DLVrUAk6QDG50BJmT6GFmopc7nUFaqnq5Rp7XUAxGOkJMTPCxsZKbt2J8tFOj59JjSHzpt9It28kteXa2hiuOH15V4INhfppVM/d3W4bMTeMcaOW8JH2utzZxuinSy+wH2K3kFdtmyJAwjRqZ+71kicrixRWrXr1A8E8IQa+gfPxx1EIYOTKIesQadIAw8+17AbAYMuf4U8ty94qg6XDLt/ZIEFyfxmFGdS//iHbDgJ8DKr2yndyY72BzISHvpIb5MNbHmkpuno8J0FytmEFQcTJc4QgzPdHL7wkerrYHcRZY7QYSkwMWzsl2cVuenbQKIuwxNvjqGh+VXOY5nbNZ5ZlfyrfIkQ2VCwusdIAfXcWtdEWBUaOi1+3771essrYCwT8hBL0Ckp8P335rDiZOp8FVVxVPVVtk349PNq32Tv5qxSJ3y5LXfreyoCAIrlqcznuX+8u92couTWJ4roPr8hxsKCTkHVWNifFefkrwMcgexl4xNPC4aGXReT02wNpKbh53BagkmYKpIzEpYOGsbBcP5dvIrQBzk1pJZqS7WpCCN/pPKxOWl29kZE9fTRI0c2KxynaIHWpusW0GDw5Ttap5AmfMUNmyRQyRgtMHcbVWQGbMUPF6TaUZOjREQkLR5w0MZhdqOtHniNzasmTJDpk3KtC6ediAD7wWume5mB2KCkh7VWNCvJdpCV56WLUKGy1+PMTKcIczyNJKHh5zBUgsKPerI/GZ30rXLBcT/Wq5l2I9q57G8wOi69L3T7azZm/5DTkWFPp7o/0NfnRuKbaN1RqNVzEMidGjhZUuOH0Qgl4BmTYtKkRDhhRfO99iyY7kndcPJVC7nPqdhzV44IfouvlD5wXpUrf81s3XhGT65Th5ymOP5JBXk3U+j/PxS4KXXqe5kB9JjAR3OoMsT3LzkDMQccVnGDK35zsYlOtgYzkHzl3XNcQ1nU2BDIQlbh7nwFOOqzHd/DVI0sz0tLW2DLaWUBL2mmtCxMaa5/K77ywcPHgGXTSCMxoh6BUMtxtmzzYFPSVFp1On4gI5u1AwXG9f+Vnnn/xlYcMB053dKlVjVI/yGamNAqv8/BxnJJdcwmCkPcj8RA/9beEzSsiPJEaGe11B5id56G+NLs/8FVLpk+3kA68FvRyt9RcGBGidGg2Se+Kn8ltPtyBzcWErvYS19NhYuPZa81oOBiU++URY6YLTAyHoFYzZs1X8flN9LrwwjHJEoG227GdFoSYs7QPlUxVuX47EyzOjHdReGVQ+leDydRiZZ+cpjx2twCpvqmj8nODlxdgAsf+hK7yGYvB5vJ9v47zUkc114BAST3nsXJ7r4KBWPrMas+2qD6fVnFV8vcTKT2vLbz39LH8qKZrZEGGDNbNEK/2mm0JYLOb+fv65Fbe7THdRIDgp/kPD3enBTz9FB7qLLy7ubv/DvhutYM20u68mlnL6Cp+YZsMTNAXims4h2tUs+0isjWGZ83OcTAtGLai7HAF+S/TSwVIBIsPKiT42jT+SPNzuiHpM5oXMtL3pgfJJxaqfYvDigGjZ4vu+t7M3p3wmGCoyF3miVvpvheJRDlO1qsHQoebvLy9PYuxYYaULKj5C0CsQPh/89lu0TepZZxV1t4fRmWffA4BsSJGez2XN7E0KU9eaA1yyS+fR8wP/8IpTzxS/Sr9sJ1sLItjjJIOv47w8GhPEega7148XuwRPxgSYFO+laoG1nmXIXJPn5Fm3Fa0cXPDDOoQZ0NJcEsjxSYyaYC+3/PTOgeqRvPTltgNkyMWrMN52W3RC9NVXlnIPMhQI/gkh6BWIOXOi0e39+oWL5Z6vt2aSq5ji2SZYmSTdfuRblDr+EDw8Jfq5T/QPkOAs2334xGfhxnxHJPCtmaIxM9HD+baKUcimItHdqjE30cMFhdbW3/XZGJHnwF3GYipJ8NpgP6nx5gcvSFP5ZEH5WL4W5Ej8iSHB7yVY6Y0b65x9tmmlb92qsGiRKDQjqNgIQa9AFI5uL8ndvsJ6MHL7LH/1MtmnI3lvnpXtmeZl06VumMvblV1HLcOANzxWHnFHJxSX2kL8kuilniLMp6ORJMMXcX5eiPGjFETCzwiq9M9xsrOM19UTnGYlucO8ONPGnuzycan09NXCUtAY50/7HrxS8XoPhWtAHG5jLBBUVISgVxACASKlXuPiDLp1K2pt6histh0CwGooNA8ml/k+HsyTeGeO6aZUZYOXBwbKLHrcMOApj42XvNEI6XudAd6L9eMULvZ/RJLgBkeI8fE+4gtiMDZoCv2ynSwPle0w0LWexogupjvbG5R4aIq9XNzZsYY1MjH2yxp/FixnFaZ//zCJiebOTZumkl08fk4gqDAIQa8g/PmnQl6eqUznnx/GekTht21qDnmyOQi2CCZjpezdf+/Ns+IvKC868qwQTauWjc9WM+A+t43RvuhJedLl5yFX8IxORysNelg1pid4aKCYE8ZMQ2ZIjpP5wbK9nh7rF6BKrHn9zNygMq2cot7P9dWJ3J7l2IlG0WvabofLLjOt9EBAYuJEYaULKi5C0CsIhd3tF11UgrvdFnW3tw2UfYvUQ/kSXy02BzO7anBHz7LJOTcMeMhtY6zfFHMJg9dj/NzuLO4eLReMMLJxANVYjVWfgU3/Dps+Hpv+bcHfRCz6HBRjHZJxCIyyW6I4GvVVg18TvJxjMffFi8QVuQ5+K8MI+DgHvHBJNJjy4am2cunKVl2LoWXA9HZlKn5WWA8V26aw2/3rr0VwnKDiUr7FlQUAhELw66+mWLpcBj17Fh30DQxWFgi6bEjl0iZ19J9WfCHTHL62S4jKsWUzqr3ttfJlgZirGHwQ62egvXxEUTKysRhLkY3VhL0rUFmLy7YHWT5+T4Wmq3gD9cDSEsnakjCtCEldQIr55xefQuJlGBfv48Y8BzOCZk/4a/McjInzM8BWNuf3ohZhzm8aZsYGlUP5Ms/+auO1wWWfMXGerw5rbWYb4rmOXXQMFq3t0LixTqdOYZYsUdm0SWHpUplOnf67aZGCiouw0CsAf/2lkF0QGNS3bxiHo+jzexU36YppvjQOJZV5I5YMt8Tnf5kTDptqcHsZVYQb71d5odCa+TtlLeaGgWKsxRp8BSW7J0mhusTrQ4k1niXR8TOxjl0nJOYAihwm1rGZWPV7YvSnSNAHkxSshc3dF6f+MqqxnLIyAe0SfBbnY6DNtEDDSNyUZ2daoGzm+ZIELw3044oUnLGwbl/ZD0lNQ5WoHDZTNTZas0gvIYXt6qsLW+miV7qgYiIs9ArA4dxzqJju9g/nW/AWWOdXdQpRNa70BWd2UOHe/Gg0++OuAEPLSMwl4yCW0FfI/i+Ide42p72xxbfz+VTWb0lh74FYDhyKYf+hWDKzHei6BEjoOtisGimVPFRJ8VA52UPdmtk0rp+JpVDhG0UJE6csBn0xLp7HE6iFYRtOULkMTWpYqsdqkWB0rB+XZPCN34qOxC15dr6J99HDWvppgKkJBvedG+CZX8yeAE/9bGPiDb4yjY2QkDjHn8rkGLNZywL7XgZ6i573AQPCPPqoQV6exM8/q7z6qrm+LhBUJISgVwCWLImuXfboUVy0VhZa12sbLFtBz/bCJwtMi8SqGNxRBtb52rDM9bkOwgV55jc4goxylP7nWoz5aHlvE2//HVXR4Ij8+g1bkpkxtz6b0uqiK62xOZtRu04l6tZNoFXjWM6KseJyWXA6LUgSBIMaXm8IrzdMerqHXbvyWDI7hz1fZeDJWYtd3UiXdjvp2z2NhvWyIp/jsu0CXgbtZTyhjoRtdxGU+oNUOmvcigSvxwQIGxITAhaCSFyb6+D7BC/ty6Di3g1nhfhioZVd2TJ/bFWZvUmhT5OyrSlwViCVH1xbMCRT0Ad4GyATnVU4HGYp5vHjLbjdErNmqfTvX/7xEAJBYYSglzMeD6xda7oZmzTRiD+icVqG7GWXJQ+AOqE4knTHkW9Rqnw43xop8Tq8Y4jqCaVrnefpcH1utGjMRdYQz7pKNz1O1RcQynqShIQl4Cr63O9/1uXXOS0JcC6Nmnag6/mpXFE3Aek4dshmU7HZVBITITU1ljZtCq/NXojPF2LNmkN8NX0va1ctoXL8Qi4bsI7eZ2+P9JN3WZaCfhXeYE00+x34pWtBOvXXgCzBm7F+cg2YHrQUBMo5mZrgpbFauqJut8BjFwS4aZx5XE/9bKNHQy9qGQbeJ+p2WgRTWGtLJ0vxs96SSYtQ0dTQgQNDjB9vLj1NmSIEXVDxkAzj+Bbs0tPzS3tf/pMsWKAwaJBpCl59dZDXXy8aFPSbYwfjYzYCMNjTsEg/59LGHYDWz8eQH5BQZYPFD3qomVh6gm4YcFO+nSkBc9Bsp2r8mODFXkpirhhr0LIfICVuYZHH9x2I4ZvJ7dmZMYSu53SnR49a2GylP/dNT/fy229pzJuzkDpVZnD9sJW0aJJeZBtfsAph+xP4pStKxWL3G3BFroP5Bb3ka8k6MxK9VJJLdyJnGHDh+06W7zaP6bXBfq7pXLaZDMutB/ggfhUAHf1VuSW/TZHnQyFo2dJFVpaM02nw999uXK7i7yMQnGpSUkpY8ysBYaGXM0uXRgfljh2LuxlXWguvn1cpk306zNQ1KvkBU00vbRcuVTEH+NJviYh5vGTwUZyvdMTc8BDKfpIk1ycocVHrc/O2JN7/qh/JNa/nihGtiYv7hzafhoGUlYGathk54yBSThZyThaS14OhKCDLoKjo8Qnolauhp1RFr1YDvUp1SnI5pKQ4ueKKFlxxRQu2b7+UT8atZf/bPzBy2GzO65EGgMN6EPTbUYJvE7K/QFA+75SeGrsEX8X5GJhrtqLdpcuMzLPzXbyvVGvkSxI8dVGAi0ebk9uXZloZ0jaEqwzjz1oHKxOrW8mXg6y0HcTtDhYJQLVYzEIzX39txeuV+P13lUsuEVa6oOIgBL2cKSzoR/Y+d0tBNlvM0lRVwk6qaWVrDoxdEh3Mru1SumvYa8Myj7ujAvpWrJ9apVDOVQnPQMobRUpcdKK0dXsiH4/vT+M2o3jo6SaoasmR1pInH8vSBVgW/4G6biXq1g34srI4pJlLBW4dPLpp5UZegymSLtnsWx4nQ3JCHNbmrQk3aUmobWdCXXpgJCQV+ay6dRN49NFuBAJdGT9+Pa9f9QO3X/MTA87bDIDTuhn0obiDg/DbXsOQTl0qY4wMX8f56Jvj5JAu81dI5VG3jVdjSzelrHMdjYtahJi2zkKGW+bLRRZu6152VrqKTFd/dWY6dxCWDJbY9tPbX7vINgMHhiNR7j/8IARdULEQLvdyRNehadMYsrMlKlXSWb/eU8RwW209xDvxKwA411ub4Z6mZbZvmw7KdHvDnEA0raox925vqa1juw3om+1im2YK6Q2OIC/EnGLxMIKEsh6gevznkYf8foU3Pj4XR8pDDBvWtkQhlzIOYf/1e2zTf0BZvZQDAY2tQdgVhoNhc99PhhgJqqhQU4W6NokqrdsR7tGXQP9L0eoWj2wPhTQmTtzAvN++5sFbptKl/d7Ic4FQPAHbSwSkK0q0/E+W5SGZgTlOAgXxDC/F+LneUboCu/GATPc3zesuJUZn2UMeHGVYnG23ksdTSX8B0DiYxIO5nYo8r2nQqpWL9HQZm81g/Xo3scfnDRUITprjdbmLPPRyZOtWOZJ/3rGjVmwsTlNzI7cbhBPKcM/gm6XRUfTKjqFSDUp71WOLiHkrVeNJ16kVc0nfRXB/9yJiPmt+XV75/AOG3/gNV13VvqiYaxrWmVOIu2kIST0akf70//j5j0W8nq7xcS7M8cG20MmLOZiv3RaCuT74PMfgzT+W8/NLL3GwT3tihnTHPnYMUl5OZHuLReGKK1rwxnvPMXHOx4y8bzCZWWYQmc2SS5x+K47gVUhGTskfeBK0t+i8FhttpPK428bqUq773qSqzsUFLVbT3TJjl5RtqdUaWixVCnLSN1uyyJWKXouKEm2cFAhIkf4LAkFFQFyN5Uhhd3uHDsUjidMsOZHb9UMJZbBHJsEwTFxhXhpWxWBo29KzytaFZT7yFRStweDDWB+2Uzl5CMzC5r+a5Mpu825A4YX3BtH13Oe49Y4jOtYF/NinfIvjs3fwb9/GIj+sCkDOUYK87YnxpDSrTkqzeBJrS8SkeIlJDuOI15HkEBig6068eTbch1Tc6Q6ydxqkb8gi4+8dBHKjE7aAARuC5p9t/iqaLVlFh5efJGH4CHzX3oaearp+XS4LDz10Djt3tuSWx3sxsM9HXDl4LQAxyk/I3pUEnF8TltqfktN3uT3MunCQD31WQkjclO9gVoKHmFLU9Xt6B/lprXlNvDvXytWdQtjLSNclJDoEqvKzmoYhmTUgevlrFdnm4ovDfPaZ6Xb/7TeVIUOE211QMRCCXo4sXRodFY9cP9cxSFNzAEjQbCSWYe/zGetVMj3mvl3YPExSKS3dawY8kG9HK3Dp3uMMUl89devm/uyvqWq/E4vLPLfbdyUw7tfHuP6O63A6CymErmP7cRyut57Be/AAv/tguR+OHKYtMU5qd6tFg546DbrvJ6lWLpKUy8mgGzKZe5qSNj+FtD+D7Jq3EX92DmCK+8oArDzoo977o+n82RhqDrkc752Poaea4lK7djzvj7mGcePaMezWDxj94vckJvhx2vZgC/bFo75GQLn+pPbtSB53BVgcUlgVVtiuyTzktvNenP+fX3iStKiuc0HzEL/+beFAnsy4ZRau71p2a+ntg1X52WUGIS6zHSgm6J06acTGGuTnS8yZo6JppuUuEJQ3Yg29HDn7bCdbtihYLAZbt7qLlHzdo+TzZNICANoFqnB7Xtsy269hnzqYvdmc63030kvPRqVT5OMzn4WHCnqbN1I0ZiV6T5l1nrf/NeqnPBO5/+vsxhwKfcCF/TsW2U5dvpCYFx9CX7eSeV5Y4ociRytJ1O1Zi7bDvDQ9Lx31HwLfD2NgAwwkji+YUAvb2Dy/JWsnq2z9eTUhX9FOJakq9ImzUOX6W/DedF+RILpdu3J57ulvePDG9+jaIdoCNF+/Db/l+VOS3pamSfTJduExzC/o/Vgfl5Zi5b41e2XOfcecSdZI0FnyoKfM8tINDB5J+pNDihfJgDcyexFnFP3iR46089NP5qRw2jSPqO0uKFXEGnoFJysLtmwxR6hWrfRi9dvLy92+N0diTsF+1UzU6d6gdMT8oCbxvCc6SL4aEzhlYu7e/0gRMf/mhy7Yqk0tKuZeDzFP3UPCleezZcVK3s+BhYXEXHVY6XhTKncvMbjmm520vLiomGtUJSBdiEd+jFz5S7KVWWQqm0lX0klXcslQ08lQM0hX0slQ0shSlpIrT8Atv4BPuo4wzTEKVSJT1ABNey7jsncWce9aK31eOJv42tElgb1h+CorxA9vv4vWtw22ad9Far7XqhXP+2Nu5utf3+HNj7pEXhMrf4AjMBwMz78+p/UUg1djolb5w247B7TSC6xolarTp7E5YdiTIzN9Q9k5EyUk2hekiB52ux9J377RycysWcLRKagYCEEvJ5YtK7x+Xlw0CwfElaWg/7haxSiwwoZ3CEUqlp1qXvDayD/8OfYQXU9R3fDs3c9QN+W9yP2Pv72Atj1/oGXLapHH1NVLSRx0Nvq3nzI+Hya6Ib/AwFLsFrrcksRdi4Jc+NRe4lPNxw1UglJP3PLLZCqryVI3k6eMxys/SFAeRFjqiC5VBclWNNJcsmFIyWhSY4LyBfjkUbiVt8lWF5Kp7CJXnohPGolGtMaA3ZnLOSMWcOf8fQz+rAOVGteJPLc1BB/tzGHF7TfgvGEw8r7dgBk09/TT5+Kq9g53PDaAcEHf+hh1Og7fACTj5JYGCjPUHmZoQSOXPEPiQbetVPvI3Hh21Lvx8fyyDY7rEIhW9VtegqD36hW9Xn//XQi6oGIgBL2cOFb+OcC2AgtdMSRqhePKarf4bWN0cBrYunTWLbeFJSb4zc+JlwyeOEVR7ek736ZRtdci99/45DJ6X/IVKSkFQQCGgePTt0m48jz2bEvjwxzYXOgQ6/eJ5fY5Ic5/IouYgrTuMPVxy8+RqWwhV5mKT74VXap7SvbXkOIJyufjVt4kS9lEtjIDv3QFBuYyhKxAy37LuO33HVz0Tmtiq5k7pQPzfPDFL7PwXdgZ68ypkfccNKgJA4a9xrDbRpKbZ7oUYqxLsXsvQjKyiu3DifJcjJ9kyZz9TA9amFqKndl6NdJomGL+NhZuV1lbhp3YaofjSNLM72GzJYvAEREVVaoYtG5t7tvatQoHDpRhNxmB4CiIqWU5sW5dVNDbty8q6F4pxD7VjMquEY7FRtksHuZ4YfEO87PqJes0SCkd8+tVrw29wN18uyN4SsqK5h0cR+OqT0TufzhuEIOu+oCYmILiOMEAsU/cie3Hb/nTZ6aLHf5UV4qD/i/6aHJBfsS4DtEBj/wwIakPSCULiVcKsV3NZY+aT6bsI1PxkycHCAZ8hAIBsChYFQt2i4MYw0qK5iRFc1Bdi6F2OB6HUejnJ8mE6Uq+0hW38SJ24xsc+jsoHEBWoP3Q1bTsrzL7rQ4s/WAluqaRocHn+9z0uekq2lw3Es9DL4LNTps2VXnw8Se48s44vnhjNMlJPmJsq5F8F+Jz/IwhVTrp85wkw8uxAUbmmWtED7ttnGPVSqU0rCTBDWeH+N+P5jX5yQIrb19aesF4RT4biZbBFOY5dhOWDDZas2h9RGOkPn3CrF5t7tusWSpXXlm2pWoFgiMRQXHlRJcuLtLSzJrQ27e7i3hp/7Zk8EbCMgB6+2pxpbtZmezTD6tUbv7WHKhvPifIsxef+spg68MyvbKdGEhUknSWVvIQ8y+NG0/OYqpZLsBmM62ocVP7cna/b3E6TTGXMtOJHzUceeUSpnnMVLTD1D3HwuD3QsQUjNUhWuGVHyconVesSEsYnc2WLFbaDrE+vA/3slW4lm7DvnEv9o37sO7KQM1yI/uKBsLpdguhqgmEqiXib1wdX6ta+FrVIb5DGxpbUmkTTKFRKAn1SIeZ4cdufI1Tfx2FfZGH961PYeq9sRxckxZ5rIEFLu7chuCHEzFSTPd9erqXRx58lzHPv0XVyuY6ujvQFp/zZ5BiTvp8GwZcl2fnl6DpBr/aHuT1Uqoi5w5AmxdiyPNL2FSDlQ97SI4pm37xK6wHeT9+JVDy73DpUpn+/U3vz+DBIcaMKZvJhuC/h6jlXoEJh2H3blMs6tTRixeUKaeAuJmF3O3nNS2dCOZXPNZIMNidzuC/FvOg/xBWzzBsVcz9nfxrJzr0+joi5vKhA8RfdxHats1MyDeLuQAgQc8HoNsdIWQFdGLwyo/hk24CqejPYqeaxx/23SxPX4vj6/kkTFlKtUVbkIPHd45kfwjbjnRsO9KJWbg58rhuUdh9VmP+7tsK79CzaVmrHd38NWgQTkBCAsmOX7oRv3QFTv1NnMbbSASo3iydG39K57dXW7D4/b/BMNgagi//WsXlA89B/XQyWpOWpKQ4eem1O7n+TplPX3mTalXcxNhWYviG4Xd8b673nwSSBC/HBPgjW8VtSIz1WxhhD9GyFFqtxtjMwkaj/7QSCEt8t0Its3KwTUOVUAwJTTJYZ8ko9nybNjpOp4HXK7FwoYJhnNJCfQLBCSMs9HJg506Jjh1NC+nCC0N88UXRmf1bcctYazMHkBczu1NZdxZ7j1ONpkOzZ2PI9krE2Aw2PuHGeoqne6tDMn1zTIumiqyzJMmD498MgIbGgQ29adnItKKWramFVGk2tWqb5rZ8cB/xIy5C276Vr/PMSHEAxSYx+D2DZv3N+0HpXPLld9Gl1OhbY7Dams40yyZyps4k5YOZxP654Zi7Y69cGWelZOwJiSg2G4amo4dD+HKy8Rw8QDDr2GvYnvb1yLymO+pV/elracZZ/lQshax22dhJrH4XVmN25LHN86oz5TY33myzxa5dgqHJdip9PIHQWb0AyMjw8vADb/H5q2+RmGBea+7wIHy2L/6VAr3vtfC0x1xn7qyGmZrgKxVB25Yu0fU18/fSpIrGvHtKrwzxkbwSv5hNVrOfwguZ3aiiFy3KcOmlDubNM38oS5e6qV27bLwHgv8WwkKvwOzYER2k69YtPgDsKOh/HqNbSCmj/ufLdilke81Rslej8CkXc4APfNFmL/c4g/9OzIHdG/9HuwIxP5ThwmsdS9NCYp5wzQXoO7fzbSExt8fLDPtCp3ZnMFDwyE/gk+4qsk6+1pLOD/I6fB9Pospbv5C0J7PYZ8fWqUONtu2pkVKJKnqQytmHsGcdRE4/iLxrO2hhs/C3akFPSMJoXA1/5fYcik3kgKGyz+1j1+pV5O/YHnlP1/I0XMvT0B4dz5zrevLz3UPoW7kzvXy1UJHRpdrkyj9gNz4nRn8UCQ+NeuzjhhkOxl1ZjYwt+/EbMC7dz5ARQ0gd/TXBPv1JTnby/Mt3ccODHr5+ezROR5gY9Qf0UFMC1odO+vzf6Ajxtd9KmiazOKwyJaAysBRy0+unGHSsrbF0p8LGgwqr98q0qVE2ed8tgikRQf/bmkEVf1FB79pViwj6woUKtWuLqnGC8kMIejlQWNDr1Ck6MPmkMPmyuQZbPRxjul7LgN82RAPv+paCu/2gJvFTQUR0sqRzpf3fuU0P7f2DVnU/AUDTJOauepFe/doAZle0uFsvg53b+S4fdh4W8wSJEZN0qjQDncrkKmMJS9G87SzZx7eOv9kxcRKpj00g+Qghj2/YkCZdutJCClJ140rUP77/5x0NBlAO7YdD+4nZ/DcxQL2Cp/SEJA4NOI/19njWr99A5rp1AChuP5XfnY4+5jcW3HQucx+6kkGxXWgfrIIkSfil6wlKPYjXrkFlLYk1fNzws4+Jt9Vn2+/b0IFJOWEG3HQF9d75lED/oVSu7OL+R+5j5P25fPPuV8gyxMkvkKs3JyhffFLfgVWCZ11+rswzPUjPemxcYAuf2tK9BQzvEGLpTvMa/XaZhTY1Srfz22FaBpP5HnOZZJ01o1j3ta5dowGtCxeqDBsmBF1Qfoi0tXLgWIKeIXsjt1PKwNV+mMPpapJk0KfxqS8m85XfQrhgcnK1I/SvBv1w2I/VezOqap67734dQs/zrz38JLH3jEBdv4ZpHjNvG8AaA1eNM6jSDMI0JFv5PSLmBgZz7Lt4dv84vL1uou6ID7AeFnNJok6vPlx27ZWMcgbp98tX1Ph5POq2TcX2S0cixxLPDkcqm+212GCvw3Z7DTKtiYTk4nNnOSeLqgtm0nvWRG7P2Mz1/c+lRb9+yI6CtLWQRuX3Z1C18Y1M/ugZ3nYsJlM2K8jpUn2yld/wS1cAYIuBKz7bRotL6xUcE0zJN9h650iss38BoEGDJK4a+QiPv9I3sg+OwA0oxrGXEo7FuVaNnhZTxHbrMmP9pZMvfkmrEA6L6c2avMqCv4wCymtoscTo5jFtseSgU9Sj1raths1mPrZwoaj/KihfhIVeDmzfHlWzunWLCvohpZCga2Uj6OluiQ0HzMGobQ2dlFMcRRw04MuCgV7B4Jp/aZ1vXn4/PQrah/69OZXOfd5BKlhUjXn+AWx//saSQDSaXbXDFV9BahsI0YlcZUIkdcsrhfjCuZq9b31E/acnFQl0q929B71rplBz7s9Ia4qWYtUlmXWW2vySX5OlwaqsCVdhu56AdpQUQwmdVDmfJkoGbZX99Hbt5Wx1F7FhM/pcCgWpueh3agJ9m9RnQbVGLJ87D83rRfEGqPHgWHxfzuOFj29jQIsBdPfXQJKc5MujCRstiNEfQVZh8Jtp2GJrs/yznQBMyzcYcstVpH71A6EuPejUqTppaU8z9vsDXDVkLVaLD6vnSnyu+SCd+PUmSfCIK8DcHHMoedNrZbg9hPMUW+mxdrioZZiJKyzk+iRmblAZ0Kr0rWEJiYahRFbaDuGVQ+xT3NTQouuZdju0a6excKHKjh0y+/dLVKsm1tEF5YOw0MuBwxa6xWKQmlr0x5+uRIUjRSub9fNVu6OXQec6p946/zmgckg3P6OfNUyqcvID3sG9izmr1VgAQiGZbOM9YmPNgCnb1PE4xn/KzhDMKFTtdMDrULvLYTH/ISLme5V8ntV+Je+Su0h9dHxEzOPr1+eyq4dz7bYl1Jo+CclfYBUj8afciGvyB5KU+QCt91/Lw+7eTA42Y6te6ahiDmAgs0eP5/dQfV71n8MFmZeTePBeeuSO4F1/Z7KVqEjE7drGBYt/5c56ybTq0zsSuOb4ezf1uj3Kb68/yRjHcrxSCCQJnzyKPPkLDKxIMvR/dicdbqhV8LkwOSdM+vWXomw0u7ING9aC+WsfZfXfZnpbjH0rtsD9J/2dtLHoXGg1J2mHdJnPfaVjpV/ePjoRnLKm7GyRhqHEyO0tluxiz3fpEv3NFK4AKRCUNcJCL2MMIyroNWsaxbo0pZeDhb58d3Qn2tU89YL+aaEBfqTj5K1zwzDwHrwHS5WCSmULhtLl3D4AKNu3EPv0PXh1mJRvVlMD6HoztBwEIdqQq0zCkEzhXG/J4LOt35M65GVsuwpSkmSZ9pdcwrmblmD/5dvI5wYUGx962/K6twsSBm2UA9xuX0oDOYsGsX5q2XzEKSHsRghZlZFsNnDFoFWqTDCxMu5qddkXU4ONttqsOKiyevVBVqw4QG5ugD/CdfgjXIf7PH0ZaN3IvbHL6MIOAOL272LQ/l2069yKadkBMjZtQtJ0qj89ifzf1vL8+Ie5zdWXVC2WgDwYnUrE65chST4ufHoXwfzqrJmwz1xTz/Az4vrBWKbMx0ipwuNPnM/do27ji9eew+UMEaeOJU/vQ0AeclLfzf9cQX4NqhhIvOu1MsIRwnWKrfSz6mpUculkemR+36jiCYLL+s+v+7ccKehHdl9r0ybqZVuzRubikwtJEAj+NULQy5hDhyS83mgO+pEUFvTKZSToKwsJettTLOjbNYklYfMya6xonG05+fdfsfAr+nUyA8f27E+gZZc3zCcCfuLuHYHk9fCLB9wFDoC658C5j5rlW03LPAGAxbZ9TFgyjroDX0bxmH55e0oyg7p1odG8HyKfF5YUJgRasCxUlc7qHv6K/5RU+Yj0zVDBX0lsXY8DiAdSgY7AFdVqEOp4Dr6rz2dpbAum/5XB999vZNeuXCYGWzAxswXd1B08E/MHPRWzcEztLWu4RVGY3eMc/pq/EDSNmL82Ye18D29NfJBrm19Gi1AKIbkHuUwiXr8USfJyyWv78Oemsnn6XoLAhLSDXHvTUMLfzsRqd/Dw4yO57+m1jHl5EgBW/10EHd0wpMpHOaCj01TVGWQLMzlgIcuQGe+3/KvJW0moitnO9+slVnwhiVkby8btXisch9VQCEpaiRb64RKwAKtWCQtdUH4Il3sZUzRlrQRBLwh6sukKMUbpN6QwjKigJ7t0aiae2vW/qYHoMVxqD590/nAwGKRO0guR+9szHsAVY9a4d33wMurGtfwdgL8LirTZE2DQu4AaT57yXcTNvsS2n4m/fUy9/i9ExLxyy1bcWCeFRvOmFfnMveEYhlnW8KZrBsNsfxcX8wIMqw09sRJatRpo1WqgJyVjWEsu2qLs34N96ngSH7iOvneczYsHP2T1a6lM/XEogwY1RlEk/gzXoVfO1VyUN5xtJJuv0zT6rpvPtc3r4qxqusqt+7Op3ftxvpz5PvNtZtvUkNyNXHkiBjZkBYa+t5eqzc33yNXhh8WrcTz3IAA1a8bR5qwHmDC1uXnOrHlYvHdysh1X7nBGK+SN9loJl8JScmEBn1pGbncVmXqheACyFD8ZctF4imrVDJKTzd/ymjVKqTasEQiOhbDQy5gdO6KKdqSFrmOQWbCGnqI7yyRlbXumRI7P/Jx2tYpXrfu3TCnUvOMS28lbbKsXvcaFZ+0HYMPWujRufRsAyqZ1OD57G68OPxdaN7/weYipIpMrf44mNQRgmfUAE+Z8Sr3L30TSzHNft0sXLj+0Gdu+4kVfaitFO5TpzhjCbToSatUBrWEzwvUaoVdNxYhPBEnCn5VJ/t49eA8eIJiXh+HOQ87NwenOxZWVTvLeNOI2rEIuWJOXQkFsM37ENuNHLqxZh57X3Ma2B67grQ/XMnbsWn4ONea3zPo85viDR5zzUdCps3crtzhiGN+0Cfs2bEQOhqkz7E2mvZND4Np76OOvTUjuRh6fEqdfg8Wpc8XYDD7qG4s7I5/dYfjrqy/p0vkcAhdfzpAhTXnw/rvoffbdpFTyEm/7hTzjBwLS4BP+jpqrOr0tYWaHVHbpMlMCKkNOcV762fWKut29QXCWkdt9o9W8RrZbckgORONbJAlat9aZNUsmO1ti926JWrWEqgvKHiHoZcz27UdPWcuSfWiSORCUVUDcisLu9hqn1t2+LSyxLlwQPa9q1D7JYDiPx0/j1E8i993ScyTLCmgasU/ciRQOM9cLvoK3b9ofWgwEr/wwIflcALaq2YxbMa6ImDft0YMhmxehBI+e0xyoVhvtgoEEel9IuHVHUM2fjGEYZG3cwO5vx7F3wR9krFmN58D+fzwWW3w8lWs3pIZdpdG+bdTy5iJLoOzeQezzD9Iy+XXeveV+brvhCp58fhHTp2/jCV9vfgw2YXz8ZBpKGcT63Fzv3cgPbVvz98rVSIZBrTs+Y5Y3QPi2BznfV5egPAA3rxOr30NsFbj8Kx+fXyyjazoL/VDrf6Oo3KIdWt2GPPTIJTz8zFw+eW0cAKrvfoLOczGkE+/yd4czyOxc8xy977My2HbyXpmSUBW4oFmYsUuteEMSC7Yp9G166uM+jqROOD5ye6eaR8dAtSLPt26tRfqir16tUKuWyEcXlD3C5V7GpKdHR7djR7if/uvnUwq52/+Ndf7X7PeoX9sMXFu9oTl1GptRR/bvPseyZhmHwrCsQJMtTrjgOQhLnfFK9wFmbv9Hu3+k7iUvIwfM/Wh8VlcuXTuvRDEPGAqb2/Une+wM8matwfPAs4TbdwVVxXPwAMvefJXx3ToxoUcX/nryEXbOnH5cYg4QyM1l95o1LFyygi/35PJqKJYprursCZmebiXjILHPPUC7ey7k25tj+fLLAVSrFsMKrTrtsm5kfMB0jysSDNm5mq5tmkfeu8b/vmHemFeZZzd7pPvlkfikG83n2oTp+3S0ytmUzADcMwLCYZKSHHTodidTZzYCwGnLwBJ46biO50jOsmi0Uc3raF1YYVn41A8xhQX8901lY5PULtTCeKeaV+z51q2jk/PVq8WwKigfhIVexuTlRQU9Pv5IQS/7CPcVpSro0ctrgO3kLBa/P0STGp9H7lsSzfVfPG5c778IwExvtBXqOXeAq0os2cpHIKkE0HhPn0fVwS+g5JsTpjrt23PpxoXFLMdc3caEhD50/ug5qrduUKQDdu72NJa//TqbJ01ADxbtpgZgi08goUlzpEqphOwJ+CUHhqSArmPRfFiCuUjZ+/Bs34z34IHo8eXnsyo/n1VAlcR4zgnm0swK6vYtJNwwkMsuvoyzpj7Lvc8s46eftjDcPZQV4Wq84vodSYLzdv+NtVUT5q3ZCECNB8byS6wT17D76RCsilt+CUXfiNX4k87X5bNzQTIbf83Ab8CvS9dyycdv4Lv1QQYPbsq9d97Aed0fxm7XiJFGk2tcgyY1OaHvS5LgekeQO/NND9PnPisdLae2C1m3BmEsikFIMwPjDCNQ6rXdE3QbcbqVPDnILjUPA6PIkliLFtHfzqZNIjBOUD4IQS9j8vOjg0Bs7LEEvfRd7oYB6/eb1kTtJJ3EUziH2KVJbNDMga29qlHjJN3tS/4cz5BepsWZtrs2KXUGAuD84j3kzHR2hKId1OJToetN4JGfQpfqAjDB8Te2y17Cvu0gAMl1anPF9uUohQQgaMi85juL1d2v5pUPh+J0Rj0L/pxslr3+Mus++xg9VNTLULljV9w1O7PWW4s/N8COxcUtN5MEoBrQBJfzPDq3t9Ah+RDV3etwr5xP2Gsu/h/MzuV7YK7TTl/FTyML2H/6jrqL/uDLlz/io7N789hjc3nVfw7b9UTGxv6AjTA9925Eb9qAPzdsBaDWbR8zoVoSSd1uo144gTz5CxK1s1Ckgwx4LYPdix14snxsDcGm116gbp/+aI2aM+ruy3l19C88fs9cFEVD8TyMFvPDUY7p6FxiC/OE2yDHkJgaUHlWl05pv/QYG3Spq/HnVpVd2TJb02UaVi7d2u4SErXCcayzZuCWQ2TJfioV6rOQmmpEOq9t3iwsdEH5IK68MqawoMcc0ZI6S466fyuVQVOWQ/kSvpC5Pw1STu2A+GcwOlc813py1rlhGMTIH0fu52mjQJKQsjJwfPaO+TmFjL9e/wMcbfBL1wOw3HqAjaPHEP+r2cDF7nJyZc5OLIXE/IdgExrl3MG24ffxzpfDioj5jhm/Mr5bZ9Z8+EFEzK1x8SRdPILl3V7nrlUX8ODkBL6enseOnUcT86J4vGFmL/fxyoxY7l7QlfcdD5Hd4w5iG7eIbJPp9TM+H772qmRpoKQfIOGGgYzyz2DypMFUquRgUrA5F+UNx4e5v70PbaVT0wYASLpB7WFv8NG2iWTJPgwphXz5IwwkHIlw8VtRD8Nvbh3pkdtB16lfP5F03yh27TXdy/H2WViM+cd1XIVxSDCsoBpgEIlv/afebujTOHpN/b6xbCzi2qGju91lGRo0MH9DO3dKBMqm1LxAUAQh6GWM223+dzqNw/FVEfxSdJBy6aWfsrY9s1CAXqVTLOih6CDb7SQFfeGCNfTsYlY3y8yJJbW+KdTOT99G9rrZF4a0Am1KqAUtB4JbeR0khXwpyPgdv1D9sfGR97tU8ZJQaOy/LH8og/OHce51vXjxxd7Isqn0WiDAvAfv4ZerL4+4x1WHg5j+1/N18iPc+VMdfvozn1Aoes5sNoV27aoybFhzHryvHe8824yPX2rMRy824qVHm3LbzS3p27cuNWsWDTTbn6nx9rxK3LdpCKtaPYCzSZvIc9v9YUbnySz2AZqO693nOe+7x/hl0iXUrBnH76H69Mu9MiLq/Q5upUn9OgDIviBVhr7EmOA8wuiE5F74pLsBaHyuRquhZrGUgAGzF63APtmsvnfnXd15ZfT5kX2Q3Y+cVBrbCHt00jDBbznlqVznFuo3MG9L2TgaaxVaR99dwjr6YUHXdYm0NDG0Csoe4XIvYw6voR/pbgez09ph7EbpfzU7s6Kmau2kUyfohgF/Bk3ldEkGbdWTe+/92z/BVlBWc1/WJVRNtiC587B/Z66pzw/IHK4Jd/ZtELQMJyx1BGCCbR1Vrn0zUs71LDvUKzRHqp99J2l6Eldc0ZwXXugVqQXvOXiA6SOu4ODyZZFtEzv1YLz7PBb+HAKigYvVqsUwZEBthnfNooVjHfas31Ez1yN7083NCqUrG5Uk9NrV0YY2IdvZnIUHG/L5nBhm/L6HQEADJH5c4+JHLuHSFmfT7tBkAof2E9Z1pnthWxgGusA540fa7t/Nr+O/ZtCI3/ljCwzMu5yf4r7FKmkMyd7BJzVTObh7L7ad6QSueoYJP9bgSn8LPPIjWLVfUdnI+U9ms3m6Fb87yLogtH7mIRL6Xkx8fCLV6t3Cuo1zadEknTjHKnKN6QSlC07ou6unGnRWwywOq2zSFNaGZVpZTt011rCyTuVYnUP5Mot3KIQ1MwK+NEnVoi61/Yqn2PONGkWPb8sWmaZNy6bFq0BwGDGNLGMOu9xLEvTDFrpsSFjL4KvZUUoW+kZNJt0w3/ssi1bExX28ZGf76NTit8j9qvXMvHP7pK+Q3XnkabAxYJ7DmMrQ+jIFj2z29t5gyWTbx5/hXG02KKmsQK9C8QHtc24iTU+ie/davPrquRExz0nbyuT+fSNirtjteHrfyT1Le7FwfXT9vEuX6kwfncq2l5byTtURnLX5ZuJWv4t19zxTzEtAwkBx78W6cxZVNrzDwKw7+LHDKA69v5pvnomhdu24yJYT16XwdMZ1+FtHa4huCcIneRKHwmBZs5xG/xvOlM97U79+IjNDDbg6fxAAqgTD3XuxJ5hpVnGz17H+nXdYbT0Eko185QMMZJyVoO/T0e/8t3Q39tGvAHDNNW15/aP+kecM9/MnZaVfVigH/bvAqfU4SZJZChbAE5RYu6/0fy8pmhPFMK+VA2pxQW/YMHo+xTq6oDwQV10ZYhiQX1BsLDa2+POHBd1uqGVSVGZnVvTrr5106nyi84NRU+kcy8m52xfMnU67lvsA2LG3AagtIBzG8dVoAFYHzDV2gHZXQthxNbpUFx2DCe4F1Hg86mofEGMKHcAozwWs0KpTp048n356ERaLua9Zmzfxw0Xnk7/LnAQ4qqUyp959vDo7Cb3g1DRpksS8j5L5Y/gYzt99I45NE5BCRQf2/e6qLNh9Ft9vHMzXa69i7LormbJ5AEv2dSTDW6nItlLIQ1zaJK7w38+WUR8y65UQtWuaMw+/buWl1e2ZU/0WLAlJAGRrBp/mS2wPgWXDahoWiHpqaizfBVvwuLcXAPEyXGYLmQu7QPUnv2P8uknkS0HCUgd80i0AtL08TLUW5kTikAabPhmDvHs7drtKs3bXRZq3JDjXYDHmnvB3OMAWwlaQfzDZrxI6xW73s+pH3e4L0kp/HV1FjmSfHFA8xVqpFhb0wvUmBIKyQrjcyxCPB4yCGX5MCS1KfbIpfg6jbIJ8Clvop9Ll/leR9fOTS4Xz534fuR1UrsAFWOfNQNm/G8OAFbID8IEEbYYpeOUHAFhk20flq18Gr7mG29YGqQVX+exQHT7wd8RqVfj004uJjzf7jufu2M5PQwfgyzCta2fdxoxxX0raevOFqirzygOp3FrjS+w7/iiyn9m+BH7YPIhftl3I/N3ncNBT9RhHZVAjdg/n1JxPv3rTGdBwKomOHAAs2ZvozfNsGVWfb7Ku5uY3ZYJBnXn7qrLeeh131vgJbc9mgrrBN/kwxAVNN66l8f+GMfGjrxlwxc+MyevAAOsmOqr7qBv20sMG83wgaTp1Bj/Pxv/toLtRB50q6MQiS/mc3zOPL8zy+MzN17ijb2sCz77LSLvO1Ofr0fqagxAHqu1RtGpjMeITMWLjI5OFYxEvw/m2MFMDFjIMmb9CCj1O8nooicMWOsDCNJVRPUq/SXpVzcUB1UNI0smSfSTrUddPjRrR39CePaU/IRcIjkQIehnidh89ZQ2iFrqjDNbPIbqGXjlWP6XlM9eEo+vnzZQTnyjs2JFDu2bLI/eTql+KAdh/+AaAnWHI8ZgL1PXOAUetQeRLNQmhs/2bN5FmrDW3l6BPwXjrxcr17kswkHnyyW60bGk2IPHnZDNt2OBIYRhH/Wa8tH8wWV7zO6hZM5aZT6bTeOdtSHujocsrD7ThtcX38/3GIQQ0O2Ym/EFgJZAJ5AMBQAIsQCyQxJ78Koxffznj1w/HqgS4uOFP3NHhXXrUMicKltxtjFCeYsBLvRjx1dnsWptOTSOPfYfq0jgxj5zsA2gGTHLDpRI02fw3Xa9pR7oKJBU9j90dZkrfnjBoh/KxPDqGGFfRbWoDTaywMWg2tVnmh7OeuAOAEQDmPIkY1hFDGwAMScKIjceIS0CPS8CIS8CIL7gdn2j+T6yEllqLK6o04GdHQzRVZVpAPaWC3rCyTnKMToZbZslOBV0/rnnGv6K65mJVwe39iqeIoMfEQGKiQXa2xJ49wkIXlD1C0MuQwkVl4o6oqhlGJyiZ4lcWAXHuAKS7zUHnVK6fZ+uwu6D3eXNFQz4JQ+WvP5dy1/C9AOzPqIdatTZSVgbWedMBWKc4ATNnv80w8Mm3ArBr5kfUuOcj/i54n7Md4CoYV5/3nsNOPZHOnVMZObItAHo4zMwbRpCbtg0Ae836vLp/YETMu3dOYNq104lNmx7Zt7Tsujw45xW+3zgEU6zTgDXEWNfSreZGutVLp13NXGrE5eFSA6iShk+zku51sjU9lgVpify1px7r0ruianXZuSWVz7dfR1pCPfpV+ZVqHAQ3JHnmMDU8x0xhL0AzYKoV1gTNUMCJ+XBlXNFgv8LIElwSA2NyQAMW+qGFDaodcXn1dpiCDrDABx3sYD3G9yYZBlJeDuTlHKMDvMnlwBBFYVflWuypXg9XvZroNeug16iDVrMOWmptjIQkTqYyjCRBh1oa09fL5PoktmdK1E8p3RrqVcLRGdEhxVus016NGjrZ2Qr79kmEwxTLZBEIShNxuZUhh9fPobiFXjhlzaGX/teyLydqQZzKDmuHa7cDtDzJ6PZA3k+R2yH5AlTAPu07pHAYw4DNBW28FCvU7dsGn9QRy+yfqXfH/5hRYEQ7FImOdnO7HXoCr/u6YrUqvPFG30h62tJXX2DPH3MAsCRU4r2cIWR4TVfF0PPi+Oa8j7DuWQ+Abki8teRuHpv3HL6wA1iHTZnFZc3+5I5um2iXsAmFo8QLSNBQh7NkuCbJvK+53kPJL3R+wsDeY58XpUCgcUdF/bt8uCEekgtO+5ykrmzaF+QG2wpUySBZgR5OmF1QTe+TKlXp+thtdApVQ9HW49LfJMWA5h9a+XtVEK8BS/3Q9va70GrWYe60FZzbbByOoIaeIxH2nIOU50XKzUHOzUbKz0XSjm11q5pGvf3bqbd/Oywv/rweE4dWWORr1CHcpCXhJi3BcexqR21r6kw3vyJW7Faon1K6NdSTC9WHyFB8xZ6vUUNn7VoFTZPYv1+iZk3RpEVQdghBL0OOVSXOX8YpazmFxqJk16kbdNYWqt3dUj1x96rbHaR+jaWR+zHJg9EA2y/mmvp+DfILSrjW6wZG3A1Ylv1F7L0j+NUbPY4udWtgyzYrzD3s6UMAC6NuakvDhqZfet/CBSx/63UAJFXlR+tw9hwyxePSvjGM6/UWatYuALJ8iVw55Rump10A7MOufs69XX/iwbMXEy/nFD2AMJAOHATtoISUDXKewRHxUygcfbLjMZwYLomYJA+4gBjIqNSU66e2Y4s/gb1aDCMrzyTh0EoCBozLM0XdoUjUf+p+rrx/O7ft78+cuC/pYdnJWXZY4UwiJyMLffMBvtUOkXrJzSTrl2PRVmE15tCjWZC/ewIGLPZB6/xc/MNGUq3rUN6fuo37b/0LGQM/5xFQ74rurGEgefKRcnOQ8nKQ83JMsc88hLJnJ8qeHeTt2oFlzw4S3LklHq/szkPesAY2rCnyuCHLaPWbEG7ehlCLtoSbtzVF3h4V1cINhVbuVri0XekKeqVCFRwzSxD0wgK+Z49MzVNcTlkgOBZC0MuQwoLuOmIt0ydFf/hlsYae5y/k/refSkH/dxb63Lk76NfBjDT3+p1ornZI6QdR15ipZBtikiHXbNTS6HyV8JZGxN92KUFfgDUF1rlit9EpczfIsCGczHfB5iQl2bnrrk4AhLxeZt1xSyQVK632QJZuM3uG92xv5Zs+76PmmWK+PacO54+fwZasRsAfXNTgQz4bNIMUS6b5YR7gIOTujMO310GyJwMV87tUjlTxQhgWkBKBRMy173jYYSRz67zLmL73f0hZNbi72lu83O1/WJQwyWzgo4djafFSX/LdFj441I/7k3KwZm0nW4cJ+XBNnEHqC3fy9jPfctmNs7ndcyGr4j9ElXT66/l8U/DZVZ4cz+RBg7gp2BGP/BBWbQ4pDaFRbwebZ/nIN2Dr+G+ocfcT1K6dzPqdA4G/zP32fApxd0Zd5JKEEROHERMHqbUoSb4ydInmmS7i83Poc2ALn+ZtRNm9A2VP9E/etxspXFSMJV1H3bIedct67D+aneAMRUGr38QU+GZt6NygLXatK37FUaTRUGmRqNuRDDAkyJKL16ivXj16zR88KALjBGWLEPQypHAqr6qWr4We6yvUJMZx6gT97wIL3YJB45MQ9A3rlnBdP7OcXq63DWqMgm3eDKSCk7e9kEjWaX0WcTdeg5yfy8pAdDmzdfUq2HNNQX7O1x0dmbvv7hyJal/2xiuR9DSjViu+2tYMgJpVFH4eNgFL9nYANmc2pOc3c9nvTsahfsknA97litTlsAXYD8YBkAoq/8WTRzzFq4dpsoQ7Jobs2BTS4+qyONSTD9cNYY+7CgNSfuLepm/QuoppmdYhg1/rfMDHq5bw4OzneHPJvazPaMb3g4fgsnqp6l3C5v95aPDiQLK9Nt7LGsi9sV9Bfia7wjDXB30O7OXiP9/hkksGM2UKvOPvxL2ORTSQQtStmsz2AxnYdmWQ9vU3HLiiGVW1rgSl7liNPzj7Dh+bZ5n7vSg/xJWTvsR/03307Xcec/96n55n7STetYMcFhLirOP+TpNls7jQithEvo/txONJzah+ZG3/cBj54F5T6LdvQV2/GvXvlahb1hcReknTUDf/jbr5b5g8llggX1JYF9uCVYntsCa1RG/dnnCTVqCceoFXkUnQbWQrgRIt9EqVoseVkSEEXVC2iFDMMqRwgEwoVPTHfjhlDcrGQs8tbKGfIkHXDUjTzEuqvqIfM7DqaCjawshte2x3AKxzfgEgZMD+g1kAVKoLic/uREk/gGHAIikapt+5wFW+S49nQoF1fvXVrQDI3rqF1R+YdeAli5WP9vfEQEaSDObf9xfO7NUA7MytRZ9xs8hyOxgedxt7Oo3iijXLYRzwJ7A1KuZFSAAaA92BS0EZaRA/PJ86F6XRsfssRvV5nJV3tGTRqPNo0cxH97F/0G/8ryzb3z7yFje2Wcbqm66gTZVXmJHWm97jZpPpNZcKknx/s+rBmVjkMHnE86lnMCjm9bLAB7tCYP95Eu/2yCIuzsZTvp7s180KZ+f6MiKfUe35yUwrCB/0SXcCULMjVG9huo4OapD11cdgGPTsWYeJP3eNvNbwfv2P3+OR9C5U/ndWsITrW1XRU2sT6tID//AbcD/7LjmT55OxbB/ZE2aT/8Qb+AZfTbhJS4wjhFo1NNrkrWbEzs+Jf/ZeEof2oNI59Ym9dwS2yWORD+474f09FkkF6+h5cpDQET6JlBQh6ILyQwh6GWKxRH/sRzTuKlKk4nA1qtIkr7CFbj8173lIlwgWFMSpdRLd1fLzA9RNXR+5L9nOhlAI68K5AOx2JaIXBMTVlEHZYFrZG1KSyPOYYdrVUqtSuWC8H+3rgIbCTTe1w+UyQ8EXv/AMeoHFt6XyeewPmUL51Z2Z1Mr5FQB3hpNxE65gDDeRXaky4yyfkrTJDdlF9zcgWfBXVqAt0A+4FjOsuyfQFNOVXsIvTJU1GtuW80D9Wzl4TxXuOH8qF0/8iTtmvkN+wBTfWjFZLBrxGFc2v40l+1rTfewfEVGvFVzK/HsXIKGzW0/lL2sfwFym/8ENAR1S33ucFx9oRb5h5wFPXwCqq9Ao2awgZzmQw/ZPv+Sg7CEonUuYembU+HXRQjlrdu7DsnQBqipjix+K22OeQztTwTix7iOFBX1+6AQsZ5udcKsOpsg//z7ZPywwRX78LPIfew3f4KvYX70FYanoe8o5Wdh/nUzco7dRqWcTEi/ujOulh7HM/x38xS3rEyFBt0Vu58lFW+kmJ0ev+8xMIeiCskUIehliKZRedKSgK4Uqw2lS6UfGFrbQT5XLfZcefc+a8om725ct20/bFmY+uK5LhKT2qOtXIfnMFLWdydFKa7UKWoprLhdfnt0q8nibkGk2BwyFTwLtsFoVrr22NQAHVy4nbdoUAOS4JCbsNV/XvUWIK/gYVgGTIeZ7Lw8bL9HfOh1Hoch1A1hBW8YoV7OpRzVsI0PYB2nQCagNWqWq+JsOw939RfL6jia/95vk93yN/R2eZ3nKXfzgu47vtndlc2Y0YdwuB+ifOJq0UfVpWT+Dtp+tZPFec63fpoQYe8mn/K/rcNZn1GXApKn4Qubsq5N1Dl9dZzau+c3Xmdz4hgDk6GZ/eDk3mxH7J9O8eQrfBFuxKmxWfesTyo2sf1d5+UfGZi9n5apDbN03DIDmA8BiM8VxXRAY9ymGYXDJwLb8ON3sje6w5WM1Zp3Qd9ta1XEVXNcLQsq/a9ZidxBu3RH/lTfhfv4Dpr+9hLgL8uh6zl/8MOQNAn0HoMfGF3mJunUDzi/fJ+HGwSR3rkX8yEtwfPYOyua/T7isbawe9QblHyHowuUuKE/EGnoZckxBL2SVa8cIpjpV5BUyUk5VUNxurVAq3EkUlFm2dA/9bzGrteV7UyEhBsuyvyLP79eiPu5aBedy5ltPodxj1iCXFIUWITfIMC3YiAzDxeCLGlKpkukiXfH2G5HX/yn3oqrs5VLrUl40/kIeexSL0wnUhG2xdTn/zxlc1nk8z3Z9pkiKWqDOeQTrnofsy8Sy+09cmycjadGBPhazG3p7B2gtq5Pp7MRvO22kb9/JJQ3+xmUN4ZB93FT/Gc6/fhKXjf+CG1p9xI1tPwHgpV4/YpGH8dyCiQyf8i3fDx6CIutcUe1HPqsdy5yd9fg890JuZTQ2gqwIQHs7VBn/GZZcFajGM74eTI79jsoqVFPt7A/5UDPz2TPzRy55oQ62fI29Kyy4XCEa99dZNxmCBmye8gP9JjTEb42hZ9eWXDXEnETM+fVVPvouRHKyk5QU8+/w7cP/4+PtkRRBiwSdVY3ZIZVDusw2TaKBemquu2ZVNXxqDIuSuvJJow6cc80NEA6jrl2Odf7vWBfMRl27HEk3r0kpGMD61xysf82BVx9DS6lK6OzeBM/uTfCs3hhJycf8vLhCgn6khV5Y0LOyhKALyhYh6GVIUZd70R+7UshZokml36WpNILiigr6ib/nwf0bcTnNmY6uNAXAsjwq6Bnpps9bBZJk8Nz5GNPquai805wE1KyajNN/EIBxwZYAXHON+T976xa2/zrNfE9HDI9pi+meWFBe9kDR/Vgebkpi0/3Ua50DSbD6UCv6fvsbk268j+6usZHtwsnN8Te5HMv+pcTMfRDJ+OfvTXHvo7J7H30doLd0sNrfmT1bM+hXdzMWRae2bT1/XnUW9817l//NbsDLvc2GM8/2+AnduIoX/prAY/Oe48VejyBj8M0lk2nz6S0c8iQyh170YwYAv3rg+jiD91y/cE7e9fwYbMKacGVaqYe4yOnj44IMsiofzKDWyP+x+ZkwX01sza3XLqPTCIN1k83n/w7oDFPXMNrXid//rEduno34uADdOq5nyMgt6PrRnXyqKlOpkoOqVWOoWzeB4MC20LExAL/l6jSodGoEr3aSgU01CIQltqXLhz+ccNvOhNt2xnvHo0g5WVgW/4F1/iysC2ah7N8T/U7SD6D8OA77j+MwJIlwy/YE+g/Ff+FQjOTKxT4vtpDLPV8qKuh2O1itBsGgVKQypEBQFgiXexlSkSz0/MCpT1vbXcjlXuskXO6KsTFy2+poAYaBZcUiAIIxceTsN63oFAWCvfqx69bbCM6MCn4TvxllnmfY+CXYkNTUWLp0qQGGwd+vPBdxrfaQ3HS3Rgd0ACrBl/araZC9mknNalOvdw5Ugj35qVw88Sd+vu3OImLua341oaodcM1/Etu2n4qIuW5LQLcnoVvj0e1JGIoN3RLDkciaj7aW+fSrt5XZO+uyLdvsUW5Vwrzb+1YS7Pu5f9arke2f7zmJy5s9xMsL/8fMNHNdvFqMmy8v+gEwWEIn0jGtyz1hs/jM2ZbdDLBtwUDmWV8PwFxLr1SQy+34ezcd2x/i+htbsydrOAA12kN8dfNi3RWG4fHraNo0mVBIZea8+ubpSvLRpf0R5/AIwmGdgwc9rF59kB9/3MT8txdEnnvyu600afIBF174LaNGTefNNxczZcom1q49hNsdPMa7FkeRoU5BL4IdWTJ6CZeekZBE8PyBuJ99l6xZf5P18zLcj7xMoPt5GIWK10iGgWXNMmJefIhKPRsTf+MgbFO+RfJEq0Idy+UO0ZRUj0cIuqBsERZ6GXLsNfRCFvoxio6cKvRCGn4y5VlLYl8hay31BC10ny9Epbjtkfua3BT54D7kXNMqz8rJi0xzUmJk8l8YzUZbDvG/rIy8ppHmAwVmBOvjx8LQC2ri/PZj1PGfsXmJGWynAu0LDKxMVzyVmuVCPfg9uw8jvv2S9lVf55nuM8190GWumDKOj4c9RUfrBAAMxYqvza3YNk1CcRct7aZbY8EwkAM5xY5P0o4eRGaRw5xfbxt782NZfbAKrauYXoaHz3qbr9ZeysNzXuDFXo8A8MVFb7IjpyVX//Q1q0a2oVrMAfrV38bwZmv5dn0rfuUCrsGMQp/lgeZWmNRpPX2MPnw/X2dDOJmmagY9VR+H298kfzGdCz6/mnbBPoTDn6BKG+gwIsSsF8znZfcu/pjbDy0phRcf38ClF5vncsIXNjbtv5KMDC/p6T7S0z0Ft71F/h865EXXDdiwHzTdVOAW1cnK8pOVtZ9ly/YXOyd16ybQtm3VyF/Llik4HEdvwVo3WWfTIYVAWGJvrnTs6oeShFavEb56jfBdfSsEA1hWLMK6YDbWP39D3bSu4DvTTIt+/iwMu4NA7wsJXHw5sT3bRN7KIxdvCONymfXc3SVlQQgEpYgQ9DKkqKAXVVG5jIPiCov4vwpQKkROIQs98QSPYevWbOrUyonc16R6kYEVILNQdlDCkPYYiZXYyHJcizYDEJMQRyXFtNDXapV5yfkb9854A8sPeawNgL9gdxrbZL4OtuGLYBtmjpoOIdP3/NDkl5Cl3Xx+0atYCtb/X1z4MJe0W8j5yZ8DYMgq/iaX41j9MVLYW+wY5GB+scdOhNTYfKq63GzLTqROfA6KbHBNy4l8sT6BT1ddz8g2n2FXw3w/ZBStPlnBTb98xE+XDQDgk8Fz+DWtIWn++ux2taCmZx35BqwIQKf1q3j2Rjc958uMDnTgHXU6Ta3gdDnwenwkTFnKvIzltIu7kIA8BFV/jqYXEBH0TUFoNedX/Jdei+y8AF2fgCyDU5lJq1Yv/+NxBQJhdu3KY9u2bO7P93IoIQYaVqZanQT278gp8TXbt+ewfXsOkyebXhtFkWjaNJm2bavSpk0V2ratRpMmlVBVcxJZr1B0eVqGTM3EE6jQZrUR6tKDUJceeO57GmXbJmw/TcA+bSLKXjOTQvL7sP/yPfZfvqdLYhI3D+rAvKHd8LeoWeztXAWVF4WFLihrhKCXIcdKWytrl3vhoUY/RR+XW/A+sZKBcoJj2ebNmVSvEhVEnVQsm+dH7ucVclo4Opiu451rl1LNb57IOnZLpLLMM8655o0Czf27kHH8eGA4GwMNuafPDlwhMz/51239WH6gA9e1GknLyocAWL6/Hb/vPJ/Z5/SOlG0NNByEff03/7hWvmRfKov2pvJ3RmVy/HZ0Q6Kyy0OjpEzOqbGLtlUPIB9lwqPIBvUTs8kL2omzmpXIRjT7mHdW3MfcnT3oWXseqbF5fHjB5Vw6eTGTNw1icOMfcOrZfHrZQoZ81ZufPWdzC+ZkaIHP9EicteAz6tUdwVc7WvOicxYuKUQHVeMPQNIN0idPI+P6XlQxBuPiOSrVh+TaVjJ2BtkdhtC0SXDptZzdrQNLVqbSpf1ekuK2kWnsQpdqHfN82GwqDRsm0bBhEr/m2/jWDygyny64gWahANu355CWlk1amvl/8+ZM1q1LJxCIirKmGaxbl866del8/bUZmOdwqLRsWZm2baviTm0J1AFge6ZMj4YnX3JVq98Y791P4L3rcdSVi7H/NAHb9B+Qc8waCJbsLPp/NpP+n80ku/ZorBdcSeDiy9HqNQLAWeDB93gkDOOk+s4IBCeFEPQy5Fgud7WIhV76LvfCg8ypmj4cttATTsLDsHdvPu26mha2YUjoVC5ioRfuY+Ko1p58KUh40drIY7XzM+GIfHrDYiX3/IFs/fZHIIjuSmKTx1wDvrH1ksh2ry56AIe6iWe6T4w89ti855g8/Gpkw4xmD1XrjG3r1KOKuSdo4Z1lnflkVTvScor2MU1NjaVjk+qkdqxGZofqHKoVIHbrBByrP0L2Hirx/Q6L+WHubPc69/z2Bi1T1lLJmcXQJssZ0eop7pz5Dn3r/Easzc2gGvNpUqklGzOrscvejFr+9eTpsCoA7dev5tnL4MrRDr4NtOAG+0paS0EOd3dPGjef5bce4HxfA0K0xcJKmgwIMv9d8/ntC+ZT251Hx47V+PTtJnRpby43WI2Z+KUbSjyGkmitanyL+UNYHVbo4LTQvHkKzZunFNkuFNLYuDGTFSsOsGrVAVasOMCmTZmm674Any/MkiX7WLJkH1TPhfPrAPDdtD3UDwXo1Kk6Ntu/GOIkiXC7LrjbdcH98MtYF8zCNu07rLN/QS7IZU/cuQ/GvIprzKuEmrUhcPFlVOZaoDoAmiY6rgnKDhEUV4YcOyiu8Br66edyNwzIK/AyxJ2EoO/bl09qVdNCD4STQbJg/3lS5PlCZfBxVmvMTjWPqtOj6+c1Cw2aGbqDRWePIHPW32zsfhFa0Axc2iQ1xUCmYVIGTe3mOvCGjCbM2dmL29o/S4048/Onbr6Yi1rOJ0ky3a1aXB2UzI1HXQeftLEpDcfcwSNzzyUtJ4mmTStx441t+fjj/qxceSMrV97IRx/158Yb29G2bVWUSrXxdn6QzOtW4+n6GIZiK/F9j+T5Xo/y9rJoY5Q3zn2dgBbm+b8eBUBCZ8zQxQDM8EdLsy7wmd/PJRmziY21MtrfEYAkBarGmeakc9UOVqSZk5yAPASAJhdEP3uTT8P65+84HBb2pEerxoU9845r3w/TplDDnlXHKDBjsSi0bFmZa69txZtvnse8edewbdsopk69jKef7sGgQY2pXbtQrrkn2vhl2QYPQ4ZMonHjD7jiih/4+OMVbNmShfFvLnSrlWCvC8h//XP2zN/Am+/fzoperdELNWC3rF9FzMuPMHV3XT5xjaS5so5/aEQnEJxSxNyxDDnWGnrhwjLhMrbQdUPi39rpPohUiUuQT/y9DuzPo2plM4pIpyry3l1FnnfXBgqC4ON8Hurfei/r56wjA1CItg9dFq5Gt9zrmXn/SIyUZHbPnR15j+XuOgAMbxa1/D9dPRJZymZUh5/NzzYkxqy8hamXDwbAkFTy8vwkUrxTWFiXuOu3C5iwozs9zqtNz5516NGjFtWqxR7fQVtceDs/SKDhJcROvwnLoZXH3Nyp+rii5XjGr7+cYc0mkGj38WLPG7nrtx+5u+NbVI05SI9Ky2hTpT2rDtZgn70h1f1byNYhLQT15v3CtX37897kYCSFrXXYG8na80yaTuZdA6hs9AMeo3oriE2ykJ8VIi0E0p+/wwWDSal2Fm6PhRhXCNVYdLSmsSXSTNVRMQgjsTp8YvaEy2WhS5caZuZCAZmZPlavPsC8vw4w+vCKjSsOAK83zO+/b+f3381gyxo1YunZsza9etWhW7daJCScXIlE1ZXAnMt7MOfyHnTYY3Dv+DRs077Dss78/qxGkJH2zxhp/wzfLb0JjBxF6Ow+wvcuKHWEhV6G2GyF3YVFnytrC73w0HIqPi2vUEDcyVjo2dkZKAWR8YqaRNwDI4s8HyiYDMkyVL68J9Vnzo0EyiUrRNbsb3APQI1xRdqk7p5n9js3FAs7qQ3A5QWCrhsS49cP4/x6H1MnPgeA6dv6cXPnsaiY1rgnIJF4ZKI6ENJlxmmPMuilt/n771sZM6Y/w4Y1P34xL4SW1Jicy6bjbzT4H7dtkrgBdzCGXL8pWje0+Z0WKX9ErHSAdweaVvqf/raRx5YHzKjt210rAJgYbA5AcxuRiyFp/F8ssx1AoyEaNZFkqNfLPMkakD7PnBx1Pas2i1eYohrrPIhs7D7uY7VL0KSgac9mTSb4Ly++SpUc9O5dl6cf6xpJv0yuU43LL29GlSpFWxru2ZPP2LHrGDlyGk2ajObCC79l9Ojl7N9/YsGMhSffOVUS8V17OzkT55H1y3K8I+8mX06IPO9YNJuEGweTOKAL9klfQaB4hzaB4FQhBL0McbnAXjDoHFkWUi30VZSNhR4dSU+Fy71wNq79JAwRjztaKF2emIVl5eLI/dA5rQgWaKrFMIUpQ4tORFISTHELGxIbtBTatKmCosi49+2NdFU7aKlNCCt1E7Jolmw2KVm4pyt782twa7tofvm0rRfRv5aZohbUZKxKyT5T34UfcsEDD9K6dZVINbR/heog/4LP8La55R83HdHqCyZvior/iz0f4KOVN7EnLxWAsyutpl5CFptoTMCaAMDGoBmH0HD5NKpXdTIxYHaYi5WhRryZI2/fsp9Vu1eAJBGUzPrwdbpFr8Xde/YhH9xH+/bVWLSyduRxi7HohA61YUEWgY7ETu3UDUGVY8339WPj3Xf7sWbNTcydezVPPdWdHj1qY7NFXfy6brBs2X6efHIebdp8zMCB3/Hll2vIyvrnOu+Fv+3Ck2+tbkM89z/DZY23c4fnHbZp9SLPqVs3EPv4KCr1bobz/ReRMtP//QELBEcgBL0MkSSoXNkcAA4dKioCDkNFLliDPrL6VGlQWIO0UzB/KPwWJyNvxuGyrntAfW1Dkecs89cQKmg/bgF0VyzTBnaLPJ8cMBuKbNYqEUSlSROz5vvB5csi22z2VwPggvpbI49N23oRyc4NXFjf7Dq2K7cmdeK3oRYUxbEqOtYSSth6295OoMnlJ3GU/4Ak4+nxMr6W1x9zM1XWaJS8hc2ZZv323nX+pkvqL7y3fJT5Nhg80msVOgqLgma9egNY5Qfl4D4e6KaxSU9hdUF998bBaMJ0zm9/4pVCUUGPLpezIwSWpfOx2VQycqPWf8j7BydC3ULndJt26tzQiQXR5e6AREgDSZJo1iyF227rwMSJQ9i8+TbGjx/MLbe0j1wjYE5o/8/eWcdJVb1//H3vdGwHy9LdnYIg0ooCkoKCIGKAYnd3K3YHIqI0gtIgIN3dDdu9s9Nz7++POzt3hg12BRR+3/28XrzYG+fcc2POc576POvXn+Xxx5fTtOlXjBw5l5kz95dIcCMgBLJSpGLsW3mSlU+dD1A/5zAZH0zD00Z9iGJWBpZP3ySme2Oszz+A5ujBIu0rUIF/igqB/i+jsLxiVpaIO2i+EBECDFR5YvkqWf0ThAW5D/OdFz+pBk9r5e3N4/Gh0TiUVcGLIDiKemU9/gvowsycW7qFjS1V7SfSX8LykKSwpNWvr0zWaTu2Bc45h197rar65pee6M0NtX9F4/f5zzk0iHEtvit1rN6YRhRc+0o577AcEARs17+Pu0bPUk/rXGUdu9PVojQvdXmeb3aOx+5RGOBub7SFcIOT7bQOnLPP/70NZicAM92Kll4vKLYjfMkODumy8AhdkRGJrAYRcYpme9YLwgYlCE40dMTnF8aiVy15WxbUCRLoxy+hhh5lVr/CbHvRr9Bk0tG9e01eeeU61qy5g/Xrx/DYYx2pUycqcI7XK7F8+QkmTlxMkyZfctddC/njjyM4naHfpOD/yqVi3EsuV6Gw1+DrczM5Py8h+7eVOG8cHCj9KrhdmGZNIfrm9kTcPQjd+lWXjhCiAv+zqBDo/zLi49XJ7Hyze7hcKNDdyJfZjx4ZxN+e7bgEAj2Yea6cbW02N2aTB34DNhd/TmGIgRwfR1ZcOPpTqsky0n/shC8SIOA/zzyglmJNRtHQe9RX2jk8RnanNadf3aWBc9w+PTHmosFvwcjvPhk0JTOWhYwZGbeQi01zmgLNObxCUTKaYiFqyLvhO3wRtUo9rWXCTo5mKWl419fYR62I/UzdOwoAAw5ubXKAXCJJ1Snm8VQfZPigytYlJMbqWeRWNPx4DVhMSqR92Kp97JOSkIUovChV6mp2URZMXlQ/ev2Gtdh/WEk1CzcdA7nsVqXaIRr6vyfQz0fdutE88UQn1q8fw/LltzFhQhsSE1WKXofDy++/H2bs2AU0bfoVkyYtYfXqU0iSHNDMxWJKHRcu1HU6mcIgeG/ztuS//wNZS3djH/sAkjU8cL5+7XIixw0gamAnDPOmgbc8YYYVqICKCoH+L6PQ5A5Fze6FVZx8gkyBUJRS8lIiePLLKaOcKQ0XY3LPz3dT2ZMPb5TQd4tIRH+GkuSRyBfd6M5lBY6H+7/iU1IkAFWrhiPLMsc37QTAhZ48wokxFVBJp9Cqbk9pjSxDn9rKOVmOKGpEF6UgDYarzs14q1xT6jkANs0pDlm/Y0P0A6yPncDW6KfZEv0Ef8eOZ1PUYxyzTMchppbah2yMIq/P18hCyT/RupHHOJ6jWiomtnmTb3eqOeETOinm3B2ehoF9+1wg5uVwf8sCdvgSyJBMCILq1xYdbo5tUkzoXkFJb6uuZsCRcvYcgi2P5s3j2X1AMdlrND40HL7gcylEsEA/8R8K9EIIgkDz5pV46aXr2L59PL//PowxY1oEqvQB5OW5+PXXfQwdOptOnX4IaOaaYr72QoGu1xc5hJRYjYInXidr1X5sT72JL1El5dEe3kf40/cRNbAT+lWLKjT2CpQbFQL9X0bpAl3NRz6/LOOlRqT5EmvoQRNbeT8qh8PLwxklB1b57q+C6FeKJZ9MnuhCm6n6fc3+C56VwhEEqFzZyqeT16O1KaQt6cQBAu0TVe71TUkdaFFpJZFGJep45anu3FDnz1LHaW//WKnHPUIBB8K+ZGv0MySbVuLWZBc5x6FN5ox5IZtiHuGQ9Ts8QkGJ/XkTO+Bo82CJxwFqRJwix6msdkY0WcaJnFoczFQqmrUIP0SNiGz20zhw/n7/Z9XffBQZkeUeZUFQG3UB6dm4iyzRiccv0BNVyz4pXtAe3Evt2lEcPJYY2K+V95U6zmBEiRDjD/y8lBp6dNA3nVUOgR4MURTo2LEq77zTg9277+bXX29h2LDGWK2qdD5xOifw95kTeRw9mhXSR16ecu2wsJIFsmwNx3HHRLKW7CR38k94WrQLHNMeO0jEhOFE3NEP7Z5tJfZRgQqcjwqB/i8jWKCnp4c+/vALVHG6lIgyBWvoFy/QxSAXQXkNhqI9n86O0NQnKUwlDRH0djR+xgTJ4yVf8KDNUgS6KIoUPrUMSanFPX/+IT57UxXOOUQC0LKSmn62JbkdrSqpldpcXgPh2tCJORjuKp3xVmpV4nG7JpltUc+Ralxb6r0GI9m0ks3Rj5OjO1DiOQUdnsBnTSzxeIOYwxzNrguAUevl9qYf89Oe0YHjo5rvI48I0nQK53iaT4l2r39yExoNLPMoJvtgYh7r+sOc0OYEBHpcfYVLHSDZB9r9OxFFgQJXg0Abj2NXme8boKY/RTFZuvjUtUKEaOiXgEddp9PQvXstPv20L/v23cO3397EtddWQ9SrfSeftdGp048MGzabZcuOI0kyubnK8YiIMtyYVou7z0Byfl1Bzk+LQgS7fsvfRA27nrBHxyKeOVFKJxWogIIKgf4vo+wa+uUNjAvW0HMugYZuCerCXs4J2qs3s1+nBLRxDTiXjcA54Fb1BK0Hrf/ReB0O3IIPjV+gGwy6AF9HpmwiPd3OxImLiQgigslFWRzUiFD3HcmqR+uEnYFtg7b05+1qNKLY/U4xnVztYXZGvIZTUzyNa2nwiLnsjHyNVMO64k/QWS4YhCcGpTmObPIr0/epYx3ZShEEBzyqP/64B3TnTnJTA5lVnpoARIhgNipLI8vGIxwTs5CohUQMGj3E1VYecoYPpF2K1igamgX69DrLJ9ATgsrrpkkX//1BqED/pxp6STCZdPTvX585c4by+zI1w8Hr5yT+669T3HbbPDp0+BG7vRwCPQiedp3Jmb6c3I+m4q2uulKMf84mul9bLG8+hZCdeQnupgL/X1Eh0P9lBAfFleRDB8i7zKlroT70SyHQ1f5sxQQKlQZZEBgZNRhWAl+DXNmA4FH1fEErYfIHIrvzcnF6nYh2RQDrNOonnCWpPk8rqkk+H4XspV09tc9TeTVoVUnVjE26kgk/ZI0eV70BRfZn6XazMeYhdkS9jFuTU7abLQEHwj8nXb+l2GOuBkPwRjcs9hhAk9h9nM5VNPD2iUfQii72pDUFoKH1OPEWG8eoEzj/mP/TGpGQxAkpijTJjCBA9UJin3wHpw/vUrjMBcUqUbm1+t1mbVMiF6Nj65Kdo6RLmHWHynW/lYLYBFMukUA369U+XZcxrqx6Q9V61LhWLNWrq9unTqm/26SkDA4dKqcAFgTcvQeQvXAL+c+9hxStLHQFjwfzT58T3aclpm8+BOeF8+Ur8L+HCoH+L6OsGnru5dbQTZdWQzcHdVFQXoEuQ67NCP76HAJ54AuakTUSZjWzCFd2NqJ/xtYE0Wk6UKPPTagTnh0lQTnBqJjU7R4TGfZYGsacBeBkTg2axJcskDyVOyAbIkL2Sfg4Yp1Sjru8MPZFTCZXe6ToAUHE3uGJEtsZtG7cPnUxOLzxNyw4crPSFJl+dQ5zlqp4NYrwPe5Rnnl76TggsNGrsL5Vl1U/eva2HUjIeP3+98ot1OulnzkDXi+1a0dz8KgicMLMaSCXXcgkBAn0VOnSTEP6ILeB+zIKdKegdt68XjybNo3lp58G0LVrdUBlCjx7NokuXaZw661z2L699IDLItDpcN52N1lLdlJw7+PIRmWxKubnYv3gRaJvbINh3i9UkMVXIBgVAv1fRmEeOlxAQ7/cPvQgDT3ddvECXSOA2e9HL6/JXa/XkJ2rJsaL5BBwmgP4fJiDCph5MrMR3IUCXd3vklUmsIY11MWREyMgE6NVGOJO51XHpHUQZVIEUJItkWrWkn2UnmrXFdmXZliPQ1uUEvZisT/802LT21x1B+CzJJTYLtjs3q/OIhYcvTmwfUvT00hoOCkpEdUFMmRLUPXsbkAOCPTKQY9ct+ckKZoCvEIjAGLrqceyPBLiuVPUrh3FiTORgf0ayk4BWyko0j31Emno+qBaL+5LSFhzPuxBAt0ka9FoRPr2rcOsWUN4++2BQWcq1QNXrjxJ377TGT16Pnv3lo8hTraGY3/webIW78AxeDSyPw9Ok3yW8KfvJWpIV3TrVlzsLVXg/wkqBPq/DKNR9a2lpZ0XFCcHC/TLq6GHGyHMzy1/JvvSfAZmv9m9vCZ3s1lHXr4ByT/HC3IOcnDOj1vEFFyRNC0LwatoJsF1YNwoM/pzz13LoJtValIXBvQaHwa/1p5aUInKVlVjEgUJjVCypuNJ7FhkX7Jp1QXvy+iLo17+WNpnvcs1mZ/SMud5qtr7ltrGpcngqOXnogc0OpxNRxfd70fNyJNk2BVCnQ5VDnIipxb5LiWn+tqqJwGZ03KVwPlnvaDLTqdzgpNNHkWgxwcJRNOe0yRpbPgExdQfE5QSn+UD7aljVKsWzskz6ovRyCdLvbdgVArR0C+N8NVp1D49l1FxDf5thkmhuWmCoFpyBgyoTPXqar754sXH6N59KuPHL+Tw4fKZ4qVKidhe+5TsuetxXdcnsF97cA+Rd91CxLgBaILKDVfgfxMVAv0/QKEfPTVVCEk1DZP0FLqiL7fJXRCgRowyjrPZwiWhf7X65+W8cgp0i0WHLIvk5ilaukAuGIKo7Dw6Iqupm9KpJGStIn2k83J127RJYNKk9khBNHw+NBi1qlbl8JhIDFM1coOm9GftjW0Ssu0QU8m9gM84ztmRdlnvUMXZE7MvEYMURaSnIXULRtEx82Mi3CX7xFNMq8nTHi+y39nkjhLz0kVBxiPpAn/3qPkH6852BiBKm0O96EzOolYpO+u3rg9IzGKPLx5Q0v/MBqUP057TnNPk40WJZA9LAK1Oea+ZPtCcPIpWK5JvVyPwxf9YoIdq6Jeky2IRbD0LdpMBnDmj3suIEdVYv34s777bk8qVVcKa+fMP07XrT9x//2JOnMgp17V99RuT9+VMcn5ciKeJmnWhX7+KqCFdMX/yOiEUlBX4n0KFQP8PULOm3zRtF0hKUicADSJRkiLI0jT2y84WVz1KkeJeSSAp9+In1Xh/5HKuLOAsx9DNZkWIZGQpvm6RjBANXXbpiFIVbqQTSch+h2nwOkSHRI0akQCBGuhQVKA7vUZiTaqGrhFLnv0lczyyKSZkX7qh+OC1QkS5m9EofwIaimEWAYxSDC1ynybO1b7EPo5ZphUdS3g1PFW7ltjGJ6kSrWv1Jaw+rboKulY7xTmqBPgCzvofR3tTGumylXRJefaVtMpxbZaNpLRTIFgDldeiqyjHsiUQTii+fqdXXWl5XcdKHNv5iA4Kosy5ZBq6+rfnMvrQQwV66Ds+elSdUuvUkdDrNdxxR3M2bbqT117rRmys8pwlSWbGjP107vwjjz66jLNn88o1Bk+HruTMWEXee9/jq6L8OASvF8vnbxM19Dq0+3b+w7urwNWMCoH+H6B+fVUMHToU+goq+5SSj3bRe9kj3WtEq5PqqayL/xQSNP9M69LrNej1Gs4kKeZJkVwwB9Gr2gSigwS6fPwcsn/29knqNbVIePy2VkFU70dAxqgJEug+I3qNGsCl15T8nH1h1Yrsu5B23jD/HkQ0pZ4joqVR3kTCPHWKPZ6rP1hsgJyrzo0l9mnV2/D6hXqXapsCGjpAx2qpuDCSq1WC2NJ9IMlQ36Vw2+/zKRGJlXzqs8jyFw7xofjeo+sUVkkD22ElQ8Arqy/G6yp7rnRYkIaeX06LTknQa9U+L6cPPUtUv53CBXghjh1TvjuDQaZqVXU8RqOWu+9uzZYt43juuWuJjFQ0e69XYurUPXTs+APPPLOS1FQbZYYo4uo3hKw/t1Iw8SlkrbLI1R7eR+Tw6zF/9Cq4L39diApcOagQ6P8B6tdXNcIjR0JfQYJXNc2laEtmEbsUKDS5A5zKvAQCPSQVqXz9RUcbOX1O9T/KUUETcq6OiKoEOGWlY2fwWZWJ1C2p92AWPLj9tlZRq0Z4iUghGrrLa0CvUSO69aUEIEqW+JBtGZk8XTGR6H5Ut9+MQYoq8XgwRLQ0zXu4xONnzH8U2eeu3a/E8yONuRS4lQVh49jTnMlTFyPX1FBy5JO8ikD3omjacalHEZDY5ze7RwetQwpOnUZGRhIUgR5ZO+hYUhIARrNqxkcqnc42GBZUMqLyumjKAukyGrcyghaDMT41VdLthhMnlO++dm0JTTFrOotFx6RJ7dm69S4ef/wawsL0/rY+vv12J+3bf88rr6wpsdJbsdAbsN//DNkz/sLbUOEGEHw+LF++S9SQ69Du3f4P7rICVyMqBPp/gGAN/fDh4jV0gBTN5RXoNaODBHrWxU+qwX7R8pKFxMdbOJ0UxA4XoU5oco4OrUENzHIfOIbkF+gutzcQhxAhOAMToahTTaEafLh96uyq17jRBZnZS9PQJVNcyLZHyMMj5pd4fqKjR4nHioNBiqJe/phij2UYtuAWQq8lhVfDG9us2PMh1H1QK/J4oMRq/fBzaEUfaagLlDQvaO35VNfkcdinuBWigj5HzYkU8gV3QEMPq6wes6Ur0doxsdHk5inaplbMuMDdqhAECPN/IpdKQ/cEaeX60g0kF4V0v4YeLukxBFliDhwQ8XiUMTRtWnpQSni4gccfv4YtW8YxaVI7zGZlAepwePn006106vQDCxYcRi4Hn7uvUXOyf1tFwf1Pq9r6kf1E3toD8+RXKrT1/wFUCPT/AGUxuQMka8phfvsHqB4i0C+Fhq72l1JOk2d8vCVEQycyKHUrRxlbgsKVguxyo0tVWN8kSQpQzUaKTnJylElLH6bmAxtwYfOoAt6qtyGUdXja0KAnp6bk6GStZMUoxZV4vCRUdl5f4rF0w6Yi+zylFIgJjtZvHr+JHalK4JRO8FA3KitEoKf7Tx3ULR1aKM8nMkgQRh0/yRnDFvL8AYhhldRjNlsBOB1UrmwlNV35Zo36kqlzi0O434+edwkCMiE0sj044v1SwiF4yfUHUcb5zCHHdu5UH17LlmWLyouONvHcc13YvHkc99zTGoNB6SMlpYBx4xYyYsTc8gXO6fXYJz5N9szVeBopJPyCz4flq/eIGty1Qlv/f44Kgf4fICwMEhOVWezwYU1IpHvCv6ihV42UEfyT6ulLItDVG0kqp8k9Pt7M8VOqqVqMVoWDkKGI7EKBDqDNVDVXu18gxAgOcnMVxrdggW7ESb5LFehh+nzy3Wo6kU5TcmU7WdCGbLvEkoVWvOvCldiKg4iWuvnFp6RlFBOA50ksRaAHaeg39VyI5Ro12Or9udt5dKNKT5vjf2633babft8pC6TIoNcWeeIk6WFfcDhMKZkaFpQGny/BVs8oLMPfx1xdaWQyFHDC/DPnjMvJ0G8nX3uy1OIzYf5v71Jp6N6ghYHuMmnoSUGL7CpB7jGALVvUizZvXr5VSny8hVdf7cbatXfQs6eaI7hy5Umuu24KH3ywEVc56O98DZuR89sqCh54FlmnxKNojx4g8tYeWD58uUJb/3+KCoH+H6FePeUHn5MjkJ6uTmgRkgGTpAiR5MvsQzfqoIo/J/5wmoh0kZpS9ZCymOWbpCtVsrLvkKo9ahLOqgeTFG29ctPzWyko1PAqi/lkZNiRZRljlJofbaEAl0+Lz19U3aq3keeKDRwvNW3tPFXeJ5RMEWvxVi3x2IVQydWp2P3Z+r34CHUJFJcXXwidVl2ctK66n/heKvlNopiHuZ4axJXrf27WEwUUVFd8wVoBjP7iI74U5bm4RMVKEX6eQDek2ZCNeRCmBjCmGWdzJOwH9ka8z7aoZ1kXezfrYu5jR8SrHLJ+yxnTn2Tqd+AQ0zD5BboL4ZL4vEM19IvvrzgkaYMEuk8V6LIMa9cqFzWZ5DJr6OejZs1Ipk0byPff3xxIdXM6fbz11nquv34qf/99uuyd6XTYJzypaOuNWwKKtm7++n2iBnVBu3vrPxpjBa5cVAj0/wgNGhTvRxcQAlp6pujAzeWldmxSWRlHvkvgVPbFaUpVRRmDP9CpvGUxa9SIIC3DQkaWIlg0ukP44hQJIiYrWmZiC4ottu6vj0EVMR+n00d2thNrVTUgLJw8QMDh53qPNmaR51IFvlYsWfMRPOcvqkqWPAZ/PfZ/Ap0cRqS7SbHH8nRHkJHI15zktGkBO6r+hMtcfEqcIEOhwhueZsMWrVp8dGccnD4dDn5/bY7/09Ju0jL9/eoU+FMFLf4MAXeaB5urK7HO/gCYg7L3HDKEZ0ag9UTiCKKd1UtFn6VHzCNXf5Bk0yqOWaexJ+I9NsU8zIN1RvFc9ee5Lf5Hkg0bcYipF5Wq6Q1aRF4uk/tJrVrgp6pXtQIdOyaQnKw8tw4dfBgMRZqWGYIgcNNN9Vi3bgz33tsmUOnu6NFsBg2axYQJi0hLK/ti39egKTm/rqDgwedVbf3YQSJH9MTy/ovgKnmRWoGrCxUC/T9CaYFxhQJdFiBVU5QG9FKiaaK6YNh77uLUGo0Atfxa+gmfiK8cc2qtWpGAENDSNaQgVfYL9PQscIMpCuIbhxdpW6hpVhUVwZ+UZMOaqLKiFVZeS3EoJv2q4WfJdan++uD87fMhuM4PgCv5pjSyqcRjZUGsq02x+3dFvsH6mPvZFv0sx62/kq3fS16ctdhzASS/JULr8fHWqGcD+9MX63iyVRMyXYpkzpUUzTLihIuZLyeS5FD6tPpXTYLTS3puS6o5xgJgsKoGC4cE9c/1p0P6x8z/RCWXaZg3jAb546lZMIgEx3VEuBuik0J58Ath1BTQ3LqLAbFzOBLxCZtiHmFdzN3sDn+H06YF5GmPIpWjGG+wRfpyBcUd9wt0QYYaXvW+/vxTtVJcd92lSYK3WvW88sp1LFt2O23aqBGJs2YdoHPnH/nxx11IZTVt6HTY732c7FlrA4Q0giRh/vZDIm/rg5h89gIdVOBqQIVA/49Q5kh37eUNjGtWRR3HnqSL/xzq+AW6G4HT5Yh0r1lTmRz3Bpnd5Sqq8JbPKn1V71hU9cn2r0nq+P3bZ87kYqmcGJA+0RpFKJ/IUa6h13gCrGrKdslR7qIzNAhOI5tLOBNKE/ZlQaSnUYnHPGJuyHZBbEwJZ4ImiG4n/XACNn8qW62oHACyfIpm6UPhdQ8vUKLTM/zkMtYgLduWmQ6CFoloBBGM/io8ThnE3Gx0Og1Ol/pMIrzxVHZ2o6Z9MA1td9Mq93k6Z35O54yvaZ39Mg3z7qW6vT/RrpbYvZFFxu4V7WQZdnHc+ivbo17k79i72RXxNqdM88nVKpaKkpDvUr83q/HSa+hOvJzVKt9Sos+KSVbjKxYuVP++8cZLy2rTtGkcf/xxK++91zOQv56b6+KJJ1Zw443Ty8UP76vfmJxfV2B7+EVkfyaIbt8OhRN+SwklfCtw1aBCoP9HCM5FL6Khe4Mj3S+vH71ZkIa+J+ni1Zq6QX70496yf16VKlkxmbRs36NqInJtdTzSccXnXbtTUUatDFGZTOtpFIF+7Fg2Gp0OS4LSV6SgtDmYomq1ceZ0UgsigdJroYv5oQVH9FJRC0EhSvOvXwhOMZNkY8n88KJsIMbVirr5d9A+6z1izCXzugejWvhpUmyKpSPGoCwOC+vDg+Ku0LsKMOAh3b9YsQS9NmemIixklPs2+a3MDhmEHOV5uz3q9ypQfEqfTrYQ7q1LgqsLtQuG0zzvcX47+R33HP6Bt08/R6xtEDGuVujOe76S4CJbv5sT1hnsiHqJdTH3cSDsc9IMG4sE3OUFVQ2MCOV7uSQ4rM9G8vv963nUAM7Dh8VAhHuzZj5q1br0iwlRFBg9ujnr1o1l2LDGgf3bt6fQt+8vfPvtjrKnuGm1OO5+lOyZf+GrVlPpPyuDiDtvxjjtayhHqlwFrixoL3xKBS4HoqMhNlYiI0MsRkNXBc+5y5y6VjVSJtIkk+MQLo2Grg2yPPhEepQxBkAUBerUiWLDVjWwTKytaqXy8UggnZodXQgaDXJQ2cgMvyWgmpiLEQ/Hj2cDEFa1GgXJSRi9eehxBTR0gFoRJziZU5lKlhxEQUaSBUSh6ESmyT8LsgR+DnV9KX5yZykR8CXBrknmtGkBqca/kUspEHNtxteIQT9XuZTKa8GoHn6EdHscdaOPYdUUoBV9gVgCIEDRW0ksIF1SBLMlyLDiTM+ABiCjfJPGCCBFaSfkK+8nWEMXKDuFqU6AbG8M22wxROobU1UjIyPj0CSToztIjm4/ObqDuDXZgTZe0UaqcR2pxnUIsoYITwNi3K2IcbUm1xkUN3EZNPT9OjXPvrFbtZBMmaJae4YNKzlj4lIgLs7Mp5/2ZcSIJjzxxAqOHMnC7fbxzDOrWLPmNJMn9yY6umyuH1+DpmTP+IvwR8eiX78Kwesl7LXH0O7fhe2F90PrKVTgqkCFhv4fojAwLi1NDCmlWslnRu8vBXpCl3NZxyAIqpaeli+SmndxgXGNgjT0Pd7yafxNmsRx8GgsObmKWVGsfUo9eNwfQRwFie1DC5vkuzy4JBAFaKJJ49AhRbBGN1Q1mQSqcDRbDYRrErePYzkq9Vmh3/l8CD43Yp46DqMUW+x5ADbtqRKPnQ+vYOeIZQqbox4nxbS6VGEOIJz3U5XMlUo4E3xBKYNx5mTS7WpufIzJjk9UBZDD/7oeaLyJeomKe8EUdKl2q+ZhWf00wvpM2AS6YJ9t6mF0Z/8mBge4ABkEym6lCO6q8JICAmZfIonO7jTOv59rsj6hfeb71M+/izhXezRBVKuy4CNHv59j1mlsjnmU6tc9Tb9e84mKzCTcdGkFuozMToOS8ifKAg09ikDPyoLp0/0FbUwyw4dfXoFeiM6dq7Fy5e3cc0/rwL7Fi49x/fVTWb++7GVs5chocr+ajf3OBwP7THOmEjn6RsTUpEs65gpcflQI9P8QLVuqwm/rVlX4aRCp5VFMj5kaJzni5Y1CvZR+9IZaCb3fl7y7HCZ3gMaN45BlkU07FC1dUyMzwHglHFI1v3p9i/Krp/jlYXNtKvv2pSNJMrHNmgeOJyCzPaVlYLt1wnZ2prYNbGtLKdCiTVfLUgqIhHlqF3teiumvkm8uCBn6bWyOepxz5qUUltfTSmZqFAwk3FO32Dae8xnjLCULdE0Qwc+Y5r/Rv/4CdYwPvs97fVTTfqGG/ljzDXStp6RE6YPWdA0P78G84zM025NhCwR7J8Rjq4mcdSNPRsyHb4CvwPzj20TO6EPYknswb3obw8EZaFO2IjiLWi+Cn3hJSz8BAbOUQKLzeprkPUjnzK9okfM0Vex9MfpCaXmtsce4Y8R3fPHenWibvUqy8a9S8+DLg9PafNL9lK8NPNFYZEWIf/GFHptNeWBDh3qIjLwklysTDAYtr77ajV9+GUhMjKKVJyfbGDRoFu+8sx6vt+R4gxBotRQ8/ip5732HbFT60e3eSuSQ69Bu33i5hl+By4AKgf4fon17dUrbvDl0SqsdFDB0XBsaEHWpEexH33n24vzoBgEa+c3uR3witnLktjdpomiSG7b5ze46kOopfnDxeAr4A/4b9CnaaYo/DqmlJgW73cOJEznEhQj0HZzLb06OR3ECt07YzvaUzkX6KQ7a9F0h21Zv9RLPLS0qW0bihHkWeyM+wK3JARTfeK2CoXTM+oha9qEYfcUzzUlCaL+yruQo92DUiDhXZJ8xyJLqKFRknQQccEFlcfCcp3AGUeTjPf9WvSDmZaNL2oDxwHQsG14nfPFdRP3andgvaxL9TQMi5g7CsvYFDAd/o1r2PkTJz71fRsOQiJYoT1PqFYyiQ9YHtMt6l9q2W7F6aqrniDK+8H0cCvuG9TET2Bf2Mdm6fReVErfRoGqrbVzKYur4cYGvvvIHlulkHnrovylb2rNnbVatGsW11yoLXUmSee+9jQwaNJNz50qmKT4frn5Dyf5lGb5E5fvWZKQSOaYfxhk/XJZxV+DSo0Kg/4do104VpMEsUwB1PJGBv49dZrN7m+rqODacuPjAuOZapT8Zgb3lMLsXCvQVa1UNWG7i19AlCfmAYoqPq36ImCahfObJ/ltop1Um3h07Uohu1AT8OdWV2QFUZUeqkmIVZ84g3R6q4ZUE3blQLSXSU3y+OJRciU1G5oh1CqcscwP7YlytaJ/1NjXsA9H6A9J8ZaywJ+tKi7YvHUfy1Psu1NB/3duST3a0AxTfdiEWtOrJysbLSLm+J/QHbRB3ToG+BjnNJrHV3RCqAdEgleJ31RQkoz+1HPO2yYQvHs9X81qRPTOKZSt6Er/hVfQnlhSryZcEAQGLL5Hqjptpm/M6P33xMTPn30pKqhpfIAte0o2b2BX5BpujHueMaVG5tXYPEuuNysJIKwu0dSXg88FjjxlxOpWHNW6cJ6S62r+NhAQrM2cO5umnOwfy1jduPEf37lNZtOhomfvxNWpO9qzVuDsoZXoFj4ewFx/E+tJDFXXWrwJUCPT/ELGxMrVrK9rmrl0iziDLeu0ggX5cm3NZx1EjWqZKhDKOrac0lINhsli0DAqM21kOs3tMjIlatSLZuL0q+TZF8xGbqCk50l5lotZwigZDbw5pe9qvXrbWJqPHy9atSejMZiLrKMVJ4tmLjhg2nFI14PrRhzmaVYULQZe8GYLKikaVQAADcNI8u9j954xLSTItVzZkgdq2kTTNe7QI97tbzCmhZ7+w8Dox7JtGxJwBFxx3IXamtgj8PWDmeB5ccV9gu5ArYO/Z/mxKvR9Q2OIKka2z0veBrszZUg+qgzYohGDz/gSiRnzEM5s/hAHASJga/SDjTmfxgWcrCyOms7fq62TWuRN3lWuRDJFFxhbuzadnygpit7xDxPyhxH5Zk6ifO2FZ8wy6k8ugCLFPyTh4shoz54/k6Re/pHX2K1S19w2Jmndokzlm/ZkNMRM5GPYVedpjZdLaNxqTsImKqaKNK4EwWc+77+r5+2/lm6tSReKJJ/57KlWNRuThhzswb94wqlZVLFHZ2U7uuON3nn56JU5n2X7YclQMud/Owz56QmCf6bfviRx7E0J62SvqVeDfR4VA/49RaHZ3uwV27VK12QjZQKy/NONJXS6+UvJvLxaCAJ3rKONweAR2nLk4Lb2FNsiEX87AuHbtEvF6NaxaXxMAsaka5S/vVu29TQZVD2jfANkuLwUSGAQfrbXJbNmSDEDlDgpNqgYP1djHmjNqQF2PmitYderaC45J8DnRJalFUvRyRCl1zA/hI3Rydwt5nLDMCGw3zL+H6o5+CMXQ3uXrjhXbr87uwLzhNWK+a0z4svvQpe++4LgBlp/oxo+7xwS2jdoeSPQNbBe+KQtuHChR7sEmd9HuQjT6AuQ7mqAAaj2KT9ntUbXylBSZ73+O4tF323Dzk7fSbMIzxI77jpgn19B6Tjr3HD/BNO1c9lZ5mZXVB3MmuPyqH9qMvZi3f0rkvMHEflmDiFn9MG35AE3W4VLvNSXPX8QnHMK9dahbMIprMj+hcd4DRLrVHH9J8JBiXMP2qBfYEfkyGfrtJQp2HxKLTMcD290d1fnhBx0ffOAP3BRlPv3UibVsHpB/BR06VGHlylH066fGY3z33U5uuGF6IAPkgtBqKXj6LfLe/BJZr9yrbvtGooZ0raCMvYJRIdD/Y4Sa3UNfR22PkmblFiTOXmaCmc611dX7+uMXJ9AbaSXM/glyg0dTrrTWdu0Uk/jS1X6BWQ9kq3/y3JYeUFQj4/ZSuXtolbLTfn9vD91x9u5NIyvLQdUu1wWO12YFa89ch9efQdCz5nJWnLqpTOPSH/8zZLuSs2T/+xlz6Lnphs34/IGNlR3dSXB1Kbbd+ZztAIJXot66Y8R/3wnLpncQHRcuUerxBdWCFwScXlXgmrQOfKhUrYWR5uFiNg5ZEdDBGrro9DDuPgfNmysnaoIYZ8PCPHTp4kWnV+uDB3PJB8NmE9i1S8vXv9bk9lcG0mziC/TQzaL6LWeoessZZpp/5nS1+3HHt0IOWugIPjf6s2uxrnuJ6J/aEjWlLZa/X0KbslVJJyzs3wU2P7FMQri6X0RLvKsjLXOfo13WO1Sx90Ejqe6KPN0R9ka8z9aop0g1rEM6L81ytfEsqVoleKOBO5q5b1biySfV5/nCCy46d7689Mz/BJGRRr7//mbeeadHoILbvn3p3HDDdDZtKhpXURJcA0eSM20JvgTFkqVJSyZy1A3oVy+5LOOuwMWhQqD/xygtMK5OUGDcsctsdu9URx3HuosU6DoB2umU/pIlkZPlYIxr104Jglu0UjGVowG5tV+gZ+bBCf815HU0uzWUXOWEf03SV3cUWYbVq09R5dpggb4cu6cpW1JrAlA3+hjHs+uXaVyG43+EEG7Eu0oukHLSMgsJVbDZNWpAVUlFWADydcdDtsPS8un1+Rpa/rkf0a0ERsqCBmf9QeT2/61M4xYFCZ+sCdo+iw81yK/wrSdG7MTDUqAoXf7dE120a1d0VValiszs2Q6aNtkQ2HfrrTZWrChg6lQ7b77p5O673fTo4aVGDQlRPK8P/7rjnLkqw16+jRr3fUL0s9vovymFGZppJFW5E19EzdAm2Ycxb/2AqF+7E/1dYyxrnkWTvpeUoHTLSuHFryAtvirUKxhNp8xPaZA/HnNQMZ0C7VkOhH/O5uhHOWdcjg83OaKTeZYjgXO2TmrGu++qTIWTJrmYMOHfSVP7JxAEgTFjWrBkyUjq11dSNrOznQwZMov584uP9SgO3qatyZ65Gncb5dsV3C7CHxiJfsUfl2XcFfjnqBDo/zHq1ZOIjFQmoK1bQ7XZED/6ZQ6Mqx4lUzXy0vnRO+vUBcJ6d9n5ixo2jCUqysjxU9HsPuCPcG+rpqz5tir7tOyidt9rIVxlKdvmt3R31J4lXHCycuVJzHFxRDdSyrRVZjsmovnjkBql3iphB9uSQ/Pai4Mm96SiFfqhlyOId5ZcxvRQ2HeBv7VBdLEFmpK1oyy9Kmir7Eum5xdriUhVopRlBByNbyfrzj3k3/gj3pjGJXWDw6vaxQVBDik+45O3IbEtsF2oywrICH7zR7Bzx7ruEOmr13J8xRkOLIJ989Vjp3PySd2+FW12KjlnwJEDer2GZs0k+vTxMW6ch9deczF9uoMtWwo4eVIR9pMnOxg3zo051v+xe/z/gIICgYUr4hn+6kiqTPyOxPePMenkATZGvYUzoVOI9q6xJWHe/gnR0zrR8PdreNTyHpXFJGpEl+6e0mCgsrMb7bLfpGnuIyGpgk5NOkfCfmBT9EMsCJ+GXVQ+qnO/VOevr+IDz/TFF508++zVESTWuHEcf/45guuuqwGAy+Vj/Pg/+OSTLWVml5Nj48n9/necNwwClGC58IdGoV86/wItK/BvokKg/8cQRWjbVhF+GRkiJ06oE1Z1bzhaP+HJ5Q6MEwToVPvS+dGv0QcJdE/Z+xJFgS5dFIE7c4Ff0LZTj8sbFWElIGHUriPxoXsCxyQZcn2gFWR66I6zcuVJJEmmWtfr/G1karOBxcdUQTy4wWxmHRxWprEZD/wSsl3N0a/Ec1ONa7FplLzuGHerwP4Tlpk4xaJmcxmJJKMSNJe4P5mOv25D61aeoT0ukZwRq7D1/hwprCqSBAtn5JR47WCSHIfHhSaItMYnCQHBDXDYDX/Z4WTmEVp4/+SDLPg6KEvStO8M6wYNZ/btC5gxDuxBQegrj51jdt/uWKd/zUcd4J3G8GWjb5japimzb+jB0nvGsvGNV9g/7SfOrf8b7Jk0ayYxcqSXN990UbmOMg6rRub1150MGOAhISFUGKeliXzyS0OuefxJIh77m+E7zrLM+gX5VfogBxHkROXv5b3wxzkTX40HUgagP7E4xCRfHAREYt1taJXzEi1zniPKraY5ujW5VNOtpD+/Uzknib2TlMDCKlUkZs50MHGi5/zKulc0wsMN/PLLQEaMUAM6X311LU88saLs+ep6PfnvfIvz5uEACF4v4Y+MwfDHzMsx5Ar8AwhyGZdo6ellz2esQPkwebKeN95QTHkff+zg1ltVjeqNyI2BtLXJGd0Jk4svm3kpMH2LlgdnKQLziV4uHuv5zzUQtwz1Mqw4EKgqSmyLLijzBDh16m4efXQ5jeqlsX/15+ADuZsWIceLbDEhrHWADhzCKE7mPc+MBqrZvLsJupjhK2cb7i24mRUrbicqez+/D1FKgO5jCDOZwNmHhlLFnIlX0nDtT3+zcUzJ2nYhJH0EmXcdAL0aAbU74m2y9CUHqHVJ/wENevaGTybDsAUAq6cmrXKeR4Pqi001bOBA+KdY0230/nQ1Gv8ke6pFFWw9PiNe6g5ARobAuHFGItOW8ufw4hcUOc4IIo2KVJ5zqBtrTg9gcq+Hyc6Bp+e2wpB8kmjKGBx1iWGKiyemYWNimzXn3brXsK9JB8zVqrMjxk52NqSni+zcKfLnn1oWLdKV2le0KZMn+k7ntsZTqSpvLnI8R6zFbuN49hruwCkqJmdZBqcT7HaBggLIyxNITlZKn547JxBW7Tijfvqepk33hvR1bEs9XFtuY/QN9a6oALjyQpZlPvxwE2+9tT6wr1evWnz1VT+s1jLOLT4f1hcewDTnZ6VPUST/9c9xDRx5OYZcASAuLuzCJ1GhoV8RKC0fvW6Q2f2APrTy16VGl7rqOJYduDiaf70Abf1m97OSyAlf2dWZQtPggSPxnDhTGTQgdFYWOUKBA3mnMvHo5WXERlbCG0QFu9Ifn9VXdxSQWb78BImdrkUfpVB11ucPdNTk511KG63oo1n8HnakNLjguER3Lsb9P4fsq20rfRJbGzcWCR8N8scHmM1supMcCP8yUDnMK9g5ap0KQOvf94QI881DWhEpKyaK48cF+vY1s2GDlnhzWonXDC4Hm1+gxZz2F199Bx9/DpWTd5QozGUErEJR1rYWfbrTpXtVenQN3V9XB63atCS+cjxNWkLtJhBbPQJjRGSJY3Okp3F27V/s/Pxjej0ygof61Oa2jgk8lDCaMQ2/Y2iXw0x6QH9BYQ6Q5Yjhqbn3U+31TdTbeZiX81/gVBDpT6R0gq72ZxibVofIlRP45o0TPPaYkeeeM/LGGwY++sjADz/oWbxYx65dGrLyZazjc9nRtBWL6EsKKhtfnXZHaDzhJY4nvkuB5uotNSoIAo880pHPPuuLTqdM/8uWnWDgwBmkppYx8FajwfbqpziGKWV1BUki7Jn7MM766XINuwJlRIVAvwLQqpUPrVYxlGzcGDqdNnWrib979ReOcL4YVI2SA/XRd5zVhAQa/RNcr1ctDcvK4UevXj2COnWUalZf/+w3EQZll/nWKH50DSlo2UHNHz4IaZ/jgxqaXNprzzFv3kFErZa6Nyt52zoc1GcLMw6okebDG/3G1L1jyjQ2847PQVIXPlZfNSo7upfaZk3caGS8NMt9NMBFnmHYQopxDRIe9od9hkfMJTwlj0rHlXdsizKzbWBzwnx10cthZGQIDB9u5vRp5SfbKPF0idezeazk5cPCRXByyUoMp+aTUkr68FAr3B8JL0TLPBoN44LKl7cxwMCtK+m+6yzX7oPWQdVre5ih/8md3OdOY8gZGJUCEwtyeVKbw7PRcF+0lr7xVagf1QSDvgUuoT5uIotc35KXQQN5Hn15mHtpzRPEMYThtORHrKSU+mwLcdRUj5dsL1M76Tj9Z85nyfHegWMmnZM7W/zAvrubMGvQYNokFE27iumaxvU7llPzPiUwMYM4xJSJNMt9HEtQ8FyWYSdbo57huOW3IumJVxOGDm3Mb78NIjxceaG7d6dxww3TOXiwjHOMKGJ7aTKO2+4GQJBlwp6/H+Ov312gYQUuJypM7lcI+vUzB7TzrVttVK+uvBYPPibFrsQt+IjwGXg/q1ux+cuXCm8v1fP+CuVH/s4tTsZ0/OdRvIe8Il2ylaC1LjovsyMdF2ih4uWX1/DZZ1upUjmXM1snI+TIyN1AkECqHou4MAMEsAuPcEz/OHNi1LKrkSI8GAUfOTrwkP0GVq0aRUTWfn4frJDRKGb3hzk5aSA1rApxTfsfNrF21LUYSki7CkZuv59w1xsY2PYKdjZHPRFSFaw4xLhaEefqyMHwLwL7wj11ydMpTF711x6lxeIDAOzo14SjnWpT1zaKqo6+jB5tZPFiRWtt2NDH+odGEHW6qO/S54P5yyPYvzMX33nZVImVYZWtDQU2A61lxeTayQi9LKHnnfHA9/44xA5G6Bt0fJ4Ndvnl2MRIiP0HoRY2Cfa4o9ldJZZkr4wvKQWts+T5RazaGmOrARjb3IImri6yDJKkZIXMnKnD5RNglP/kNMAffF0v+jCfjfqUrtafMMih9MlJ5u4crvIYB5rV50CDk5y0qsEBWllkdH4TOruUVC0ZiVTD35ywzMKlUa1kRl8c9Wx3hMRIXG04dCiTkSPncuaM8sLDww388MPNgTiWC0KWsbzzLOYfPw3ssj3zNo5R95XSqALlRYXJ/SpDr15B2uwyVZvVoaGhW/H/5WpcnNVc3oXVDU3UcSzZf3Fm9/oaier+QiEbPRryy8GN07evkod+LjmC7fuaQhQI/uA48XQG8mFlUaOX55HgNZP7w2OBtjkS5PlguGEvGnzMmXOQxGs6Y4hRWNkasAATiXy+WWVQG9RgDrMP9SnT2CwbXgdJfU5a2Uyj/Hsv2C7TsCNEmAMBYQ5gzVRZ0TKrRyPIWio5u7B6tSYgzOPiJKZPd2B1FCVZyciEb36APdtUYS6LesJrN+K+cTC+KzylO8M7VtV/aihmbRic4GC/JoyU1+LhQ+A78AbJLq0B+Bb4BHgVeBS4E/KGWMnuEUFeAyteY1GJbxXhGmMW92Qe5qXcI7xizueeaJFedatSv35dDJbQFYZ0djv2BS+S9VJzpM/aU/vsG/TrfJwPPnBx5oyNuauD2OSC1lRHsurT+6OPGbjhJHuqvokvqORson0l3Y7cyLU7+qPPVkmDqnvCeT77moAwByV4LsHVlfZZ71Gj4BYEfxqgU5POnoj32Bs+Gad4ed1hlwsNGsTw558jaNFCcS/k5bkYPnwOCxceuUBLPwSBgidexz7+kcAu6xtPYvr+48sx3ApcABUC/QpBz57qNLp8eaggDTa777nMZvdmiVKABnbtUQ22i7AqCgL08pvdPQj85Sn7AqFt28rExirpXp986/eR91KPS0sVM6iW42jYS9PBI0La/1EACWIB3XUnmDPnIIgaGg4Z5m/jogVz+WH3LXhlZUxjW/zAD7smlWls2qxDGPeF+tKjPE2pbbu1zPdXHISgBY9PK1LF0ROdbOHHH1V/8osvuqhS2Ys2O3TCTUqG73+CVL9rXRThmg5wuM47dKoeRvxKYDk0F9JwBdnkCgW6x6Il675IALxBx2Pa5JMwIA16Au0hiKMGbXugA9ANGAiMAR6G8BdtRE3OJXyWDe0mHyxDqcb2PNhHGcm9Jgx3mPotCAIkCBKdss8yIvMoTxgKGBNnoFPD2sRVDaXmzdy/l81vvcbUNk2ZP+gmDv46jSNnFcuPqPPxwMQc7ngpnWr9UkkcdoY6jx3i7KDjjK/ViUF3fsqnA+8mOVr1jTc7sZ/3vnyWF6dNZuJJM8/nXENVX/HakAY9texDaJv9FpFuNW0ww7CFLVFPcNa0OBAXcTWhUiULc+cOpXdvpYaC1ytxzz1/sHz58Qu09EMQKHj4RQomPBnYZX33OcxfvXc5hluBUlAh0K8QNGkikZioTAbr1mmw29Vj/6YfXRCgT2NFCLt9AqsOXZyW3sugLlSWusrel0Yj0revMsFMn9cAhysKeoDsF0DCEkeANc4o/UZHdxUy7lBJZA574JwHRur3cO5cPps2naPx6LGB4235inR7D+YdVhYLlSxpxJnT2ZJUcn53MMwbXgd3aBBRNcdNJDiuK6HFheE2q4Lbmgs17Lfg88GqVcpzi42VGDTIiyZzP4JX/UCyc2DqdHD4PRphkQbGj4Xe18K9uTPpsGczqKn8nEtQ68Ib/TOA7iYv0eE5QKhA1wb5zAG8QV4TrYkLQwQSgI7AMDA/4STi63z067yKafxNcAwzUFBXzdUXBaghueiVfpwJjnM8EAXXNEgkomblkK7P/b2GlZPuI39cNe4z3MDghz7m5MhlZL34Fy0XrqHNbxtp/O5uak08RnzfVOQEiaXtenLfQ5N5b9gkzsUmBvpqs389vb8dQPjyhxBtyaXeksWXSIvcZ2iUNyHAFe8TnRy1TmV3xNu4xLIXmLlSYLXq+fHH/gwbpnz/Ho/E2LELWLOm5FiNEAgC9geepWDSc4FdlsmvYP70DcpFFVmBi0KFQL9CIAjQo4ci/JxOgb//Vk2VlSQL8T5lwjuqy8ZxXinNS41CgQ6w6CLN7p10Piz+mt9L3Frc5fhtDxyoCFu3W8u8pV0hFgR/CXPxVAbyHuUZGeSZxPkMWB4cFdL+zwK4Rb8fKy6mTNlNVL36VL5Gia6L5RA1SebTLSp97BPXvMM7G5+jLNDYU7GsfzVkn4BAA9tdxDtLZoMrDXmVVM2w7vFq6GQrZ84I2O3KKqZ9ex9aLeiSVGY2SYJZcwkU9qleDVr3aUmCEZgLXX3rAuf6qgi8OfMRzt4aE9gXMLnrUUqoEmpyLyLQgyw22pILq10YAlAduAlMz7uwzLXDauBtcA4w4IpTU6iiReidkcRD+ck8ECPQoGllhMqRgeMam5NKXy6mSeNHqNf9ZSLnblYezHlwZ+pJXx7PkQ8b8e5TTzF4zmF21vgYn1nR2AXZh2nvD0RNaYNp+6fgKzmeQkCgkqsz7bPeCwmKzNbvZUvUU6TpN5XY9kqFVisyeXJvBgxQ0kBdLh+jR88rF1Ws/b4nsD2m/i4sn72F6afPL/lYK1A8KgT6FYSePYPSxpYVb3b3CTIHdZfXX9e5to8wgyJ5lx/U4r6I9YNRgD5+s3uOLLDGXfYoqs6dqxIfr/hTn3mtPrKshaAia9ICP780yejkv7i2zrUUtFWLpiT5YJ/Lwx3GnSxYcJjU1AKajrkzcLwdn7P69Eh2Zih1pFtW2oXdE87hzGplGp9p55dok0JLqwqINMq/j2r2kklnSkJ6TVXQRp04CUB+vurkjvUzq+nOqT7wPfsUcztAdBQMGGgkQnDCQsAfByYbgR6QOyqc+xt8Sc0s1Vxv9Hd/LttKVooioUM09CCh7XVCcpDrftsxWP8l/P0prJkMaz6CTd/BzhlwYBGcXA/Zp0IK1ZWOaOBGML7mwrDCDb+Cd7yIo7Yx6BSZW5OTed6Vw4hEI3EtqiEZVeEfvmofdQa9R/tGT9Ln8/3cldGIZ7I78l5GN8Ys74nnqWvZ/3gL0hZXZtPfFlrd8wA3rTzEibovIOmVBZXosWFd8wxR07uiPbfh/FGGQCdbaGAbR/Ocp9H7lMwMr1jA/oiPORj2FV7BXmr7Kw1arcjnn98QiGGx272MGDGXHTvKlm0A4Bj3ILan3wpsW955Fv2apZd8rBUoigqBfgWhSxcver1fkC7Xhliq/k2zu14Lvf1aeo5DYPlFmt0HBJnd57kunF9cCI1G5JZblPzwk2csHD7TVfGj++d34c9MCuuZGOWptHZVIve+G0P6WGWHMboNeDw+fvppN7VvvBmjPziuEbOJJpyX/1LN5E9e8zYvrX2tTOMTkAlbNhE89vP2i9QpGEnjvPvRSmVnIbFHmXFEKe9Zl7wJ3LaQb0CWAcmL/szqwL6NQXwqN98Ip2x1abprL/i9AWfqJyLcAtSFaHMuYYIdZ1DAd6GGXqW6jWi9oqIHW1HW/2rknRtr8llXeKMuuINudfE6WPYKrHgDVr0Dq96Gxc/D/IdgxjiYMgQ+vgZeqwXvthX5bgD8/hhs+RHObAntqwgEoAloJ0mY5jthHnjHa3BWUUwGggD1XU4mnD3D0yY3deLqIESoJnnf4VNkTHyJw837YPv8F8Ic0KO7xJ9/2pkyxUGDBuriefHKCOqNf4nHkg6S2+DOAL2sNmMfUTP7ELb0PgR76b+5aE9T2mW/RZyrfWBfinENW6OeIVdbepW4Kw06nYZvvulHt24KH4TN5mb48Nns3Zt+gZYqHKMnUHCPEqgqSBJhj4xFc+TAZRlvBVRUCPQrCFYrdOqkTDTnzokcOKC+ngbuaLR+B/JefUaZ6jhfDIa2Us2NM7dfnEDvrvcS5je7/+nW4izH0AcNUklj3vioI1gBv4VTzCtAWqloVQZ5AXo5i0b9B+ONUP2xXmCvI4ee2qNMmbIbn6Clxb1KnWcRic5MZv7hMRzNU8yuXauvJd1emR0pKvucw1OybVmbfYSwlQ8X6yeMd11D+6x3SHT0QpBLf4Y6KYKGefdCVSVfXpA86JI2UqmS2m9qqoju3DpEh2KhyckhkF9eOQFq1gDNEdCl+UvyRur47Ju7obAkuH9tcXivatq3Fn5iJiBXyQ5YGiRos7Y7cew8ScbRCzKplgwZ7EkSZ7fAjl/gz2fg+wHwZj34uIvA74/B3nlgK01e1AHtJB/GP13wAzgGGvAalMEbRbhdOsbzmmSG10mgal3VSlOQnMS6555iWsdW7J/6I5LXww03ePnrLzuffOKgenXlpnw+gQ+/TqTuo9/wW9RfeOJaBvow7p9G9E9t0B+eW+pt6mQrjfMm0TDv3gDfgFOTzs7I1zhnXHbZf7OXEgaDlh9/7E+nTkrwaU6Oi2HDZnH4cNmtg/ZJz+HqpTA0igX5REwYjpB9dWYDXC2oEOhXGILT14Kj3Y1oqedRgpkyNA6SNQVF2l5KdK3rI86qTHZLD2jJvgjLoUGAG/xmd5sssLIcJDMtW1aiUSPFFP3TdD3Z9mthsHpcnqGwoAh4MMrT6CrWJev20PKkp7wwVFxMWloBCxceoenYu9BaFCnXgilYqckLK7sFzn/r+qd45i81Qlen8eCRSh6z8cB0jHt/LPaYXo6gvm0M12R+TL38O4hxtcHkrYTeF4nJW4kYV2vq599Fh8wPSHB1wVNF9b/rUrYQFyej0ymC4MwZAcMRtRjGObWIG/XrAjLUOHEqsG/7+Oa0QqWllc0w4ekbyUnyW0kEsPg19L92teLr3yozOYdi47Q1QMJ53pKBVhhihWFWGBEGw8PgFivcaFFIZ64xQmM9JGrAXBx1ggzZx2R2/AKzJ8D7LeCzbgKLX4Dja0MyA1WIQFswvepCu0LC96SAvbaf31+AhjkpjMs+xpjqUdRpogY4FiSd469HJ/Hrte04Mm82oigzfLiXv/8u4OmnXZhMyjPOyBAZ8XhXOv+8iWON30fSK9+X6Mwm4s87CFs0DsFZMt+AgECCqwtts98k3KMsCmXBx5GwHzlk/abYErlXKsxmHT//PJA2bRTLR0aGg8GDZ5W9prookvfWV3gaKemhmrMnCZ90O7ivnmdwtaFCoF9hCE5fW7YsdAZtFmR232You0/rn0CrgcGt/ClnPoH5u8tuKi8OAw2qxj/LWXaBLggCt9/eLLD9/YwblWItNZVtzZaz4M+uMUnfUc1rwXzn4CL9pLgz6Sjs5eOPN6OzhtNs3F0AaHHTic/4df/d7M9WfPJtKm8n0mjjj6PKwkAr+sh3lU7sYP3rcXRBpvDzoZcjqOLsTbO8R+iQ/QGdsj6jQ/YHNMt7lETn9Wj9fgRPZbUSjTZlG6IINWooIjb5jAvD4TmB4zlBketxsUAaRBQStCTCvi6NuenM4sA5v61qQl6+gWidEoVtMSsR5btdsPK3gyTbk4vokC0NcE8EPBMN91RVTfQxIrSoAU3eh0ZfQP3PoeHn0PwzaPcuXPs89H4Iho6F8f3g8ebwdCzcGa4I/FYGqKwpSjObcVhm07cwdTi801xk4ZOlCPcI0NwuY57rgM+goINqmalRkM3tKfsZXyOa2o0bBfbnnjjOsrvHMm/ADaTv2YXRCA8/7GbdugL691e/0S3b9DQZ9zDvenbhqDMgsN94aCZRP1+D7tSKYgakwiTF0zLnOaraVRdQimk1OyNfu6qi4K1WPb/+egvNmim0xampBQwZMouzZ/Mu0NIPs4W8z3/FF6tYwPRb12F9uXiLVgUuHhUC/QpDrVoydf2c6lu2aMgOWgy3c6nEGJsvs0AHGNo62Ox+cQL9Or2POH+i9RK3loxy1EgfMqQRBoMy9b/xnoCLjjBUPe77TQli03AKvfwHfep0J7dvy5A+ZKAf8zmx/zSLFh2lxd0TEA2KEG3H54RTlYcWq8Qyr1/3LE+s/AKnV7nvcEMemY5oSoLgcxO+YCTatF0lnlMWSOE1kDWKn1hjU6KL69ZVntugOtMRnaowcAVFnBuN4Dod9I7qQnx0OpZ81bSycl8tvnl3fsC0LYomlhbAXBtoUPLR9Oe9lu6dIeE5EOeA/De4/cf1AmTe3ZJ5wwdADwL/lvQfyr6hj2Mb8wiOB8dS8NIACr5qh3tRDPptUG0xtPsc+j8Ad/eCJ6vAqDDobFQ0+eDLu3Iktk1VhPu7LQQWPQfpxbmjRaArWL61w29g660K9kRbFqNSDzCmXgJVG6mCPXnjemb27Mpfjz6IIzOTqlVlvv3WyezZdmrXlvzPV+Cp12vQ+dNZHGz+XUBb19iSiJx7C9ZVj4WG/RcZloa6BbfRKG8Cor+oUr7uGFujniNHW/Z65P81IiKMzJgxmIYNFUvZ2bP5DB48i+zssjE/SglVyPtsOrL/92aaMxXTlM8u23j/l1Eh0K9AFEa7S5LAkiWqNhstmQLFWpK0Ns5dZta4ppUlGiX4FxenNBzP+OeUszoBhhlVkpnZ5dDSo6JM3HRTPQCyslz8seZ2GEAgOE6clx7IszZLn9HMHYf3iRFF+vHJHkYzjfffXYcxNo4W4xV2Ny0urud1lp0Yz19nlevUjjrB8Ma/8cb6h5RzRB/IYPOGF+m3EKI7n4i5t1ycUBcEJKOycBD8vvJ69SQEJB5s91HoqUF/y0B6shol74uHRvqDIcxpd03YhuyQkPzrtPx8Bxuc6vHmepgUCTWDXo3ha/DeVhnqg8+r+tF1AkyN78T34SM5qVWzAnI1MWwzuJhj8TLHEsEsSwtmWEcww/ohsyIXsabhbE7cOJmFk+5lyzdt8W3QUXsB9HwRxt8AT1RSzPiN9RD8hTizZTZ/D593gx8GCexbUEJWWWOwvm+HWZDfW2Wcq5GVwp2pBxjWoj6RVfzc7LLM/qk/ML1zGw7P+g1ZlunSxceqVQVMmOBGFBUtcscOLS1Gj+UzzVbc1dU0R9Our4mc2Qcx70wxA1FRydWZVjkvYvApFjaPmMuuyNdJMawttd2VhJgYEzNnDqF27UgATpzI4d57/8TnK1tghbd5W/JfV9PXLO88i37Vossx1P9pVAj0KxD9+qn2xTlzQjXjYC19y2XW0gUBhrRSxzJrx8Vp6SON6gz8i1NXLqvbuHEtA3+/+LqAK6In9PeP0+7EN0eJXNexAb28metb34ytU9EKapU5R439P7F48TFaTXoYXbiSatSCqVRCz31/DAuwxz3Z8W3mHBrNztS6AMSYsziaWavUcYqODCJm9QtJLSsvBD97i6xTNM26dSWGNZ5B8/g9IecZg2L1nE6w56gR9Um1EqlrOgk5yrZX0NP+2mRyS0gpvskCt4SBRQSX3w4uaGFh7OfkaJR7CQ7m1wtwi/d3fkm9k5peVaANs33JaNvHjLZ9zG22ydxhe4Wx+Y9wu200QwpuoJVrNF4+wWQ9wAZrO+43f8yS5j+QcucTFHzTHv16kSbfwdC74PHaxQv30xtlZt0D77fR8Nf74Mgp5oYaQNj7BTAD8jsqgl0QoNHZw0x0nqVbp/boLMrzcmZlsXzCeP4YOYT8s2cwmeCll1wsXGinXj1/gKFbYNLzdRkwbzGpHd5D1igPX5e6nahfuqA7ubz4B+tHmLcmbbJfI9KtFBuSBR8Hw7/kjOnqEWqVKlmYNWsIsbFKzMKqVadCyrBeCK5+QwJscoIsE/bYODSH91+Wsf6vokKgX4Fo394XiL5ds0ZDaqqqi7V1JeAPGGezIfmyR84OaeVB8F9w+hYdXt8FGpSCelqJdlqlgwM+DTu9Zf/82rZNpHVrZTGzd286G/ZOQL5dPS5Mc4N/vWCR3qajOxHbE8NC+ij017ZjK3OeehNdWATtHn1caY9Mb57iYOYo3t+k1EY3aN183GsSdyz4DbdPESnN43ezI7VlqWMV3XlEzOmPcc8P5fYVCvZ0RFcOAJKfe7xBrXze7PZ0kXMNRvW7cDiAoBK1aTXiwEfAcpElRIMA2cUQf/UxQ5ugxYHD/1rckWHkaq8h3+/zDU4z0wlQQ3cWq1y+4MwwuYB6nmP0cK5mkuMLvnXfR0/nOLLF+Swx12FG3Dvs6PER+c8PRlxlosm3MHQ4PJKojDMm6JNxZPhY/T580FZk1TslCPZGEPZ1Ab7PIL+uIti1wHWHNnN/JQP127UNnHp6xTJ+7dKBA79MRZZl2raVWLHCzr33qkFcixfraTvxYf5usgJfRE0ARGcWEfMGY974ZqmpAHo5jOa5T5Lo6BnYd8z6M8ctv101EfBVq4bzzTc3odEo39pHH21mwYKyp+XZJz6Ns+8tAIh2mxL5nnV503D/l1Ah0K9ACAIMGqRIJ0kS+P13VT+JlIzU90e7p2rtnNZeXrN75QiZXg39qXS5Iksusk56sJY+1Vk+jf+uu9TKIG9/UICr9nCFRxwQU3KR5ivPRS8vxyhvo3P3IdibqVWj6qv8I7RKmcnUJybT7M7xWKsq+bZ1WEZjdvPymjtJcijm6+41V9Gl2nqeW61oFqIgUzP8JPuz1EC94iD43ISteJCwJeMDpvOywHhoVuBvb+UOALTPeZ5akSeLnGuuoloLjqdFYtCq/tyMqtGQRYAed09aTW65cwLvv31nSB81tUpFNVqr+2z+LARfpIVd+jQ2GJTytOdr6Bghz1/jvRD54vvki5+QL35CnjiZXPFlssRJpGluJUPsiE1IRDpv2tEg0chziEEF07nV9hj1PM+wxZjFzKgn2dHzbfLf6YN+jYaO78LEDjAqHBrpVZeD1y6xZjJ80EZTvGAXQNMVwmYW4HzcgNus3F94biYjjm9lUOc2mOOU+/AU2Fj10ESWjh+DMycboxFeecXFtGl2oqMVYX32rMj1t13DR571uGrd4L+EjGXjm4QvvL0IL0EwRDTUs42hZsGgwL7T5t85bP0WiYtYLf+L6Ny5Gi+9pHI3TJq0hEOHyviNiyL5b3yBp4nyW9acO0XEpNvAffWWor2SUCHQr1AMHqyaumfPDhV87UPM7qXzTl8K3HmNqqF8v/7izO4DjJ5ATvpsp46scuQ29+9fn4QERctavPgYe04+iDw+SLX8RtXSzdJbdHdWJ+/F2wKH02WRToWkNED+1Fc4smQZ1772ZuCcG3gQyduDUXPVyOZ3uj/BgiO3seBIZwCiTDkgeTlhK2rSPx/GgzOI/qktxj0/XpAyTcw9hXnT24FtZ8NhGA7OJOrg1wB4fKGLKWucGqS371x1wqxq5HFOZDgE5XVvPF2JeYsHkXI0NKe+q1lZQHKPsi3L4PWXavNFmunq+IyRtmkAuINioHRArnk6f6xdyrlkJQMgNz8Wpzgep3gHTvEOXOKduMWH8YmvIQhfI4tLcWgOkqlJpY9tE/cVfMZM323kijVD70suoLtjFSNsL1HH8yobjTLz4j7g7NDHcc+qRO2pMGwgTIpW6rUXTmJeh08R7G1F1n1WTLyaFoyjXejne8nurRZ9b3ZwGxMtbpp07RrYd+z3ucy4vjNJGxWTcq9ePlautNOxo/K79PkEHn2uMnevmUNexxeRBWUUhmMLiZx9E4K95KR6AYGa9sHUyx8TKE6QbPqL/eEfXzVpbXff3SrAEVFQ4OGOO+aTl1dGoWwyk/fZdHzxSjqcbtsGrK88ermG+j+FCoF+haJBA4kmTZSJdft2DcePq+bUNq4ERP9EsMWQctnNdd3q+agd66/AdkzLodR//tlYBRjh19IdCExz6i/QQoVer+Hee9sEtt+ffJaClk+DQs+OmGRDmqf4xA3yMkzyDnr2uj3gS8/wSERrFCEAima44p4x6MxmavRWNK0wkrme91h58l6+2KmY3s06B1P7j2L8n7M4maP46hvHHiApO4Z0d9ULjlt0ZBK2YhLRP7bGvPldxJxjoaZ4yYv+6AIiZ/QORLE76w9CtCURtmxC4LSz+eq13NW6ESGoi7n0bCuRUSoFnMYhhwj0lQejgFiiCnP8/AgEwPnnYqUSmzK2SuF5DCr4PXCu5zyTu89cE4fDi8n/Pr3SecTvJUEw8LenHV+6J/BCwRTc4m4yNfvJET8lVXMTLtQo9XDZRi/HUgYXPEi+MJ/ZYbexutV7rHu8E5FL4KZx8EAstA4W7HaJ5a/Dx100HCqOcTQBot7PxTVZiz1GWeCY83MYsm8NA3pehyEiEgDbubPMv6Ufu778FFmWSUyUmTPHwQMPqILrp6lGbnz7Oc52nxWgjtWlbCXqtx5ozquIdz6qOHvROH9ioBxrhmEr+8InI1Fcjt6VBUEQ+OCDXjRpovwejh/PYcKERUhS2eYiqVKiEvluVPzxptk/oV/xx2Ub7/8KKgT6FYzBg1XzdLCWHibraRREMnNCm1uk7aWEKIZq6T9suDgt/U5jUF8OXQh3+IUwenRzIiMVwTF79kGOnBuFd4Iq6IRvbCFaemdXFZxv3BU4vsqtoZcFmvjXEYLPzR+3DaPadd0QDcrk0p5PqYabR5fewakCJX+2beVtPH/tq/Sf+Qf5LkUIdK62ng0nW5HurVGmsWvyT2NZ/yoxP7Yi5pu6RE6/jsjp1xHzZS0iFt6GpkAR0N6ouvhimxDx+3AEnyI81iZ1p5JFoYWTEfBUbofVdw6NPzAgSjyFaFYfpCZDgjT12luTE4BIavJXYF9dnV87j4aCM4pkdwS9i5phob5N93kmd9lkxm73YvRnL/jKKNA9Mtj9BvNwv7VGEqriEUcjCr+QpzlJjjiNdM3NuFEtCo08hxlp+4Bm+tfYVaUJtyVN4fiDXYj8A24eCQ9EK/nthcg/6+PXMTB9rEBeEkVg6OHFPMdJZu+owL6WO1Zzd+04qrRSfBCyz8e6F55h+YTxeOx2tFp4/nk3n33mwOCvd7BunZYudw5gb8cl+KxKBTdN7kkif+uFNqn0Ii3xrmtolvsYoqwMPMuwiwPhn10V5nezWcePP/YnKkp5R0uXHue990rnvg+Gt2lr8l/8ILBtfekhhJyrJ0f/SkSFQL+CMWiQNxCQNnt2aFR4O5fKW735XzC7D2/jwexnLPttm4585wUalILaWpmefua4s5LIknIwx1mtesaNU/xvXq/E5I92YmvxGfjJ4YRkD7KfodMgL8Uob+SmlgPJHqgQthR4fGx0KIxm1XXKwkTyuFn3wjNE1VWi2UUkbmE0Pm8/Bv46DI+snDexzec0iz/M8Hnf4/Pn0fevv4BlhzqR4lHpRssC0Z6OLnUHutQdiG51QSZrDCDqsKx/FcHPpuKq2YdIXTpmnWLzdrYYj/7kMgQBwv1ZdCYpFdQsLQxJLvDLY4cpnDyXERERHeqLiy6MEuwEJ3dGKucGfWNGZRc5ohI4dr6GLhvNOJ0ezCZlnLJcNoGeJ6vWpvDiZiDBiEe8GYRp5GmOkSW+R46oUvFGSzlM4Bs+6zCJLQl12Fz3c+xvtCdyPvQfqBDhBKfeHV4i8/G1GrZNKyZGMRpi3svG9roZt0l5z9GnjzAm/SDtblYrAR2ZPYO5N/Um/9xZAIYO9TJ3rp24OMVydeqUSI/bO7CxxSq8sUoku+jMInJO/1IJhwCiPc1pnvt4IFc93bCZQ2HfXBW11WvUiOCrr/ohiso7fe+9jSxefKzM7V0DRuLq1hcATUYq1jeeuCzj/F9BhUC/gpGYKAe43Y8fF9m1S31drV2V0Pgnxk3GZLyX+ccfYYIhfqKZArfAjIskmrnLpGrpX9jL19fdd7fCalUmv19+2cvRM61xTrghcFz4hkDRFovvKVq5YtG8cg+yRnl+a90ieRLcEeZB0CjBULLPR+Y+NS0smuP05lV2pt7DfX+qfX9z43jS7XW560+1mtTIJtNZsPd6jrnUiGkAnyUByRBZrnsTfC60mWoRC0fzu3B6DTSLU8Z21lEXT2JHdGk7lfMNihCVPF7cQe7xuMMZFCp5OX6a22hOhFwrECRfGXJPKtYJR9BnZIqCfKEPWwxKANT5GjomE26XulOSi3Lee2VI9gns9ojs8ojs9Yrs9KjfcaGGXhJkIQyfeDceYQvZmsXssqnvIlLKZXjBj9TxPMscSxf2NvoO5+SaJPwIo5vBYKtKbetz+lj4OEwdqSE/9byLCGDtb0ec7iOrfiQAWoedG9cvoP/QW9CalZVSxt7dzLmhBxn79gLQtq3E0qV2GjVSHnRGhsiNI+qxrOayQL664HUQMX8YutN/lXqfkZ5GNM19OGB+TzWu5Yh1ylUR/d6tWw2eeaZzYHvixEUcO1ZGelhBwPbyR0jhkQAYF8yoML1fBCoE+hWOkoLjLLKOlm5FGOWJbnbq04q0vdS48xrVBfD133rKyClRLLrpfNTXKBPhZq+WjZ6yl1WNijJxzz2KSdTrlfjgg43YWnyF3NWvIaYAvyh/6tiJUZ7OrVX7kD5R0QR8Pok/7QIC8FR4OseFxkUvArTlaxpwlO923cW0g4qwNuscLBh6MytPDueeRc8Hzh3f6luW72/NisyRgX2aghQQNbirdcMXdmFfezB84TXIvXGKktd+VvFj2z0mfpWnKOlRfhwraBL4OzjfIfaEGnVs88d/xRNa7SqgJ8eANlsRHMEauikSXOJTgbQ1z3lBcbLBhDdIbZcxIcuw2q3hGZuB67LMVM2w0iLLSs8cC71yLHTPtjAiT/WRz3HpeMZmYI5TyymfUHKWnyCQ4+5Ej48X0vSjPcw+dguS/w5ipGxut72PTn6LXy2PkHnNk0hzdDR9ECbGhprhT6z28cl1Oo79VfQS2joS0T/nkDIwLrCv1cq5jL7+GsJr1ASgICWZef37cu7vNQBUqSIzf76dtm2VbzkvT2DwbQnMC5uNq7ZC+6oK9VUl3JyCaE9zGuc9ALIyLSeZll81KW0PPNCOm29WSJny893cf/+iMpPOSPGVQ8qthr30YEURl3+ICoF+heOmmzyBkqpz52rxBbnWrnOoDF1rTKWzVV0KNK4s0aWOssA4kSmyYM8/T2ETBbjfrGrpH9vLHhwHcO+9rYmIUGbqGTP2c+iID9ukV1Qp9SUBk7NFeplaHpG6zz6Ku4oSe3DULXPADXpR5v6wLFbQPVA2Mxi3cAdR1OfO+WPZlqVMWAnWVP4Y3o9ZBx/kgaWPBc69p9XX2DJtvLv3bXwaRWiJjkz0Z/5CMscr2nbDYUjGqCLXAZBFLe7q15PX6wvy+nyNZfM7GI7MA8Dl1TN49mx6VV+M1h9steFsDQ7kdwu0zwv6NmLOqr5IoYoidCtr9oVcz1MoJ2LB6lR89cEC3RtlwUkLPP7C6iEmd50GdDp8XjUPPVsbRtdsM0NzzXzr0HPApwkI3dLwrUPPvfkm2mVZ6Zxt5nWbnp0esYhw/2adnswCkX1pTfll+2/kaLaQLvYOHG/gOcIY2yS2GXaxOmIGBfd3xzQX+l+nFI8p1NY9eR5+HgnL3wTpfFe1CRJeSSf18TgkQWlQbeNyxtaKJb5FSwDc+XksGH4LxxbMAyAyEmbOtNOtm/LbcDgERo2NZIFlGq7a/QAQfE4i5g+/IAd8nLsdDfPvCUS/nzEvIMm47ILP8L+GIAh89FEf6tZVvu1t21L49tudZW7vGjAiYHoXM9IqTO//EBUC/QpHZCT06KFMFGlpIn/9pWqyjTwxxPkUU+k+fSbp4kWURCsjHuyuCuHJq/QXVWNhsMFLVVFZxS93a9lXDqKZiAgjEycqWrPPJ/Paa3/jbHIf3iF+X2sB8LHyp4ZUzNIHDBJbkjF5fKCPRS4NLgna6VJob9TwK8MR/IFxhTCSyzBuRfINpveU20jypww2jdvH4uF9mbL7ecYseBGPpLyXAfV/p2fsdG6dP4skU7dAP7rU7Zh2f4suaTOOFuPJ6/stuQNmkNv/N3Jv/pWs29aRNWYXjubjMBydT9TMPmgzFAGc77YyaPYcJJ2V5plvKPcsCdy3+G0iw1Ut6EB2DHa/H9ua7i+IboHEurmATBVdaNS1PUigR/nV71ytagXKia1KttaFSfbXSQ8W6HrlOl6vunO3KYpDvrJbWorDUZ+GjxwGeudYaJdl4RO7niwJzmYLfLRKWfSJgszjPV34hPogziJbnEeeoMYw9HYsppHnXn4Ou5mUeh/h/d5E/adgQizUC/LurPsEfhxhwHl+nREBKo1OJ/uzCJwW5T4j92zlDqObmtcppnTJ42Hp3WM5Mm82ABYLTJ3q4OabFSuW2y0w+s4IlsX+jKuO4osXfE4iFoxEm7yZ0pDgupb6trGB7SPWqWTr9pXS4sqA1arngw/UBdabb/7NqVNlDNg93/S+cCb65Qsvwyj/f6NCoF8FGD5cNbv/+KOqyYoIdA3S0tcaz172sXSp46NNNUWt2Z+sYdnBfz6B6wSYEKSlf1JOLf3uu1uH5KVv2HCWnAdnI4f5P+t5gH8eNMmfYpVOc2OvMeTcpJjrbR4fy/xm5FfNq9BqovhRvAtztZoh16nMToZyF1mOMXT5bgS5kqKFtEvcyh/D+zHn0CP0/fULcl3KYqBVwk5+7D2E52fdzrvnpuOKUGu6a/JOYtn0DuGL7yJ8/nDClk3EuvopImffTMz3TYhYeDuGE2qFtFOuprT7YQuHshow45ahCLLy7F9f35ddacPo20il3ly6L54zkvI9iDaU7LMaYDb7qBRnI14IFei5hWuBShDpVYR2vl61unij48gX3Bj9Aj1YQ9f6eWd9PtUO75BDF0MXi9OSyKsFBlpmWul3wow9TNFaR3XwUCdOXUl6xe64xC1kiK8HouIr+1IZn/cIWw2r2G6ai3Nsc8zTYUQj6GVWDTln/nbxaU8jWSeLXj+mSw6eKTryY5RvzHx0PyNzjtNowEBAibtYfu84jsyZCYDBAF995aRfP39apkNgxO0RrK3yE666/jr3XgcRvw9Hk3201HtPdPagmv0mZUOQ2Bf+MQ7xfOf/lYeOHaswdqxSLtVu9/Loo8uQy7jql+IrY3tG5WEIe/mhCtN7OVEh0K8C9O7tJTHRX5t8qYbTp1UzZmdnlUBw3N/Gc5c9OE4Q4MHuah7uhysNF6WljzR6iPFXYZvn0nK4HFq62azjqafUYJwXX1yNL6o69on3Kztk4C3lfwEXYdIkrnFVRv/+I/jMiua1zQmH3WASvEy3zibZEc6smIeoN+TWkGs1YCET6cvxnDvp/N0I7CiBZl2q/c3ykT3ZmTqITlPmcyBTSXOz6O181+8umjl/5NrPZvGb8DOOqqFmfQEZ0ZGBJu9kSBU1AJ81kT/FD6jzwQ4kWWT5yF5E+Cf0v07X4uW1H9EmYRvX1lS1vb1ptTnj86fQeVACA2sqm7WrZmJxngy5Rm6huVkCk09ZNBbo1OcvRkXiEnyYZEVohwTFmRTBec5frAPARRnz0MsJJwLJ1UQYC8YBMqN6F0O+ImiRxQfI12wgR1S4CkRkbrLPwyI9zFzrmxQ0uR/hN+jUV2GbM/lfRcFZJ5/3NpC8u2i3YQ1sCFMksqpEAqA7e4pBJ3fQeLBS7k+WJJZPGM/R+UpZW60WvvzSSffuyvO02QSGjYhgW90fcFdTggtFRyYR8waXSj4DULtgONGulgB4RRt7It7HK1x+K9zF4rnnrqVKFSUnf82a0/z2W9n52l39b8V1vRL4KGakYX398csyxv+vqBDoVwG0Whg9Wln1y7LATz+pdsMI2RAIjsvVuNitL32SuBTo3dAXqMK27bSG9cf/uZZuFuA+s5/mFoF3y6mlDx/emEaNlCpWO3em8uuv+7CPfBFfbT8l6U7Ab7nTy2sxyT8xJqYnqe+NCfQx36mhQIJm2jTetSxl884cNiTcTs/Pvwm5VhwHeYlmZKZ34NrvbsUhKEK9feIWVt9+HQWeerT9fhNf7VAXGX3rLGH9iJakbN5Mx7e/4xXHEU62/RJH49vxVGqDL6wakjEaX3hNPJU7YG81kTPdZzFm31H6vfYw/er+wcY7OlIz4iQAh3IrM2jWa0hyXV7v9mwIdbhHqsoZSQ2+8zkE8G82iT4d0O4LkS0pUejsUPcViOqUYI3UIoKqoQcFxWlNZjwyHOlQL7BPli/sL79YOOsJ3GC38JpNj62YhaQk1MEjLCdTfAkvyu+kiecAveyjmBLWiPToqXg/NlFrAoyPgFj/p+uzufi6v44Tfxft01rDgeknJ2m1le9Me/YUA09sp8nQ4YBfqE+8m7NrlfQ0gwG+/97BNdcoQj07W2DkqAhOdf45kNKmyT1BxPyh4CmZC19ApHH+RMxeJbfdrj3HgbDPr/h0trAwA+++2yOw/cILf5GWVkbOf0HA9tJk1fT+xyz0yxZchlH+/0SFQL9KcNttHnT+PPBp03QhtbCDze6r/4XgOFGESd1ULenDleUTwudjnMlNrF9Ln+/SsbccWrpGI/Laa90C26+9tpZcu4/8p75QT3oXhdccsEjPEe/Lpvdtk8jpp5je7R4fCxxKENb9xi3crDvIp59u5YCuJXfsLlq3+l7uoHbqUa7/vB82QeF8bxq3jy1j29Em4RT3LlrFgJnPcCZfMc3rNF4ebPcx20bUpd7x55nweDWueesr7t+3no/0h/m5xll+SdzH+7a/uP2XD2nY/xaO/rWT+UP6M3/oQKJNSgrQMVtVrp8yiWznUIY2mkmf2ktDiuX4qI5gVaVcmiUe/K+m0XkkMaAYMDJ9wFZ1nz2oTn14uAcNIuZCgR40J+vMZv5ya3BZiqaqXW54EPjYYeDaLAsr3cUsJgUNkvgIuZrFFAhKxHqslMVdeQ+x0LyPJP0i3JOqEPUm3BkN1Qu9DG4PU0ZoOb6maJemeCemb+yk11Tet+7UMQac2kWjIYpQl9xufh98Mxtffxmvw4HZDD//7KBpU+UFnTolMubeBNJvnBUgn9Glbid86X2lFvDRymaa5j2KVlKCLDMNOzhlnv9PHtu/ip49aweoYXNyXDzzTOkR/sEoYnp/5eEK03sZUSHQrxJUqiRz003Kij8zU2TBAtXX2dgTQ2xhcJwug4x/IThuQHMvNfzFKtYc1bLxxD/X0i0CPBTkS3+noHwLhC5dqgdSZjIyHLzzzgY8XXrh7OOvr5oNKLFkiORhlR6mi7MK1s+exROrmAYPOSW2+xdJU6zzqCtm8uCDSziZqeW+1FzM8ZVCrtmMlfTJ/o2J78ZyIEWxBsSZM1g+sid3t/qe34+8RoMvlvLS2l64fMr9aEUfI5tM58/h/VjTJ4Eh+f2Q/niOXZ99zvrJU8hf8D43ue9h75g6bLijE/3rq5rJ6rQWtPxyAsm2e0mwZPBJ7wcAsNnUMRWQSO2qaq75yTB1oRdWoAr0s3QP/J3uA7aofTj8mYl6C0To0oiQ9BglRaC7gq6lsVhZ6yl7loMWmV56L89ZXLTXqjEh3XVeJplcAaKh8iBJErk118yj+QYKitXW2+EQ15PrJ8bR4+GO/LdZZZrFcf0CXAMbYfoUbo+H+n6jl+Dz8tNtOo4XU6o8LN6O7huPUvgG0B07SP+CZGr0VAPBtn/0PlPbNsPrcBAWpgTKFZLPrF+v5fFXa5MzYDaSXrHuGI7Mw7Tj86IXC4LZl0DjvEmByPdT5rnkaY+X2uZKwGuvdSM6Wlnw/f77YRYtKj1uIBhFTO9vPnVZxvj/DRUC/SrC2LFqHvgPP5wXHOdUbKuyAGv+heA4rQYeCfKlv7ro4nzpo00eKvsj3he7dWz1lO/TfPnl6zCZFAHz7bc72Lo1CdtzHyBFRionLAH8JasN8mKM8gzusHQl7auJgT7+dIgkeSFKdDIv7FdEewF33PE7WVlORu3YT7Xre4RcU0SitvsQM75P4/OfLOw/AKLs4asb7mXO4EFY9dV5ee0Cqn3yEy+t7UauJzzQNtyQT69ay3ms4/u83/Mxvug7gde7PcedLX4Iqaxm18Ry78qRdPt2LDb3vWhFC7/dMpxKFoV34GSBamJ3ijG0rr49sH3CX94TwHFc0fIlQYtd0yGwP80HBNVI9zgVjdIUCRFSMuGSAZ2fS9ddoGrvOoulzPEO3XReNkcXMC3CwSSzm5sNqvAebvTwnNXNLxEOkmLz+SOygBudnlJ6K4qpTj03Zps57i1q8peFSriFxWSKIwDFr35H/qds1X/CYd0cnF3bofsahlWChgGh7mHKbQaSdhW9VmRCHp5vNORHK7XUjZvXMDgxgkpt2gXOcaSnsWLSfciyTJUqMj/9pNLETpum59sFLcnv83XgfMvfz6NN2ljqPUZ7mlHDPsB/Tz4OhH2OL4j170pEbKyZ1167PrD95JMryM0t45gFAdtLHyH5efWNC35Dc3BP6W0qUCHQryZ06OALsFJt2aJhzx719QUHx602ncH1L3BBD23tpX68fzynNCw58M+1dKMAjwRp6S/ajOVaIFStGs5jjynFVGQZHn54Gc6waGzPvqee9Br4U6qxSo8SJZ3j1h7jSbtfyX+VJIkZDi0OCZpo0/nROo/Tp3MYNWoeLg/cMGU6Vbt0K/b66WcLmDkX3vsI5i+EFvp57B7XhMENF5BuH8bLa2eT8OF39J85krmn2pMnRZZ4L5Ko57S2NS/sGk3UG/fy1caBwD2IQjhT+4+ia3VFffSYE1myRSVpubbePqxG1S7uRk++YMFlg+zjigPcG9OcCI3aJjVIMZZlkO3KhGuKhDhfEibJjdbvqHf7uxYAjdFE7nk+c6EY1rf2Wi/TIhxU1QTxzAc1C9bLtQIc2y2y5HMtvA/8Dqbcsn0EB3waeuWUZILXIwlfkiWqhW5ut/3Aft2bnNROx9mmA5ovYUg8NPALddHr4qtbLGQWw2JauWo6yZ/F4zYoJ4f9MZPB/XqHnHNs/hx2f61o3m3aSHz8sSrIXnzRwHbHTdjbPqwMT/IS/ueYCwbJ1bDfQpinNgAObTLHrNNLfyhXAAYPbkiPHjUBSEkp4NVXiwlSKAFSfAL2Capmbvnk9Us9vP93qBDoVxEEIVRL//FHNTguUjLS1p8jbRM9bDCeK9L+UkOrgWf6qkL4jcWGi2KPG2n0UM/PHrfFq2FhOTjeAe67rw3Nmyvm70OHMvnoo824+g0NmO7IBPyuOZF8wn130swVQfNXXsLWUTHZ57q9zHZqkWUYbDjAy6ZVbN2azL33/omg03PDlF+o3LFTiWNwuWDnbpg6HVYvyWDWoKH8dXs32iQcx+kdwoIjXzFo2mQi3nqHyh89Sq9fRnHPqlE8ve12Hth4F91nTSDs7ceo8coAXv2jN27fncBQLDovM24Zxq2NfwMUzvfn999HuFuJfHcRxoTO00N+0VqPj1RNvKJp+uWiuW4bqogFGPxCNSVo3ecBBD9zkSlKsUDo2IPev7Jy+2WSTgBBVkKzXEH87cZiNMZnLW505ynOYUGCv5DXXZbho1V6Js0wKTz5MvTTezhQ3cb0cDuJ4oU/rHxZ4LZcE785i/luBAGf8CY54tOBXcMLfmKd8TPOaqfjatMSzWcwJBpq+JuLzgI+GxCFs5hU6vpNj7PnfZWlL/bLtxj5aajpfN3zT5O8SdG8b7nFy913K78Vl0vgnnuMpLV4HncVpVSgxpZE+OLxpfrTRbQ0yr8vwPmeZFpOpn7nBZ/LfwlBEHj33Z5YLMpc9fPPezh+vIy0sIBj+J34KikxB4aVf6LdvfUCLf63USHQrzIMGeLBalULtuQGTTZ9HLUCfy8xnUT6Fygjb2jspW11RQgcTNUwc/s/Z4/TCfCCJciMbzPgLsctaLUikyf3QatVPuuPPtrM/gMZ2F78ECnMz3+6AFjkvx7bsUivM9DbCHHaKwF/+jGHlxX+iO4XzGu4y7CNxYuP8dRTK9FaLNw0fTZVr1NNiRIadjOSnQwLSd06eVr5/7rqa9h6ZzvmDh7IddW3Ah2B8aQUvMLyky/w9Yb7eGvJWD5dOYxVh0dg99wOPArcBtTimirr2TSmA4MbKqlRsqhjYdjrfPNLGpF+k4PDUJtWCaF5V4Isk6OJ5KSaqk6Vju2oqT1Ngl+RzZOgwC8rQ3jcI/3PVN6Ozq+hF0axiwBeD5GCjE22BtpYhNBIZhMy7XVFLUWRQQI9VxKQJLjvVyOvL1af3bhObr69zYlZDz0MPrZGF/Cq5cLmWh8CD+Sb+MFRTH0AQcAjPk2W+Fxg1x35H7PI/AsZ4kzc7euifRNuDYN4//ORs7L5dHClooxyQJvrdrL+/vZK1z4ftT95mV7vfBByztybe+POV5hrnn/eFQiSO3JEw3MvWMi78Qd8ZiU+Q396Jca9P5Z6f2ZfInVstwW2D4Z9jUcoYwT5f4SqVcN58EHlOUmSzHvvle5eCIHBiP0+lTXO8vFrl3p4/69QIdCvMlitMGyYoqXb7QK//aZOXDW84TRyK1G4aVo7O/SXn4hCEOD5G1Qh/PZSA+V0gYagt97HtTrFEHtSEvm+uIm5FDRtGscDDyj+TI9H4uGHl+KJTQiJmuVlwJ8MYJY/xCCtYnx4T9KmPY7srxq1zgHb/fLjC8sf9NMdYsqU3bzwwmq0ZjM3Tv2NWn0VWk8RH835hXzq8B5nmMEkNtARe7uBOC3qImtgg/n8dfv17BnfjBe7vETLSocQhVrANUB3oBdKcfdG6DVaetVaytzBA1l/R2eaxCm5vJI+nM31PmHo8w4aoGY0dGjmD+MPevb2MDP5opWT69R9LQZ2obZ4nISgdVeK3+4dHEpZWGlNYh06/8JQ8LeRZCV4rKpGoiCoxJtVCIqaA6JFOcS8XoiIoFnnp106Ep4OY87O0Pd8LF3kVJbaWCvAPWYP66NsNNRc2J30pM3I9OI0dcAnPE62eKfSLz7G5b3GQss68jSz8PaNwviIItQDeer7U5n5bKVi+2oxfjcHuijshJqMVNpsWEzTsXeFnLP68YcAJZ3t668dmM2qP33p+kTy+3wZONey9jnEvNIzVRKdPQL56R4xl5Pm2aWefyXgrrtaBQLk5sw5yOHDZY9ad95yO76qNQHQr1uJbsu60hv8D6NCoF+FCDa7f/21Hk/QJN7HXjPw9xLzyX9lPNfU9tGzoSIVzuWKfLf+n1diEwR42eJC8AuRd+0G0qRipEIpePjhDtSrp0Qi79iRyuefb8M1YATOm5UUIwqAxwkIv0hpIFFSKuPajSFp8p2BfhY6BI67QStIzAibSWftKb76ajuvvLIWjcFAnx9+ptld9wTO78KbDOd2TvI8S5jMK2vbEv/6aBZI9+E1q+Vum8bt46UuL7NjXGvyHg1n4x0dmDVoMFNuHs2MW4aybnQnch6NZOmIPgxsoKYoeeJasLrRdHo/kI3bJdO6kAYP6NlGEQI+XUJgnz3MRLbDxFl/nFxknapUbVyFBrrDVA6Sdcl++egMKr+qjVROMEpr0cnKuxX9tnMJwOOlqVaiQFYbWQjVFO0l5KVHBWnoSe7ip6C/jmjp+K6V+CfDOJut9lNXK7Msys5ww4VXjQ/nG1nhKs6nLuAV3idXVGInzLKTvvbnWWlyYdNMQ7pTQ1Q/GBamMsrt/ymdfcvNRbqyiE40b3nJio8EwLBmKde3aIzWpLLmHZkzi2MLlPdYt67MG2+oloannjKSE9sDR5NRAIjufMJWPFiq6V1AoL7tzkAN9XOmZdg0lz9d9WJgteqZMEHJNpAkmfffL4eWrtdTMPHJwKb5o1dLfT7/y6gQ6FchGjSQAkxUp0+LzJ2rzs5NPbFU8Spm0GO6HI5oy+6vuhg829cVCIp6f4WB1Px/TjLSTCcx0qhM2PmywCu28jGQGY1aPvywN/7aGrz55jp27EzF9uIHeKsrQUXsAz5S28T4mlLHo+GW0U+S+pBSJUuWZH51akn1glnw8mfYNDpoz/DZZ1t56aU1CKJIlzfe5drX30bwE7LUZSn30Ira5AETyLfXpf9blaj9+UPM1T+Ps5IaDQ0Ko1yHKpsZ3HAOo5tNZWijWXSqugGTVp30fdZE8q97h8/lj7lh9Hby8tzUJYY4FCrXSokGYhXDDJ5K3QLt7GEmMjY48ZdVp1rnRgjZmUSTFTC5g6qhO4LkVXassgAxkIPOn8Qv+j8zH4DPSwutDxcGvP6Sn+FCKCl6tiyQU4zru0qwPzy86PHz0fotK5/8pWZ1GAT4OMzJ02ZXKa0UoqK7800cKS4aX9DgFqaQLzQAoIb3DBG+5ziga4Jd8zK8DDXrQTe/XBaR+OUecyB1T0ZA9tPM1g8/zpY3Wwe6jvzgRQZ9NyXkckvGjQqY3keM8NKli/LQz5wReecdAwVdXsdnUZ65/tRyDPt/KfXejFIMNez+tExB4uhVUGr1zjtbEhurPNB58w5x4EBRboSS4LppON5aSpyLftt6dOvLntf+v4QKgX6V4qGHgiqVfaxH8s+RAgJ97KqZd7H5xPlNLwuaVJa4vZ0ihG0ugVf/vDga0Gct7oCvdYZLV67yqgDt2ycGTO9er8Q99/xBvmwg/4MfkXV+C8IU4C+1TayvCu1cFtq9/Ao5/RVtwuPxMsWpI9MH4aKbxWE/00Zzji++2MbDDy/F65VoPv4++s9egClWITGJ4Cyj6U0/nkHPQGAQZ5KMDHpJQ7VXh/Bc3o8cbvgKrjo344tQ31UwfGHVcDYaSW6/qfzVZjkD3orjoUdW4XLJiNxILz4LnNutkyLY3FW74MxWrSPpVWLJX61OmtWvrYfmlBK2HacBUJ5pcqFAD4rHSImrWWRMGn/XMoDTQQuthMXjI1VWzNGViuEa3+Et+t6sIgSU+eILzxXBq4sMDPnGFFDMBAEetrh51lK6UM+XBe7KM+IsTtYJJjziz3j8cQ99HMvYpf+KPGECTktveAeuDYOa/oWM3pHBp3cqZCkCMnJQvES39n+z7lYlHVAsyKf2/Km0e+KZkMttfvv1wNjffdcZSGX76isdu49EY+sxOXCu9e/nEFylFzapar8Ro08JAs3RHyBdX3rRl/8aVque++9XfpOyDO+9t6HsjbVa7Perz9PycYWWXhwqBPpVio4dfbRvr8zEhw9rWLxY1dI7uCoT6VMmm136NFI0tmL7uNR4pq+bSJNfCG/XsenkP09jixVlng6arJ/KNyg0peXAk092ok0bxQR98mQuTzyxAm+TlhQ89mrgHPkpPQRxdMT6qnCz00yl794KRL47XB6mOPXk+CBSdLEsfCrXaE/zyy/7GDduAXa7hyqduzB0xVqqdLku0Fc7vmQCTWnMQWAicDMZGXpe//QkDUZLNHurF3fue5+vEv5iRdvVHOi7moM3bWLLTYeZXfsPXjt4J90fKKBnnxmsWnUKsAKj6MFvxKP41BMrQ4N6IGtN5Pf8mMxtewPXT60Rj2ORn5NAgKqd6qE5qZB7iAJ4BSV6OEsClwyOoM/kZHz9Is9To1VfgJyfh0aANq4CkiSln0pCKpqQRDRY6irqx/b6UMh+8N9SYRn7N/NJeiOf+fcUT4y05qiWMVNDmekeNLu511QMt3sQDvg0vFVQ/ALTJzTALr4b2B5q+4Ll5n0UiJ/gbRSBOBH6W6FwmWT7+yC7VyjuHJFcfPgjsHGjf9ylmt6XL6B925aIWvX+d3/9BRl7lMDF2rVlHnlEGbckCbzwggFXrRtw1huk9O3IxLx1cqn3pUFPXdvtge1j1mn4KH2B819jzJgWxMUppqAFC46wd2/ZqapdfW/BW1/JLNDt3ob+r8UXaPG/hwqBfhUjWEv/6CO1lKkWkZ4OpUiHLMBS08l/ZTwxFpmn+6gTytPzLy6NbbTRQ3Otv7KbT8OX5QyQ0+k0fPllP8LCFHPtrFkHmDFjP45R9+Hq7a9+VeBGeiA8kJ8OEOtrzN0+B5a5H2JvrjzHfKebKW4DeT6FeGZ5+FT66I6waNExBg6cQUqKDWvlRPrPnE+XN99D5/c3R3KKYQzjTrpSFRfwIDASaMiRI7n89NNu7p30Fz0HraJx11U06rSI9p1+YfjwObz++t9s356Cwt96DYJwP+34k84oufWiCDfdoGh8tq5vUKCvRuS5wwDkhlvxpOTiO6KYeWt0AHOsMSDQAbIENe0q1QvOoHeVGV2Fk1qVaQ7AoAa048lVJPLNOk9AoGsEiXghLaTNArdWrbvuh1YDBJ/md/tLsnLsmto+0t7OZ8F9RQX7on065u4MXSS8YHHRRVc609wXjpIphd3CHeSIvQCIkbKxSB+QpA3HLr4FYyCqIXQPckdMeyAmwKEv4EVCEfDt9DtZ+UzXwHmR7zzLjVNCc8XXPqtGbE+c6KZWLaWjdeu0rFqloeDal5A1yvdq2v7ZBQPkYtytiXY3B8ClySTJtLLU8/9rmM26QMQ7lFNLF0UKJqkZCpaPXyNgmqwAUCHQr2r06OGjSRNF4O3YoWHtWlUjvs5ZDaO/Rvc6YxJZ4r/DKjW6g4emicqY9iZp+GnTPw+Q0wjwjtUZCJB7p8DAcV/5fPM1akTw7rs9A9tPPLGCo8eyyXvjC7wNmgIgns7D90R8CMtJtHQzjwibERe8i7O+4tvMsbv4zm0k2wdmwcPvYb8yUr+bnTtT6d17Gjt2pCCIIs3GjOHuiWHUqqH2V5313EUnxnIdDdmHwBDgCRTh3hmoD8QBkUAESlWVFsAtiOIjaLiOXvIz9ENltuvdAyongKPx7Tib3cmcDxcR47dlH2ldl8h5KqdrwxtAwBcwuQOclDsG/k72EkJFJBl1rNd3IBimCFUyO3NyQZa5JUZDkiMusL+KGMp/kCaJLCxGSyc56G9lPcDqI6EWnQ41fRx6Mb9I03umm7AHKeVaAT4LK/37lhF40VYCm6Eg4BPexefXw/sXLGClcQUuYQRuXQd4HtoZ1UIu5pwj/PZuYwBE0pAKbwBo3WsnB9splh3tiSPUz02lehA1bPLG9SRtUKK09Xp4+ml1Afz66wa8YTVxtFACLQWfE8v6V0q9LwGB2rYRge0zpj+QuIg0k38Bo0Y1o1IlJZjyzz+Psnt32bNx3N1vxNO0FQDag3vQL73yee3/TVQI9KsYggAPPhiqpRfCLOvo5qwOgFeQ+MNcDOXVZYBGhDcHqJPUm0sMZNj+eYBca53E3SZlgnIi8Hh++RjkAAYNasiIEYo2ard7GDPmd/IlHbmfTUeKUqLJNOvT8H5YI6RduPQKL+i/wLDwGZx1FD9xnt3J924jmT7QCz6mhc3hJdMqUlJs3HTTr3z77Q5kUYdmzGxGTKzHiKEEAtYAarCWW7mFR6jGDTxKTc6ipTMwApiAosE/BIwDBmKkOi2ln7ifRnRCzXG+thO0bwuuWn2wdf+Q7Bwnx36aFzh+uH09omapkcQNbwAZEa1fQ/fKGvbKvQLHU3zgC3quLpuJRbv7CZpcaAAAjMBJREFUhjwPc6R6gsvtAYedcJOWpIOqObuOWPQ7+9iuRzrvnb3SOkgA11T+G/GDGc95GWlRZtj4eFGX0fcbQheKCRqZN62lC/W1Hi1/lxCLIQm1KRCUxZIOL83cX3NWW0CB5i1oBZre0CdIS9/ypQOvX26KJONF8a3Xlk6z8Tk18NH85bt0evqFkGv9/eyTgRrh/ft7adZMuek9ezT8/rsWe/vHkIxKcIHx4G9o0vdSGqy+6sS4lJKxbk02KcZiiOivIJhMOh56KFhLL0fEuyBQ8ODzgU3LJ69XaOlBqBDoVzluvtkbMNutXatl2zb1lfa118Lgj0BeazxLhugoto9LjQ41fQxtrcx2OQ6B5xZcXIDckxYX1fyR0Ws9Wn5xll/rf+ON7jRsqEjWw4ezmDBhEd7K1cn76Gdkv59T+9MpvD/XDWlnklfxgvU5Gv45BEejKgDY7E6+cxk559foXzSv5lfrLHQeJ888s4px4xaSamhOzqgNJN75OnffH8nNN4YK9jCS6cCnjKE7TxPOPbRmGEO4kYncyERuYRR305bHiac/dxOFEtyo0UDfXtD9OnDXG0Bev6mgNfDcc3/Ry6tyXe+sEod550kAEltCZFWQvUY0J5TI+ONyDZJoRWFiVhENXTCwdnpXkjVq/nUh2QyAQwZNahIA9m2qpGukOVDk2e/zaZh5npZ+d1MPFMbrJQL+Lm79zlRkwVY7VqZKROik/cqfRau8jTaq9QBKwleOkgv/uMQncKEQEHVxrGONcTNeoQ0u4SZ4AOrooZr/NsJdJ/j+VYVqWCQTSVC19Gvrb2D79S0A0Jw7ReKB7dQdOChwPGPvbs79rZR0E0V47jl1AfzJJ3okQxT29modcPO2oHSMElDI8w5w2rwA6V+gfr4Y3HZbMypXVnw4S5ceJzm5qCWmJHg698DTRnn22uOH0W0qpjze/ygqBPpVDo0GHnigeC09TNbT065onT5BZuG/pKUDvHijiyg/gcacnTqW7P/nAXJWAd4NMqk+X2DgTDlN7xaLjilTBhARoSwuliw5zjvvrMfTrjO2598PnKd55xjexTVD2orkckfYZwybXRl3c0WoOxxOfrBrOeh/9MMN+9gU8Q0NNeksXHiELl2msGjpaRxtHiB3/D7qT3iReydFcttwJYhNE/Q4NHipzA4aM5v2fE57PqcFP5PINjRB5tPatWD8WGjfQYu98wvk9fsJtEYWLz7Gilnb6K1T3m9BXCz2tYcD7VqP9N/HqVwEl/Icd3tr4cWETlAEWLqPEFa+WGMBKXOrstao0txaghYk+RJkJR8EwORRI/WbaNTc+GC8VmDAFiRrRRGGRfgfngA0Uv5ce0xLnRetZBaEvt+xnS5sRtYJcJep9POWurUklfTtCFZcwlilL3xU9k4lQ7RjF5+EWiD0huvU9HL2TFMXyBr5MF6aAVDXe4LNj7QJHDP99Dntn3g25FK7vvw08He3bj5atVK19A0bNDiajQ1o6YbDsxHzSy+4FO6tQ5RbcSE5NWmkGcrhm/4PYDRqA1YzSZKZObPoQrBECAL2Ufepfc2ddqmHd9WiQqD/P8DQoR4SEvyVyhbrOHBAfa29HTUxSYpasc54jrR/obQqQHyYzKs3q0L48blGci/CQNBd7wuQidhkgYfyjUXMuBdCrVqRfP11P0Q/G9wHH2xi4cIjOIeNpcBPLynIMppnzuHbVLlI+9aRW3ny1zSMnRWfsc/j5bcCgQ0+JSCxqTadLRHfcIdhBxkZSqW20aPncyLJh6P9o2SP20elez5h8APtePwhuKU/tGwBcbEljzkmGjq0g7vGwKgRENX2erJvW4+9/WMgCBw9msX99y9mvGEbRkERCjtv6EL0L4qfVmvW0nSg0pd4WPVV7vQqCxOrRvFlSqjpawBNrEdwpZiYs3tgYF+EWtiNXAnOpCmm4Oj4Jtj9VpM2mm3F3keqJPLieZHmD8YHCd/m6p82l0CjV6wM+NLEn/u0LNyr5bVFZbPy9CsD4cyiUmoEeMR7kVCO93EsY7P+DF6hBW6uhbFQW6fSwsY6djLz284AaDiLV2ga6KdZw/3s66iY4bXHDhKXmUz1HqqL49SyJeSeVKwugkCA5x2UNDZ0FhzNFcY5QfJesMQqQA37wMDfZ01/XvD8/xrDh6tBmdOn7wu4IcoC9/U3BCqxGZb9jmDLK73B/wgqBPr/AxgMMGGCOiG89ZaqpVtlPb0cNQGQBJkFlrLXJL5YDG3lpUcDRUqk5Im8/MfFmd5ftzoDpCRrPVq+/wem9+uvr8nzz3cJbN9//2L27EnD/sCzOAaPBkDweBAezMO3v6hQD4/08OjP6dS9xX8vkvx/7J11dBRnF4efmVnPxgMEC1rc3QsUirQ4LVqqVGi/FuruXipUaAtVKNZCkbZ4keLu7h4ksknWd2a+PybsZtEQLIF5zuGwmR15Z3d27tz73vu7zE738acYjV8Fu+DjF/tU/oocS1Ehg5kz99C8+a988MESMn1mPNXuJb33vzgHrqLsY+/SYdBtPDbIyivPw1OPa4Z74P0w6GF46Vl44lFo27MMce0fIrXfEhzdpyLHa4Zi//50evX6EzkjgyetKwBQBYG/LRJSpvb0VLlr8WB2urg9lFq+IaA9lMRLoWslJYcHXd2olcUtGZEja/sMg+44tgMvASpXTmT1eu2zKiPtp4iQfM7PfrTHxNwcym23GBQan85Oj0fLC8zBsn0G7htl5YHRVnJLWUmlxEXC7nPOlaSXjSIUI0vQcgeilUxSJS1r3CM+CFVBqKIlyJ1m/g+hsIXISRS0uvCGnlUsvK9Z8D3r2JHUfCSU0Aiw+ecfgq87dw7keCg3sH+/gLvmI6iSdp1ZNv2C4Em/4HlF+ysFu7FlGQ+QKe2/4PrXmzJlYmjcWHuw3LMnjdWrj11kixyYzHjvuAsAwePGPHPKVRhhwUM36DcIAwb4KVJEuyHMmGFk9erQV9vWXQqbohm/ZeajHLtGdemCAEO7e7BnC2j8tsrEf7vzHnqPEmFYjtD7O1nmXPfkzsmgQXXp0UMzii6Xnz59JnPwUAZZb36Bt6V2MxedToSBTuTtZxt1gxn6fuWl2ZOhZZtPORgpxJCaPXV5p2kXW+O+5R7TerzeAJ9/voI6dUby8cdLSU11I8dVxF33SRzdJnNq0FEcAzfBfZOJfPAn7Pd9j7n/SFx9Z5Dy4DZS799AVuvPkAtVDx5v9eqjdO48gUOHMnjFtohiovadnmzVFumnOcH1Gg0MSbGJOw4EX2+QtXBuMcO5vaIq8mZq1PBz7M8SbJK0jO6cHnq6DEV3HGCJ5Sg1ahRh1Yak4HtNDEvP3F2QhzKs7MsR8n4qR8tcmnJa6+aySJIubNA3BMQLJ1YKXYMvywT+45iUhVfoiCxEQVeoZgoN03ZwFYcOa9eIUV2IV9DU2wzImG7zklZYm9IwzZ9ByTp1sCaEwjEbvv0KJbu7ndEIDzygRRdUVWDSJCNqRGE8lbX5EtGfhXnnnxc8LwGBRE9IByHZkv/nlvv0CUU1xo8/93TN+fB0CzWpsUzRw+6gG/QbBpsNnn02dHN8991QiY5NNdI+W+NdFWCa7dp56cVjVF7vGEr6eXqihczLqKBrYZJ50KKdpxuBR86nAnYBBEHgs8/aUr++lsh04oST3r3/JDXDT8ZnvwQTbsSMDISBbuQd4Y05ZEojiHDbi9DzezBmJ3SdTEnnW4+ZdcZIVBVicDMqcgpLo3+igeEw6elehg5dTp06P/DMM3NYseKIFmYUJZToUvhL3Ya3Yk+8lfvgrdQLf4mmKJHFw46dleXj/fcX06XL7yQnO2lqOMCzVs2AqkYT44oXwnhcK6qP7nI7RSpqsq0KcRh2aF63y2TnULY+fmnDuedB7IFM7u27Ftlp4PsVAwGwRIFNK7nmlAxlN+9nrnU/BpPIifTawW3bGOae97N3ITDAYSUt2+a2Mso0MOTw0hued9Mwpg86f4cx20XSK1JUkRPn0ZkH8AltUbJNdgPPGrYaUzRVOaEdtAWLBOWzg0ORHGPCCC3iI+BHzaFl21hZzeIu2rUk+H2Y58+g+sDHwo51bFmo0UjPnqHpgsmTtRa+nhr3B5dZtk+48IkBhb2NEVVtcMctS1C4cH3+9ebOO2/BZtPGO3nyDlyu3JfcBarWJlBeS74wrlmGeODa5QjlV3SDfgPRt6+fsmW1O+XSpZpQxWluc5ciUtHCq6vMyRyWcp9VerkMaOCnSdls7fk0kZemnp2hfCm8ZvdSMbvj1hZZ4t3zqIBdCKvVyOjRXShfXvNUd+9Oo3//Kbgx4vh+Iv7a2TKe6ekIA30EdoY8UIEMssT38NOYqp3goX8gPlsiPuDxMi05kwmRCcEksMaGQ6yI/oGxkZOoIJ7C5fIzevQmOnWaQIMGP/HSS/OYPn03J0+6zjmP6PPJrFhxhDfeWEjduj/wxRcr8fsVKoonmRY3EaPWLoVDd99P6vd/AKCKAq2GDEZCqwuXT5VBOqGFNPfZktA607hIlBzEnuMuoMjQuZ2mxLXgx9uCy4tozjpZKlgPpeDMPME603HMkW3wZofTOxn+gQvoiu+QJfo4bGQpWhTnw0gvhuz1pSYqT993frUzUVD59ykn9Uqd3wtPzkUzn5QLrKMKsTgF7QGlmJzMMUlLSPMJ7TSpgKpQIUey/MYZIcUdkf0EsucOKvu2s75zKDnAPHMyt3QJZbsD7Jo8Mfi6RAmVhg1D6o9btogECtUkEKdFk4xHlyE69l/wvIxqBAleTbY4IGaRYlp7wfWvN3a7iS5dtM8rK8vHP//syv3GgnCGl35h/fubAd2g30AYjeFCFe++aw6WaFow0CFb410VYGLEznPt4qogijDsLg+R5pAs7JlqX5eCTYDvozyYs43ACLeJ2efqqnUR4uKsjB/fncKFtcSw1auP8cgj0/GZbDhGTMJfU6snFtPSEB/IILBJEwwRSSVCeQeX+Bjp0gwiKrXj4VlQq3do3zsOnOIbn8Bqe6gMq49pE9tiv2FqzAQaGw4CKgcOOPjxx/Xcd980qlb9jltuGU7r1qPp2HEcnTpNoFGjnyhX7ms6dZrAt9+uIS1NC2+0shxkVdExxMnag5mnXjPGr1+L6NaiF4bHelKqcmg8yvqY4OvVqqYAZ+EYVsET1ko1uL4fkorMpUwZha3TqgSXFwnlMZEcgPLr9zAlYjctWlVh4XKtoqKk4SC1pA0X/OzXBiTucthIVaCaQWFwduhdRuDnQiYWvOdk3zuaWtzP97gZ/4CLtS9mkfxhFtWLnd+Yn1QEtuZiGsZ5kaiOmCNLzydoyX9+QUuAowGUy5G+IR3ZTUZmJAAmdTE+oWP2PlTMNbykFNEeGk0rFxFdoiSxFSoGt906+pewh7ju3UMe9ZQpBs1oVeoVXGbZ/vtFz63ghd1DF9Wlht29d96Nml0yYpk67qavSdcN+g1Gp04BatTIVmrbLDF1auhu3cqdRKysecebzCfZbMx9t6PLpVScykfdwrPeD6Vd3JM6H1UMCm/aQw8vT2RaOXCJpWwASUnRjBvXDbtdc7lmztzD44/PxG+x4xj5J/4aWvmR6EhHevAI/uXanJ+Ah2hlAAZ1OS7xdzKiVlHxqz7cOcKCNbvhiMep8s8BNz9Hw5Hs5toiKp2lbSyN/ok9xX7gRetiksT04HgyMrxs3nyS1auPsWLFEfbuTcfrDdUUlzS7mF59Kf9G/kJkdpKUv3IN/i5dBfd/mjKcr1gs7Z99F4O6PridsDZkKGakalMIiRatjjzxHM9CyhEwspzevVJQVYn1hzUDl5jDoB+TofqSLRw1ZOGsG2DhilDY/RPTLxf97NcEJO5Mt7FPFnjG5uM2kzbGNFWge7qVbYJIw9Iyd1QL0LqiTInYi8+tfOsyonDx68B+kVUUIfQ0FKHsIoCCIhRHpjjUhGhJy+kAKMo6/lumJcCJnEARQnkX1QNb2dgi+5pxOTFsXku5O0M14wBpO3cEX995Z+h7WrBA++16K90dXGbeEfLoz0esvyomOUbbt2kLMhfWur/eNGxYnDJlYgBYtOgQBw9euClNTpTCifiaaUqQ0rHDN31Num7QbzDOFKr44AMzvuzfswmJHs5QKvEE+3Zkrt0Tbc/aAXrU1ubIMjwCg8ZbtEYdeeQBi58OpmwBG1Xg/gwrrjw0YKpevTC//NIZs1mzbFOm7OB//5tJwBaJ48ep+Bpkz5G6XRgG7cQ3N5S9bFfeIlJ5EJUSxKvfI3TfQszawRTvHRdc59A++OGwyviixTgeHZJJLes9wge2uRyI/YLkUiOYVn4+LxbdQlvzPiqKJykjplIrMoN7ypzixwZ72d1oDgeiP6PD0dkI2Z6Ir1FL/mvZjS3fjwBAlUQifn2XUhFFMakhXW9xfagJxmyHJp5eNi4FIKw3+mkCazWd8nvu0sLuq5doYdzitULrHPBDjUWaRzXNvhufqRt+v3ZLaSj/RivjxRuF7JYlWqVGMN1n4PtIN3WytftTVZEu6Ta+dRlz3ZRnnk9i+AWEY3JSSLzwTpXT8nVAnJKGW9AMrSxUhGwHu2j2g5CZTJbPrxRcX8WOmj0HX8m3i43NQ4lfphX/hTXwATi8aEFoXIVUqlQ5XZMukpYGSlRJ/IlatMiQuh0xM1xe90wEROJ8mrCNIvhwGLdfcP3rjSAI9O4delL8889LG29Y2P0mr0nXDfoNyK23ysF+y/v3i4wZE4oPNvQWpYxfy7w9ashikeXCghVXmo+6eEiK1YzRiv0Ghs3P3Q34XAgCfBXpoVx2VvPmgMTzeZCGBWjRIomff+6EyaTdiCdN2s6QIXOQbZE4RkzCe9sd2jH9PoxPL8E7qm1wmtiiTiRWbo2k7qKkUojOEW9iHjmfQ3NegvKh/qA7Nh/lu/0pTChXn/1lq4Ydv0jWUTqlLeQD3x/Mtv/K9thv2Bv7JetMnzEq42se2DOKcruWIMja96raIsh46jVmlavD4nffCu7nxCf30btWL1A9GFUt4UrOTETapk2xZBQtS5qqZfFVKJwOnNuge9dp/5cpNoXKlWXWb9S87/hyEJndTOWgH8qu3Y0tw8VJyU3Rx8oyfZ42LREZkcIv9okXLSEDLVHuwQwrz2dZ+CbSTZPsUjY/Am84LdyWZmOSxxAmfBO2vQpfOE30d1hz5Z0nigoJFzHoKqFSOaPqxylqD44yZaAoYID4HJGNA1tyVBOo+5HRPoeSgSPsbBBSHzRs30SRuiFpWIBjy8NFYJo31wy6qgosWaJ9Ob5SrUPjObTgwicIxPlDUwappo0XXf96061baBriv/8OXtK2ek16CN2g34AIQriX/umnJpzZScEiAr2yQt7ElIjduIRr18whygrf9PYgZvc6/2SuiUWXWcr2c5QbG6He6T/noT4doE2bsvzww50YDNrPYvz4LQwZMhvZYCLji9FBT0BQVcyfzMH3disUvzb/bmAbMXJLzMrvSIi0d5dhcO0n8a0dz8GvH8BfRHuIQlHYvnIVv67awreJVVnW9A7Sq9cL9Wi/CHJCEZyPPMv2T0czdtos1n4Z0nc/+loPutz/IpGqCZM6DwEtg11eVh4hkJ1sVTQUFr+luHaN2EUwmiLCjuPeCqhgVmfRv18GK9dp2tuCAGWyp5L9wFGfSoNZmpjM0lLHmL89pP9ucwxlbLSbKCF3T1h/eo20TY+gkVGmjyV0TW6TJR7LtFIpxc4Ah4UPnSaGu4x86jTxcIaFmil23neZCeTCmAM0M148LKQKoURLI3482R66QiHtrlkEYnJctikHQn9IHCAgaHkHBvxQQsVr1R5cpR2bMVgsJFSvGVw/eXV4H/MWLUJh92XLtP36k1oFl5kOzr/o+GN91bRkGQqGQS9dOoakJO2haNWqo3g8l5Cdf2ZN+ozJV2OIBQLdoN+g1K6tcOed2k3xxAmRr78OecK3BGKp79HcrEzRxz+2vefcx9WiYWmZZ9tk94JWBR4Za+Foet7n0ysZlLD69NeyzKz05+3Sbt++HN9/3xFJ0sYzbtwWHn74H7wyZL43HOfjLwbXNU2cj/xYZQKpmgcmkkmU8hCR8gMIajpFlAgGexpzb7/XyNj+K4c/6EsgLpQRfWLLFmZP+4dh/63lh9L1md1xAFv6DCKt78N4uvTBc0dPPHfeheuBJ8l45RMOfDeJJY+8yrhFq/j97u4czzYEqiRy6PN7afLcq9Txa9+rRf0tdFILQ5/FAlMo/FuxZMiwGW3h5XG+dOAgCDi5t/cstuysTWaWNvYyoRkHdvqg6yQtk9onyLgea8Pm7dq0QkL0eqpLi/glyo3pAlnvOclSBT5zmfnLa6CaQT7rvZk+I5+5zLzptPCRy8wUrxHHBUrQzkW3XKjJCWpIUTGAAauqecqqkP392cPL49yO0GcschyZssG/E4RUDlbQivilg3vB6yGhesiDdh49gt8VOl6dOqGoxtat2n79ifVRjNqxTQcXcLEwlFG1ExUoB4DLcASPeO3yZfJKs2ZasqbXK7N69dFL2tbTtW/wtenfv6/ouAoSukG/gXn5ZS+GbOGQr782ceBA6A7U01kBg6p9/XOt+zl5jSRhT/N0ax+tK2hP4aecIg+OseK7jJLZLpYAj1m1hwR/dgj3eC7Kl85Fp04VGDHiDoxG7fP5669dDBgwFacrgOuJl8n45AdUk+bBGVesRujlwrsp1KJVC8E3xqTMAKCyP55X/K3oNugN0veNYf9Pj+GqHdI/R1E4unwpy0aPYuLXw/nyqxF8/sc/fL9sIyNXbGbk5Bl89eqb/HJXD+Y//T+OLFoY3NRdqTg7571By4eepqNHu4GL6j5MqnZsWS6C4T8tS1ux2fknNTG4bZUcpV8BQ3inOY8CZEeC4yOm0rEjLFqh5RJUaANCtkO6xQelF6ygaIrm7SeXcvPHgTtCp5b+As2MAX6NcgerEnJDliqwOXAFVGbOoJIkc5vp4h66SGie+pQUT4RiDL4DgBlMOS8vnw+3W0s4FdVTKEJIuyBWTudEKU1BTlBVxFPHia9chZyk7w5VncTHqxQurH0327Zli+BIRvzFs/URXCcQMy4elo71hYSIMozXTnsirzRrFioNXbz4wn3gzyRQrQ5KnCbaY1y7HOT83ZzmaqEb9BuY8uVVHn5Y80a8XoHXXw+FERMUG7e7tZt4QFD5w77jnPu4WogiDO/tpmT2fPqagxKv/3150rCvRXhpmj3/elwRecBhxZ2H+XTQjPro0V2wWjXPbP78A/TqNYm0NDfeO+8m/Ze/URK0m7SUfBTTvQtxj++HomphQ4kjRCu9iJL7I6pHERGo7y3Ka96WPNjtBcxLf2L7yg9IfqELnvKJZx3fl5lB+q6dpG7fRvruXQRc4UIqnvKJHPzqAY6uHcbDNe6hnTv0gGBThiJkd9vyL2+JmK6Jy/iatWbzLq3MrVAhGwm2kKfqkMO7zDlVCPyn3R5M6j/cf5+D+Uu1sK8tHsplK8I6FDjiDvDU2JBB2tynPVv3ap9NXORGjPIkbjPLjIp2Y7kEo341eD3Ci5iL5zxJ3R98nSomYMsWaxHIVlk8w8lXkfB4T+sr+IISsADRSgapRWKCf4snjxNZIilse+excNnTSpW030VqqsiJE9qA5UIhr96QsvWi5xAZKB18nSVd2rz09eC0hw5atvslIQj462lzQWKmA2nnpZW/3SjoBv0G55lnvMGn/RkzjMybF/J6OrrKEZUtNrPGfJxtxpRrOra4CPipvxtzdhThp2Um/lib9/p0gwAjojzBFpqrAhL/y0MTl9O0bl2GCRN6EBmpfUYrVx6lY8fx7NuXTqB2Q9ImLQqqygl+P9b3xhAYXA9fWtPgPszqNGLl+liVb0D1IiBQ0R/H/zLr8k6Zh2j5yrv4toxiy/Yv2Pfr45x8tC2Zt1bBUz4R2W5BjjAjR1rx3FIUR/taHH29J9uXvsvhrd/S9P7/8X5Wa6r6Q3KiBnVFMNyuEI3wZyhB6GjTrpw6pUViKldOQHCHojJH3CFvDiBDAWEF4NKmEprV/ZM9hzsF36+So/JqgxcqjBpDU6dWruU3i4xLGBAak/tZBDWVViaZKTEuCuciUe5qMMDio405d56bSEi+NiBUQcyenxfV7NB1FmHZ9zImZEX7bQkEgNDDqYEAjoTo0L7TUrAVDhl8ANeJ42F/V6wY+oz27dNu04H4kFdvOHVxgxURCEVdsgwHLrBm/iAx0R4Uelq3LpmsrEsrt/PXC3UGNK1ecoE1b1x0g36DExkJr78eSpB75RVLsIzNqhro5rwl+N5o+xb817CMDaBmCYUPu4TG98wkC2sP5f2yLCSq/JYjSW6a18g7eVCSO02jRsWZMuVuEhK0zPA9e9Lo2HEcK1YcQSlclPSf/8Z13xPB9U3z5iF1341ryVMoaIZWJBO78hJxcj3MyjhQNaMSrZpp7SnFi45GfBJ/DwO6PE21Tz8gYtZwHNt+ZrdjHDsyxrE9/TdObh2JNHUoNV94gYGV+/BJeis6ucphJvQAJKjpRMqPIWSfuzvlUUzzNRlWJaEwC00hg1C3blEEd8jrT5FLYbCF5vfTZZB8Cmg9X7Coo+l+dxIbt2qGv0oHMERo39MGL/j37OX+mUdJkLXs8A0V6rPghJb4ZbemQsYQAOoYFWbHuKhhuLYh0VbGAB/YL15GB4Dqwqxq+QnJUmGilVBNusg+rbrhRLg4jZNC2G2a965iJ6covaTK+E05kh79fmyFw+WEzzToRYqEdn7ypPYwEUgIVUZIuTDoFiUBSdGuW6ch/3voAE2bal56IKCwcuWFy/POxFc/lNxhXH3+fgI3MrpBvwm4664A9etrN9A9e0RGjAjdXJp5SlDOHwPAcYOLGdc4QQ6gXwM//etrTxmegMA9v1g5fBmiM9WNCj9EuZGyDds3bhM/u/OW+Q5anfrMmX2oWFHrrJWS4qZnz4lMnLgNjEacL7yPY/gElFjtfenUcWyPDsP3YlPcqSGVL4kDRCmPECs3xaxMADXkgdhUI9V9hejhrMATGXV4K60pw1Ju4+uUNnyT0pYP0lrwvKMBdzkrUt1fCOnMn67qIUrpjwFtrtRPHYSfMxH8WmzY07Ufq3PUoteunYiQIxHLqUYQVS+Uob4/O58ha5FmEEwspn2bnSxa1RUAcyQk9M2esgHWeCHuq5d4PL0WJlUCQeCXao+R4dEMfELEZAy+XwAoJqn8HePiMasv+PBxNelu9vNrtBtjLi8pszoVMVuMZYOpOhX82aWHqopB3QTJgFd76DmN1xiPxaI9MChEAiGNfJ9gQjaEvi9BDiBZwuWPA57wBgeFCoUerE8bdDn2FlRRe4AzpF5c6VFAwB7ITjSTUvEL16Yp0+XQvHloKuJSw+7yLVVQomIAMK5ectHEwRsR3aDfBAgCfPihByG7fOjTT80kJ59WLhO4J7MqYnam8D+2vRyXzt/44mrxYVcvjctoVuRklki/X6xk5dKhOhdtzDIf5vDIXsoy50ke9jRJSdH8/XcvWrTQbjher8ygQTN49dX5+P0yvlYdSJ26HF/zHMlx/0zF3HkWzinP41NDdcQGthKlDCROrq7Nd6snzjrepSCqx4iRO2NSNZUshQSyTn6A9fdfAFDNFlwDBrF2baitaZ06iWEeulONwF+0cdh+VRWk+Qqn+3vY+JX4kr1RspMNb+3m4nSl2Ao3qJv2csucf3ggQ/PiU6U4RiQODO7PLj+DQdVK3CwCvGX3MjnaTdJVCsFHCSpf2N18G+nBktvnQ1XFrH4b/HOJ5TZq+rSsfZEDSCRD9vT1yRwG3VIsMvhaEYohEprqcIoRGPyhlVXJgCCGX4vqGUlchQqd7aEjGVFs2cl1rtxdMxFyaF7aJV1Ce9LrRJMmoZZ+S5Zc4jy6JOGv0wgAMfUU0r5L0IW/QdAN+k1C9eoKAwZo3prTKfDWW6EwdEk5ktuze6YHBIXf7FtRr3HykskAP9/jpkx8dnZvssQjY63Il3Gvv9fq5wnraa9J4OEMKxvyWM4GEB1tYdy4btxzT2i+ecSIdfToMZHjx52ohYrg+H4Sme9+ExS6EB3pRLz2McJ9LjI3foKfesFtJY4RobxNvFyBaLkLZuU3BPXkmYc9P6oLqzKcWLkhRpZri4jAIY3H9sE3wTlyd68HyLLFBQ16UlIUhQtHIHhCXqSTCNLsTcJ271DAespDYLn2mVnUn7mtTQxL17QDoFKt45haa2VwWSqs9ID948HUz4yks1PLuP/P2oy/rdr6RqMfs7Mrkhq60TYxySyOc/JqhBd79gOnCZWvIt20MgYQ83AdFhEVnrZ5WRWXRV9rAOESgj0mdRbmbMncPYYyxCmtMGaHz03qLG2lldrDzuHsBx0P0RS7JfRwJFMakdDDU4YQid0Rel+NjkE4Y1BKILzEw2YLvfblmEpWrNkPF+5ToF78x2FSYoKv/WLuJVWvFwkJNipX1iJdGzeeuLR6dAgmxkG2l36ToRv0m4iXXvISm62HPWmSkeXLQ15CZ2c54rJ13reaUlhhvvZP83ERMOZ+F9FWbYxztht44zIz31+N8NE1u+7YhUBvhzVPPdRPYzRKDB3ahqFD2wTL2pYvP8Jtt/2mKVwJAp4e95D6zxo8nUIa3Ma1y4ns9xzKkEQyDozAK3RCzXZvBRRM6nyilEEkyOWIDTTALg/BonyPUZmHpG5EVPciqdsxqkuwKD8SKT9EvFwBu/IiIukAyCSSLs3AMHEb5jnTAFDiC+F6/EWWLTuEz6d5gbfemp0s5QtFMLyqmcM51MUATmQ7jSdnnPZQHVj5FWP0g8F16nU3oGYbp8Vu8Oz3EP1jdzq7ynObSzvOT9H3stmgiRnZLA4MGR0R1X3BfVgEeNLmY1Wck+GRbv6NddHLEmBCjJvt8Vn8GuXmEauPFsYAxUQlrKbdiEphUaGFMcD/rF4mRrtYH+fkxQjfObvIXRDVjVV5NvjnlIgu3OYJJZZZlD+0+fOF2mdzWmb4AC2oX3t1cD1ZqIakhlp5HjMkEpka6m6oRkbjywg3rsaIcGGf8w7RpuVlCKqM4Em76PomJZSM5xMLhoJapUraOSqKyqFDlzbmnIlxukHXuaGJi4MXX8yRgPaMmdNTd2YM9MsKJU1NsG/HeQ0V5E5TvpDKT/3dGLKlOUcsMfHVgrzLw4oCfBnpoWF2z+0UVaSnw8r+PDRyOY0gCAwYUIOpU+8mMVG7EZ844eSuuybyzjuL8Ptl1PhCZH78A+k/TCZQOlQSZp77N5FdHkN9yYZj1wRcwjPIhNeAG9iOVf2RSOU5YpSuxMnNiJdrESc3IEbuQKQyBIv6e1hY1yP0Ik1ahrAqE/s7zwSXZ738MWpUDPPm7Q8ua926tHYe/tD368PE4aPhn/Oa7KztuDlpkD3dblWGU7byrRw6pkl1tu22HiFb696jwhwXmL5bhm3bx/R2VqK5uwQBwcB78S+wN7vWPSriOOas1kjqprDjxYsqPS0BKhpCnmeMCB3MAd6xe5kY42Z9vJPDhbI4nJDJvoRMDidksTneycQYN6/ZfbQwyUh5+WpVlQjlOUxoyWMbTVUxqL1IlLVEQUndjJGVsAE4AltzeM17aEvTeiHj4RfqIqnbtN0icEwqQuL+UNKbXKwknrTUsMObY2JyNUzFFuoFILovXpViUkKStL4C4KEDwUYtAPv2pV/StoEqtVCtWnjDuOrmm0fXDfpNxoABfmrX1lyvXbskvvgidBOv5StMHa+WfZsh+vjzGrZYzUnz8jKfdAs9eLwzw8yYlXlParMI8Fu0O5hZnayI9Ey3cfQyjDpAvXrFmDu3Py1baoZKVeGrr1Zx553j2bFDu9n6m95G2rQVZL41DDlB+2wFWcby1wRiut+NYeBashZ9TJoyE5cwBD91UXP5s1SIxiP0I1VaSqY0EuOcxUQ/0hPBr1kbV/9H8HbsgaKoTJ+uJctJkhBKPArkMOiqicOHBareG/K+dzq1z8vs9rFvrraNxGEs6m+o9peC6936WCZEaIZvvRf2uSDi+fewuP9iQFZVWrmTcIoRvBn3CgcNmiKd3ZqC1dUWo/LXJXziIUwCRAhcUjj9QljU77GpowDwYmRU5CN0cocqQGzKUO3FWFBU2JR9eaoIHLTdTotGWv6CTGkUEjCgPayckErjFS0U26NFvJSYONSYOFwnwufAzTGxYX/neNZCzHE5qFKOiJVy8XC0MYeH7hcKhodeunRM8PX+/emXtrHRiL9WQwCk5COIR/J/ud6VRDfoNxmSBJ9/7gkqyH35pYnNm0OXQZ+sypizPbMF1kNsv8a16afp18DPy+1yRBP+NPPP5rzXqEeLMCHaTUVJM1IHFc1TP5lHNbnTFC4cwfjx3XnjjRZBDfh1645z222/8eWXKwkEFDAa8dx9P6mz1uMc/DpKdOjmbVo2n+hBvYhufQ987CVry8eksI90aSaZ4le4hMG4hfvxCD3xCP1wCYPIFD8mTZpFirSbTOlb1JMJRL78GNFP3ROcF/e2bI/z+fcBLbno6FEtw7l169JERWlG4bThB/Bj5NAhkZqPhUrwcmIa4w82o7EpH2GLacupdK2MquXt63BU7R5cd3IWuHdC1JsDMCnL6ZdVma7O8qRLMbwY/w7bjFrHP6vZRYzSD9H5YljG/7XGonxHpPJ88O+vox/jDtcdRKraw65RWYhF/RP2gzobdvkhLTuIsJc2tO24AmO2oJFXaIdRXR4U9tlmvIWYE+kUOqr9juRyWmQjfXd4wlZUqdJhf6ekhK7L+PgcXuYlepxGNVSK6BevfbJrXrgsg87NHXbXDfpNSJUqCk89pd1AAwGBIUMsnM7JiVMsdHeFPJOfIzfj4TI0WS+Dp1r5eKRZSPP90XEWluzJe6Z6vKgyMdpN6eys6t2yxF3p1uDNOa+IosDjj9fjn396B4UxfD6Zd99dTPv2Y1mzJjsfwRaB65FnSZm3lczXPkVOCqm7iSknsY0aTmzv24hrVgvL0yMQRmfhW90GZ9orZDKSTOlbnNKHeOQHUQ8UwvzXZCKH3Edcm6phbSM9d95FxrDfILvhy5gxodD23XfnkBz1h3voTqeAGlsu7NyWltOypItvPcamjVo9tsRxrOo3SLFvBtd77rsZOOK0G2mmAlOzgKkK0T/fiUn5j06u8jzmqIWfaF6Lf43FlkbBbePNwzFlNMCgLr/Uj/7yUH1EyK+GGfPfI7oRrd5HNX+h4Dp25Wnt9edAAP7LoZK8gv/xYJ8fg397xZ6Y1X+Cfy+3VKPyypAK42nvMW13ePQrptwtYX/nNOgJCTmNeI7XuQpPCDleXaFwxlWmTJlQVOFSQ+5AUOwJwLBl/RUYUcFBN+g3KYMH+6hQQfMiNmyQ+O67UEi7tbsUFXyaYTolua+5LOxpBAHeusPLXXWy5WsDAv1/sbLqQN4v2yKSyqQYF8WzjfpWWaKHw8apy/TUQavt/vff/jz+eD3EbH3RjRtP0KHDOAYPnhVUacMWgafvQFKnr8UxfALedl1RjaGpD9GRhmXmn9g/fImY++4koXl5EqrHEd+gJAl1i5JQqxBxHeoQ9cLDWGb+GZwLVyKjyXzzCzI//gFM2v727UtnyhTNeMTFWbj99lDTkJwG3Y/2/R88GP7Z/psSipKoo0Tk7FuGTfkURbyFDJ+mHlc08SQ1ni6CbNUylHf6Ya4LxE/9RE3phkmZSj1fIq+mNyZBjufjmCF8H3U//uwM8uiIvcTKtyNl3oeYI6HsaiGp24mW22FTvwwum2DvTrL0Ap1doYcau/IiBnbBPGAebPbB0exkwWRqYq+WyK2NtXB7gFsIUAeTqk0jyBhZZ65JzYWhB6rTZVUn1q0JLhNNJqwJIbU/gOPHc+Oh5+aazfm0WjAMeuHCEdhsWjRu//5Ln/eXk0LXuHTs2raHvt7oBv0mxWzWQu+na9M//tjM3r2h2vQHMqtjVkOh963G69OtSRThi54e2lbSogROn0CvH22XZdRLSioTo10UEkJ91LulWzl+mXPqAFarkTfeaMHff/eicuXQTXrs2C00bvwzI0asxevNjnhIEr5WHcj4YhQpi3eT+c7XeG/vghIZfdZ+BVVFzHQguJwISnhIQYmNxzXwaVJnrsPT64Ewz+2zz5ajZGvfPvxwHazW0IPbmSF3gB07RFp8/Hlo33tOcKpoHAA1Zm/hv92aFy7gJVJ5Br/1I/wBbbz3PTCZo7UfAkH7bpZ6YLUbxNcCRE+/B5vyCcUCEbye1oQO7rJMt3Xg2YQP2GUMGdA465/E+OoiZjyg1axf4aQmUT2CXX6aGLkxJtZkn7vE91H3c1J6kd6uykFP1qL8iFX9AY6D+ia4FJiVI2o9lw94dcj7wb/d4iBM6kwktAS4TaYGeDDTcPoqAFSTGX/D5nhSU0jdvi24XYnmt55VxrZzZ+j6Lls29H2L3pCBU02RXIyc5acFxUMXBIFSpWIAOHjQgXyJtatKoURUSbt3iccuTW2uoKMb9JuY+vUVBg7MVhLzCDz9tIXTtqKQYqNnVsXguj9HbsYtXJ/Qu1GCH/q7aVFeO36WVzPqqy/DqJczqEyNcQV133fIEl0cNo5cAaMOWsLcv//25733Wga14B0OL6++uoBGjX7mt9824c8pNhIVg6fnADKGjSZl6T7S/lhA5ttf4e73MN5b2+GvUZdA6fIEylfGX602nvbdcA56gfRf/yFlwQ6cT7+JGhfu5S1ZcogJEzQVlKgoMw8+WCt8kNnzLLJk5LT3tmOHSJX+94atNrZPSBQndlg6J0XNCzep/2JS/8Vt+jT4/he/fs26wqEWs/84YZ0LeB4ixrxDlNIPk5pOT2dFXk1vjKjW4rn49xgRdR8Z2a1JJUkh3jaRWLkVUnp9TP4vkNQdeTfuqheTMotI+T7i5GpY1R8Qs+e4j0lFeDX+PYrKL9DLWSlo9MzKJOzKc5AFPA6kwrSskNzrNrpSrJGNbh2maJ8hRfAI/bAqw4OHnWy/lSrLtxN/XCsv8zVuiRoRyZEli8KGV6xxU85k2zbNINlsKiVLhs5bdIWy5XNmvF/g5HO8LBgGHUKZ7n6/wpEjmRde+UwMBpTCWl8B6dglitMUcHSDfpPz4otekpI0o7Z0qYHRo0MeXEtPSSr5NO8sVfIwIWL7dRkjgNUIo+5107xcuFFfczDvl3D5bKN+WqlsryzSJd12WSVtOTEYRAYOrMOyZffTu3dIh/vIkUyefnoOTZr8wujRG3G7/WduSKBaHTx33UvWq0PJ+O4P0ifMJ23GWtL+WkH6HwvJ/PxXXP97BX+D5sHwek6Sk7N49NHpwb9feaUZ0dHhcqNBD90Y+s63b5cQDeHJh0fHreBEkpahX2vBZmZsDqnh2ZUXCAi18Ai9tb8jnHw+dSzrbY8H15nm1Dx13gfz0L+J8TbGqCygdCCalxwNeSizNiuMPRhY+Gt+s/ciSwjVZMdF7iRaeJ04uT4mRyVEx71Y5C8wKv8iqbsR1MyQwIoqI6jpSOp2TMoMbMpQouS7iJPLEq3chUX9M5is5hbMjLb35ovoH+mbNYDG3mLBY1qUX4hUHkDwB2AwsEObPtiR/TW5hATmmj/l+48fCW7jEl/HyBpMaElYKWISG0w1aPfr3OA63jt6ArDn76lhn2+xJs3C/s7KggPZD6uVKilhWe6iU8uOVyyxIF28nFMWQlMmInmvFLnWlC4dilLlJeyuFNUU58S0FMghoHSjoxv0mxy7HYYODelIv/mmmX37QqH3+zOrBbPeF1kPs8l4CUpmVxibCUbfFzLqmV6Bu3+wsXxf3hPlSkuaUS8jaUbhoCLSOd3GtssQnzmTwoUj+PLLdsyd24+2bUOJcAcOOHjmmbnUrj2S995bfOmeyHk4diyTu++exPHjWny4cePi3HtvjbNXzDbogslEZKTmyW3frp33rZ98EVzNuvkQYwaH2qu1fH0JMw2a1y7gIkq+nyzxA/zUBqBM0n5embSUdebHgtv844TZTlB/BsNDx4hJ7kyk/DCieoqG3qK872jBfZlNWGq8l/sLf8uX0Y+ywxieKBZtP0Z8xGQi1deJUboRJ9chQS5OITmGeF8MheRYEuQk4uQGRCu9iFDexqzOQiL0uaaLUYyz9+Tl+JFEqW/wTEZzimXXmqN6sMvPEqk8iZChwmPACljp1qYPAFREJqu/8urLX1KpvJZb4qcOHqEPEfLLweP8FtmZmOR0mv6lJfopMXF4b+9CwO1m9+RJoc82IYEidULqgUCY4FONGjkkYVUl6KGfloC9GF4xJD5jVmIvsGb+Ii7OGnx9qV3XAOTE4sHXN9M8um7QdWjZUqZfP+1H43QKPP64NZj1nqDY6OWsFFz358jNZArXr8TotFFvFmbUrczZlnejXlxSmRbtCpa0JSsindJtLPXlfZ/nokaNIowZ043p03sHNeEBUlM9DBu2kjp1RtKjxx+MHbsZh8NzgT2dn/nz99O+/Ti2b9fKpEqUiOSHHzoFk/RyIpz+kg0GKlfWzv3QIZGUFIFKvfuFrbv9cCb7amtTMEk7DpPyWzyHJO2maWATkcpTZEhjkNE83Xo11/HshPWsND4V3McyD4zNBOcqoCdY/hpPbKA2NmUoouqkni+RNzOb8oKjNYp6H6/aP+SxQl/wQ+QA1puq4+f8ZYviBfTgHWIk86wteC/2Od6PHYtdfZcX0jvTxFs8GGKX1I3EyrdhVUfAEeBeUJfDMjfMyJHV/jfDqdUpi8EDhwGgYiJT+haLOhoj6wA4KZZlvrUp3b+aitGnfcaenveC2cLuqX+Gja181x4IYvhteOHC0Hk2bx4y6GLGAYSA5m3KMWXJDb4cBt0kFxyDbjSGfnuBwKWXoShFQxr2YvLNM4+e98JenRuKd97xsnixgQMHRFavlhg2zMQzz2iGu4WnBGvNx9lsOoVD8vJz5Cb+l1HnuiXZnDbq94+ysmCXAU9AYMAoK1/d7aFn7bzN8xeRVCbHuOnnsLIuIJGhCtztsDI8ykNn85XNHahXrxgTJ/Zk/fpkRoxYx9SpO/D7FVRV6zC1aNEhnnlmDnXrFqVVq9I0aFCMatUKERtrPef+0tM9LFhwgNGjN7FoUahNZlJSNL//3p1ChWzn3I7shiCqKFG3rsJKrWMoq1eLtGtnJrFBI5JXah5msVfGMWzVe3ze8TUEReGuoVP4pPWTDCnyLTbVhVmdhqyUwyFNJUZuj0gKzRos491/3DzT/UNaOF9BUGV2++G7dOgWgLIvgfR3BhEvvY2l1HDc4v/wCAMoFYinVKAKfajMfoODjYbmDBeOkRLnoIR4hDL+/SQFDhEnpxGrpGNSfRhVPwHBgEu0kSFEkmwowlGpKHuNFYlSqlDZn0B3ZxESlPDPQlBPEKG8g0UdhaCqMAXUj0HNhFkuTZ/+NP/xMqZ61fl12G3BZVnih6hYiVBeCS4bFt2fQgdTaJ8dbletNlz3PYGqqmz64fuw41e4q/dZX8t//2X3VRdUmjULXXuGk5uDrwMJ1c79nZ5BQfXQTabQQ85pyeJLQS4a8tDFm8hD1w26DqCF3ocPd9O5sw1ZFhg61ESrVgHq1FEQEHggozpvxC0hU/SxwXySeZaDYTrX15oIE/x2n5vHJ1iYutGIrAgMGm8l3eXhoaZ5k6xNELWStoEZVv71GfAhMDDDwvEILwNtV14Gt1atRIYP78Drrzdn9OhNTJy4LVh3K8sqK1ceZeXKo8H1ixSJIDHRTlycBVEUcLsDHDmSyYEDZ88xNm+exPDh7SlSxH7We0GU7BulJFG/vsy32U3GVq2SaNdO5tZPvmDCraF68cylu5j9cBfafTcZk9fPPYMm8Pnfj/OS51NEFGzq5yhqHA5pCtFyZ0TSqF1tPSNnZ/Bwr2+pf+RVrMoJslQYnQk1THD7IohYDlLXU9gffQNb4gd4hbvwiPcQoAFlAzGUDcTQlVtQMlROiW4OGzJJlrPY7XKRKntwqj4sRgMJcTbsqpEoxUyCbKWK304hpw3DOQKRkrodqzIcizoOAS/sAT4FFmltUadkwcEcz3HzeRN3rXbM+q09Votm5T1CXzxCf2LkDohowj2LLbez0VKNV175GJNXu2bcfR9GjS/E4YXzOblxfXCfhWvXoUjtumHj2r5dDCbE1a6tEJvDBhtOhsrfAoWqkxu8UkhiNmejlvxOTg89Z/Jobsnpod9MIXfdoOsEqV9fYcgQH0OHmpFlgcces/Lvv07sdohWzTyQWZ1h0Vqpz+/2HVTwx1JSjrrIXq8eJgN818dDtFVl1AotQejlaRaOOgRebe9DzMOEkl2AUVFunssyM9ZjQkXgFaeF/YrIWxFeDFchKJGYaOe55xrz7LONWLs2mcmTtzNv3n527w5vvnH8uDM4L34+SpWK5tlnG3PXXZXPGWYP43TLTlEz6KdZuVK7mcZXroK1UGHcJ7VErKSnfmHkiZE0WLiV2G07SNpxmIZvrGLE+/fyaObPANiV18gS3yddmk203A2Jw5QrvZdp8wfz2P8+hhlTKcccADb6tHr1ZlaoPxFM00Bs58HaZzTWGqORScQndMYntMUvNEQUYiis2CjsswFF4My+PRdq962qSOzGpE7HrPwZDI9zAPgB1Gmgylpf9zlOOP34pmBgGiMp3iaBad/cTlSkNh/vE1qRKX5JpPIUxuzyN4dQjK+i+9J06jIaztSatcgJRXA9+iyqqrLig7fDhlT9oUfPGuaff4Zuyd27hz9EGk6sD76Wc+mhO6XsLG9VwCrnbt49P2AyhQy6z5eHkHui7qHr6PD00z7mzzewZo3Evn0ib7xh5tNPtUzZGr5CtHWVYo7tAAFB4fuoDbyW1gQzV3au+VKQRPikm5f4CJXP52l3+K8XmtmXIvJNLw+2PPR1MQrwud1LUVHlU5e2z5FuEzsDIiOj3MRcpcwTQRCoW7codetqJTcHDzpYsuQQmzadYNOmk+zfn87Jk65gXTlo5WjlysVQv34x2rcvR5MmJS9uyE8fL4eHXqSISunSCvv3a1MuGRkQFQXtfxzN5M7tgtskvjaBN38YxOe3vYjocdNm7AIOly/O6Ad6c0/meADsysu4hJOkS3OIkntjZAMRNhejfnyCXyf058eXP6OZ9x3MShoeVcsgX+qGJlaoMw2sfwOVQWqXjLXNCKylRqAiIFMFv1AXWSiHTFlkoQwqcahEo2JCa5LrQyANkRQkdT8SOzGoWzCqyxHJ1k93AYuAicByrRpuuw/mueFUDmcwndL8ya/0fnwZH7z0AGJ2wyCf0AKHOBab8iEWVVPok7HwevxgrMc9DHpmZHAfzhffR7VHsWfqn5xYGxKTiS5Tllu69Qz7PgIBmDjRmP2VqHTtmiNEIPswHl4MaOVquZlDV/DjNGgG3SYXR8JykS3yD6c7GULePHS5aKivupSsG3SdmxSDAb75xk3r1hG4XAKjR5to00amQwft5tLDWZHtxlQOGTM5ZnAywb6NAVm58xauFoIAL7XzUThS5ZVpZhRV4J/NRo6ki4y+102RqEuvXxYEeCHCR0lR4bksC34EFvoNdEiPYHSUi/KGq9/FKSkpmqSkaPr0CS2TZYXMTC23wWiUiIi4jFKk4By6dvNs0ybADz+YCAQEFi400KlTgKKNGhNboSJpO7WM7kLfz2XbwDaM+/wZ+j32LgD3vT2Gj0oNYUzru+mX9TsANvVzROUgDmkKEcprWNXfALi312/c3nIug5/7BO/cxdTiVwRUXNmGfYELqpmhzkYosRWEL4DyINRVMdTagqHWFijOpYme+YAdwEZgGbAc8IJX0aIEqzxw8gybsYaBrE94jmEfPR+sNQfwCN3IFL/FpnxKhKo1bFER+Dx6EIflYrx/31tEpmuhAk/77ng79sSb4WDh80PC9t/gxVfPKg/85x8Dhw9r30Xr1jKFC+doE3tsJaJf268vqVVQvOdCZBkOoQraiUUGylxk7fxFuId+6QZdjYlDtVgRPO6bykPXs9x1zqJsWZX33gvVrz79tJnkZO0OakTk0cyamLJV5BZaD7PalHxdxnkmDzbxM/Z+N3azdiNcf1ii3dc2Nh3J+2Xe1xpgUrSb+GxVuT2ySPv0COZd4Qz43CJJIjExFmJiLJdnzIGgilC2qlbbtiGPcPbskLFp9+PosM0q13uRPzpWYPUzg4LLnnnkSw4uKMG3UQ8F+7xb1EnEyHfgFp8mQ/wWBa22uGiRZCaMeohnJu/mv8pj2UTv4DYBtI5tP2XA52nwdxbs3gre8cBLQAegMXA38DTwDvAVMAL4ERiJprn+NlrZWWegEdAX+BDc82FjBvyRCZ+mwXRnuDE/SFN+ZBGF+zZg46L6YcbcKb5GpvgDduVVItRPgst/jnyQRZYGPDHkeyqu0ZquyEVLkvXGZyAILH3zVbxpoemTIvUaUL5LqJkNaFGC4cND4aRHHw2vJDEemBd87St1G7khyxDqOR8ZKJ2rbfIL4XPoeWi2IAjBJkhC1pUpBy0I6AZd55z07eunQwdtDi8lReThh0MNXBJlO32zKgfX/TlyE8lS/ujk1LqizD+DXJSI0W4CRx0idwy3MX513oNRjUwys2JdVM4ua8tQBfo4rHzsNCEX5HbLOebQAZo0kbHbtROaPt2AK7tcK65iJao9MDBs05KP/8g7z7fg6F13AWAIyDz/0BdkzLHzfuwzeNEy8g1sJUZugYCXNGk5XqF9cB/NGy5m3r99uH9UBitr/cJy/oeXkKBIpqrNaY/JhA9T4dt0renLylOwawOcmgnu8aB+j2bUvwC+BPVH8EyAlIWwaweszNBU3oanw8dpWje4rb7QPDnAAZoxjimcuv1Zps7+Hz8MHUhMtJZsqFAIhzgetzCAaKWnJgebzS+RDzIloi0PvDaKVn9oCnCqxYrjm3GoMXHsnjaZbb/9GvbZ3frJF2eVqv37r8S6ddr3UK2aTLNmOevPVcy7pwT/9CW1JjekG0PyspH+3JW55Rdyhtzz4qEDIWXBvCTTFFBunjPVuSQEQdN6L15cM4zLlxt4//2QB9HMU5yGHm2u1yPKDI9ah/c6dWU7k8qJCjOfcFE3SbsReAICT/5h5ZlJZrx5HGKSpPJPjIsOJs0MqAgMdZnp47CScgUau1wPBDXcQzeboVOn7Pr+TIEZM0IPQY1ffyds24RfF5LwzUyGfHkXJ7trRl2SFZ59eBhFfjnJkPh3OSppmcYiWUQqg4lUHidL/ACHOIEAIdGYO9pMZ/r0e3l7+jJSer3LbOvX7OQOAmdkvZ2QNe99hkurZ/8mXTPQ76TC+ynwQar27+1U+CgNvk7X1pvhgnXes8PqLuJZzSP8ZF6GfNdDjJn5NlN/6UbtauuD63iEPqRKKwGBOLkRJnU+AApGvop+gsm2tjz06q90+V5T5VNFkYyPf0CuXIPUHduZ/VC4jG7dIc+SUDV8iioQgLffDp3r4MG+sEZqhuRVGNK0fva+Es1RI4pwMRQCpJo2aNsrNiID5S6yRf7i9LQSgM2Wx0jU6QiUeP1yfK41ukHXOS9xcTBypDvYO/3rr83MmpVdI4vAgMyqFA1oMp1HDFmMitwS1gzielI4UmXKIy7ubRS6MYxeaaLztzYOpeXNANtF+DnKw6sRXsTs81zgN9AmzcZKf8H7KZ0OSSpxIU3w3r1Dfuuvv4ZupEabjW5/zwnbPumpXzDOXsvg4b1J6alN9EuKykOv/krnF2fwvP11ZltDMrEmdR5xcgOM6lLSpdlkip8iEyovql9rNd9//j/mbX2abiMs7O/8NTMjf2QVj3KM2ijnSb5U0bxtn6r9Ox8yBo5Qj2UM4TfDbNa1GM0dH8LGDe34ddh91K2xNriun9qki1PIEt8lQnmTaKUXIppYj0uI55W4V5gvNeapJ4bT+fuQxG7mO1/ja9sJd0oKf/fpEXb8InXrU+/Zl84a15gxRrZv186tbl05+FB1Gsu2ccHXnsp9yA0Zxl0ERC3EEueriXgdE1fzwsmToYjfeXUULkIw6fMm8tAFVc1dx4OTJ2+eeQidcL7/3shrr2kZsjExKnPnOklK0i6bY1IW78QswytqP55+mZVpfR3r08/F+DUGnv/TgiegGfIoi8rQ7h661sx7RGGxT+LhDAunVO1mIaEyxObjaZvvqpS2XQ1MC2Zinjoe9wP/I1Bdq4dWFGje3MauXZoBmD7dSb16oTnMDd99zZLXXw7bz85ZryC2rsvHby+k6PBhweV7q5fmkxGDKVLyBIMdI4hRQh37FGJxi4NwCw9iUudjVb7EyIZzjnPDlhrMW9KaNWuqs3+tBe+xLKKV/URzABspWEnBiBstbqLiJRIPMbiJI42ypFEOT0RRStRUqFNnE03qLeW2Zv8SYXOddSw/NXGJL+ETWmFVh2NTPkPMIR270dSIj2MeQjop88KDn1FlhZYsqIoime9+g7dbP7yOdKb16BxWcy5ZLPRZtJKoUqXDjnfsmECzZhFkZmoXzbRpLho1yhFK8GUR/2MVRG86qsFKysO7c9VlbU/EWA7ZtL7slTMGUcR7dgOY/Mz77y/miy80paPff+9By5aXfk+Jb1waMT0VOakMqbPOfW0VFAoVuvh3DrpB18kFqgoPPmjh7781j61WLZm//nJhzo4SrjYl8230egAkVeCF9IaUC8Rcn8Geh01HRR4YbeVAauhp/e46fj7o4iEyj9U8x2SBhzMsrAiEQtN1DTLDo9yUkfJHpCIvjB1rYPBgbQ68fXs/o0aF5NJUVWXuoIHsmvR72DY7Z71CoE1d3h51gAqvvITgzRZfsZn57eXezHmwFT3c0+ju/BsDoaiJQiQe4V484n0IuDAr47GofyBy/p4BgYDEgcOl2H+oNKfSEkhJjcfpjkCWJRRFxGZ1ERWZQUxUOknFD1K65H4S4lLOuz8VGx6hBx5xADLlsaijsCrfIxES9fFj48eofky3taHOvA0MfvxrYk5laNtbrGR8NBLf7Z3xOtL5u09Pjq9eGXaMrtNmUqxRk/DjqnDPPdZgAmKvXn6++ipc8te69hvs/2levadyXzLbfXfe8widj8LyuMF4pRRQBZqmfItRzZ1ByC8MGTKbMWM0Zbz58++hatXcdJYLJ75REqIjnUCpcqTNXHelh3hN0Q26zhUlIwPatIlg/37NID7wgI8PPwxlwk+I2M5s234AYmULb6Q1IVLNQxH4VcThhucnW5i8IRRKTopTGN7LTYPSecikBQIqDHOZGOoyIWdnakcIKh/YPfQyBxAKiLeeE68X6tePIDlZ+64nT3bRtGnIawx4PPzduztHly4O227/T4+Rfl9rPloeR9nBgzDs2RF8b1etcnz7yUNkVo/knszfaeZZEmxhehofTfCI/fEJbTGoOzCp8zGq8zCwHuEKT+UoFMYntMUr3I5faI3EVizKeCzqeARC3blURBZYbufnqO74Mw3c/8Zv3D4mlHEuFylGxjfjCFStjfN4Mn/d3Y3UbVvCjtVm+Egq9Ox11hh+/NHISy9pT5OFCyssWuQMU4ZD9hH3Sy2kTK3sKrX/cuSEKhc9txTTejZFa1n4cd5a1Mh4LtefS36hX7/JzJmjZelv3vwIhQtHXGSLs4lvUBIx00GgzC2kTV9z8Q3yMbpB17nibNok0rGjDa9Xs1Lffeeme3ctbB1AYWj0KnaZtPKcir5YnnbUP6fs5vVEVWHiOgMvTLGQlX0egqDyUBM/L7XzYj9TfSyXrPaLDMqwsl8Jne8dJj8fRnopIhY8bz2nl161qsycOS5ylk37nU6m9ezM8TWrwrZLfrYTd770MQ0yY7APfQ3L+B81jfRs/uvahDEv90ZJErgraxqt3QswEK6IpiLipxE+sSN+oSkyJTCqGzCwAYO6CVHdi8S+sFD4+VARUSiBTBKyUAW/UIeAUAeFIhjVlRjVuZjVaUgcO2M7gQ2mhoyMuotjSiIdf57N3Z9OIiotJEfnvbUdmR98hxobz8mN6/mn7124ThwP20/LT7+kyj33nTWuNWtEOne24fdr1+CoUS7atw9/wDFv+Y2oOVppoLdMezK6/H7Wfs7F5qjPOWXWlOqqOZ4mwVf3IlvkP26/fQzr1x9HFAWOHHkKSbr0+0h8veKIzkwC5SqS9veqi2+Qj9ENus5VYfRoI888o3kVVqvKX3+5qFFD827TRQ9vxyzDIWme+63uEtyTVfW6NXG5EAdSNe33VQdCyUIlYxU+6eahdcW8lclkKfCK08I4TygCECOovGX30LuAeeuyDLffbmPTJu3zefllL4MHh9dG+zIz+Kff3RxbvjRseWLjJrQd/gORxUtgWLeCyNf+h2HP9uD7AYPEom5NmPx4J1KqxNHK9R93uhaQKB/kXKhY8VObgFAPWahIQLgFhVKomBHIQCQVAY+m3YqMKliz1eMiUYhBJBVJ3YPEdgzqDgzqagxsQuDsqIwPG/OsrZhsb8dxCtFs6jL6vz+exAMngusoEZE4n3sHz133oQoCOyaMZd6Tj521r5affUWV/veetfzwYYGOHW3BCMigQT7efNMbvpLfRdyvdZGytE5haXfNIlC88Tk/n5x4xTSWxT0JgoJJjqVR6rAClxAHULv2SI4cyaRQIRtbtpwtkZsbEuoWRXA5CZSvTNpfK67wCK8tukHXuSqoKgwebGHcOM1oFS+uMGuWK6hqtdeQzkcxKwlkC7H0zax8XZu4XIiADN8vNvLxHDNuf8ja9qzt542O3jwpzAH85TXwXKaZVDXkVTQ3Bvg00kPpAjS3vmqVSKdONhRFwGBQmT7dRa1a4UZQ9nqZP+QJdk6ccNb2t339PRXu6o3g92P542cihn+EmHoqbJ31t1Zndv/bWNG+LmWkgzT2rKSZZy1F5EMXHZ+WApeAQiRgRcXCaflX8CCSgkj6RfcjY2SzqS7/WuuxwlIPQ1qAdqP/pcNPsyl0NDT3rgoC3k69cA5+HaVoCTxpqfz34jNh/c1P0+6n3yh3Z+ezlqenQ6dONnbs0Ixsw4YB/vzTjfGMyizbio+IWPYeAN4y7cjo8sdFzwPCk+FKObtSxnVXrrbLT6iqSsmSX+LzyVSpksCCBQPytJ+E2kUQPG4CFauRNmXpxTfIx+gGXeeq4fVC16421qzRbkoNGmg3JVP2lPky81F+iNoIgKgKDHbUpao/4XoN96LsSxF4ZpKFxXtCMeUIk8rTt/l4uJkPcx40aU4pAq9lmZnkDd2prag8E+HjEasPcwHx1t97z8SwYdo8RLFiCrNnu8IkSUG7Aa8e+iGrPvngrO2LN2tBi48+I/aWCghZGVh//Qbr6O8QHeGNZ7KibCzp0pglnRuxpXFlChlOUcu7kaq+3VT17SJOOXbWvvOKisAxqSwbTBXZYK7EenMNZLdI3X/X02TachrNWBXslHYaX+NWOJ99m0CVmqiqyu4pk5g/5H8EXOGCStaEBO4YO5HCteqcddyMDOjd28bq1drvpmxZhX/+cREfH/55illHifulDkLAhSpIpN2zHDmu4kXPyyc4WB4/BEXwIqhGGqV+XqBapp7m+HEn1atrbWZbtizF77/3uMgW5yahZiEEnxd/5Rqk/7n44hvkY3SDrnNVOX5c4PbbbRw7pnmh99zjY+hQbzCsPDFiBzNsWlKLTTHwSnpjEuVLT2y5VqgqjF1l5M3pZhzukLUtHa/w9p0e2lWW8xQy/9cr8VyWhcM55tbLSArvRnhoa86jAtY1xOfTHt5OG6G6dWX++MOF/RxdWQ8tnM8//e5C8fnOeq/qvQ9S75nniUgsCi4nlsljsP36NdKh/Wet67GZ2dC8Gmtvq8WOurdwoEoSkWIWpQMHKBE4QonAMRIDacQrDqKVdEyqG6PqwYgPBQkZA7JgxCVEkS7GkCpFc1SK44CxBIcMJThoKIlHtVBq60GqLttK9cVbqDN/A2Z3+LhVQcDXqgPuex7D37AFCAInNqxj6esvc3TZkrPGXeLWVrT5ZiS2wmd3NXM4oFcvG2vXap9jQoJmzMuUOeP2q6pETbsb875ZALhrPkxWq6Hn/G7OJKd3XtzVjlucefNsrzezZ++lf/8pAAwaVJc337z10nfi85FQqxCCquKvUY/0CfMuvk0+RjfoOled9eu1xB6PR7N0H3zg4cEHNc9GQeXrqLVsMGvlR0UCNl5Jb0yEepn641eZU1kCH80xMXqFEUUNWfAGpQO8dLuPpuUu3QhnqfCB08yPbiNKjnyCNqYA70R4KHcNGr1cDmc+vDVtGmDMGDe2c+h9uE6cYNErz7Nn6p/n3Ff1gY9S8+FBWj22omBctRjLlLGYZ09FcJ1bPthnNrK3emn21CjD0XLFOFYmkRMlE3AkRJMZF4lyOmFKVQl76lJVIhxO4o6nE3s8jeK7j5K04zAldxym7MZ92DPOrkMHTXDH060f7r4DUUpqTU2OLV/G2q8+48CcWefcpsmb71Hz0cfPknQFOHpUoE8fa7DPeVycwsSJbqpVO3sO37xlDFFztPl42VaEtAErUC1x5zxmTrxiGivininw3jnAxx8vZejQ5QCMGHEHXbtePDpxJtL+3cR10KIknvbdyfz8lys5xGuObtB1rgmTJhl47DEtG1qSVH7/3U3z5prRcwsBPohZzhGDlhlc0RfHEEc9jPks8/1cbD4q8upfZpbuDY+3Ny8f4MXbvdQvdellbpsCIq9kmVnuD+3TgEp/i59nbD6K5OP59U2bRLp3t+FwaAazSZMAv/ziJibm3Ovvmzmd+YMH4UlNPef7Ze/sQtV7H6B4sxaIkgQuJ6b/ZmNaNAfzf7MRT50453ZnIosCbrsVv8WIz2wCAQzeACavD4vLi9GXO/EgJS4Bb9vOeG/vgr9+MzAakf1+Ds2by7qvv+DYimXn3K5Y0+a0HPoFMeVuOef7mzaJ9OtnDSbAJSRoxrxKlbOvHzHjELG/NUH0aRryjk7j8ZXrmKvxb438mhMWbYwF2TsH6Nt3MnPnatG9lSsfoHTpmEveh3HJv8Q81A0A10NDcD7z1pUc4jVHN+g614y33zbx9dfaPGtMjMo//7i45RbthnVSdPFu7DKyRM1zb+QpykOZNfJl5vuZqCr8s8XAh7NM7DwRninconyAQS18tKpwaaF4VYWpXgNvOs0czRGGt6HysM3H41Yf0fn0eWftWpGePW1kZWknXKGCzNix7qBq4JkE3G42jvyO5e++cd59WhMSqNR3ALd060l8laoIggCKgmHbRoxrlmLYvBbDxjUYDuy5ouciJxQhUKcR/npN8NVrilyhKkgSqqqSsnkT238fy7bfRuF3Zp1z+4jEojR95wPKde6mjfkcjB1r4MUXLcEIVqlSCuPGuShf/hyfV8BLzB/tMR7X6qU9lXuT2W5Ers4lzbiZDTFa/oJBsdMwdWiBE5I5jaqqVK36PadOuYiNtbB9+2Pn/XwvhGX8j0S+pbWszXxrGJ6777/SQ72m6AZd55ohy5ri1dy5mueZlKQwfXooeWqPIZ2hMSvxZWe+d3SVpYezwnUb76UiK/DnegMfzzGHKc0BVE6Ueay5j261ApeUPOdU4RuXiW/dJpw5QvtRgsqDVh8DrX4S8mH9+tq1Iv37Wzl1SvscYmJUhg3z0KHD+T1hd0oKG0cOZ81nn5x3HQBrocKU7diJUm1vp2jDxpijY4LvCempSHt3Ih3cg7R/D+LJZMSUk4gpJxCcWQheL/i8CKqCarKgms1gsaLEF0JJKIKSUAQ5qQyBcpWQy1ZAjY0P7tvvdHJ02WIOzv+Xg3Nn49i397xjjChWnLqDn6VS734YLOeWGMzIgJdftvD776Hppbp1ZUaNclOo0Lm/U/u8IVg3/giAHFWKtL7/oVouHjJX8LMq9iXcBi1psGLmQIp6Wl50u/zKkSOZ1K49Eri8hLiIoa9j+/ELANJ/mIK/ae461OVXdIOuc03JzITOnW1s2aJ5srVry/z5p4uI7Dy4tabjDI9ax2nbdU9mFVp6kq7TaPOGX4bxq418tdDE/pRww54QodCzToB+9f1ULJL7cPxJRWCYy8TPbiP+HFELKyr3WP0Msvools9C8fv3C/TpY2PPntBn8OCDPl591Rv8vs+FLyuTraN+YcOI4TiPHrnocWJuqUBi/YYUqVOP+MpViLmlApaYy5sXDrjdOPbt5eTG9ZzcsI6TGzeQvOriNcqxFStRd/CzlO/SHdFw/ie3hQslBg+2cORI6LO5914f777rDUoln4ll8ygi5z4BgCqZSe81h0DhWrk6n5yJcFH+W6id/jpCAZjSOh9//72LBx74C4DBgxvw8svN8rSfyCH3Ypk5GYCUmetQShWsbnNnoht0nWvOsWMCHTrYOHpUu6G0b+/n5589p7tz8q/lAGMjtR7Nggr/y6hDTd/ZGcH5HVmBGVsNfPufKUyY5jT1kmT61vfTsaqfuFwm9h+UBT53mfjdE27YjajcaQ5wv9VPQ0PeMu2vBunpMGSIhX/+CXmhJUoovP++5yzFszNRFYWjSxezdcyoszThL4ZksRBXoRK2xEQiihTFFBWFyW7HaLcjSBKoKqqqovj8eB3p2r/0NDIPHyZt5w58GY5LOl7l/vdS8e4+FG3Y+IKh3+PHBd54w8yff4Y+D7td5aOPPNx11/mjF6Z9s4ma1gtB1T6zzLbf4Kl6T67GlmrcyMaYjwAQVIm6ae9gl/On5kNuee+9xQwbpung//JLZzp2LJ+n/cT0vBXjlnWoosipdScI1tQWUHSDrnNd2LpVEyM53T3qwQd9vP9+qJzt94jtzMrWfDepEs+m1893jVwuhVUHREYuNjF9iwGfHH7Dl0SVpmVl7qweoEPVAEUiL/5TOyILfOs2MdptxH1GnkEVSeZeq58uZj9x+cAJU1X45Rcjr79uDsoBA9x+e4BXXvFSufLFIxV+p5NDC+axb8bf7Joy6Zwlb9cUQaDcnV0oe2dnyrS/A4PVesHVs7Lg++9NfP21Cacz9Bk0axZg2DAPJUue/zs3HF9LzB8dEQJatr2r1mM4W36Uq2H6BAer4l7CL2oPKOWy+lPS3SFX2+ZnOnWawIoVWvRm/fqBFCuWt1yA+EalEB1pyEVLkjpvy8U3yOfoBl3nurFwoUSfPlYC2e1K33rLw2OPhcrZRkRuYJUlGQCbYuSF9AaUkAtmEs9pUp0wcZ2RMauMbEs+22sXBJUaxRSalw/QvLxMw9Iytgs4DacUgZFuI6PcRlLUcOttRKW1SaaH2U9bc4CI6+y1790r8MILFhYuDIWiBUGlR48Agwf7qFAhd1MQSiDAqc0bObZ8KUeXL+PwwvnnTUq7khRr2pxijZuS1Oo2Cteue8GQ+mmysmDUKCPffGPi5MnQ9xMbq/Laa1769vVfsA23dGIjMX92QvRoAjveW7qS0fEXEC7+pKYQYGP0h6SbtGhXnK8G1R3PFehQO8CJE5qgjKpC+fKxLF2at0Q2IdNBQoOSAPjqN8MxavpFtsj/6AZd57oyfryBJ58MeTfffuumRw8t9OhH5ovoNWw3aSVN0bKZl9IbUkg5R2FzAUNVYf1hkakbjfy92cDB1HPfZE2SSq2SMjWLK9QoLlOjuMIthRQMZzwLeFSY5jXws9vEmsDZDwpmVBobZW4zBWhmkqkkKUjXwcCrKkyZYuCNN8zBEq3T3H57gEcf9dG06aVWBKg4jx0ldcd20nZuJ23nDtJ37yLryBEyDu6/pPGZoqKJrVCRqKRSRJUqRVzFyhSqVZvo0mXPWTt+PvbvFxgzxsioUSbS0kInI0kq/fv7efFF31nKb2diOLGB6D87B425r3gTHN2mgOHifXxVVHbYfyDZugAAoxJN/dQPMKnRuT6H/MqoURt59tm5wOXNn0vbNhLXXdvW3b0/We8Nv2JjvF7oBl3nuvPxxyaGDtUygQwGlV9/ddO2bahGfWj0SvYbtZ7ShWUbL6Y1JFrNY7uzfIiqan3Y/95kYNY2wzk995xYjSql4xVKxSmUitNeF49RiLFCrE0l2SwwRzQwzW8gWTm3EbKhUsMoU05SKCaqFBcVOpgDxF4j583thp9+MvLll+YwgwdQpoxCnz5+7r7bT7Fil5fop6oq/qxMfJmZ+J1OfFmZqLKMIIraP0nCHBWNOTYWkz3ykoz2mfj9MHOmgVGjjGFRCNAiEZ06BXjpJS/lyl38nAzHVhI99a6gMfcXbYij6yRUc1SuxnLI+g977GO1Y6tGaqW/QnTg3DXwBY1evSYxf/4BAObM6UfNmkXytB/T7GlEP9UfAOf/XsE16IUrNsbrhW7Qda47qgrPPWdm1CgttmyxaMIzjRplJwAJPj6KWcExg6YQVjIQyfPpDbDlczW5vHIyS2DJHolFuyUW7TGclSmfW+okyTw1wMtcDPzrM4TVs5+LRFFhRZwT6zX03DMz4bffjIwYYQrL+AbNCNavL9OxY4AOHQJny5/mA1wuWLDAwKxZBmbPlkg547syGFS6dQvw1FO5n1Iw7ZlO1Iz7EQJav3V/0YY4uv2JasrdzTrZvIjtkd9rGaVA5YzHKeJtcglnlX9xODxUrvwdgYBCiRKRrFnzUJ7qzwEiPnkN20/DtP1+MQpfu65XcKTXB92g6+QLZBkee8zClCmakY6MVJkyxUX16tpNMFV080HMClIlDwDl/TEMdtTDquahI0oBI9UJG49IbDwqsfGwyJZjEofShLOS687F+AdctK4oo6qwXRZZ4JNYE5CY5j37YciEyo6ErOsy1+73w99/G/jtNyOLFp37Oy1fXqZJE5lmzWQaN5YpUuTaG3i/HzZvFlm1SmLRIgMLF0pBQZiclCqlcM89fnr39p/VpOZCWDb8gH3Bswiqdt37SrQgo/O4XBvzE+ZlbI38JmjMSzm7U8aVtxrt/Mgff2zl8cdnAvDII3V4552Wed5XzN0tMW5aC8CpxXtQ4wtdiSFeV3SDrpNv8PlgwAAr8+ZpN/SEBIW//nIFQ5TJUhYfxqwkU9QynCv4YhnsqIuZG9+on4msQHKGwIFUkYOpAkcdIuluAYdbIM0F6W6BKokK73TyYjxHBH+hT+IuRygXob5B5k27h/rGS5eqvdIcOCAwYYKRadMM7Nx5/umHkiUVqlaVqVpVoVo1hQoVFIoXV86pHZ8XHA7YuVNk1y6RnTslNmwQWbdOwuU69xOPzabStm2A/v39NG8uXzDZ7SwCXuwLnsW6+dfgIk/FnmS2/RYMuZteOmlayZaoryBbmKm4+3bKZw0oEGqLueX++6fxzz+7AZg27W4aNSqRp/0ImQ7iG5VCUJQbog/6aXSDrpOvcLng7rutrFypGenixTWjXqKEdvkdMGQwNHolLlFLnKvsi+dJRx1MXHjeWSccVYUf3EYyVIFuFj9l85kozWl27xaYPt3IrFkG1q0TgxURFyIhQaF4cZXixRUSElSiolSio7V6b1EESdL++f3a9eZ2C7hccOqUyPHjAsnJAidOCEGVuwtRuLBCu3balECzZjLnEYW7IGLmEaL+uQdj8urgMlfdwTibvZmrbHaAo5Z57LT/FPTMi7pbUSHrgQKf0Z4Tp9NPlSrf4nYHSEiwsmnTI0hS3s7PNH8G0YN6AeDu9zBZr+auU11+RzfoOvkOh0NrxXlaTa50aYUpU1zBBKl9BgefRq/CnW3Uq/kSeMJRp0A0c9HJO1lZsGqVxNKlEsuWSWzZIoXVdF8LSpZUqF9fpkEDmfr1tejAZeTRYdo9jcg5TyB60wFQJQuZbb/CW6lXrrZXUTlgm8z+iEnBZYmeFlTMHHhDGXOAX37ZwPPP/wvAPfdU59NP2+Z5XxEfv4Lt568AcAz7Dd/tna/IGK83ukHXyZecOCHQubONvXu1m1LZsppRT0zULsPdhjQ+i16NV9QS52p6CzEoozaGG+wmpnN+FEULz2/eLLFli8j+/SKHDwscOSJy7JiAouTN2BuNKoULq5QsqYXxK1RQuOUWhcqVleD1d9n4srD/9wrWzT8HF8mRSWR0GkOgcM1c7ULGxy77LyRbFwaXlXB1pJyzzw1nzBVFpXnzX9m1Syth/fff/lSvnnf1yJgeLTBuXQ/AqaX7wjT7CzK6QdfJtxw9KtC1q439+7WbU7lymlE/nQy105jK59Fr8Akho/5YRm3dU9fB74fkZIH0dIGMDAGHQ8Dp1JIvFQVkWcBoVLHZtLlvqxXi4jRDHhurXpbXfTGMB+cTOfdJpIwDwWXe8l3IbPNlrhqtAHjEFLZEfUGmMdQgplxWX0q677ji480P/PvvPvr00TTXmzQpwZQpd+d5X4IjjfjGpRFUlUDFaqRNWXqlhnndya1Bv/myjnSuO8WKqUye7KJLFxsHD4rs2SPSvbuVyZPdFC6sUsEfx1OOOnwRvQa/oLDBfJKvo9fyuKO2Pqd+k2M0QsmS6gUlVa81gjuFiMVvYN0yKrhMNdjIavkRnqoDyK2aTqpxI9uivsUvatoMomqiYubDFPE2virjzg98//3a4OuHH65zWfsyrlmGkO2f+ho0v6x9FVR0l0fnulC8uGbUS5bUMnd37ZLo0cPKyZPaza+SP56nHHUxqZoB32w6xVfRa/Fy4cYfOjrXDEXGsuln4n6tE2bMfcWbkdp/CZ5q9+bKmMv42BUxio0xHwWNuUUuRJ20N29oY759+ykWLNCiGUlJ0bRrV/ay9mdc8V/wtV836Do615aSJVX+/NNF8eKaUd+xQ6JrVyvJydpNsLI/niGOupgVzahvNaUwLHoNHs7fvUpH51pgPLyYmPGtifz3qaDqm2K0k9n6cxw9/0aJyV27zgzDXtbEvsYR26zgsjhfDeqmvVvgO6ddjJEj1wVfDxxYO8+Z7acxrVwEgCoI+Os3vax9FVT0OXSd686+fQLduoXarpYurTBpkisYVt1tSOOL6DXB7Pfy/hiectS9YRXldPIvUsp2Iha/jnnfzLDlnop34Wz+Loq9aK72ExDc7LP9wRHr7GBJmqAaKZfVh+Ketjdc8tuZnDrlok6dkXg8Mna7iQ0bBhIZmXfZZ2nvTuLuqAeAv2pt0icuvMgWBYvczqHf2FeNToGgTBmVqVNdJCVpnvr+/WJ2JrzmqZcPxPK0ox42RUv52G1M5+OYlTgE73Ubs87NhXRqC5H/3Efs6IZhxjyQUJX0Hv+Q2eHHXBlzFZXj5qWsin1e88qzjbndX4p6ae9SwtPuhjfmAJ99thyPR5s+69u36mUZcwDL5DHB194777qsfRVkdA9dJ99w9KhAjx429uzRbmiFCytMnOimUiXN0B8wZPB59OqgolyRgI2nHfVJUC7cs1pHJ68Yjq/DtvITzHv+Dlsu24vhbPwa3sq9QcxdoqbDsIPd9jFkGvcEl4mqidLO7pRwd0C8SXKUd+9OpUWLUQQCCjabgeXLHyAx0Z73Hcoyca2rIJ04hmowkLJgxw0h95oT3UPXKXAUK6Z56pUra0/uJ06IdO1qZeNG7TItFYjixfQGxMmabNdxg4sPY1ZwTLr6PbN1biJUFcPRFURN6UnsuFvDjLliK0RWs7dJvXct3qr9cmXMMwx72Bj1Ceti3w4z5nHemtRP/Ygkd6ebxpgDvP32IgIB7SH98cfrX54xB4xL5yGdOAaA79Z2N5wxvxR0D10n35GaCr1721i/XrtZ2u1a69XmzTVDnyK6+TR6FccNLu19xchTjrqUDcRcryHr3AgEPJh3TsK6YQTG4+vC3pIjiuKu9xTuaveB8eKi8ioqDuMODlr/ItW8Puw9W6AE5bL6Eu/PndDMjcTixQfp3n0iAImJESxb9gAREZeXCxM55D4sM/8EwPHVWHxt7rzsceY3dGEZnQJNRgb062dlxQrNczGZVL75xkOXLlpiXIbg5fPoNRzM7qduUiUey6hFDd/N+3SukzfEjINYN/6EZfMviJ7UsPfkyCRc9YfgqdI/V81UFAKcNK/ksHVGmDgMgFmOp5SrK4meWxFvQj0FRVFp23YMmzadAODLL9vRu3fVy9qn4EgjvvktCH4fSmw8KQt2gMl0JYabr9CFZXQKNFFRMGGCm0cesTJrlgGfT+Dhhy2cOuXlwQf9RKlmnnPU5+uotewwpeETZL6KWsuArKo09+StU5POTYTsx3RgLpYtozHtnR5sa3oaf+FauGs9grfi3SBd3IN0Sckcs8wn2fJfsJb8NJoh70KipwUiN29lxu+/bw0a82rVCnH33VUue5/m6ZMQ/FpOjadTrxvSmF8Kuoeuk68JBODZZ82MHRv6oT79tJcXXvAhCOBH5ofITay2JAff7+osz52ucjdUe0mdK4N0aiuWrWOwbJ+A6DoR9p4qGvHe0hV3rUcIJNa/qCiMT8jkpHk5xy1LyTDuPOt9u780JdwdKOxtdFPNkZ+L1FQ3LVqM4sQJJwCTJvWkefOky95vTK9WGDeu0Y4xeQlypeqXvc/8iO6h69wQGAzw+edeChdW+eILLeT52Wdmjh4VGTrUg8kk8UhmTWIUM3NtmurUlIjdnBTdDMiqqjd10UFwncK8cxKWrWMxnlh31vtyRCKe6g/grn4/akSR8+5HRcUlHSPVtI4U0zrSjTuCPcqDx1IlErz1KOZpQ4y/sv5QCaiqyvPP/xs05u3bl7sixlzavT1ozP2Va96wxvxS0A26Tr5HEODll30UKqTyyitahvv48UaOHBH46Sc30dECvZ2ViFUs/GHfAcAS6xFOSi4GZdQmUr25w3A3I4InDfOevzHvmITx0EIENVwyWBWN+Mp2xFOlL77SbUE8960wgIcM405STOtJMa/HIx0/53q2QAkSPc1J9DTHpEZf8fMpyEyevINp07QIRmyshU8+ue2K7Nc65vvga2+3vldknwUdPeSuU6CYNs3A449b8Ho1z6dCBZkxY9yUKqVdxqvMx/gxchP+bM+psGzjSUcdisqXVxqjk/8RfJmY9s7AvHMSpv1zERT/Wev4C9fGU6Uv3oo9Ua1nt9b0iKdwGHeSYdyFw7CTLMOBoPjLmVjkwhTyNqCIpykRckndGz8Hx45l0qLFKBwOTQRq5Mg76NKl4mXvVzx6iLj2tRD8fhSbndS5m26YVqnnQg+569yQdO4coGhRFwMGWElJEdm5U6JDBxujRrmpV0+hvrco8bKVr6LXkiH6OCG5eC9mOYMyalHFn3C9h69zhRFcpzDvnY5pz1+YDi5AkM9WD5SjSuGt0B1PpbuRE7Ss6oDgwintwmk4jFM6jMtwmCzDIfyi4/zHUiWi/RWJ99Ui3lcbq1xUN+IXQFVVnnpqdtCYd+9e8YoYcwDbiM8Q/NoDm6f/Ize0Mb8UdA9dp0Cyf79Av35Wdu3Syn8sFpUvvvDQvbtW1pYiuvkqei2HDNp1K6oCfbMq08pz+XN3NzsqKjJeAqKTgOBEFjyogoyKEvwnICJiQFAN2f9LCBgQVQMiRkTVgKAatdeXWMIlZhzEvPsvTHv+xnh02VkZ6gABe2EyKrYirUoTMoon4pFS8Ein8Ign8UinCIi5ECNSBSLk4kT5KxDrr0qsrzpGNeKSxnoz8/PPG3jhhX8BreZ84cIBxMZevqqjeOQgcR1qa955RCSpczbe8AZdr0PXueFJT4cHHrCyeHEo0PS//3l5+WUfkgQeAoyM2sh6cyib+TZXEr2clZD0ZLkLEsCD03AAp+EIHulk0BB6xJP4xUxU4Qq2sVWFbCOv/dMMvzFo+EXVQMSJFApv30nhbbuITj55zt24oiwcrZzIoRrFOJUUB+Klec8GxY49UIpofwWi/RWIDJTTDXge2bTpBHfeOR63W3vAHj++O61bl74i+7a/ORjrhJ8AcD7yLK7Br1+R/eZndIOuc1Pg88ELL5gZMyaU+NamTYDvvnMTFQUKKhMjdjDLtj/4fjVfAo9k1NS7tWWj4CfDuCd7zng/WYYDuKXj5507vhYIskLC/lSKbU+m2Pbj2FNd51wvIyGCI1WKcqRKImnFYy5uxFUBsxKHRU7AJhcjQi5BRKAkEYESGNUoPYR+BThxwkm7dmM5ckSzGffdV5OPP74yiXBneedzN6HGxF2RfedndIOuc9OgqvDjj0Zee82MLGd3aCsvM3q0m3LltMt7keUwo+1bkLONVGHZxiBHbUrKufuh3EjI+Mgw7sZh3Ea6cRsZxt0owtkJZOfCJMdgUmIwqBEYVBsGJQKDakFA0v6pEgICKgqKIKMSQBECqMioQgAFP0rwf3+OZX4kVxYJu/dTZMcBCu8+islz7jGlFovmaJViHK1SnKxCsUiqFUk1I6kWJMwYFDsmJRKjGoVRicKoRGJR4rHICZiUuJtSpe1a4fUG6N59IqtWHQWgXr2iTJ58F2bzlUnXsr/xFNbffwbA+ehzuJ567YrsN7+jG3Sdm47//pMYONBKWppm1CMjVb76ykPHjlrYb7sxheFR63GKmqEwqSIDMqvR2Fvsuo35WuERU0g1bSDFtI400xaUC7SeFVUjEYGS2AOlsAeSsMqJWJQEzHICEle2BFBK24Vp70xMe2dkz4efHcpXRQP+Yo3xlrsDb7k7UaP0PIj8iKqqDB48m3HjtgBQrJidWbP6UaTIlZm2EI8cIK59bYRAAMUepc2d3wTeOegGXecmZf9+gQEDrGzfHvLCnnhCm1c3GOCU6GJ41HoOGEPynK3dSfTKqnRDidCoKGQYdmfXT6/DaTh43nUtciGi/ZWI8Vciyl8eq1z06nmxSgDj0eWY9s7AtG8GhrTd517NHIOvdFt8ZTvgK9UG1RJzdcajc8UYMWItr766AACLReKvv3pTs+b5hXouFftr/8M68VcAnI89j+vJV6/YvvM7ukHXuWnJyoIhQyxMnRqaI2/WLMB333koXFjFj8wY+zYWWQ8H3y/rj+axjNrEKZbrMeQrhl/IYk/EWE6Z15w3k9skxxDnr0GMrwox/spYlKtbzid4HZj2z8W0bwamfbMRvennXC8QUw5f2Y74ynbAX6zRecVedPIf//67j379pqAomjkZMeIOuna9MiVqAIbNa4np1RpBUTTvfO4m1OjYK7b//I5u0HVualQVRo408uabZgIBLQSfmKgwYoSHRo20sO5/lkOMsW8jkC1CE6WYeCSjJpX8BbcEZlfEaI7YZp61PNJflnhfLeJ8tYkMlEa4ytEIMX0v5r0zMO2bifHIEgQlcNY6qiDiL9ZY88LLdECOu+Wqjknn6rB48UH69p2Mx6P9roYMachLLzW9cgcIBIi5uyXGbRsByHr6TdwDn75y+y8A6AZdRwdYsUJi4EALycmaARNFlWef9TFkiFbatt/gYHjUOlIkD6Aldnd3VqC9uwxiAcx4Pm5exraor5EUC7H+6sR7axPnq4lZjbm6B1ZkDMmrNCO+dwaG1O3nXs0Uha9UG3xl2+Mr3facam06BYcVK47Qq9efuFxaXkrnzhUYMeIOxEssGbwQ1p++xP6JFl4PVKhK2sT/wHhzVajoBl1HJ5sTJwQefdQSVq/epEmAb7/1ULSoSpbgY2TURjabTgXfr+KL58HM6sQUwBC8gh8QrnqHL8GXifHAv5oR3z8b0Z1yzvXk6NJ4y3TQQunFm4Cka+vfCKxfn0yPHhPJzNTal7ZrV5affuqE0Xjl8i/Ew/uJ69QQweNGFQTSx80lULP+Fdt/QUE36Do6OZBlGDbMxMcfm1AUzXuIi1MYNsxDu3YyCirTbLv527YHNdu5iFRMPJhZneq+Qtdx5PkLMeOgppe+dwbGI4sRZN9Z66gIBIo2wFu2A76yHZHjKl60FalOwWLLlpN06/Y76elatUTLlqUYNaoLFssVfIhUVaIf7o5psaY25+r/CM5XPrly+y9A6AZdR+ccLF8u8eijFo4eDc0h33OPj7fe8mK3wzZjCiMjN+KQQmVdbV2l6OGsiPEGyoLPNaqCIXmNZsT3zcBwass5V1OMdvylbsNbtj2+0u1Qbbpu/o3K5s0nufvuSZw6pYn9NG5cnHHjumOzXdkwuPnv34l67iEA5MTipP29EjXi5tONAN2g6+icl9RUGDzYwsyZoRtQmTIK33yjNXjJFHz8HLmJDeaQxGgpfxQPZ9YkUb7xpUAFdwqmA/Mw7Z+N6cDc84fSI0viK9seb5kO+Es0B4P5Go9U51qzePFB7r13WjDMXrduUf74owd2+5WdRhHSUoi7sz5iqjYN5vhmPL7WHa/oMQoSukHX0bkAqgqjRhl54w0zLpcWDhZFlcGDfTz9tA+jSWWe5SC/27cTyFaXM6sSvbMq0dxT4saSCFUVDCc3Yto/B9O+2RiSV52z4QmAP7EevrId8JbpoHUu00PpNw1Tp+7g8cdn4vNp2ex16yYyfnx3oqOvfJ6J/ZVBWP/8DQDv7V3IGDb6ih+jIKEbdB2dXLB3r8Djj1tZsyaUyFOlisywYR5q1lQ4KGXwfdQGkg3O4PvVvQncm1WN2AKYMHcawevAeHA+pn2zMe2fg+Q6fs71FKMdf1IrfGXa4S3TDjXiygmF6BQcRo7URGNOW4vbby/L99/fQUTElc82N82cTPSQewFQIqNJ+3sVSuHEK36cgoRu0HV0ckkgoCXMDR1qCmrBS5LKE0/4eOYZH4IlwDj79jAhGptipF9WZRp6C0hPbFVBOrkZ04F/Me2fc16ZVYBAXCV8ZW7HV/p2TeBFz0q/aVEUlffeW8xXX60KLuvXrxqffNIGg+HK55RI+3YR0/NWRJcmipT51pd47r7vih+noKEbdB2dS2TTJpEnn7SwZUvIW69QQWboUC+NGslsMJ3gV/uWsIS5Ot4i3JNZhSg1/80fi44DmA4t0DzxQwvPOxeuGmz4km7FV6otvtJtUaJLXduB6uRLHA4PTzwxk1mz9gaXPf10Q154oQnC1ZhqcTmJ7X0bhl1bAfDceReZH/+gT+ugG3QdnTzh98OXX5r47DMTfn/oRtKvn4/XXvNiivcx1r6NFZZjwffsipF7MqtS11fkunrrgjsF46H/MB1cgOnQAiTHvvOuG4gph6/07fjK3I6/eFMwFNzpA50rz9atJ7n//r/Yty8d0Gzqhx/exv3317w6B1RVIl98BMu08QAEylUibcI8iLBfneMVMHSDrqNzGWzdKjJkiIV160Leeny8wptvern77gBrzMmMjtxClhhq8VnLW5h+WZWJU6zXZIyC8zjGo8sxHl2G8chSDCc2IHDun7NiisJfojm+pJb4SrdBiSl3TcaoU/CYNGkbTz89B7dbk+uNjbXw3XcdadWq9FU7puX3X4h840kAVFsEab8vQC535bTgCzq6QdfRuUxkGX75xch775nJygp53g0aBHj/fS+larr5LXIra82hhDKzItHDWYFWnqQrKx2rKkipO7INuGbEJcf+868uGvEXa4Q/qSW+ki0JFKmtNzvRuSA+n8xbb/3HyJHrgstq1CjMTz91Iikp+qod17BlPTF92yL4tKmsjKE/4b2j51U7XkFEN+g6OleI5GSBV181M21aKKNXEFT69/fz4kte9hc/xlj7NjLEkGpaGX8092ZWo6ScdyEMw7GVGA8v1jzwoyvO26XsNP5CNYIG3F+8MRhv7Jp5txDAoAoYr1ar15uIbdtO8fjjM9i8OaS90KdPVT78sDVW69XTTRccacT2vBXp8H4A3P0eJuvVoVfteAUV3aDr6Fxh5s2TePVVM7t3hwxIVJTKk0/66Pewk38SdrAwRya8qArc7i7Nna5yWNVL846tKz/FvvSt876vSmb8iXUJFG2Ev1hD/MUaolriLv2kCiBHpSwmR+xirfk4xQJ2Xk9rcnOq+F0BZFnhu+/W8sEHS4L15SaTxPvvt+Kee6pfneS30/j9RD3eG/OiOdqfNeqSPnommPJfgun1RjfoOjpXAZ8PfvjByNCh4WH4YsUUXnzRS62+J/gtegvHctStR8tmejgr0NhbLNdh+MhZD2PZNj74t2KNx1+0kRZGL9aIQOFaN50y2ynRxdSI3SwzHw3q7YuqwGcprYhU9dK6S+XAAQdPPjmTZcuOBJdVqhTPN990oHr1wlf34KpK5CuDsEweA4ASHUvan4tRipW8usctoOgGXUfnKnL8uMCHH5oYN84YbPYCUL++zLiJWcyP38t0295gr3WAsv5o+mZVoUzg4vORgvMElu0TUC0x+Is2Qo4tf9OW7zgEL39H7GGh5RCyELpdRctm+jgrUd9b9DqOruAhywq//rqRd95ZhNOpJXUKAjz6aF1eeqnplW2wch4iPn0D2w+fA6AaTThG/om/YYurftyCim7QdXSuAdu2ibz7rpk5c0I3wWnTXDRqJHNSdPG7fUdY0hxAU09xujlvKdBKc9eCVNHDbOs+FloP4xNCIjg2xUgHVxluc5fCrM+fXxLr1iXz/PP/smFD6JosWTKKr75qR5Mm18Y7tv7yNfaPXgZAFQQyPv8VX7uu1+TYBRXdoOvoXEOWLJEYMcJIXJzK++97seaoXNtqPMU4+3aOGrKCy4yqyG3uUnRwlcGuh4vDSJaczLTuY6nlSJhHblYl2rpK085dGpt69RK1bkTS0z28//4Sfv11Aznv+P36VePtt28lMvLaTN+Y/5pA1PMDg39nvvE5nt4PXpNjF2R0g66jk48IoDDfepCptt24xUBwuVUx0MFVhjbuUpi5ucvKDhgcTLfuY405OThHDtrDz63uknR0lSU6Hyry5WdkWWHChK28++4iTp1yB5dXrhzPRx/dRqNGJa7ZWIyL5xL92N0IAe36dz7+Iq4nXr5mxy/I6AZdRycfkin4mG7byzzrwbD59WjZTAd3GVq4S9xUhj2AwhrzceZZD7DbmB72nlUx0NqdRBt3qXwprZufUVWVOXP28e67i9i+PST5a7MZef75xgwcWBuj8dpNVxg2ribm/k4ILi1Z1N3rQbLe+OymzQu5VHSDrqOTj0kV3Uyz7WGx5XCYN2pXjLRxl6K1uxQRN3BY2SF4WWA9xELLoTBtfIAoxURbV2laekrqofU8sHr1Ud5+exHLlx8JW37nnbfw7rstKVYs79oIecGwZT3RD3VFTE8FstuhfvYLSHr+Q27RDbqOTgHgqJTFlIhdrDkjcc6sSLT0lKSNu9Q1k5K92gRQ2Gg6yRLLETaZTobNjwMUC9i5zZ1EE09xTHqy2yWzceNxPv10OTNm7AlbXrduIq+/3oLGja9deP00hrXLiX6kJ2JWBgC+Bs1xjJgEZj0h9FLQDbqOTgHisJTJDNteVpqTUXIYOkGFmr7CtPSUpKov4crKyV4DVFT2GzJYZj7CCsuxMO170M6vtq8It7mTqOiPKxitaPMZy5cf4YsvVjBv3v6w5eXKxfLKK824447yV1cg5jwYl8wj+n99EdwuAHx1m5Dx3e+o9qhrPpaCjm7QdXQKICdFFzNt+1hsORI2xw6QIFtp4S5BQ28xEvKx166gsseQzhpzMmvNx0mRPGetEyObaeItTkt3SeLz8bnkV1RVZcGCA3zxxYowYRiAIkUiePbZxvTtW/WazpPnxDT3b6Kevg/Br8kh+5rdhuPLMWC1XZfxFHR0g66jU4A5Pce8yHKItDPmmEHTiq/nTaSutwiFlOt/k8wSfGwxpbDFeIrNplNnzYuDlq1e21uYpp7iVPEXvGhDfsDp9PPHH1v58cf17NgR3t++ZMkonniiPn36VL0m4jDnw/zXBCJfehRB1rQDvG06kfHpT7qk62WgG3QdnRsAOXveeYH1EFuMp8IS6E5Tyh9FZX88Ffyx3OKPvSaJZOmih92GdPYY09llTGO/wXHOsUmqQCV/HHW9idT3JupJbnnkwAEHP/20nrFjN+NwhD8slS8fy5NPNqBHj0rXzSM/jWXCT9jfGoKQbVY8nXuT+d5wMNw8lRtXA92g6+jcYJwUXSy3HGO1OZnDhnP/HgUVSgQiuSUQS8lAJMUDkRSRbUSoxkuen1ZRcQkBTkkujksuDkuZHDZkcsiQSeo5wuinMakilX3x1PUmUstX+IbO1r+aeDwBZszYzdixW/jvvwOceadu2LA4Dz9cm44dyyNJ17k5japiG/EpEV+8HVzk7vUgWa9/CqLeOOdy0Q26js4NTLLkZI05mVWmZA4ZL/7btCoG4hULdsWEXTFhVQ0YEDGoAgogCwp+FNxigCzBR5boJ030hIngXIgSATtVfQlU8yVwiz9Wb2maR1RVZePGE4wbt5lJk7af5Y2bzRLdu1fioYdqX/0GKrnF6yHytSew/PV7cJHrgadwPvu2Xmd+hdANuo7OTUKG4GWnMY2dxlR2mtI4LGWeM/x9pbAoEkmBKMoHYinvj6GsP0bvdnaZbN9+iilTdjBlyg727k0/6/1SpaLp168a/ftXJyHh+udMnEY8kUzU//pg3LgmuCxryBu4Bz6tG/MriG7QdXRuUpyCn4OGDA4bMjkqZXFKcnNKdJMqec7KnD8fJlUiWjGRINtIkK0UUqwUD0RSImAnXrHq5WWXiaqqbN16ipkz9zBt2g62bUs5ax2r1UCnThXo27cqjRqVQBTz12du2LKOqMf7IB0/CoBqtZHx4Qh8t3e+ziO78dANuo6OThgqKl5kskQ/HiFAQFAIoCAgBMPvVtVAhGLSu5hdBXw+meXLjzBr1h5mzdrDwYMZZ60jCNC0aUm6datI164Vr1nTlEvFNHMyUS89iuDR9OHloiVwfDMeuXKN6zyyG5PcGnQ99VBH5yZBQMCCAYui/+yvBaqqsmdPGgsWHGDhwgMsXnwo2H/8TOrXL0bXrhXo3LkCRYrYr/FILwFFwTb8QyK++TC4yF+rAY6vxqIm5JM5/ZsY/Zeto6OjcwVQVZV9+9JZtuwwy5YdYenSQxw+fO7IptEo0qRJSdq3L0u7duUoUSL/q6cJaSlEvvwY5gUzg8s8XfuS+dYwvcY8n6AbdB0dHZ08kJ7uYcOG46xff5x165JZvfoYJ044z7t+oUI2br21FO3alaVVq9JERRUcI2hc8R+Rzw9EOnEMAFUQcD77Du77/6cnv+UjdIOuo6OjcxGysnxs3nyCdeuOs2FDMuvWHWffvvQLbmO1GqhfvxitWpWmZctSVKmScF001S+LQADbNx9g+35oUCxGiUsg48Pv8Tdve50Hp3MmukHX0dHRySY93cPOnans3JnCjh0p7NqlvT5f6DwndruJBg2K0aRJCRo1KkGtWkUwmQpucqF49BBRzz2Ice3y4DJfo5ZkfjQCpXDidRyZzvnQDbqOjs5VR1VVliw5xO7dafToUem6ZW/LssKxY1kcPOjg4MEMDhxwBF/v25d+wZB5TiwWiapVC1O7dhFq1UqkVq0ilC8fl+9Ky/KKafY0Il97AjEjHQBVknA++Sruh4boym/5GN2g6+joXDUyM738/vtWfvppA7t2pQKwYcNxPv/89it2DL9fJj3di8PhIT3dg8PhJSXFTXJyVvY/J8nJWRw/rv3v9+euFv80UVFmKlaMp1KleGrXTqRmzSJUqhR/3XXTrwZCRjoRn7yGdeKvwWVysSQyhv5IoHbD6zgyndygG3QdHZ0rzvbtp/jppw388cfWs0q1ihU7u6bW6w3kMMrhxvn0/6HXnrB1Xa5zl4JdKgkJNipUiOOWW+KoWDGeChXiqVgxjsKFIwre3HceMM2bjv2tIcHENwBP+25kvTUMNSrm+g1MJ9fowjI6OjpXBLfbz7Rpuxg+fNU5lc9ASxRr3jwp20CHjLbbnTvN+MshIcFKkSJ2SpaMolSpaJKSokhKiiYpKZqSJaOw229O+Voh9RT2957DMn1ScJkSEYnzhffx9BygZ7HnA3SlOB0dnWvGli0n6dHjD1JTz9+F7UpiNktER1uIiTGf8/+4OAuJiXaKFLFTtKidwoVtmM16QDIMVcU8fSL2955HTAs9gHmbtyXrrWEoRUtcx8Hp5ERXitPR0blmzJ2775KNudVqIDraTEyM5ZxGOTr6bGOtrWvGatVbsl4O4vGj2N8cHCYSo0THkvXyR3g79dK98gKKbtB1dHQum969q7Jy5RHmzNmHzWakffuyxMfbiI+3EhdnJT7eGnwdG2slJsase8zXA58X66hvsX37MaIrK7jY074bWa98osu3FnD0kLuOjo7OTYBp4SwiPngRw4E9wWVyQhGyXv8MX9tO13FkOhdDD7nr6Ojo6CDt20XEhy9h/m92cJkqinjuuh/nkNdRo2Ov4+h0riS6QdfR0dG5ARGcmdi+/QTrqG8Q/KHSPl+9pmS98jFyperXcXQ6VwPdoOvo6OjcSPj9WP4cje3rD5BOHQ8ulhOL43zuXbwduutJbzcoukHX0dHRuRFQFMwz/sT25bsYDu4NLlZNZlwPPIlr4NNgi7iOA9S52ugGXUdHR6cgo6oYF88l4vO3MG7bGPaWt21nsp57B6Vkmes0OJ1riW7QdXR0dAoohnUriPj8LUyrFoct9zVojvPpNwnUrH99BqZzXdANuo6Ojk4Bw7BuBbbvh2JeOCtsub9KLZxPv4G/SWt9nvwmRDfoOjo6OgUBVcW4ajG2bz/BtHxB2FuB0uVxPvUavtu76O1Nb2J0g66jo6OTn1FVTIvmYPvuE4zrVoS9JRctievR5/B07w8G/XZ+s6NfATo6Ojr5EVnGNG+6Zsi3rg97K5BUFvfDz+Dp1AtMN2eXOJ2z0Q26jo6OTn7C5cQyeQzWUcPDys8AAuUq4Xr0Wbztu+seuc5Z6FeEjo6OTj5APH4U65gRWH7/CdGRHvaev3JNXI8+h6/Nnfocuc550Q26jo6OznXEsHUD1l+/wTx9IkIgEPaer1FL3Pc/ga95Wz1rXeei6AZdR0dH51rj82GeMw3LuB8wrVka9pZqNOK94y5c9z6u663rXBK6QdfR0dG5RohHD2H5/WesE39FTDkZ9p4SHYu794N4+j6MUjjxOo1QpyCjG3QdHR2dq4miYFw2H+u4HzDNn4GgKGFvB8pWwN3/UTxd+uha6zqXhW7QdXR0dK4C4oljmKeMxTJp9FnZ6qok4WvTCXefh/A3aK7Pj+tcEXSDrqOjo3Ol8PsxLZyFZdIoTIvmIMhy2Nty4aJ47r4Pz133oRQuep0GqXOjoht0HR0dnctE2rcLy8RRWKaNQzx14qz3fY1a4u7zEL5W/2/vXl7jLKMADp+5ZaZeimhSoSKiqNiFioq0qFC0zYhJndjaQsX6z/gHiHs37izSYBtorclGdKd4j9hKSzVeNgUvKDK35nMREcoEjU2bMWeeZznvWZzFwI9vGN7vmYhabQgbMgoEHeAKlH75Keqn34rGiTei9ukHA+eXbt0e7f0vRvvAEa8vZUMIOsBadbsx9t58NOaOxti7p6PU6152XNRq0X1yKtrPvxTdx/dEVCpDWpRRJOgA/6QoovrZh9GYOxr1U7NR/vXngZH+3TuifeBItFuHo7hlYghLgqADrKry9ZfROHks6qdmo/L9NwPny+Pboj19KNozL6xcAOOf6gyZoAP8pfzdhZWInzwW1XNfDZwXjS3R2TMdndbh6D72lBek8L/i2wiMtPIPS1FfmIv627NR+/yjgfOiXI7ezt3R3ncous1WFDdsHcKW8O8EHRg55W/PR31+Lurzx6O2+MmqM72HdkZ7+mB0nt4fxfi2Dd4Q/jtBB0ZC5dyZqM+fiPrCXFTPfLHqTP+++6M9dTA6Uwdi+bY7NnhDWB9BB3IqiqicXYz6O8dXIn7+7KpjvR0PRrfZik5zJi7dde8GLwlXj6ADeRRFVBc//vvn9MrShVXHeg88Ep3mc9Fptlz6QhqCDmx+y8tx3WuvROPN16Py49LAcVEqRf/hXdGZbEVnshXL228fwpJwbQk6sOmNvb8Q17/68mWfFeVy9B59IjrNmejufdY7xklP0IFNr3/nPbG89aYo/fF79Hbtjs7kTHT27ovi5vFhrwYbplQURbGWwYsXf7vWuwBcuX4/ot+LaGwZ9iZwVU1M3LimOU/oQA7VqpvbGGnlYS8AAKyfoANAAoIOAAkIOgAkIOgAkICgA0ACgg4ACQg6ACQg6ACQgKADQAKCDgAJCDoAJCDoAJCAoANAAoIOAAkIOgAkIOgAkICgA0ACgg4ACQg6ACQg6ACQgKADQAKCDgAJCDoAJCDoAJCAoANAAoIOAAkIOgAkIOgAkICgA0ACgg4ACQg6ACQg6ACQgKADQAKCDgAJCDoAJCDoAJCAoANAAoIOAAkIOgAkIOgAkECpKIpi2EsAAOvjCR0AEhB0AEhA0AEgAUEHgAQEHQASEHQASEDQASABQQeABAQdABL4E8lgFtZd37YEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t, x_t = solve_lorenz(angle=0, N=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "w = interactive(solve_lorenz, angle=(0.,360.), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n", + "## Uncomment below for interactive viewing\n", + "# display(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cn5V9OLk09lI" + }, + "source": [ + "#### 6.2 Mean-Variance Portfolio Analysis\n", + "\n", + "Suppose that you have two different assets that you could invest in, asset 0 or asset 1. Let $R_0$ and $R_1$ be random variables representing the gross return on asset 0 and asset 1, respectively. Let the return of each have means $\\mu_0$ and $\\mu_1$ and standard deviations $\\sigma_0$ and $\\sigma_1$. Let $w$ be portfolio weight allocated to asset 1. Then, the return on the portfolio is\n", + "\n", + "$$\n", + "R = (1-w) R_0 + w R_1.\n", + "$$\n", + "\n", + "$$\n", + "E[R_0] = \\mu_0\n", + "$$\n", + "$$\n", + "E[R_1] = \\mu_1\n", + "$$\n", + "\n", + "\\begin{align}\n", + "std(R_0) &= \\sigma_0 \\\\\n", + "std(R_1) &= \\sigma_1\n", + "\\end{align}\n", + "\n", + "Now, what about the mean and standard devation of $R$?\n", + "\n", + "$$\n", + "E[R] = (1-w) \\mu_0 + w \\mu_1.\n", + "$$\n", + "\n", + "$$\n", + "% std(R) = \\, ? %\\sqrt{(1-w)^2 \\sigma_0^2 + w^2 \\sigma_1^2 + 2 w (1-w) \\rho \\sigma_0 \\sigma_1}\n", + "std(R) = \\sqrt{(1-w)^2 \\sigma_0^2 + w^2 \\sigma_1^2 + 2 w (1-w) \\rho \\sigma_0 \\sigma_1}\n", + "$$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", + "def plot_portfolio(weight_1=.5, mu0=2.0, mu1=8.0, sd0=5.0, sd1=10.0, corr=0.0, Rf=1.0):\n", + " \n", + " #calculate portfolio properties\n", + " expected_return = lambda a: a * mu1 + (1-a) * mu0\n", + " add_sd = lambda a: np.sqrt((1-a)**2 * sd0**2 + a**2 * sd1**2 \n", + " + 2*a*(1-a)*corr*sd0 * sd1)\n", + " \n", + " #calculate frontier\n", + " weight_1_range = np.linspace(-2.0, 2.0, 100)\n", + " y = expected_return(weight_1_range)\n", + " x = add_sd(weight_1_range)\n", + " \n", + " #Plot frontier and points\n", + " XRIGHT = 15\n", + " fig, ax = plt.subplots()\n", + " ax.plot(x, y)\n", + " ax.plot([sd0, sd1], [mu0, mu1], 'o')\n", + " ax.axis([0, XRIGHT, -2, 10])\n", + " ax.plot([add_sd(weight_1)], [expected_return(weight_1)], 'o')\n", + " plt.xlabel('standard deviation')\n", + " plt.ylabel('expected return')\n", + " \n", + " if corr < 1:\n", + " #calculate risk-free rate frontier\n", + " one_vec = np.array([[1,1]]).T\n", + " Sigma = np.array([[sd0**2, sd0 * sd1 * corr],\n", + " [sd0 * sd1 * corr, sd1**2]])\n", + " mu_vec = np.array([[mu0, mu1]]).T\n", + " #A = np.linalg.inv(Sigma) @ (mu_vec - one_vec * Rf)\n", + " A = np.linalg.solve(Sigma, (mu_vec - one_vec * Rf))\n", + " weights_vec = A * (one_vec.T @ A)**(-1)\n", + " Rt = mu_vec.T @ weights_vec\n", + " sd_t = np.sqrt(weights_vec.T @ Sigma @ weights_vec)\n", + " slope = (Rt - Rf) / (sd_t - 0) \n", + " ax.plot([0, sd_t.item(), (sd_t + XRIGHT).item()], [Rf, Rt.item(), (Rt + XRIGHT * slope).item() ])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG6CAYAAAD07mc1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB260lEQVR4nO3dd3hUdfr+8fdMeq8kkwQChJqEJIRepahYUVF33V1BRUFFBHtvq/503ZWvSLegYl9kUewNUVF6bwm9pkx6IT2Zmd8fI0EEkWCSmUzu13V57XJm5syThyG5c86nGGw2mw0RERERF2F0dAEiIiIijUnhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLsXpws3LL7/MuHHjTjiWnp7O2LFj6dmzJyNHjuStt95yUHUiIiLi7Jwq3Lz77ru8+OKLJxwrKipi/PjxxMbGsnjxYiZPnsy0adNYvHixY4oUERERp+bu6AIAcnJyeOKJJ1izZg0dOnQ44bEPPvgADw8PnnrqKdzd3enUqROHDh3ilVde4aqrrnJMwSIiIuK0nOLKzY4dO/Dw8OCTTz4hJSXlhMfWr19Pv379cHc/nsMGDBjAwYMHyc/Pb+5SRURExMk5xZWbkSNHMnLkyFM+Zjab6dq16wnHIiIiAMjOziY8PLzJ6xMREZGWwynCzelUVVXh6el5wjEvLy8Aqqurz+qcNpsNg8Hwp2sTEWlJbFYrtSWlWH/53unu74ebn5++H0qL0JCf3U4fbry9vampqTnh2LFQ4+vre1bnNBgMlJZWYrFY/3R9LZWbm5HAQB/1QX0A1Idfc9Ve1BYXc+TFF6g6eBCDuwfREyYSNGAAFFec8vmu2oeGUh/sHNmHjLwyVm03M2ZEF9qEnNnPfacPNyaTidzc3BOOHftzZGTkWZ/XYrFSV9d6P6jHqA926oOd+nCcK/WiOuMImTOnU1dYiNHfn5jJd+DTpcsZfX2u1Ic/Q32wa64+5BdXsiY9hzVpOWTklQNw2bDOZ/x6pw83ffv25b///S8WiwU3NzcAVq9eTceOHQkLC3NwdSIizq18+zayX5qDtaoKj0gTMVPvwvNP/GIo0lRKymtYvzOX1Wlm9mWW1h93MxpIigsjwNfzNK8+kdOHm6uuuor58+fzyCOPMGHCBLZu3cqCBQt48sknHV2aiIhTK/7xB3LffQusVny6diP6tim4+fs7uiyRehVVdWzcncea9BzSDhZis9mPG4BuscEMSDTRq2sb/H088PZ0O+PzOn24CQsLY/78+TzzzDOMGTOGNm3acP/99zNmzBhHlyYi4pRsViv5ixdR9PWXAAQMHETkdeMxeng4uDIRqK2zsGVvAWvSc9iyt4C6X43h6RgVQP/4SPrGRxIS4HXW7+F04ea555476VhycjILFy50QDUiIi2Ltboa8+uvUrZhPQBhl48h9NLLNCNKHMpitZJ+qIg1O3LYuCePympL/WNRYb70T4ikf3wkkaFnN1Hot5wu3IiIyNmpKykha/YMqg7sx+DuTuT1NxI4cJCjy5JWymazsT+rlNVpOaxLz6G0orb+sdBAL/rFRzIgIZJ2Ef6NHr4VbkREXEB1ViaZM16grqAAo58f0ZOn4tu1m6PLklYoM6+M1Wn2mU75JVX1x/19POjTPYIBCZF0bhuEsQmvJirciIi0cOVpO8ieNxtrZSUeEZHE3HEXnpEmR5clrUh+SSVr03NZvSOHjLyy+uNeHm6kdg1nQEIkCR1CcXdrnl2fFG5ERFqwkuU/kvPuW2Cx4NOlK9GTp2pGlDSL0gr71O01aTnsySipP35s6vaAxEhSOoXj1YBZTo1F4UZEpAWyWa3kf7SYoi8/ByCg/0Aib7hRM6KkSVVW17E+PZfVaTnsOFCI9Ze528embvdPiKR3twj8fRz7OVS4ERFpYaw1NfYZUevXARA6+nLCLrtCM6KkSdRZrGzdX8CG3ems2Z5Nza9WKG5vCmBAQiT9/uTU7camcCMi0oLUlZbaZ0Tt3wdubpiuv5HAQYMdXZa4GKvNxp4jxaxOy2H9zlzKq+rqH4sM8bFP3U6IJCrMz4FV/j6FGxGRFqI6K4usmdOpzc/D6OtH9OQp+Hbr7uiyxEXYbDYO55SxJi2HNek5FB2trn8s2N+TYb3akdo5jHZtnH8neYUbEZEWoCI9jay5s+wzotq0IeaOu/E0RTm6LHEBOUUV9kCTlkN2wfFd4n283OnTrQ0DEiJJjAsjLMyfoqLyFrGBqMKNiIiTK/n5J3LeXgAWC96dOhN9+1TcAwIdXZa0YCVl1azdaZ+6fSD7+CaVHu5GUjrbp24nxYXh4W6fum00OveVmt9SuBERcVI2q5WCjz+i8PNPAQjo24/IGydg9Djz3ZFFjqmsrmPDrjzWpJlJO1R0fJNKAyR2CKV/QiS9urbBx6vlR4OW/xWIiLgga20NOa/P5+i6tQCEXjKasMvHYDA2zyJo4hpq66xs21/A6rQctuzNp/ZXt5TiogMZkGDfpDLIz7UCs8KNiIiTqTtaStbsmVTt2wtubkSOu4GgIUMdXZa0EFabjd2Hi1mdZmb9zjwqqo/PdIoK82XALzOdIkIaZ5NKZ6RwIyLiRGrM2WTOeIHavDyMvr5ET7od3/gER5clTu50M51CArzoH28PNLGRjb9JpTNSuBERcRIVO9PJmjsba0U5HuFtiJ56F17R0Y4uS5xYbnEla3aYWf2bmU6+Xu706d6GAQkmurYLbnEDgv8shRsRESdQunIF5jdft8+IiutE9O134B6oGVFystKKGtal57I6zcy+zD+e6dQaKdyIiDiQzWaj4JMlFH76MQD+ffpiunEiRk/XGuApf05VTR2b9uSzesdv9nQyQEL7EAYkmlxmplNjUBdERBzEWltLzoLXOLpmNQChF19K2BVXakaUAPY9nXYcKGR1Wg6b9uRRU3t8plMHUwADEk30i48g2N959nRyFgo3IiIOYDl6lKy5s6jcs9s+I2rsdQQNHebossTBbDYb+zJLWZVmZl16LmWVtfWPRYT4MCAhkgGJJkyhrjvTqTEo3IiINLOaHDOZM6ZTm5uD0ceHqEm345eQ6OiyxIEy88tZvcPMmrQc8kuq6o8H+nrQL94eaDpGBbSKmU6NQeFGRKQZVezeRdacmVjLy3EPCyNm6t14xcQ4uixxgKKj1axJy2F1mpnDOWX1x7083ejVpQ0DEyOJ7xCCm25TNpjCjYhIMyldtZKcN1/HVleHd8c4+4yooCBHlyXNqKKqjg277Xs67TxUxC87IOBmNNCjYygDEk307BKOl4ebQ+ts6RRuRESamM1mo/DTjyn4ZAkA/r372GdEeWkgaGtQZ7GybV8Bq3aY2by3gDrL8YHBndsGMTAhkj7dIwjw1Qy5xqJwIyLShKy1teS8+TpHV68CIOTCiwm/8mrNiHJxVpuNvRklrNphZv3OXMqrfrMFQqKJAQmRtAn2cWCVrkvhRkSkiVjKyuwzonbvAqORiGuvI3jYcEeXJU0oM6+M1Wk5rN5hpqD0+BYIQf6e9plOCaZWswWCIynciIg0gZqcHDJnTqc2x4zR29s+Iyqxh6PLkiZQPzB4h5nDuccHBvt4udG7awQDEiPpHhvS6rZAcCSFGxGRRla5Zw+Zc2ZgLSvDPTSMmDvuwiumraPLkkZUWV3Hhl15rNphPmlgcFJcGAN7mEjpFIanBgY7hMKNiEgjKl2zmpw35mOrq8OrQ0dibr8D9+BgR5cljaDOYmX7/sJfBgbnU1t3fGBwl7ZBDEw00ad7BP4+Hg6sUkDhRkSkUdhsNgo//5SCJR8C4Jfai6gJt2hGVAtns9lIP1DIV6sOsGaH+aSBwQN/GRgcroHBTkXhRkTkT7LV1ZHz1gJKV/4MQMioCwm/+q+aEdWCZReUs2pHDmvScsgrrqw/HuTnSf+ESAYmamCwM1O4ERH5Eyzl5WTNm03lznQwGIj4xziCR4x0dFlyFkrLa1iTnsOq7WYOmo/WH/fxcqNX1wgGJEQS314Dg1sChRsRkbNUk5dL5owXqDWbMXh5E33rbfglJTu6LGmA6loLm/bksWp7DjsOFGK12YcGGw0GesSFMiQ5ihH92lNZXk3dr8bYiHNTuBEROQuVe/eQNXsmlrKjuIeEEjP1TrzaxTq6LDkDVquN9MNFrNpuZsPuPKprLPWPdYwKZGBiJP3iIwn088Td3Yi3pzuV5dWnOaM4G4UbEZEGOrp2DebXX7XPiIptT8zUO3EPDnF0WXIaNpuNI7llrNphZnVaDiVlNfWPtQn2tg8MTjRhCvV1YJXSWBRuRETOkM1mo+jLz8n/8H8A+PVMJWrirZoR5cQKS6tYnZbDqh1mMvPK64/7ebvTL94+MLhTTKAGBrsYhRsRkTNgq6sj5503Kf35JwCCzxtFm7/+TTOinFBldR3rd52887a7m5GencMYmGgiqVMY7m76u3NVCjciIn/AUlFO9rw5VKSngcFAm79fS8jI8xxdlvyKxWplx4FCVm43s3lPPjW/GvzbrV0wA3uY6NOtDb7eWmCvNVC4ERE5jdq8PDJnTqcmOwuDlxdRt0zCP7mno8sS7LcJD5qPsmq7mbXpOZRW1NY/Vr/AXmIk4UFaYK+1UbgREfkdlfv3kTVrBpajpbgFBxMz9S68Y9s7uqxWL7+kktU77ONosgsq6o8H+HrQPz6SgT1MdDAFaBxNK6ZwIyJyCqXr1pH5ykvYamvxahdL9JQ78QgNdXRZrVZFlX0czcrtZnYfKa4/7uFuJLVLOIN6mEjoEKpxNAIo3IiInMBms5Hx4RIy3nwbAL/kFKJuvhWjt25tNLc6i30czaodZjbtOb5RpQHoFntsHE0EPl76USYn0idCROQXtro6st9+h+IffwAgeOS5tLnmHxjc3BxbWCtis9k4nFPGiu3ZrE07cRxNdLgfAxPt07dDA70dWKU4O4UbERHAUlFB9ktzqEjbAQYDkf+4lqARmhHVXI6tR7Nyu5ms/OPr0QT6etA/wcSgHtqoUs6cwo2ItHq1BflkzphOTVYmBk9Put93N4YuCdpLqIlV1dSxYVceK7ebT1qPplfXcAYmmkjsqHE00nAKNyLSqlUd2E/mrBexlJbiFhRM7F13E5qaSFFR+R+/WBrMarWRfqiIlduz2bA7j5ra4wGya7tgBv0yjsbXWz+e5Ozp0yMirdbRjRswz38ZW00Nnm3bETP1Tnwi2ji6LJeUmVfGyu1mVu0wU/yrfZ0iQ30Z9Ms4mvBgDdqWxqFwIyKtjs1mo+ibr8j/3wdgs+HbI5noWydpRlQjK62oYc0v42gOmY/WH/fzdqdfQiSDepiIi9K+TtL4FG5EpFWxWSzkvvcOJT9+D0DQ8JFE/P1azYhqJLV1VrbszWfldjPb9hdgsdpH0rgZDSR3CmNQjyhSOmtfJ2laCjci0mpYKivJfnkuFdu32feI+svfCD5/lK4c/Ek2m419WaWs3G5mXXoO5VV19Y91jApgUI8o+sVHEODr6cAqpTVRuBGRVqG2oMC+R1RmBgZPT6Im3oJ/am9Hl+WUbFYrtZm7KMuqpNbmA226nHL38/ySSlZtN7Nyu5mcosr64yEBXgzqYWJgoonocL/mLF0EaCHhpq6ujjlz5rBkyRKKi4tJSEjgvvvuo2fPno4uTURagKqDB8mcNR1LSQluQUHETLkT7w4dHV2WU6o9sJ7qle9iKy+i7JdjBr8QvAZdi0fHPvXTt1dsy2bn4eL613l5uNG7WxsG9TDRPTYEo1FXw8RxWkS4mTdvHosWLeK5556jXbt2vPrqq0yYMIEvvviCiIgIR5cnIk6sbNNGsl99yT4jKqYtMVPvwiMszNFlOaXaA+up+nb2Scdt5UVUfjubpSFX8MnhEKprLYB9G4Tu7UMY1MNE725t8PZsET9SpBVoEZ/EpUuXcumllzJkyBAAHnzwQRYtWsTmzZsZNWqUg6sTEWdks9koXvoNeR/81z4jKrEHUbdOxs1HM6JOxWa1Ur3y3dM8ARLzv+F/tVcSGeLHoKQoBiWaCAvSNgjifFpEuAkLC+P7779n7NixREVFsXDhQjw9PenevftZn9OtlY/UP/b1qw/qA7heH2wWC+b336Xou6UAhAwfgWnsOAzuf/wtz9V6caZqM3dhKy/63ccNBghxq+DJS0Jo37NPqxmE3Vo/D7/V0vpgsNlstj9+mmPt27ePO+64gz179uDm5obRaGTWrFmMGDHC0aWJiJOpq6hk97QXKNqwEQwGOlw/jugrLms1P4zPhsVqI+27L/Bb+/ofPjfiijvxTxzaDFWJnL0WceVm7969BAQEMGfOHCIjI1m0aBH33nsv77zzDvHx8Wd1ztLSSiyW1rtvjJubkcBAH/VBfQBcpw+1hYUcnv4C1UcOY/D0JObmW/Dt05fi4oozPoer9OJMZOWX8/PWbFZsyyasMoMpgX/8mgqbD7WtaGuK1vR5OB1n6ENgoM8ZXzly+nCTnZ3NPffcw4IFC+jTpw8ASUlJ7N27l1mzZjF37tyzOq/FYtWmeKgPx6gPdi25D1WHD5E5czqW4mLcAgKJnnInPnFxZ/31tORenE5FVS1r03NZsS2bfVml9cdrvaOpdAvA23KU37vGZfALhTZdXLIvf8RVPw8N1VL64PThZsuWLdTW1pKUlHTC8ZSUFJYvX+6gqkTEmZRt2Uz2K/OwVVfjGR1tnxEVrj2ijrFabaQdLOTnbdls3J1P3S+/eRsN9lWDByeZSO4UDkf8Tzlb6hivQf845Xo3Is7G6cONyWQCYNeuXSQnJ9cf3717Nx06dHBQVSLiLIqWfkvewvfsM6LiE4madBtuvlo4DiC7oJyVvyyyV3S0uv54TBs/hiRFMSDRRJDfr1YN7tgHzr+9fp2bYwx+oXgN+gceHfs0Z/kiZ83pw01ycjK9e/fmgQce4IknnsBkMrFkyRJWrVrF+++/7+jyRMRBbFYref99j+Jl9hlRgUPOIXLsdWc0I8qVVVTVsXZnjv22U+bx205+3u4MSDAxONlE+8iA3x1g7dGxD+7te0HeHnwNlVScZoViEWfl9N8FjEYj8+bN48UXX+Shhx6ipKSErl27smDBAlJSUhxdnog4gLWqiuxX5lG+dQsA4Vf9hZALL261M6KsNhu7DhXx87ZsNuzKo6bu+G2npLhQBidFkdI5HA/3MwsoBqMR95h4/EP8qC0qbxFjLER+zenDDUBQUBBPPPEETzzxhKNLEREHqy0qImvWi1QfPoTBwwPTTRMJ6NPP0WU5RH5xJSu2m1mxLZv8kqr649HhfgxOsu/tFOzv5cAKRRyjRYQbERGA6iOHyZw5nbqiItwCAoi+/Q58OnV2dFnNqrrWwsbdefy8NZv0Q8fHxfh4udE/PpLByVHERQW22qtYIqBwIyItRNnWLWS/PA9bdRWepihi7rgbjzatY0aUzWZjf1YpP2/LZm16DpXVlvrH4tuHMCQ5il5d2+Dl4ebAKkWch8KNiDi94u+/I/e9d8Bmw6d7PNGTbsfNz/VnRJWU17Bqu5mftmaRXXB8IcLwIG+GJEUxKMlEeJD2yhL5LYUbEXFaNquVvEULKf72awACBw8lctz1Lj0jymK1sm1/IT9tyWLrvgIsVvsOOZ7uRnp3a8OQ5Gi6xQZj1G0nkd/lut8hRKRFs1ZXk/3qS5Rv3gRA2JirCL34UpcdS2IurLBvhbA9m5KymvrjcdGBDEmOol/3SHy99S1b5EzoX4qIOJ264mIyZ71I9aGDGNzdMd04kYB+/R1dVqOrrrGwflcuP23JYndGSf1xfx8PBvUwMTQ5ipg2/g6sUKRlUrgREadSfeQImbOmU1dYiJt/ANG3T8WncxdHl9VobDYb+7NL+WmLfXBwVY19cLDBAElxYQxNtq9J436GGwSKyMkUbkTEaZRv30r2S3OxVlXhYTIRM/VuPCMiHF1WozhacWxwcDaZ+cd31Y4I9mFIchSDepgIDfR2YIUirkPhRkScQvEPy+wzoqxWfLp2I/q2Kbj5t+xbMlabjfRDRSzfnMWmPXnUWX49ODiCoclRdNXgYJFGp3AjIg5ls1rJ/98HFH3zFQCBAwcTef34Fj0jqrC0ihXbsvlp64krB7c3BXBOSjT94zU4WKQp6V+XiDiMtboa8/xXKNu0AYCwK64k9JLRLXJGVJ3FyrZ9BSzfksXW/QXY7Bdp8PFyZ2BiJEOTo2lvCnBskSKthMKNiDhEXUkxmbNmUH3wAAZ3dyLH30Rg/4GOLqvBcooq+GlLNiu2ZVNSfnwKd9d2wZyTEkXvbhFaOVikmSnciEizq87MIHPGdOoKCzD6+xMzeSo+Xbo6uqwzVltnZcPuXJZvzmLn4eL644G+HgxOimJIchRRYa6/grKIs1K4EZFmVb5jO9kvzcFaWYlHZCQxU+/CM9Lk6LLOSHZBOT9uzmLldjNllbUAGIAecWGck6Ip3CLOQuFGRJpN8fIfyH3nLfuMqC5diZ481elnRNXWWdiwK48fN2ex60hx/fGQAC+GJkcxNDmasCBN4RZxJgo3ItLkbFYr+R/+j6KvvgAgoP9AIm+4EaOHh4Mr+32Z+eV8vyGDFduyKa+qA+wL7aV0CmdYz2iS4sIwGlvewGeR1kDhRkSalLWmBvNrr1C2YT0AoaMvJ+yyK5xyRlRtnYU16Tn8vM3Mjv0F9cdDA704JzmaIclRWmhPpAVQuBGRJlNXUkLWnBlU7d8Pbm6YbriRwIGDHV3WSbILyvlhUxYrtx+/SmM0GEjpHMawntH06KirNCIticKNiDSJ6qxMMmdOpy4/H6OvH9GTp+Dbrbujy6pXZ7GycXceP2zKPGHGU1igNxcN6kCfruEE+no6rkAROWsKNyLS6CrS08iaO8s+I6pNBDF33IWnKcrRZQGQX1zJj1uy+GlLFqUVv8x4+mUszfDUGHp2CScszJ+ionLq6qwOrlZEzobCjYg0qpKfl5Pz9ptgseDduQsxk6fiFuDYlXmtVhtb9xfww6ZMtu0r4JfFgwny92RYSjTnpETXj6XR7SeRlk/hRkQahc1qpWDJhxR+8RkAAf0GEDn+Rowejru1U1JWzfKt2SzfnElBaXX98YQOIYxIjdG6NCIuSuFGRP40a00N5tfnU7Z+LQChl15G2OVjHDIjymazsetwMcs2ZrBpTz4Wq/06jZ+3O0OSoxjeM4bIUN9mr0tEmo/CjYj8KXVHS8maPZOqfXvBzY3I68YTNHhIs9dRWV3Hqh1mlm3MJCu/vP5455ggRqTG0Kd7GzzctceTSGugcCMiZ60mO4vMmdOpzcvD6OtL9G1T8O0e36w1ZOaX8/3GDFZuN1NVYwHAy8ONgYmRjOjVlnYRzr0Csog0PoUbETkrFTvT7TOiKirwCG9jnxEVFd0s722xWtm0O59lGzNOmMZtCvVlRK8YBveIwtdb395EWiv96xeRBitZ8RM5by2wz4jq1Jno26fiHhDY9O9bVs2PW7L4cXMWRUftA4QNBujZOZyRvduS0D7EKVc+FpHmpXAjImfMZrNR8PGHFH72KQD+ffphunECRs+mmxFls9nYn1XK0g0ZrN+ZWz9AOMDXg3NSohneM0YbV4rICRRuROSMWGtryHnjdY6uXQ1A6MWXEnbFlRiMTTOVus5iZd3OXJauP8KB7KP1xzvFBDKyV1v6dIvAw13TuEXkZAo3IvKHLEePkjlnJlV799hnRI27nqAh5zTJe5WU1/Djpky+35RJSXkNAO5uBvonRHJe73a0Nzl2QUARcX4KNyJyWjVmM5kzXqA2Lxejj499RlR8QqO/z0FzKUvXZ7A2PYc6i/3WU5C/JyNTYxjWM4ZAP+3zJCJnRuFGRH5Xxe5dZM2eibWiHPfwcGKm3oVXdEyjnf/Y5pVL12ewN7Ok/nin6EDO69OO3t3aaAVhEWkwhRsROaXSVSswL3jdPiMqLo7oyXfgHhTUKOcur6rlx81ZfLcho37Wk5vRQN/4CM7r3Y646KafeSUirkvhRkROYLPZKPhkCYWffgyAf+8+mG66uVFmROUWVfDtugx+2pZFTa19x+1AXw+Gp8YwPDWGYH+vP/0eIiIKNyJSz1pbi/m1+RxdvQqAkAsvJvzKq//UjCibzcbezBK+XnuETbvz6nfkbtvGnwv6taNffKRmPYlIo1K4EREAakuPcvj5/1CxexcYjUSMvY7gc4af9fksVisbduXxzboj7M8qrT+eFBfGqH7ttOCeiDQZhRsRodpsZv/M6VRlZWP08SHq1sn4JfY4q3NVVtfx05Ysvl2fQUFpFQDubkYGJkYyqm87YtporycRaVoKNyKtXMXuXWTPmYmlvByPsDCip96FV0zbBp+n6Gg1364/wo+bM6mstm9g6e/jwcheMYzo1ZYgTeUWkWaicCPSipWuWUXOG69hq6vDv3Mnom+/A/wbNlPJXFjBV2sOsXK7uX59GlOoL6P6tWNQoglPD7emKF1E5Hcp3Ii0QjabjcLPPqHg448ACOjdm8QH7qG0oo66OusZneNAdilfrj7Ehl3HBwl3aRvERQPak9wpDKPG04iIgyjciLQytro6ct58g9JVKwAIueBCTNf8DTcvL6ioO/1rbTbSDhXx5epDpB0sqj+e0imMiwa0p2u74KYsXUTkjCjciLQilrIysubNpnLXTvuMqH+MJXj4yD+c6m212ti4O4/PVx/ikNm+iaXRYN/v6aIBsbTVIGERcSIKNyKtRE1uLpkzX6DWbMbo7W2fEdUj6bSvqbNYWbXDzBerDpFTVAmAp7uRoSnRXNC3HeHBPs1RuohIgyjciLQClXv3kDV7Jpayo7iHhtr3iGrb7nefX2exsnK7mc9WHiS/xD6d28/bnZG92nJun7YE+mrmk4g4L4UbERdXunY1Oa/Px1ZXh1f7DsRMuRP34OBTPrfOYuWHTZl8vupQ/Ro1Ab4eXNg/luE9Y/Dx0rcMEXF++k4l4qJsNhuFn39KwZIPAfDrmUrUxFsxep28f1NtnZXPVxzgg6W7KCy1b2QZ5OfJRf1jGZYag5emc4tIC6JwI+KCbHV15Ly1gNKVPwMQfP4FtPnLNScNHK6ts7B8SzZfrD5Uvzt3kL8nFw9oz7CUaK1RIyItksKNiIuxlJfbZ0TtTAeDgYi/X0vwyPNOeE6dxcqPm7P4bNVBSspqAAgP8ubige0Z3MOEh7tCjYi0XAo3Ii6kJi+XrBnTqTFnY/DyJuqWSfgnp9Q/brXaWJOWw0c/7a8fKBwW6MXowR25bHhnyo5WnfEifiIizqrFhJslS5bwyiuvcOTIEWJjY7n99tu56KKLHF2WiNOo3LeXrNkzsBw9ijXQH+NNf8c3wT7V22azsXlvPh8u309mXjlgH1Nz2eAODE2JxtvLXVdrRMRltIhw8/HHH/PII4/w8MMPM3ToUD7//HPuvvtuTCYTqampji5PxOGOrl9L1vxXMNTVkRvizifDvCjP+Zjg4h8YFHIumze4sy+zFABfL3cuHtiec3u31UBhEXFJTh9ubDYbM2bM4LrrruPaa68FYNKkSaxfv561a9cq3EirZrPZKPrqC/IXL8IA7I/25KvBgdR62AcOF1eV8Hn2h9RU9MTTPZrz+7bjwv6x+Hl7OLZwEZEm5PTh5sCBA2RmZjJ69OgTjr/22msOqkjEOdjq6sh59y1Kf1oOwKauPvzUyx+b8VcbVhoAGwR03sNj/cYQGqAVhUXE9bWIcANQUVHBTTfdRFpaGm3btmXSpEmMHDnyrM/r5nb6vXRc3bGvX31omX2wlJeTOXc25Tt2gMHAD7382NLN95TPNRighnKKbNlEuHc+5XNaah+agnphpz7YqQ92La0PTh9uysrKAHjggQe4/fbbuffee/n666+57bbbeOONNxg4cOBZnTcwUL/BgvpwTEvqQ1VOLmnPPUPlkQyM3t7UjbuELeU//eHr6txrCAnxO+1zWlIfmpp6Yac+2KkPdi2lD04fbjw87GMDbrrpJsaMGQNAfHw8aWlpfyrclJZWYrG03imvbm5GAgN91IcW1ofK/fs4/OJ0LKWluAeHYLh2Im/tPght/vi17nWeFBWVn/KxltaHpqRe2KkPduqDnTP0ITDQ54yvHDl9uImMjASga9euJxzv3LkzP/zww1mf12Kxaj0P1IdjWkIfjm5Yh3n+K9hqa3GLbstPPS7lx6/NgBfeQd4YPKt+97UhXkF0DOjwh19jS+hDc1Ev7NQHO/XBrqX0welvniUmJuLn58eWLVtOOL57925iY2MdVJVI87HZbBR+9QXZL83FVltLebsuvOg/jB/3VwAwOCmKaxOuOO05ru5yGUaD0/9zFxFpFE5/5cbb25sJEyYwZ84cIiMjSU5O5vPPP2fFihUsWLDA0eWJNClbXR25771DyfIfANht6sFHnj2xWY10jgni7+d1oWNUIAB+3h4s2vMJxdUl9a8P8Qri6i6X0TMiyRHli4g4hNOHG4DbbrsNHx8fpk+fTk5ODp06dWLWrFn079/f0aWJNBlLRQXZL8+lYsd2bMB34X1Z79cdPx8PrhnZhcFJJgyG49O+e0Ykkdwmkb3FByitLiXQK5DOwR11xUZEWp0GhxubzcaiRYv4/vvvqaysxGo98d6bwWDgzTffbLQCjxk/fjzjx49v9POKOKPaggIyZ06nJjODWqM7n0QMYY9/LP3iI/j7eV0J8vM85euMBiNdQzo1c7UiIs6lweHm//7v/5g/fz5t27bFZDrxN0ewhx8ROXtVBw+QMfNFrKUllLn5sChqJLUR0dwxqhspncMdXZ6IiNNrcLhZsmQJ48eP54EHHmiKekRatbJNG8h8+SUMdbXkegbzv6iR9B3QnSvPicPHq0XcRRYRcbgGf7csKytj+PDhTVCKSOtls9ko+PorCv630L5HlG80axMuYsroZDrFBDm6PBGRFqXB4aZ3795s3LhRg3lFGonNYuHgggXUrvoJA7ApsCu2i67ioRFd8HDXYGARkYZqcLiZMGEC9913H3V1daSkpODjc/JSzH379m2U4kRcnaWykvRp0/E8tBsbsMLUj97X/4WULmew5LCIiJxSg8PNsRlLc+bMAThhQLHNZsNgMJCent5I5Ym4rjJzLrv/8zz+pXnUGtzY2ONCxtx4GSEBXo4uTUSkRWtwuHnrrbeaog6RViVr605y583Ev7aCMjdv8i8ay7WXDcZoNPzxi0VE5LQaHG4+/fRTrr76alJSUpqiHhGXt2fZCmrefwNfWx2F3iGE3jKFXklxji5LRMRlNHi04ieffEJ5+al3FhaR09v2/kdY33sVD1sd5uB2dPvnE3RVsBERaVQNDjepqamsWbOmKWoRcVk2i4UNL76E13cfYwAOt+1Bv6cfJSQ82NGliYi4nAbflurWrRuvvfYaX331Fd27d8fX1/eExw0GA88++2yjFSjS0tVVVrLpX/9HUNZeAA4ljWDE7WNxd3NzcGUiIq6pweHm22+/JSIigtraWrZt23bS47/djkGkNaspKGD7s/8mqCSXWoMbecOv5Lx/XKx/JyIiTajB4WbZsmVNUYeIy6k6fIh9z0/Dv/Io5W7e1Fw9nuHna/FLEZGmps1qRJpA2ZbNZMybi0ddDfkeQRiuvZmBQxIdXZaISKvQ4HBz3XXX/eFztBaOtGZFy5aS+/67GG02DvqYqL3yei4ZEu/oskREWo0GhxubzXbSsYqKCvbt24evry+jRo1qlMJEWhqb1UreB+9TvPRbDMCWgM5Unj+GccO7O7o0EZFWpcHh5u233z7l8ZKSEiZOnEhcnNbskNbHWlVF9qsvUb5lMwA/hKZS0WcYUy6M1+BhEZFm1mhbDgcFBXHzzTezYMGCxjqlSItQV1zEkf/8i/Itm7EY3VgSeQ7Z8YOYdEUSbkbt6i0i0twafUBxQUFBY59SxGlVHzlC5szp1BUVYvPx493QczD7RvDEJfF4eWodGxERR2hwuFm3bt1JxywWC2azmblz55KYqBkh0jqUb99K1ry52Kqr8DBF8V6b4WRVejCqT1vaRfg7ujwRkVarweFm3LhxpxxDYLPZiIqK4uGHH26UwkScWfH3y8h9722w2fDpHs/m1NHsW2cm2N+Ty4d0dHR5IiKtWoPDzammeRsMBvz9/enWrRtGjTEQF2azWslftJCib78GIHDQENwv/xufvr4egL+d2wUfLy0fJSLiSA3+LpyVlcWwYcMICQk56bG8vDyWLFnCxIkTG6U4EWdira62z4javAmAsCuuJPSS0Xy55jB1Fiud2wbRt3uEg6sUEZEGX2Z56KGHOHLkyCkfS09PZ+bMmX+6KBFnU1dcbJ8RtXkTBnd3TBNvJezSyzAYDGzcnQfAwESTpn2LiDiBM7pyc/PNN7Nv3z7APrZm8uTJeHp6nvS8goICYmNjG7dCEQerzvhlRlRhIUZ/f2ImT8WnS1cAio5Wsz+rFAOQ2iXcsYWKiAhwhuHm1ltvZdGiRQB89NFHJCQkEBoaesJzjEYjgYGBXHnllY1fpYiDlG/fRvZLc7BWVeERGUnM1LvxjIysf3zTHvtVm7iYQIL9vRxVpoiI/MoZhZtevXrRq1ev+j/fdttttGvXrsmKEnEGxT/+QO67b4HVik/XbkTfNgU3/xOneG/65ZZUr65tHFGiiIicQoMHFP/rX/8C7NstrF+/ntzcXC644AKKi4vp2LGjxhxIi2ezWslfvIiir78EIGDgICKvG4/Rw+Ok5+YWVwLQOSaoWWsUEZHfd1ZzVufNm8fLL79MVVUVBoOB5ORkXnzxRYqKinj99dcJDAxs7DpFmoW1uhrz669StsE+tTvs8jGE/jJw+JTPt9o3knV30xIIIiLOosHfkd955x1mzZrF+PHj+eCDD+p3CR87dixHjhxhxowZjV6kSHOoKykhY9q/Kduw3j4j6qabCRt9+WmvRlp+CTduRl2xFBFxFg0ON2+//TY333wzd9xxxwlbLQwbNow777yTZcuWNWqBIs2hKjODw88+RdWB/Rj9/Ii5+z4CBw76w9cdu3JjVLgREXEaZ7WIX79+/U75WFxcHPn5+X+6KJHmVLx5Cwefex5rZSUeEZHETL0LT5PpjF577MqNUWPNREScRoOv3ERFRbFp06ZTPrZ9+3aioqL+dFEizaXoxx9Ie+oZrJWV+HTpSuxDj55xsAEI9LOv95RdUN5UJYqISAM1+MrN1VdfzaxZs/D29mb48OEAVFRU8PXXX/Pyyy8zfvz4xq5RpNHZrFbyP1pM0ZefAxA4YCAR1994yhlRp5PYMZTsggq27S+gdzdtvSAi4gwaHG4mTpxIRkYG06ZNY9q0aQBcd911AIwePZpbbrmlcSsUaWTWmhr7jKj16wBod81f8L/wUiwWW4PPlRwXxtL1GWzbX4jNZtNSCCIiTuCspoI/9dRT3HjjjaxevZri4mICAgLo27cvXbt2bez6RBpVXWkpWbNnULV/H7i5EX3jTcReegFFReVAw8NNt9hgPN2NFB2tJiOvnHYR/n/8IhERaVINDjejR4/mnnvuYcSIEXTo0KEJShJpGtVZWWTNnE5tfh5GXz+iJ08hMDHhT53Tw92N7u1D2LqvgE178hRuREScQIMHFGdnZ+Pj49MUtYg0mYr0NI7862lq8/PwaNOG2Icfxbdb90Y5d9/u9rE236w9wtGKmkY5p4iInL0Gh5vRo0ezYMECcnNzm6IekUZX8vNPZLz4f1grK/Hu1Jl2Dz+Gp6nxZvUNTDTRLsKfiuo6PvrpQKOdV0REzk6Db0sdPHiQ9evXM2zYMIKDg/H19T3hcYPBwNKlSxutQJGzZbNaKVjyIYVffAZAQN9+RN44AaOHZ6O+j9Fo4B/ndeHf723ix82ZDO8ZTWxkQKO+h4iInLkGh5uoqChGjx7dFLWINBprbQ05r8/n6Lq1AIReMpqwy8dgMDbNHlDdYkPo2z2CdTtz+e93e7jv76maOSUi4iBnvSu4iLOqO1pK1uyZVO3bC25uRI67gaAhQ5v8ff8yohOb9+az83AxP2/LZmhydJO/p4iInExbGYtLqTFnc+TZp6natxejjw9t77ynWYINQHiQD5cO6gDA21/vYveR4mZ5XxEROZHCjbiMip3pHH72/1Gbl4d7eDjtHnoM3/g/N9W7oS4Z2J7e3dpQZ7Exa/FWcgormvX9RURE4UZcROnKFWRMn4a1ohzvuE7EPvw4XtHNf1vIaDAw4dIEOkYFUl5Vx4uLtlBWWdvsdYiItGYKN9Ki2Ww28j/+CPPrr4LFgn+fvrS99wHcAwMdVpOXhxtTr0oiLNCbnKJKZi/eSm2d1WH1iIi0Ngo30mJZa2sxz3+Zwk8/BiD04kuJunkSRs/Gnep9NoL8vbjzL8n4eLmxO6OElz/ZQW2dxdFliYi0Cmc0W2rJkiUNOukVV1xxFqWInDnL0aNkzZ1F5Z7d9hlRY68jaOgwR5d1gpg2/tx2RRIz/reFjbvzeGHhFqZclYSvd8N2HhcRkYY5o3Dz4IMPnvDnY+t32Gy2k46Bwo00rZocM5kzplObm4PRx4eoSbfjl5Do6LJOKbFjKHf9JYVZH25j15Finnt3I3f9tSchAV6OLk1ExGWdUbj57rvv6v9/eno69913H7fddhsXXXQRERERFBUVsWzZMmbNmqV1cKRJVezeRdacmVjLy3EPCyNm6t14xcQ4uqzTiu8QyoPX9mL6B1vIyCvn2bfXc/c1PYkK88NmtWIx78JWUYLBNwg3U7cmW2hQRKS1MNh+ffnlDFx55ZVcdNFFTJw48aTH3nzzTRYtWsRnn33WaAX+1oEDB7jyyit57LHHuPLKK8/6PEVF5dS14kGe7u5GQkL8WlQfSletxLzgNbBY8O4YR/Ttd+AeFPSnztmcfcgrruSFhZvJKarEz9udB4ZA8K6PsJUX1T/H4BeC16Br8ejYp0lr+a2W+HloKuqFnfpgpz7YOUMfQkP9cHM7s1/+Gvwr4r59+0hIOPXaIXFxcWRkZDT0lGestraWe++9l4oKrR3SmthsNgo+WYL5tVfsM6J69bbPiPqTwaa5tQn24aFxvekYFUgnyz4CN7yO9VfBBsBWXkTVt7OpPbDeQVWKiLR8DQ43HTp04NNPPz3lYwsXLqRr165/uqjfM2vWLPz9/Zvs/OJ8rLW1mF97hYJPlgAQcsFFRN06GaNXyxyzEujryX3XpHBN4AYAfm/3qeqV72Gztt7fEkVE/owG7y01efJk7rjjDg4ePMiIESMICQkhPz+fb775hr179/Lqq682RZ2sW7eOhQsXsmTJEoYPH/6nz3eml7Zc1bGv35n7YCkrI2vWDCp27QKjkahx1xEyYmSjvocj+uBVsh9/W9nvJxvAVl4IeXtwj4lvlppawuehuagXduqDnfpg19L60OBwM2rUKObMmcOcOXN48cUXsdlsGI1GUlNTWbBgAX36NP5YgdLSUu6//34effRRoqKiGuWcgYE+jXKels5Z+1CZnU3as89SlZWFm48P3e6/h5BeqU32fs3Zh7KsSsrO4Hm+hkr8Q/yavJ5fc9bPgyOoF3bqg536YNdS+tDgcAMwcuRIRo4cSXV1NSUlJQQHB+PZhAun/fOf/yQ1NZXRo0c32jlLSyuxWFrvZX83NyOBgT5O2YeKPbs5MuNFLGVleISF0e6ue6BtW4qKyhv9vRzRh1rbmX1zqLD5UNsEX/OpOPPnobmpF3bqg536YOcMfQgM9DnjK0dnFW7APrB4xYoV5OXlMXbsWI4cOUL37t0bfUzMkiVLWL9+/e+O8zlbFou1VY98P8bZ+lC6ZjU5b8zHVleHV4eOxNx+B+7BwU1eY7P2oU0XDH4hJ8yS+jWbDUrx40hFGAnN/HfjbJ8HR1Iv7NQHO/XBrqX0ocHhxmq18vjjj7N48WJsNhsGg4ELL7yQuXPncvjwYd555x1MJlOjFbh48WIKCgpOGmfzxBNP8MUXXzB//vxGey9xHJvNRuHnn1Kw5EMA/FJ7ETXhlhY7cPh0DEYjXoOuperb2Sc9dmxdhv+V9WHrwq0MSY7impGd8dOqxiIiZ6zBI4Pmzp3Lp59+yv/7f/+PFStW1K9SfN9992G1Wpk+fXqjFjht2jS++OILlixZUv8fwNSpU3nmmWca9b3EMWx1deS8Mb8+2ISMupDoSbe7ZLA5xqNjH7zPvx2DX8gJx41+obiNmER40iAAft6azaOvrmHDrjxHlCki0iI1+MrN4sWLmTp1KldddRUWy/GNAOPj45k6dSrTpk1r1AIjIyNPeTwsLOx3H5OWw1Jebt8jatdOMBiI+Mc4ght5RpSz8ujYB/f2vU65QvHYrtAvPpIFX+7EXFjBnI+20adbG649vytB/q4b+kREGkODw01+fj7x8aeenhoZGUlpaemfLkpah5q8XDJnvECt2YzBy5voW2/DLynZ0WU1K4PRiHv0qf89dW0XzJM39uWTFQf5cvVh1u/KI/1QEdeM7MLgJNMJ+7mJiMhxDQ437du358cff2TQoEEnPbZ27Vrat2/fKIWdzq5du5r8PaRpVe7dQ9bsmVjKjuIeEkrM1Dvxahfr6LKcjoe7G1cN60Tf7hG8/kU6h3PKeP2LdFZsy+bv53UhNjLA0SWKiDidBoeb66+/nscff5za2lpGjBiBwWDg0KFDrFmzhtdff/2kHcRFfuvo2jWYX3/VPiMqtj0xU+/EPTjkj1/YisVGBvDY9X34eu0RPv75ALuOFPPkgnUM6xnDmKEdCfBtuqUYRERamgZvnAnw8ssvM2/ePKqrq+sHFHt4eDBhwgTuuOOORi+yKWgTtObfBM1ms1H05efkf/g/APxSehI18VaM3t7N8v6n4gybwTVUQUkVH3y/l3U7cwHw9XLn8qEdGZEag/tZrh7aEvvQVNQLO/XBTn2wc4Y+NGTjzLMKNwBlZWVs2rSJ4uJiAgMDSUlJITg4+GxO5RD6oDbvB9VWV0fOO29S+vNPAASfN4o2f/0bBqNjl/J2hn+wZ2vX4SLeW7qHI7n29Y6jw/34+7ldSOwY2uBzteQ+NDb1wk59sFMf7JyhD026K/hDDz3EkSNH8Pf3Z+jQoYwePZphw4YRHBzM/v37ufXWWxtcsLg2S0U5mTNesAcbg4E2/xhLxN/+4fBg09J1iw3hiRv6ct0F3fD38SArv5z/W7iZWYu3kltU4ejyREQc5ozG3GRlZdX//yVLlnDeeefh5uZ20vOWL1/OypUrG686afFq8/LInDmdmuwsDF5eRN0yCf/kno4uy2UYjQaGp8bQNz6Cj38+wLINmWzak8/WfQWMSI3h0kEdCPTTeBwRaV3OKNw8+eSTLF++vP7Pt99++ymfZ7PZGDx4cONUJi1e5f59ZM2ageVoKW7BwcRMvQvv2KafTdca+Xl78I/zujKsZwwLv9vD9gOFLN2QwU9bs7mgXzsu6BeLj9dZ77YiItKinNF3u6eeeoqVK1dis9l4+OGHmTRpErGxJ07bNRqNBAYG0r9//yYpVFqWo+vXYX7tFWy1tXi1iyV6yp14hDZ8LIg0TEy4H3df05O0g4X874d9HDQf5ZMVB1m2MZNLB3VgRGo0Hu4nX3UVEXElZxRuIiMjGTNmDAAGg4Hhw4cTGBhYf2uqqqqK2tpaAgK05kZrZ7PZKPrqS/IXfwCAX3IKUTffitH7zHbClsaR0CGUx64PYcOuPD5cvh9zYQX//W4P3647zOVD4hjUw4TRqEUARcQ1NXhE56WXXsqLL77IX//61/pjGzduZODAgfz73//Gam29o8lbO1tdHblvL6gPNsEjzyV68lQFGwcxGAz06R7B0xP6ccNF3QkJ8KKgtJrXv0jn8dfXsml3Hmc5WVJExKk1ONzMmjWLTz75hEsvvbT+WEJCAvfeey8ffPCBdulupSwVFWTOnE7J8h/tM6L+di0R/xiH4RQDz6V5uRmNnJMSzb9uHsBfR3TGz9udrPxyZn24jaffXM/mvfkKOSLiUhq8zs2IESO45ZZb+Nvf/nbSY++88w5vvfUW33zzTaMV2FS0ZkHjrVlQW5BP5ozp1GRlYvD0JOrmSfj3TG2kSpuWM6zd0Nwqqmr5au1hvll3hJpa+9fcISqAsRfG0yU6AIuldQed1viZOBX1wU59sHOGPjRknZsGT58oKiqiXbt2p3wsLi4Os9nc0FNKC1Z1YD+Zs17EUlqKW1AwMVPvxLt9B0eXJafh6+3Bled04rw+7fh67WGWbcjkYPZR/t8ba2lvCuCyQR3o2SVcG3OKSIvV4NtScXFxfP3116d8bNmyZc2ycaY4h6MbN3Dk+eewlJbi2bYdsY88pmDTggT6evKX4Z35z6SBXDqoAz5ebhwyH2XWh9t48o11bNSYHBFpoRp85ea6667jwQcfpLi4mPPOO4+wsDAKCwv5/vvv+fLLL/nXv/7VFHWKE7HZbBR98xX5//sAbDZ8eyQTfeskDRxuoQJ8PfnryM787YLuLPx6J9+sP8Lh3DJmf7iNdhH+XDa4A6ld22DUlRwRaSEaHG6uuOIKysvLmTt37glja0JCQnjssce44oorGrM+cTI2i4Xc996h5MfvAQgaPpKIv1+rgcMuIMjfi7+M7Mz5fdvxzbrDLF2fwZHcMuZ8tJ3ocD8u6h9L/4TIs96cU0SkuZz1xpk2m40DBw7Ub5wZFxeHsQXtFaTBYQ0fHGaprCT7pTlU7NhunxH1l78RfP6oFj02wxkGyTmDU/WhrLKWb9Yd4bsNR6istgAQFujFBf1iGZoSjZeHawZafSbs1Ac79cHOGfrQpBtnHlNaWsqBAwfYtWsXoaGhHDx4UPfnXVhtQQFHnnuGih3bMXh6En3b7YSMuqBFBxs5PX8fD648J47nJw3m6uGdCPTzpKC0mveW7uG+uSv5dMUByqtqHV2miMhJzmqzmXnz5vHyyy9TVVWFwWAgOTmZF198kaKiIl5//XUCAwMbu05xoKqDB8mcNR1LSQluQUHETLkT7w4dHV2WNBNfb3cuHtCe83q3ZcV2M1+tOURecRUf/XSAL9YcZkTPGM7v246QAC9HlyoiApzFlZt33nmHWbNmMX78eD744IP6qzVjx47lyJEjzJgxo9GLFMcp27SRI/95FktJCZ4xbYl9+DEFm1bK08ONEakxPHvzAG65LJF2Ef5U11j4au1hHnhpJQu+TCensMLRZYqINPzKzdtvv83NN9/MHXfcgcViqT8+bNgw7rzzTl555RUee+yxRi1Smp/NZqN46TfkffBf+4yoxB5E3XIbbr6+ji5NHMzNaKR/QiT94iPYtr+QL1YdZHdGCcu3ZPPTlmx6dgnngn6xdGkbpNuWIuIQDQ43WVlZ9OvX75SPxcXFkZ+f/6eLEseyWSzk/vc9Sr7/DoCgYcOJ+PtYDO5ndRdTXJTBYCC5UxjJncLYk1HMl6sPs3lvPpv22P/rGBXIBf3a0btbG9xa0GQDEWn5GvzTKioqik2bNjFo0KCTHtu+fTtRUVGNUpg4hrWqkuyX51G+bSsYDIRf/VdCRl2o38DltLq0DabL1cFkF5TzzbojrNhm5kB2KS99vIOwQG/O79uOoclR+HgpIItI02vwd5qrr76aWbNm4e3tzfDhwwGoqKjg66+/5uWXX2b8+PGNXaM0k9rCQrJmTaf6yBEMnp6YbrqZgN59HF2WtCBRYX5cf2F3xgyNY9nGDJZtzKSgtIr/freHj38+wLCe0ZzXuy2hgd6OLlVEXFiD17mx2Ww88cQTLFq0qP7Px36rHz16NM8991yLWO9GaxacuGZB1eFDZM6cjqW4GLeAQKKn3IlPXJyjy2xyzrB2gzNoqj7U1FpYucPMN2uPYP5lsLGb0UDf7hFc0C+W9qaARnuvxqLPhJ36YKc+2DlDHxqyzs1ZL+J34MAB1qxZQ3FxMQEBAfTt25euXbuezakcQh/U4x/U4vUbyH71JWzV1XhGRxMz9S48wts4usRm4Qz/YJ1BU/fBarOxdV8B36w9zM7DxfXHu7YN4rw+7UjtGu4043L0mbBTH+zUBztn6EOT7gp+TMeOHTEYDJSUlBAaGvq7O4WLcyv49hty3nvXPiMqPpGoSbfh5uvn6LLExRgNBnp2Dqdn53AOmY/y9drDrNuZy+6MEnZnlBAW6MXIXm0ZmhKNv4+Ho8sVkRburK7c/Pe//2Xu3Lnk5eXVH4uOjuaee+7h4osvbtQCm0prT+FuRihe/AHZn38BQOCQc4gce12rmxHlDL+NOANH9KHoaDXfb8rgh01ZlFXaVzr2dDcyqIeJc/u0IybcMSFbnwk79cFOfbBzhj406ZWb999/nyeffJJzzz2XUaNGERYWRn5+Pl999RX33HMPnp6enHfeeQ0uWpqPtaqKrFdfomzLZgDCr/oLIRderBlR0qxCAry48pxOjB7UgdVpOfUbdf6wOYsfNmeR0CGE8/q0I7lTmHYkF5EGafCVmwsuuIDBgwfz+OOPn/TY448/zrZt2/joo48arcCm0lpTeG1REVmzXqT68CEMHh7ETLwF316td0aUM/w24gycoQ82m43dR4r5dn0Gm/bkcew7U0SID+f2bsuQpOaZSu4MvXAG6oOd+mDnDH1o0is3ZrOZc88995SPXXDBBXz88ccNPaU0k+ojh8mcOZ26oiLcAgJIfOxh6iJiWvU/WHEeBoOBbrEhdIsNIb+4ku82ZrB8Sza5RZW8v3QPHy7fz6AeJkb2auuwW1Yi0jI0ONwkJSXx008/MXjw4JMe27RpE926dWuUwqRxlW3dQvbL87BVV+FpiiL2nnsJ6NqBoqJyR5cmcpLwYB+uGdmFy4d0ZNV2M0s3ZJBdUMH3GzP5fmMm3WODGdmrrVPNshIR59HgcDNp0iTuvvtuysvLufzyy4mMjKSoqIjvvvuON954g4cffph169bVP79v376NWrA0XPH335H73jtgs+HTPZ7oSbfjGeR864uI/Ja3pzsjerVleGoM6YeKWLYxk0178th5uJidh4sJCfBieM9ozukZQ5Cfp6PLFREn0eAxN927dz/+4l8N8vv1aQwGQ/3ifunp6Y1QZuNrDfdPbVYreYsWUvzt1wAEDh5K5LjrMbi7O8X9U2egPti1pD4UlFTxw+ZMlm/J4miFfZaVm9FAn+4RnNurLZ1iAv/U4PiW1IumpD7YqQ92ztCHJh1z8+abb2pWTQtgra4m+9WXKN+8CYCwMVcRevGl+ruTFi8syJurhnXissEdWb8rl2UbMtiXVcqatBzWpOUQG+HPyN5t6Z8QiZeHm6PLFREHaHC4SU1NxdPz9y//HjlyRAv6OVhdcRGZs2ZQfeggBnd3TDdOJKBff0eXJdKoPNyNDEw0MTDRxEFzKcs2ZLImPYfDuWUs+HInC5ftZXAPE8NTY4jWAGSRVqXBI/Guuuoqdu/efcrH3nnnHS677LI/XZScveojRzj87NNUHzqIm38Abe99QMFGXF4HUyA3XhLP/00ezF9HdKZNsDeV1XUs3ZDBo/PX8O93N7I2PYc6S+u9rSDSmjT4yo3FYuHqq6/m7rvv5oYbbgAgMzOThx9+mDVr1jBq1KjGrlHOUPn2rWS/NBdrVRUeJhMxU+/GMyLC0WWJNBt/Hw8u7B/LqH7tSDtQyPebMtm8N59dR4rZdaSYQF8PhqZEMywlmvBgH0eXKyJNpMHhZsmSJUybNo1///vf/PjjjwwbNoxZs2YREBDAnDlzfncNHGlaxT8ss8+Islrx6dqN6Num4Obv7+iyRBzCaDDQIy6MHnFhFJZWsXxLFj9uyaKkrIbPVx3ii1WHSOoUxvDUGJLjwjAaNRZNxJWc9a7gy5Yt4/bbb8dmsxEfH88777yDr69vY9fXZFxl5LvNaiX/fx9Q9M1XAAQOHEzk9eP/cI8oZxj57gzUB7vW0Ic6i5Ute/P5flMmaQeL6o+HBXozrGc0Q5OjCPL3ahW9OBPqg536YOcMfWjyXcE/+ugj/vOf/+Dv78+AAQP45ptvmDJlCk8++SRt27Y9m1PKWbBWV2Oe/wplmzYAEHbFlYReMlozokROwd3NSO9uEfTuFkFOYQU/bM7k563ZFJRW8eHy/Xz88wF6dglnZK+2DOnVcn5RE5GTNfjKzfXXX8/atWsZOnQoTz/9NJGRkfz888889thjFBcXM3XqVMaPH99U9Taalp7C60qK7TOiDh7A4O5O5PibCOw/8Ixf7wwp3BmoD3attQ81tRbW78rl+02Z7MssrT8eGerLOSlRDEo0EeTv5cAKHae1fiZ+S32wc4Y+NOTKTYPDTZ8+fXjwwQe5+uqrTzheVlbGM888w5IlS5x24b5fa8kf1OrMDDJnTKeusACjvz8xk6fi06Vrg87hDB9UZ6A+2KkPkJFbxo9bsli13UxFdR1gXxywZ5dwhvWMJqFDaKvanVyfCTv1wc4Z+tCk4cZsNmMymX738WODjJ1dS/2glu/YTvZLc7BWVuIRGUnM1LvwjPz9v4/f4wwfVGegPtipD8dZbDZ2HCrm85/3syejpP54eJB9bM6QpKhWcTVHnwk79cHOGfrQpGNujgWbffv2sWLFCnJzcxk3bhxHjhyhe/fuLSLYtFTFy38g95237DOiunQlevJUzYgSaWReHm6c2zeWXp3DOJhdyo+bs1i53Ux+SRWLf9zPkp/sY3OGpUST0LF1Xc0RaSkaHG6sViuPP/44ixcvrt8/6qKLLmLu3LkcPnyYd95557RXdqThbFYr+R/+j6KvvgAgoP9AIm+4EaOHh4MrE3Ftbdv4c+35Xbl6eCfW78zlx81Z7M0sYcOuPDbsyiMs0JuhKVEMSYoiNNDb0eWKyC8avELx3Llz+fTTT/l//+//sWLFivoNM++77z6sVivTp09v9CJbM2tNDdkvz60PNqGjL8c04WYFG5Fm5OXhxuCkKB4e15unburHub3b4uvlTkFpFUt+OsB981by4qItbNydp1WQRZxAg6/cLF68mKlTp3LVVVdhsVjqj8fHxzN16lSmTZvWqAW2ZnUlJWTNmUHV/v3g5obphhsJHDjY0WWJtGrHrub8ZXgnNuzO46ctWew8XMzWfQVs3VdAoJ8ng5NMnJMSTWSIppSLOEKDw01+fj7x8fGnfCwyMpLS0tJTPiYNU52VSebM6dTl52P09SN68hR8u3V3dFki8gtPD7f6jTtzCitYvjWLFdvMlJbX8OXqw3y5+jDdY4M5JyWa3t3a4OGuHcpFmkuDw0379u358ccfGTRo0EmPrV27lvbt2zdKYa1ZRXoaWXNn2WdERfwyI0rjmEScVmSoL38Z3pkxQ+PYsreAn7ZmsW1/ATsPF7PzcDF+37ozINF+NaddhCYBiDS1Boeb66+/nscff5za2lpGjBiBwWDg0KFDrFmzhtdff50HH3yw0YssLi7mhRde4IcffqCsrIxu3bpxzz330KdPn0Z/L0cr+Xk5OW+/CRYL3p27EDN5Km4BAY4uS0TOgH0V5Db07taGwtIqft6azU9bsygorea7DRl8tyGDDqYAhqZE0z8+El/vs1okXkT+wFntLfXyyy8zb948qqur6wcUe3h4MGHCBO64445GL/LGG28kLy+PJ554grCwMN5++20WL17MRx99RFxc3Fmd09nWLLBZrRQs+ZDCLz4DIKDfACLH34jRw7NJ3s8Z1ixwBuqDnfpwXGP3wmq1kXawkB+3ZLF5Tz4W6y/fM92N9OnWhqHJ0XSLDXa6bVP0mbBTH+ycoQ9NuojfMWVlZWzatIni4mICAwNJSUkhODj4bE51WocOHWLUqFG899579O7dGwCbzcaoUaO49NJLzzpMOdMH1VpTg/n1+ZStXwtA6KWXEXb5mCb9ZucMH1RnoD7YqQ/HNWUvSitqWL3dzE9bs8nML68/HhHsw5DkKAYnRRES4BwLBOozYac+2DlDH5p840wAf39/hg4derYvP2MhISG88sorJCUl1R8zGAwYDAaXGLxcd7SUrNkzqdq3F9zciLxuPEGDhzi6LBFpAoG+nozqF8v5fduxP7uUn7ZkszY9h9ziSj5cvp+PftpPUlwYQ5OjSOkcjvsZfiMXkRM5/Q3fwMDAk1Y9/vrrrzl06BAPP/zwWZ/3TNNfU6rOyuLI9BeozcvF6OtLuylT8YtPaJb3Pvb1O0MfHEl9sFMfjmuuXnSLDaFbbAjjLujG2vQclm/OYteR41PKA3w9GJIcxTkp0cS0af5ByPpM2KkPdi2tD2d9W8pRNm7cyIQJExg8eDCzZs1ydDlnrXjrNnY+9zyW8nK8IiNIePwRfNu2dXRZIuJAmXllfLvmEMvWH6HoaHX98W6xIZzbL5Zzesbg56MFPEX+SIsKN0uXLuXee++lV69ezJs3Dy+vs783XVpaicVBK4kW//QTWQteB4sFn86daTf1TtwDA5u1Bjc3I4GBPg7tgzNQH+zUh+OcoRcWq5Wtewv4cXMWW/aeOAi5b/cIhqZEE98hpEn3tXKGPjgD9cHOGfoQGOjT9GNumts777zDM888w4UXXsi///1vPD3/3Cwii8Xa7IOibDYbBR9/SOFnnwIQ0LcfkeMngKenwwZoOaIPzkh9sFMfjnN0L5LiwkiKC6OkvIZV2838vC2brPxyVm43s3K7mbBAbwYnmRiSFEV4sE+T1eHoPjgL9cGupfShRYSb9957j6effppx48bxyCOPON2UyTNhra0h543XObp2NQChF19K2BVXYjC2jPuXIuIYQX6eXNg/lgv6teNA9lF+3pbNmjQzBaVVfLLiIJ+sOEh8+xCGJEfRq2sbvDy0ErKI04ebAwcO8Oyzz3L++edzyy23kJ+fX/+Yt7c3AS1ggTvL0aNkzplJ1d499hlR464naMg5ji5LRFoQg8FAXHQgcdGB/G1kZzbuzuOnrdmkHyqq/8/Hy41+8ZEMSYoiLjqwRf4iKNIYnD7cfP3119TW1vLtt9/y7bffnvDYmDFjeO655xxU2ZmpMZvJnPHLjCgfH6Jvm4JvM82IEhHX5OnhxoBEEwMSTeQXV7Jiu5kV27LJL6nix81Z/Lg5i6gwXwYnRTEw0eQ0a+eINJcWNaC4MTXHQkQVu3eRNXsm1opy3MPDiZl6F17RMU36nmfKGRZkcgbqg536cFxL7YXVZmPXoSJ+3pbNhl151PxSu8EAPTqGMTjJRGqX8DPewLOl9qGxqQ92ztCHZlnET06vdNUKzL/MiPKOiyN68h24BwU5uiwRcVFGg4H4DqHEdwhl7Kg61u3MZcW2bPZklLBtfwHb9hfg5+1OvwT7basOpgDdthKXpXDTyGw2GwWfLKHw048B8O/dB9NNN2P8k7O7RETOlI+XO+ekRHNOSjQ5hRWs2J7Nim1mio5W8/3GTL7fmEl0uB+Dk0wMSjQR5K/bVuJaFG4akbW2lpwFr3N0zSoAQi68mPArr9aMKBFxmMhQX648pxNXDIkj/XARK365bZWVX86i7/ex+If99IgLZUiSfcsHD3d9v5KWT+GmkVjKysiaM5PKPbvBaCRi7HUEnzPc0WWJiABgNBpI7BBKYodQKs6vY93OHFZsM7M3s6R+ywc/b3f6xUcyOCmKLu10G11aLoWbRlCTYyZz5nRqc3Iw+vgQdetk/BJ7OLosEZFT8vV2Z1jPGIb1jMFcWMGKbdms3P7LbatNmXy/KZOoMF/O79+eXp3DCPTVbXVpWRRu/qSK3bvImjMTa3k57mFh9hlRMdojSkRaBlOoL1cN68SYocdvW23clUd2QQVvfZHO20BCx1AG9zCRqkUCpYVQuPkTStesIueN17DV1eHVoSMxU+7APSjY0WWJiDTYr29bVY6qY+OePFan5bJjfwE7DhSy40Ah3p5u9O0eYb9t1TZIs63EaSncnAWbzUbhZ59Q8PFHAPin9sY04WaMf2IjTxERZ+HjZb9tdcWIruzan8fyzVms3G4mv6SKn7Zm89PWbNoEezO4RxQDe5ho04R7W4mcDYWbBrLV1ZHz5huUrloBQMgFFxJ+1V81I0pEXFJEiC9XDI3jsiEd2XOkmBXbzKzblUtecRVLfj7Akp8P0LVdMIN6mOjbPQIfL/1YEcfTp7ABLGVlZM2bTeWunfYZUf8YS/DwkY4uS0SkyRkNBrrFhtAtNoRrz+/Kxt15/Lwtm52Hith9pJjdR4p599vd9OrahkE9TCR2CMVo1G0rcQyFmzNUk5tL5swXqDWbMXp722dE9UhydFkiIs3Oy9ONgT1MDOxhorC0ilU7zKzcbia7oII1aTmsScshyN+TgQkmBiWZaNvG39ElSyujcHMGKvfsIWvOTCxlR3EPDbXPiGrbztFliYg4XGigN5cM7MDFA9pz0HyUldvMrEnPoaSshq/WHuartYeJjfRnUI8oBiREEuinaeXS9BRu/kDp2tXkvD7fPiOqfQdiptyJe3Cwo8sSEXEqBoOBjlGBdIwK5JpzO7N1XwErt5vZsjefwzllHM7ZwwfL9pIUF8qgpCh6dg474008RRpK4eZ32Gw2Cj//lIIlHwLg1zOVqIm3akaUiMgfcHcz0qtrG3p1bcPRihrWpueycruZA9mlbNlXwJZ9Bfh4udO3ewSDepg0rVwancLNKdjq6sh5awGlK38GIPj8C2jzl2s0I0pEpIECfD05t3dbzu3dlqz8clZuN7Nqh3015OVbsli+JYs2wd4MTLSP4YkM8XV0yeICFG5+w1Jebp8RtTMdDAb7jKgR5zq6LBGRFi863I+rh3fiymFx7DpczMrt2azflUdecRWfrDjIJysO0ikmkEE9oujbPQJ/Hw9HlywtlMLNr9Tk5ZI1Yzo15mwMXt5E3TIJ/+QUR5clIuJSjAYD8e1DiG8fwthRFjbtzmPldjM7DhayL7OUfZmlvL90NymdwhnUw0RSpzDc3XTlXM6cws0vKvftJWv2DCxHj+IeEmKfEdUu1tFliYi4NC8PNwYkmhiQaKK4rJrVO3JYtcPMkdwyNuzOY8PuPPx9POgXH8HAHibiogI1Pkf+kMINcHT9WsyvvYqtthav2PZET7kTj5AQR5clItKqBPt7cWH/WC7sH8uR3DJWbTezKs1MSVkNyzZmsmxjJpGhvgxMjGRgorZ9kN/XqsONzWaj6KsvyF+8CAC/5BSibp6E0dvbwZWJiLRu7SL8aTeyM1cP70TaoUJWbjezcXceOYUVLPnpAEt+OkDntkEMSjTRNz4CP2+Nz5HjWm24se8RtYDSn5cDEHzu+bS55u+aESUi4kSMRgM9OobRo2MYldV1bNydx6odZtIPFrE3o4S9GSW898v4nIE9TCRrfI7QSsONzWrl8AvTKE9LA4OBNtf8g5Dzznd0WSIicho+Xu4MTopicFIURUerWZ1mZtV2Mxl55fXjc/y83ekXH8nAHiY6RWt8TmvVKsNNTWEh5WlpGLy8iLp5Ev4pPR1dkoiINEBIgBcX9W/PRf3bczjnKKt2mFmdZt/24ftNmXy/KZOIYB8GJEZq/ZxWqFWGG1udBffgEKKn3ol3bHtHlyMiIn9CbGQAsZEB/GV4Z9IOFbJqu5kNu/PILa48vn5OdCADe5jo2z2CAF/tb+XqDDabzeboIppbTVERxYVlGAKDHV2Kw7i7GwkJ8aOoqJy6Oqujy3EY9cFOfThOvbBr6X2oqjk2PieHtIOFHPtJ52Y0kBQXxsAeJlI6heHpcfr9rVp6HxqLM/QhNNQPtzMcT9Uqr9x4hoTggWer/qCKiLgyb093BvWIYlCPKIrLqlmblsPKHWYO55SxeW8+m/fm4+PlRu9uEQxKNNE1Nhijxue4jFYZbkREpPUI9vdiVL9YRvWLJTOvjNVpOazeYaagtJqft2bz89ZsQgK87ONzEk20bePv6JLlT1K4ERGRViOmjT9XDfNnzDlx7DlSzKodZtbtzKPoaDVfrj7Ml6sPExvhz4BEE/0TImkTooUCWyKFGxERaXWMBgPdYkPoFhvCted3ZcveAlbtMLN1XwGHc8s4nLuXRd/vJaFjKOf1a09CbBAeWj+nxVC4ERGRVs3D3Y0+3SPo0z2Csspa1qXnsCoth70ZJew4UMiOA4V4uBtJ7RLOgEQTPTqGaqFAJ6dwIyIi8gt/Hw9G9GrLiF5tyS2uZF16DqvTcsnMK2Ntei5r03Px9/Ggb3wEAxO1UKCzUrgRERE5hYhgHy4fGsf1o3uwMc3Miq3ZrEnPobS8hu83ZvL9xkzaBHsz8JddzU2hWijQWSjciIiInIbBYCAuOpDYCH/+OrIT6QeLWLXDzMbd+eQVV9UvFNgxKoABiSb6xUcS5KeFAh1J4UZEROQMuRmN9IgLo0dcGNU1FjbtsS8UuONAIQeyj3Ig+ygLv9tLQocQBiaaSO0ajrenftQ2N3VcRETkLHh5ujHgl1tSJeU1rE3PYfWOHA5kl7L9QCHbDxTi6WGkV5c2DEiMJKGDBiI3F4UbERGRPynIz5Pz+7Tj/D7tMBdWsPqXjTxziyrtiwam5RDg60G/7pEMSIwkTgORm5TCjYiISCMyhfpyxdA4Lh/Skf3ZpazekcPa9ByOVtTy3cYMvtuYUb9juQYiNw2FGxERkSZgMBjoFB1Ep+ggrhnZmbSDRaxOM7PxNzuWdzAFMDDRRL/4CIL8vRxdtktQuBEREWli7m5GkjuFkdzp5IHIB81HOWg+yn+X7SGhfQgDEk306toGHy/9iD5b6pyIiEgz+vVA5NLyGtbtzGX1DjP7skrZcbCIHQeLeOvrXfTsHM6AxEiS4sI0ELmBFG5EREQcJNDPk3N7t+Xc3m3JLar4ZcfyHMyFFazbmcu6nbn4ebvTt3sEAxJNdG4bhFEDkf+Qwo2IiIgTiAjx5bLBHRk9qAOHco6yekcOa9JzKCmr4YfNWfywOYuwQC/6JUQyMMFE2wh/R5fstBRuREREnIjBYKCDKZAOpkD+OqIz6YeLWL3DzIZdeRSUVvPl6sN8ufowbdv4MSDRRP/4SMKCvB1dtlNRuBEREXFSRqOBxA6hJHYIZdwoC1v3FbBqh5mt+wrIyCvnfz/s438/7KNr2yAGJJro0z0Cfx8PR5ftcAo3IiIiLYCnhxt9ukfQp3sE5VW1rN+Zy5q0HHYdLmZ3Rgm7M0p499vdJMWF0T8hkp5dwvHycHN02Q6hcCMiItLC+Hl7MKxnDMN6xlBYWsXadPuMq8O5ZWzem8/mvfl4ebjRq2s4/RNMJHYMwc3YemZcKdyIiIi0YKGB3lzYP5YL+8eSmV/OmjQzq3fkkF9SxaodOazacXzrh/6JkXRqBVs/KNyIiIi4iJhwP648pxNjhsaxL6uUNTtyWLvzxK0fwoO8GZAYSf8EEzHhfo4uuUko3IiIiLgYg8FA55ggOscEcc25nUk/ZJ9xtXF3PvklVXy28hCfrTxEuwh/e9CJjyQ00HVmXCnciIiIuDB3NyNJcWEkxYVRXWth85581qTlsG1/AUdyyziSW8ai7/fRtV0wAxIiXWLGVYsIN1arldmzZ7No0SKOHj1K3759efzxx2nXrp2jSxMREWkxvDzc6J8QSf+ESMoqa1m/K5c1O3LYdaSY3b/89+63u+nRMZT+iZGkdm6Dl2fLm3HVIsLN3Llzee+993juuecwmUw8//zzTJgwgU8//RRPT09HlyciItLi+Pt4MLxnDMNPMeNqy74CtuwrwMvDjdSu4QxOimJILx9Hl3zGDDabzeboIk6npqaGAQMGcO+99/KPf/wDgNLSUoYOHcozzzzDpZdeelbnLSoqp67O2piltiju7kZCQvzUB/UBUB9+Tb2wUx/sWmMf7DOucliTZiavuKr+eICvJ33jI+jXPcIhe1yFhvrhdoYbiDr9lZudO3dSXl7OwIED648FBgaSkJDAunXrzjrciIiIyMnsM67iGDO0I/uzj824yqW0vIZlGzJYtiGjfo+r/vGRtIvwd7qp5U4fbsxmMwBRUVEnHI+IiKh/7GycafpzVce+fvVBfQD14dfUCzv1wa6196FbbAjdYkO47uLuHMgp57u1h1iblnPCHlcx4X4M7GFiQGIkESG+ji4ZaAHhprKyEuCksTVeXl6UlJSc9XkDA1vOvcOmpD7YqQ926sNx6oWd+mCnPkBIsB+9ukVQXWthfXoOP27MYF1aDpn5x/e46tY+hGGpbRnSM5qQAMdNLXf6cOPtbW9OTU1N/f8HqK6uxsfn7D9spaWVWCyt4/7pqbi5GQkM9FEf1AdAffg19cJOfbBTH+x+24eEdkEktAviugu6smFnHqt2mEk7WMiuQ0XsOlTEqx9vI7FjKAMTTfTuFoGv95+PG4GBPq4z5ubY7ajc3FxiY2Prj+fm5tKtW7ezPq/FYm01g8NOR32wUx/s1Ifj1As79cFOfbD7bR+83N0Y1MPEoB4misuqWZeey5r0HPZnlbJ9fyHb9xfyxhc7SekcxoCESJI7heHh3vRTy50+3HTv3h1/f3/WrFlTH25KS0tJS0tj7NixDq5OREREAIL9vTi/bzvO79uOnKIK1qblsDoth+yCCjbsymPDrjx8vNzo1bUN/RMiiW/fdJt5On248fT0ZOzYsUybNo3Q0FBiYmJ4/vnnMZlMjBo1ytHliYiIyG9EhvgyenBHLh3UgSO5ZaxOy2Fteg6FpdWs2GZmxTYzgb4e9I23LyjY2Jt5On24AZg6dSp1dXU8+uijVFVV0bdvX1577TU8PFr28tAiIiKuzGAwEBsZQGxkAFcP78TejBJWp+WwfmcupRW1fLchg+822DfzPLZycts2/n/+fZ19Eb+m0poWZDqV1rgw1amoD3bqw3HqhZ36YKc+2DV2H+osVtIOFrImLYeNu/OprrXUP9a2jZ896MRHEh58fOKQSy3iJyIiIq7F3c1IcqdwkjuFU11rYcte+2aeW/cVkJFXTsaP+1n84346xQQyIMFEn+4RhIb6nfn5m7B2ERERkdPy8nCjX3wk/eIjKa+qZcOuPNak5bDzUBH7MkvZl1nKe0t388ZjowgLOrMlYBRuRERExCn4eXtwTko056REU3S0mnU7c1mTlsOB7FJqG3A7TOFGREREnE5IgBej+rZjVN925BZV4Od95pOIWudmGSIiItJiRIT4NmiVY4UbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGX0iLCTXZ2NnfffTeDBw+mb9++3HTTTezZs8fRZYmIiIgTcvpwU1NTw80330xeXh4vvfQS7733Hn5+flx//fUUFhY6ujwRERFxMk4fbtavX8/u3buZNm0aSUlJdOnSheeff56KigqWLVvm6PJERETEybg7uoA/0qVLF1555RUiIyPrjxmN9kxWWlp61ucNCvLBZvvT5bVYBoP9f9UH+/+qD/b/be19APXiGPXBTn2wc4Y+GI2GM36u04ebNm3aMGzYsBOOvf3221RVVTF48OCzPu+xgNTaqQ926oOd+nCcemGnPtipD3YtpQ8ODzcZGRmce+65v/v4qlWrCA0Nrf/zt99+y//93/9xww030K1bt+YoUURERFoQg83m2AtttbW1HD58+Hcf79ChA25ubgC8//77PP3001x22WU8++yzLSZBioiISPNxeLg5U88//zzz589n/PjxPPDAAxgMZ37vTURERFoPh9+WOhPHgs0DDzzAjTfe6OhyRERExIk5fbhZs2YN8+fPZ9y4cYwePZq8vLz6x3x9ffHz83NgdSIiIuJsnP621GOPPcYHH3xwysduv/12pkyZ0swViYiIiDNz+nAjIiIi0hCabiQiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSltJpwY7VamTlzJkOHDqVnz55MnDiRI0eOOLqsZldcXMzjjz/OOeecQ69evfj73//O+vXrHV2WQx04cIDU1FQ+/PBDR5fiMEuWLOHiiy8mKSmJSy65hC+//NLRJTW7uro6ZsyYwYgRI0hNTeXaa69l8+bNji6rWb388suMGzfuhGPp6emMHTuWnj17MnLkSN566y0HVdd8TtWHZcuWcdVVV5GamsrIkSP597//TVVVlYMqbB6n6sOvPfroo4wcObIZKzpzrSbczJ07l/fee4+nn36a//73v1itViZMmEBNTY2jS2tWd999N5s2beKFF15g8eLFxMfHc9NNN7F//35Hl+YQtbW13HvvvVRUVDi6FIf5+OOPeeSRR7j22mv5/PPPufTSS+s/J63JvHnzWLRoEU8//TRLliyhY8eOTJgwgdzcXEeX1izeffddXnzxxROOFRUVMX78eGJjY1m8eDGTJ09m2rRpLF682DFFNoNT9WH9+vXcfvvtnH/++Xz00Uc88cQTfPHFFzz55JOOKbIZnKoPv7Z06VIWLVrUfAU1UKsINzU1Nbz++utMnTqV4cOH0717d6ZPn47ZbOabb75xdHnN5tChQ6xYsYJ//vOf9OnTh44dO/LYY48RERHBp59+6ujyHGLWrFn4+/s7ugyHsdlszJgxg+uuu45rr72W2NhYJk2axKBBg1i7dq2jy2tWS5cu5dJLL2XIkCG0b9+eBx98kKNHj7r81ZucnBxuvfVWpk2bRocOHU547IMPPsDDw4OnnnqKTp06cdVVV3HDDTfwyiuvOKbYJnS6Pvz3v/+lf//+3HrrrXTo0IFhw4Zx11138emnn7rcL8in68Mxubm5PPbYY/Tr1695i2uAVhFudu7cSXl5OQMHDqw/FhgYSEJCAuvWrXNgZc0rJCSEV155haSkpPpjBoMBg8FAaWmpAytzjHXr1rFw4UKee+45R5fiMAcOHCAzM5PRo0efcPy1117jlltucVBVjhEWFsb3339PRkYGFouFhQsX4unpSffu3R1dWpPasWMHHh4efPLJJ6SkpJzw2Pr16+nXrx/u7se3IRwwYAAHDx4kPz+/uUttUqfrw4033sgDDzxwwjGj0UhtbS1lZWXNWWaTO10fwP4L0YMPPsjll1/u1OHG6TfObAxmsxmAqKioE45HRETUP9YaBAYGMmzYsBOOff311xw6dIiHH37YQVU5RmlpKffffz+PPvroSZ+L1uTAgQMAVFRUcNNNN5GWlkbbtm2ZNGmS095LbyqPPPIId9xxB+eeey5ubm4YjUZmzZpFbGyso0trUiNHjvzdv2uz2UzXrl1POBYREQFAdnY24eHhTV5fczldHxISEk74c21tLQsWLKBHjx6EhoY2R3nN5nR9AFiwYAF5eXm89NJLvPzyy81YWcO0iis3lZWVAHh6ep5w3MvLi+rqakeU5BQ2btzIQw89xKhRoxg+fLijy2lW//znP0lNTT3pikVrc+y3zgceeIBLL72U119/ncGDB3PbbbexatUqB1fXvPbu3UtAQABz5sxh4cKFXHnlldx7772kp6c7ujSHqaqqOuX3TaDVfu+sq6vj/vvvZ8+ePTzxxBOOLqdZ7dy5k9mzZ/P888+f9LlwNq3iyo23tzdgH3tz7P+D/R+nj4+Po8pyqKVLl3LvvffSq1cvpk2b5uhymtWSJUtYv359qx1n9GseHh4A3HTTTYwZMwaA+Ph40tLSeOONN064levKsrOzueeee1iwYAF9+vQBICkpib179zJr1izmzp3r4Aodw9vb+6QxJcdCja+vryNKcqiysjLuvPNO1q5dy+zZs0lOTnZ0Sc2murqae++9l0mTJrWIW7Wt4srNsdsOv531kJubS2RkpCNKcqh33nmHKVOmMGLECF566aX638Rai8WLF1NQUMDw4cNJTU0lNTUVgCeeeIIJEyY4uLrmdezz/9tbD507dyYjI8MRJTnEli1bqK2tPWE8GkBKSgqHDh1yUFWOZzKZTvl9E2h13ztzc3Prlwd47bXXTrrF7+q2bNnCnj17mD17dv33zZdffpmsrCxSU1OdbkmRVnHlpnv37vj7+7NmzZr6++elpaWkpaUxduxYB1fXvI5Nhx83bhyPPPIIBoPB0SU1u2nTpp20PsWoUaOYOnUql112mYOqcozExET8/PzYsmVL/RULgN27d7v8WJNfM5lMAOzateuE38Z37979uzNGWoO+ffvy3//+F4vFgpubGwCrV6+mY8eOhIWFObi65lNSUsL1119PWVkZ7777Lt26dXN0Sc0uOTn5pNnFb7/9Nt988w1vv/2204XdVhFuPD09GTt2LNOmTSM0NJSYmBief/55TCYTo0aNcnR5zebAgQM8++yznH/++dxyyy0nzHbw9vYmICDAgdU1n9/7RxgWFuZ0/0Cbmre3NxMmTGDOnDlERkaSnJzM559/zooVK1iwYIGjy2s2ycnJ9O7dmwceeIAnnngCk8nEkiVLWLVqFe+//76jy3OYq666ivnz5/PII48wYcIEtm7dyoIFC1x6fZdT+de//sWRI0eYP38+oaGh5OXl1T8WGhpaH/xcmbe3N+3btz/hWFBQEO7u7icddwatItwATJ06lbq6Oh599FGqqqro27cvr732Wv2Yg9bg66+/pra2lm+//ZZvv/32hMfGjBnTqqdEt2a33XYbPj4+TJ8+nZycHDp16sSsWbPo37+/o0trNkajkXnz5vHiiy/y0EMPUVJSQteuXVmwYMEpp8O2FmFhYcyfP59nnnmGMWPG0KZNG+6///768VmtgcVi4YsvvqC2tpbrr7/+pMe/++472rZt64DK5HQMNpvN5ugiRERERBpLqxhQLCIiIq2Hwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAj0kpoSSvnpL8XkcancCPSCuzZs4e///3vzfqe3bp1Y9asWU12/nHjxjFu3Lhme93prFmzhm7durFmzZozfk1NTQ3PPvvsCbvTP/jgg4wcObJRaxNpjRRuRFqBr776ik2bNjm6DJeVmJjIwoULSUxMPOPX5Obm8uabb1JXV1d/7LbbbmP27NlNUaJIq9Jq9pYSEWkq/v7+9OzZ80+fpzXtxC7SlHTlRsQFbN++neuvv57evXuTmprKDTfcwObNmwGYNWtW/dWAX98qKiws5Mknn2TEiBH06NGDfv36MXnyZDIyMurPO27cOB555BFeeeUVhg8fTlJSEn/729/YunXrCe+/du1arrnmGlJSUrjgggtYuXLlSTVmZGRw//33M2TIEBITExk4cCD3338/RUVF9c8ZOXIkzz77LNdffz3Jyck88sgjAGRlZXH77bfTu3dvBg8ezBtvvHFGfTnT1y1atIhLLrmEHj16MHz4cGbNmoXFYgHg008/pVu3buzevfuE1yxdupRu3bqRlpZ2yttSS5cu5R//+Aepqan06NGDCy+8kHfffbe+F+eeey4ADz30UP2tqN/elrJYLLz77ruMHj2a5ORkhg8fzrRp06iurq5/zoMPPsgNN9zA4sWLueCCC+jRoweXX345y5cvP6MeibgiXbkRaeHKysqYMGECAwYMYNasWdTU1DBv3jxuuukmfvjhB/7yl79gNpv53//+x8KFCzGZTNhsNm655RZKSkq49957CQ8PZ9euXbz44os88cQTvPbaa/Xn//rrr+nUqROPPvooNpuNf//730yZMoVly5bh5ubGjh07uPHGGxkwYAAzZ84kIyODu++++4QaKysrue666wgJCeGJJ54gICCATZs2MXv2bLy9vXnqqafqn/vuu+8yfvx4Jk6ciJ+fHxUVFYwdOxZ3d3eefvppjEYjM2fO5PDhw6Smpv5uX870dS+//DLTp09n7NixPPTQQ6SnpzNr1iyys7N59tlnOe+88/D19eXzzz+na9eu9a/77LPP6NKlCwkJCSeNtfnhhx+YPHky1113HVOmTKGqqor33nuPp556ih49ehAfH8/s2bO5/fbbmTRpEqNGjTrl1/D444/z8ccfM3HiRPr06UNaWhpz5swhPT2d+fPnYzAYAHu4zc3NZerUqfj7+zNjxgymTJnC8uXLCQoKOoNPkYhrUbgRaeH27t1LUVER1113Hb169QIgLi6OhQsXUl5ejslkwmQyAdTfOsnJycHHx4cHHniAPn36ANC/f38OHz7MwoULTzh/XV0dr732Gv7+/gCUl5fzwAMPkJ6eTo8ePXj55ZcJCwtj3rx5eHh4ABASEsJdd91Vf46DBw9iMpn497//Tbt27QAYMGAAW7ZsYe3atSe8X3R0NPfee2/9n999912ysrL47LPP6Ny5MwApKSmcf/75p+3LRx999IevO3r0KHPnzuWaa67h0UcfBWDIkCEEBwfz6KOPMn78eLp06cIFF1zAF198Uf81lZeX8/333zN58uTf/TsZM2ZM/ZUngNTUVPr378+aNWtISUkhPj4esN+KSkhIOOU5/ve//3HPPfdw8803AzB48GAiIiK4//77Wb58OcOGDav/Oj788MP621q+vr6MHTuW1atXc8EFF5y2TyKuSOFGpIXr0qULoaGh3HrrrVx44YUMHTqUwYMHc9999/3uayIjI3nrrbew2WxkZGRw6NAh9u/fz8aNG6mpqTnhuZ07d64PNsdeC/arMQAbNmxgxIgR9cEGYNSoUbi5udX/OT4+nvfeew+r1crBgwc5dOgQe/fuZf/+/ScMqD323F9bv349sbGx9QEFICoq6g/HuJzJ6zZt2kRVVRUjR448oY5jt4ZWrFhBly5duPzyy/noo4/YunUrycnJfPfdd9TU1HDZZZed8r0nTJgA2EPQgQMHOHz4MNu2bQM4qb+/51jou+SSS044fskll/DQQw+xZs2a+nATGhp6wnidY2H22N+RSGujcCPSwvn5+fHuu+8yb948vvzySxYuXIi3tzeXX345jz76KJ6enqd83SeffMILL7xAdnY2wcHBxMfH4+3tfdLzfHx8Tviz0Wgfqme1WgEoKSkhJCTkhOe4u7ufdOyNN97gpZdeori4mPDwcHr06IGPjw9Hjx494Xm+vr4n/PlU5wdo06YN+fn5p/zazvR1xcXFAPVXRn4rNzcXsF/VioyM5PPPPyc5OZnPP/+cfv361YeI3yosLOSJJ55g6dKlGAwG2rdvX3+F7EzXtSkpKamv99eO9fbXffvt39Gx21XH/o5EWhuFGxEXEBcXx/PPP4/FYmHr1q18/PHHvP/++8TGxtZfRfi19evX88ADDzBu3Dhuuumm+qsx//nPf9iwYUOD3js4OPikkGGz2ep/OIN9UO5zzz3Hfffdx5VXXkloaCgAd9xxR/0Vjd8TEhLCoUOHTjp+LJj8mdcFBgYCMG3aNDp06HDSc8PDwwF7oBs9ejSfffYZt956KytWrDhhnNBv3Xvvvezfv58FCxaQmpqKp6cnlZWVfPDBB6et+deOjZXJy8sjJiam/nhtbS1FRUWnDG4iYqfZUiIt3FdffcWAAQPIy8vDzc2N1NRU/vnPfxIYGEhWVhZw/GrLMZs2bcJqtTJlypT6YGOxWOpnOTXkN/6BAweyfPnyE26B/PTTT9TW1tb/ecOGDQQGBjJhwoT6YFNeXs6GDRv+8L0GDBhARkbGCSGosLCwfjbYn3ldSkoKHh4e5OTkkJSUVP+fu7s7L7zwwgkzxy6//HLMZjNz5szBzc3tdwcBH/t6R40aRf/+/euvnB2bvXTs6/31bbtT6devHwCff/75Ccc///xzLBYLvXv3Pu3rRVozXbkRaeF69eqF1Wpl8uTJ3Hzzzfj5+fHll19y9OjR+h/Ax65QfPbZZ6SkpJCcnAzAU089xVVXXUVJSQnvvvsuO3fuBOwzjX49zuZ0Jk+ezNKlS7npppuYMGEChYWFvPjiiyeMwUlOTub999/nueeeY8SIEeTm5vLaa6+Rn5//h7N5Lr/8ct566y1uv/127rrrLvz9/Zk3b94fhqIzeV1ISAgTJkxgxowZlJWV0b9/f3JycpgxYwYGg4Hu3bvXP7dr1671Y4cuuuii0/YnOTmZTz/9lMTEREwmExs3buSVV17BYDDUh8CAgAAAVq1aRadOnUhJSTnhHJ07d2bMmDHMnDmTyspK+vbtS3p6OrNnz6Z///4MHTr0tF+/SGumKzciLVxERATz588nICCARx55hFtuuYUdO3Ywa9YsBgwYANgH+CYlJfHggw/y2muv0b9/fx5//HE2bdrExIkTee6554iOjq5fD6cht6Y6dOjAO++8g5ubG3fddRdz587lgQceOCG0jBkzhsmTJ/Pll18yceJEZs6cSZ8+fXjqqacoLi5m3759v3t+T09P3nzzTfr27cszzzzDww8/zMCBAxkxYsRp6zrT19155508+OCDfPvtt0ycOJHnn3+e3r17884779QHkGMuv/xyLBbL7w4kPua5554jJSWFp59+msmTJ/Pdd9/x5JNPMmTIENavXw/YF/4bP348S5cuZeLEiSdc6TrmmWeeYfLkyXz66afcfPPNvPvuu1x33XW8+uqrJ12NE5HjDDbt2iYiIiIuRNFfREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKf8fH/fNjfbB2UkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_portfolio(weight_1=.5, mu0=4.0, mu1=8.0, sd0=5.0, sd1=10.0, corr=0.0, Rf=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "## Uncomment below for interactive viewing\n", + "# interact(plot_portfolio, weight_1=(-1.0, 2.0, .001), corr=(-1.0, 1.0, .01));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**DISCUSS: The example above demonstrate what is meant by a set of efficient portfolios? What do you think is meant by an efficient portfolio?**\n", + "\n", + "For more information about calculating the tangency portfolio, see here: https://bookdown.org/compfinezbook/introcompfinr/Efficient-portfolios-of.html" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vcJ8kzct09lK" + }, + "source": [ + "## 7. To do before next class\n", + "\n", + "If you need help installing this software, please ask for help in the discussion section on Canvas.\n", + "\n", + " - Python 3.9, Anaconda Distribution\n", + " - For this class, please download the [Anaconda distribution of Python](https://www.anaconda.com/products/distribution). Be sure to download Python, version 3.9. \n", + " When you install Anaconda, be sure to install the full Anaconda distribution. \n", + " The MiniConda version is nice, but I only recommend it for advanced users.\n", + " - The Visual Studio Code text editor\n", + " - A good text editor is important for software development. Some of your classes will use a fully-fledged Integrated Development Environment (IDE) like PyCharm. For this review, I suggest Visual Studio Code. You can download it here: https://code.visualstudio.com/\n", + " - Git (optional, but recommended)\n", + " - Although there are many different Git clients and Git GUI's that you could use,\n", + " I prefer that you install GitKraken. GitKraken bundles a Git Client with its GUI, so you don't need to install multiple pieces of software. [GitKraken can be downloaded here.](https://www.gitkraken.com/)\n", + " - Some classes will use GitHub. GitHub is a website that allows you to store, interactic with, and share your Git repositories online. [Please register an account with GitHub](https://github.com/) if you don't already have one." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/docs/_sources/_notebook_build/_02_Using_Interact.ipynb b/docs/_sources/_notebook_build/_02_Using_Interact.ipynb new file mode 100644 index 0000000..4fca3ac --- /dev/null +++ b/docs/_sources/_notebook_build/_02_Using_Interact.ipynb @@ -0,0 +1,735 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2.4 Using Interact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `interact` function (`IPython.html.widgets.interact`) automatically creates user interface (UI) controls for exploring code and data interactively. It is the easiest way to get started using IPython's widgets." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from ipywidgets import interact, interactive, fixed\n", + "from ipywidgets import widgets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "As of IPython 2.0, the widgets in this notebook won't show up on http://nbviewer.ipython.org. To view the widgets and interact with them, you will need to download this notebook and run it with an IPython Notebook server.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Basic `interact`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At the most basic level, `interact` autogenerates UI controls for function arguments, and then calls the function with those arguments when you manipulate the controls interactively. To use `interact`, you need to define a function that you want to explore. Here is a function that prints its only argument `x`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def f(x):\n", + " print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When you pass this function as the first argument to `interact` along with an integer keyword argument (`x=10`), a slider is generated and bound to the function." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4c02b6fabd4046528974ec00a6175a86", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=10, description='x', max=30, min=-10), Output()), _dom_classes=('widget-…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=10);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When you move the slider, the function is called and the current value of `x` is printed.\n", + "\n", + "If you pass `True` or `False`, `interact` will generate a checkbox:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "29b648f26358436ba2b3c26f598c636b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Checkbox(value=True, description='x'), Output()), _dom_classes=('widget-interact',))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you pass a string, `interact` will generate a text area." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb59963a81754c5aa142500eceeefc9a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Text(value='Hi there!', description='x'), Output()), _dom_classes=('widget-interact',))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x='Hi there!');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`interact` can also be used as a decorator. This allows you to define a function and interact with it in a single shot. As this example shows, `interact` also works with functions that have multiple arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "be1e7bf306894025994e4a3101322e22", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Checkbox(value=True, description='x'), FloatSlider(value=1.0, description='y', max=3.0, …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "@interact(x=True, y=1.0)\n", + "def g(x, y):\n", + " print(x, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing arguments using `fixed`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are times when you may want to explore a function using `interact`, but fix one or more of its arguments to specific values. This can be accomplished by wrapping values with the `fixed` function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def h(p, q):\n", + " print(p, q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we call `interact`, we pass `fixed(20)` for q to hold it fixed at a value of `20`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a89dd6734266418e875046d4a772deed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=5, description='p', max=15, min=-5), Output()), _dom_classes=('widget-in…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(h, p=5, q=fixed(20));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that a slider is only produced for `p` as the value of `q` is fixed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Widget abbreviations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When you pass an integer valued keyword argument (`x=10`) to `interact`, it generates an integer valued slider control with a range of $[-10,+3\\times10]$. In this case `10` is an *abbreviation* for an actual slider widget:\n", + "\n", + "```python\n", + "IntSliderWidget(min=-10,max=30,step=1,value=10)\n", + "```\n", + "\n", + "In fact, we can get the same result if we pass this `IntSlider` as the keyword argument for `x`:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aef16bca9cbd495ba782464053755fbc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=10, description='x', max=30, min=-10), Output()), _dom_classes=('widget-…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=widgets.IntSlider(min=-10,max=30,step=1,value=10));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This examples clarifies how `interact` proceses its keyword arguments:\n", + "\n", + "1. If the keyword argument is `Widget` instance with a `value` attribute, that widget is used. Any widget with a `value` attribute can be used, even custom ones.\n", + "2. Otherwise, the value is treated as a *widget abbreviation* that is converted to a widget before it is used.\n", + "\n", + "The following table gives an overview of different widget abbreviations:\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Keyword argumentWidget
`True` or `False`CheckboxWiget
`'Hi there'`TextareaWidget
`value` or `(min,max)` or `(min,max,step)` if integers are passedIntSliderWidget
`value` or `(min,max)` or `(min,max,step)` if floats are passedFloatSliderWidget
`('orange','apple')` or `{'one':1,'two':2}`DropdownWidget
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You have seen how the checkbox and textarea widgets work above. Here, more details about the different abbreviations for sliders and dropdowns are given.\n", + "\n", + "If a 2-tuple of integers is passed `(min,max)` a integer valued slider is produced with those minimum and maximum (inclusive) values. In this case, the default step size of `1` is used." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7558729cbbdb4c2f9c3f124166ede60f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=2, description='x', max=4), Output()), _dom_classes=('widget-interact',)…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=(0,4));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If a 3-tuple of integers is passed `(min,max,step)` the step size can also be set." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0368131e72cc46e5a1174437ab37019e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=4, description='x', max=8, step=2), Output()), _dom_classes=('widget-int…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=(0,8,2));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A float valued slider is produced if the elements of the tuples are floats. Here the minimum is `0.0`, the maximum is `10.0` and step size is `0.1` (the default)." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e883be91a16e419cbe2d194ae50c875a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=5.0, description='x', max=10.0), Output()), _dom_classes=('widget-inte…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=(0.0,10.0));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The step size can be changed by passing a 3rd element in the tuple." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a241200a041c4233a25af28fa69a791e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=5.0, description='x', max=10.0, step=0.01), Output()), _dom_classes=('…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=(0.0,10.0,0.01));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For both integer and float valued sliders, you can pick the initial value of the widget by passing a default keyword argument to the underlying Python function. Here we set the initial value of a float slider to `5.5`." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "02fee1584f474b2496171b6e77032c42", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(FloatSlider(value=5.5, description='x', max=20.0, step=0.5), Output()), _dom_classes=('w…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "@interact(x=(0.0,20.0,0.5))\n", + "def h(x=5.5):\n", + " print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dropdown menus can be produced by passing a tuple of strings. In this case, the strings are both used as the names in the dropdown menu UI and passed to the underlying Python function." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "befd04dc87514d71bc5c18b43d101865", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Dropdown(description='x', options=('apples', 'oranges'), value='apples'), Output()), _do…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=widgets.Dropdown(options=['apples','oranges']));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want a dropdown menu that passes non-string values to the Python function, you can pass list of (key, value) tuples. The keys in the dictionary are used for the names in the dropdown menu UI and the values are the arguments that are passed to the underlying Python function." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "14457d3a474242f5bb8863eb65efe7c8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Dropdown(description='x', options=(('one', 10), ('two', 20)), value=10), Output()), _dom…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interact(f, x=widgets.Dropdown(options=[('one', 10), ('two', 20)]));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## `interactive`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to `interact` IPython provides another function, `interactive`, that is useful when you want to reuse the widget that are produced or access the data that is bound to the UI controls." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is a function that returns the sum of its two arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def f(a, b):\n", + " return a+b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike `interact`, `interactive` returns a `Widget` instance rather than immediately displaying the widget." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "w = interactive(f, a=10, b=20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The widget is a `Box`, which is a container for other widgets." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ipywidgets.widgets.interaction.interactive" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The children of the `Box` are two integer valued sliders produced by the widget abbreviations above." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(IntSlider(value=10, description='a', max=30, min=-10),\n", + " IntSlider(value=20, description='b', max=60, min=-20),\n", + " Output())" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.children" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To actually display the widgets, you can use IPython's `display` function." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1cf2e868aa8f48c994a958b4b42ee71b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=10, description='a', max=30, min=-10), IntSlider(value=20, description='…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import display\n", + "display(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, the UI controls work just like they would if `interact` had been used. You can manipulate them interactively and the function will be called. However, the widget instance returned by `interactive` also give you access to the current keyword arguments and return value of the underlying Python function.\n", + "\n", + "Here are the current keyword arguments. If you rerun this cell after manipulating the sliders, the values will have changed." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'a': 10, 'b': 20}" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.kwargs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is the current return value of the function." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "30" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.result" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/docs/_sources/_notebook_build/_02_functions.ipynb b/docs/_sources/_notebook_build/_02_functions.ipynb new file mode 100644 index 0000000..0ae3487 --- /dev/null +++ b/docs/_sources/_notebook_build/_02_functions.ipynb @@ -0,0 +1,1693 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d01b84d5", + "metadata": { + "id": "d01b84d5" + }, + "source": [ + "# Functions\n", + "\n", + "**Prerequisites**\n", + "\n", + "- [Getting Started](https://datascience.quantecon.org/../introduction/getting_started.html) \n", + "- [Basics](https://datascience.quantecon.org/basics.html) \n", + "- [Collections](https://datascience.quantecon.org/collections.html) \n", + "- [Control Flow](https://datascience.quantecon.org/control_flow.html) \n", + "\n", + "\n", + "**Outcomes**\n", + "\n", + "- Economic Production Functions \n", + " - Understand the basics of production functions in economics \n", + "- Functions \n", + " - Know how to define your own function \n", + " - Know how to find and write your own function documentation \n", + " - Know why we use functions \n", + " - Understand scoping rules and blocks \n", + "\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "ddecc742", + "metadata": { + "id": "ddecc742" + }, + "source": [ + "## Application: Production Functions\n", + "\n", + "Production functions are useful when modeling the economics of firms producing\n", + "goods or the aggregate output in an economy.\n", + "\n", + "Though the term “function” is used in a mathematical sense here, we will be making\n", + "tight connections between the programming of mathematical functions and Python\n", + "functions." + ] + }, + { + "cell_type": "markdown", + "id": "33438a42", + "metadata": { + "id": "33438a42" + }, + "source": [ + "### Factors of Production\n", + "\n", + "The [factors of production](https://en.wikipedia.org/wiki/Factors_of_production)\n", + "are the inputs used in the production of some sort of output.\n", + "\n", + "Some example factors of production include\n", + "\n", + "- [Physical capital](https://en.wikipedia.org/wiki/Physical_capital), e.g.\n", + " machines, buildings, computers, and power stations. \n", + "- Labor, e.g. all of the hours of work from different types of employees of a\n", + " firm. \n", + "- [Human Capital](https://en.wikipedia.org/wiki/Human_capital), e.g. the\n", + " knowledge of employees within a firm. \n", + "\n", + "\n", + "A [production function](https://en.wikipedia.org/wiki/Production_function)\n", + "maps a set of inputs to the output, e.g. the amount of wheat produced by a\n", + "farm, or widgets produced in a factory.\n", + "\n", + "As an example of the notation, we denote the total units of labor and\n", + "physical capital used in a factory as $ L $ and $ K $ respectively.\n", + "\n", + "If we denote the physical output of the factory as $ Y $, then a production\n", + "function $ F $ that transforms labor and capital into output might have the\n", + "form:\n", + "\n", + "$$\n", + "Y = F(K, L)\n", + "$$\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "4774ddc2", + "metadata": { + "id": "4774ddc2" + }, + "source": [ + "### An Example Production Function\n", + "\n", + "Throughout this lecture, we will use the\n", + "[Cobb-Douglas](https://en.wikipedia.org/wiki/Cobb%E2%80%93Douglas_production_function)\n", + "production function to help us understand how to create Python\n", + "functions and why they are useful.\n", + "\n", + "The Cobb-Douglas production function has appealing statistical properties when brought to data.\n", + "\n", + "This function is displayed below.\n", + "\n", + "$$\n", + "Y = z K^{\\alpha} L^{1-\\alpha}\n", + "$$\n", + "\n", + "The function is parameterized by:\n", + "\n", + "- A parameter $ \\alpha \\in [0,1] $, called the “output elasticity of\n", + " capital”. \n", + "- A value $ z $ called the [Total Factor Productivity](https://en.wikipedia.org/wiki/Total_factor_productivity) (TFP). " + ] + }, + { + "cell_type": "markdown", + "id": "bcd32baf", + "metadata": { + "id": "bcd32baf" + }, + "source": [ + "## What are (Python) Functions?\n", + "\n", + "In this class, we will often talk about `function`s.\n", + "\n", + "So what is a function?\n", + "\n", + "We like to think of a function as a production line in a\n", + "manufacturing plant: we pass zero or more things to it, operations take place in a\n", + "set linear sequence, and zero or more things come out.\n", + "\n", + "We use functions for the following purposes:\n", + "\n", + "- **Re-usability**: Writing code to do a specific task just once, and\n", + " reuse the code by calling the function. \n", + "- **Organization**: Keep the code for distinct operations separated and\n", + " organized. \n", + "- **Sharing/collaboration**: Sharing code across multiple projects or\n", + " sharing pieces of code with collaborators. " + ] + }, + { + "cell_type": "markdown", + "id": "fed78915", + "metadata": { + "id": "fed78915" + }, + "source": [ + "## How to Define (Python) Functions?\n", + "\n", + "The basic syntax to create our own function is as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9e1bdbe8", + "metadata": {}, + "outputs": [], + "source": [ + "def function_name(inputs):\n", + " # step 1\n", + " # step 2\n", + " # ...\n", + " return outputs" + ] + }, + { + "cell_type": "markdown", + "id": "57878b06", + "metadata": { + "id": "57878b06" + }, + "source": [ + "Here we see two new *keywords*: `def` and `return`.\n", + "\n", + "- `def` is used to tell Python we would like to define a new function. \n", + "- `return` is used to tell Python what we would like to **return** from a\n", + " function. \n", + "\n", + "\n", + "Let’s look at an example and then discuss each part:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8a3fb19f", + "metadata": {}, + "outputs": [], + "source": [ + "def mean(numbers):\n", + " total = sum(numbers)\n", + " N = len(numbers)\n", + " answer = total / N\n", + "\n", + " return answer" + ] + }, + { + "cell_type": "markdown", + "id": "e87d1e82", + "metadata": { + "id": "e87d1e82" + }, + "source": [ + "Here we defined a function `mean` that has one input (`numbers`),\n", + "does three steps, and has one output (`answer`).\n", + "\n", + "Let’s see what happens when we call this function on the list of numbers\n", + "`[1, 2, 3, 4]`." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8115113e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.5" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = [1, 2, 3, 4]\n", + "the_mean = mean(x)\n", + "the_mean" + ] + }, + { + "cell_type": "markdown", + "id": "556b1f1a", + "metadata": { + "id": "556b1f1a" + }, + "source": [ + "Additionally, as we saw in the [control flow](https://datascience.quantecon.org/control_flow.html) lecture, indentation\n", + "controls blocks of code (along with the [scope](#scope) rules).\n", + "\n", + "To see this, compare a function with no inputs or return values." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "304fc73d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "2\n" + ] + } + ], + "source": [ + "def f():\n", + " print(\"1\")\n", + " print(\"2\")\n", + "f()" + ] + }, + { + "cell_type": "markdown", + "id": "c7c7283d", + "metadata": { + "id": "c7c7283d" + }, + "source": [ + "With the following change of indentation…" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "63b91a05", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n", + "1\n" + ] + } + ], + "source": [ + "def f():\n", + " print(\"1\")\n", + "print(\"2\")\n", + "f()" + ] + }, + { + "cell_type": "markdown", + "id": "370040f1", + "metadata": { + "id": "370040f1" + }, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "71eb966e", + "metadata": { + "id": "71eb966e" + }, + "source": [ + "### Scope\n", + "\n", + "Notice that we named the input to the function `x` and we called the output\n", + "`the_mean`.\n", + "\n", + "When we defined the function, the input was called `numbers` and the output\n", + "`answer`… what gives?\n", + "\n", + "This is an example of a programming concept called\n", + "[variable scope](http://python-textbok.readthedocs.io/en/1.0/Variables_and_Scope.html).\n", + "\n", + "In Python, functions define their own scope for variables.\n", + "\n", + "In English, this means that regardless of what name we give an input variable (`x` in this example),\n", + "the input will always be referred to as `numbers` *inside* the body of the `mean`\n", + "function.\n", + "\n", + "It also means that although we called the output `answer` inside of the\n", + "function `mean`, that this variable name was only valid inside of our\n", + "function.\n", + "\n", + "To use the output of the function, we had to give it our own name (`the_mean`\n", + "in this example).\n", + "\n", + "Another point to make here is that the intermediate variables we defined inside\n", + "`mean` (`total` and `N`) are only defined inside of the `mean` function\n", + "– we can’t access them from outside. We can verify this by trying to see what\n", + "the value of `total` is:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "11844389", + "metadata": {}, + "outputs": [], + "source": [ + "def mean(numbers):\n", + " total = sum(numbers)\n", + " N = len(numbers)\n", + " answer = total / N\n", + " return answer # or directly return total / N\n", + "\n", + "# uncomment the line below and execute to see the error\n", + "# total" + ] + }, + { + "cell_type": "markdown", + "id": "5bd0615d", + "metadata": { + "id": "5bd0615d" + }, + "source": [ + "This point can be taken even further: the same name can be bound\n", + "to variables inside of blocks of code and in the outer “scope”." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "388a4029", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 4\n", + "x = 5\n", + "x = 4\n" + ] + } + ], + "source": [ + "x = 4\n", + "print(f\"x = {x}\")\n", + "def f():\n", + " x = 5 # a different \"x\"\n", + " print(f\"x = {x}\")\n", + "f() # calls function\n", + "print(f\"x = {x}\")" + ] + }, + { + "cell_type": "markdown", + "id": "de1ca784", + "metadata": { + "id": "de1ca784" + }, + "source": [ + "The final point we want to make about scope is that function inputs and output\n", + "don’t have to be given a name outside the function." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5dae5c00", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean([10, 20, 30])" + ] + }, + { + "cell_type": "markdown", + "id": "a52ba1d5", + "metadata": { + "id": "a52ba1d5" + }, + "source": [ + "Notice that we didn’t name the input or the output, but the function was\n", + "called successfully.\n", + "\n", + "Now, we’ll use our new knowledge to define a function which computes the output\n", + "from a Cobb-Douglas production function with parameters $ z = 1 $ and\n", + "$ \\alpha = 0.33 $ and takes inputs $ K $ and $ L $." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f01d0518", + "metadata": {}, + "outputs": [], + "source": [ + "def cobb_douglas(K, L):\n", + "\n", + " # Create alpha and z\n", + " z = 1\n", + " alpha = 0.33\n", + "\n", + " return z * K**alpha * L**(1 - alpha)" + ] + }, + { + "cell_type": "markdown", + "id": "ac6912bc", + "metadata": { + "id": "ac6912bc" + }, + "source": [ + "We can use this function as we did the mean function." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a533ffc0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6285066872609142" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cobb_douglas(1.0, 0.5)" + ] + }, + { + "cell_type": "markdown", + "id": "46005624", + "metadata": { + "id": "46005624" + }, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "56e2a4de", + "metadata": { + "id": "56e2a4de" + }, + "source": [ + "### Re-using Functions\n", + "\n", + "Economists are often interested in this question: how much does output\n", + "change if we modify our inputs?\n", + "\n", + "For example, take a production function $ Y_1 = F(K_1,L_1) $ which produces\n", + "$ Y_1 $ units of the goods.\n", + "\n", + "If we then multiply the inputs each by $ \\gamma $, so that\n", + "$ K_2 = \\gamma K_1 $ and $ L_2 = \\gamma L_1 $, then the output is\n", + "\n", + "$$\n", + "Y_2 = F(K_2, L_2) = F(\\gamma K_1, \\gamma L_1)\n", + "$$\n", + "\n", + "How does $ Y_1 $ compare to $ Y_2 $?\n", + "\n", + "Answering this question involves something called *returns to scale*.\n", + "\n", + "Returns to scale tells us whether our inputs are more or less productive as we\n", + "have more of them.\n", + "\n", + "For example, imagine that you run a restaurant. How would you expect the amount\n", + "of food you could produce would change if you could build an exact replica of\n", + "your restaurant and kitchen and hire the same number of cooks and waiters? You\n", + "would probably expect it to double.\n", + "\n", + "If, for any $ K, L $, we multiply $ K, L $ by a value $ \\gamma $\n", + "then\n", + "\n", + "- If $ \\frac{Y_2}{Y_1} < \\gamma $ then we say the production function has\n", + " decreasing returns to scale. \n", + "- If $ \\frac{Y_2}{Y_1} = \\gamma $ then we say the production function has\n", + " constant returns to scale. \n", + "- If $ \\frac{Y_2}{Y_1} > \\gamma $ then we say the production function has\n", + " increasing returns to scale. \n", + "\n", + "\n", + "Let’s try it and see what our function is!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ba4280b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.6285066872609142\n", + "1.2570133745218284\n" + ] + } + ], + "source": [ + "y1 = cobb_douglas(1.0, 0.5)\n", + "print(y1)\n", + "y2 = cobb_douglas(2*1.0, 2*0.5)\n", + "print(y2)" + ] + }, + { + "cell_type": "markdown", + "id": "dce2a0e7", + "metadata": { + "id": "dce2a0e7" + }, + "source": [ + "How did $ Y_1 $ and $ Y_2 $ relate?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "92f17f1b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y2 / y1" + ] + }, + { + "cell_type": "markdown", + "id": "0bc96ca2", + "metadata": { + "id": "0bc96ca2" + }, + "source": [ + "$ Y_2 $ was exactly double $ Y_1 $!\n", + "\n", + "Let’s write a function that will compute the returns to scale for different\n", + "values of $ K $ and $ L $.\n", + "\n", + "This is an example of how writing functions can allow us to re-use code\n", + "in ways we might not originally anticipate. (You didn’t know we’d be\n", + "writing a `returns_to_scale` function when we wrote `cobb_douglas`.)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8b1315cd", + "metadata": {}, + "outputs": [], + "source": [ + "def returns_to_scale(K, L, gamma):\n", + " y1 = cobb_douglas(K, L)\n", + " y2 = cobb_douglas(gamma*K, gamma*L)\n", + " y_ratio = y2 / y1\n", + " return y_ratio / gamma" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "13d23ac8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "returns_to_scale(1.0, 0.5, 2.0)" + ] + }, + { + "cell_type": "markdown", + "id": "63637c4c", + "metadata": { + "id": "63637c4c" + }, + "source": [ + "### Exercise\n", + "\n", + "See exercise 1 in the [exercise list](#ex2-4).\n", + "\n", + "It turns out that with a little bit of algebra, we can check that this will\n", + "always hold for our [Cobb-Douglas example](#cobb-douglas-example) above.\n", + "\n", + "To show this, take an arbitrary $ K, L $ and multiply the inputs by an\n", + "arbitrary $ \\gamma $.\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + " F(\\gamma K, \\gamma L) &= z (\\gamma K)^{\\alpha} (\\gamma L)^{1-\\alpha}\\\\\n", + " &= z \\gamma^{\\alpha}\\gamma^{1-\\alpha} K^{\\alpha} L^{1-\\alpha}\\\\\n", + " &= \\gamma z K^{\\alpha} L^{1-\\alpha} = \\gamma F(K, L)\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "For an example of a production function that is not CRS, look at a\n", + "generalization of the Cobb-Douglas production function that has different\n", + "“output elasticities” for the 2 inputs.\n", + "\n", + "$$\n", + "Y = z K^{\\alpha_1} L^{\\alpha_2}\n", + "$$\n", + "\n", + "Note that if $ \\alpha_2 = 1 - \\alpha_1 $, this is our Cobb-Douglas\n", + "production function." + ] + }, + { + "cell_type": "markdown", + "id": "be199e69", + "metadata": { + "id": "be199e69" + }, + "source": [ + "### Exercise\n", + "\n", + "See exercise 2 in the [exercise list](#ex2-4).\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "6abfcb1f", + "metadata": { + "id": "6abfcb1f" + }, + "source": [ + "### Multiple Returns\n", + "\n", + "Another valuable element to analyze on production functions is how\n", + "output changes as we change only one of the inputs. We will call this the\n", + "marginal product.\n", + "\n", + "For example, compare the output using $ K, L $ units of inputs to that with\n", + "an $ \\epsilon $ units of labor.\n", + "\n", + "Then the marginal product of labor (MPL) is defined as\n", + "\n", + "$$\n", + "\\frac{F(K, L + \\varepsilon) - F(K, L)}{\\varepsilon}\n", + "$$\n", + "\n", + "This tells us how much additional output is created relative to the additional\n", + "input. (Spoiler alert: This should look like the definition for a partial\n", + "derivative!)\n", + "\n", + "If the input can be divided into small units, then we can use calculus to take\n", + "this limit, using the partial derivative of the production function relative to\n", + "that input.\n", + "\n", + "In this case, we define the marginal product of labor (MPL) and marginal product\n", + "of capital (MPK) as\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "MPL(K, L) &= \\frac{\\partial F(K, L)}{\\partial L}\\\\\n", + "MPK(K, L) &= \\frac{\\partial F(K, L)}{\\partial K}\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "In the [Cobb-Douglas](#cobb-douglas-example) example above, this becomes\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "MPK(K, L) &= z \\alpha \\left(\\frac{K}{L} \\right)^{\\alpha - 1}\\\\\n", + "MPL(K, L) &= (1-\\alpha) z \\left(\\frac{K}{L} \\right)^{\\alpha}\\\\\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "Let’s test it out with Python! We’ll also see that we can actually return\n", + "multiple things in a Python function.\n", + "\n", + "The syntax for a return statement with multiple items is return item1, item2, ….\n", + "\n", + "In this case, we’ll compute both the MPL and the MPK and then return both." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "46654832", + "metadata": {}, + "outputs": [], + "source": [ + "def marginal_products(K, L, epsilon):\n", + "\n", + " mpl = (cobb_douglas(K, L + epsilon) - cobb_douglas(K, L)) / epsilon\n", + " mpk = (cobb_douglas(K + epsilon, L) - cobb_douglas(K, L)) / epsilon\n", + "\n", + " return mpl, mpk" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "44284da4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0.8421711708284096, 0.20740025904131265)\n" + ] + } + ], + "source": [ + "tup = marginal_products(1.0, 0.5, 1e-4)\n", + "print(tup)" + ] + }, + { + "cell_type": "markdown", + "id": "eca892b8", + "metadata": { + "id": "eca892b8" + }, + "source": [ + "Instead of using the tuple, these can be directly unpacked to variables." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "9b2e4f7e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mpl = 0.8421711708284096, mpk = 0.20740025904131265\n" + ] + } + ], + "source": [ + "mpl, mpk = marginal_products(1.0, 0.5, 1e-4)\n", + "print(f\"mpl = {mpl}, mpk = {mpk}\")" + ] + }, + { + "cell_type": "markdown", + "id": "0c65f1f6", + "metadata": { + "id": "0c65f1f6" + }, + "source": [ + "We can use this to calculate the marginal products for different `K`, fixing `L`\n", + "using a comprehension." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "91124022", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0.8421711708284096, 0.20740025904131265),\n", + " (1.058620425367085, 0.13035463304111872),\n", + " (1.2101811517950534, 0.09934539767386674)]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Ks = [1.0, 2.0, 3.0]\n", + "[marginal_products(K, 0.5, 1e-4) for K in Ks] # create a tuple for each K" + ] + }, + { + "cell_type": "markdown", + "id": "490312cd", + "metadata": { + "id": "490312cd" + }, + "source": [ + "### Documentation\n", + "\n", + "In a previous exercise, we asked you to find help for the `cobb_douglas` and\n", + "`returns_to_scale` functions using `?`.\n", + "\n", + "It didn’t provide any useful information.\n", + "\n", + "To provide this type of help information, we need to\n", + "add what Python programmers call a “docstring” to our functions.\n", + "\n", + "This is done by putting a string (not assigned to any variable name) as\n", + "the first line of the *body* of the function (after the line with\n", + "`def`).\n", + "\n", + "Below is a new version of the template we used to define functions." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "bcfe31d5", + "metadata": {}, + "outputs": [], + "source": [ + "def function_name(inputs):\n", + " \"\"\"\n", + " Docstring\n", + " \"\"\"\n", + " # step 1\n", + " # step 2\n", + " # ...\n", + " return outputs" + ] + }, + { + "cell_type": "markdown", + "id": "f210bf45", + "metadata": { + "id": "f210bf45" + }, + "source": [ + "Let’s re-define our `cobb_douglas` function to include a docstring." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5078fd27", + "metadata": {}, + "outputs": [], + "source": [ + "def cobb_douglas(K, L):\n", + " \"\"\"\n", + " Computes the production F(K, L) for a Cobb-Douglas production function\n", + "\n", + " Takes the form F(K, L) = z K^{\\alpha} L^{1 - \\alpha}\n", + "\n", + " We restrict z = 1 and alpha = 0.33\n", + " \"\"\"\n", + " return 1.0 * K**(0.33) * L**(1.0 - 0.33)" + ] + }, + { + "cell_type": "markdown", + "id": "aa4f9b57", + "metadata": { + "id": "aa4f9b57" + }, + "source": [ + "Now when we have Jupyter evaluate `cobb_douglas?`, our message is\n", + "displayed (or use the Contextual Help window with Jupyterlab and `Ctrl-I` or `Cmd-I`)." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "6c30fe52", + "metadata": {}, + "outputs": [], + "source": [ + "cobb_douglas?" + ] + }, + { + "cell_type": "markdown", + "id": "c0326dc6", + "metadata": { + "id": "c0326dc6" + }, + "source": [ + "We recommend that you always include at least a very simple docstring for\n", + "nontrivial functions.\n", + "\n", + "This is in the same spirit as adding comments to your code — it makes it easier\n", + "for future readers/users (including yourself) to understand what the code does." + ] + }, + { + "cell_type": "markdown", + "id": "cfc8949e", + "metadata": { + "id": "cfc8949e" + }, + "source": [ + "### Exercise\n", + "\n", + "See exercise 3 in the [exercise list](#ex2-4)." + ] + }, + { + "cell_type": "markdown", + "id": "05110f75", + "metadata": { + "id": "05110f75" + }, + "source": [ + "### Default and Keyword Arguments\n", + "\n", + "Functions can have optional arguments.\n", + "\n", + "To accomplish this, we must these arguments a *default value* by saying\n", + "`name=default_value` instead of just `name` as we list the arguments.\n", + "\n", + "To demonstrate this functionality, let’s now make $ z $ and $ \\alpha $\n", + "arguments to our cobb_douglas function!" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "1ec51f0d", + "metadata": {}, + "outputs": [], + "source": [ + "def cobb_douglas(K, L, alpha=0.33, z=1):\n", + " \"\"\"\n", + " Computes the production F(K, L) for a Cobb-Douglas production function\n", + "\n", + " Takes the form F(K, L) = z K^{\\alpha} L^{1 - \\alpha}\n", + " \"\"\"\n", + " return z * K**(alpha) * L**(1.0 - alpha)" + ] + }, + { + "cell_type": "markdown", + "id": "be2590fd", + "metadata": { + "id": "be2590fd" + }, + "source": [ + "We can now call this function by passing in just K and L. Notice that it will\n", + "produce same result as earlier because `alpha` and `z` are the same as earlier." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "9546cb37", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6285066872609142" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cobb_douglas(1.0, 0.5)" + ] + }, + { + "cell_type": "markdown", + "id": "e4dfe474", + "metadata": { + "id": "e4dfe474" + }, + "source": [ + "However, we can also set the other arguments of the function by passing\n", + "more than just K/L." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "780070a8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0196485018554098" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cobb_douglas(1.0, 0.5, 0.35, 1.6)" + ] + }, + { + "cell_type": "markdown", + "id": "d421b4f4", + "metadata": { + "id": "d421b4f4" + }, + "source": [ + "In the example above, we used `alpha = 0.35`, `z = 1.6`.\n", + "\n", + "We can also refer to function arguments by their name, instead of only their\n", + "position (order).\n", + "\n", + "To do this, we would write `func_name(arg=value)` for as many of the arguments\n", + "as we want.\n", + "\n", + "Here’s how to do that with our `cobb_douglas` example." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "05eb1bbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9427600308913713" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cobb_douglas(1.0, 0.5, z = 1.5)" + ] + }, + { + "cell_type": "markdown", + "id": "6a4f28fe", + "metadata": { + "id": "6a4f28fe" + }, + "source": [ + "### Exercise\n", + "\n", + "See exercise 4 in the [exercise list](#ex2-4).\n", + "\n", + "In terms of variable scope, the `z` name within the function is\n", + "different from any other `z` in the outer scope.\n", + "\n", + "To be clear," + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "557cf5df", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = 5\n", + "def f(x):\n", + " return x\n", + "f(x) # \"coincidence\" that it has the same name" + ] + }, + { + "cell_type": "markdown", + "id": "f1b2022f", + "metadata": { + "id": "f1b2022f" + }, + "source": [ + "This is also true with named function arguments, above." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "b5d13655", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9427600308913713" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = 1.5\n", + "cobb_douglas(1.0, 0.5, z = z) # no problem!" + ] + }, + { + "cell_type": "markdown", + "id": "d868edfb", + "metadata": { + "id": "d868edfb" + }, + "source": [ + "In that example, the `z` on the left hand side of `z = z` refers\n", + "to the local variable name in the function whereas the `z` on the\n", + "right hand side refers to the `z` in the outer scope." + ] + }, + { + "cell_type": "markdown", + "id": "94841288", + "metadata": { + "id": "94841288" + }, + "source": [ + "### Aside: Methods\n", + "\n", + "As we learned earlier, all variables in Python have a type associated\n", + "with them.\n", + "\n", + "Different types of variables have different functions or operations\n", + "defined for them.\n", + "\n", + "For example, I can divide one number by another or make a string uppercase.\n", + "\n", + "It wouldn’t make sense to divide one string by another or make a number\n", + "uppercase.\n", + "\n", + "When certain functionality is closely tied to the type of an object, it\n", + "is often implemented as a special kind of function known as a **method**.\n", + "\n", + "For now, you only need to know two things about methods:\n", + "\n", + "1. We call them by doing `variable.method_name(other_arguments)`\n", + " instead of `function_name(variable, other_arguments)`. \n", + "1. A method is a function, even though we call it using a different\n", + " notation. \n", + "\n", + "\n", + "When we introduced the core data types, we saw many methods defined on\n", + "these types.\n", + "\n", + "Let’s revisit them for the `str`, or string type.\n", + "\n", + "Notice that we call each of these functions using the `dot` syntax\n", + "described above." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "8f794c03", + "metadata": {}, + "outputs": [], + "source": [ + "s = \"This is my handy string!\"" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "a2fefb42", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'THIS IS MY HANDY STRING!'" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.upper()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "5fa57a97", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'This Is My Handy String!'" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.title()" + ] + }, + { + "cell_type": "markdown", + "id": "6f69a383", + "metadata": { + "id": "6f69a383" + }, + "source": [ + "## More on Scope (Optional)\n", + "\n", + "Keep in mind that with mathematical functions, the arguments are just dummy names\n", + "that can be interchanged.\n", + "\n", + "That is, the following are identical.\n", + "\n", + "$$\n", + "\\begin{eqnarray}\n", + " f(K, L) &= z\\, K^{\\alpha} L^{1-\\alpha}\\\\\n", + " f(K_2, L_2) &= z\\, K_2^{\\alpha} L_2^{1-\\alpha}\n", + "\\end{eqnarray}\n", + "$$\n", + "\n", + "The same concept applies to Python functions, where the arguments are just\n", + "placeholder names, and our `cobb_douglas` function is identical to" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "2688518b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6285066872609142" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def cobb_douglas2(K2, L2): # changed dummy variable names\n", + "\n", + " # Create alpha and z\n", + " z = 1\n", + " alpha = 0.33\n", + "\n", + " return z * K2**alpha * L2**(1 - alpha)\n", + "\n", + "cobb_douglas2(1.0, 0.5)" + ] + }, + { + "cell_type": "markdown", + "id": "ac370bdb", + "metadata": { + "id": "ac370bdb" + }, + "source": [ + "This is an appealing feature of functions for avoiding coding errors: names of variables\n", + "within the function are localized and won’t clash with those on the outside (with\n", + "more examples in [scope](#scope)).\n", + "\n", + "Importantly, when Python looks for variables\n", + "matching a particular name, it begins in the most local scope.\n", + "\n", + "That is, note that having an `alpha` in the outer scope does not impact the local one." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "f0a3f795", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.5743491774985174\n", + "Setting alpha, does the result change?\n", + "0.5743491774985174\n" + ] + } + ], + "source": [ + "def cobb_douglas3(K, L, alpha): # added new argument\n", + "\n", + " # Create alpha and z\n", + " z = 1\n", + "\n", + " return z * K**alpha * L**(1 - alpha) # sees local argument alpha\n", + "\n", + "print(cobb_douglas3(1.0, 0.5, 0.2))\n", + "print(\"Setting alpha, does the result change?\")\n", + "alpha = 0.5 # in the outer scope\n", + "print(cobb_douglas3(1.0, 0.5, 0.2))" + ] + }, + { + "cell_type": "markdown", + "id": "b670be91", + "metadata": { + "id": "b670be91" + }, + "source": [ + "A crucial element of the above function is that the `alpha` variable\n", + "was available in the local scope of the function.\n", + "\n", + "Consider the alternative where it is not. We have removed the `alpha`\n", + "function parameter as well as the local definition of `alpha`." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "9f6e8ae7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha = 0.2 gives 0.5743491774985174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "alpha = 0.3 gives 0.6155722066724582\n" + ] + } + ], + "source": [ + "def cobb_douglas4(K, L): # added new argument\n", + "\n", + " # Create alpha and z\n", + " z = 1\n", + "\n", + " # there are no local alpha in scope!\n", + " return z * K**alpha * L**(1 - alpha)\n", + "\n", + "alpha = 0.2 # in the outer scope\n", + "print(f\"alpha = {alpha} gives {cobb_douglas4(1.0, 0.5)}\")\n", + "alpha = 0.3\n", + "print(f\"alpha = {alpha} gives {cobb_douglas4(1.0, 0.5)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "3ca2c57c", + "metadata": { + "id": "3ca2c57c" + }, + "source": [ + "The intuition of scoping does not apply only for the “global” vs. “function”\n", + "naming of variables, but also for nesting.\n", + "\n", + "For example, we can define a version of `cobb_douglas` which\n", + "is also missing a `z` in its inner-most scope, then put the function\n", + "inside of another function." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "46ae03fa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0.5743491774985174, 0.6155722066724582, 0.7071067811865476]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = 1\n", + "def output_given_alpha(alpha):\n", + " # Scoping logic:\n", + " # 1. local function name doesn't clash with global one\n", + " # 2. alpha comes from the function parameter\n", + " # 3. z comes from the outer global scope\n", + " def cobb_douglas(K, L):\n", + " return z * K**alpha * L**(1 - alpha)\n", + "\n", + " # using this function\n", + " return cobb_douglas(1.0, 0.5)\n", + "\n", + "alpha = 100 # ignored\n", + "alphas = [0.2, 0.3, 0.5]\n", + "# comprehension variables also have local scope\n", + "# and don't clash with the alpha = 100\n", + "[output_given_alpha(alpha) for alpha in alphas]" + ] + }, + { + "cell_type": "markdown", + "id": "31407dd3", + "metadata": { + "id": "31407dd3" + }, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "a2fb7cae", + "metadata": { + "id": "a2fb7cae" + }, + "source": [ + "## Exercises" + ] + }, + { + "cell_type": "markdown", + "id": "e26e52d6", + "metadata": { + "id": "e26e52d6" + }, + "source": [ + "### Exercise 1\n", + "\n", + "What happens if we try different inputs in our Cobb-Douglas production\n", + "function?" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "a30f1f7c", + "metadata": {}, + "outputs": [], + "source": [ + "# Compute returns to scale with different values of `K` and `L` and `gamma`" + ] + }, + { + "cell_type": "markdown", + "id": "d9e2b3ce", + "metadata": { + "id": "d9e2b3ce" + }, + "source": [ + "([back to text](#dir2-4-1))" + ] + }, + { + "cell_type": "markdown", + "id": "d5a4a39b", + "metadata": { + "id": "d5a4a39b" + }, + "source": [ + "### Exercise 2\n", + "\n", + "Define a function named `var` that takes a list (call it `x`) and\n", + "computes the variance. This function should use the mean function that we\n", + "defined earlier.\n", + "\n", + "$ \\text{variance} = \\frac{1}{N-1} \\sum_i (x_i - \\text{mean}(x))^2 $" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "d25d314a", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here." + ] + }, + { + "cell_type": "markdown", + "id": "42b55c73", + "metadata": { + "id": "42b55c73" + }, + "source": [ + "([back to text](#dir2-4-2))" + ] + }, + { + "cell_type": "markdown", + "id": "746199cb", + "metadata": { + "id": "746199cb" + }, + "source": [ + "### Exercise 3\n", + "\n", + "Redefine the `returns_to_scale` function and add a docstring.\n", + "\n", + "Confirm that it works by running the cell containing `returns_to_scale?` below.\n", + "\n", + "*Note*: You do not need to change the actual code in the function — just\n", + "copy/paste and add a docstring in the correct line." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "4d575966", + "metadata": {}, + "outputs": [], + "source": [ + "# re-define the `returns_to_scale` function here" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "63efd956", + "metadata": {}, + "outputs": [], + "source": [ + "# test it here\n", + "\n", + "returns_to_scale?" + ] + }, + { + "cell_type": "markdown", + "id": "d070816f", + "metadata": { + "id": "d070816f" + }, + "source": [ + "([back to text](#dir2-4-3))" + ] + }, + { + "cell_type": "markdown", + "id": "fe3b042a", + "metadata": { + "id": "fe3b042a" + }, + "source": [ + "### Exercise 4\n", + "\n", + "Experiment with the `sep` and `end` arguments to the `print` function.\n", + "\n", + "These can *only* be set by name." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "94454380", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here." + ] + }, + { + "cell_type": "markdown", + "id": "b8d7ac0e", + "metadata": { + "id": "b8d7ac0e" + }, + "source": [ + "([back to text](#dir2-4-4))" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_sources/_notebook_build/_03_comparing_plotting_libraries.ipynb b/docs/_sources/_notebook_build/_03_comparing_plotting_libraries.ipynb new file mode 100644 index 0000000..878289f --- /dev/null +++ b/docs/_sources/_notebook_build/_03_comparing_plotting_libraries.ipynb @@ -0,0 +1,4747 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparing Plotting Libraries and Declarative Visualizations" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from plotnine import *\n", + "from matplotlib import pyplot as plt\n", + "from plotnine import data\n", + "import plotly.express as px\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "mpg = data.mpg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bar Chart" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
manufacturermodeldisplyearcyltransdrvctyhwyflclass
0audia41.819994auto(l5)f1829pcompact
1audia41.819994manual(m5)f2129pcompact
2audia42.020084manual(m6)f2031pcompact
3audia42.020084auto(av)f2130pcompact
4audia42.819996auto(l5)f1626pcompact
....................................
229volkswagenpassat2.020084auto(s6)f1928pmidsize
230volkswagenpassat2.020084manual(m6)f2129pmidsize
231volkswagenpassat2.819996auto(l5)f1626pmidsize
232volkswagenpassat2.819996manual(m5)f1826pmidsize
233volkswagenpassat3.620086auto(s6)f1726pmidsize
\n", + "

234 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " manufacturer model displ year cyl trans drv cty hwy fl \\\n", + "0 audi a4 1.8 1999 4 auto(l5) f 18 29 p \n", + "1 audi a4 1.8 1999 4 manual(m5) f 21 29 p \n", + "2 audi a4 2.0 2008 4 manual(m6) f 20 31 p \n", + "3 audi a4 2.0 2008 4 auto(av) f 21 30 p \n", + "4 audi a4 2.8 1999 6 auto(l5) f 16 26 p \n", + ".. ... ... ... ... ... ... .. ... ... .. \n", + "229 volkswagen passat 2.0 2008 4 auto(s6) f 19 28 p \n", + "230 volkswagen passat 2.0 2008 4 manual(m6) f 21 29 p \n", + "231 volkswagen passat 2.8 1999 6 auto(l5) f 16 26 p \n", + "232 volkswagen passat 2.8 1999 6 manual(m5) f 18 26 p \n", + "233 volkswagen passat 3.6 2008 6 auto(s6) f 17 26 p \n", + "\n", + " class \n", + "0 compact \n", + "1 compact \n", + "2 compact \n", + "3 compact \n", + "4 compact \n", + ".. ... \n", + "229 midsize \n", + "230 midsize \n", + "231 midsize \n", + "232 midsize \n", + "233 midsize \n", + "\n", + "[234 rows x 11 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mpg" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Number of Cars by Make')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGzCAYAAABEsJEnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABi7UlEQVR4nO3deVRV1f//8edF4QoyOaCgojggziNqzqSWmpJDqampODY5lUNamVMlTuVQWmqJOZZaZjlPWOE8pxIRygcrzHIA0USE8/vDn/frDTVA9Hrh9VjrrOU5e5993vtc1rpv9z77XJNhGAYiIiIiYpccbB2AiIiIiGSdkjkRERERO6ZkTkRERMSOKZkTERERsWNK5kRERETsmJI5ERERETumZE5ERETEjimZExEREbFjSuZERERE7JiSORHJEcLDwzGZTKxatcrWoWTIn3/+ybPPPkuhQoUwmUzMmDHD1iHdt5CQEFxdXW0dxn0bN24cJpOJv//+29ahiGSIkjkRybCwsDBMJhP58uXj999/T1ceFBRElSpVbBCZ/Xn11VfZtGkTo0ePZvHixbRq1eqe9a9du8YHH3xAvXr18PDwIF++fJQvX56BAwfyyy+/PKSoHw1+fn6YTCZatGhxx/L58+djMpkwmUwcOHDgIUcn8vDltXUAImJ/kpOTCQ0NZfbs2bYOxW5t376ddu3aMXz48P+s+/fff9OqVSsOHjxI27Zt6datG66urkRFRbFixQrmzZvH9evXH0LUj458+fKxY8cOzp49i7e3t1XZ0qVLyZcvH9euXbNRdCIPl0bmRCTTatSowfz58/njjz9sHcpDd+XKlWxp59y5c3h6emaobkhICIcPH2bVqlV8++23DBkyhL59+zJlyhSio6MZPHhwtsSUXX17GBo2bIirqytffPGF1fHffvuNH374gTZt2tgoMpGHT8mciGTaG2+8QWpqKqGhofesFxsbi8lkIiwsLF2ZyWRi3Lhxlv1bzyn98ssvPP/883h4eODl5cWYMWMwDIMzZ87Qrl073N3d8fb2Zvr06Xe8ZmpqKm+88Qbe3t7kz5+fp59+mjNnzqSrt3fvXlq1aoWHhwcuLi40bdqUiIgIqzq3Yjp58iTdunWjQIECNGrU6J59PnXqFJ06daJgwYK4uLjw2GOPsW7dOkv5ralqwzD46KOPLNOBd7N3717WrVtH3759eeaZZ9KVm81mpk2bZtk/duwYISEhlClThnz58uHt7U2fPn04f/58hvt29uxZevfuTYkSJTCbzfj4+NCuXTtiY2Pv2ffb70HLli3Jnz8/xYoVY8KECRiGAYBhGPj5+dGuXbt05127dg0PDw9eeOGF/7xGvnz56NixI8uWLbM6vnz5cgoUKEDLli3TnZPRe3Mn//vf/yhXrhxVqlThzz//BODSpUsMHToUX19fzGYz5cqVY/LkyaSlpf1neyLZSdOsIpJppUuXpmfPnsyfP59Ro0ZRrFixbGu7S5cuVKxYkdDQUNatW8c777xDwYIF+eSTT2jWrBmTJ09m6dKlDB8+nDp16tCkSROr8999911MJhOvv/46586dY8aMGbRo0YIjR47g7OwM3JzibN26NbVr12bs2LE4ODiwcOFCmjVrxg8//EDdunWt2uzUqRP+/v689957lqTkTv78808aNGjA1atXGTx4MIUKFWLRokU8/fTTrFq1ig4dOtCkSRMWL15Mjx49eOKJJ+jZs+c978fatWsB6NGjR4bu35YtWzh16hS9e/fG29ubEydOMG/ePE6cOMGePXvSJY536tszzzzDiRMnGDRoEH5+fpw7d44tW7YQFxeHn5/fPa+fmppKq1ateOyxx5gyZQobN25k7Nix3LhxgwkTJmAymXj++eeZMmUKFy5coGDBgpZzv/32WxITE3n++ecz1Ndu3brx5JNPEhMTQ9myZQFYtmwZzz77LI6Ojvd9b26JiYmhWbNmFCxYkC1btlC4cGGuXr1K06ZN+f3333nhhRcoWbIku3btYvTo0cTHx+eIBS1iRwwRkQxauHChARj79+83YmJijLx58xqDBw+2lDdt2tSoXLmyZf/06dMGYCxcuDBdW4AxduxYy/7YsWMNwBgwYIDl2I0bN4wSJUoYJpPJCA0NtRy/ePGi4ezsbPTq1ctybMeOHQZgFC9e3EhMTLQc//LLLw3AmDlzpmEYhpGWlmb4+/sbLVu2NNLS0iz1rl69apQuXdp44okn0sXUtWvXDN2foUOHGoDxww8/WI5dvnzZKF26tOHn52ekpqZa9f+VV175zzY7dOhgAMbFixczFMPVq1fTHVu+fLkBGN9//73l2N36dvHiRQMwpk6dmqHr3a5Xr14GYAwaNMhyLC0tzWjTpo3h5ORk/PXXX4ZhGEZUVJQBGHPnzrU6/+mnnzb8/PysPpc7KVWqlNGmTRvjxo0bhre3tzFx4kTDMAzj5MmTBmDs3LnT6m/1lszem7/++suIjIw0ihUrZtSpU8e4cOGCpc7EiRON/PnzG7/88otVe6NGjTLy5MljxMXF/dftEsk2mmYVkSwpU6YMPXr0YN68ecTHx2dbu/369bP8O0+ePAQGBmIYBn379rUc9/T0JCAggFOnTqU7v2fPnri5uVn2n332WXx8fFi/fj0AR44cITo6mm7dunH+/Hn+/vtv/v77b65cuULz5s35/vvv002TvfjiixmKff369dStW9dqKtbV1ZUBAwYQGxvLyZMnM3YTbpOYmAhg1ad7uTX6CDenLf/++28ee+wxAA4dOpSu/r/75uzsjJOTE+Hh4Vy8eDHT8QIMHDjQ8m+TycTAgQO5fv06W7duBaB8+fLUq1ePpUuXWupduHCBDRs20L1793tOO98uT548dO7cmeXLlwM3Fz74+vrSuHHjO9bP7L05fvw4TZs2xc/Pj61bt1KgQAFL2cqVK2ncuDEFChSw/A39/ffftGjRgtTUVL7//vsM9UEkOyiZE5Ese+utt7hx48Z/PjuXGSVLlrTav/UajsKFC6c7fqdkw9/f32rfZDJRrlw5y/Ne0dHRAPTq1QsvLy+rbcGCBSQnJ5OQkGDVRunSpTMU+//+9z8CAgLSHa9YsaKlPLPc3d0BuHz5cobqX7hwgSFDhlC0aFGcnZ3x8vKyxP/vfkH6vpnNZiZPnsyGDRsoWrQoTZo0YcqUKZw9ezZD13dwcKBMmTJWx8qXLw9g9cxdz549iYiIsNyTlStXkpKSkuHp5Fu6devGyZMnOXr0KMuWLeO55567azKY2XsTHByMm5sbmzZtsnwOt0RHR7Nx48Z0f0O3Xpdy7ty5TPVD5H7omTkRybIyZcrw/PPPM2/ePEaNGpWu/G5fqqmpqXdtM0+ePBk6Btzz+bW7uTXqNnXqVGrUqHHHOv9+8e3tIzoPW4UKFQD46aef7jridLvOnTuza9cuRowYQY0aNXB1dSUtLY1WrVrd8cH8O/Vt6NChBAcHs2bNGjZt2sSYMWOYNGkS27dvp2bNmvffKeC5557j1VdfZenSpbzxxhssWbKEwMDAOybD91KvXj3Kli3L0KFDOX36NN26dbtr3czem2eeeYZFixaxdOnSdIsy0tLSeOKJJxg5cuQdr3UrgRV5GJTMich9eeutt1iyZAmTJ09OV3ZrWurSpUtWx7MyQpVRt0bebjEMg19//ZVq1aoBWB6Ud3d3v+tLZ7OqVKlSREVFpTv+888/W8ozKzg4mEmTJrFkyZL/TOYuXrzItm3bGD9+PG+//bbl+L/vSUaULVuWYcOGMWzYMKKjo6lRowbTp09nyZIl9zwvLS2NU6dOWSUzt15qfPviiYIFC9KmTRuWLl1K9+7diYiIyPKiga5du/LOO+9QsWLFuyboWbk3U6dOJW/evLz88su4ublZJYply5YlKSkp2/+GRLJC06wicl/Kli3L888/zyeffJJuKs7d3Z3ChQune35ozpw5Dyyezz//3GpKctWqVcTHx9O6dWsAateuTdmyZZk2bRpJSUnpzv/rr7+yfO2nnnqKffv2sXv3bsuxK1euMG/ePPz8/KhUqVKm26xfvz6tWrViwYIFrFmzJl359evXLS8evjWC+e8Ry8wkSVevXk33st2yZcvi5uZGcnJyhtr48MMPLf82DIMPP/wQR0dHmjdvblWvR48enDx5khEjRpAnTx6ee+65DMd5u379+jF27Ni7vq4GsnZvTCYT8+bN49lnn6VXr16WlcVwc5Rv9+7dbNq0Kd15ly5d4saNG5nshUjWaWRORO7bm2++yeLFi4mKiqJy5cpWZf369SM0NJR+/foRGBjI999//0B/fqpgwYI0atSI3r178+effzJjxgzKlStH//79gZvPdC1YsIDWrVtTuXJlevfuTfHixfn999/ZsWMH7u7ufPvtt1m69qhRo1i+fDmtW7dm8ODBFCxYkEWLFnH69GlWr16Ng0PW/v/8+eef8+STT9KxY0eCg4Np3rw5+fPnJzo6mhUrVhAfH8+0adNwd3e3POOWkpJC8eLF2bx5M6dPn87wtX755ReaN29O586dqVSpEnnz5uXrr7/mzz//zFCylS9fPjZu3EivXr2oV68eGzZsYN26dbzxxht4eXlZ1W3Tpg2FChVi5cqVtG7dmiJFimT63sDNEc/b31l4J1m9Nw4ODixZsoT27dvTuXNn1q9fT7NmzRgxYgRr166lbdu2hISEULt2ba5cucJPP/3EqlWriI2NTfecp8iDomRORO5buXLleP7551m0aFG6srfffpu//vqLVatW8eWXX9K6dWs2bNiQ5S/u//LGG29w7NgxJk2axOXLl2nevDlz5szBxcXFUicoKIjdu3czceJEPvzwQ5KSkvD29qZevXoZemHt3RQtWpRdu3bx+uuvM3v2bK5du0a1atX49ttv7+sXCby8vNi1axdz5szhiy++4M033+T69euUKlWKp59+miFDhljqLlu2jEGDBvHRRx9hGAZPPvkkGzZsyPC7AH19fenatSvbtm1j8eLF5M2blwoVKvDll1/e8aXF/5YnTx42btzISy+9xIgRI3Bzc2Ps2LFWU5u3ODk50aVLF+bMmZPphQ9ZkdV74+joyKpVq2jdujXt2rVj69at1KtXj507d/Lee++xcuVKPv/8c9zd3Slfvjzjx4/Hw8PjgfdH5BaTkZUniEVERLLBq6++yqeffsrZs2etEm4RyTg9MyciIjZx7do1lixZwjPPPKNETuQ+aJpVREQeqnPnzrF161ZWrVrF+fPnraaJRSTzlMyJiMhDdfLkSbp3706RIkWYNWvWXV8nIiIZo2fmREREROyYnpkTERERsWNK5kRERETsmJ6Zy+HS0tL4448/cHNzu+vvZIqIiMijxTAMLl++TLFixf7zheNK5nK4P/74A19fX1uHISIiIllw5swZSpQocc86SuZyODc3N+DmH4O7u7uNoxEREZGMSExMxNfX1/I9fi9K5nK4W1Or7u7uSuZERETsTEYekdICCBERERE7pmRORERExI4pmRMRERGxY3pmLpeoMnYTDmb9kLWISHaLDW1j6xAkl7PrkTmTycSaNWsAiI2NxWQyceTIEZvGJCIiIvIw2XUyJyIiIpLbKZkTERERsWM2S+bmzZtHsWLFSEtLszrerl07+vTpA8DcuXMpW7YsTk5OBAQEsHjx4gy3n5qaSp8+fahQoQJxcXEYhsG4ceMoWbIkZrOZYsWKMXjwYAA+/PBDqlSpYjl3zZo1mEwmPv74Y8uxFi1a8NZbbwEQExNDu3btKFq0KK6urtSpU4etW7daXT8+Pp42bdrg7OxM6dKlWbZsGX5+fsyYMcNS59KlS/Tr1w8vLy/c3d1p1qwZR48etZSPGzeOGjVqsHjxYvz8/PDw8OC5557j8uXLGb4PIiIikrPZLJnr1KkT58+fZ8eOHZZjFy5cYOPGjXTv3p2vv/6aIUOGMGzYMI4fP84LL7xA7969rerfTXJyMp06deLIkSP88MMPlCxZktWrV/PBBx/wySefEB0dzZo1a6hatSoATZs25eTJk/z1118A7Ny5k8KFCxMeHg5ASkoKu3fvJigoCICkpCSeeuoptm3bxuHDh2nVqhXBwcHExcVZYujZsyd//PEH4eHhrF69mnnz5nHu3Ll09+DcuXNs2LCBgwcPUqtWLZo3b86FCxcsdWJiYlizZg3fffcd3333HTt37iQ0NPSefU9MTLTaREREJOeyWTJXoEABWrduzbJlyyzHVq1aReHChXn88ceZNm0aISEhvPzyy5QvX57XXnuNjh07Mm3atHu2m5SURJs2bfjrr7/YsWMHXl5eAMTFxeHt7U2LFi0oWbIkdevWpX///gBUqVKFggULsnPnTgDCw8MZNmyYZX/fvn2kpKTQoEEDAKpXr84LL7xAlSpV8Pf3Z+LEiZQtW5a1a9cC8PPPP7N161bmz59PvXr1qFWrFgsWLOCff/6xxPnjjz+yb98+Vq5cSWBgIP7+/kybNg1PT09WrVplqZeWlkZYWBhVqlShcePG9OjRg23btt21/5MmTcLDw8Oy6XdZRUREcjabPjPXvXt3Vq9eTXJyMgBLly7lueeew8HBgcjISBo2bGhVv2HDhkRGRt6zza5du3LlyhU2b96Mh4eH5XinTp34559/KFOmDP379+frr7/mxo0bwM1VsU2aNCE8PJxLly5x8uRJXn75ZZKTk/n555/ZuXMnderUwcXl5qs9kpKSGD58OBUrVsTT0xNXV1ciIyMtI3NRUVHkzZuXWrVqWa5frlw5ChQoYNk/evQoSUlJFCpUCFdXV8t2+vRpYmJiLPX8/PysfpfNx8cn3Qjf7UaPHk1CQoJlO3PmzD3vl4iIiNg3m75nLjg4GMMwWLduHXXq1OGHH37ggw8+uK82n3rqKZYsWcLu3btp1qyZ5bivry9RUVFs3bqVLVu28PLLLzN16lR27tyJo6MjQUFBzJs3jx9++IGaNWvi7u5uSfB27txJ06ZNLW0NHz6cLVu2MG3aNMqVK4ezszPPPvss169fz3CcSUlJ+Pj4WKZyb+fp6Wn5t6Ojo1WZyWRK95zh7cxmM2azOcNxiIiIiH2z6chcvnz56NixI0uXLmX58uUEBARYRrMqVqxIRESEVf2IiAgqVap0zzZfeuklQkNDefrppy3TpLc4OzsTHBzMrFmzCA8PZ/fu3fz000/A/z03t3LlSsuzcUFBQWzdupWIiAjLsVtxhISE0KFDB6pWrYq3tzexsbGW8oCAAG7cuMHhw4ctx3799VcuXrxo2a9VqxZnz54lb968lCtXzmorXLhwhu+hiIiI5G42/wWI7t2707ZtW06cOMHzzz9vOT5ixAg6d+5MzZo1adGiBd9++y1fffVVulWjdzJo0CBSU1Np27YtGzZsoFGjRoSFhZGamkq9evVwcXFhyZIlODs7U6pUKQCqVatGgQIFWLZsGd999x1wM5kbPnw4JpPJasrX39+fr776iuDgYEwmE2PGjLEaLatQoQItWrRgwIABzJ07F0dHR4YNG4azszMmkwm4uTq2fv36tG/fnilTplC+fHn++OMP1q1bR4cOHQgMDMyW+ysiIiI5m83fM9esWTMKFixIVFQU3bp1sxxv3749M2fOZNq0aVSuXJlPPvmEhQsXWo2Q3cvQoUMZP348Tz31FLt27cLT05P58+fTsGFDqlWrxtatW/n2228pVKgQcHP6snHjxphMJho1agTcTPDc3d0JDAwkf/78lrbff/99ChQoQIMGDQgODqZly5ZWz8cBfP755xQtWpQmTZrQoUMH+vfvj5ubG/ny5bNcb/369TRp0oTevXtTvnx5nnvuOf73v/9RtGjR+7mlIiIikouYDMMwbB1EbvDbb7/h6+vL1q1bad68+UO7bmJiIh4eHiQkJODu7v7QrisiIiJZl5nvb5tPs+ZU27dvJykpiapVqxIfH8/IkSPx8/OjSZMmtg5NREREchAlcw9ISkoKb7zxBqdOncLNzY0GDRqwdOnSdKtTRURERO6HpllzOE2zioiI2J/MfH/bfAGEiIiIiGSdkjkRERERO6ZkTkRERMSOKZkTERERsWNK5kRERETsmJI5ERERETumZE5ERETEjimZExEREbFj+gWIXKLK2E04mF1sHYaIiEimxYa2sXUIjzSNzImIiIjYMSVzIiIiInZMydy/BAUFMXTo0Id+XZPJxJo1ax76dUVERMS+KZkTERERsWNK5m4TEhLCzp07mTlzJiaTCZPJRGxsLDt37qRu3bqYzWZ8fHwYNWoUN27cAODzzz+nUKFCJCcnW7XVvn17evToYdmfO3cuZcuWxcnJiYCAABYvXmwp8/PzA6BDhw6YTCbLfkxMDO3ataNo0aK4urpSp04dtm7d+mBvgoiIiNgVJXO3mTlzJvXr16d///7Ex8cTHx+Po6MjTz31FHXq1OHo0aPMnTuXTz/9lHfeeQeATp06kZqaytq1ay3tnDt3jnXr1tGnTx8Avv76a4YMGcKwYcM4fvw4L7zwAr1792bHjh0A7N+/H4CFCxcSHx9v2U9KSuKpp55i27ZtHD58mFatWhEcHExcXNxd+5CcnExiYqLVJiIiIjmXyTAMw9ZBPEqCgoKoUaMGM2bMAODNN99k9erVREZGYjKZAJgzZw6vv/46CQkJODg48PLLLxMbG8v69esBeP/99/noo4/49ddfMZlMNGzYkMqVKzNv3jzLdTp37syVK1dYt24dcPOZua+//pr27dvfM74qVarw4osvMnDgwDuWjxs3jvHjx6c77jv0S72aRERE7FJufDVJYmIiHh4eJCQk4O7ufs+6Gpn7D5GRkdSvX9+SyAE0bNiQpKQkfvvtNwD69+/P5s2b+f333wEICwsjJCTEck5kZCQNGza0ardhw4ZERkbe89pJSUkMHz6cihUr4unpiaurK5GRkfccmRs9ejQJCQmW7cyZM1nqt4iIiNgHvTQ4G9SsWZPq1avz+eef8+STT3LixAnLiNv9GD58OFu2bGHatGmUK1cOZ2dnnn32Wa5fv37Xc8xmM2az+b6vLSIiIvZBI3P/4uTkRGpqqmW/YsWK7N69m9tnoyMiInBzc6NEiRKWY/369SMsLIyFCxfSokULfH19rdqIiIiwuk5ERASVKlWy7Ds6Olpd91adkJAQOnToQNWqVfH29iY2Nja7uioiIiI5gJK5f/Hz82Pv3r3Exsby999/8/LLL3PmzBkGDRrEzz//zDfffMPYsWN57bXXcHD4v9vXrVs3fvvtN+bPn29Z+HDLiBEjCAsLY+7cuURHR/P+++/z1VdfMXz4cKvrbtu2jbNnz3Lx4kUA/P39+eqrrzhy5AhHjx6lW7dupKWlPZwbISIiInZBydy/DB8+nDx58lCpUiW8vLxISUlh/fr17Nu3j+rVq/Piiy/St29f3nrrLavzPDw8eOaZZ3B1dU23iKF9+/bMnDmTadOmUblyZT755BMWLlxIUFCQpc706dPZsmULvr6+1KxZE7i5kKJAgQI0aNCA4OBgWrZsSa1atR70LRARERE7otWs2ah58+ZUrlyZWbNm2ToUi8yshhEREZFHQ2a+v7UAIhtcvHiR8PBwwsPDmTNnjq3DERERkVxEyVw2qFmzJhcvXmTy5MkEBATYOhwRERHJRZTMZQOtMBURERFb0QIIERERETumZE5ERETEjimZExEREbFjSuZERERE7JiSORERERE7pmRORERExI4pmRMRERGxY0rmREREROyYXhqcS1QZuwkHs4utwxC5L7GhbWwdgojII0cjc/fJz8+PGTNm2DoMERERyaWUzImIiIjYMSVzj6DU1FTS0tJsHYaIiIjYASVzwKpVq6hatSrOzs4UKlSIFi1acOXKFYKCghg6dKhV3fbt2xMSEmJ17PLly3Tt2pX8+fNTvHhxPvroI6vy999/n6pVq5I/f358fX15+eWXSUpKspSHhYXh6enJ2rVrqVSpEmazmbi4uAxfX0RERHKvXJ/MxcfH07VrV/r06UNkZCTh4eF07NgRwzAy3MbUqVOpXr06hw8fZtSoUQwZMoQtW7ZYyh0cHJg1axYnTpxg0aJFbN++nZEjR1q1cfXqVSZPnsyCBQs4ceIERYoUyVJ/kpOTSUxMtNpEREQk58r1q1nj4+O5ceMGHTt2pFSpUgBUrVo1U200bNiQUaNGAVC+fHkiIiL44IMPeOKJJwCsRtf8/Px45513ePHFF5kzZ47leEpKCnPmzKF69er31Z9JkyYxfvz4+2pDRERE7EeuH5mrXr06zZs3p2rVqnTq1In58+dz8eLFTLVRv379dPuRkZGW/a1bt9K8eXOKFy+Om5sbPXr04Pz581y9etVSx8nJiWrVqt1fZ4DRo0eTkJBg2c6cOXPfbYqIiMijK9cnc3ny5GHLli1s2LCBSpUqMXv2bAICAjh9+jQODg7ppltTUlIy1X5sbCxt27alWrVqrF69moMHD1qeqbt+/bqlnrOzMyaTyercrFzfbDbj7u5utYmIiEjOleuTOQCTyUTDhg0ZP348hw8fxsnJia+//hovLy/i4+Mt9VJTUzl+/Hi68/fs2ZNuv2LFigAcPHiQtLQ0pk+fzmOPPUb58uX5448/MhRXRq8vIiIiuVeuf2Zu7969bNu2jSeffJIiRYqwd+9e/vrrLypWrEj+/Pl57bXXWLduHWXLluX999/n0qVL6dqIiIhgypQptG/fni1btrBy5UrWrVsHQLly5UhJSWH27NkEBwcTERHBxx9/nKHYmjVrlqHri4iISO6V65M5d3d3vv/+e2bMmEFiYiKlSpVi+vTptG7dmpSUFI4ePUrPnj3Jmzcvr776Ko8//ni6NoYNG8aBAwcYP3487u7uvP/++7Rs2RK4+Uze+++/z+TJkxk9ejRNmjRh0qRJ9OzZ8z9j69OnT4auLyIiIrmXycjMOzjE7iQmJuLh4UFCQoKenxMREbETmfn+1jNzIiIiInZMyZyIiIiIHVMyJyIiImLHlMyJiIiI2DElcyIiIiJ2TMmciIiIiB1TMiciIiJix5TMiYiIiNgxJXMiIiIidkzJnIiIiIgdUzInIiIiYseUzImIiIjYsby2DkAejipjN+FgdrF1GDYRG9rG1iGIiIg8MBqZe4hiY2MxmUwcOXLE1qGIiIhIDqGRuQckJCSES5cusWbNGssxX19f4uPjKVy4sO0CExERkRxFydxDlCdPHry9vW0dhoiIiOQguXKaNSgoiIEDBzJw4EA8PDwoXLgwY8aMwTAMAC5evEjPnj0pUKAALi4utG7dmujoaMv5YWFheHp6smnTJipWrIirqyutWrUiPj4egHHjxrFo0SK++eYbTCYTJpOJ8PDwdNOsqamp9O3bl9KlS+Ps7ExAQAAzZ85MF+9nn31G5cqVMZvN+Pj4MHDgwAd/k0RERMQu5MpkDmDRokXkzZuXffv2MXPmTN5//30WLFgA3JwiPXDgAGvXrmX37t0YhsFTTz1FSkqK5fyrV68ybdo0Fi9ezPfff09cXBzDhw8HYPjw4XTu3NmS4MXHx9OgQYN0MaSlpVGiRAlWrlzJyZMnefvtt3njjTf48ssvLXXmzp3LK6+8woABA/jpp59Yu3Yt5cqVu2u/kpOTSUxMtNpEREQk58q106y+vr588MEHmEwmAgIC+Omnn/jggw8ICgpi7dq1REREWBKwpUuX4uvry5o1a+jUqRMAKSkpfPzxx5QtWxaAgQMHMmHCBABcXV1xdnYmOTn5ntOqjo6OjB8/3rJfunRpdu/ezZdffknnzp0BeOeddxg2bBhDhgyx1KtTp85d25w0aZJVmyIiIpKz5dqRucceewyTyWTZr1+/PtHR0Zw8eZK8efNSr149S1mhQoUICAggMjLScszFxcWSyAH4+Phw7ty5TMfx0UcfUbt2bby8vHB1dWXevHnExcUBcO7cOf744w+aN2+e4fZGjx5NQkKCZTtz5kymYxIRERH7kWtH5u6Xo6Oj1b7JZLI8c5dRK1asYPjw4UyfPp369evj5ubG1KlT2bt3LwDOzs6ZjstsNmM2mzN9noiIiNinXDsydythumXPnj34+/tTqVIlbty4YVV+/vx5oqKiqFSpUobbd3JyIjU19Z51bk3lvvzyy9SsWZNy5coRExNjKXdzc8PPz49t27Zl+LoiIiKSu+TaZC4uLo7XXnuNqKgoli9fzuzZsxkyZAj+/v60a9eO/v378+OPP3L06FGef/55ihcvTrt27TLcvp+fH8eOHSMqKoq///7bavHELf7+/hw4cIBNmzbxyy+/MGbMGPbv329VZ9y4cUyfPp1Zs2YRHR3NoUOHmD179n33X0RERHKGXJvM9ezZk3/++Ye6devyyiuvMGTIEAYMGADAwoULqV27Nm3btqV+/foYhsH69evTTa3eS//+/QkICCAwMBAvLy8iIiLS1XnhhRfo2LEjXbp0oV69epw/f56XX37Zqk6vXr2YMWMGc+bMoXLlyrRt29bqNSkiIiKSu5mMzD7olQMEBQVRo0YNZsyYYetQHrjExEQ8PDxISEjA3d3d1uGIiIhIBmTm+zvXjsyJiIiI5ARK5kRERETsWK58NUl4eLitQxARERHJFhqZExEREbFjSuZERERE7JiSORERERE7pmRORERExI4pmRMRERGxY0rmREREROyYkjkRERERO6ZkTkRERMSO5cqXBudGVcZuwsHsYuswRCxiQ9vYOgQRkRxBI3MiIiIidkzJXBaYTCbWrFlj6zBERERENM2aFfHx8RQoUMDWYYiIiIgomcsKb29vW4cgIiIiAmia9Y6CgoIYPHgwI0eOpGDBgnh7ezNu3DhL+e3TrNevX2fgwIH4+PiQL18+SpUqxaRJkwAwDINx48ZRsmRJzGYzxYoVY/DgwZZ2Fi9eTGBgIG5ubnh7e9OtWzfOnTtnKQ8PD8dkMrFt2zYCAwNxcXGhQYMGREVFPZT7ICIiIo8+JXN3sWjRIvLnz8/evXuZMmUKEyZMYMuWLenqzZo1i7Vr1/Lll18SFRXF0qVL8fPzA2D16tV88MEHfPLJJ0RHR7NmzRqqVq1qOTclJYWJEydy9OhR1qxZQ2xsLCEhIemu8eabbzJ9+nQOHDhA3rx56dOnz13jTk5OJjEx0WoTERGRnEvTrHdRrVo1xo4dC4C/vz8ffvgh27Zt44knnrCqFxcXh7+/P40aNcJkMlGqVCmrMm9vb1q0aIGjoyMlS5akbt26lvLbk7IyZcowa9Ys6tSpQ1JSEq6urpayd999l6ZNmwIwatQo2rRpw7Vr18iXL1+6uCdNmsT48eOz5yaIiIjII08jc3dRrVo1q30fHx+rKdBbQkJCOHLkCAEBAQwePJjNmzdbyjp16sQ///xDmTJl6N+/P19//TU3btywlB88eJDg4GBKliyJm5ubJWGLi4u7ayw+Pj4Ad4wFYPTo0SQkJFi2M2fOZLLnIiIiYk+UzN2Fo6Oj1b7JZCItLS1dvVq1anH69GkmTpzIP//8Q+fOnXn22WcB8PX1JSoqijlz5uDs7MzLL79MkyZNSElJ4cqVK7Rs2RJ3d3eWLl3K/v37+frrr4Gbz+HdLRaTyQRwx1gAzGYz7u7uVpuIiIjkXJpmzQbu7u506dKFLl268Oyzz9KqVSsuXLhAwYIFcXZ2Jjg4mODgYF555RUqVKjATz/9hGEYnD9/ntDQUHx9fQE4cOCAjXsiIiIi9kbJ3H16//338fHxoWbNmjg4OLBy5Uq8vb3x9PQkLCyM1NRU6tWrh4uLC0uWLMHZ2ZlSpUqRlpaGk5MTs2fP5sUXX+T48eNMnDjR1t0RERERO6Np1vvk5ubGlClTCAwMpE6dOsTGxrJ+/XocHBzw9PRk/vz5NGzYkGrVqrF161a+/fZbChUqhJeXF2FhYaxcuZJKlSoRGhrKtGnTbN0dERERsTMmwzAMWwchD05iYiIeHh4kJCTo+TkRERE7kZnvb43MiYiIiNgxJXMiIiIidkzJnIiIiIgdUzInIiIiYseUzImIiIjYMSVzIiIiInZMyZyIiIiIHVMyJyIiImLHlMyJiIiI2DElcyIiIiJ2TMmciIiIiB3La+sA5OGoMnYTDmYXW4dx32JD29g6BBERkUeKRuZERERE7JiSORERERE7pmTuPl2/ft2u2hUREZGcJUcnc0FBQQwaNIihQ4dSoEABihYtyvz587ly5Qq9e/fGzc2NcuXKsWHDBss5x48fp3Xr1ri6ulK0aFF69OjB33//bdXmwIEDGTp0KIULF6Zly5YAnDhxgrZt2+Lu7o6bmxuNGzcmJibGcs7QoUOtYmvfvj0hISGWfT8/PyZOnEjPnj1xd3dnwIABNGvWjIEDB1qd99dff+Hk5MS2bduy+W6JiIiIPcrRyRzAokWLKFy4MPv27WPQoEG89NJLdOrUiQYNGnDo0CGefPJJevTowdWrV7l06RLNmjWjZs2aHDhwgI0bN/Lnn3/SuXPndG06OTkRERHBxx9/zO+//06TJk0wm81s376dgwcP0qdPH27cuJGpWKdNm0b16tU5fPgwY8aMoV+/fixbtozk5GRLnSVLllC8eHGaNWt2xzaSk5NJTEy02kRERCTnyvGrWatXr85bb70FwOjRowkNDaVw4cL0798fgLfffpu5c+dy7Ngxtm7dSs2aNXnvvfcs53/22Wf4+vryyy+/UL58eQD8/f2ZMmWKpc4bb7yBh4cHK1aswNHREcBSNzOaNWvGsGHDLPvFixdn4MCBfPPNN5aEMiwsjJCQEEwm0x3bmDRpEuPHj8/0tUVERMQ+5fiRuWrVqln+nSdPHgoVKkTVqlUtx4oWLQrAuXPnOHr0KDt27MDV1dWyVahQAcAyZQpQu3Ztq2scOXKExo0bWxK5rAoMDLTaz5cvHz169OCzzz4D4NChQxw/ftxqevbfRo8eTUJCgmU7c+bMfcUkIiIij7YcPzL37wTLZDJZHbs1wpWWlkZSUhLBwcFMnjw5XTs+Pj6Wf+fPn9+qzNnZ+Z4xODg4YBiG1bGUlJR09f7dLkC/fv2oUaMGv/32GwsXLqRZs2aUKlXqrtcym82YzeZ7xiMiIiI5R44fmcuMWrVqceLECfz8/ChXrpzVdqdE65Zq1arxww8/3DFBA/Dy8iI+Pt6yn5qayvHjxzMUU9WqVQkMDGT+/PksW7aMPn36ZK5TIiIikqMpmbvNK6+8woULF+jatSv79+8nJiaGTZs20bt3b1JTU+963sCBA0lMTOS5557jwIEDREdHs3jxYqKiooCbz8KtW7eOdevW8fPPP/PSSy9x6dKlDMfVr18/QkNDMQyDDh063G83RUREJAdRMnebYsWKERERQWpqKk8++SRVq1Zl6NCheHp64uBw91tVqFAhtm/fTlJSEk2bNqV27drMnz/fMp3bp08fevXqRc+ePWnatCllypTh8ccfz3BcXbt2JW/evHTt2pV8+fLddz9FREQk5zAZ/36Y6z+kpKRQoUIFvvvuOypWrPig4pLbxMbGUrZsWfbv30+tWrUydW5iYiIeHh4kJCTg7u7+gCIUERGR7JSZ7+9ML4BwdHTk2rVrWQ5OMi4lJYXz58/z1ltv8dhjj2U6kRMREZGcL0vTrK+88gqTJ0/O9EtxJXMiIiLw8fFh//79fPzxx7YOR0RERB5BWXo1yf79+9m2bRubN2+matWq6VZ6fvXVV9kSXG4XFBSU7pUmIiIiIrfLUjLn6enJM888k92xiIiIiEgmZSmZW7hwYXbHISIiIiJZkOVXk9y4cYOtW7fyySefcPnyZQD++OMPkpKSsi04EREREbm3LI3M/e9//6NVq1bExcWRnJzME088gZubG5MnTyY5OVkP64uIiIg8JFkamRsyZAiBgYFcvHjR6ndJO3TowLZt27ItOBERERG5tyyNzP3www/s2rULJycnq+N+fn78/vvv2RKYiIiIiPy3LI3MpaWl3fG3Sn/77Tfc3NzuOygRERERyZgsJXNPPvkkM2bMsOybTCaSkpIYO3YsTz31VHbFJiIiIiL/IdO/zQpw5swZWrVqhWEYREdHExgYSHR0NIULF+b777+nSJEiDyJWyQL9NquIiIj9ycz3d5aSObj5apIvvviCo0ePkpSURK1atejevbvVggixvVt/DL5Dv8TB7GLrcNKJDW1j6xBEREQeOZlJ5jI9zZqSkkLZsmWJjo6me/fuTJkyhTlz5tCvX78ckcgFBQUxdOhQ4OaCjtunkx+02NhYTCYTR44ceWjXFBEREfuW6dWsjo6OXLt27UHE8sjZv39/ut+dFREREXmUZGkBxCuvvMLkyZO5ceNGdsfzSPHy8sLF5dGbmhQRERG5JUvJ3P79+/nqq68oWbIkLVu2pGPHjlZbTvHvaVaTycSCBQvo0KEDLi4u+Pv7s3btWqtzTpw4Qdu2bXF3d8fNzY3GjRsTExMD3Hyly4QJEyhRogRms5kaNWqwcePGu14/PDwck8nEtm3bCAwMxMXFhQYNGhAVFfVA+isiIiL2J0vJnKenJ8888wwtW7akWLFieHh4WG052fjx4+ncuTPHjh3jqaeeonv37ly4cAGA33//nSZNmmA2m9m+fTsHDx6kT58+lhHMmTNnMn36dKZNm8axY8do2bIlTz/9NNHR0fe85ptvvsn06dM5cOAAefPmpU+fPnetm5ycTGJiotUmIiIiOVeWfgFi4cKF2R2H3QgJCaFr164AvPfee8yaNYt9+/bRqlUrPvroIzw8PFixYgWOjo4AlC9f3nLutGnTeP3113nuuecAmDx5Mjt27GDGjBl89NFHd73mu+++S9OmTQEYNWoUbdq04dq1a+TLly9d3UmTJjF+/Phs66+IiIg82rI0MpebVatWzfLv/Pnz4+7uzrlz5wA4cuQIjRs3tiRyt0tMTOSPP/6gYcOGVscbNmxIZGRkhq/p4+MDYLnmv40ePZqEhATLdubMmYx1TEREROxSlkbmSpcujclkumv5qVOnshzQo+7fiZrJZCItLQ3ggb2a5fZr3rrvt675b2azGbPZ/EDiEBERkUdPlpK5W+9huyUlJYXDhw+zceNGRowYkR1x2aVq1aqxaNEiUlJS0iV97u7uFCtWjIiICMuUKUBERAR169Z92KGKiIhIDpGlZG7IkCF3PP7RRx9x4MCB+wrIng0cOJDZs2fz3HPPMXr0aDw8PNizZw9169YlICCAESNGMHbsWMqWLUuNGjVYuHAhR44cYenSpbYOXUREROxUtj4z17p1a1avXp2dTdqVQoUKsX37dpKSkmjatCm1a9dm/vz5llG6wYMH89prrzFs2DCqVq3Kxo0bWbt2Lf7+/jaOXEREROxVln+b9U5u/bRXbGxsdjUp9ykzv+0mIiIij4bMfH9naZq1Zs2aVgsgDMPg7Nmz/PXXX8yZMycrTYqIiIhIFmQpmWvXrp1VMufg4ICXlxdBQUFUqFAh24ITERERkXvL1mlWefRomlVERMT+ZOb7O0sLIPLkyXPHl9aeP3+ePHnyZKVJEREREcmCLCVzdxvMS05OxsnJ6b4CEhEREZGMy9Qzc7NmzQJu/grBggULcHV1tZSlpqby/fff65k5ERERkYcoU8ncBx98ANwcmfv444+tplSdnJzw8/Pj448/zt4IRUREROSuMpXMnT59GoDHH3+cr776igIFCjyQoEREREQkY7L0apIdO3ZkdxwiIiIikgVZWgDxzDPPMHny5HTHp0yZQqdOne47KBERERHJmCwlc99//z1PPfVUuuOtW7fm+++/v++gRERERCRjsjTNmpSUdMdXkDg6OpKYmHjfQUn2qzJ2Ew5mF1uHcd9iQ9vYOgQREZFHSpZG5qpWrcoXX3yR7viKFSuoVKnSfQclIiIiIhmTpZG5MWPG0LFjR2JiYmjWrBkA27ZtY/ny5axcuTJbA7wlKCiIGjVqMGPGjAfS/i3jxo1jzZo1HDly5IFeR0RERCQ7ZCmZCw4OZs2aNbz33nusWrUKZ2dnqlWrxtatW2natGl2xygiIiIid5GlZA6gTZs2tGmj55cMwyA1NZW8ebN8K7Ps+vXr+vk0ERGRXC5Lz8w9ChYvXkxgYCBubm54e3vTrVs3zp07ZykPDw/HZDKxbds2AgMDcXFxoUGDBkRFRVm1ExoaStGiRXFzc6Nv375cu3btnte91e6GDRuoXbs2ZrOZH3/8keTkZAYPHkyRIkXIly8fjRo1Yv/+/QCkpaVRokQJ5s6da9XW4cOHcXBw4H//+x8Aly5dol+/fnh5eeHu7k6zZs04evSopf64ceOoUaMGCxYsoHTp0uTLly9dfMnJySQmJlptIiIiknNlKZlLTU1l2rRp1K1bF29vbwoWLGi1PQwpKSlMnDiRo0ePsmbNGmJjYwkJCUlX780332T69OkcOHCAvHnz0qdPH0vZl19+ybhx43jvvfc4cOAAPj4+zJkzJ0PXHzVqFKGhoURGRlKtWjVGjhzJ6tWrWbRoEYcOHaJcuXK0bNmSCxcu4ODgQNeuXVm2bJlVG0uXLqVhw4aUKlUKgE6dOnHu3Dk2bNjAwYMHqVWrFs2bN+fChQuWc3799VdWr17NV199dcfn+iZNmoSHh4dl8/X1zVB/RERExD5lKZkbP34877//Pl26dCEhIYHXXnuNjh074uDgwLhx47I5xDvr06cPrVu3pkyZMjz22GPMmjWLDRs2kJSUZFXv3XffpWnTplSqVIlRo0axa9cuy+jbjBkz6Nu3L3379iUgIIB33nknw6txJ0yYwBNPPEHZsmUxm83MnTuXqVOn0rp1aypVqsT8+fNxdnbm008/BaB79+5EREQQFxcH3BytW7FiBd27dwfgxx9/ZN++faxcuZLAwED8/f2ZNm0anp6erFq1ynLd69ev8/nnn1OzZk2qVauWLq7Ro0eTkJBg2c6cOZP5mysiIiJ2I0vJ3NKlS5k/fz7Dhg0jb968dO3alQULFvD222+zZ8+e7I7xjg4ePEhwcDAlS5bEzc3NsvDiVrJ0y+0Jj4+PD4BlOjYyMpJ69epZ1a9fv36Grh8YGGj5d0xMDCkpKTRs2NByzNHRkbp16xIZGQlAjRo1qFixomV0bufOnZw7d87yixlHjx4lKSmJQoUK4erqatlOnz5NTEyMpd1SpUrh5eV117jMZjPu7u5Wm4iIiORcWXpq/+zZs1StWhUAV1dXEhISAGjbti1jxozJvuju4sqVK7Rs2ZKWLVuydOlSvLy8iIuLo2XLlly/ft2qrqOjo+XfJpMJuDkqdr/y58+f6XO6d+/OsmXLGDVqFMuWLaNVq1YUKlQIuPkiZh8fH8LDw9Od5+npeV/XFRERkZwrSyNzJUqUID4+HoCyZcuyefNmAPbv34/ZbM6+6O7i559/5vz584SGhtK4cWMqVKhgtfghoypWrMjevXutjmVlZLFs2bI4OTkRERFhOZaSksL+/futpm27devG8ePHOXjwIKtWrbJMsQLUqlWLs2fPkjdvXsqVK2e1FS5cONMxiYiISO6QpWSuQ4cObNu2DYBBgwYxZswY/P396dmzp9UCgwelZMmSODk5MXv2bE6dOsXatWuZOHFiptsZMmQIn332GQsXLuSXX35h7NixnDhxItPt5M+fn5deeokRI0awceNGTp48Sf/+/bl69Sp9+/a11PPz86NBgwb07duX1NRUnn76aUtZixYtqF+/Pu3bt2fz5s3Exsaya9cu3nzzTQ4cOJDpmERERCR3yNI0a2hoqOXfXbp0oVSpUuzatQt/f3+Cg4OzLbi78fLyIiwsjDfeeINZs2ZRq1Ytpk2bZpUcZUSXLl2IiYlh5MiRXLt2jWeeeYaXXnqJTZs2ZTqm0NBQ0tLS6NGjB5cvXyYwMJBNmzZRoEABq3rdu3fn5ZdfpmfPnjg7O1uOm0wm1q9fz5tvvknv3r3566+/8Pb2pkmTJhQtWjTT8YiIiEjuYDIMw8hIxVq1arFt2zYKFCjAhAkTGD58OC4u9v/D7TldYmIiHh4eJCQkaDGEiIiIncjM93eGp1kjIyO5cuUKcPPVJP9+BYiIiIiIPHwZnmatUaMGvXv3plGjRhiGwbRp03B1db1j3bfffjvbAhQRERGRu8vwNGtUVBRjx44lJiaGQ4cOUalSpTv+HqnJZOLQoUPZHqhkjaZZRURE7E9mvr8znMzdzsHBgbNnz1KkSJEsBykPh5I5ERER+5OZ7+8srWbNjpfuioiIiMj9y1Iy9/nnn9+zvGfPnlkKRkREREQyJ0vTrP9+d1pKSgpXr17FyckJFxcXLly4kG0Byv3RNKuIiIj9eSCvJrndxYsXrbakpCSioqJo1KgRy5cvz1LQIiIiIpJ5WUrm7sTf35/Q0FCGDBmSXU2KiIiIyH/ItmQOIG/evPzxxx/Z2aSIiIiI3EOWFkCsXbvWat8wDOLj4/nwww9p2LBhtgQmIiIiIv8tS8lc+/btrfZNJhNeXl40a9aM6dOnZ0dcks2qjN2Eg1m/pfsoiQ1tY+sQREQkB9B75rJRSEgIly5dYs2aNbYORURERHKJLCVzcmczZ84kC296EREREcmyLCVzqamphIWFsW3bNs6dO5dupG779u3ZEpy98fDwsHUIIiIikstkaTXrkCFDGDJkCKmpqVSpUoXq1atbbblVSEiI5XnCtLQ0Jk2aROnSpXF2dqZ69eqsWrXKqv7x48dp3bo1rq6uFC1alB49evD3339byoOCghg4cCADBw7Ew8ODwoULM2bMGI3+iYiIiEWWRuZWrFjBl19+yVNPPZXd8eQYkyZNYsmSJXz88cf4+/vz/fff8/zzz+Pl5UXTpk25dOkSzZo1o1+/fnzwwQf8888/vP7663Tu3NlqZHPRokX07duXffv2ceDAAQYMGEDJkiXp37//Ha+bnJxMcnKyZT8xMfGB91VERERsJ0vJnJOTE+XKlcvuWHKM5ORk3nvvPbZu3Ur9+vUBKFOmDD/++COffPIJTZs25cMPP6RmzZq89957lvM+++wzfH19+eWXXyhfvjwAvr6+fPDBB5hMJgICAvjpp5/44IMP7prMTZo0ifHjxz/4ToqIiMgjIUvTrMOGDdPD/vfw66+/cvXqVZ544glcXV0t2+eff05MTAwAR48eZceOHVblFSpUALDUAXjssccwmUyW/fr16xMdHU1qauodrz169GgSEhIs25kzZx5gT0VERMTWsjQy9+OPP7Jjxw42bNhA5cqVcXR0tCr/6quvsiU4e5WUlATAunXrKF68uFWZ2Wy21AkODmby5Mnpzvfx8cnytc1ms+UaIiIikvNlKZnz9PSkQ4cO2R1LjlGpUiXMZjNxcXE0bdr0jnVq1arF6tWr8fPzI2/eu38Me/futdrfs2cP/v7+5MmTJ1tjFhEREfuUpWRu4cKF2R1HjuLm5sbw4cN59dVXSUtLo1GjRiQkJBAREYG7uzu9evXilVdeYf78+XTt2pWRI0dSsGBBfv31V1asWMGCBQssyVpcXByvvfYaL7zwAocOHWL27Nn6lQ0RERGx0EuDH5CJEyfi5eXFpEmTOHXqFJ6entSqVYs33ngDgGLFihEREcHrr7/Ok08+SXJyMqVKlaJVq1Y4OPzfo4w9e/bkn3/+oW7duuTJk4chQ4YwYMAAW3VLREREHjEmI4urGFatWsWXX35JXFwc169ftyo7dOhQtgRnb7p27UqePHlYsmRJtrQXFBREjRo1mDFjRpbbSExMxMPDg4SEBNzd3bMlLhEREXmwMvP9naXVrLNmzaJ3794ULVqUw4cPU7duXQoVKsSpU6do3bp1loK2Zzdu3ODkyZPs3r2bypUr2zocERERyUWylMzNmTOHefPmMXv2bJycnBg5ciRbtmxh8ODBJCQkZHeMj7zjx48TGBhI5cqVefHFF20djoiIiOQiWZpmdXFxITIyklKlSlGkSBG2bNlC9erViY6O5rHHHuP8+fMPIlbJAk2zioiI2J8HPs3q7e3NhQsXAChZsiR79uwB4PTp03qRsIiIiMhDlKVkrlmzZqxduxaA3r178+qrr/LEE0/QpUsXvX9ORERE5CHK0jRrWloaaWlplpfdfvHFF0RERODv78+LL76Y7hchxHY0zSoiImJ/MvP9neVXk1y7do1jx45x7tw50tLS/q9Bk4ng4OCsNCkPgJI5ERER+5OZ7+8svTR448aN9OjR444LHUwm011/BF5EREREsleWnpkbNGgQnTt3Jj4+3jLlemtTIiciIiLy8GQpmfvzzz957bXXKFq0aHbHIyIiIiKZkKVk7tlnnyU8PDybQxERERGRzMrSAoirV6/SqVMnvLy8qFq1arrVq4MHD862AOX+aAGEiIiI/XngCyCWL1/O5s2byZcvH+Hh4ZhMJkuZyWRSMvcIqjJ2Ew5mF1uHIXJfYkPb2DoEEZFHTpamWd98803Gjx9PQkICsbGxnD592rKdOnUqu2O8b0FBQQwdOtTWYaRzKxG+dOlShs95VPsiIiIitpGlkbnr16/TpUsXHByylAvKffjqq6/0UmYRERGxyFI21qtXL7744ovsjkUyoGDBgri5udk6DBEREXlEZCmZS01NZcqUKTRt2pRBgwbx2muvWW2PorS0NEaOHEnBggXx9vZm3LhxAPTp04e2bdta1U1JSaFIkSJ8+umnAPj5+TFjxgyrOjVq1LC0ATefFVywYAEdOnTAxcUFf39/y+/X3rJ+/XrKly+Ps7Mzjz/+OLGxsVbl58+fp2vXrhQvXhwXFxeqVq3K8uXLrepomlVERERul6Vk7qeffqJmzZo4ODhw/PhxDh8+bNmOHDmSzSFmj0WLFpE/f3727t3LlClTmDBhAlu2bKFfv35s3LiR+Ph4S93vvvuOq1ev0qVLl0xdY/z48XTu3Jljx47x1FNP0b17dy5cuADAmTNn6NixI8HBwRw5coR+/foxatQoq/OvXbtG7dq1WbduHcePH2fAgAH06NGDffv2ZTiG5ORkEhMTrTYRERHJubL0zNyOHTuyO44Hrlq1aowdOxYAf39/PvzwQ7Zt20ZoaCgBAQEsXryYkSNHArBw4UI6deqEq6trpq4REhJC165dAXjvvfeYNWsW+/bto1WrVsydO5eyZcsyffp0AAICAvjpp5+YPHmy5fzixYszfPhwy/6gQYPYtGkTX375JXXr1s1QDJMmTWL8+PGZiltERETsV65ZwVCtWjWrfR8fH86dOwdAv379WLhwIXDz1y02bNhAnz597usa+fPnx93d3XKNyMhI6tWrZ1W/fv36VvupqalMnDiRqlWrUrBgQVxdXdm0aRNxcXEZjmH06NEkJCRYtjNnzmS6HyIiImI/sjQyZ4/+vQLUZDKRlpYGQM+ePRk1ahS7d+9m165dlC5dmsaNG1vqOjg48O93K6ekpGTqGhkxdepUZs6cyYwZM6hatSr58+dn6NChXL9+PcNtmM1mzGZzhuuLiIiIfcs1ydy9FCpUiPbt27Nw4UJ2795N7969rcq9vLysnqlLTEzk9OnTmbpGxYoV0y2I2LNnj9V+REQE7dq14/nnnwduLtr45ZdfqFSpUqauJSIiIrlHrplm/S/9+vVj0aJFREZG0qtXL6uyZs2asXjxYn744Qd++uknevXqRZ48eTLV/osvvkh0dDQjRowgKiqKZcuWERYWZlXH39+fLVu2sGvXLiIjI3nhhRf4888/77drIiIikoMpmfv/WrRogY+PDy1btqRYsWJWZaNHj6Zp06a0bduWNm3a0L59e8qWLZup9kuWLMnq1atZs2YN1atX5+OPP+a9996zqvPWW29Rq1YtWrZsSVBQEN7e3rRv3/5+uyYiIiI5mMn498NguVRSUhLFixdn4cKFdOzY0dbhZJvM/FCviIiIPBoy8/2d65+ZS0tL4++//2b69Ol4enry9NNP2zokERERkQzL9clcXFwcpUuXpkSJEoSFhZE3b66/JSIiImJHcn3m4ufnl+61IyIiIiL2QgsgREREROyYkjkRERERO6ZkTkRERMSOKZkTERERsWNK5kRERETsmJI5ERERETumZE5ERETEjimZExEREbFjuf6lwblFlbGbcDC72DoMuU+xoW1sHYKIiDxiNDInIiIiYseUzN1BUFAQQ4cOzTXXFREREfulZE5ERETEjimZExEREbFjSubuIi0tjZEjR1KwYEG8vb0ZN26cpSwuLo527drh6uqKu7s7nTt35s8//7SUjxs3jho1arB48WL8/Pzw8PDgueee4/Lly5Y6V65coWfPnri6uuLj48P06dPTxbB48WICAwNxc3PD29ubbt26ce7cuXvGnZycTGJiotUmIiIiOZeSubtYtGgR+fPnZ+/evUyZMoUJEyawZcsW0tLSaNeuHRcuXGDnzp1s2bKFU6dO0aVLF6vzY2JiWLNmDd999x3fffcdO3fuJDQ01FI+YsQIdu7cyTfffMPmzZsJDw/n0KFDVm2kpKQwceJEjh49ypo1a4iNjSUkJOSecU+aNAkPDw/L5uvrm233RERERB49JsMwDFsH8agJCgoiNTWVH374wXKsbt26NGvWjObNm9O6dWtOnz5tSZROnjxJ5cqV2bdvH3Xq1GHcuHFMnTqVs2fP4ubmBsDIkSP5/vvv2bNnD0lJSRQqVIglS5bQqVMnAC5cuECJEiUYMGAAM2bMuGNcBw4coE6dOly+fBlXV9c71klOTiY5Odmyn5iYiK+vL75Dv9SrSXIAvZpERCR3SExMxMPDg4SEBNzd3e9ZVyNzd1GtWjWrfR8fH86dO0dkZOTN5Oi2Ea9KlSrh6elJZGSk5Zifn58lkbv9fLg5anf9+nXq1atnKS9YsCABAQFW1zx48CDBwcGULFkSNzc3mjZtCtyc5r0bs9mMu7u71SYiIiI5l5K5u3B0dLTaN5lMpKWlPbTzr1y5QsuWLXF3d2fp0qXs37+fr7/+GoDr169nuB0RERHJ2ZTMZVLFihU5c+YMZ86csRw7efIkly5dolKlShlqo2zZsjg6OrJ3717LsYsXL/LLL79Y9n/++WfOnz9PaGgojRs3pkKFCv+5+EFERERyHyVzmdSiRQuqVq1K9+7dOXToEPv27aNnz540bdqUwMDADLXh6upK3759GTFiBNu3b+f48eOEhITg4PB/H0fJkiVxcnJi9uzZnDp1irVr1zJx4sQH1S0RERGxU0rmMslkMvHNN99QoEABmjRpQosWLShTpgxffPFFptqZOnUqjRs3Jjg4mBYtWtCoUSNq165tKffy8iIsLIyVK1dSqVIlQkNDmTZtWnZ3R0REROycVrPmcJlZDSMiIiKPBq1mFREREckllMyJiIiI2DElcyIiIiJ2TMmciIiIiB1TMiciIiJix5TMiYiIiNgxJXMiIiIidkzJnIiIiIgdUzInIiIiYseUzImIiIjYMSVzIiIiInYsr60DkIejythNOJhdbB2GiMhDExvaxtYhiDwUGpl7AAzDYMCAARQsWBCTycSRI0eyre2goCCGDh2abe2JiIiIfdPI3AOwceNGwsLCCA8Pp0yZMhQuXNjWIYmIiEgOpWTuAYiJicHHx4cGDRpk6XzDMEhNTSVvXn08IiIicm+aZs1mISEhDBo0iLi4OEwmE35+fiQnJzN48GCKFClCvnz5aNSoEfv377ecEx4ejslkYsOGDdSuXRuz2cyPP/7IlStX6NmzJ66urvj4+DB9+nQb9kxEREQeRUrmstnMmTOZMGECJUqUID4+nv379zNy5EhWr17NokWLOHToEOXKlaNly5ZcuHDB6txRo0YRGhpKZGQk1apVY8SIEezcuZNvvvmGzZs3Ex4ezqFDh+55/eTkZBITE602ERERybmUzGUzDw8P3NzcyJMnD97e3ri4uDB37lymTp1K69atqVSpEvPnz8fZ2ZlPP/3U6twJEybwxBNPULZsWZycnPj000+ZNm0azZs3p2rVqixatIgbN27c8/qTJk3Cw8PDsvn6+j7I7oqIiIiNKZl7wGJiYkhJSaFhw4aWY46OjtStW5fIyEiruoGBgVbnXb9+nXr16lmOFSxYkICAgHteb/To0SQkJFi2M2fOZFNPRERE5FGkJ+wfIfnz57/vNsxmM2azORuiEREREXugkbkH7NaUaUREhOVYSkoK+/fvp1KlSvc8z9HRkb1791qOXbx4kV9++eWBxisiIiL2RSNzD1j+/Pl56aWXGDFiBAULFqRkyZJMmTKFq1ev0rdv37ue5+rqSt++fRkxYgSFChWiSJEivPnmmzg4KP8WERGR/6Nk7iEIDQ0lLS2NHj16cPnyZQIDA9m0aRMFChS453lTp04lKSmJ4OBg3NzcGDZsGAkJCQ8pahEREbEHJsMwDFsHIQ9OYmIiHh4eJCQk4O7ubutwREREJAMy8/2tOTsRERERO6ZkTkRERMSOKZkTERERsWNK5kRERETsmJI5ERERETumZE5ERETEjimZExEREbFjSuZERERE7JiSORERERE7pmRORERExI4pmRMRERGxY0rmREREROxYXlsHIA9HlbGbcDC72DoMERGRHCU2tI2tQ9DIXGYEBQUxdOjQLJ8fFhaGp6dntsUjIiIiomRORERExI4pmRMRERGxY0rm7uLKlSv07NkTV1dXfHx8mD59ulX5xYsX6dmzJwUKFMDFxYXWrVsTHR1tVScsLIySJUvi4uJChw4dOH/+fLrrvPPOOxQpUgQ3Nzf69evHqFGjqFGjhlWdBQsWULFiRfLly0eFChWYM2dOtvdXRERE7JOSubsYMWIEO3fu5JtvvmHz5s2Eh4dz6NAhS3lISAgHDhxg7dq17N69G8MweOqpp0hJSQFg79699O3bl4EDB3LkyBEef/xx3nnnHatrLF26lHfffZfJkydz8OBBSpYsydy5c9PVefvtt3n33XeJjIzkvffeY8yYMSxatOiOcScnJ5OYmGi1iYiISM5lMgzDsHUQj5qkpCQKFSrEkiVL6NSpEwAXLlygRIkSDBgwgFdeeYXy5csTERFBgwYNADh//jy+vr4sWrSITp060a1bNxISEli3bp2l3eeee46NGzdy6dIlAB577DECAwP58MMPLXUaNWpEUlISR44cAaBcuXJMnDiRrl27Wuq88847rF+/nl27dqWLfdy4cYwfPz7dcd+hX2o1q4iISDZ7UKtZExMT8fDwICEhAXd393vW1cjcHcTExHD9+nXq1atnOVawYEECAgIAiIyMJG/evFblhQoVIiAggMjISEud28sB6tevb7UfFRVF3bp1rY7dvn/lyhViYmLo27cvrq6ulu2dd94hJibmjrGPHj2ahIQEy3bmzJks3AERERGxF3rP3CMsKSkJgPnz56dLDPPkyXPHc8xmM2az+YHHJiIiIo8GjczdQdmyZXF0dGTv3r2WYxcvXuSXX34BoGLFity4ccOq/Pz580RFRVGpUiVLndvLAfbs2WO1HxAQwP79+62O3b5ftGhRihUrxqlTpyhXrpzVVrp06ezprIiIiNg1jczdgaurK3379mXEiBEUKlSIIkWK8Oabb+LgcDP39ff3p127dvTv359PPvkENzc3Ro0aRfHixWnXrh0AgwcPpmHDhkybNo127dqxadMmNm7caHWdQYMG0b9/fwIDA2nQoAFffPEFx44do0yZMpY648ePZ/DgwXh4eNCqVSuSk5M5cOAAFy9e5LXXXnt4N0VEREQeSRqZu4upU6fSuHFjgoODadGiBY0aNaJ27dqW8oULF1K7dm3atm1L/fr1MQyD9evX4+joCNxc3DB//nxmzpxJ9erV2bx5M2+99ZbVNbp3787o0aMZPnw4tWrV4vTp04SEhJAvXz5LnX79+rFgwQIWLlxI1apVadq0KWFhYRqZExEREUCrWR85TzzxBN7e3ixevDhb2svMahgRERF5NGTm+1vTrDZ09epVPv74Y1q2bEmePHlYvnw5W7duZcuWLbYOTUREROyEkjkbMplMrF+/nnfffZdr164REBDA6tWradGiha1DExERETuhZM6GnJ2d2bp1q63DEBERETumBRAiIiIidkzJnIiIiIgdUzInIiIiYseUzImIiIjYMSVzIiIiInZMyZyIiIiIHVMyJyIiImLHlMyJiIiI2DG9NDiXqDJ2Ew5mF1uHISL3ITa0ja1DEJFHUI4dmYuNjcVkMnHkyBFbh3JHISEhtG/f3tZhiIiIiJ3LsclcThMeHo7JZOLSpUu2DkVEREQeIUrmstn169dtHYKIiIjkInafzKWlpTFlyhTKlSuH2WymZMmSvPvuu5byU6dO8fjjj+Pi4kL16tXZvXu31fk//vgjjRs3xtnZGV9fXwYPHsyVK1cAeOONN6hXr166a1avXp0JEyYA/zdd+u6771KsWDECAgIA+Omnn2jWrBnOzs4UKlSIAQMGkJSUdM9+TJo0idKlS+Ps7Ez16tVZtWoVcHPK+PHHHwegQIECmEwmQkJCsn7TREREJMew+2Ru9OjRhIaGMmbMGE6ePMmyZcsoWrSopfzNN99k+PDhHDlyhPLly9O1a1du3LgBQExMDK1ateKZZ57h2LFjfPHFF/z4448MHDgQgO7du7Nv3z5iYmIs7Z04cYJjx47RrVs3y7Ft27YRFRXFli1b+O6777hy5QotW7akQIEC7N+/n5UrV7J161ZLu3cyadIkPv/8cz7++GNOnDjBq6++yvPPP8/OnTvx9fVl9erVAERFRREfH8/MmTPv2E5ycjKJiYlWm4iIiORcJsMwDFsHkVWXL1/Gy8uLDz/8kH79+lmVxcbGUrp0aRYsWEDfvn0BOHnyJJUrVyYyMpIKFSrQr18/8uTJwyeffGI578cff6Rp06ZcuXKFfPnyUaNGDZ555hnGjBkD3Byt2759O3v27AFujsxt3LiRuLg4nJycAJg/fz6vv/46Z86cIX/+/ACsX7+e4OBg/vjjD4oWLUpISAiXLl1izZo1JCcnU7BgQbZu3Ur9+vUtsfTr14+rV6+ybNkywsPDefzxx7l48SKenp53vSfjxo1j/Pjx6Y77Dv1Sq1lF7JxWs4rkHomJiXh4eJCQkIC7u/s969r1yFxkZCTJyck0b978rnWqVatm+bePjw8A586dA+Do0aOEhYXh6upq2Vq2bElaWhqnT58Gbo7OLVu2DADDMFi+fDndu3e3ukbVqlUtidytuKpXr25J5AAaNmxIWloaUVFR6WL89ddfuXr1Kk888YRVLJ9//rnVqGBGjB49moSEBMt25syZTJ0vIiIi9sWu3zPn7Oz8n3UcHR0t/zaZTMDN59MAkpKSeOGFFxg8eHC680qWLAlA165def311zl06BD//PMPZ86coUuXLlZ1b0/asuLWs3Tr1q2jePHiVmVmszlTbZnN5kyfIyIiIvbLrpM5f39/nJ2d2bZtW7pp1oyoVasWJ0+epFy5cnetU6JECZo2bcrSpUv5559/eOKJJyhSpMg9261YsSJhYWFcuXLFkuhFRETg4OBgWSBxu0qVKmE2m4mLi6Np06Z3bPPWyF9qampGuyciIiK5gF1Ps+bLl4/XX3+dkSNHWqYk9+zZw6effpqh819//XV27drFwIEDOXLkCNHR0XzzzTfpFip0796dFStWsHLlynRTrHfSvXt38uXLR69evTh+/Dg7duxg0KBB9OjRw2pxxi1ubm4MHz6cV199lUWLFhETE8OhQ4eYPXs2ixYtAqBUqVKYTCa+++47/vrrr3uujBUREZHcw66TOYAxY8YwbNgw3n77bSpWrEiXLl0sz8T9l2rVqrFz505++eUXGjduTM2aNXn77bcpVqyYVb1nn32W8+fPc/Xq1Qz9aoOLiwubNm3iwoUL1KlTh2effZbmzZvz4Ycf3vWciRMnMmbMGCZNmkTFihVp1aoV69ato3Tp0gAUL16c8ePHM2rUKIoWLXrPlbEiIiKSe9j1alb5b5lZDSMiIiKPhlyzmlVEREQkt1MyJyIiImLHlMyJiIiI2DElcyIiIiJ2TMmciIiIiB1TMiciIiJix5TMiYiIiNgxJXMiIiIidkzJnIiIiIgdUzInIiIiYseUzImIiIjYMSVzIiIiInYsr60DkIejythNOJhdbB2GiPx/saFtbB2CiOQQGpl7xIWFheHp6WnZHzduHDVq1LBZPCIiIvJoUTJnZ4YPH862bdtsHYaIiIg8IjTNamdcXV1xdXW1dRgiIiLyiNDIXDbauHEjjRo1wtPTk0KFCtG2bVtiYmIACA8Px2QycenSJUv9I0eOYDKZiI2NtRwLCwujZMmSuLi40KFDB86fP291DU2zioiIyO2UzGWjK1eu8Nprr3HgwAG2bduGg4MDHTp0IC0tLUPn7927l759+zJw4ECOHDnC448/zjvvvJOpGJKTk0lMTLTaREREJOfSNGs2euaZZ6z2P/vsM7y8vDh58mSGzp85cyatWrVi5MiRAJQvX55du3axcePGDMcwadIkxo8fn/GgRURExK5pZC4bRUdH07VrV8qUKYO7uzt+fn4AxMXFZej8yMhI6tWrZ3Wsfv36mYph9OjRJCQkWLYzZ85k6nwRERGxLxqZy0bBwcGUKlWK+fPnU6xYMdLS0qhSpQrXr1+3LFowDMNSPyUlJdtjMJvNmM3mbG9XREREHk1K5rLJ+fPniYqKYv78+TRu3BiAH3/80VLu5eUFQHx8PAUKFABuLoC4XcWKFdm7d6/VsT179jzAqEVERMTeaZo1mxQoUIBChQoxb948fv31V7Zv385rr71mKS9Xrhy+vr6MGzeO6Oho1q1bx/Tp063aGDx4MBs3bmTatGlER0fz4YcfZup5OREREcl9lMxlEwcHB1asWMHBgwepUqUKr776KlOnTrWUOzo6snz5cn7++WeqVavG5MmT061Ufeyxx5g/fz4zZ86kevXqbN68mbfeeuthd0VERETsiMm4/SEuyXESExPx8PAgISEBd3d3W4cjIiIiGZCZ72+NzImIiIjYMSVzIiIiInZMyZyIiIiIHVMyJyIiImLH9J65HO7W+hb9RquIiIj9uPW9nZF1qkrmcrjz588D4Ovra+NIREREJLMuX76Mh4fHPesomcvhChYsCNz8fdj/+mPIiRITE/H19eXMmTO58tUs6r/6n1v7n5v7Dup/Tui/YRhcvnyZYsWK/WddJXM5nIPDzcciPTw87PYPOju4u7ur/+q/rcOwmdzc/9zcd1D/7b3/GR2E0QIIERERETumZE5ERETEjimZy+HMZjNjx47FbDbbOhSbUP/Vf/U/d/Y/N/cd1P/c1n/9NquIiIiIHdPInIiIiIgdUzInIiIiYseUzImIiIjYMSVzIiIiInZMyZyIiIiIHVMyl8N99NFH+Pn5kS9fPurVq8e+fftsHdJDMW7cOEwmk9VWoUIFW4f1wHz//fcEBwdTrFgxTCYTa9assSo3DIO3334bHx8fnJ2dadGiBdHR0bYJ9gH4r/6HhISk+3to1aqVbYLNZpMmTaJOnTq4ublRpEgR2rdvT1RUlFWda9eu8corr1CoUCFcXV155pln+PPPP20UcfbKSP+DgoLSff4vvviijSLOXnPnzqVatWqWXzqoX78+GzZssJTn5M/+v/qekz/3f1Myl4N98cUXvPbaa4wdO5ZDhw5RvXp1WrZsyblz52wd2kNRuXJl4uPjLduPP/5o65AemCtXrlC9enU++uijO5ZPmTKFWbNm8fHHH7N3717y589Py5YtuXbt2kOO9MH4r/4DtGrVyurvYfny5Q8xwgdn586dvPLKK+zZs4ctW7aQkpLCk08+yZUrVyx1Xn31Vb799ltWrlzJzp07+eOPP+jYsaMNo84+Gek/QP/+/a0+/ylTptgo4uxVokQJQkNDOXjwIAcOHKBZs2a0a9eOEydOADn7s/+vvkPO/dzTMSTHqlu3rvHKK69Y9lNTU41ixYoZkyZNsmFUD8fYsWON6tWr2zoMmwCMr7/+2rKflpZmeHt7G1OnTrUcu3TpkmE2m43ly5fbIMIH69/9NwzD6NWrl9GuXTubxPOwnTt3zgCMnTt3GoZx87N2dHQ0Vq5caakTGRlpAMbu3bttFeYD8+/+G4ZhNG3a1BgyZIjtgnrIChQoYCxYsCDXffaG8X99N4zc9blrZC6Hun79OgcPHqRFixaWYw4ODrRo0YLdu3fbMLKHJzo6mmLFilGmTBm6d+9OXFycrUOyidOnT3P27FmrvwUPDw/q1auXa/4WAMLDwylSpAgBAQG89NJLnD9/3tYhPRAJCQkAFCxYEICDBw+SkpJi9flXqFCBkiVL5sjP/9/9v2Xp0qUULlyYKlWqMHr0aK5evWqL8B6o1NRUVqxYwZUrV6hfv36u+uz/3fdbcsPnDpDX1gHIg/H333+TmppK0aJFrY4XLVqUn3/+2UZRPTz16tUjLCyMgIAA4uPjGT9+PI0bN+b48eO4ubnZOryH6uzZswB3/Fu4VZbTtWrVio4dO1K6dGliYmJ44403aN26Nbt37yZPnjy2Di/bpKWlMXToUBo2bEiVKlWAm5+/k5MTnp6eVnVz4ud/p/4DdOvWjVKlSlGsWDGOHTvG66+/TlRUFF999ZUNo80+P/30E/Xr1+fatWu4urry9ddfU6lSJY4cOZLjP/u79R1y/ud+OyVzkiO1bt3a8u9q1apRr149SpUqxZdffknfvn1tGJnYwnPPPWf5d9WqValWrRply5YlPDyc5s2b2zCy7PXKK69w/PjxHP186L3crf8DBgyw/Ltq1ar4+PjQvHlzYmJiKFu27MMOM9sFBARw5MgREhISWLVqFb169WLnzp22DuuhuFvfK1WqlOM/99tpmjWHKly4MHny5Em3aunPP//E29vbRlHZjqenJ+XLl+fXX3+1dSgP3a3PW38L/6dMmTIULlw4R/09DBw4kO+++44dO3ZQokQJy3Fvb2+uX7/OpUuXrOrntM//bv2/k3r16gHkmM/fycmJcuXKUbt2bSZNmkT16tWZOXNmrvjs79b3O8lpn/vtlMzlUE5OTtSuXZtt27ZZjqWlpbFt2zar5wlyi6SkJGJiYvDx8bF1KA9d6dKl8fb2tvpbSExMZO/evbnybwHgt99+4/z58zni78EwDAYOHMjXX3/N9u3bKV26tFV57dq1cXR0tPr8o6KiiIuLyxGf/3/1/06OHDkCkCM+/ztJS0sjOTk5x3/2d3Kr73eSoz93W6/AkAdnxYoVhtlsNsLCwoyTJ08aAwYMMDw9PY2zZ8/aOrQHbtiwYUZ4eLhx+vRpIyIiwmjRooVRuHBh49y5c7YO7YG4fPmycfjwYePw4cMGYLz//vvG4cOHjf/973+GYRhGaGio4enpaXzzzTfGsWPHjHbt2hmlS5c2/vnnHxtHnj3u1f/Lly8bw4cPN3bv3m2cPn3a2Lp1q1GrVi3D39/fuHbtmq1Dv28vvfSS4eHhYYSHhxvx8fGW7erVq5Y6L774olGyZElj+/btxoEDB4z69esb9evXt2HU2ee/+v/rr78aEyZMMA4cOGCcPn3a+Oabb4wyZcoYTZo0sXHk2WPUqFHGzp07jdOnTxvHjh0zRo0aZZhMJmPz5s2GYeTsz/5efc/pn/u/KZnL4WbPnm2ULFnScHJyMurWrWvs2bPH1iE9FF26dDF8fHwMJycno3jx4kaXLl2MX3/91dZhPTA7duwwgHRbr169DMO4+XqSMWPGGEWLFjXMZrPRvHlzIyoqyrZBZ6N79f/q1avGk08+aXh5eRmOjo5GqVKljP79++eY/9Tcqd+AsXDhQkudf/75x3j55ZeNAgUKGC4uLkaHDh2M+Ph42wWdjf6r/3FxcUaTJk2MggULGmaz2ShXrpwxYsQIIyEhwbaBZ5M+ffoYpUqVMpycnAwvLy+jefPmlkTOMHL2Z3+vvuf0z/3fTIZhGA9vHFBEREREspOemRMRERGxY0rmREREROyYkjkRERERO6ZkTkRERMSOKZkTERERsWNK5kRERETsmJI5ERERETumZE5ERETEjimZExEREbFjSuZERERE7JiSORERERE79v8A1Lt4hM+UAfIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Pandas\n", + "(mpg['manufacturer']\n", + " .value_counts(sort=False)\n", + " .plot.barh()\n", + " .set_title('Number of Cars by Make')\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAAPACAYAAABq3NR5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AADtS0lEQVR4nOzdeVxUZR////fMsAgIOIq7uS+5pea+b2laaVmWym2Zle3bffftvksrMzO7q2+LZavdmhmaZWlaWalo7porpKbikoqIKCKyM3N+f/DjfBnZBgSB4fV8PHg0M+e6zvmcYbiSN9c5l8UwDEMAAAAAAAAAPJK1rAsAAAAAAAAAUHoIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA9GAAgAAAAAAAB4MAJAAAAAAAAAwIMRAAIAAJSSY8eOyWKxmF/Hjh0r65IqJYfDoYULF2rkyJG65ppr5Ofnx/elAhswYID5vXv55ZfLuhwUQc6fu7Vr15Z1OQBQqXiVdQEAAABAaUlKStKIESMUHh5+1Y+dkJCgbdu26cyZMzp79qxSU1NVrVo11axZU506dVKzZs2uek0AAKByIgAEAACaN2+eJk6c6PLaDTfcoN9++83tfdx777364osvJEmtWrXSgQMHSrRGoDieeeYZl/DPZrOpXr168vHxMV/z9vYuseOlp6frs88+08KFC7V161ZlZmbm27ZGjRq68847de+996p79+4lVgMqvsaNG+v48eMur40dO1YLFy4s0n4uXryounXrKjk52eX1qVOnMnsSACoZLgEGAAB5WrVqVZnMmgJKyvnz5zV37lzz+UMPPaTz58/r77//1uHDh82v+vXrl8jxFi9erJYtW+rxxx/Xxo0bCwz/JOncuXP6+OOP1aNHD918883av39/idQBz7R06VIlJCQUqc/ixYtzhX8AgMqJGYAAACBfkydP1ubNm8u6DKBYNm7cqPT0dElSYGCg3nvvPfn6+pb4cQzD0IsvvqgZM2a4vO7j46M+ffqoZ8+eqlWrlqpWrarY2FidOnVKq1evdgn8fvrpJ3l7e2vp0qUlXh88Q2pqqhYvXqxJkya53WfevHmlVxAAoEIhAAQAAPnasmWLli1bpltvvbWsSwGK7MiRI+bja6+9tlTCP0n65z//qffee8987ufnp3/+85/697//reDg4Hz7HT58WP/97381d+5cORyOUqkNFV/t2rV15swZSdIXX3zhdgB4+PBhbdy4UZJUvXp1JSYmKiMjo9TqBACUb1wCDAAAcqldu7b5+IUXXpDT6SzDaoDiuXjxovnY39+/VI6xZMkSl/CvVq1a2rhxo2bMmFFg+CdJzZs312effabIyEhdd911pVIfKr7hw4fLbrdLyprVevjwYbf6Zd+TVZLGjRsnq5Vf/QCgMmMGIAAAyOWFF17QE088IUmKjIzUV199pbvvvruMq7pyf/31l3bs2KFTp07JarWqTZs2GjRoUIEzw/bt26ctW7bozJkzCggIUKtWrTRw4ECXRSSKwzAMbdq0SQcPHtSZM2dUvXp1tW3bVr169ZLFYin2fpOTk7Vhwwb9/fffOnv2rIKCgtSwYUMNGDBAgYGBV1SzJDmdTm3evFmHDx9WTEyM/Pz8NGzYMLVs2fKK950tNjZW69ev1+nTp5WYmKiaNWuqWbNm6tOnT5EW7CjtWXUJCQl64IEHzOe+vr5avXq12rVrV6T9XHvttdq0aZOWLFlSaNv4+Hjt3btXBw8e1Pnz52UYhmrUqKFmzZqpZ8+e8vPzK/J55CUlJUXr1q3TiRMnFBcXp+rVq2vs2LF5hpopKSnasWOH9u3bp/j4eGVmZiogIEB169ZV8+bNdd1115XoQisFOXbsmLZu3aqTJ0/KZrOpUaNGGjx4sIKCgq7K8UuDr6+vxo4dq48++kiSNH/+fL3yyisF9jEMQ/PnzzefT5gwQXPmzCnysQ3D0P79+7Vv3z6dPHlSSUlJqlq1qmrVqqVu3bqVy5Wsz549qw0bNuj06dNKSEhQSEiIWrZsqd69e8vLi19/AVRiBgAAqPTmzp1rSDK/oqOjjc6dO5vPmzRpYqSnpxe4jwkTJpjtW7Vq5daxGjVq5HaNjRo1MvvNnTu3SO127txp9OrVy+Ucs79q1qxpfPnll7n2s2nTJqNbt2559qlVq5axaNGiQms+evSoS7+jR4+a70Hjxo3z3HfDhg2Nr7/+2u33JVtUVJQxduxYo0qVKnnu19fX17jnnnuM06dPF7qv8PBwl76GYRhOp9N4++23jQYNGuTa9zvvvFPkevOydetWY8CAAYbVas3zHIKCgox//vOfxoULF/LdR87PoTtf4eHhxa739ddfd9nX66+/Xux9FeTIkSPGK6+8YnTq1Cnf90aS4ePjY0ycONE4duyYW/udOnWq2bd///6GYRjGxYsXjUceecQIDAzMtf9du3a59I+PjzeeeOIJIygoqMD32M/Pz7j55puNP/74o0Tej/79+5v7njp1qmEYhvHXX38ZQ4YMMSwWS67jV6lSxXjssceMxMTEfPc5Y8YMs31AQECBbfPSvHlzs//EiROv5PQMw3Adxx566CFj69at5vPGjRsbTqezwP6rVq0y27dp08YwDMPw9fXN9b7lJSMjw/j++++NMWPGGNWrVy/we9uqVSvjiy++KLSebEX92Xv11Vdd+owcOdJISUnJs214eLjRp0+ffH9GqlevbkybNs1ITU11q1YA8DQEgAAAIFcAePr0aeOXX35xee2DDz4ocB/lNQD85ptv8g3F8gux5s2bZ3h5eRXaZ86cOQXWnFcA+Nhjj7kVTD3xxBNuvzdz5swxfHx83Nqv3W43tm7dWuD+Lg8A09PTjZtuusmt9664XnvttTzDm7y+6tata0REROS5n6sVAGZmZhr16tUz91OtWjUjOTn5Ct6B/N1xxx1FOie73W6sXbu20P1eHgAeO3bMJci6/CtnAHj06FGXnzV3vkoqKL48AFy9enWhIaQko2XLlvkG4KdOnTJsNpvZ9n//+5/b9axbt87lOOvXr7/ic7w8ADQMw2jdurX52po1awrsP378eLPtf//7X8Mw3A8AIyIiivR9lWSMHTvWSEtLK/S83P3Zczqdxj//+U+X9vfcc4+RkZGRq21mZqbx0EMPuV1rhw4djNjY2EJrBQBPwxxoAACQp6FDh2rAgAFau3atJOnVV1/VxIkTS+1eaqUhMjJSH330kVJTU9WwYUPdeeedatmypTIzM7Vx40Z9/fXX5mWizz77rIYMGaKYmBjdf//9cjgcatiwoUaPHq2WLVvK6XRq48aNWrRokdnniSee0JAhQ9SwYUO36pkzZ45mz54tSWrSpInGjBmjpk2b6tKlS/r999+1YsUKZWZmSpLef/991a5dW1OmTClwnx988IF5ubYkWa1WDR06VP369VPt2rV18eJF/f777/rhhx/kcDgUHx+vIUOGaNu2bWrVqpVbdT/zzDP66aefJEldunTRzTffrAYNGujSpUvauXPnFV92+tZbb2ny5Mnmc5vNpmHDhmngwIEKDg7WsWPH9M033+jgwYOSpNOnT2vAgAHaunVrrksQa9eubb52/vx5xcfHS5KqVKmi+vXr5zp2cWvfvXu3oqOjzeehoaEldvltQdq0aaOePXuqdevWstvtSk9P15EjR/Tjjz9q3759krIuE7711lu1d+9etz+b6enpuvPOO3X48GHZbDYNHz5c/fr1U40aNRQXF6fffvvNvIecYRi66667dPz4cbN/586dNWTIEDVu3FhVqlTRxYsXdfz4ce3YsUMbNmwwP9cl7fTp0xo7dqwuXrwoPz8/3XHHHeratat8fX21f/9+LVq0yFxA4+DBgxo6dKi2bt2a63tVr149DR8+XCtWrJAkzZ07VxMnTnSrhrlz55qPW7ZsqT59+pTQ2bmaMGGCnnvuOUlZ9/cbOHBgnu0SExP13XffScr6WbqS2zdUrVpVffr0UZcuXVSnTh35+/vr3Llz2rZtm5YvX67U1FRJ0qJFi1S3bl29/fbbxT5WtszMTN1///0ulzA//fTTevvtt3PdHsEwDI0dO1bffvutS80jR45U165dFRQUpJiYGK1YscJc0X7Pnj264YYbtG3btlJbGAgAyqWyTiABAEDZy2sGoGFkXQab8/XXXnst332UxxmA2TPKHnvssTwvGwsPD3eZFXP77bcb11xzjSFlzcDL61Kx1atXu8y2e+qpp/Kt5fIZgNmXpj366KN5zpbZtm2bUbduXbO9t7e3sW/fvnz3/8cffxje3t5m+9atW+c7M27nzp1G/fr1zbY9e/Y0HA5Hnm0vnwEoZV1CHBYWlm8txbVnzx6Xc6hdu7axadOmXO0yMzON559/3qWmvn37FnjpYV6XuJaUt99+26WWb7/9tkT3n1NoaKjx6KOPGpGRkQW2mzdvnsvn+a677iqwfc73J+fP5OWX+l5u9erVLj9jeV1Cn1N8fLzx3nvvGYsXLy6wnbtyzgDM/plq3bq1cfDgwVxtExISjFGjRrmc45QpU/Lc79KlS13aHTp0qNBaEhMTjYCAALPPzJkzr/j8DCPvGYAnT540z7dq1arGpUuX8uz7+eefm32HDRtmvl6UGYBt27Y1FixYYCQlJeXbLjo62hgwYIDLZ6Gwz2jO9zevGYApKSnGyJEjXdq98sor+e7vvffec2l7++23G2fPns2z7YIFC1zGmv/85z8F1goAnoYAEAAA5BsAGobh8stYtWrVjPj4+Dz3UR4DQEnGmDFjCtzv008/nSsECQ0NLbDPU089ZbatU6dOvu0uDwAlGaNGjSowtNq+fbvL5ce33357vm27d+9utmvcuLERFxdXYN0REREu4eWKFSvybJdXADh//vwC911cI0aMMI/h5eVlbN++vcD2Dz74oEtd33//fb5tSzMAHDdunEsd7t53rzjyu+dZXnKGP97e3gXe8/HyALBKlSrGX3/9VegxXnzxRZfP89WWMwCUZAQHBxf4/qelpbncz9PHxyfPkCgjI8MlgM8vKMwp5/tts9mM6OjoKzq3bHkFgIZhGDfeeKP5+hdffJFn3759+5ptct6r1N0AMC0tLd8/Dlzu0qVLxrXXXmvu9/HHHy+wfUEBYEJCQq5wd/bs2fnuKy4uzvD39zfbjxw5stB7EX766acun/fCxkwA8CSsBQ8AAAo0Y8YM89K/Cxcu6I033ijjitzn7e2td955p8A248ePz9Xn//7f/+t2n5iYGJ04ccKtenx8fPTuu+8WuMpvly5ddN9995nPly9frrNnz+Zqt2XLFm3dutV8Pnv2bNWoUaPA47dr104PPfSQ+fzTTz91q+6uXbuWyirQJ06cMC8tlqQHH3xQXbp0KbDPf//7X1WvXt18nr0y6tWWfVmplHXZtbuX2hZHlSpV3G47ceJE8xLojIwMrVmzxu2+TzzxhFurOcfExJiPW7Ro4fb+S8tzzz2nRo0a5bs9++cuW3p6uhYsWJCrnZeXlyZMmGA+nz9/vpxOZ4HHznn577Bhw1S3bt0iVF50Oev74osvcm0/cuSINmzYIEmqVq2abr311iIfw8fHxxzzCxMQEKDnn3/efP7LL78U+XhS1srfAwYM0Lp16yRljcMLFizQo48+mm+fzz77TMnJyZIkf39/zZkzp9AV1CdNmqTrrrtOkpSamupymTEAeDoCQAAAUKB27dopNDTUfP7ee++5BADl2Q033FDoL+Tt27eXzWYznw8ZMkR16tQpsM91113n0uevv/5yq56hQ4e6FRRNmjTJfJyRkaGVK1fmarNo0SLzcfPmzXXTTTe5VUPOIG/t2rWFBhyX9ylJK1euNO+nKGUFgIWpVq2axo0bZz4PDw8370N2NZ0/f958HBQUVGjwcLVYLBaXe8Pt2LHD7b7ufp9z3gd0y5Yt7hdXCmw2m0tgnp+ePXuqbdu25vPly5fn2e7+++83v5cnTpzQqlWr8t3noUOHzLBNklt1XKlRo0YpODhYUtZn/++//3bZPm/ePBmGIUkaM2ZMkcLj4ho8eLD5+PDhw7p48WKR+h8/flx9+vTRrl27JGV9vpYtW+byc56XnGNgaGioatas6dbxcv4BZ/Xq1UWqFQAqMgJAAABQqGnTpsnb21uSlJycrFdffbWMK3JPt27dCm3j4+Mju91+RX0uXLjgVj1Dhw51q12XLl1c9v/HH3/karNx40bz8bBhw9zaryR17NjR/F5evHjRrfCyZ8+ebu+/KLZt22Y+rlOnjjp06OBWv5xhZ0ZGhhkcXE2JiYnm46pVq1714xekdu3a5uNTp0651ScwMFDt2rVzq23Hjh3Nx7///ruefPJJt38GSlqHDh1Uq1Ytt9rm/PnbuXOnGZTl1Lx5c/Xv3998nnOG3+VybqtZs6ZGjBjhVh1XokqVKrrrrrskSYZh6MsvvzS3Xf4852zB0pTz82YYhsviOIXZt2+fevfurUOHDknKCvh//fVXDR8+vMB+iYmJioiIMJ8XZQzMOcZv377d7X4AUNERAAIAgEI1bdrUZVbap59+qqNHj5ZhRe4pbCZftoCAAPNxzl9m3e2TlJTkVp+cM5AKkzOMyV79Nqecv/y2bt3a7f16e3u7XEJ78uTJQvtcvtJuScn+pV/KmonpruxL+PLaz9USGBhoPnb3+3+lLly4oDlz5mjcuHFq166dQkJC5OPjI4vF4vI1Y8YMs09CQoJb+27SpInbsxjvuOMOl8vN33//fdWrV0+33367PvzwQ/355595hmulobg/UxcuXFBsbGye7R544AHz8dKlS/MMN51Op8vlo+PHjzeD9dJ27733mo9z1rB27VodO3ZMUtZqxCUR3G/btk3PPvusBg0apAYNGigwMFBWq9Xl83b5ebv7mdu6dav69u1rhtR16tTRunXr1Lt370L7RkZGusxeLsoYmHOMj42NVUZGhtt9AaAiIwAEAABuefHFF81L/zIyMjR16tQyrqhwxbn8rTh93A073J2pJMnlcrb4+HiXbZcuXVJaWpr5/LHHHssVAhX0lfP+de7M3MoZdpWknOfl7uV7ebW9/P25GnKGqBcvXizVwMswDL399tu65pprNGnSJC1atEh//vmnzp07V2h44e7l0UX5HgcGBmrhwoUulwKnpKTo+++/12OPPaZ27dqpdu3a+sc//qEVK1a4XOZd0or7MyXl/7m54447zBm4qampWrhwYa42v/zyi8vsyqtx+W+2Xr16mfdePHjwoDZt2iQp6/LfbFc6++/gwYMaMGCAunfvrrfeekvh4eE6deqULl26VOhn3d3P3HPPPWdeSl+3bl1t2LAhV7ifn3Pnzrk8b9u2rdvj3+VhYVnNXgWAq40AEAAAuKVOnTp66qmnzOdfffWV/vzzzzKsqOLx8/Nzu23OcOXSpUsu29ydYeOO7JvoF8TLy6vEjpdTzplzOc+3ML6+vi73YLz8/bkacs4icjgcbs2kLK7HHntMzzzzTK7ztFgsCgkJ0TXXXKNmzZqZXzkvH3c3mCzq93jIkCHasWOHRo4cmeeCEWfPnlVYWJhGjBih9u3b6/fffy/S/t1V3J8pKf/PTZUqVfSPf/zDfJ7XZcA5X+vatavbl0+XlHvuucd8/MUXX+jSpUtasmSJpKxFaa7kvp3Zl+VmL8iRk7+/v+rWrasmTZq4fOZycvcz5+vraz4+e/asdu7c6XaNV3sMBABPUDr/mgMAAB7p3//+tz766CNduHBBTqdTU6ZM0dKlS8u6rAojJSXF7bY5fym9/B5zlwcZtWvXLvZ96Eprdp87ctZclF/C09LSXGaVlcU9+Lp27eoyM2z79u265pprSvw4P/74o8tKx02bNtVTTz2lG264QS1atMjzstOpU6fqlVdeKfFaLnfttddq2bJlOnnypFasWKHw8HCtX79ep0+fdmm3f/9+DR48WEuXLtXNN99cojUU92dKKvhz88ADD+iDDz6QlPW9/fPPP83Ljc+fP68ffvjBbHs1Z/9lu+eee/TSSy/JMAwtXrxYHTt2NAP1QYMGFfuzaBiGJk6cqLi4OElZIfPdd9+t0NBQdenSJc+Vxg3DcHvV4Jw++ugjvfzyy/r777+VmZmp0NBQWa1W3XHHHYX2vXwMbNy4scsfBYqitP7AAQDlDaMdAABwW7Vq1fSf//xHzz//vCRp2bJl2rp1q7p37+72Poq7WmpRftEvr/K751hezp49az7OOaNLyvo+2Gw2MwSbMWOG7r///pIp8irKeV45z7cwl7e9/P25Gvr16+fyPDw8XLfffnuJH2fWrFnm43bt2mnjxo0KCgoqsM/VvqSxQYMGevjhh/Xwww9Lygr8li1bpjlz5igqKkqSlJmZqUmTJunIkSMlujJtcX+mpII/Nx06dFCXLl3MBXjmzp2rt956S5IUFhZmXoLv5+dX6Gq1paFhw4YaOHCg1qxZowsXLug///mPue1KLv/dsmWLy+I8n3/+uSZOnFhgn+J+3po0aaLw8HANGDBAJ06cUGZmpsaOHavFixdr1KhRBfa9PIhctWpVqd2rFAA8BZcAAwCAInnyySddFtfIDgPdlXPmhruzvjIyMsrkPm8lrSiXTOds27JlS5dtFovFvAeY5P5Kr+VN8+bNzcc5FzUpzN69e12e53wvrpaOHTuqXr165vOvvvrK7XufucvpdGrt2rXm8xdeeKHQ8E9SmS/Q07p1az333HPav3+/QkNDzddPnz6t8PDwEj1WUX6mIiMjzcfVqlUr9P6BORcDWbBggTIzMyVJ//vf/8zXb7/9dgUHB7tdQ0nKuRhI9qrUgYGBVxREr1mzxnx87bXXFhr+SVf2eWvatKnCw8PVoEEDSVlB8ZgxY7Rs2bIC+7Vq1crleUUdAwHgaiIABAAAReLv768XX3zRfB4eHq7ffvvN7f7VqlUzH58/f95lMYv87NixwyNWavz111/davfHH3+YN8eXsi43vVz//v3Nx3ndq6siyDlzNCYmRnv27HGr388//2w+9vb2VqdOnUq8tsLYbDY9+eST5vP4+HjzktGScu7cOaWnp5vPO3ToUGif9PR0bdy4sUTrKC5vb2/Nnj3bZdbv/v37S/QYe/bscXsWYM6fv86dOxc6G3ncuHHmHyzOnDmjn376SXv27NGuXbvMNmVx+W+222+/PddlzHfeeWeR7qd5uejoaPOxO583SVcc6jZr1kzh4eGqX7++pKw/+Nx1111avnx5vn1q167tEgJW1DEQAK4mAkAAAFBkkyZNUtOmTc3nU6ZMcbtvztlsDofDvMSuIF988UXRCiynfv31V504caLQdp9//rn52NvbWzfeeGOuNnfeeaf5ODw8vEIuyDJs2DCX+3Z98sknhfZJSEhwuffe4MGDS/SS0qJ4+OGHXQLtF198Ufv27SvWvpKTkzV//nyX1y5fTMGdGYYLFy50CY/LWrVq1VxW382eRVdSHA6Hy+q3+dm6davLz8gtt9xSaJ+goCCXn7O5c+e6LP7RpEkTDRw4sGgFl6CAgAA9/vjj6tChg/mVc9ZiceT8zLnzecvMzHTr57YwzZs3V3h4uDmrNj09XaNHj9aPP/6Yb5+c35vPPvvMJSwHAORGAAgAAIrM29tb06ZNM59v375dv/zyi1t9GzVq5HIJcc7L6fKyfft2zZkzp3iFljPp6en617/+VWCbXbt2uZzviBEjXAKUbIMHD1aXLl0kZf3Sfs8997isquuOkr5ktagaNGigm266yXz+2WefFRoIP//88zp37pz5PPu+c2UhODjY5XuVmpqqwYMHuz2TMduBAwfUs2dPfffddy6v16hRw2U2V0FhiJQ1e+vZZ58t0rGL4/jx4263PX36tMv3q1GjRiVez8yZMwsM1jMyMvT000+bz319fTV+/Hi39p0zUPvxxx9dQtp777232Pc0LSkzZ87U7t27za+ePXte0f5yLh7y+++/F7rC9tSpU3Xo0KErOma2Fi1aKDw8XHXr1pWUNV7ecccdLjN+c3ryySfNVaBPnDjhMiPXXWU9BgLA1UQACAAAiiU0NFTt2rUzn8fExLjdd8yYMebjefPm6euvv86z3dq1a3XTTTcpMzOzzH/RLglWq1XffvutnnzyyTwvad6xY4duueUWc5aUt7e3pk+fnu/+Pv74Y/n6+kqSdu7cqZ49e2r79u0F1pCZmalVq1bpzjvv1OOPP34FZ1MyXn31VXMl28zMTI0YMUJbtmzJ1c7hcOill15yWRG3X79+Gjly5FWrNS933HGHnnrqKfN5TEyMevXqpRdffFEXL14ssG9UVJQefPBBtWvXLtd9DaWsy4xzzjCbOXNmvpc67t69W/369dPZs2eLtSJrUdx7770aNGiQvvvuuwIv4b9w4YLuvvtuc7EaX19fDR06tERrsVqtunDhgoYPH24uOJJTYmKiQkNDXT5T/+f//B+FhIS4tf8+ffro2muvleR6L1Kr1epyDz5PMWTIEPNxfHy8Jk6cmGdIlpaWpsmTJ+u1114r0c9by5YtFR4ebv6RKC0tTaNGjcrzD0w1a9bUG2+8YT7/5JNPNHr06ELvB3jx4kV99dVX6tmzpxYtWlRitQNAeccqwAAAoFisVqtmzJihW2+9tch9//Wvf2nOnDlKSkqS0+nU2LFjNW/ePN14440KDg5WTEyMfvvtN/PeUhMnTtSaNWuKNPOoPJoyZYqmT5+u999/Xz/++KPGjBmjpk2b6tKlS1q/fr1++OEHl0skp06dqjZt2uS7v86dO+vjjz/W/fffL6fTqYiICHXr1k3dunXTgAED1KhRI/n7+ysxMVGnT5/Wnj17tHnzZjPEuJLVQkvKddddp9dee82cuRYTE6M+ffropptu0sCBAxUUFKTjx49r8eLF+uuvv8x+1atX1//+979yEQy/8847CggI0GuvvSYp63LeV199VW+++ab69u2rHj16qFatWgoICNDZs2d16tQprV692q3Lhf/973+bM/+SkpI0aNAgjRgxQgMGDFC1atV09uxZhYeH65dffpHT6VS9evU0cuRIffzxx6V2voZhaO3atQoPD1dQUJB69+6tzp07q27dugoICNCFCxe0d+9eff/99y6L90yZMqXEV2yeNGmSvv/+e/35559q3769Ro8erW7dusnHx0cHDhzQwoULXf440b59+yLdskCS7r///lwzKwcPHqyGDRuWyDmUJ126dNGgQYPMxUC+/fZbbdu2TWPHjlXLli2VkZGhAwcO6LvvvjNnXb788st66aWXSqyGVq1aKTw8XAMHDlRMTIzS0tJ02223admyZbkC5Mcff1y7du0yZ5IvWbJEP/zwg2644Qb17NlTderUkZeXly5cuKBjx45p9+7d2rJli3m58EMPPVRidQNAuWcAAIBKb+7cuYYk8+v06dNu9+3Ro4dLX0lGq1atCu331VdfGVarNVffy79uuukmIzU11WjUqJH52ty5c/Pdr7vtrkafo0ePupzL0aNHjSeeeKLQc5ZkPP74427VYRiG8cMPPxhBQUFu7Tfn13333Zfn/sLDw13aXQ2vvfaaYbFY3Kq7bt26xt69ewvd59SpU80+/fv3L/Vz+Prrr42GDRsW+fsgyRg1apRx6NChPPc7bdo0t/ZRs2ZNY8uWLW6fd3Hfn/79+xf5/B599FHD6XQW8R0t/PhTp0411qxZ49bnv0WLFkZ0dHSRjxcbG2t4e3u77GvhwoUlci75yTm+PPTQQyWyT19fX5f3LT8nT540rrnmGre+rxMmTDCcTqfLa+Hh4fnu2912hmEY+/btM2rXrm22r1KlivHbb7/l2Xbq1Klu/f/k8q/58+e78c4BgGfgEmAAAHBFZs6cWax+oaGh+umnn1wWBcmpVq1aeuONN7RixQrzMldPMGvWLM2dO1eNGzfOc3vDhg21cOFCvf/++27vc8SIEYqKitKzzz6b5/0CcwoKCtKtt96qsLAwzZ49uyill6rnn39emzdv1oABA/Kd1RcUFKSnn35a+/btU/v27a9yhYW76667dOjQIb3//vvq1auXvLwKvtimZs2aeuyxx7Rz50599913at68eZ7tXnrpJS1YsMDl/mw5+fr6asyYMdqzZ4/LysqlZfr06XrkkUdcFgLKT69evfTjjz/mWg24JA0cOFDbt2/XkCFD8jxGlSpV9Oijj2rnzp3m/eWKombNmho2bJj53G63a9SoUVdUc3lWv359/fHHH7rrrrvyvby3efPmmjdvnubNm1dq39fWrVtrzZo1qlWrlqSs+/WNHDnSnJ2Y08svv6yIiAiNGTPGvC9gfho0aKD7779fa9ascftekADgCSyGcdnyYgAAAFeRYRj6448/tHPnTp0/f152u13NmjXTgAEDzHvDeSLDMLRx40YdPHhQZ86cUfXq1dW2bVv17t37in6hNgxDu3fvVmRkpOLi4pScnKyqVauqbt26at26tVq3bl1oMFXWzpw5o99//12nT59WUlKSQkJC1KxZM/Xp00c+Pj5lXZ7bEhIStG3bNsXExOjs2bNKTU1VtWrVVKtWLXXq1EnNmjUr0v4yMzO1ZcsW7dmzRwkJCbLb7apfv7769evnshrx1RQTE6OIiAgdPXpU8fHxyszMVGBgoBo1aqQuXbqofv36V7WeY8eOacuWLTp16pSsVqsaNmyoG264QcHBwcXep2EYatGihXmPwccff7xIAX1FFh0drXXr1unkyZOSZI4jnTt3LuPK8peWlqZNmzbp6NGjiouLk8PhUFBQkBo1aqS2bduqSZMmZV0iAJQJAkAAAAAAyMe6des0YMAA8/nOnTvVqVOnsisIAIBi4BJgAAAAAMjHp59+aj7u3Lkz4R8AoEIiAAQAAACAPBw+fFiLFy82nz/88MNlWA0AAMXHJcAAAAAAcJkjR45o7Nix2r59u6SsxTGioqI8alEiAEDlUb7vAA0AAAAAV8lNN92k6OhoJSQk6O+//5bT6TS3vf7664R/AIAKixmAAAAAACCpcePGOn78eK7X77vvPn3++edlUBEAACWDGYAAAAAAcJnAwEB16NBBkyZN0j333FPW5QAAcEWYAQgAAAAAAAB4MFYBBgAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA9GAAgAAAAAAAB4MAJAAAAAAAAAwIMRAAIAAAAAAAAejAAQAAAAAAAA8GAEgAAAAAAAAIAHIwAEAAAAAAAAPBgBIAAAAAAAAODBCAABAAAAAAAAD0YACAAAAAAAAHgwr7IuAPAkcXFxZV1CsdntdtlsNjkcDsXHx5d1OSgjNptNdrtd8fHxcjgcZV0OygBjASTGAmRhPABjASTGAjAWlEchISFF7sMMQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA/mVdYFACg/QkNDy7oEAAAAoNTMmjWrrEsAgDLBDEAAAAAAAADAgxEAAgAAAAAAAB6MABAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYAWApWL16tUaOHKkHHngg17Z3331XI0eO1Lvvvnv1CwMAAAAAAEClQwAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgXmVdQGk6f/687rvvPjmdTr3xxhu69tpr8237z3/+U1FRURo9erTuuece8/WzZ8/qu+++065duxQXFyebzab69eurd+/euuWWW+Tr61uiNf/yyy/66KOPZBiGHnzwQd18883mtmPHjmnZsmWKjIzU+fPnZbVaFRwcrDp16qhTp04aMmSIgoKCJEkffvihVq5cqWHDhunRRx91OcahQ4f0zDPPSJL69+9vPs528uRJPfroo7LZbAoLC5Ofn58kKS0tTZs3b9aOHTt07NgxnTt3TmlpabLb7WrTpo1uvfVWNWvWrMDzW7dunX788UcdP35cFotFDRs21PDhwzVw4EBNnjxZkZGRGjt2rEJDQ/Psv2fPHq1cuVIHDhxQQkKCqlSposaNG2vQoEEaOHCgbDZbrj4jR46UJM2YMUNNmjTRN998o82bN+vcuXMKCAhQhw4d9I9//EN16tQpsHYAAAAAAICKyKMDwOrVq6t9+/bas2eP1q1bl28AePLkSUVFRUmSBgwYYL6+a9cuvf7660pJSZEk+fn5KTMzU4cPH9bhw4e1evVqTZs2TTVr1iyRer/99lvNnz9fXl5eeuqpp9S/f39z244dOzRjxgxlZmZKkry9veXl5aXY2FjFxsZq7969atasmTp27ChJatu2rVauXKmIiIhcx4mMjDQf//nnn7m2Z/dp1qyZGf5J0oYNG/Tee+9JkqxWq/z9/WUYhlnD+vXr9eSTT2rgwIF5nt9HH32kn3/+WZJksVgUEBCggwcP6sCBAzpy5EiB743D4dBHH32kX3/91XzN399fSUlJioyMVGRkpNavX68pU6bIx8cnz32cP39es2bN0pkzZ8zg9sKFC1q3bp127dqlt956ixAQAAAAAAB4HI8OAKWsQG/Pnj3asGGDHnjggTxniK1du1aS1KRJEzVs2FCSdObMGTP8a9mypR599FE1bdpUDodD27dv1+zZs3Xy5Em9/vrreuONN/Lcr7sMw9DcuXO1dOlS+fj46LnnnlOXLl1c2nzyySfKzMxUly5ddN9996lBgwaSpJSUFJ04cULr1q2Tv7+/2b59+/aSpFOnTik+Pl52u93clh3w+fv7Ky4uTtHR0apXr565PTsgzN5HtoCAAN1+++3q2bOnmjZtKm9vbxmGoejoaC1evFjh4eGaPXu22rVrlysUDQ8PN8O/ESNGaMyYMQoKCtKlS5e0ZMkSLVmyRAEBAfm+R19++aV+/fVX1apVS//4xz/UvXt3+fv7Ky0tTVu3btXnn3+uXbt26X//+58efvjhPPfxySefqGbNmuZsUIfDoT/++EPvvvuuLl68qC+//FLPPvtsvjUAAAAAAABURB4fAPbs2VMfffSREhIStHv3bnXu3DlXm99//12S6+y/b775RikpKapRo4amTZtmhlM2m009evRQUFCQnn/+eR06dEibNm1S3759i1Wfw+HQBx98oNWrVysgIEAvvvii2rRp49LmwoULiomJkSQ98cQTLmGen5+fWrZsqZYtW7r0qV69uurXr69Tp04pIiJC/fr1kyQ5nU7t379fVapU0ZAhQ8xLivMKANu1a+eyzx49eqhHjx4ur1ksFtWvX19PP/204uPjtXv3bq1atUrjxo0z2xiGoYULF0rKuuR40qRJ5raqVatqwoQJunTpkn755Zc836PTp09r6dKlqlq1ql599VWXWXq+vr7q16+fatWqpf/85z/69ddfNWbMGJf3KJuXl5emT59uXiZts9nUvXt33XXXXZo7d662bNmizMxMeXnl/2OxYMEChYWF5bt93Lhx+V6+XN5ZrdwSFAAAAJ4tr98TULDs3xOsVivvXyVlsVgkScHBwTIMo4yrQXF5fADo7++vrl27auPGjVq7dm2uAPDAgQOKiYmR1Wo1QzLDMLRp0yZJWfePy2tmWps2bdSxY0ft2rVL69evL1YAmJGRoTfffFNbtmxRcHCwpk2bpqZNm+Zq5+fnJ6vVKqfTmWs2X0Hatm2rU6dOKTIy0jy3I0eOKCkpSZ06dVKHDh20bNkyRUREaOjQoZKyLoeOj4+XzWZT69at3T4Xi8Wizp07a/fu3dq/f7/LtiNHjpgB5h133JFn/9GjR+cbAK5Zs0ZOp1M9e/bM9xLda6+9VrVr11ZMTIxL4JnTjTfeaIZ/OfXo0UNz585VRkaGoqOjzVmgeUlKSlJsbGy+25OTk69oNigAAACA0sO/1YvPYrHw/lVyTBqp2Dw+AJSyZp1t3LhRW7duVWpqqqpUqWJuy5791759e9WoUUOSFBMTo0uXLkmSrrvuunz3mx0AZt8/sChSUlL08ssvKyIiQrVq1dIrr7ziMgsvJ19fX7Vt21YRERGaOnWqbr75ZnXp0kVNmjQpcABu3769fv31V5f7AGY/bteundq0aSOr1epyH8Ds2X/NmjVzuaQ4W1xcnFasWKE9e/YoJiZGKSkpcjqdLm3Onz/v8jz7/QkICFDjxo3zrLV27dqqWbOmzp49m2vbgQMHJGXdg3D79u35nm/29yyvfUhSixYt8nw9+/uecx/5CQgIUK1atfLd7u/vL4fDUeA+yisGcwAAAHi6ivpv9bJktVplsVhkGEau3/1QOVgsFnNSEjMAy4fihPGVIgDs3LmzAgMDlZiYqK1bt5qLazgcDq1fv16SXBbcSEhIMB9Xr1493/1mB0c527tr8+bNkrIG05deeinf8C/bE088oenTp+vEiRMKCwtTWFiYfH191aZNG/Xq1UuDBg2St7e3S5/sS3hz3gcw5/39/P391axZMx06dMi8D2DOgPBykZGRmj59urkoipQVeHl7e8tisSg9PV3JyclKTU116Xfx4kVJBb+X2dvzCu+yA8WUlBSXY+cnLS0tz9dzLmiSU85FQwr7B8H48eM1fvz4fLfHxcUpPj6+0BrLI6bzAwAAwNNV1H+rlyW73S6bzWZekYbKx2azyW63KyEhgRC9nAgJCSlyn0oRAHp7e6t3795auXKl1q1bZ4Z9e/bsUUJCgnx8fNSrV6+rWlPbtm11+vRpnT9/Xh988IFefvnlPGfcZatTp45mzZqlHTt2aMeOHdq3b5/+/vtv7dq1S7t27dJ3332n1157zWU2W40aNVSvXj1FR0crIiJCffr00b59+1SlShVzNly7du106NAh8z6A2bMBLw8AMzMz9fbbbyslJUUNGzbUAw88oNatW5ur6UrSr7/+qg8++KAk3yZJMv/KdM8992j06NElvn8AAAAAAABPVmmu+csO/Xbt2mXO2Fu3bp0kqWvXri7hW3BwsPn48stZczp37lyu9u6qXbu2ZsyYoerVq+vAgQOaNm1aobPbbDabunXrpkceeUTvv/++vvzySz300EPy9/fX6dOnNWfOnFx9soO8yMhIHT16VElJSWrdurU5XTT7EueIiAidOnVK58+fl9VqzbUQyYEDBxQXFydJeuGFF9SxY0eX8E/KWqwkL9n33SvovZTy/2tctWrVJOV/aS8AAAAAAADyV2kCwDZt2qhmzZpyOBzasGGD0tLStGXLFkmul/9KWbPtqlatKilrlmB+du/eLSnrfnnFUb9+fb366quy2+3av3+/pk2bluvy2YIEBQXp5ptv1pgxYyT9v/v35ZQdAEZERJiX97Zv397cnh0G/vnnn+b2vO7/lx12BgYG5rsQR857DeaU/f4kJSXp+PHjebaJjY3Nd3GNa6+9VpK0Y8cO7jkBAAAAAABQRJUmALRYLObKsOvWrdO2bduUkpKiwMBAdenSJVfb3r17S5JWrFih5OTkXPvbt2+fGQDmteKsuxo0aKBXX31VwcHB2rdvn6ZPn57rHnYZGRkF7iN7Jl5e7bLDvlOnTpn3O8x5eW/2fQDj4uK0atWqXNtztpOyFsnI656He/fu1d69e/Osr2nTpqpdu7YkacmSJXm2ye91SRo8eLCsVqtiY2O1dOnSfNtl1wcAAAAAAID/p9IEgJI0YMAASVmXs3733XeSpN69e8vLK/etEO+88075+fkpLi5OL730ko4ePSopa5GILVu2aObMmTIMQy1atFDPnj2vqK5rrrlGM2bMUHBwsCIiInKFgAcOHNBTTz2lFStWKDo62lx1x+Fw6I8//tCiRYskZS12crkaNWqYM/YOHTokPz+/XKvhZgd+Bw8edHmeU/b9/gzD0JtvvqmYmBhJWaFjeHi4Zs6cac6avJzFYtHYsWMlSWvXrtXnn3+uxMRESVmzAhcsWKCff/5ZAQEBefZv0KCBRo0aJUmaN2+ePvnkE50+fdrcnp6erv3792vOnDl68MEH89wHAAAAAABAZVUpFgHJ1qhRIzVu3FjHjh1TVFSUpP8XCl6uVq1aeu655zRz5kwdPHhQTz31lPz9/ZWZman09HRJWZfwPvfcc8VafvlyDRs21PTp0/XCCy9o7969evXVV/Xiiy+aK9QePXpUn376qSTJy8tLfn5+SkpKMi+JrV+/vu677748992+fXszsLv22mtz1du+fXszELVarWrbtm2ufVStWlX33HOPPvvsM+3du1cPPvig/P39lZ6erszMTDVp0kRDhgwxa7zc4MGDdeDAAf3yyy9atmyZli9fLn9/fyUnJ8vpdGrUqFE6ePCg/vzzT5dVebPdfffdyszM1LJly/Tjjz/qxx9/lJ+fn2w2m7kPqXhLYQMAAAAAAHiySjUDUHK931+tWrXUunXrfNt26tRJs2fP1k033aS6desqIyNDNptNzZo10z333KN3331XNWvWLLHaGjdurOnTpyswMFB79uzRjBkzlJ6erhYtWujf//63brzxRjVt2lRVq1ZVcnKy/Pz8dO211+ree+/Vu+++67ICcE45Z/TlvP9ftjZt2pjBWdOmTfNdjXjEiBF6/vnnzdmATqdT9evXV2hoqN544w35+fkVeH6PPfaY/vnPf6pVq1by8fGR0+lUy5Yt9cwzz2jixIlKSkqSpDxnAlqtVt1///16++23dcMNN6hu3bpyOBxKTU1VtWrV1KFDB40fP14ffvhhgTUAAAAAAABUNhYj+3pSoAylpqbqH//4hzIyMvTaa6/leRlyRZC9UnJFZLfbdffdd5d1GQAAAECpmTVrVlmXUOHY7XbZbDY5HA7Fx8eXdTkoAzabTXa7XfHx8XI4HGVdDiSFhIQUuU+lmwGI8mnZsmXKyMhQQECAWrZsWdblAAAAAAAAeAwCQFw1H3zwgdatW+eyivC5c+c0f/58LVy4UJJ0yy235HkPQAAAAAAAABRPpVoEBGVr7969+vXXXyVJvr6+8vLyMu/7J0ldunTRXXfdVVblAQAAAAAAeCQCQFw1EyZM0JYtWxQVFaULFy4oNTVVwcHBatq0qQYNGqS+ffvKamVSKgAAAAAAQEkiAMRV07t3b/Xu3busywAAAAAAAKhUmG4FAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA/mVdYFACg/wsLC5HA4FB8fX9aloIzYbDbZ7XbFx8fL4XCUdTkoA3a7XTabjbGgkmMsgMR4AMYCAPAkzAAEAAAAAAAAPBgBIAAAAAAAAODBCAABAAAAAAAAD0YACAAAAAAAAHgwAkAAAAAAAADAg7EKMABTaGhoWZcAAAAAAHDTrFmzyroEVBDMAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA9GAAgAAAAAAAB4MAJAAAAAAAAAwIMRAAIAAAAAAAAezKusC8DVs3r1ap05c0bt27dX+/bty7qcEuGJ5wQAAAAAAFCSCAArkdWrVysyMlKSPCYs88RzAgAAAAAAKElcAgwAAAAAAAB4MAJAAAAAAAAAwINZDMMwyroIlK7Vq1frvffeK7DNDz/8YD5OTU3V8uXLtXnzZp06dUoOh0MhISG6/vrrdfvttyskJMSlb1hYmBYtWqQmTZoUeJzIyEhNnjxZXl5e+vzzz2W32122//HHH1q5cqUOHjyoS5cuqWrVqmrZsqWGDx+uzp07X9E5HTt2TBs2bNCff/6ps2fPKj4+Xj4+PrrmmmvUu3dvDR8+XD4+PgXuzx1xcXFXvI+yYrfbdffdd5d1GQAAAAAAN82aNavUj2Gz2WS32xUfHy+Hw1Hqx0PhLs9l3ME9ACsBHx8fVatWTZcuXVJmZqaqVKmiKlWq5Nk2NjZWL730kqKjoyVJ3t7e8vLyUnR0tKKjo7V69WpNnjxZHTp0MPsMGTJEixcv1tGjR3X48GE1b948z33/9ttvkqQuXbq4hH+GYeijjz7SypUrJUlWq1V+fn66ePGitm3bpm3btummm27SQw89JIvFUuRzkqRXX31VsbGxkiRfX1/5+vrq0qVLOnDggA4cOKB169bp1Vdflb+/v7tvKwAAAAAAQIVAAFgJ9O3bV3379tXkyZMVGRmp2267TaGhobnaORwOzZw5U9HR0apWrZoee+wxdenSRTabTVFRUZo9e7YOHz6s119/XbNmzVLNmjUlSTVr1lSnTp20Y8cO/fbbb3kGgMnJydq0aZMkaejQoS7bli1bZoZ/d9xxh+644w5VrVpViYmJ+uabb7R06VL99NNPql+/vkaMGFGkc8rWrl07dejQQdddd51q1KghSUpLS9OWLVs0d+5cHT58WPPnz9fDDz9cjHcYAAAAAACg/CIAhGnDhg2KioqS1WrViy++qBYtWpjbmjVrpmnTpunxxx9XfHy8vvnmGz366KPm9htvvFE7duzQ77//rvvvvz/X5bS///670tLSFBISok6dOpmvp6Wl6euvv5Yk3XLLLZowYYK5LTAwUPfdd59SUlL0yy+/aNGiRRo6dKh8fX2LfG5PP/10rtd8fX3Vv39/1axZU88995xWr16tiRMnFrj/BQsWKCwsLN/t48aNKzCILM+sVm4JCgAAAAAVyeW31ioN2VfiBQcHi7vIVVwEgDBt2LBBknT99de7hH/ZAgMDNWLECM2fP18bN27UI488Yg4EXbt2VfXq1XX+/Hlt2rRJAwYMcOmbffnvoEGDZLPZzNd37dqlpKQkWa1W3XnnnXnWNXbsWP32229KTEzU7t271b1795I4XVObNm0UEBCgpKQkHTlyRK1bt863bVJSknkpcV6Sk5Ndzg8AAAAAgNJyNX//ZNJIxUYACFNUVJQk6brrrsu3Tfa9/xITE3XmzBnVqVNHUtagM3jwYH3zzTf67bffXALAY8eO6dChQ7JYLLrhhhtc9nf48GFJ0jXXXJPvXy5q1KihBg0a6O+//1ZUVFSxA8ANGzZo3bp1ioqK0sWLF5Wenp6rzfnz5wvcR0BAgGrVqpXvdn9//wp7U1QGcwAAAACoWK7G758Wi0VWq1VOp5MZgOVEcYJfAkCYEhISJMm8R15ecq40k5CQYAaAUta9/b799ltFRkYqJibG3JY9+++6665zaS9JFy9eLPSY2dv//vtvXbhwwf0T+v85HA7997//1ZYtW8zXvLy8FBgYaP7QXLx4UU6nU6mpqQXua/z48Ro/fny+2+Pi4hQfH1/kGsuDqzF1HAAAAABQcq7G75/ZqwAnJCRU2AkvnoZVgFGmateurY4dO2rXrl1atWqVxo8fr4yMDK1du1aScs3+u1p++eUXM/wbO3asBg0apNq1a5uXL0vSfffdp7i4uDKpDwAAAAAAoDRxzR9MwcHBkqRz587l2yZnSJbdPqcbb7xRkrRmzRo5nU5t3bpViYmJCgwMVK9evXK1DwoKKvSYObdXq1at4JPIw8aNGyVJAwcOVGhoqOrUqeMS/jkcDnMmIgAAAAAAgKchAKxEcoZeeWnevLkkae/evfm22bNnj6SsBUFq166da3u3bt1UrVo1xcXFadeuXeblv/3795e3t3e+xzxx4kS+U5fPnTunkydPSspajbgo55TdX1KeC5tI0l9//ZXn/QABAAAAAAA8AQFgJeLv7y8payXbvPTu3VuStHPnTh06dCjX9sTERC1fvlyS1KdPnzzDNy8vLw0ePFiS9PXXX5uB4ZAhQ/I8ZqdOnVS1alU5nU598803ebZZtGiRnE6nAgMD1bFjxyKdU8422SFiTk6nU2FhYfn2BQAAAAAAqOgIACuRRo0aScoK+PJa7bZPnz5q1qyZnE6npk+frm3btsnpdErKWiF46tSpio+PV0BAgEaPHp3vcYYOHSqLxaIDBw7I6XSqefPmatKkSZ5tfX19NWbMGEnSihUr9MUXX+jSpUuSsgLHuXPn6pdffpEkjRs3Tr6+vkU6J0lmaPjrr79qzZo1yszMlCRFR0dr5syZ2r9/v6pUqZLv+QAAAAAAAFRkFoM1nCuNkydP6qmnnlJGRoasVquCg4PNy3LnzJkjSYqNjdVLL72k6OhoSZKPj49sNptSUlIkSX5+fpo8ebI6dOhQ4LFefPFFc/bfo48+qmHDhuXb1jAMffTRR1q5cqUkyWq1yt/fX8nJyWYAedNNN+mhhx7KNevQnXNKTEzUM888o5iYGElZKxhVqVJFSUlJslqteuKJJ7Rw4ULFxsbqqaeeMmcwFkdFXkjEbrfr7rvvLusyAAAAAABumjVrVqkfI3sV4Pj4eFYBLidYBRgFatCggaZPn65vv/1Whw4dUkJCghmwZatVq5beffdd/fDDD9q8ebOio6OVmZmpunXrqnPnzho1apRq1qxZ6LF69uypPXv2yNfXV/369SuwrcVi0aOPPqquXbtq5cqVOnjwoC5duqTAwEC1atVKw4cPV+fOnYt9ToGBgXrrrbf01Vdfafv27bpw4YK8vb3Vo0cP3XbbbWrTpo0WLlxY6DkBAAAAAABURMwARKl4/fXXtWnTJg0aNEhPP/10WZdz1TADEAAAAABwtTADsHIqzgxA7gGIEnfu3Dlt27ZNknTjjTeWcTUAAAAAAACVGwEgSlRaWpo+/fRTZWZmqmXLlmrdunVZlwQAAAAAAFCpcQ9AlIhly5Zp+fLlunDhgtLT02W1WnX//feXdVkAAAAAAACVHgEgSkRSUpJiY2Pl6+urli1baty4ccz+AwAAAAAAKAcIAFEiQkNDFRoaWtZlAAAAAAAA4DLcAxAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHsyrrAsAUH6EhYXJ4XAoPj6+rEtBGbHZbLLb7YqPj5fD4SjrclAG7Ha7bDYbY0Elx1gAifEAjAXIwlgAeAZmAAIAAAAAAAAejAAQAAAAAAAA8GAEgAAAAAAAAIAHIwAEAAAAAAAAPBgBIAAAAAAAAODBWAUYgCk0NLSsSwAAFGLWrFllXQIAAAAqGGYAAgAAAAAAAB6MABAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAcUUiIiI0cuRIjRw5sqxLAQAAAAAAQB4IAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHsyrrAtAyTMMQ2vXrtWaNWt09OhRJSUlyd/fX0FBQWrevLm6d++uPn36mO2zF/CYMWOG2rdvn+c+3WkjSfv379e3336rv/76S6mpqapbt65uuOEG3XLLLbLZbLnaX7p0SRs3btTOnTt18uRJnTt3TpmZmapRo4Y6dOig2267TfXq1cvzWJMnT1ZkZKTGjh2rO++8U99//73Wr1+v2NhYpaSkKCwsTFWrVnVpFxoaWui+8msDAAAAAABQEREAeqB3331X4eHh5nN/f3+lpqYqMTFRp06dUmRkpEsAWFI2bdqkN998Uw6HQwEBAXI4HDp+/Lg+//xz7dy5Uy+88IK8vb1d+vzwww9atGiRJMlms8nf319paWk6ffq0Tp8+rbVr12ry5Mnq2LFjvsfNyMjQ888/r4MHD8rLy0u+vr4lfm4AAAAAAAAVFQGgh/nzzz8VHh4uq9Wqe++9V0OGDFFAQIAMw1BCQoIiIyO1e/fuUjn2+++/rw4dOujhhx9WnTp1lJaWpp9//lnz5s3Trl27FBYWpgkTJrj0qV69uv7xj3+oW7duatiwoWw2mxwOh44dO6YFCxZox44d+r//9//qs88+U5UqVfI87k8//SSr1apnn31WPXr0kLe3t2JjY/NtDwAAAAAAUJkQAHqYAwcOSJJ5+Ww2i8WiatWqqU+fPqUy+0+SatSooSlTppiz/Hx9fXXbbbcpLS1NX331lZYvX67bb79dgYGBZp9hw4bl2o/NZlOzZs00efJkPf300zpx4oQ2btyowYMH53nclJQUTZs2TZ06dTJfq1WrVgmfXZYFCxYoLCws3+3jxo2rsJcQW63cEhQAKgK73V7qx7BYLJKk4OBgGYZR6sdD+ZT9bwOr1XpVPncofxgLIDEWgLHAUxAAehh/f39J0sWLF+V0Oq9qqHPbbbflusRXyrp/4Lfffqu0tDRt27Yt3yDvct7e3urYsaNOnDih/fv359uvcePGLuFfaUpKSlJsbGy+25OTk/O81yEAACXlav5/hj8OQcr6xY9/31RujAWQGAvAWFDREQB6mA4dOsjLy0tRUVGaPHmyhg4dquuuu04hISGlfux27drl+bqfn5+aNWumffv26ciRI7mCvJMnT2rFihX6888/FRsbq9TU1Fx/VTh//ny+x7322muvvHg3BQQEFDi70N/fXw6H46rVU5IYzAGgYrga/5+xWCyyWq1yOp38pb8Ss1qtslgsMgxDTqezrMtBGWAsgMRYAMaC8qg4YTwBoIepV6+eHn30UX3yySfat2+f9u3bJ0kKCQlRx44ddcMNN6hNmzalcuwaNWoUuu3ChQsur//+++969913lZmZKSlrYPH39zdnEqampio1NVVpaWn57jsoKOgKK3ff+PHjNX78+Hy3x8XFKT4+/qrVU5KYzg8AFcPV+P+MzWaT3W5XQkJChf3DFq6c3W6XzWaT0+mssP++wZVhLIDEWADGgvKoOJO8CAA90A033KAuXbpow4YNioiI0P79+xUXF6dVq1Zp1apVGj58uB555JGyLlMJCQmaPXu2MjMz1bZtW91zzz1q3ry5y2XECxYs0OLFiwv8KwMz1wAAAAAAAPJHAOihqlWrpltuuUW33HKLJOno0aNaunSpwsPD9fPPP6tr167q0qWLJJlTedPT0/PcV1JSklvHPH/+vGrXrp3vtuy6su3YsUMpKSmqUqWKXnzxRfP+hTldPmOwOLKnxmZkZOTbxt1zBAAAAAAAqGiYOlVJNGnSRP/85z/VqFEjSVJERIS5rWrVqpKkc+fO5dn30KFDbh0jMjIyz9dTU1N1+PBhSVLTpk3N1+Pi4iRJDRo0yDP8Mwwj330WRUBAgMvx8qrv5MmTV3wcAAAAAACA8ogA0MMUNMtNknx8fCTJvOeeJDMU3Lp1a672hmFoyZIlbh176dKleR5/+fLlSktLk4+Pj7p162a+nh3MnTlzJs9+a9asUXR0tFvHLkjjxo0lSbt3785zluOyZcsKfd8AAAAAAAAqKgJAD/PJJ5/ozTff1JYtW5SYmGi+fvHiRS1YsMCczXf99deb2/r27StJ+uOPP7RkyRKlpqZKygrm3nrrLUVFRbl17Li4OM2cOVNnzpyRJKWlpWnZsmX66quvJEkjRoxQYGCg2b5Dhw6yWCxKTEzUu+++a95QNiUlRT/88INmz57t0r64evfuLYvFooSEBL3zzjvmZcVJSUlavHixFi5caIaRAAAAAAAAnoZ7AHqYzMxMrV+/XuvXr5ck+fn5yWKxKDk52Wxz0003qXPnzubzIUOGaM2aNTpw4IC++OILffnll/Lz81NSUpJ8fX01ZcoUvfTSS4Ue+4knntCbb76pSZMmKSAgQKmpqeYKQZ06dVJoaKhL+wYNGmjkyJFatmyZWXNAQIBSUlLkdDrVqVMntWjRQosXL76i9+Saa67Rbbfdpu+//14bN27Uxo0bXY4zfvx47d69u0QuNwYAAAAAAChvCAA9zJgxY9S0aVPt3btXp06d0vnz55Wenq4aNWqoZcuWGjp0qEv4J2UtkjFt2jR988032rBhg+Li4uTl5aW+fftqzJgxatiwoVvH7tWrl1577TV9++23OnDggGw2mxo0aKAbbrhBt9xyi7kYR07333+/GjRooJ9//lknTpyQ0+lU06ZNNWDAAN188836+uuvS+R9mThxourVq6eVK1fqxIkTkqS2bdvqtttuU9euXbV79+4SOQ4AAAAAAEB5YzEMwyjrIgBPkd9CIxWB3W7X3XffXdZlAAAKMWvWrFI/hs1mk91uV3x8vDmbH5WP3W6XzWaTw+Ewb9WCyoWxABJjARgLyqOQkJAi9+EegAAAAAAAAIAHIwAEAAAAAAAAPBgBIAAAAAAAAODBCAABAAAAAAAAD0YACAAAAAAAAHgwAkAAAAAAAADAgxEAAgAAAAAAAB6MABAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDCvsi4AQPkRFhYmh8Oh+Pj4si4FZcRms8lutys+Pl4Oh6Osy0EZsNvtstlsjAUAAACAB2EGIAAAAAAAAODBCAABAAAAAAAAD0YACAAAAAAAAHgwAkAAAAAAAADAgxEAAgAAAAAAAB6MVYABmEJDQ8u6BJQDYWFhZV0CAAAAAKAEMQMQAAAAAAAA8GAEgAAAAAAAAIAHIwAEAAAAAAAAPBgBIAAAAAAAAODBCAABAAAAAAAAD0YACAAAAAAAAHgwAkAAAAAAAADAgxEAAgAAAAAAAB6MABAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgCIcmfkyJEaOXKkIiIiyroUAAAAAACACs+rrAtA5bFlyxYdOXJETZs2VY8ePcq6HAAAAAAAgEqBGYC4arZs2aJFixZpy5YtBbarX7++6tevL19f36tUGQAAAAAAgOdiBiDKnY8++qisSwAAAAAAAPAYzAAEAAAAAAAAPBgzACuoyZMnKzIyUmPHjtXo0aO1ZMkSrV+/XrGxsapSpYrat2+vcePGqWHDhnn2v3jxopYuXart27frzJkzkqTatWurW7duuu222xQYGJirT0REhKZMmSJJ+uGHH3TixAktXrxYe/fuVWJiokJCQtS7d2/ddddd8vPzy7OfJK1Zs0Zr1qxx2fdnn32m2rVrS8paBESSZsyYofbt27u0O3DggDZt2qQDBw4oLi5OFy5ckJ+fnxo3bqwBAwZo0KBBstls+b5vDodDa9eu1fr16xUVFaWkpCQFBQWpTp066tatmwYOHCi73Z5vfwAAAAAAgIqGALCCy8jI0AsvvKADBw7Iy8tLPj4+unjxojZu3Kht27bphRdeUKdOnVz6HDlyRC+//LIuXLggSea99o4fP67jx49r1apVevnll9WkSZN8j7t7927NmDFDaWlpCggIkNPpVExMjJYsWaLIyEjNnDlTXl5ZHy8vLy9Vq1ZNycnJSk9Pl4+Pj/z9/V32Z7W6Nxn13//+t/nYz89Pvr6+SkxMVEREhCIiIrR582ZNmTIlzxAwPj5eM2bM0MGDByVJFotFAQEBunTpkvbt26d9+/bJZrPp1ltvdasWAAAAAACAioAAsIJbuXKlMjMz9fTTT6tfv37y8vLS0aNH9f777+vw4cN644039OGHH5qz2pKSkvTqq6/qwoULqlevnh5//HG1a9dOUtZMvffff18xMTGaMWOGZs2alSuoy/bGG2+oa9eumjBhgmrXrq3U1FStWLFCX375pf766y/99ttvGj58uCSpdevWmj9/vt59912tWbNGffr00dNPP12s8+3evbsGDhyodu3aKSgoyDyndevW6YsvvtAff/yhZcuW6fbbb3fpl5GRYYZ/AQEBmjBhgvr27auAgAAZhqFTp05pw4YNCg4OLlZdAAAAAAAA5RUBYAWXlJSkf/3rXxowYID5WpMmTTRt2jQ9+uijSkhI0NKlSzVx4kRJ0o8//qi4uDj5+fnplVdeUa1atcx+7du317Rp0/TEE08oNjZWP//8s+644448j9u8eXM9++yzslgskqQqVapo9OjR2r9/v7Zv364NGzaYAWBJynkpcbaAgADddNNN8vf319tvv62ffvopVwC4evVqHTx4UF5eXnr55ZfVqlUrc5vFYlGDBg00duzYQo+/YMEChYWF5bt93LhxCg0NLcIZlR/uzsJE5RAcHCzDMMq6DJSB7LHAarVyS4RKLPv/74wFlRvjARgLIDEWgLHAUxAAVnC1atVS//79c70eGBio4cOHa9GiRdq4caMZAG7cuFGSNHDgQJfwL1vdunU1aNAgrVy5UuvXr883ALzjjjvMQSCn7t27a/v27fr777+v5LSKpUuXLpKk2NhYnTt3TjVq1DC3rV69WpLUt29fl/CvqJKSkhQbG5vv9uTk5ALvQQhUFATCsFgsjGdgLIAkxgMwFiALYwEYCyo2AsAKrm3btnkGcdnbpKxALDExUVWqVNHx48clSdddd12+++zQoYNWrlypY8eOKTMz07yXX04tWrTIs2926Hbp0qUinYe7HA6HVq9erY0bN+rYsWNKTExUZmZmrnbnz583a8nMzNThw4clSV27dr2i4wcEBOQZnGbz9/eXw+G4omOUFQZz5OR0OvnrXiVltVplsVhkGIacTmdZl4MyYrFYZLVaGQsqOcYDMBZAYiwAY0F5VJwwngCwgss5y62gbQkJCcrMzDQHbHf6OZ1OJSYm5jnNO797A/r4+EhSqYRgKSkpmjp1qg4cOOByvKCgIDO8yl7YJC0tzWyTmJho1lOzZs0rqmH8+PEaP358vtvj4uIUHx9/RccoK0znR04JCQkVNszGlbHb7bLZbHI6nRV2PMOVs9lsstvtjAWVHOMBGAsgMRaAsaA8CgkJKXIfAkBUGF9//bW52vF9992nnj17ugSZDodDo0aNkiT+KgEAAAAAAPD/45q/Cu78+fNubQsODlbVqlXNmXLnzp3Lt1/2NqvVqsDAwBKq9Mpl379w9OjRuuWWW3LNYsye/Xe5oKAg8zLms2fPlmqNAAAAAAAA5Q0BYAUXGRlZ6LZatWopMDBQ3t7eatSokSRp7969+fbbs2ePJKlx48Z53v+vuLLvVVjc2XnZwWR+9x+MiIjI83WbzabmzZtLkrZv316sYwMAAAAAAFRUBIAVXGxsrNatW5fr9UuXLmnlypWSpN69e5uv9+nTR5IUHh6e52y406dPa82aNZKyVswtSdn3DUxKSrqi/idPnsy1LS0tTd98802+fQcNGiRJWr9+vf76669iHR8AAAAAAKAiIgCs4AICAjR79myFh4ebq+EeO3ZML7/8si5cuKCAgADddtttZvubbrpJISEhSklJ0UsvveQygzAyMlJTp05Venq6atWqpeHDh5dordmzD/fv36/o6Ogi9+/YsaMkafHixdq+fbu5oMmRI0f00ksv5XsJsCQNHjxYLVq0UGZmpl5++WWtXLlSycnJkrJmJJ44cULz5s1TeHh4kesCAAAAAAAoz1gEpIIbNmyYIiMj9c477+iDDz6Qj4+POcPO29tbzz77rMvqrgEBAZoyZYpefvllnTp1SpMnT1aVKlVkGIa5cq7dbteUKVPyXem3uHr06KEvvvhCiYmJeuSRRxQUFCRfX19J0uuvv17oKjbjx4/X7t27dfHiRU2fPl1eXl7y9vZWSkqKfHx8NGXKFE2dOjXPvt7e3poyZYqmT5+uqKgoffjhh/r4448VEBCgtLQ0paenS5Luv//+Ej1nAAAAAACAskYAWMF5e3trxowZWrJkiX7//XedPXtWQUFBat++vcaNG6eGDRvm6tOsWTPNnj1b33//vbZt26bY2FhJUsOGDdWtWzfddtttCgoKKvFag4KCNHPmTC1cuFD79+9XQkKCEhISJMmtpcTr1Kmjt956S2FhYdq1a5eSkpLk7++vbt266c4778zzXHOqXr263nzzTa1atUrr16/XsWPHlJKSouDgYNWuXVvdu3dX//79S+RcAQAAAAAAyguLUdwVGVCmJk+erMjISI0dO1ahoaFlXQ7+f3FxcWVdQrHZ7XbdfffdZV0GyoGwsDDFx8e7FczD89jtdtlsNjkcDsXHx5d1OSgjNptNdrudsaCSYzwAYwEkxgIwFpRHhV1BmRfuAQgAAAAAAAB4MAJAAAAAAAAAwIMRAAIAAAAAAAAejAAQAAAAAAAA8GCsAlxBvfbaa2VdAgAAAAAAACoAZgACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA9GAAgAAAAAAAB4MAJAAAAAAAAAwIN5lXUBAMqPsLAwORwOxcfHl3UpKCM2m62sSwAAAAAAlDBmAAIAAAAAAAAejAAQAAAAAAAA8GAEgAAAAAAAAIAHIwAEAAAAAAAAPBgBIAAAAAAAAODBWAUYgCk0NLSsSwCACmvWrFllXQIAAACQJ2YAAgAAAAAAAB6MABAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAUaAzZ85o5MiRGjlypM6cOVPW5QAAAAAAAKCICAABAAAAAAAAD+ZV1gWgfPPy8lL9+vXNxwAAAAAAAKhYSHRQoBo1auijjz4q6zIAAAAAAABQTFwCDAAAAAAAAHgwZgBWEpMnT1ZkZKTGjh2rsWPH6qefftKqVat06tQpeXl5qXnz5rrzzjt13XXXufQ7c+aMJk2aJEn67LPPVLt2bZftx44d07JlyxQZGanz58/LarUqODhYderUUadOnTRkyBAFBQW59Nm3b5+WL1+uv/76SxcuXJC3t7eCg4NVv359XX/99Ro6dKh8fX3N9mlpadq8ebN27NihY8eO6dy5c0pLS5PdblebNm106623qlmzZnme97vvvqs1a9Zo0KBBevrpp7Vu3Tr9+OOPOn78uCSpUaNGuvXWW9W7d+8rfo8BAAAAAADKIwLASsbpdOrVV1/VH3/8IS8vL3l7eyspKUl79uxRRESEnnvuOfXo0cOtfe3YsUMzZsxQZmamJMnb21teXl6KjY1VbGys9u7dq2bNmqljx45mn19//VWzZ8+WYRiSJB8fH0lSTEyMYmJitGPHDnXu3Fn16tUz+2zYsEHvvfeeJMlqtcrf31+GYZjHWb9+vZ588kkNHDiwwHo//PBDrVy5UlarVVWqVFFycrIOHDigAwcO6MEHH9Qtt9zi9vsIAAAAAABQURAAVjI//fSTLBaL/v3vf6t79+7y9vbW0aNH9fbbb+v48eP65JNP1LVrV9lstkL39cknnygzM1NdunTRfffdpwYNGkiSUlJSdOLECa1bt07+/v5m+7S0NH3++ecyDEODBw/WuHHjVKtWLUlSUlKSjhw5orVr18rb29vlOAEBAbr99tvVs2dPNW3aVN7e3jIMQ9HR0Vq8eLHCw8M1e/ZstWvXTjVr1syz1m3btik9PV2PPPKIBg0aJF9fX8XExOi9997Tn3/+qXnz5ql///4KDAws7lsLAAAAAABQLhEAVjKXLl3S66+/rjZt2pivNWnSRE899ZT+9a9/6dy5c9q/f7/atWtX4H4uXLigmJgYSdITTzwhu91ubvPz81PLli3VsmVLlz7Hjx9XSkqKqlSposcff9wlZAwICFD79u3Vvn37XMfq0aNHrlmJFotF9evX19NPP634+Hjt3r1bq1at0rhx4/I973/9618aMGCA+VqdOnX0f/7P/9GkSZOUnp6u7du3a9CgQQWe94IFCxQWFpbv9nHjxik0NLTAfZRXViu3BAWAK5Hz/4UVncVikSQFBwebs/ZR+WT/28BqtXrU5xvuYyyAxFgAxgJPQQBYybRp08Yl/MvWvHlzhYSEKC4uTn///XehAaCfn5+sVqucTqfi4+Pd+h9B9mzAzMxMJSYmqlq1asU6h5wsFos6d+6s3bt3a//+/fm2q1mzpvr375/r9Ro1aqhly5bat2+feV/AgiQlJSk2Njbf7cnJyW7NngQAeB5PHP/54xCkrH9veeLnG+5jLIDEWADGgoqOALCSadGiRb7bqlevrri4OF26dKnQ/fj6+qpt27aKiIjQ1KlTdfPNN6tLly5q0qRJvv9TqFu3rurVq6fo6Gg9++yzuummm9S5c2ddc8015l8U8hMXF6cVK1Zoz549iomJUUpKipxOp0ub8+fP59u/efPm+R6jRo0akrLCvcIEBASYly3nxd/fXw6Ho9D9lEcM5gBwZSrq+J8Xi8Vi/qGPv/RXXlarVRaLRYZh5Pp3FyoHxgJIjAVgLCiPihPGEwBWMn5+fvluy16QI3tRj8I88cQTmj59uk6cOKGwsDCFhYXJ19dXbdq0Ua9evTRo0CCX+/nZbDY988wzmjlzps6cOaO5c+dq7ty5CggIULt27dS3b1/17t071wc5MjJS06dPV0pKivmav7+/vL29ZbFYlJ6eruTkZKWmphbrvLNrdOe8x48fr/Hjx+e7PS4uTvHx8YXupzxiOj8AXJmKOv7nxWazyW63KyEhwaOCTRSN3W6XzWYzr/hA5cNYAImxAIwF5VFISEiR+xAAotjq1KmjWbNmaceOHdqxY4f27dunv//+W7t27dKuXbv03Xff6bXXXjNn2ElZMxA//vhjbdmyRbt27dL+/fsVHR2trVu3auvWrVq2bJlmzJihKlWqSMoK5d5++22lpKSoYcOGeuCBB9S6dWv5+vqa+/z111/1wQcfXPXzBwAAAAAAqAgIAHFFbDabunXrpm7dukmSLl68qPXr1+vLL7/U6dOnNWfOHP3nP/9x6ePj46N+/fqpX79+krJmza1Zs0aLFi3SoUOHtHDhQk2cOFGSdODAAcXFxUmSXnjhBdWpUydXDRcuXCjFMwQAAAAAAKjYuOkXSlRQUJBuvvlmjRkzRlLW5buFCQkJ0V133aUbb7wxV59z585JkgIDA/MM/yQpIiLiSssGAAAAAADwWASAKJaMjIwCt2dfopuzXWF9su9BmLNd9srBly5dUkJCQq4+e/fu1d69e90rGgAAAAAAoBIiAESxHDhwQE899ZRWrFih6OhocyUgh8OhP/74Q4sWLZIkde7c2ezz+++/67nnntOvv/6qs2fPmq9nZGRo3bp1+vnnn3P1yb7fn2EYevPNNxUTE2P2CQ8P18yZM1W1atVSP18AAAAAAICKinsAotiOHj2qTz/9VJLk5eUlPz8/JSUlmUvD169fX/fdd59Ln3379mnfvn2Ssmb8+fr66tKlS2aA2KpVK911111m+6pVq+qee+7RZ599pr179+rBBx+Uv7+/0tPTlZmZqSZNmmjIkCFmHQAAAAAAAHBFAIhiadGihf79739rz549OnTokM6fP6/ExET5+fnpmmuuUY8ePXTzzTe7rNbbrVs3PfXUU9q7d6+OHDmi+Ph4JSUlqWrVqmrcuLH69u2rIUOGyGazuRxrxIgRCgkJ0dKlS3XkyBE5nU7Vr19fvXv31qhRo7Rhw4arffoAAAAAAAAVhsXInnoF4Iplr1hcEdntdt19991lXQYAVFizZs0q6xJKjM1mk91uV3x8vBwOR1mXgzJit9tls9nkcDgUHx9f1uWgDDAWQGIsAGNBeRQSElLkPtwDEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA9GAAgAAAAAAAB4MAJAAAAAAAAAwIMRAAIAAAAAAAAejAAQAAAAAAAA8GAEgAAAAAAAAIAHIwAEAAAAAAAAPBgBIAAAAAAAAODBCAABAAAAAAAAD+ZV1gUAKD/CwsLkcDgUHx9f1qWgjNhsNtntdsXHx8vhcJR1OSgDdrtdNpuNsQAAAADwIMwABAAAAAAAADwYASAAAAAAAADgwQgAAQAAAAAAAA9GAAgAAAAAAAB4MAJAAAAAAAAAwIOxCjAAU2hoaFmXgALMmjWrrEsAAAAAAFRAzAAEAAAAAAAAPBgBIAAAAAAAAODBCAABAAAAAAAAD0YACAAAAAAAAHgwAkAAAAAAAADAgxEAAgAAAAAAAB6MABAAAAAAAADwYASAAAAAAAAAgAcjAAQAAAAAAAA8GAEgAAAAAAAA4MEIAAEAAAAAAAAPRgAIAAAAAAAAeDACQAAAAAAAAMCDEQACAAAAAAAAHowAEAAAAAAAAPBgBIAAAAAAAACAByMABAAAAAAAADwYASAAAAAAAADgwbzKugD8P5MnT1ZkZKTGjh2ru+66S0uXLtXatWsVExOjqlWrqnPnzvrHP/6h6tWrS5Kio6P1zTffaM+ePUpISFCtWrU0dOhQ3XrrrbJa8852Dx8+rOXLl+vPP/9UfHy8vL291aBBA/Xt21fDhw+Xj49Prj4PPPCAYmNj9dRTT6l79+769ttvtXXrVp09e1be3t5auHCh2dbhcGjt2rVav369oqKilJSUpKCgINWpU0fdunXTwIEDZbfb89z34MGD86w5vzZnzpzRpEmTJEmfffaZ0tPT9e233yoiIkLx8fHq0qWLunfvrlmzZikoKEjz5s2Tl1feH/nY2Fg9+OCDcjqdeuedd9SsWbNCvlsAAAAAAAAVAwFgOeRwODR16lRFRESYgdz58+f122+/6c8//9Qbb7yh6OhoTZs2TUlJSQoICFBmZqZOnTqluXPnKi4uzgzGclq4cKEWLVokwzAkSX5+fkpNTdXBgwd18OBBrV27VtOmTVNQUFCedSUkJOhf//qXYmJi5O3tnStMi4+P14wZM3Tw4EFJksViUUBAgC5duqR9+/Zp3759stlsuvXWW0vy7ZIk7du3Tx9++KHS0tLk5+cnm80mSerbt6/mzJmjixcvatu2berVq1ee/VetWiWn06mmTZsS/gEAAAAAAI9CAFgO/fTTT/Lx8dGLL76ozp07yzAMbd++Xe+8846io6MVFham7du3q02bNpo0aZLq1Kmj5ORkzZs3TytXrtSKFSs0bNgwXXPNNS77XLhwoQIDAzVu3Dj1799fgYGBysjI0N69e/XZZ58pKipK7777rl566aU86/r6668VEBCgqVOnqlOnTrJarYqOjpYkZWRkmOFfQECAJkyYoL59+yogIECGYejUqVPasGGDgoODS+U9+/jjj9WiRQs99NBDatSokQzDUExMjHx9fdW/f3/9/PPP+u233/IMAJ1Op1avXi1JGjp0aKnUBwAAAAAAUFYIAMuhpKQkTZkyRe3atTNf69Gjh0aNGqWwsDD99NNPql+/viZPnmzOdPP399fDDz+sPXv26PTp09q4caPGjh0rSUpOTtb8+fPl5eWlqVOnqmXLluZ+vb291blzZ9WrV09PPvmk/vjjD0VFReU5Cy4jI0NTp05Vo0aNzNfq1asnSVq9erUOHjwoLy8vvfzyy2rVqpXZxmKxqEGDBmY9pSE4OFhTp06Vr6+vecy6detKkm688Ub9/PPP2rVrl86dO6caNWq49N29e7fOnj0rHx8f9evXr8DjLFiwQGFhYfluHzdunEJDQ6/wbMpGfpeNo/zIefl8abFYLJKyfqayZwujcskeC6xW61X5zKF8YiyAxHgAxgJkYSwAY4FnIAAsh6699lqX8C9bx44dzfDptttuM8O/bFarVe3bt9fp06d1/Phx8/WNGzcqOTlZHTp0cAn/cqpbt65atWqlvXv3ateuXXkGgNdff71L+JdT9gy6vn37uoR/V8vNN99shn+Xa9q0qVq0aKFDhw5p9erVuuuuu1y2//bbb5KkXr16qWrVqgUeJykpSbGxsfluT05OzvV9AUrK1fxsEQjDYrEwnoGxAJIYD8BYgCyMBWAsqNgIAMuh/EK2nJfP5temWrVqkqRLly6Zrx04cMD87z333JPvcZOTkyVJZ8+ezXP7tddem+frmZmZOnz4sCSpa9eu+e6/NBUWOg4dOlSHDh3SqlWrdOedd5p/wbh48aK2bt0qSRoyZEihxwkICFCtWrXy3e7v7y+Hw1GEyssPBvPy72p8tiwWi6xWq5xOJ3/dq6SsVqssFosMw5DT6SzrclBGGAsgMR6AsQBZGAvAWFD+FCeMJwAsh/KbVp0zoCmsTc6gID4+XpKUlpamtLS0Qo+fX5v8FgdJTEw0j1ezZs1C918aCru3YL9+/fS///1PMTExioiI0HXXXSdJCg8PV2ZmpurWrZvnrMvLjR8/XuPHj893e1xcnPl+VzRM5y//rsZny2azyW63KyEhocKG2bgydrtdNptNTqezwo5nuHKMBZAYD8BYgCyMBWAsKH9CQkKK3IcAsBLI/gEdNmyYHn300WLvpzxP9y5s9pqfn5/69eunX375RatWrTIDwFWrVkmSbrjhBnNWIAAAAAAAgCfhmr9KIPuy4Pwu7b1SQUFB8vLyKtYxsoO79PT0fNskJSUVv7gcbrzxRknSpk2blJSUpIMHD+r48eOyWq0aPHhwiRwDAAAAAACgvCEArARat24tSdq3b595n7+SZLPZ1Lx5c0nS9u3bi9Q3e9GNc+fO5bk9Ojq6xALA5s2bq2nTpkpPT9e6devMxT+6dOmi6tWrl8gxAAAAAAAAyptSCQCtVqtsNluBC07g6undu7f8/PyUkpKi+fPnF9g2NTVVGRkZRT7GoEGDJEnr16/XX3/95Xa/7MVMshfiuNySJUuKXEtBsmcBrly5UuvXr5fk3uIfAAAAAAAAFVWpBIDZl4P279+/NHaPIgoMDNS9994rSfrpp5/05ptv6tixY+b2zMxMRUVFacGCBZo0aZISEhKKfIzBgwerRYsWyszM1Msvv6yVK1easw0Nw9CJEyc0b948hYeHu/Tr27evJOn48eP67LPPzNWLL1y4oE8//VTh4eHy9fUtxlnnrX///qpSpYqOHTum5ORkVa9eXV26dCmx/QMAAAAAAJQ3pbIISO3atRUdHa3AwMDS2D2KYfjw4UpNTdUXX3yh9evXa/369fLx8ZGvr6+SkpJclnMvzmIY3t7emjJliqZPn66oqCh9+OGH+vjjjxUQEKC0tDTzHn/333+/S7/rr79effr00YYNG7R8+XItX75cAQEBSk5OlsVi0VNPPaWvvvpKsbGxV/YG/P/8/f3Vt29f8/LfgQMHluvFTQAAAAAAAK5UqQSA7dq1U3R0tKKiokpj9yimUaNGqVu3bvrxxx+1Z88excXFKTk5WYGBgWrQoIHatm2r3r17q0aNGsXaf/Xq1fXmm29q1apVWr9+vY4dO6aUlBQFBwerdu3a6t69e56zQv/1r3+pWbNmWrNmjWJiYmS1WtW5c2fdeeedat26tb766qsrPXUXvXr1MgNALv8FAAAAAACezmIYhlHSO50/f77uvfdetW/fXrt37y7WjDKgtMydO1fff/+92rVrp9dee61E9x0XF1ei+7ua7Ha77r777rIuAwWYNWtWqR/DZrPJbrcrPj5eDoej1I+H8sdut8tms8nhcCg+Pr6sy0EZYSyAxHgAxgJkYSwAY0H5ExISUuQ+pXIPwLvvvlt9+/ZVRESEnn766dI4BFAsaWlpWr16taT/tyAIAAAAAACAJyuVANBisWjZsmUaPny4PvjgA3Xr1k3z5s1TVFSU0tLSSuOQQKEcDofmzZunixcvKiQkRL169SrrkgAAAAAAAEpdqdwDMOeiCoZhaMeOHbkWfyiIxWJRZmZmaZSGSmjjxo2aO3euLl68qNTUVEnSxIkT5e3tXcaVAQAAAAAAlL5SCQAvv61gKdxmEHBbamqqYmNj5eXlpUaNGun2229X3759y7osAAAAAACAq6JUAsB+/fqx8AfKjcGDB2vw4MFlXQYAAAAAAECZKJUAcO3ataWxWwAAAAAAAABFVCqLgAAAAAAAAAAoHwgAAQAAAAAAAA9GAAgAAAAAAAB4sFK5B2BOTqdTS5Ys0S+//KJ9+/bp/PnzysjIUFRUlEu7yMhIXbx4UcHBwWrbtm1plwUAAAAAAABUCqUaAG7cuFH33HOPjh07Zr5mGEaeKwQvWbJEr7zyioKCgnT69GlVqVKlNEsDAAAAAAAAKoVSuwT4119/1aBBg3Ts2DEZhiGbzabg4OB82z/44IOSpIsXL+qnn34qrbIAAAAAAACASqVUAsALFy5o3LhxysjIUNWqVfXpp5/qwoULmjt3br596tatqx49ekiSVq9eXRplAQAAAAAAAJVOqVwCPHv2bMXHx8vLy0srV65Uz5493erXq1cvbd68WTt37iyNsgAUIiwsTA6HQ/Hx8WVdCgAAAAAAKCGlMgPwp59+ksVi0R133OF2+CdJrVq1kiQdOXKkNMoCAAAAAAAAKp1SCQAPHjwoSRo8eHCR+lWrVk2SlJCQUNIlAQAAAAAAAJVSqQSAFy9elCRVr169SP0yMjIkSV5epbo4MQAAAAAAAFBplEoAmB38nTt3rkj9jh07JkkKCQkp6ZIAAAAAAACASqlUAsDmzZtLkjZv3lykfitXrpTFYlGHDh1KoywAAAAAAACg0imVa22HDh2qjRs36ttvv9Vrr72mOnXqFNpn9erVWr9+vSwWi2688cbSKAtAIUJDQ8u6hApp1qxZZV0CAAAAAAD5KpUZgA8++KD8/f2VlJSk0aNHF7qox+bNmzVu3DhJkt1u14QJE0qjLAAAAAAAAKDSKZUZgLVr19Zrr72mp59+Wps3b1arVq30wAMPyOFwmG1++ukn/f333/r555/1448/yul0ymKx6N1331VAQEBplAUAAAAAAABUOqW23O6TTz6p2NhYzZw50/yvJFksFknSiBEjzLaGYUiSpk2bpvHjx5dWSQAAAAAAAEClUyqXAGd79dVX9eOPP6pTp04yDCPfr3bt2mnFihV64YUXSrMcAAAAAAAAoNIptRmA2YYNG6Zhw4YpMjJSv//+u44dO6YLFy6oatWqatCggfr376/OnTuXdhkAAAAAAABApVQqAeDvv/8uSQoKClLHjh0lSe3atVO7du1K43AAAAAAAAAA8lEqlwAPGDBAAwcO1IIFC0pj9wAAAAAAAADcVCoBoJ+fnySpU6dOpbF7AAAAAAAAAG4qlQCwTp06pbFbAAAAAAAAAEVUKgFgr169JEl79+4tjd0DAAAAAAAAcFOpBID333+/DMPQF198oYSEhNI4BAAAAAAAAAA3lNoiII8//rhiY2N1yy23KCYmpjQOAwAAAAAAAKAQXqWx099//12jR49WVFSUfv75Z7Vs2VK33367+vbtqwYNGpiLhBSkX79+pVEaAAAAAAAAUKmUSgA4YMAAWSwWSZLFYtGlS5f05Zdf6ssvv3Srv8ViUWZmZmmUVilNnjxZkZGRGjt2rEJDQ83XR44cKUmaMWOG2rdvX1blXbEzZ85o0qRJkqTPPvtMtWvXLuOKAAAAAAAAyo9SCQAlyTCMAp8DAAAAAAAAKH2lEgBOnTq1NHaLEla/fn1Jkq+vbxlXAgAAAAAAgNJCAFiJffTRR2VdAgAAAAAAAEpZqawCDAAAAAAAAKB8KLV7AKL8y28RkIiICE2ZMkWS9MMPP+jEiRNavHix9u7dq8TERIWEhKh379666667ClzROT4+Xj/88IN27typM2fOKDMzUzVq1FCTJk3Ut29f9ezZU1arawadmpqq5cuXa/PmzTp16pQcDodCQkJ0/fXX6/bbb1dISEiRznH16tV67733VKtWLc2ZM0cHDhzQkiVLdODAASUnJ6tOnToaMGCARo0aJS8vfhwAAAAAAIDnIfFAgXbv3q0ZM2YoLS1NAQEBcjqdiomJ0ZIlSxQZGamZM2fmGZxt375db731llJSUiRJXl5e8vPz05kzZ3T69Glt2rRJYWFhqlq1qtknNjZWL730kqKjoyVJ3t7e8vLyUnR0tKKjo7V69WpNnjxZHTp0KNa5hIeHa9asWXI6nfL391dGRoZOnDihL7/8UlFRUXruueeKtV8AAAAAAIDyjAAQBXrjjTfUtWtXTZgwQbVr11ZqaqpWrFihL7/8Un/99Zd+++03DR8+3KXPwYMHNXPmTGVmZqpVq1a699571bp1a1mtVqWlpWn//v367bffXGb/ORwOzZw5U9HR0apWrZoee+wxdenSRTabTVFRUZo9e7YOHz6s119/XbNmzVLNmjWLdB4JCQl6//33NWzYMN11112y2+26dOmSwsLCtGLFCm3atEk7duxQ586dS+R9AwAAAAAAKC9KJQC02WxX1N9isSgzM7OEqsGVaN68uZ599llZLBZJUpUqVTR69Gjt379f27dv14YNG3IFgHPmzFFmZqZatGih1157Td7e3uY2X19fdezYUR07dnTps2HDBkVFRclqterFF19UixYtzG3NmjXTtGnT9Pjjjys+Pl7ffPONHn300SKdR1pamoYOHaqHHnrIfK1q1ap68MEHFRERoePHj2vDhg2FBoALFixQWFhYvtvHjRun0NDQItVWXlx+OTbcZ7fby7qEEpP9sx4cHCzDMMq4GpSF7LHAarV61GcbRcNYAInxAIwFyMJYAMYCz1AqASAfCM9xxx13mD/sOXXv3l3bt2/X33//7fL6yZMndeDAAUnShAkTXMK/gmzYsEGSdP3117uEf9kCAwM1YsQIzZ8/Xxs3btQjjzySZ10FGT16dJ6vd+/eXcePH891LnlJSkpSbGxsvtuTk5OvOABHxeOJ33MCYVgsFo/8bKNoGAsgMR6AsQBZGAvAWFCxlUoA2K9fv0LDGYfDobi4OB08eFBOp1MWi0WdOnVSYGBgaZSEYsorjJOkGjVqSJIuXbrk8vpff/0lSfLz81O7du3cPk5UVJQk6brrrsu3Tfa9/xITE3XmzBnVqVPH7f0HBgbm2z6/c8lLQECAatWqle92f39/ORwOt+sqTxjMi6+ifs/zYrFYZLVa5XQ6+WNOJWW1WmWxWGQYhpxOZ1mXgzLCWACJ8QCMBcjCWADGgvKnOGF8qQSAa9eudbvt+fPn9c477+i///2vUlNTtWTJEjVq1Kg0ykIx+Pv75/m6j4+PpNzBx4ULFyRlhWpFCZQSEhLMfvnJuQJwQkJCkQLAglYrzu9c8jJ+/HiNHz8+3+1xcXGKj493u67yhOn8xVdRv+d5sdlsstvtSkhI8KhgE+6z2+2y2WxyOp0e9dlG0TAWQGI8AGMBsjAWgLGg/MmZj7irzKf8VK9eXdOnT1dYWJj27dunW2+9Venp6WVdFgAAAAAAAOARyjwAzDZ69GgNHTpUERER+uSTT8q6HBRTtWrVJEnnzp0r0l8GgoODzX75iYuLy9UeAAAAAAAABSs3AaAkjRgxQoZhFLjKKsq3a6+9VpKUkpKiP//80+1+zZs3lyTt3bs33zZ79uyRlHU/v9q1a19BlQAAAAAAAJVHuQoAs0OdgwcPlnElKK769eubIeAXX3yhjIwMt/r17t1bkrRz504dOnQo1/bExEQtX75cktSnT58irwAMAAAAAABQWZWrAPDMmTOSsmaPoeJ64IEH5OXlpUOHDmnKlCnat2+fuVpUenq6duzYoRkzZig5Odns06dPHzVr1kxOp1PTp0/Xtm3bzD5RUVGaOnWq4uPjFRAQoNGjR5fJeQEAAAAAAFREpbIKcHE4nU7Nnz9fUtYsMlRcLVu21LPPPqu3335bBw4c0HPPPSdvb29VqVJFSUlJZrCXcwl5m82m559/Xi+99JKio6P16quvysfHRzabzQyE/fz89Nxzz6lmzZplcl4AAAAAAAAVUbkIAKOiovTMM89o+/btslgsGjJkSFmXhCvUs2dPffTRR1q2bJl27typs2fPKiMjQ3Xq1FHTpk3Vp08f+fv7u/SpVauW3n33Xf3www/avHmzoqOjlZmZqbp166pz584aNWoU4R8AAAAAAEARWQzDMEp6p4MGDXKrXXp6uk6dOqW///5bkmQYhqpWraqIiAg1atSopMsCSl3OlYorGrvdrrvvvrusy6iQZs2aVdYllBibzSa73a74+PgireQNz2G322Wz2eRwOBQfH1/W5aCMMBZAYjwAYwGyMBaAsaD8CQkJKXKfUpkBuHbtWrcXaciZP4aEhGjRokWEfwAAAAAAAEAJKbVLgN2ZWOjj4yO73a62bdtq+PDhuu+++2S320urJAAAAAAAAKDSKZUAMOfiDgAAAAAAAADKjrWsCwAAAAAAAABQeggAAQAAAAAAAA9WKgHgfffdp/vuu0+7d+8uUr/IyEjdd999uv/++0ujLAAAAAAAAKDSKZUAcN68efriiy/0999/F6nfqVOnNG/ePM2bN680ygIAAAAAAAAqHS4BBgAAAAAAADxYuQoAHQ6HJMnLq1QWJwYAAAAAAAAqnXIVAB49elSSFBQUVMaVAAAAAAAAAJ6hVKfaWSwWt9olJydr586deu+992SxWNS6devSLAsAAAAAAACoNK44AJw2bZpeeeWVXK8bhqHbbrutWPscNWrUFVYFAAAAAAAAQCqhGYCGYRTp9YIMGDBAjz/++JWWBAAAAAAAAEAlEAA2btxY/fv3d3lt3bp1slgsatOmjUJCQgrsb7VaVbVqVTVp0kQ33HCDbrrpJlmt5erWhEClERYWJofDofj4+LIuBQAAAAAAlJArDgAnTJigCRMmuLyWHeDNmDFDI0eOvNJDAAAAAAAAACimUlkEpF+/frJYLIXO/gMAAAAAAABQukolAFy7dm1p7BYAAAD/X3v3HR5Vmf///3Vm0ocQBkLvVUTpSG+CWFAjiKDEUPwC7q6u4rKfVRdWiuDKrsoiK+6KKFKMoALSbTSpUkRCKCKh1xASAunJZH5/8MssMTOhZZjk5Pm4Lq5Nzjn3ud8nG27DK/e5bwAAAOAGsdgeAAAAAAAAYGJemQGYnZ2t//73v3I6neratatatGhxzTY///yzfvjhB1ksFj333HNsBAIAAAAAAAAUAa8EgEuXLtXIkSNltVp16NCh62pTvnx5/fnPf1Zubq7q1KmjRx55xBulAShEZGSkr0tAIaZNm+brEgAAAAAAJZBXptktX75cktS5c2fVrl37utrUqlVLXbt2ldPp1JIlS7xRFgAAAAAAAFDqeCUA3LFjhwzDUPfu3W+oXd7127ZtK/qiAAAAAAAAgFLIKwHgsWPHJEkNGjS4oXb16tXL1x4AAAAAAADArfFKAJiZmSlJCgwMvKF2AQEBkqS0tLQirwkAAAAAAAAojbwSANrtdknS6dOnb6jdmTNnJElhYWFFXhMAAAAAAABQGnklAKxfv74k6bvvvruhdnnX16lTp6hLAgAAAAAAAEolrwSAPXr0kNPp1KpVq7R9+/bravPjjz9q5cqVMgxDPXv29EZZAAAAAAAAQKnjlQBw+PDh8vf3l9Pp1GOPPXbNEHDbtm3q27evnE6nrFarhg8f7o2yAAAAAAAAgFLHzxs3rV27tkaNGqV//OMfOnfunDp16qTHHntMjz32mJo0aaIyZcooJSVF+/bt05IlS7RkyRLl5OTIMAyNHDnyhncPBgAAAAAAAOCeVwJASXrjjTcUFxenL7/8Ujk5OVq0aJEWLVrk9lqn0ylJeuKJJ/TPf/7TWyUBAAAAAAAApY5XXgGWJIvFos8//1xvv/22KlSoIKfT6fFPeHi4/vWvf2nBggUyDMNbJQEAAAAAAACljtdmAOYZNWqUfv/732vVqlXasGGDTp48qUuXLqls2bKqUaOGunbtqoceekjBwcHeLgUAAAAAAAAodbweAEpSSEiI+vXrp379+t2O7gAAAAAAAAD8/7z2CrBZjR49WhEREYqOjvZ1KTckOjpaERERGj16tK9LAQAAAAAAwG1EAAgAAAAAAACYGAEgAAAAAAAAYGJeXwPwxIkTmjdvnrZu3eraAMThcBTaxjAMxcXFebs0AAAAAAAAwPS8FgDm5uZq9OjRmjJliivwczqd+a4xDKPQ4wAAAAAAAABujdcCwOeff14zZsxwhXtVqlTR2bNnZRiGwsPD5XQ6lZiYqNzcXElXQr/q1avLarV6qySvO3v2rDZs2KCYmBidO3dOiYmJslqtqlq1qtq1a6dHH31UZcqUcds2IiJCkvTGG2+obt26+uKLL7RlyxZduHBBNptNzZs319NPP60qVap47D8uLk4LFizQ3r17lZmZqcqVK6tLly63vPvy1bVVq1ZNn3/+uX766SdduHBBNWvW1Lvvvuu69vz581q0aJF27dqlhIQEWa1WVa9eXZ06ddIjjzyiwMDAfPeeMGGCdu7cqQceeEDPP/+8xxqWL1+uGTNmKDw8XDNnzpTFkv/t9d27d+vrr7/WgQMHlJycrKCgINWpU0c9evTQvffe6/b76kaeCwAAAAAAoKTySgC4fft2ffDBBzIMQx06dNDcuXNVr149V2jz4YcfKiIiQpcvX9bXX3+tN954QzExMWrcuLEWLFggu93ujbK8btq0aYqNjZUkBQQEKDAwUCkpKTp8+LAOHz6stWvX6u9//7vCw8M93iMxMVHTpk3TuXPnXGHZxYsXtX79eu3atUtvv/222xBw8+bNeuutt1yzLW02m86cOaPo6Gj99NNPuvvuu2/5+U6dOqV//OMfunTpkgIDA+Xnl//bZ9euXZo8ebLS09MlScHBwcrJydGhQ4d06NAhrV69WhMmTFDFihVdbbp166adO3dq8+bN+t3vflfgnnnWrVsnSerSpUu+8M/hcOg///mPvv32W9exkJAQpaamKjY2VrGxsdqwYYPGjBmjgICAm3ouAAAAAACAkswrSceHH34oSbLb7Vq+fLnHQC80NFT9+/dXnz599PTTT2vhwoV64okntHr1am+U5XX169dX165d1bJlS1WqVEmGYSg7O1s///yzPv74Y506dUrvv/++xo4d6/EeH3zwgSpWrKh//vOfaty4sRwOh3bs2KGpU6fq0qVLmjt3rv7yl7/ka3P27Fn961//ksPhUJMmTfT888+rZs2ays7O1rp16/TBBx/oxIkTt/x8s2bNUqVKlTRmzBjdeeedkqTTp09Lks6dO+cK/xo1aqTnnntO9erVk8Ph0Pbt2zV9+nSdPHlSkydP1j//+U/XjLz27dsrKChIly9f1s6dO9WuXbsC/Z45c0YHDx6UJHXv3j3fublz5+rbb79VpUqV9PTTT6tdu3YKCQlRZmamfvzxR3300UfatWuXPv74Y/3+97+/4ecCAAAAAAAo6bwSAG7atEmGYWjAgAHXNZvP399fc+bM0datW7Vu3Tp9+umnevrpp71RmlcNGzaswDF/f3/dc889qlWrlv7whz9o586dOnfunCpXruz2Hn5+fpo4caLKli0rSbJarWrXrp0GDBigWbNmaevWrcrJyck3S+2LL75QZmamKlWqpPHjxysoKMjVd69evWSxWIrkdVaLxaLXX3893/+n1apVc9WQnp6uChUqaMKECbLZbK7627dvr7Jly+qvf/2rfv31V23evFldunSRJAUFBaldu3Zav3691q9f7zYAXL9+vSSpdu3aqlu3ruv4mTNn9NVXX6lMmTKaNGlSvpmRgYGB6tq1qypVqqRXXnlF3377rZ588km334+FPddvzZs3T9HR0R6/RgMHDlRkZKTH88XZb1+rRvFzO2ZH563BGhYWVmB9VpQOeWOBxWIpsTPycesYCyAxHoCxAFcwFoCxwBy8EgDmzZ5q06aN2/OZmZkFjgUFBWno0KGaNGmSoqOjS2QAWJjKlSurZs2aOnLkiA4cOOAxAHzggQdc4d/V2rdvr1mzZik7O1unT59WrVq1JF3ZQGXz5s2SpEcffdQV/l2tR48eio6O1vnz52/pGXr06OF2wL+6hoiICFf4d7UmTZqoRYsW2rVrlzZs2OAKAKUrrwGvX79e27ZtU1pamkJCQvK1/eGHH1zXXW3NmjXKzc1Vhw4dPK6N2LhxY1WuXFlnz57Vnj171LVr1+t+LndSU1MVHx/v8XxaWlqJXscSxdvt/N4iEIZhGIxnYCyAJMYDMBbgCsYCMBaUbF4JAFNTUyUVnK0SEhKi9PR0JScnu23XpEkTSdKePXu8UdZtsWvXLn3//ff69ddflZiYqKysrALXJCYmemzfsGFDt8crVKjg+jglJcX18dmzZ11fb0/r/BmGobvvvltr1669rmfw5I477nB7/OzZs66amjVr5rF9XgAYFxeX73jLli0VFham5ORkbdmyRT179nSdi4uL08mTJ2UYRoEA8MCBA5KkjRs3avv27R77zavNUwDq6bncsdlsqlSpksfzISEhrnUYSxoG8+LvdnxvGYYhi8Wi3NxcfrtXSlksFhmGIafT6dqoC6UPYwEkxgMwFuAKxgIwFhQ/NxPGeyUADA0N1cWLF12bQeSx2+1KT0/XkSNH3LbLC7Judaaar8yYMUPLly93fW61WhUaGur6PyYlJUU5OTnKyMjweI/g4GC3x6/ewOLqEODqMPXqkPC3ypcvf+0HuIawsDC3x6+uobB+8ur7bQBstVrVqVMnrVy5UuvXr88XAOZt/tGkSZN8m4dI/wtS09PTC3yvueNu5qnk+bnciYqKUlRUlMfzCQkJSkpKuu77FSdM5y/+bsf3ltVqld1uV3JycokNs3Fr7Ha7rFarcnNzS+x4hlvHWACJ8QCMBbiCsQCMBcVPYZvLeuKVALB+/frauXNngY0UmjRpolOnTrnWdPutbdu2SfIcghVnO3fudIV/Dz74oCIiIlStWrV8s6peffVV7du3r8Qm5t6cIda9e3etXLlSMTExSkpKkt1uV25urjZs2CCp4Ou/kly/fRo8eLCeeOKJm+6bmW8AAAAAAMDMvJJ8tGrVSk6nU7t37853PG9m15YtW7Ry5cp857Zu3apPPvlEhmGoefPm3ijLqzZu3ChJuuuuu/Tcc8+pRo0aBYKlixcvFnm/V89eK+zV4sLO3a4aLly4UOD6PI0bN1aVKlWUm5vrWvNvz549SkxMlJ+fnzp37lygTbly5SSV3BmjAAAAAAAAt4NXAsB7771X0pVNGq42aNAg1wYPffr00YABAzR69GgNGDBA3bt3V3Z2tiRpyJAh3ijLq/LCLU9r+CUkJOjMmTNF3m+VKlVcm27Exsa6vcbpdGrv3r1F3vfVNZQpU0aSCoS+V/v5558lXZkh6k7eLL+8GaJ5QWCbNm1c979a48aNJV2ZfclaFAAAAAAAAO55JQB8+OGHFRgYqDNnzuibb75xHa9atareeecdOZ1O5eTkaOHChfrHP/6hhQsXujbLePDBBzV06FBvlOVVecHmyZMn3Z7/9NNPvfLqr2EY6tSpkyRp2bJlbte5W7duXaE71xZlDcuXL1daWlqBa/bt2+cKAN3txCv9LwA8dOiQjh496tpZuHv37m6v79mzpywWi+Lj4/XVV18VWuPVG6cAAAAAAACUJl4JAMuUKaNLly4pPT1dvXr1ynfud7/7nRYsWKAGDRrI6XS6/pQpU0Yvv/zyNYOc4qpFixaSpB07duQLNC9cuKD33ntPa9ascTuLrSg88cQTCggI0Llz5zRhwgRXCJmdna3Vq1dr+vTprlmC3tK/f38FBwcrISFBY8eOdW304nA4tHXrVr355ptyOp1q2LChOnTo4PYeNWrUUIMGDSRJ7777rlJTU2Wz2XTPPfd4vL5v376SpE8++UQffPBBvlmWWVlZ2r9/v2bOnKlnn322KB8XAAAAAACgxPDKJiCS5O/v7/Fc//791b9/fx09elRnz56VzWZT48aNC21T3PXs2VOrV6/WL7/8otmzZ2vu3LkKDg527WwcGRmpmJgYj6/p3ooqVapo1KhReuuttxQbG6vnnntONptNmZmZysnJUePGjXX33Xfryy+/LPK+81SqVEmvvvqq3nzzTR08eFAjR45USEiIcnJyXGFo9erV9eqrrxa6XXW3bt106NAhxcXFSZI6duxY6PfFoEGDlJOToyVLlmjFihVasWKFgoODZbValZaW5no1+Ga2yAYAAAAAADCDWwoAX3/9dUnSU089pUaNGt1w+zp16qhOnTq3UkKx4e/vr4kTJ2rBggXatGmTEhISZLVa1aJFCz366KO65557FBMT47X+O3bsqLffflsLFizQ3r17lZmZqapVq6pLly7q16+fvvjiC6/1nadly5aaPn26Fi5cqF27dikhIUF+fn6qX7++OnXqpEcffVSBgYGF3qNLly6aNWuWK7hzt/vv1SwWi4YNG6Zu3bpp5cqV2rt3ry5cuKDs7GyVK1dONWvWVNOmTdWlS5cie04AAAAAAICSxHDewsJ0FotFhmFo8eLFioiIcB3v0aOHDMPQxIkT1bFjxyIpFCgJEhISfF3CTbPb7Ro0aJCvy0Ahpk2b5vU+rFar7Ha7kpKS5HA4vN4fih+73S6r1SqHw6GkpCRflwMfYSyAxHgAxgJcwVgAxoLiJzw8/IbbeOUV4HXr1skwjBIdhgAAAAAAAABmcEubgAQEBEiS211fAQAAAAAAAPjeLQWAFStWlCTt3r27SIoBAAAAAAAAULRu6RXge+65R1999ZXee+89lStXTi1btlRQUJDrfGxsrMqVK3dT9+7ateutlAYAAAAAAABAtxgA/v73v9dXX32ltLQ0jR49Ot85p9Op11577abuaxiGcnJybqU0AAAAAAAAALrFV4Dvv/9+/fOf/5S/v7+cTqfrT56rj93oHwAAAAAAAAC37pZ3Af6///s/DRo0SN9//71OnDihzMxMTZgwQYZhaMCAAWrcuHFR1AkAAAAAAADgJtxyAChJlStX1tNPP+36fMKECZKkgQMHKiIioii6AAAAAAAAAHATbukV4MLwGi8AAAAAAADge0UyA/C3jhw5IkmqVKmSN24PAAAAAAAA4Dp5JQCsXbu2N24LAAAAAAAA4AZ57RVgAAAAAAAAAL7nlRmAc+bMueV7DB48uAgqAQAAAAAAAEo3rwSAQ4cOlWEYN93eMAwCQMAHoqOj5XA4lJSU5OtSAAAAAABAEfFKACixCzAAAAAAAABQHHglAJw1a9Y1r3E4HEpISNDmzZu1cuVKORwOPfnkk3rggQe8URIAAAAAAABQKnklABwyZMgNXf/LL7+oX79++vLLL/XII48oMjLSG2UBAAAAAAAApU6x2AX4jjvu0DfffKPg4GA9++yz+vXXX31dEgAAAAAAAGAKxSIAlKTq1atr8ODBSktL07///W9flwMAAAAAAACYgtc2AbkZbdu21fTp0/X111/7uhSgVOL1e+DmTZs2zdclAAAAAIBbxWYGoCQFBgZKkk6dOuXjSgAAAAAAAABzKFYBYExMjCQpICDAx5UAAAAAAAAA5lBsAsC4uDj95z//kWEYuvPOO31dDgAAAAAAAGAKXlkD8Pjx49d1XVZWlk6dOqXvv/9e06dP18WLF2UYhgYOHOiNsgAAAAAAAIBSxysBYJ06dWQYxg21cTqdkqR27drp97//vTfKAgAAAAAAAEodr70C7HQ6b+iPn5+f/t//+3/6+uuv5e/v762yAAAAAAAAgFLFKzMAhwwZcl3XBQYGym6366677lKvXr1UuXJlb5QDAAAAAAAAlFpeCQBnzZrljdsCAAAAAAAAuEHFZhdgAAAAAAAAAEWPABAAAAAAAAAwMQJAAAAAAAAAwMS8sgagO1lZWbp48aIyMjKu6/patWp5uSIAAAAAAADA/LwaAB45ckTvvvuuVq1apbi4ODmdzutqZxiGcnJyvFkaAAAAAAAAUCp4LQBcsGCBhg0bpvT0dEm67vAPJd/UqVO1Zs0a9ejRQy+99JKvywEAAAAAACjVvBIA7tmzR4MGDZLD4ZDT6VRQUJDatGmjGjVqKDAw0BtdAgAAAAAAAHDDKwHgW2+9pZycHBmGoeHDh+utt95SWFiYN7pCMWS321W9enXZ7XZflwIAAAAAAFDqeSUAXL9+vQzDUPfu3TVjxgxvdIFibMiQIRoyZIivywAAAAAAAIAkizduGh8fL0l68sknvXF7AAAAAAAAANfJKzMAw8LCdP78eZUvX94bt0cxd61NQA4dOqRly5Zp7969SkpKkr+/v2rUqKEuXbrooYceUkBAgMd730zb4cOHKz4+XiNHjlS7du20YMEC/fjjj7pw4YJCQ0PVqlUrDRw4UBUrVizKLwMAAAAAAECx4JUAsEmTJlq/fr1OnDjhjdujBPvss880f/58167QwcHBysjI0MGDB3Xw4EGtW7dOEyZMUNmyZYu0rSRdvnxZf/7zn3XmzBkFBATIz89PiYmJ+v7777V161ZNmjRJ9erV897DAwAAAAAA+IBXXgEePHiwnE6nFi1a5I3bo4RauXKlPvvsM5UpU0bPPvusPv30Uy1YsEBffPGFxo0bp2rVqikuLk5Tp04t0rZ5FixYoLS0NP3tb3/T559/rgULFujNN99UlSpVlJKSosmTJyszM9N7XwAAAAAAAAAf8MoMwCFDhuiTTz7Rhg0b9O9//1svvPCCN7pBCZKWlqY5c+bIz89P48aNU6NGjVzn/P391bp1a1WrVk0vvviiduzYobi4ONWvX/+W2/62hjfffFNNmjRxHbvrrrs0fvx4vfDCCzp79qxWr16t3r17e3yOefPmKTo62uP5gQMHKjIy8oa+NsWFxeKV3wcApYZZdj7PGwssFotpngk3zjAMSVeWdcmbeY/Sh/EAjAWQGAvAWGAWXgkADcPQokWL1K9fP7300kvatWuX/vSnP6lp06be6A4lwKZNm5SWlqbmzZvnC/CuVrVqVd1xxx2KiYnRrl27XCHerbS9WpMmTfKFf3mqVaumzp07a+3atdq0aVOhAWBqaqprkxt30tLSZLVaPZ4HYF5m+7tvGIbpngk3jl8OQWI8AGMBrmAsAGNByeaVADBvHbWcnBw5nU7Nnj1bs2fPls1mU/ny5a/5TWMYhuLi4rxRGnzkwIEDrv8dPHiwx+vS0tIkSefPny+StlcrLIC+++67tXbt2mt+39lsNlWqVMnj+ZCQEDkcjkLvUVwxmAO3pqT+3f8ti8UiwzDkdDqVm5vr63LgI4ZhyGKxKDc3l9/0l2KMB2AsgMRYAMaC4uhmwnivBIBHjx51TRHNGygkKSUlRSkpKddsn9cW5pGUlCRJyszMvK519q6+5lbaXq2wXakrVKgg6UqImJ2dLX9/f7fXRUVFKSoqyuN9EhISXPWWNEznB25NSf27/1t2u11Wq1W5ubmmeSbcOKvVKrvdruTkZNOE27hxjAdgLIDEWADGguIoPDz8htt4JQCsVasWIR7yyRskHnzwQT333HO3rS0AAAAAAEBp57UZgMDVypUrJ8nz67neanu1xMTEa54LCQnxOPsPAAAAAACgJGLRL9wWd955pyRp3759rrX6bkfbq+3du9fjudjYWElyu3kIAAAAAABASUYAiNuiU6dOCg4OVnp6uubMmVPotRkZGcrOzi6StleLjY3V/v37Cxw/e/asNm7c6OoLAAAAAADATAgAcVuEhoZq6NChkqSVK1fqrbfeyveqeE5OjuLi4jRv3jyNGDFCycnJRdL2aiEhIXrzzTe1fft21+5V+/bt0/jx45WVlaUqVaqoZ8+eRfrcAAAAAAAAvuaVNQABdx566CFlZGRo9uzZ2rBhgzZs2KCAgAAFBgYqNTU135byv91E5lba5nnyySe1atUqTZw4UQEBAbJarUpPT5cklSlTRq+++qoCAwO98OQAAAAAAAC+c1sCwC1btmjr1q06efKkLl26dM1tow3D0EcffXQ7SsNt1rdvX7Vt21YrVqzQ7t27lZCQoLS0NIWGhqpGjRq666671KlTJ1WoUKFI20pXZhK+8847WrBggbZu3arExESVL19eLVu2VGRkpCpWrOjtxwcAAAAAALjtvBoArly5UqNGjdKvv/56w20JAEuuvIDX02661atX17PPPntT976VttKVmX7Dhg3TsGHDbvoeAAAAAAAAJYnXAsCPP/5Yzz77rJxOp5xOZ6HXGoaR7xpPr3CiZEhMTJQkhYWF+bgSAAAAAAAAeGUTkJMnT+q5555Tbm6uKlasqI8++si1+6phGJoxY4ZiY2O1bNkyPffccwoJCZFhGHrmmWd0+PBhHT582Btl4TbYt2+fDhw4IElq3Lixj6sBAAAAAACAV2YAvv/++8rKypK/v7++/fZbNWvWLN/5SpUqqUmTJmrSpIkefvhhjRo1So8++qg++eQTlS1bVv/617+8URa8aMOGDXrvvfdcm2rUqVNHLVu29HFVAAAAAAAA8MoMwDVr1sgwDPXp06dA+OdOvXr1tGrVKoWEhGjatGn64YcfvFEWvCgrK0uZmZmy2+3q2bOnJkyYIKvV6uuyAAAAAAAASj2vzACMi4uTJHXt2tXt+ezs7ALHatWqpaioKH3wwQf6+OOPPbZF8dSzZ0/17NnT12W4NXPmTF+XAAAAAAAA4DNemQGYnJwsSapSpUq+44GBgZKk1NRUt+06dOggSdq0aZM3ygIAAAAAAABKHa8EgEFBQZKknJycfMfLli0r6comIe7kvTJ69uxZb5QFAAAAAAAAlDpeCQBr1qwpSUpISMh3vGHDhpKkbdu2uW2Xt1MwAAAAAAAAgKLhlQAwb+OPffv25TveoUMHOZ1Off311zp8+HC+c4mJiZoxY4YMw1CDBg28URYAAAAAAABQ6nglAOzataucTqfWrVuX73hUVJQMw1B2dra6d++u999/X99++63ef/99tWnTxjVj8PHHH/dGWQAAAAAAAECp45UAMCIiQpJ04MAB7dmzx3W8efPmGj58uJxOp06dOqUXXnhBDz30kF544QUdO3ZMklS3bl299NJL3igLAAAAAAAAKHX8vHHT6tWra+3atcrIyFC5cuXynXv//ffl5+enDz74QLm5ufnOtWvXTvPnz1doaKg3ygIAAAAAAABKHa8EgJLUrVs3t8etVqumT5+uv/71r/r+++919uxZ2Ww23XPPPWrfvr23ygEAAAAAAABKJa8FgNdSo0YNDR061FfdA3AjOjpaDodDSUlJvi4FPmK1WmW325WUlCSHw+HrcgAAAAAARcArawACAAAAAAAAKB4IAAEAAAAAAAAT8+orwImJiZo1a5a+/vpr7du3T0lJScrMzLxmO8MwlJOT483SAAAAAAAAgFLBawHgihUrNHToUCUmJkqSnE6nt7oCAAAAAAAA4IFXAsCYmBg9/vjjysnJkdPplGEYqlOnjqpUqaLAwEBvdAkAAAAAAADADa8EgJMmTVJ2drYMw9DgwYM1adIk1ahRwxtdAShCkZGRvi4BAHAN06ZN83UJAAAAKGG8EgD+8MMPMgxD999/vz755BNvdAEAAAAAAADgOnhlF+Dk5GRJ0oABA7xxewAAAAAAAADXySsBYPXq1SVJNpvNG7cHAAAAAAAAcJ28EgC2bdtWknTgwAFv3B4AAAAAAADAdfJKAPjHP/5RTqdTs2fPVmZmpje6AAAAAAAAAHAdvBIAduzYUa+99pqOHDmiAQMGKCUlxRvdAAAAAAAAALgGr+wCLEkTJkxQWFiYxowZo4YNG2rw4MFq27atKlSoIIvl2rlj165dvVUaAAAAAAAAUGp4LQCUpNatW6thw4aKjY3V22+/fd3tDMNQTk6OFysDAAAAAAAASgevvAIsSX//+9/Vo0cP7d27V4ZhyOl03tAfAAAAAAAAALfOKzMAv/vuO/3tb39zfd6wYUN16tRJVapUUWBgoDe6BAAAAAAAAOCGVwLAvNd9/f39NXPmTA0aNMgb3QAAAAAAAAC4Bq+8AhwTEyPDMPTMM88Q/gEAAAAAAAA+5JUA8PLly5Kk7t27e+P2AAAAAAAAAK6TVwLAGjVqSJIcDoc3bl9qjB49WhEREYqOjvZ1KcXG1KlTFRERoalTpxbpfYcPH66IiAitXr26SO8LAAAAAADga14JAB944AFJ0vbt271xewAAAAAAAADXySsB4IsvvqiQkBB9/PHHOn78uDe6AIpUlSpVVL16dYWEhPi6FAAAAAAAgCLllQCwfv36mjt3rnJyctSjRw/9+OOP3ugGKDKTJk3Sf/7zH3Xo0MHXpQAAAAAAABQpP2/c9PXXX5ck9erVS8uWLVPHjh3VqlUrtW/fXhUqVJDFcu3ccezYsd4oDQAAAAAAAChVvBIAjh8/XoZhSJIMw5DT6dRPP/2kn3766brvQQCYX25urlauXKnvv/9ep06dkp+fnxo0aKD+/furWbNmruuio6M1f/581a1bV++++67H+8XGxmr06NHy8/PTRx99JLvdLunKZhjx8fEaOXKkevbs6batp2vOnTunESNGSJI+/PBD+fn5acGCBdqxY4cuXryocuXKqU2bNoqMjFS5cuU81rZ7924tWrRIBw8elMPhULVq1XTfffepd+/ehX6NEhMTtWHDBu3evVtnzpzRhQsXJEkVK1ZU69at1adPH5UvX/6GngkAAAAAAKCk80oAKElOp7PQzwuTFx7iitzcXE2aNEk7duyQn5+f/P39lZqaqt27d2vPnj169dVX1b59e0lXZl1+/vnnOnLkiA4dOqQGDRq4ved3330nSWrTpo0r/CtKx44d07Rp03Tp0iUFBwfL6XQqISFBX3/9tX7++WdNmTJFZcqUKdBu6dKlmjlzputzm82mo0ePasaMGYqNjVVQUJDHPufMmaM1a9ZIkvz8/BQcHKzU1FSdOHFCJ06c0Nq1a/X666+rbt26Rf68AAAAAAAAxZVXAsC1a9d647al1sqVK2UYhl5++WW1a9dO/v7+OnLkiKZMmaJjx47pgw8+0D333COr1aqKFSuqZcuW2rlzp7777ju3AWBaWpo2b94sSbr//vu9UvPUqVNVr149jRgxQrVr11Z2drbWrVun//73vzp79qwWLlyoIUOG5Guzf/9+ffTRR5Kk9u3ba8SIEapYsaIyMjK0YsUKzZ07V8HBwR77rFatmoYNG6bWrVurWrVqslgsysnJ0S+//KJZs2bp4MGDeuedd/Tvf/+bkBkAAAAAAJQaXgkAu3Xr5o3bllopKSmaPHmymjRp4jpWt25djRw5UqNGjdKFCxe0f/9+3X333ZKkBx54QDt37tQPP/ygYcOGKSAgIN/9fvjhB2VmZio8PFwtW7b0Ss3ly5fXuHHj5O/vL0ny9/dXr169dPjwYa1YsUIbN24sEABGR0fL6XSqUaNGeuWVV2S1WiVJQUFB6tevn7KysvTZZ5957HPAgAEFjvn5+emuu+7S+PHj9Yc//EHHjx/X3r17XV+rGzVv3jxFR0d7PD9w4EBFRkbe1L197XrW5gQA+J43Zu7/Vt4vysLCwm7oLQ6YS97PBhaL5bZ836H4YSyAxFgAxgKz8NorwCg6TZo0yRf+5WnQoIHCw8OVkJCg48ePu0Kte+65R+XLl1diYqI2b96s7t2752uX9/pvjx49XCFbUXvsscdc4d/V2rdvrxUrVujcuXPKyMhwvdJ7+fJlxcTESJL69evntq7HHntMCxcuVFZW1g3XU6ZMGTVu3Fg//vij9u3bd9MBYGpqquLj4z2eT0tL89rXFAAASbf1vzP8cgjSlX/48fNN6cZYAImxAIwFJR0BYAnQsGFDj+fKly+vhIQEpaSkuI5ZrVb17NlTX3zxhb777rt8AeDRo0f166+/yjAM3Xfffbe95goVKrg+Tk1NdQWAhw8fdv0moWnTpm7bhoSEqEGDBtq3b5/Hfg8ePKhVq1bpwIEDunDhgjIyMgpck5iYeN3P8Vs2m02VKlXyeD4kJEQOh+Om7+9LDOYAUDLcjv/OGIYhi8Wi3NxcftNfilksFteGfrm5ub4uBz7AWACJsQCMBcXRzYTxBIAlQGHr3uW93puTk5Pv+P33368vv/xSsbGxOnv2rKpUqSLpf7P/mjVr5jrmDZ5qvnpW4NU1JycnS7ryPO42B8lzdYD4W4sXL9Ynn3ziGpAsFovKlCkjP78r3+ZpaWnKyspSZmbm9T/Ib0RFRSkqKsrj+YSEBCUlJd30/X2J6fwAUDLcjv/OWK1W2e12JScnl9hfbOHW2e12Wa1W5ebmltifb3BrGAsgMRaAsaA4Cg8Pv+E2BIAmVblyZbVo0UK7du3S999/r6ioKNdGHJK8OvvPF44fP67Zs2fL6XSqffv2evLJJ1WnTp18qfiUKVO0bt06fmMBAAAAAABKFd75M7EHHnhAkrRmzRrl5ubqxx9/1OXLlxUaGqqOHTu6bZP3Gmhh6+ylpqYWea1hYWGufq9+nfm3Lly44Pb45s2blZubqypVquiVV15R/fr1C0yJvXjxYpHVCwAAAAAAUFIQAJpY27ZtVa5cOSUkJGjXrl2u13+7devmdoMOSa7Xbz0FbadPn/ZKAFivXj3XzkKxsbFur0lPT1dcXJzbcwkJCa77uHsXPjMzUwcPHiyiagEAAAAAAEoOAkAT8/PzU8+ePSVJCxYs0O7duyVJvXr18timdu3akqQff/zR7fmFCxcWcZVXhIaGqlmzZpKkRYsWuV1XYMmSJR7X77PZbJKkU6dOuX3Fd9GiRUpLSyvCigEAAAAAAEoGAkCTu//++2UYhg4cOKDc3Fw1aNBAdevW9Xh9ly5dJEnHjh3Thx9+6Hod9+LFi5oxY4bWrl2rwMBAr9QaGRnpqvWtt95yzerLyMjQ4sWLNX/+fFfQ91stWrRw1T1z5kxX2Hf58mXNmzdP8+fPV2hoqFfqBgAAAAAAKM7YBMTkqlatqmbNmrlm/91///2FXt+qVSt17txZGzdu1LJly7Rs2TLZbDalpaXJMAyNHDlSn376qeLj44u81jvvvFPDhg3TzJkztXnzZm3evFllypRRenq6HA6HOnbsqKCgIK1Zs6ZA25YtW6pDhw7asmWLli1bpuXLl7vqzs3NVa9eveRwONy2BQAAAAAAMDNmAJYCHTp0kCQFBgaqa9eu17x+1KhRGjJkiGrWrCl/f39ZLBa1bt1ab775pu69916v1hoREaGJEyeqRYsWstlsysnJUa1atfTss8/q5ZdfLrTtyy+/7KrbarXK6XSqcePGeumll/TCCy94tW4AAAAAAIDiynC6WzANpjJ58mRt3rxZPXr00EsvveTrckwt77Xlkshut2vQoEG+LgMAcA3Tpk3zeh9Wq1V2u11JSUlu1+VF6WC322W1WuVwOJSUlOTrcuADjAWQGAvAWFAchYeH33AbZgCa3IULF7Rt2zZJ0gMPPODjagAAAAAAAHC7EQCaWGZmpmbMmKGcnBw1atRId955p69LAgAAAAAAwG3GJiAmtGTJEi1btkwXL15UVlaWLBaLhg0b5uuyAAAAAAAA4AMEgCaUmpqq+Ph4BQYGqlGjRho4cCCz/wAAAAAAAEopAkATioyMVGRkpK/LAAAAAAAAQDHAGoAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYn6+LgBA8REdHS2Hw6GkpCRflwIfsVqtstvtSkpKksPh8HU58AG73S6r1cpYAAAAAJgIMwABAAAAAAAAEyMABAAAAAAAAEyMABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATYxdgAC6RkZG+LgFAIaZNm+brEgAAAACUQMwABAAAAAAAAEyMABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABMjAAQAAAAAAABMjAAQAAAAAAAAMDECQAAAAAAAAMDECAABAAAAAAAAEyMABAAAAAAAAEyMALCUGT16tCIiIhQdHe3rUorU1KlTFRERoalTp/q6FAAAAAAAgGKFABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATMzP1wXAd3Jzc7Vy5Up9//33OnXqlPz8/NSgQQP1799fzZo1c9smIyNDy5Yt05YtW3Tq1Ck5HA6Fh4erVatWevzxxxUeHl6gzblz5zRixAhJ0ocffig/Pz8tWLBAO3bs0MWLF1WuXDm1adNGkZGRKleunMd6d+/erUWLFungwYNyOByqVq2a7rvvPvXu3bvQ50xMTNSGDRu0e/dunTlzRhcuXJAkVaxYUa1bt1afPn1Uvnz56/yqAQAAAAAAlCwEgKVUbm6uJk2apB07dsjPz0/+/v5KTU3V7t27tWfPHr366qtq3759vjbx8fEaO3asTp8+LUny9/eXn5+fTp8+rdOnT2v16tUaPXq0mjdv7rHfY8eOadq0abp06ZKCg4PldDqVkJCgr7/+Wj///LOmTJmiMmXKFGi3dOlSzZw50/W5zWbT0aNHNWPGDMXGxiooKMhjn3PmzNGaNWskSX5+fgoODlZqaqpOnDihEydOaO3atXr99ddVt27dG/oaAgAAAAAAlAQEgKXUypUrZRiGXn75ZbVr107+/v46cuSIpkyZomPHjumDDz7QPffcI6vVKklyOBx68803dfr0aZUrV07PP/+82rRpI6vVqri4OE2fPl2HDh3S5MmTNW3aNFWsWNFtv1OnTlW9evU0YsQI1a5dW9nZ2Vq3bp3++9//6uzZs1q4cKGGDBmSr83+/fv10UcfSZLat2+vESNGqGLFisrIyNCKFSs0d+5cBQcHe3zWatWqadiwYWrdurWqVasmi8WinJwc/fLLL5o1a5YOHjyod955R//+979lGEYRfYUBAAAAAACKBwLAUiolJUWTJ09WkyZNXMfq1q2rkSNHatSoUbpw4YL279+vu+++W5K0ceNGxcXFyWKx6LXXXlPDhg1d7erXr68JEyboj3/8o5KSkvTFF1/oueeec9tv+fLlNW7cOPn7+0u6MouwV69eOnz4sFasWKGNGzcWCACjo6PldDrVqFEjvfLKK65QMigoSP369VNWVpY+++wzj886YMCAAsf8/Px01113afz48frDH/6g48ePa+/eva7n9WTevHmKjo72eH7gwIGKjIws9B7FlcXCkqBAcWe3273eR95YYLFYbkt/KJ7yfiEWFhYmp9Pp42rgK4wHYCyAxFgAxgKzIAAspZo0aZIv/MvToEEDhYeHKyEhQcePH88XAEpSq1at8oV/eUJDQ/Xoo49qzpw52rRpk/7whz+4nU332GOPucK/q7Vv314rVqzQuXPnlJGR4Xql9/Lly4qJiZEk9evXzxX+/faeCxcuVFZW1g18Ba4oU6aMGjdurB9//FH79u27ZgCYmpqq+Ph4j+fT0tLc1ggAReF2ji+GYTCegV8OQRLjARgLcAVjARgLSjYCwFLKXYiXp3z58kpISFBKSorrWFxcnCR53BxEkmvtv8uXL+vcuXOqUqXKdfdboUIF18epqamuAPDw4cOu3zA0bdrUbduQkBA1aNBA+/bt81jbwYMHtWrVKh04cEAXLlxQRkZGgWsSExM9ts9js9lUqVIlj+dDQkLkcDiueZ/iiMEcKP5ux/hisVhkGIacTqdyc3O93h+KJ8MwZLFYlJuby2/6SzHGAzAWQGIsAGNBcXQzYTwBYClV2Jp5AQEBkqScnBzXseTkZEn5g7rfunoH4OTkZLcBoKd+r54V6K7fgIAAt5uD5CmsrsWLF+uTTz5xDVQWi0VlypSRn9+Vb/+0tDRlZWUpMzPT4z3yREVFKSoqyuP5hIQEJSUlXfM+xRHT+YHi73aML3a7XVarVbm5uSV2PMOts1qtstvtSk5OLrG/2MKtYzwAYwEkxgIwFhRHV+cv14sAEKZ2/PhxzZ49W06nU+3bt9eTTz6pOnXq5EvLp0yZonXr1vGbDAAAAAAAYEoEgLguYWFhSkhI0IULFzxek5CQkO/6oupXkrKyspSSkuJxFqCnujZv3qzc3FxVqVIl3wYiV7t48WKR1AoAAAAAAFAcsegXrkuDBg0kybUhhzu7d++WdGVDkMqVKxdJv/Xq1XNtJhIbG+v2mvT0dNcahb+VF0rWq1fPbfiXmZmpgwcPFkmtAAAAAAAAxREBIK5Lp06dJEk//fSTfv311wLnL1++rGXLlkmSOnfu7HYH4JsRGhrq2nhk0aJFbtcbWLJkicf1+2w2myTp1KlTbl/xXbRokdLS0oqkVgAAAAAAgOKIABDXpXPnzqpfv75yc3M1ceJEbdu2zbUDVFxcnMaNG6ekpCTZbDY98cQTRdp3ZGSkDMPQgQMH9NZbb7lm9WVkZGjx4sWaP3++K+j7rRYtWkiSjh07ppkzZ7rCvsuXL2vevHmaP3++QkNDi7ReAAAAAACA4oQ1AHFdrFar/vrXv2rs2LE6ffq0Jk2apICAAFmtVqWnp0u6ssPvq6++qooVKxZp33feeaeGDRummTNnavPmzdq8ebPKlCmj9PR0ORwOdezYUUFBQVqzZk2Bti1btlSHDh20ZcsWLVu2TMuXL5fNZlNaWppyc3PVq1cvORwOt20BAAAAAADMgBmAuG6VKlXS1KlTFRUVpfr168tqtSonJ0dVq1bVI488ovfee0/Nmzf3St8RERGaOHGiWrRoIZvNppycHNWqVUvPPvusXn755ULbvvzyyxoyZIhq1qwpq9Uqp9Opxo0b66WXXtILL7zglXoBAAAAAACKC8PpbmE0ADfl6p2QSxq73a5Bgwb5ugwAhZg2bZrX+7Db7bJarXI4HEpKSvJ6fyierFar7Ha7kpKS3K6/i9KB8QCMBZAYC8BYUByFh4ffcBtmAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAm5ufrAgAUH9HR0XI4HEpKSvJ1KfARq9Uqu92upKQkORwOX5cDAAAAACgCzAAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABMjAAQAAAAAAABMjF2AAbhERkb6ugQAAAAUI9HR0b4uAQBQBJgBCAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJiYn68LQOmQnp6u+fPna+vWrUpISFB2drYkaenSpT6u7IqpU6dqzZo16tGjh1566SVflwMAAAAAAFBkCABxW0yePFm7du2SJAUFBclms/m4IgAAAAAAgNKBABBed/z4cVf49+qrr6pjx44+rggAAAAAAKD0YA1AeN3x48clSaGhoYR/AAAAAAAAtxkBILwuMzNTkhQcHOzjSgAAAAAAAEofXgGG10RHR2v+/Pmuz+Pj4xUREeH6fOTIkerZs6ck6dKlS/rqq6+0fft2nTt3TpJUuXJltW3bVn369FFoaGiB++/Zs0djxoyRdGUzkQMHDuirr77S/v37lZycrIcfflgjRoxwXb97924tWrRIBw8elMPhULVq1XTfffepd+/eXnl+AAAAAACA4oAAEF4THByscuXKKSsrS2lpabJYLCpbtqzrfEBAgCTp8OHDGj9+vC5evChJCgwMlCQdO3ZMx44d0/fff6/x48erbt26HvvasGGDpkyZIofDIZvNJosl/+TWpUuXaubMma7PbTabjh49qhkzZig2NlZBQUFF9dgAAAAAAADFCgEgvKZv377q27evVq9erXfffVfh4eH5QjhJSk1N1aRJk3Tx4kVVq1ZNf/zjH3X33XdLujLD79///rfOnj2rN954Q9OmTVNISIjbvt577z21a9dOzzzzjCpXriyHw6GEhARJ0v79+/XRRx9Jktq3b68RI0aoYsWKysjI0IoVKzR37lxeTwYAAAAAAKZFAAifWrFihRISEhQcHKzXX39dlSpVcp1r2rSpJkyYoBdeeEHx8fFatWqV+vXr5/Y+derU0csvv+ya+We1WlW5cmVJV15FdjqdatSokV555RVZrVZJUlBQkPr166esrCx99tln11XvvHnzFB0d7fH8wIEDFRkZeV33Km5+O2sSAAAAkKSwsDA5nU5flwEfyft3gsVikd1u93E18AXDMCQxFpR0BIDwqU2bNkmS7r333nzhX56qVauqR48e+vrrr7VhwwaPAWCfPn3cBliXL19WTEyMJKlfv36u8O9qjz32mBYuXKisrKxr1puamqr4+HiP59PS0tz2AQAAAJRU/KIY0pUQiH/rlG6MBSUbASB8Jjs7W8eOHZMkNWvWzON1zZs319dff62jR48qJydHfn4Fv20bN27stu3hw4ddv6Fo2rSp22tCQkLUoEED7du375o122w2t0Hl1fdyOBzXvE9xxGAOAAAAd3Jzc5n1U4pZLBYZhiGn06nc3FxflwMfMAxDFouFsaAYuZkwngAQPpOSkuL6D0iFChU8Xpd3Ljc3V5cvX3Y77fzqzUWulpycLOnKhiNlypS5Zh/XEhUVpaioKI/nExISlJSUdF33Km6Yzg8AAAB3kpOTS+wvuXHr7Ha7rFarcnNzS+y/dXBrrFar7HY7Y0ExEh4efsNtmPIDU2AqOgAAAAAAgHsEgPCZMmXKuF47vXDhgsfr8s5ZLBaFhobeUB9hYWGSpKysLKWkpFyzDwAAAAAAALMhAITP+Pv7q3bt2pLk2qjDnd27d0u6stOvu/X/ClOvXj3XjkWxsbFur0lPT1dcXNwN3RcAAAAAAKCkIACET3Xu3FmStHbtWp0/f77A+TNnzmjNmjWSpC5dutzw/UNDQ10bjCxatMjtegVLlixRZmbmDd8bAAAAAACgJCAAhE/17t1b4eHhSk9P19ixY/PN0ouNjdW4ceOUlZWlSpUq6aGHHrqpPiIjI2UYhg4cOKC33npLCQkJkqSMjAwtXrxY8+fPl81mK5LnAQAAAAAAKG7YBRg+ZbPZNGbMGI0fP16nTp3S6NGjFRQUJKfT6ZqVZ7fbNWbMGIWEhNxUH3feeaeGDRummTNnavPmzdq8ebPKlCmj9PR0ORwOdezYUUFBQa6ZhgAAAAAAAGZCAAifq1+/vqZPn67Fixdr27Ztio+PlyTVqlVLbdu2VZ8+fVS2bNlb6iMiIkK1a9fWwoUL9euvvyonJ0e1atVSr1691Lt3b02bNq0oHgUAAAAAAKDYMZxOp9PXRQBmkfd6cUlkt9s1aNAgX5cBAACAYiQ6OlpJSUlu19JG6WC322W1WuVwOJSUlOTrcuADVqtVdrudsaAYCQ8Pv+E2rAEIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmJifrwsAUHxER0fL4XAoKSnJ16XAR6xWq+x2u5KSkuRwOHxdDnzAbrfLarUyFpRyjAWQGA9wZSwAAJgDMwABAAAAAAAAEyMABAAAAAAAAEyMABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATYxdgAC6RkZG+LgEAAAAAAK+aNm2ar0u47ZgBCAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAKGD58uCIiIrR69erb1ueePXsUERGhiIiI29YnAAAAAABAaUAACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAm5ufrAnD7OZ1OffPNN/r222914sQJBQQEqF69eurTp49at25daNuMjAwtW7ZMW7Zs0alTp+RwOBQeHq5WrVrp8ccfV3h4uMe2Fy9e1Pz587Vt2zYlJycrLCxMrVu31lNPPXVdde/cuVNfffWVDh06JIfDoapVq+q+++7Tww8/rGnTpmnNmjXq0aOHXnrpJbftDx06pGXLlmnv3r1KSkqSv7+/atSooS5duuihhx5SQEDAddUBAAAAAABQkhAAljIOh0Nvv/22Nm3aJEmyWCzy8/NTTEyMYmJiNGLECI9t4+PjNXbsWJ0+fVqS5O/vLz8/P50+fVqnT5/W6tWrNXr0aDVv3rxA25MnT2rMmDFKSkqSJAUEBCglJUXffPONtm7dqkGDBhVa98KFCzV79mzX5zabTceOHdOHH36o2NhYBQcHF9r+s88+0/z58+V0OiVJwcHBysjI0MGDB3Xw4EGtW7dOEyZMUNmyZQu9DwAAAAAAQElDAFjKLF68WJs2bZJhGBo4cKAiIiIUEhKixMREffzxx/r4449ltVoLtHM4HHrzzTd1+vRplStXTs8//7zatGkjq9WquLg4TZ8+XYcOHdLkyZM1bdo0VaxY0dU2JydH//jHP5SUlKTw8HC98MILatGihQzD0J49ezRt2jTNmjXLY82xsbGaM2eOJKlz5876f//v/yk8PFyZmZn6+uuvNWvWrEIDwJUrV+qzzz5TaGioBg4cqG7duik0NFTZ2dmKiYnRhx9+qLi4OE2dOlVjx469ha8uAAAAAABA8UMAWIpkZmbqyy+/lCT16dMn36u35cuX16hRo3Tx4kXFxMQUaLtx40bFxcXJYrHotddeU8OGDV3n6tevrwkTJuiPf/yjkpKS9MUXX+i5555znd+wYYOOHTvmalu3bl3XuaZNm2rcuHEaOXKkx7o/++wzOZ1ONWnSRP/3f/8ni+XK0pWBgYF67LHHlJWVpblz57ptm5aWpjlz5sjPz0/jxo1To0aNXOf8/f3VunVrVatWTS+++KJ27NihuLg41a9f32Mt8+bNU3R0tMfzAwcOVGRkpMfzxVne1xUAAAAAADOz2+2+LuG241/8pciuXbuUlpYmq9Wqxx9/vMB5i8Wi/v37u227ceNGSVKrVq3yhX95QkND9eijj0qSNm3a5HrVVpI2b94sSWrTpk2+8C9PjRo11KlTJ7f9Xrp0SbGxsZKkxx9/3G1I9eijjyooKMht+02bNiktLU133XVXvvDvalWrVtUdd9wh6crXqDCpqamKj4/3+Cfv61sS/xiGUeizAwAAAABgBr7+9/et/rkZzAAsRQ4dOiRJqlmzpsLCwtxe06RJE1mtVjkcjnzH4+LiJEnNmjXzeP+8tf8uX76sc+fOqUqVKvnaNm3a1GPbpk2bat26dQWOHzlyxBUmNmnSxG3boKAg1a9fX3v37i1w7sCBA67/HTx4sMf+09LSJEnnz5/3eI10Ze3BSpUqeTwfEhJS4GtXUjADEAAAAABQGpTUf7fnuZkQkACwFLl06ZIkqUKFCh6v8ff3V9myZV2bdeRJTk6+ZturdwBOTk52BYDX09bTuby2AQEBKlOmjMf25cuXd3s87zkyMzOVmZnpsX2ea10TFRWlqKgoj+cTEhIKfO1KitI4BRoAAAAAUPqU1H+357k6f7leBIAwtbxU/8EHH8y3LiEAAAAAAEBpwTt/pUjZsmUlSYmJiR6vyc7Ods0UvFreK8MXLlzw2DYhIaHA9dfb1tO5vLZZWVlKTU312N5Tel+uXDlJ1361FwAAAAAAwKwIAEuRBg0aSJKOHz/uNuSTpH379rl9Fz6vrbsdgvPs3r1b0pUNQSpXruw6nrerrrs1+vLkbfTxW1dvGrJv3z6312RmZrrWN/ytO++809U2b50/AAAAAACA0oQAsBRp2bKlbDabHA6HFi1aVOC80+nUl19+6bZt3i69P/30k3799dcC5y9fvqxly5ZJkjp37pxvR9m8ttu3b9fRo0cLtD19+rQ2bdrktt+yZcvq7rvvliQtWrQo3+7CeZYvX66MjAyPdQcHBys9PV1z5sxxe02ejIwMZWdnF3oNAAAAAABASUMAWIoEBgaqX79+kqTFixdrwYIFrllxiYmJ+te//qW9e/cqMDCwQNvOnTurfv36ys3N1cSJE7Vt2zbl5uZKurLL77hx45SUlCSbzaYnnniiQNvatWvL4XDo9ddf165du1xBXmxsrMaPHy9/f3+PdT/11FOSrswgfOedd1yvC2dmZmrZsmWaN2+ebDab27ahoaEaOnSoJGnlypV666238oWQOTk5iouL07x58zRixAjXpiMAAAAAAABmYTjdTamCaTkcDr311lvavHmzJMlisSgkJMS1vt6IESP01VdfKT4+XiNHjlTPnj1dbePj4zV27FidPn1a0pWdea1Wq9LT0yVJwcHBGj16tJo3b16g35MnT2rMmDGutfoCAwNlGIYyMjIUFhamQYMG6b333pMkLV26tED7zz//XPPmzZMkGYYhm82m9PR0ORwOde7cWf7+/lq7dq3HzT4WL16s2bNnu0LLgIAABQYGKjU11XVMkmbNmlXobsXXcvU6iCWN3W7XoEGDfF0GAAAAAABeNW3aNF+XcEvYBRjXZLVa9corr+ibb77RN998oxMnTkiSmjVrpj59+qh169b66quv3LatVKmSpk6dqqVLl2rLli06ffq0cnJyVLVqVbVu3Vp9+/ZVxYoV3batUaOGpk6dqvnz52v79u26ePGiypUrp27duumpp55yhYqeDBgwQPXr19fixYt16NAh5eTkqHbt2urVq5d69+6tN954Q5I8zgTs27ev2rZtqxUrVmj37t1KSEhQWlqaQkNDVaNGDd11113q1KnTLYV/AAAAAAAAxREzAFHiOZ1ODRs2TAkJCXrppZfUo0cPn9XCDEAAAAAAAIq30jgDkDUAUeKtW7dOCQkJslgsbl8/BgAAAAAAKM14BRglwieffKKqVauqTZs2Kl++vAzD0KVLl7R69Wp9+umnkqRu3brxCi8AAAAAAMBvEACiRIiLi9OiRYskSf7+/q4NPPLeYG/UqJFGjBjhyxIBAAAAAACKJQJAlAiPP/64KleurF9++UWJiYlKS0tTmTJlVLt2bXXu3Fm9evWSv7+/r8sEAAAAAAAodggAUSK0bNlSLVu29HUZAAAAAAAAJQ6bgAAAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJGU6n0+nrIgCzSEhI8HUJN81ut8tqtcrhcCgpKcnX5cBHrFar7Ha7kpKS5HA4fF0OfICxABJjAa5gPABjASTGAjAWFEfh4eE33IYZgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIn5+boAAMVHZGSkr0sAAADXYdq0ab4uAQAAlCDMAAQAAAAAAABMjAAQAAAAAAAAMDECQAAAAAAAAMDECAABAAAAAAAAEyMABAAAAAAAAEyMABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABMjAAQAAAAAAABMjACwGNmzZ48iIiIUERHh61KKlalTpyoiIkJTp071dSkAAAAAAAAljp+vCwB8ZcmSJUpNTVX79u1Vr149X5cDAAAAAADgFQSAKLWWLVum+Ph4Va5cmQAQAAAAAACYFq8AAwAAAAAAACZGAAgAAAAAAACYGK8A3wZnzpzRsmXLtHv3biUkJMjpdCo8PFwNGzZU165d1bp1a7ftTpw4oc8//1wxMTG6fPmywsPD1alTJw0YMEDBwcEe+0tMTNSSJUu0c+dOnT9/Xg6HQ5UrV1br1q3Vt29f2e1217XZ2dkaPHiwUlNT9ec//1ndunXzeN8333xTW7ZsUdeuXfV///d/kq5sXDJmzBhJ0tKlS3XgwAF99dVX2r9/v5KTk/Xwww9rxIgRrnscOHBAS5cu1b59+3Tp0iUFBwerXr16uu+++9S1a1cZhnFDX9s8hw4d0rJly7R3714lJSXJ399fNWrUUJcuXfTQQw8pICDAdW10dLTmz5/v+vzdd9/Vu+++6/q8UqVKmjlz5k3VAQAAAAAAUNwQAHrZN998ow8++EA5OTmSpICAAAUEBOjUqVM6efKktm3bps8++6xAu59//llvvPGGMjMzZbPZlJubq7Nnz2rhwoWKjY3Vm2++KT+/gv/3bd++XW+//bbS09MlSf7+/jIMQydOnNCJEye0Zs0ajR07Vo0aNXKd79Spk7799lv98MMPHgPA1NRU7dixQ5LUvXt3t9ds2LBBU6ZMkcPhkM1mk8WSf4Lp559/rnnz5rk+t9lsSk1N1e7du7V7925t2rRJf/nLX+Tv73+Nr2p+n332mebPny+n0ylJCg4OVkZGhg4ePKiDBw9q3bp1mjBhgsqWLes6X65cOV26dEm5ubkKCQnJFxDmXQcAAAAAAGAGBIBetHXrVk2fPl2S1KZNGz399NOqX7++JCktLU2xsbFav36927b//Oc/dc8992jIkCGqXLmyMjIytHz5cs2dO1e//PKLvvvuOz300EP52hw+fFiTJ0+Ww+FQ37591bt3b1WqVElOp1PHjh3TJ598ol27dunvf/+73n//fYWEhEiSunXrpm+//Va7du3SpUuX3AZgmzZtUnZ2tsLCwtSyZUu3Nb/33ntq166dnnnmGVWuXFkOh0MJCQmSpM2bN7vCvx49emjw4MEqX7680tPTtWrVKs2ZM0dbt27VnDlzNGzYsOv+Gq9cuVKfffaZQkNDNXDgQHXr1k2hoaHKzs5WTEyMPvzwQ8XFxWnq1KkaO3asJKlv377q27evhg8frvj4eI0YMUI9e/a87j4BAAAAAABKEgJAL8nJydGHH34oSWrXrp3++te/5psRFxISorZt26pt27Zu2zdo0EB/+ctfXK/EBgUF6YknntD+/fu1fft2bdy4sUAAOHPmTGVnZ2vYsGF67LHHXMcNw1DdunX1t7/9TX/+85919OhRffvtt+rTp48k6a677lJ4eLgSEhK0ceNG9e7du0A9P/zwgySpc+fOslqtbmuuU6eOXn75ZddzWq1WVa5cWU6nU3PnzpUktW3bVi+99JKrTXBwsB5//HE5HA7NnTtXy5cvV58+fVShQgWPX9s8aWlpmjNnjvz8/DRu3DjXrEbpyszG1q1bq1q1anrxxRe1Y8cOxcXFuQLYmzVv3jxFR0d7PD9w4EBFRkbeUh++8tsZmwAAoPi6ekkXb8n72cBisdyW/lD85P1bJCwszPW2DUofxgIwFpgDAaCXxMTE6Pz58zIMQ8OGDbvhcKVfv35u18Nr166dtm/fruPHj+c7fvbsWcXGxiooKMhtgCddCcU6duyoo0ePateuXa4A0GKxqEuXLlq8eLHWr19foP2FCxcUGxsrSYWuEdinTx+3z3nkyBGdOnVKkvTkk0+6bfvYY49p0aJFSk1N1ebNm/Xoo4967CfPpk2blJaWpubNm+cL/65WtWpV3XHHHYqJidGuXbtuOQBMTU1VfHy8x/NpaWkeA1IAAICicjt/3jAMg59vSjl+UQyJsQCMBSUdAaCXHDhwQJJUo0YNValS5YbbN2zY0O3xvJlxKSkp+Y7v379fklwzAD3JysqSJNeruXm6d++uxYsX68CBAzp37pwqV67sOrdhwwbl5uaqSpUqaty4scd7ezp36NAhSVdmPTZo0MDtNQEBAbrzzju1Y8cO1/XXkvc1PnDggAYPHuzxurS0NEnS+fPnr+u+hbHZbKpUqZLH8yEhIXI4HLfcjy8wmAMAUHLcjp83LBaLDMOQ0+lUbm6u1/tD8WMYhiwWi3Jzc5n1U4oxFoCxoPi5mTCeANBLLl68KEmqWLHiTbXPW5/vt/I2q/jtD31JSUmu43l9FyYzMzPf53Xr1lWtWrV0/PhxrV+/XgMGDHCdy1un0NPmH3k8bZ5x6dIlSVL58uUL3eU3PDxckpScnHzN+qX/PXNmZmaB53Hneq65lqioKEVFRXk8n5CQ4KqrpGE6PwAAJcft+HnDbrfLarUqNze3xP58g1tjtVplt9uVnJxcYn/JjVvHWADGguInLz+5EQSAJpH3m5jq1avrP//5z03do3v37pozZ06+APDkyZOKi4uTVPjrv9LtfRVF+l8I+uCDD+q55567rX0DAAAAAACUFLzz5yV5s6mK4rXT61GuXDlJUmJi4k0n8t26dZNhGDpx4oQOHz4s6X+z/xo2bKjq1avf1H3zZgYmJiYWOl0477XksLCw67pv3jPfrq8xAAAAAABASUQA6CV56+GdPHlSZ8+evW39paenuzbsuFEVK1bUnXfeKel/wV/e7r/Xmv1XmLz1DNPS0jyu75eVleVax9DTOoG/lVfrvn37XOv83Yi815FZwwAAAAAAAJgZAaCXNGvWTBUrVpTT6dRHH33k9cVSa9So4QoBZ8+eXeh6d06nU6mpqW7P5a3zt2HDBh04cEBnzpxx7RJ8s+rUqeOaPbhgwQK31yxZskSpqamyWq3q2LHjdd23U6dOCg4OVnp6uubMmVPotRkZGcrOzs53LG+dRU9fCwAAAAAAADMgAPQSq9Wq4cOHS5J+/PFHTZo0yfVarXRlpt7GjRv197//vcj6/N3vfqeAgAAdOnRIf/3rX/Xzzz/nex34zJkzWr58uV588UVt27bN7T06deokPz8/JSQk6IMPPpAkNW/e/JY2iDAMQ4MGDZIkbdu2Te+++64SExMlXQnmFi1apE8//VSS9Mgjj7h2Or6W0NBQDR06VJK0cuVKvfXWWzp69KjrfE5OjuLi4jRv3jyNGDGiwOYitWrVkiRt2bKFEBAAAAAAAJgWm4B4UYcOHfT73/9eM2bM0I4dO7Rjxw4FBAQoMDBQKSkpcjqdstlsRdZf/fr19dprr+mf//ynDh06pLFjx8rPz0/BwcEFZsB52o03NDRUrVq10rZt21ybf1xr99/r0bFjR0VFRWnevHlavXq11qxZI5vNprS0NNfsyPbt22vw4ME3dN+HHnpIGRkZmj17tjZs2KANGza4vsapqan5Zl7+9pnvv/9+/fDDD9q3b5+ioqIUFhYmPz8/VahQQf/4xz9u+ZkBAAAAAACKAwJAL+vdu7eaNWumpUuXavfu3bpw4YIcDodq1KihRo0a3dLaeu40b95cH3zwgVauXKnt27fr1KlTSk1NVXBwsGrVqqU77rhD7dq1U/PmzT3eo3v37q4ZgoGBgWrfvn2R1DZgwAA1bdpUS5cu1f79+3Xp0iXZbDbVq1dP9913n7p27eoxmCxM37591bZtW61YsUK7d+9WQkKC0tLSFBoaqho1auiuu+5Sp06dCswsbNq0qcaMGaMlS5boyJEjunjxotdf1QYAAAAAALjdDCc7IABFJm8n45LIbre7XtUGAADF27Rp07zeh91ul9VqlcPhUFJSktf7Q/FjtVplt9uVlJSUb2khlC6MBWAsKH7Cw8NvuA1rAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAm5ufrAgAUH9HR0XI4HEpKSvJ1KfARq9Uqu92upKQkORwOX5cDH7Db7bJarYwFpRxjAQAAgLkwAxAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxdgEG4BIZGenrEgAAKNGmTZvm6xIAAAAKYAYgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgCgV9uzZo4iICEVERBQ4Fx0drYiICI0ePdoHlQEAAAAAAHgXASAAAAAAAABgYgSAKPXKli2r6tWrq2LFir4uBQAAAAAAoMj5+boAwNceeeQRPfLII74uAwAAAAAAwCuYAQgAAAAAAACYGDMAUaRSUlK0adMm/fTTTzp58qQuXLignJwcVahQQc2bN1efPn1UrVq1Au2GDx+u+Ph4jRw5Uj179nR772tdc/HiRc2fP1/btm1TcnKywsLC1Lp1az311FOF1hwdHa358+fr7rvv1t///vebe3AAAAAAAIBiigAQRWrp0qWaP3++JMlqtSokJESZmZk6c+aMzpw5o3Xr1mn06NFq0aJFkfZ78uRJjRkzRklJSZKkgIAApaSk6JtvvtHWrVs1aNCgIu0PAAAAAACgpCAARJEqX768nn76abVt21a1atWS1WqVw+HQ0aNHNW/ePO3cuVPvvPOOPvzwQwUFBRVJnzk5OfrHP/6hpKQkhYeH64UXXlCLFi1kGIb27NmjadOmadasWUXSFwAAAAAAQElDAIgi9eCDDxY4ZrVaVb9+fY0ePVovvfSSTpw4oU2bNnl81fdGbdiwQceOHZPFYtFrr72munXrus41bdpU48aN08iRI4ukr3nz5ik6Otrj+YEDByoyMrJI+rrdLBaWBAUA4FbZ7XZfl1Bk8n42sFgspnouXD/DMCRJYWFhcjqdPq4GvsJYAMYCcyAAxG3j7++vFi1a6MSJE9q/f3+RBYCbN2+WJLVp0yZf+JenRo0a6tSpk9atW3fLfaWmpio+Pt7j+bS0NFmt1lvuBwAAlExm/DnAMAxTPheuH78ohsRYAMaCko4AEEXu5MmTWr58ufbu3av4+HhlZGQU+C1BYmJikfUXFxcn6cpsP0+aNm1aJAGgzWZTpUqVPJ4PCQmRw+G45X58gcEcAIBbV1J/DnDHYrHIMAw5nU7l5ub6uhz4gGEYslgsys3NZdZPKcZYAMaC4udmwngCQBSpH374QVOnTlVOTo6kKwNFSEiI/P39JUkZGRnKyMhQZmZmkfWZnJwsSapQoYLHawo7dyOioqIUFRXl8XxCQoJrI5KShun8AADcupL6c4A7drtdVqtVubm5pnouXD+r1Sq73a7k5GRThdu4MYwFYCwofsLDw2+4DQEgikxycrKmT5+unJwc3XXXXRo8eLAaNGjgCv+kK2voff755/zWAAAAAAAA4DYhAESR2blzp9LT0xUUFKTXXntNISEhBa65ePGi27Z5r59mZWV5vH9qaqrb42FhYUpISNCFCxc8ti3sHAAAAAAAgJmx6BeKTEJCgqQrm264C/+cTqdiY2Pdti1Tpowkz0Hd6dOnPQaA9evXlyTt3bvXY22e+gUAAAAAADA7AkAUGZvNJkk6d+6csrOzC5xfs2aNTp8+7bZt7dq1JUk//vij2/MLFy702G+nTp0kSdu3b9fRo0cLnD99+rQ2bdpUaO0AAAAAAABmRQCIItO8eXMZhqHLly9r6tSprgVi09PTtXTpUk2fPl2hoaFu23bp0kWSdOzYMX344YdKSUmRdOWV4RkzZmjt2rUKDAx027Zz586qXbu2HA6HXn/9de3atcu1xmBsbKzGjx+fbx1CAAAAAACA0oQ1AFFkatSooYiICC1ZskQbNmzQhg0bZLPZlJ6ertzcXLVs2VINGzbU559/XqBtq1at1LlzZ23cuFHLli3TsmXLZLPZlJaWJsMwNHLkSH366aeKj48v0NbPz0+vvPKKxowZo4SEBI0bN06BgYEyDEMZGRkKCwvTM888o/fee+92fBkAAAAAAACKFWYAokgNGzZMzz//vOrVqyd/f3/l5uaqXr16Gj58uMaOHeva7MOdUaNGaciQIapZs6b8/f1lsVjUunVrvfnmm7r33nsL7bdGjRqaOnWqHnroIYWHh8vhcKhMmTJ64IEHNHXqVFWtWrWoHxUAAAAAAKBEMJx570oCuGV5G6GURHa7XYMGDfJ1GQAAlGjTpk3zdQlFxm63y2q1yuFwuJZ2QelitVplt9uVlJQkh8Ph63LgI4wFYCwofsLDw2+4DTMAAQAAAAAAABMjAAQAAAAAAABMjAAQAAAAAAAAMDECQAAAAAAAAMDECAABAAAAAAAAEyMABAAAAAAAAEyMABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABPz83UBAIqP6OhoORwOJSUl+boU+IjVapXdbldSUpIcDoevy4EP2O12Wa1WxoJSjrEAAADAXJgBCAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiRlOp9Pp6yIA+N68efOUmpoqm82mqKgoX5cDwEcYCwDkYTwAIDEWAGZBAAhAktS7d2/Fx8erUqVKWrlypa/LAeAjjAUA8jAeAJAYCwCz4BVgAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABPz83UBAIqHyMhIpaamymaz+boUAD7EWAAgD+MBAImxADALw+l0On1dBAAAAAAAAADv4BVgAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxdgEGSrnk5GR9+eWX2rZtmy5cuKDAwEDVr19fvXv3Vvv27X1dHoBblJKSotjYWB06dEhxcXE6dOiQkpOTJUlvvPGGmjZtes17bNmyRatWrVJcXJwyMzMVHh6ue+65R/3791fZsmW9/QgAisj58+e1ZcsWxcTE6OjRo0pMTJSfn58qVqyoFi1a6NFHH1WVKlUKvQfjAVDyHTp0SNu2bdOvv/6q06dP69KlS8rMzFRoaKjq1aunrl27qlu3brJYPM8XYiwASh52AQZKsePHj2vMmDGuMCA4OFiZmZnKzc2VJD366KMaMWKEL0sEcItWr16td9991+256wkA//vf/2rlypWSJIvFosDAQKWnp0uSypUrpzfeeEM1a9Ys2qIBFLnz589r+PDhuvpH/5CQEGVlZSknJ0eSFBAQoJdeekmdO3d2ew/GA8Ac3n//fX399deuz4OCgiRJGRkZrmN33323/va3vykkJKRAe8YCoGRiBiBQSmVnZ2vSpElKTk5W7dq1NWrUKNWtW1eZmZlasmSJPv30Uy1btkx169bVfffd5+tyAdwCu92u+vXrq0GDBqpWrZqmTJlyXe2++eYbrVy5UoZh6Omnn9Zjjz2mwMBAHTlyRFOmTNGxY8c0adIkvffee/L39/fyUwC4FXm/3GvVqpV69OihFi1aqGzZsnI4HNq/f79mzJiho0ePasqUKapRo4bq1KmTrz3jAWAed9xxh6pXr64mTZqoevXqrpDv4sWL+u677/Tpp58qNjZWH3/8sf74xz/ma8tYAJRczAAESqnly5drxowZCgwM1Pvvv6+KFSvmO5/3m73y5ctr5syZ8vPj9wVASeRwOGS1Wl2fp6SkKDIyUlLhMwCzs7M1fPhwJSUl6eGHH9bvfve7fOfj4+P1/PPPKzMzU7///e/Vu3dv7z0EgFuWmpqqc+fOqV69em7PJyUl6cUXX1RycrJ69uypkSNHus4xHgCly7x58/T5558rICBA8+fPd/07gLEAKNnYBAQopdatWydJ6tq1a4HwT5L69esnwzCUmJioPXv23ObqABSVq8O/GxETE6OkpCQZhqHHH3+8wPlKlSqpa9eukv43ngAovmw2m8fwT7oyU7h169aSpLi4uHznGA+A0qVhw4aSpKysLF2+fNl1nLEAKNkIAIFSKD09Xb/++qukK68CuVOxYkXVqFFDkrR79+7bVhuA4iEmJkaSVLNmTbe/JJCkli1bSpJ++eWXfOsGASiZ8hbudzgc+Y4zHgCly4EDByRdWRuwXLlyruOMBUDJRgAIlEInT550LQJeu3Ztj9flnTtx4sRtqQtA8ZH39/56xgin06mTJ0/elroAeE9sbKykgn/vGQ8A88vMzNTJkyc1d+5cLV68WJL08MMPyzAM1zWMBUDJxqJeQCmUmJjo+rh8+fIer8s7l5SU5PWaABQveePE9YwREuMEUNJt3bpVhw4dkiT17Nkz3znGA8Ccrl4X+Gp+fn565JFHFBUVle84YwFQshEAAqXQ1dPxAwMDPV6Xdy49Pd3rNQEoXvLGiesZIyQpLS3N6zUB8I7z589r+vTpkqR27dq51gLMw3gAmJPFYnG94puWlqasrCwZhqFHHnlEffv2LbCOMGMBULIRAAIAAAClVEpKiiZOnKjk5GRVqVJFL774oq9LAnCbhISEaM6cOZKuvLIbHx+vZcuWadmyZVq9erXGjBmjJk2a+LhKAEWFNQCBUigoKMj1cWZmpsfr8s4FBwd7vSYAxUveOHE9Y4R05R8RAEqW9PR0TZgwQUePHlX58uX1+uuvKzQ0tMB1jAeA+RmGocqVK2v48OF65plndPnyZb311lv5/m4zFgAlGwEgUApdvTbH1esB/lbeObvd7vWaABQveePE9YwREuMEUNJkZmbq9ddf1y+//KKwsDBNnDhRVapUcXst4wFQujz44IPy9/fXhQsXtHPnTtdxxgKgZCMABEqhGjVquHb0On78uMfr8s7VrFnzttQFoPjI+3t/PWOEYRiqUaPGbakLwK3LzMzUxIkTtXfvXpUpU0avv/56of+tZzwASpeAgADXbOAzZ864jjMWACUbASBQCgUHB6thw4aSpJ9++sntNQkJCTpx4oQkqXnz5retNgDFQ7NmzSRd+UE+ISHB7TW7du2SJN1xxx35lhYAUHxlZ2fr73//u2JiYhQSEqLx48erbt26hbZhPABKl/T0dF26dElS/qWAGAuAko0AECilunfvLkn64YcfdP78+QLnFy1aJKfTqfLly6tp06a3uToAvtasWTPZ7XY5nU4tXry4wPnz58/rhx9+kPS/8QRA8ZaTk6PJkydr165dCgoK0tixY9WoUaNrtmM8AMzD4XDI6XQWes2SJUuUk5MjSbrrrrtcxxkLgJKNABAopR544AFVqVJFGRkZmjhxoo4cOSLpymtBX375pVasWCFJioqKkp8fG4YDJdmlS5dcf1JSUlzHU1NT853L+2Ffkvz9/RUZGSlJWr58ub788kvXwt5HjhzRxIkTlZGRoapVq6pXr16394EA3DCHw6G3335b27dvV0BAgP72t79d9+6ejAeAeSQkJOhPf/qTvv3223yTAJxOp06cOKH//ve/+uyzzyRJHTp0UO3atV3XMBYAJZvhvFb8D8C0jh8/rjFjxig5OVnSlZ26MjIylJubK0l65JFH9Oyzz/qyRABFICIi4rque+ONNwrM+P3vf/+rlStXSpKsVqsCAwOVlpYmSSpXrpzeeOMN1gkFSoDY2FiNHj1a0pV/xNtstkKvnzNnToFjjAdAyXfu3DmNGDHC9XlAQICCgoKUkZGhrKws1/F77rlHf/nLX9y+xstYAJRMBIBAKXfx4kUtXLhQ27ZtU0JCgoKCglSvXj09/PDDat++va/LA1AEbiUAlKQtW7Zo5cqVOnz4sDIyMhQeHq62bdvqiSeeUFhYWFGXC8AL9uzZozFjxlz39UuXLnV7nPEAKNmys7P1448/KiYmRgcPHlRSUpIuXbokf39/VahQQY0aNVK3bt3UqlWrQu/DWACUPASAAAAAAAAAgImxBiAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAiREAAgAAAAAAACZGAAgAAAAAAACYGAEgAAAAAAAAYGIEgAAAAAAAAICJEQACAAAAAAAAJkYACAAAAAAAAJgYASAAAAAAAABgYgSAAAAAAAAAgIkRAAIAAAAAAAAmRgAIAAAAAAAAmBgBIAAAAAAAAGBiBIAAAAAAAACAifn5ugAAAAAAvnPx4kVNnTpVktSiRQv16dPHp/UAAICiZzidTqeviwAAAADgG0ePHlXdunUlSUOGDNEnn3zi24IAAECR4xVgAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAKVCZmamZs6cqccff1x16tSRzWZTYGCgatasqd69e+vtt9/W6dOnPbZfs2aNhg4dqgYNGqhMmTKy2Wxq0KCBhgwZotWrVxfa99GjR2UYhgzD0NChQ69Za506dWQYhurUqeP2/NChQ133O3r0qCRp7dq1GjBggGrVqqXAwEBVqlRJvXv31pIlSwqtKW/9P0maPXu2675X/1m3bt01awYAAMUXuwADAADA9NauXatBgwbp1KlTBc6dPHlSJ0+e1KpVq/Tpp59q165d+c6npaVp0KBBWrRoUYG2cXFxiouL05w5c/T4449r7ty5CgkJ8dpzuON0OvXiiy/q3//+d77j58+f16pVq7Rq1So9//zzeu+9925rXQAAoPggAAQAAICpffXVV+rfv79ycnIkSY0aNVL//v11xx13KDAwUGfOnNG2bdu0YsUKOZ3OfG0dDod69+6t9evXS5LKlCmjoUOH6p577pHFYtG2bds0a9YspaSkaNGiRUpMTNT3338vq9V6257vb3/7m6Kjo1WnTh0NGjRId955p7Kzs7V69WrNmzdPubm5mj59ujp27KjIyEhXu0qVKmnx4sWKj4/X7373O0nSvffeqxdffLFAH3ffffdtex4AAFD0CAABAABgWseOHdPgwYNd4d+ECRM0ZswYtwFdRkZGgVd5p0yZ4gr/6tSpozVr1uR7ZTYqKkp/+tOfdO+99+rYsWNat26d3nnnHb388stefKr8oqOj9eSTT2r27NkKDAx0HR88eLB69eqlQYMGSZImT56cLwAMCQlRnz59XK8QS1KtWrXUp0+f21U6AAC4TVgDEAAAAKY1efJkXb58WZL03HPPaezYsR5n5wUFBenhhx92fZ6dna0pU6ZIkgzD0Pz58/OFf3nq1q2r+fPnyzAMSVdCw6ysrKJ+FI8aNWpUIPzLExUVpXbt2kmS9uzZ4/YVaAAAYH4EgAAAADAlh8Oh6OhoSVJgYKDGjx9/Q+03b96ss2fPSpK6d+/uCtLcad++ve69915J0rlz57Rp06abK/omPPfcc27Dvzy9evVyfRwbG3s7SgIAAMUMASAAAABMKSYmRpcuXZIkdezYURUrVryh9j/++KPr4/vvv/+a1z/wwAOuj7du3XpDfd2KDh06FHq+Ro0aro+TkpK8XQ4AACiGCAABAABgSidPnnR93KRJkxtuf+bMGdfHjRo1uub1V19zdVtvCw8PL/T81bMDMzIyvF0OAAAohggAAQAAYEp5s/+kK7v33qi8tQMlyWazXfP6q/u4uq23WSz8SA8AAArHTwsAAAAwpbJly7o+TklJueH2oaGhro9TU1Ovef3VfVzd9mY4HI5bag8AAHA1AkAAAACY0tVr3+3bt++G21etWtX18a+//nrN6w8ePOj6uFq1avnOXf0a7rV2CHY6nUpMTLzeMgEAAK6JABAAAACm1KxZM4WFhUm6sqPv+fPnb6j91bv+fvvtt9e8/ptvvnHbVpLKlSvn+vjUqVOF3ufnn39WWlradVZ5665+hdjpdN62fgEAwO1DAAgAAABTslqtevrppyVJmZmZGj9+/A2179ixo2sW4Nq1a7Vt2zaP127btk1r166VJFWpUkWdOnXKdz44OFj16tVzXXv1+oS/NWXKlBuq81ZdvXbh9bzqDAAASh4CQAAAAJjWK6+84loL8P3339frr7/ucX29zMxMrVq1yvW5v7+/Ro0aJenKzLinnnpKR48eLdDu6NGjeuqpp1yz50aNGqWAgIAC1z300EOSruzE+9e//tVtDVOnTtW8efOu/wGLQPny5V0zJX/++WdmAQIAYEJ+vi4AAAAA8JZatWpp9uzZ6t+/v3JycjRu3Dh9+umn6t+/vxo3bqyAgACdO3dOO3bs0PLly1WzZk1XUCdJf/rTn7R8+XKtX79eR44cUdOmTfXMM8+obdu2MgxD27Zt06xZs1y7/nbv3t0VGv7WyJEj9dFHHykjI0Pvv/++Dh48qP79+8tut+vEiRP68ssvtWXLFnXr1k2HDh265qvCRalnz55atGiR4uLiNGDAAD3++OMqV66cDMOQJLVt21bly5e/bfUAAICiZTj5FR8AAABM7rvvvtPgwYN19uzZQq9r2bKlfvrpp3zHUlNTNWjQIC1evLjQtn379tW8efMUEhLi8Zp58+Zp6NChHmchdu3aVYsXL1arVq107Ngx1a5d2+2sw6FDh2r27NmSpCNHjqhOnToe+/zkk0/0zDPPSJJmzZqloUOHFrgmJiZGHTp08Lj24Nq1a9W9e3ePfQAAgOKNV4ABAABger169dLhw4c1ffp0Pfjgg6pWrZoCAgIUGBioWrVq6eGHH9bUqVPzbeSRx2azadGiRVq9erUGDx6sevXqKSQkRCEhIapbt64GDRqk77//XosWLSo0/JOkqKgo7dy5U1FRUapZs6YCAgIUHh6url27aubMmVqzZo1PZto1a9ZMu3bt0u9+9zvdeeedstlsrtl/AACg5GMGIAAAAAAAAGBizAAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABMjAAQAAAAAAABMjAAQAAAAAAAAMDECQAAAAAAAAMDECAABAAAAAAAAEyMABAAAAAAAAEyMABAAAAAAAAAwMQJAAAAAAAAAwMQIAAEAAAAAAAATIwAEAAAAAAAATIwAEAAAAAAAADAxAkAAAAAAAADAxAgAAQAAAAAAABMjAAQAAAAAAABMjAAQAAAAAAAAMLH/D03EIjwOKJH2AAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "height": 480, + "width": 640 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plotnine (ggplot2 clone)\n", + "(ggplot(mpg) + \n", + " aes(x='manufacturer') +\n", + " geom_bar() + \n", + " coord_flip() +\n", + " ggtitle('Number of Cars by Make')\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plotly.com" + }, + "data": [ + { + "alignmentgroup": "True", + "hovertemplate": "count=%{x}
manufacturer=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa", + "pattern": { + "shape": "" + } + }, + "name": "", + "offsetgroup": "", + "orientation": "h", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + 18, + 19, + 37, + 25, + 9, + 14, + 8, + 4, + 3, + 4, + 13, + 5, + 14, + 34, + 27 + ], + "xaxis": "x", + "y": [ + "audi", + "chevrolet", + "dodge", + "ford", + "honda", + "hyundai", + "jeep", + "land rover", + "lincoln", + "mercury", + "nissan", + "pontiac", + "subaru", + "toyota", + "volkswagen" + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Number of Cars by Make" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "count" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "manufacturer" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.bar(\n", + " mpg.groupby('manufacturer', observed=False).size().reset_index(name='count'),\n", + " x='count',\n", + " y='manufacturer',\n", + " orientation='h',\n", + " title='Number of Cars by Make',\n", + ")\n", + "\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scatter Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7HUlEQVR4nO3de3gU9d3//9dCICVAQkiCiEmQkyBCEBQxBhBFxUOltNTb4gFpLd7VAALWW+Ptr1V6CJbeHgvcnm7QasAfvYtSrPWAECBACacKehsTsCaUQwKFBEINh+T7ByYQkuxOMpOZ+Wyej+va6zIzm9n3fGbjvtmZeX0CVVVVVQIAADBQK68LAAAAaCoaGQAAYCwaGQAAYCwaGQAAYCwaGQAAYCwaGQAAYCwaGQAAYKwIrwtobpWVldqzZ486duyoQCDgdTkAAMCCqqoqHTlyRN26dVOrVg1/7xL2jcyePXuUlJTkdRkAAKAJioqKlJiY2OD6sG9kOnbsKOn0QERHR3tcDQAAsKKsrExJSUk1n+MNCftGpvp0UnR0NI0MAACGCXVZiG8u9p09e7YCgYCmT59es2zUqFEKBAK1Hj/5yU+8KxIAAPiKL76Ryc3N1YsvvqiUlJQ66yZPnqxZs2bV/BwVFeVmaQAAwMc8/0bm6NGjuvPOO/Xyyy8rNja2zvqoqCh17dq15hHq9FBFRYXKyspqPQAAQHjyvJFJT0/XLbfcouuuu67e9W+++abi4+M1YMAAZWRk6NixY0G3l5mZqZiYmJoHdywBABC+PD21tHjxYm3ZskW5ubn1rr/jjjvUvXt3devWTZ988okeeeQR5eXl6Y9//GOD28zIyNDMmTNrfq6+6hkAAIQfzxqZoqIiPfjgg/rwww/1rW99q97n3HfffTX/PXDgQJ1//vkaPXq0du7cqV69etX7O5GRkYqMjGyWmgEAgL94dmpp8+bNKi4u1pAhQxQREaGIiAhlZ2fr+eefV0REhE6dOlXnd4YNGyZJKigocLtcAADgQ559IzN69Ght37691rIf/vCH6tevnx555BG1bt26zu9s27ZNknT++ee7USIAAPA5zxqZjh07asCAAbWWtW/fXnFxcRowYIB27typrKws3XzzzYqLi9Mnn3yiGTNmaOTIkfXepg0AAFoeX+TI1Kdt27b66KOP9Oyzz6q8vFxJSUkaP368Hn/8ca9LAwAAPhGoqqqq8rqI5lRWVqaYmBiVlpYaN0VBdl6xtu0+rCHJsRrRJ8HrcgAAcI3Vz2/ffiPTkn11sFzj5ubo0LETNctio9poWfpwJcWRbAwAQDXPA/FQ17lNjCQdOnZCY+eu9agiAAD8iUbGZ7Lzius0MdUOHTuhNfklLlcEAIB/0cj4zLbdh4Ou31J4yJ1CAAAwAI2Mz1ya2Cno+iHJdSfWBACgpaKR8Zmr+3ZRbFSbetfFRrXh7iUAAM5CI+NDy9KH12lmqu9aAgAAZ3D7tQ8lxUVp689u0Jr8Em0pPESODAAADaCR8bERfRJoYAAACIJTSwAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFgRXheAhu0qOaqv/nlMF8a1V4/49l6XAwCA79DI+NDhY8c1bdE2rc4vqVk2sk+CXpgwWDFRbTysDAAAf+HUkg9NW7RNOQUHai3LKTigqYu2elQRAAD+RCPjM7tKjmp1folOVVXVWn6qqkqr80v05YFyjyoDAMB/aGR85qt/Hgu6/u8HaWQAAKhGI+Mz3TtHBV1/YRwX/QIAUI1Gxmd6JnTQyD4Jah0I1FreOhDQyD4J3L0EAMBZaGR86IUJg5XWO77WsrTe8XphwmCPKgIAwJ+4/dqHYqLa6PV7r9CXB8r194Pl5MgAANAAGhkf6xFPAwMAQDCcWgIAAMbyTSMze/ZsBQIBTZ8+vWbZ119/rfT0dMXFxalDhw4aP3689u/f712RAADAV3zRyOTm5urFF19USkpKreUzZszQn/70Jy1ZskTZ2dnas2ePvve973lUJQAA8BvPG5mjR4/qzjvv1Msvv6zY2Nia5aWlpXr11Vf19NNP69prr9Vll12mBQsWaN26ddqwYYOHFQMAAL/wvJFJT0/XLbfcouuuu67W8s2bN+vEiRO1lvfr10/Jyclav359g9urqKhQWVlZrQcAAAhPnt61tHjxYm3ZskW5ubl11u3bt09t27ZVp06dai0/77zztG/fvga3mZmZqSeffNLpUgEAgA959o1MUVGRHnzwQb355pv61re+5dh2MzIyVFpaWvMoKipybNsAAMBfPGtkNm/erOLiYg0ZMkQRERGKiIhQdna2nn/+eUVEROi8887T8ePHdfjw4Vq/t3//fnXt2rXB7UZGRio6OrrWAwAAhCfPTi2NHj1a27dvr7Xshz/8ofr166dHHnlESUlJatOmjVasWKHx48dLkvLy8lRYWKjU1FQvSgYAAD7jWSPTsWNHDRgwoNay9u3bKy4urmb5vffeq5kzZ6pz586Kjo7W1KlTlZqaqiuvvNKLkgEAgM/4eoqCZ555Rq1atdL48eNVUVGhMWPGaN68eV6XBQAAfCJQVVVV5XURzamsrEwxMTEqLS3lehkAAAxh9fPb8xwZAACApqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxqKRAQAAxorwuoCWbFfJUX31z2O6MK69esS397ocAACMQyPjgcPHjmvaom1anV9Ss2xknwS9MGGwYqLaeFgZAABm4dSSB6Yt2qacggO1luUUHNDURVs9qggAADPRyLhsV8lRrc4v0amqqlrLT1VVaXV+ib48UO5RZQAAmIdGxmVf/fNY0PV/P0gjAwCAVTQyLuveOSro+gvjuOgXAACraGRc1jOhg0b2SVDrQKDW8taBgEb2SeDuJQAAGoFGxgMvTBistN7xtZal9Y7XCxMGe1QRAABm4vZrD8REtdHr916hLw+U6+8Hy8mRAQCgiWhkPNQjngYGAAA7OLUEAACMxTcyHsrOK9a23Yc1JDlWI/okeF0OAADGoZHxwFcHyzVubo4OHTtRsyw2qo2WpQ9XUlzw27MBAMAZnFrywLlNjCQdOnZCY+eu9agiAADMRCPjsuy84jpNTLVDx05ozVkTSQIAgOBoZFy2bffhoOu3FB5ypxAAAMIAjYzLLk3sFHT9kORYdwoBACAM0Mi47Oq+XRQb1abedbFRbbh7CQCARqCR8cCy9OF1mpnqu5YAAIB13H7tgaS4KG392Q1ak1+iLYWHyJEBAKCJaGQ8NKJPAg0MAAA20Mh4iGRfAADs8fQamfnz5yslJUXR0dGKjo5Wamqq3nvvvZr1o0aNUiAQqPX4yU9+4mHFzvjqYLkGz/pA9yzI1TMf5uvuVzdq8KwPVHTwmNelAQBgFE8bmcTERM2ePVubN2/Wpk2bdO211+o73/mOPv3005rnTJ48WXv37q15/OY3v/GwYmeQ7AsAgDM8PbV066231vr5V7/6lebPn68NGzbokksukSRFRUWpa9eulrdZUVGhioqKmp/LysqcKdYhVpJ9Oc0EAIA1vrn9+tSpU1q8eLHKy8uVmppas/zNN99UfHy8BgwYoIyMDB07Fvz0S2ZmpmJiYmoeSUlJzV16o5DsCwCAczy/2Hf79u1KTU3V119/rQ4dOmjp0qXq37+/JOmOO+5Q9+7d1a1bN33yySd65JFHlJeXpz/+8Y8Nbi8jI0MzZ86s+bmsrMxXzQzJvgAAOMfzRqZv377atm2bSktL9Yc//EH33HOPsrOz1b9/f9133301zxs4cKDOP/98jR49Wjt37lSvXr3q3V5kZKQiIyPdKr/RqpN96zu9RLIvAACN4/mppbZt26p379667LLLlJmZqUGDBum5556r97nDhg2TJBUUFLhZouNI9gUAwBmefyNzrsrKyloX655t27ZtkqTzzz/fxYqcR7IvAADO8LSRycjI0E033aTk5GQdOXJEWVlZWrVqld5//33t3LlTWVlZuvnmmxUXF6dPPvlEM2bM0MiRI5WSkuJl2Y4h2RcAAHs8bWSKi4s1ceJE7d27VzExMUpJSdH777+v66+/XkVFRfroo4/07LPPqry8XElJSRo/frwef/xxL0sGAAA+EqiqqqryuojmVFZWppiYGJWWlio6OtrrcmrZVXJUX/3zmC6Ma68e8e29LgcAAN+w+vntu2tkWoLDx45r2qJtWp1fUrNsZJ8EvTBhsGLOuQgYAAA0zPO7llqiaYu2KafgQK1lOQUHNHXRVo8qAgDATDQyLttVclSr80t06pwzeqeqqrQ6v0RfHij3qDIAAMxDI+Oyr/4ZfIqFvx+kkQEAwCoaGZd17xwVdP2FcVz0CwCAVTQyLuuZ0EEj+ySodSBQa3nrQEAj+yRw9xIAAI1AI+OBFyYMVlrv+FrL0nrH64UJgz2qCAAAM3H7tQdiotro9Xuv0JcHyvX3g+XkyAAA0EQ0Mh7qEU8DAwCAHTQyTeREKi/JvgAA2EMj00hOpPKS7AsAgDO42LeRnEjlJdkXAABn0Mg0ghOpvCT7AgDgHBqZRnAilZdkXwAAnEMj0whOpPKS7AsAgHNoZBrBiVRekn0BAHAOjUwjOZHKS7IvAADOCFRVnXPVaZgpKytTTEyMSktLFR0d7dh2nUjlJdkXAID6Wf38JkemiZxI5SXZFwAAezi1BAAAjMU3Mk301sZCrf/yoNJ6xeu2y5O8Lsf3mI4BANAcuEamkbbvPqzvzlunk5Vnhi2iVUDL0tPU/4IY29sPN0zHAABoCquf35xaaqRzmxhJOllZpbFzczyqyN+YjgEA0JxoZBrhrY2FdZqYaicrq7RkU5HLFfkb0zEAAJobjUwjrP/yYND1OTsPBF3f0jAdAwCgudHINEJqj7ig69N6xQdd39IwHQMAoLnRyDTC7VckK6JVoN51Ea0C3L10DqZjAAA0NxqZRlqWnlanmam+awl1MR0DAKA5cft1Ey3ZVKScnQfIkbGI6RgAAI1h9fObRgYAAPgOcy21EH5IzJ217FOt23VAw3sn6PFv96/3OX6oEwAQfmhkDOWHxNwPduzVfW9sqfn5831H9craL/XqxMs1uv95vqkTABC+uNjXUH5IzD27iTnbva9vqvlvP9QJAAhfNDIG8kNi7qxlnwZd/8vln/miTgBAeKORMZAfEnPX7QqeYry2oMQXdQIAwhuNjIH8kJh7Vc/gKcbDeyf4ok4AQHijkTGQHxJzfzb2kqDrH/92f1/UCQAIbzQyhvJDYu6rEy8PudwPdQIAwheBeIbzQ2LuL5d/prUFJUFzZPxQJwDAHCT7fiPcGxkAAMKR1c9vTi0BAABjedrIzJ8/XykpKYqOjlZ0dLRSU1P13nvv1az/+uuvlZ6erri4OHXo0EHjx4/X/v37PazYWbtKjmplXrGtPBUntmFXdl6xnlvxhdacld4LAIAbPJ2iIDExUbNnz1afPn1UVVWl1157Td/5zne0detWXXLJJZoxY4beffddLVmyRDExMZoyZYq+973vKScnx8uybXMitt8P0f9fHSzXuLk5OnTsRM2y2Kg2WpY+XElxwW+9BgDACb67RqZz586aM2eOvv/97yshIUFZWVn6/ve/L0n6/PPPdfHFF2v9+vW68sorLW3Pj9fITHx1o3IKDtRKvG0dCCitd7xev/cK17Zh1+BZH9RqYqrFRrXR1p/d4EoNAIDwZNw1MqdOndLixYtVXl6u1NRUbd68WSdOnNB1111X85x+/fopOTlZ69evb3A7FRUVKisrq/XwEydi+/0Q/Z+dV1xvEyNJh46d4DQTAMAVnjcy27dvV4cOHRQZGamf/OQnWrp0qfr37699+/apbdu26tSpU63nn3feedq3b1+D28vMzFRMTEzNIykpqZn3oHGciO33Q/T/tt2Hg67fUnio2WsAAMDzRqZv377atm2b/vrXv+r+++/XPffco88++6zJ28vIyFBpaWnNo6ioyMFq7XMitt8P0f+XJnYKun5Icmyz1wAAgKcX+0pS27Zt1bt3b0nSZZddptzcXD333HO6/fbbdfz4cR0+fLjWtzL79+9X165dG9xeZGSkIiMjm7vsJquO7W/o+hYrYXFObMOuq/t2UWxUmwavkRnRJ6HZawAAwPNvZM5VWVmpiooKXXbZZWrTpo1WrFhRsy4vL0+FhYVKTU31sEL7nIjt90P0/7L04Yo95w6p6ruWAABwg6d3LWVkZOimm25ScnKyjhw5oqysLD311FN6//33df311+v+++/Xn//8Zy1cuFDR0dGaOnWqJGndunWWX8OPdy1VcyK23w/R/2vyS7Sl8JCGJMfyTQwAwBFWP789PbVUXFysiRMnau/evYqJiVFKSkpNEyNJzzzzjFq1aqXx48eroqJCY8aM0bx587ws2VE94u03H05sw64RfRJoYAAAnvBdjozTmusbmV0lR/XVP4/Z+ibkdyvylbPzgEb0SdAD1/Ru0jZufiZbBQfKdVGXDlr+4MgmbSM7r1jbdh9u8jcqVsbirY2FWv/lQaX1itdtl/vrTjLTOPHeAwC/Y9LIbzjdyDiRqLuuoER3vLKxzvK3Jl+pYb3iLG3jqT9/pvmrv6yzfOo1vfTQmH6WtmE3mdfKWGzffVjfnbdOJyvPvM0iWgW0LD1N/S+IsVQnTvNDmjMAuMW4QDxTTFu0TTkFB2otyyk4oKmLtlreRn1NjCTd/vIGy9uor4mRpBdW7rS8jXObGOl0mN3YuWst/b6VsTi3iZGkk5VVGjvX7GkmvODEew8Awg2NTCM4kaj7uxX5QdfPW1kQchs3P5MddP23n1sdcht2k3mtjMVbGwvrNDHVTlZWackmf2X8+Jkf0pwBwI9oZBrBiUTdnJ0Hgq63Eu1fEOJD64vioyG3YTeZ18pYrP/yYNDnhBoLnOGHNGcA8KMmNTJXX321Xn/9df3rX/9yuh5fcyJRN61XfND1Vi627R3iAs+LunQIuQ27ybxWxiK1R/DrfUKNBc7wQ5ozAPhRkxqZwYMH66c//am6du2qyZMna8MG69d2mKw6Ubd1IFBreetAQCP7JFi6g2TK6D5B11u5e+nPM64Out7K3UvVybz1sZLMa2Usbr8iWRGtAvX+fkSrAHcvNYIT7z0ACEdNamSeffZZ7dmzRwsWLFBxcbFGjhyp/v3767e//a3279/vdI2+4kSi7luTr2zU8vpMvaZXo5bXx24yr5WxWJaeVqeZqb5rCY3jhzRnAPAbR26/Li4u1ksvvaRf/epXOnXqlG6++WZNmzZN1157rRM12tJcOTJOJOrOW1mgNfkltnJkvv3can1RfNRWjozdZF4rY7FkU5Fydh4gR8YBfkhzBoDm5lqOzMaNG7VgwQItXrxY0dHRmjRpkv7xj38oKytLDzzwgH7729/a2bxtfp6iAAAA1K9ZG5ni4mL9/ve/14IFC5Sfn69bb71VP/7xjzVmzBgFvjmHv3btWt144406ejT0HTTNiUYGAADzNOtcS4mJierVq5d+9KMfadKkSUpIqHs6IiUlRUOHDm3K5tEIpkT/E6t/mhPj4MZYcrwAmKJJ38isWbNGI0aMaI56HBeu38iYEv1PrP5pToyDG2PJ8QLgF806RUF+fr6+/LL+iHy4w5Tof2L1T3NiHNwYS44XANM0qZHJzMxU7969lZycrLvvvluvvPKKCgpCR+vDGaZE/xOrf5oT4+DGWHK8AJioyd/IFBYWKjMzU1FRUfrtb3+rvn37KjExUXfddZfTNeIcpkT/E6t/mhPj4MZYcrwAmKjJcy1dcMEFuvPOO/XMM8/oueee09133639+/dr8eLFTtaHepgS/U+s/mlOjIMbY8nxAmCiJjUyH3zwgR577DFdddVViouLU0ZGhmJjY/WHP/xBJSWhJz2EPaZE/xOrf5oT4+DGWHK8AJioSXcttWrVSgkJCXrooYd03333qVOnTs1QmjPC9a6lz/5RqrFzc3x/11LpsROaumhri78LxolxcGMsOV4A/KJZA/GeffZZrV69WqtXr1ZkZKSuvvpqjRo1SqNGjdJFF11kq3CnhWsjU82U6H9i9U9zYhzcGEuOFwCvuTZFwfbt25Wdna2PP/5Yy5cvV5cuXbR79247m3RUuDcyAACEo2ZN9pWkqqoqbd26VatWrdLKlSu1du1aVVZW1pvyi+aTnVesbbsPN3nCRye2YSVd2JQE4lDsJt6S7AsAzmrSNzK33nqrcnJyVFZWpkGDBmnUqFG6+uqrNXLkSN9dLxOu38h8dbBc4+bm6NCxEzXLYqPaaFn6cCXFBb/7xKltWEkXNiWBOBS7ibck+wJA4zTrqaWHH35YV199tUaMGKGYGH9/GIVrIzN41ge1GpBqsVFttPVnN7iyjd6P/bneYL6IVgEV/Ppmy88xwcRXNyqn4ECtsLjWgYDSesfr9XuvaPbfd2obfngNALCiWU8tzZkzRytWrNBTTz2l4uJiVVZW1lr/P//zP03ZLCzKziuutwGRpEPHTmhNfknIU0R2t2ElXbiysirkc0w4zVSdeHuusxNvg51+sfv7Tm0jFDdeAwCc1qQcmVmzZumGG27QihUrdODAAR06dKjWA81r2+7DQddvKQx9DOxuw0q6sCkJxKHYTbwl2RcAmk+TvpGZP3++Fi5cqLvvvtvpemDBpYmdgq4fkhzb7NtI7RGnt7fuaXB9Wq94VVZWhXyOCewm3pLsCwDNp0nfyBw/flxXXXWV07XAoqv7dlFsAxdexka1sXTnkd1tWEkXNiWBOBS7ibck+wJA82lSI/PjH/9YWVlZTteCRliWPrxOI1J9x5Fb21iWnlanUam+I6kxzzHBCxMGK6137W+Q0nrH64UJg135fae24YfXAAAnWb5raebMmTX/XVlZqddee00pKSlKSUlRmza1PwyffvppZ6u0IVzvWqq2Jr9EWwoP2cqRsbsNK+nCpiQQh2I38ZZkXwCwxvHbr6+55hpLLxwIBPTxxx9bq9IF4d7IAAAQjhy//XrlypWOFAYAAOCUJk9RAPuciIH/3Yp85ew8oBF9EvTANb2btA27UxRY2Y9Zyz7Vul0HNLx3gh7/dv8m1RmK3bGwUqMTU0LYFWq8/TBthZU6gfqY8r4xpc6WwPakkX7nx1NLTsTAryso0R2vbKyz/K3JV2pYrzhL27A7RYGV/fhgx17d98aWOr/76sTLNbr/eZbqDMXuWFip0YkpIewKNd5+mLbCSp1AfUx535hSZziw+vndpLuWYM+0RduUU1A7DC6n4ICmLtpqeRv1fXBL0u0vb7C8jXM/sKTTqb5j56619PtW9qO+BkGS7n19k+U6Q7E7FlZqtDtWTgg13k7U6MQ2nHh/o+Ux5X1jSp0tCY2My6pj4E+d80XY2THwofxuRX7Q9fNWFoTchpUpCoKxsh+zln0adBu/XP5ZyDpDsTsWVmq0O1ZOCDXeb+UW2q7Rif104v2NlseU940pdbY0NDIucyIGPlS0v5UPHLtTFFjZj3W7gte5tsB+A2B3LKzU6MSUEHaFGu/1u4JPB+HGtBUS0xygaUx535hSZ0tDI+MyJ2LgQ0X7W7k40+4UBVb246qewesc3tv+xbJ2x8JKjU5MCWFXqPFO7Rn8WiA3pq2QmOYATWPK+8aUOlsaGhmXOREDP2V0n6DrrdyxY3eKAiv78bOxlwTdhhN3L9kdCys1OjElhF2hxvv2ocmeT1thpU7u7kB9THnfmFJnS0Mj4wEnYuDfmnxlo5bXx+4UBVb249WJl9f7uw0tbwq7Y2GlRiemhLAr1Hj7YdoKK3UC9THlfWNKnS0Jt197yIkY+HkrC7Qmv8RWjozdKQqs7Mcvl3+mtQUlzZojY3csrNToxJQQdoUabz9MW2GlTqA+prxvTKnTZI5PUWAqPzcyAACgfo5PUQDntaRkSCcSiENxI6H4rY2FWv/lQU8nv3TjfdOS3ps4jWPeOIyXf3j6jUxmZqb++Mc/6vPPP1e7du101VVX6amnnlLfvn1rnjNq1ChlZ2fX+r1///d/13//939beg0/fiPTkpIhnUggDsWNhOLtuw/ru/PW6WTlmT+XiFYBLUtPU/8LYhzZDyfqNOE14C8c88ZhvNxjRLJvdna20tPTtWHDBn344Yc6ceKEbrjhBpWX174Xf/Lkydq7d2/N4ze/+Y1HFTujJSVDOpFAHIobCcXnNjGSdLKySmPn5jSx6sZz433Tkt6bOI1j3jiMl/942sj85S9/0aRJk3TJJZdo0KBBWrhwoQoLC7V58+Zaz4uKilLXrl1rHsE6s4qKCpWVldV6+ElLSoZ0IoE4FDcSit/aWFinial2srJKSzYVNa34RnDjfdOS3ps4jWPeOIyXP/nq9uvS0lJJUufOnWstf/PNNxUfH68BAwYoIyNDx441nK6YmZmpmJiYmkdSkjfXMTSkJSVDOpFAHIobCcXrvwyemhtqP53gxvumJb03cRrHvHEYL3/yTSNTWVmp6dOnKy0tTQMGDKhZfscdd+iNN97QypUrlZGRod///ve66667GtxORkaGSktLax5FRc3/r+XGaEnJkE4kEIfiRkJxao/g1/KE2k8nuPG+aUnvTZzGMW8cxsuffNPIpKena8eOHVq8eHGt5ffdd5/GjBmjgQMH6s4779Trr7+upUuXaufOnfVuJzIyUtHR0bUeftKSkiGdSCAOxY2E4tuvSFZEq0C9vx/RKuDK3UtuvG9a0nsTp3HMG4fx8idfNDJTpkzR8uXLtXLlSiUmJgZ97rBhwyRJBQX2r6/wSktKhnQigTgUNxKKl6Wn1Wlmqu9acosb75uW9N7EaRzzxmG8/MfT26+rqqo0depULV26VKtWrVKfPsH/BS9JOTk5Gj58uP72t78pJSUl5PP9ePt1tZaUDOlEAnEobiQUL9lUpJydBzzNkXHjfdOS3ps4jWPeOIxX8zMi2feBBx5QVlaW3nnnnVrZMTExMWrXrp127typrKws3XzzzYqLi9Mnn3yiGTNmKDExsU62TEP83MgAAID6GdHIBAL1X3ewYMECTZo0SUVFRbrrrru0Y8cOlZeXKykpSd/97nf1+OOPW25KaGQAADCPEVMUhOqhkpKSLH/zAu9Yieq2G+dtZWoAu9MHuBE5bncaBZMQ4Q6EPz/8nTNpJJrMSlS33ThvK1MD2J0+wI3IcbvTKJiECHcg/Lnxd27EFAUwm5Wobrtx3lamBrA7fYAbkeN2p1EwCRHuQPjz0985jQyaxEpUt904bytTA9idPsCNyHG70yiYhAh3IPz57e+cRgZNYiWq226ct5WpAexOH+BG5LjdaRRMQoQ7EP789ndOI4MmsRLVbTfO28rUAHanD3AjctzuNAomIcIdCH9++zunkUGTWInqthvnbWVqALvTB7gROW53GgWTEOEOhD+//Z3TyKDJrER1243ztjI1gN3pA9yIHLc7jYJJiHAHwp+f/s65/Rq2WYnqthvnbWVqALvTB7gROW53GgWTEOEOhL/m/Ds3ItnXDTQyAACYx4hkX7QcbqQ/+iFhMlw4MZZ+2YZdfqihJWG80Vg0MmhWbqQ/kiTrHCfG0i/bsMsPNbQkjDeaiot90azcSH/0U8Kk6ZwYS79swy4/1NCSMN5oKhoZNBs30h/9ljBpMifG0i/bsMsPNbQkjDfsoJFBs3Ej/dFvCZMmc2Is/bINu/xQQ0vCeMMOGhk0GzfSH/2WMGkyJ8bSL9uwyw81tCSMN+ygkUGzcSP90W8JkyZzYiz9sg27/FBDS8J4ww4aGTQrN9If/ZQwaTonxtIv27DLDzW0JIw3mopAPLjCjZRXkmSd48RY+mUbdvmhhpaE8UY1kn2/QSMDAIB5rH5+c2oJAAAYi2RfGCFcpjjIzivWtt2HfT9pJDHxZ5hyzICWikYGvhYuUxx8dbBc4+bm6NCxEzXLYqPaaFn6cCXFBb/11E3ExJ9hyjEDWjpOLcHXwmWKg3M/ECXp0LETGjt3rWOv4QRi4s8w5ZgBLR2NDHwrXKY4yM4rrvOBWO3QsRNac9a3H14iJv4MU44ZABoZ+Fi4THGwbffhoOu3FB6y/RpOICb+DFOOGQAaGfhYuExxcGlip6DrhyTH2n4NJxATf4YpxwwAjQx8LFymOLi6bxfFNnChbGxUG9/cCUNM/BmmHDMANDLwuXCZ4mBZ+vA6H4zVd8D4CTHxZ5hyzICWjmRfGCFcpjhYk1+iLYWHfJ9JQkz8GaYcMyDcMEXBN2hkAAAwj9XPbwLxANRBsu8ZjAXgbzQyAGqQ7HsGYwGYgYt9AdQg2fcMxgIwA40MAEkk+56NsQDMQSMDQBLJvmdjLABz0MgAkESy79kYC8AcNDIAJJHsezbGAjAHjQyAGiT7nsFYAGYgEA9AHST7nsFYAN4gEA9Ak/WI50O7GmMB+BunlgAAgLE8bWQyMzM1dOhQdezYUV26dNG4ceOUl5dX6zlff/210tPTFRcXpw4dOmj8+PHav3+/RxXDK79bka8JL63XvJUFXpcCizhmZsnOK9ZzK77QmrOSjM+1q+SoVuYVk6MDX/H0Gpkbb7xRP/jBDzR06FCdPHlSjz32mHbs2KHPPvtM7duf/ir3/vvv17vvvquFCxcqJiZGU6ZMUatWrZSTk2PpNbhGxmzrCkp0xysb6yx/a/KVGtYrzoOKEArHzCxfHSzXuLk5OnTsRM2y2Kg2WpY+XElxp29DZ7oGeMHI2a9LSkrUpUsXZWdna+TIkSotLVVCQoKysrL0/e9/X5L0+eef6+KLL9b69et15ZVXhtwmjYzZLnz03QbX/X32LS5WAqs4ZmYZPOuDWk1MtdioNtr6sxskSRNf3aicggO1ko5bBwJK6x2v1++9wrVa0bJY/fz21TUypaWlkqTOnTtLkjZv3qwTJ07ouuuuq3lOv379lJycrPXr19e7jYqKCpWVldV6wEy/W5EfdD2nLPyHY2aW7LziepsYSTp07ITW5JcwXQN8zzeNTGVlpaZPn660tDQNGDBAkrRv3z61bdtWnTp1qvXc8847T/v27at3O5mZmYqJial5JCUlNXfpaCY5Ow8EXR/sXD68wTEzy7bdh4Ou31J4iOka4Hu+aWTS09O1Y8cOLV682NZ2MjIyVFpaWvMoKipyqEK4La1XfND1I/okuFQJrOKYmeXSxE5B1w9JjmW6BvieLxqZKVOmaPny5Vq5cqUSExNrlnft2lXHjx/X4cOHaz1///796tq1a73bioyMVHR0dK0HzDRldJ+g6x+4prdLlcAqjplZru7bRbENXKwbG9VGI/okMF0DfM/TRqaqqkpTpkzR0qVL9fHHH6tHjx611l922WVq06aNVqxYUbMsLy9PhYWFSk1NdbtceOCtyfVf0N3QcniPY2aWZenD6zQz1XctVWO6BviZp3ctPfDAA8rKytI777yjvn371iyPiYlRu3btJJ2+/frPf/6zFi5cqOjoaE2dOlWStG7dOkuvwV1L4WHeygKtyS/RiD4J/KveEBwzs6zJL9GWwkMakhzb4ClApmuAm4y4/TpwzleV1RYsWKBJkyZJOh2I99BDD2nRokWqqKjQmDFjNG/evAZPLZ2LRgYAAPMY0ci4gUYGpsnOK9a23YeD/svYhNd4a2Oh1n95UGm94nXb5ebePRhqrMJlP3eVHNVX/zzGty3wDRqZb9DIwBRWElZNeI3tuw/ru/PW6WTlmf+1RLQKaFl6mvpfEOPIa7gh1FiFy36S2gu/MjIQD2jJzv3QlE6Hko2du9ao1zj3w12STlZWaexca9OK+EWosQqX/Zy2aJtyCmrn/+QUHNDURVs9qghoHBoZwAesJKya8BpvbSys8+Fe7WRllZZsMiPXKdRY/WLZp2Gxn6T2IhzQyAA+YCVh1YTXWP/lwaDrQyX/+kWoscrZFXw/TNlPUnsRDmhkAB+wkrBqwmuk9gg+u3Wo5F+/CDVWaT2D74cp+0lqL8IBjQzgA1YSVk14jduvSFZEq/pjFSJaBYy5qyfUWP1/Yy8Ji/0ktRfhgEYG8AkrCatmvEZanQ/56rt5TBJqrMJlP0nthem4/RrwGSsJqya8xpJNRcrZecD4fJVQYxUu+0lqL/yGHJlv0MgAAGAecmQAAEDYi/C6AADucyOO3onXsLsNYvedZXdqCyvHI1ymfIB7OLUEtCBuxNE78Rp2t0HsvrPsTm1h5XiEy5QPcA6nlgDU4UYcvROvYXcbxO47y+7UFlaOR7hM+QD30cgALYQbcfROvIbdbRC77yy7U1tYOR7hMrUFvEEjA7QQbsTRO/EadrdB7L6z7E5tYeV4hMvUFvAGjQzQQrgRR+/Ea9jdBrH7zrI7tYWV4xEuU1vAGzQyQAvhRhy9E69hdxvE7jvL7tQWVo5HuExtAW/QyAAtiBtx9E68ht1tELvvLLtTW1g5HuEy5QPcx+3XQAvkRhy9E69hdxvE7jvL7tQWVo5HuEz5APuYouAbNDIAAJjH6uc3yb6Ai6ykltpNT3VLqH1xIqHVD2MRqoaH3tqmv/79oFJ7xmvObYM8qcEKJ1KO3UjddeOYm5L4bEqdXuMbGcAFVlJL7aanuiXUvjiR0OqHsQhVw9LNRZqx5JM6v/f87Zdq7OALXKnBCidSjt1I3XXjmJuS+GxKnc2NZF/AR6ykltpNT3VLqH1xIqHVD2MRqob6mhhJmvbWNtdqsMKJlGM3UnfdOOamJD6bUqdf0MgAzcxKaqnd9FS3hNqXh5f8zXZCqx/GIlQNd720PujvP7zkb81eg5VxcCLl2I3UXTeOuSmJz6bU6Sc0MkAzs5Jaajc91S2h9mX9ruAJrFYSWv0wFqFq+Nue0qDrQ42DEzVYGQcnUo7dSN1145ibkvhsSp1+QiMDNDMrqaV201PdEmpfUnsGT2C1ktDqh7EIVcOgbsGvCwk1Dk7UYGUcnEg5diN1141jbkrisyl1+gmNDNDMrKSW2k1PdUuofZlz2yDbCa1+GItQNbxxX2rQ33fi7iUnxsGJlGM3UnfdOOamJD6bUqef0MgALrCSWmo3PdUtofbFiYRWP4xFqBqev/3Sen+voeXNUYMVTqQcu5G668YxNyXx2ZQ6/YLbrwEXWUkttZue6pZQ++JEQqsfxiJUDQ8v+ZvW7zrQrDkyToyDEynHbqTuunHMTUl8NqXO5kKy7zdoZAAAMA85MgAAIOwxRQEABBEqMt8P0yhY4ZdpDgCn0cgAQD1CReb7YRoFK/wyzQHQXDi1BAD1CBWZ74dpFKzwyzQHQHOhkQGAc4SKzJ/7cb7n0yhY4ZdpDoDmRCMDAOcIFZm/tiB4LL9fppTwyzQHQHOikQGAc4SKzB/eO3gsv1+mlPDLNAdAc6KRAYBzhIrMT7+2j+fTKFjhl2kOgOZEIwMA9QgVme+HaRSs8Ms0B0BzIdkXAIIIFZnvh2kUrPDLNAeAVUxR8A0aGQAAzGP185tAPADNIlxSYEPthyn7GSrZ18p+uLGvTryGKWnLcIanjczq1as1Z84cbd68WXv37tXSpUs1bty4mvWTJk3Sa6+9Vut3xowZo7/85S8uVwrAqnBJgQ21H6bsZ6hkXyv74ca+OvEapqQtw1meXuxbXl6uQYMGae7cuQ0+58Ybb9TevXtrHosWLXKxQgCNFS4psKH2w5T9DJXsa2U/3NhXJ17DlLRlOMvTb2Ruuukm3XTTTUGfExkZqa5du1reZkVFhSoqKmp+Lisra3J9ABqnOgX2XGenwPr59Eu1UPux+osSI/YzVLLv/59bGHI/qr7572DPsbuvTrxvrKQYc5opPPn+9utVq1apS5cu6tu3r+6//34dPHgw6PMzMzMVExNT80hKSnKpUgDhkgIbaj+2FgVPxPXLfoZK9l23K/j/T/9+sNyVY+rEaziRYgwz+bqRufHGG/X6669rxYoVeuqpp5Sdna2bbrpJp06davB3MjIyVFpaWvMoKipysWKgZQuXFNhQ+zE4KXgirl/2M1Sy71U944KuvzCuvSvH1InXcCLFGGbydSPzgx/8QGPHjtXAgQM1btw4LV++XLm5uVq1alWDvxMZGano6OhaDwDuCJcU2FD7MfKiBCP2M1Sy778NTQ65H24cUydew4kUY5jJ143MuXr27Kn4+HgVFBR4XQqABoRLCmyo/TBlP0Ml+1rZDzf21YnXMCVtGc7yTSBeIBCoc/v1uXbv3q3k5GS9/fbbGjt2rKXtEogHeCNcUmBD7Ycp+xkq2dfKfrixr068hilpywjOiGTfo0eP1ny7MnjwYD399NO65ppr1LlzZ3Xu3FlPPvmkxo8fr65du2rnzp36j//4Dx05ckTbt29XZGSkpdegkQEAwDxGJPtu2rRJ11xzTc3PM2fOlCTdc889mj9/vj755BO99tprOnz4sLp166YbbrhBv/jFLyw3MQAAILz55tRSc+EbGQAIzZSpFtzAWPiDEd/IAAC8ZcpUC25gLMxk1F1LAABnmTLVghsYCzPRyABAC1U9NcCpc64wOHtqgJaCsTAXjQwAtFDhMqWEExgLc9HIAEALFS5TSjiBsTAXjQwAtFDhMqWEExgLc9HIAEALZspUC25gLMxEjgwAwJipFtzAWPgDOTIAAMt6xPOhXY2xMAunlgAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLFoZAAAgLGYawkAbJi17FOt23VAw3sn6PFv9/e6HKDFoZEBgCb4YMde3ffGlpqfP993VK+s/VKvTrxco/uf52FlQMvCqSUAaIKzm5iz3fv6JpcrAVo2GhkAaKRZyz4Nuv6Xyz9zqRIANDIA0Ejrdh0Iun5tQYlLlQCgkQGARrqqZ3zQ9cN7J7hUCQAaGQBopJ+NvSToeu5eAtxDIwMATfDqxMsbtRxA8whUVVVVeV1EcyorK1NMTIxKS0sVHR3tdTkAwswvl3+mtQUl5MgADrP6+U2ODADYQPMCeItTSwAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFg0MgAAwFhhP0VB9VRSZWVlHlcCAACsqv7cDjUlZNg3MkeOHJEkJSUleVwJAABorCNHjigmJqbB9WE/+3VlZaX27Nmjjh07KhAIeF2O48rKypSUlKSioiJm97aJsXQW4+kcxtJZjKdzmnMsq6qqdOTIEXXr1k2tWjV8JUzYfyPTqlUrJSYmel1Gs4uOjuYP0iGMpbMYT+cwls5iPJ3TXGMZ7JuYalzsCwAAjEUjAwAAjEUjY7jIyEj9/Oc/V2RkpNelGI+xdBbj6RzG0lmMp3P8MJZhf7EvAAAIX3wjAwAAjEUjAwAAjEUjAwAAjEUjAwAAjEUjY6DMzEwNHTpUHTt2VJcuXTRu3Djl5eV5XZax5s+fr5SUlJpAp9TUVL333ntelxUWZs+erUAgoOnTp3tdipGeeOIJBQKBWo9+/fp5XZax/vGPf+iuu+5SXFyc2rVrp4EDB2rTpk1el2WkCy+8sM57MxAIKD093fVawj7ZNxxlZ2crPT1dQ4cO1cmTJ/XYY4/phhtu0Geffab27dt7XZ5xEhMTNXv2bPXp00dVVVV67bXX9J3vfEdbt27VJZdc4nV5xsrNzdWLL76olJQUr0sx2iWXXKKPPvqo5ueICP633RSHDh1SWlqarrnmGr333ntKSEhQfn6+YmNjvS7NSLm5uTp16lTNzzt27ND111+v2267zfVauP06DJSUlKhLly7Kzs7WyJEjvS4nLHTu3Flz5szRvffe63UpRjp69KiGDBmiefPm6Ze//KUuvfRSPfvss16XZZwnnnhCb7/9trZt2+Z1KcZ79NFHlZOTozVr1nhdSliaPn26li9frvz8fNfnNeTUUhgoLS2VdPrDF/acOnVKixcvVnl5uVJTU70ux1jp6em65ZZbdN1113ldivHy8/PVrVs39ezZU3feeacKCwu9LslIy5Yt0+WXX67bbrtNXbp00eDBg/Xyyy97XVZYOH78uN544w396Ec/8mRyZr6jNFxlZaWmT5+utLQ0DRgwwOtyjLV9+3alpqbq66+/VocOHbR06VL179/f67KMtHjxYm3ZskW5ublel2K8YcOGaeHCherbt6/27t2rJ598UiNGjNCOHTvUsWNHr8szyq5duzR//nzNnDlTjz32mHJzczVt2jS1bdtW99xzj9flGe3tt9/W4cOHNWnSJE9en1NLhrv//vv13nvvae3atS1ilu/mcvz4cRUWFqq0tFR/+MMf9Morryg7O5tmppGKiop0+eWX68MPP6y5NmbUqFGcWnLI4cOH1b17dz399NOc9myktm3b6vLLL9e6detqlk2bNk25ublav369h5WZb8yYMWrbtq3+9Kc/efL6nFoy2JQpU7R8+XKtXLmSJsamtm3bqnfv3rrsssuUmZmpQYMG6bnnnvO6LONs3rxZxcXFGjJkiCIiIhQREaHs7Gw9//zzioiIqHVxIBqvU6dOuuiii1RQUOB1KcY5//zz6/zD5OKLL+ZUnU1fffWVPvroI/34xz/2rAZOLRmoqqpKU6dO1dKlS7Vq1Sr16NHD65LCTmVlpSoqKrwuwzijR4/W9u3bay374Q9/qH79+umRRx5R69atPaosPBw9elQ7d+7U3Xff7XUpxklLS6sTU/HFF1+oe/fuHlUUHhYsWKAuXbrolltu8awGGhkDpaenKysrS++88446duyoffv2SZJiYmLUrl07j6szT0ZGhm666SYlJyfryJEjysrK0qpVq/T+++97XZpxOnbsWOdarfbt2ysuLo5ruJrgpz/9qW699VZ1795de/bs0c9//nO1bt1aEyZM8Lo048yYMUNXXXWVfv3rX+vf/u3ftHHjRr300kt66aWXvC7NWJWVlVqwYIHuueceT2MBaGQMNH/+fEmnrz0424IFCzy72MpkxcXFmjhxovbu3auYmBilpKTo/fff1/XXX+91aWjhdu/erQkTJujgwYNKSEjQ8OHDtWHDBiUkJHhdmnGGDh2qpUuXKiMjQ7NmzVKPHj307LPP6s477/S6NGN99NFHKiws1I9+9CNP6+BiXwAAYCwu9gUAAMaikQEAAMaikQEAAMaikQEAAMaikQEAAMaikQEAAMaikQEAAMaikQEAAMaikQHgS6NGjdL06dMlSRdeeKGjs2cHAgG9/fbbjm0PgHeYogCA7+Xm5qp9+/ZelwHAh2hkAPgecwsBaAinlgB4rry8XBMnTlSHDh10/vnn67/+679qrT/71FJVVZWeeOIJJScnKzIyUt26ddO0adNqPfcXv/iFJkyYoPbt2+uCCy7Q3Llz3dwdAC6ikQHguYcffljZ2dl655139MEHH2jVqlXasmVLvc/93//9Xz3zzDN68cUXlZ+fr7ffflsDBw6s9Zw5c+Zo0KBB2rp1qx599FE9+OCD+vDDD93YFQAu49QSAE8dPXpUr776qt544w2NHj1akvTaa68pMTGx3ucXFhaqa9euuu6669SmTRslJyfriiuuqPWctLQ0Pfroo5Kkiy66SDk5OXrmmWd0/fXXN+/OAHAd38gA8NTOnTt1/PhxDRs2rGZZ586d1bdv33qff9ttt+lf//qXevbsqcmTJ2vp0qU6efJkreekpqbW+fn//u//nC8egOdoZAAYJSkpSXl5eZo3b57atWunBx54QCNHjtSJEye8Lg2AB2hkAHiqV69eatOmjf7617/WLDt06JC++OKLBn+nXbt2uvXWW/X8889r1apVWr9+vbZv316zfsOGDbWev2HDBl188cXOFw/Ac1wjA8BTHTp00L333quHH35YcXFx6tKli/7zP/9TrVrV/++shQsX6tSpUxo2bJiioqL0xhtvqF27durevXvNc3JycvSb3/xG48aN04cffqglS5bo3XffdWuXALiIRgaA5+bMmaOjR4/q1ltvVceOHfXQQw+ptLS03ud26tRJs2fP1syZM3Xq1CkNHDhQf/rTnxQXF1fznIceekibNm3Sk08+qejoaD399NMaM2aMW7sDwEWBqqqqKq+LAACnXHjhhZo+fXrN9AYAwhvXyAAAAGPRyAAAAGNxagkAABiLb2QAAICxaGQAAICxaGQAAICxaGQAAICxaGQAAICxaGQAAICxaGQAAICxaGQAAICx/h/UPgzjVxlfMgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "(mpg.\n", + " plot.\n", + " scatter(x='displ', y='hwy'))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
manufacturermodeldisplyearcyltransdrvctyhwyflclass
0audia41.819994auto(l5)f1829pcompact
1audia41.819994manual(m5)f2129pcompact
2audia42.020084manual(m6)f2031pcompact
3audia42.020084auto(av)f2130pcompact
4audia42.819996auto(l5)f1626pcompact
....................................
229volkswagenpassat2.020084auto(s6)f1928pmidsize
230volkswagenpassat2.020084manual(m6)f2129pmidsize
231volkswagenpassat2.819996auto(l5)f1626pmidsize
232volkswagenpassat2.819996manual(m5)f1826pmidsize
233volkswagenpassat3.620086auto(s6)f1726pmidsize
\n", + "

234 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " manufacturer model displ year cyl trans drv cty hwy fl \\\n", + "0 audi a4 1.8 1999 4 auto(l5) f 18 29 p \n", + "1 audi a4 1.8 1999 4 manual(m5) f 21 29 p \n", + "2 audi a4 2.0 2008 4 manual(m6) f 20 31 p \n", + "3 audi a4 2.0 2008 4 auto(av) f 21 30 p \n", + "4 audi a4 2.8 1999 6 auto(l5) f 16 26 p \n", + ".. ... ... ... ... ... ... .. ... ... .. \n", + "229 volkswagen passat 2.0 2008 4 auto(s6) f 19 28 p \n", + "230 volkswagen passat 2.0 2008 4 manual(m6) f 21 29 p \n", + "231 volkswagen passat 2.8 1999 6 auto(l5) f 16 26 p \n", + "232 volkswagen passat 2.8 1999 6 manual(m5) f 18 26 p \n", + "233 volkswagen passat 3.6 2008 6 auto(s6) f 17 26 p \n", + "\n", + " class \n", + "0 compact \n", + "1 compact \n", + "2 compact \n", + "3 compact \n", + "4 compact \n", + ".. ... \n", + "229 midsize \n", + "230 midsize \n", + "231 midsize \n", + "232 midsize \n", + "233 midsize \n", + "\n", + "[234 rows x 11 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mpg" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjS0lEQVR4nO3deVwU9f8H8NcCcsuNoiJKgJoiiTeiolF536mp5ZGVGWqWll80OzRDq5/p19RKC7W8TY00M/NARU1S8RZBUbwB5RBIVJjfH37ZWFh2B3Z2dwZez8djHw92ZvYz7/nMwL6Z4/1RCYIggIiIiEiBLMwdABEREVFlMZEhIiIixWIiQ0RERIrFRIaIiIgUi4kMERERKRYTGSIiIlIsJjJERESkWExkiIiISLGYyBAREZFiMZGhSlGpVPj444/NHYYoH3/8MVQqldHaHz16NBo2bGi09quTLl26oEuXLiZd55UrV6BSqbBixQqTrrcqMOR3q/izGRkZEkdF1Q0TGYVasWIFVCpVua8jR46YO0SjKL3dtra2qFu3Lrp164b//ve/uH//vrlDpBJ+++03sya8xcfL33//XaHPmTtuc1GpVJgwYYLWeZXty6qu+G/Ra6+9pnX+jBkz1MuUTNpGjx6t8bfMyckJzzzzDP7v//4PBQUFZdo5deoUxowZA19fX9ja2sLR0REtWrTA+++/j8uXLxtt+5TAytwBkGFmzZoFX1/fMtP9/f2Nut5//vkHVlbmO3yKt/vRo0e4ffs29u3bh8mTJ2P+/PmIiYlBUFCQetkPPvgA//nPf8wWa3X222+/YfHixaKTgj/++MO4AWnRoEED/PPPP6hRo4Z6WkXjrq74u/WEra0tfv75ZyxZsgTW1tYa89auXQtbW1s8ePCgzOdsbGywfPlyAEBWVhZ+/vlnTJ06FfHx8Vi3bp16uWXLlmH8+PHw8PDAiBEj0KRJEzx+/BhnzpzBqlWrsGDBAvzzzz+wtLQ07obKFBMZhevRowdat25t8vXa2tqafJ0lld7uyMhI7NmzB71790bfvn1x/vx52NnZAQCsrKzMmnSReKW/BEyh+MyesQmCgAcPHqiPy6qAv1tPdO/eHTExMdixYwf69eunnn7o0CGkpKRg0KBB+Pnnn8t8zsrKCi+//LL6/VtvvYV27dph/fr1mD9/PurWrYtDhw5h/PjxCA0NxbZt21CzZk2NNv7v//4Pc+bMMd7GKQAvLVVxxdf/v/zyS3z33Xfw8/ODjY0N2rRpg/j4+DLLb9y4EU2bNoWtrS0CAwOxZcsWrfeAlL5Hpvh6d3JyMkaPHg0XFxc4OztjzJgxyM/PL7Oen376Ca1atYKdnR3c3Nzw0ksv4dq1awZt67PPPouZM2fi6tWr+Omnn8rEVtKuXbvQsWNHuLi4wNHREY0bN8b06dPV8/ft2weVSoX169dj+vTp8PLygoODA/r27Ssqzi+//BIdOnSAu7s77Ozs0KpVK2zatEnrsj/99BPatm0Le3t7uLq6onPnzmXOTOzYsQOdOnWCg4MDatasiV69euHs2bMay4wePRqOjo5ITU1F79694ejoiHr16mHx4sUAgNOnT+PZZ5+Fg4MDGjRogDVr1pSJJSsrC5MnT0b9+vVhY2MDf39/zJs3D0VFReplxB5To0ePVq+75Cl0XUrfI1O8HzZs2IA5c+bA29sbtra2CA8PR3Jyss62xCp9j4y+uIuKirBgwQI0a9YMtra2qF27NsaNG4fMzEyNdhs2bIjevXtj586daN26Nezs7PDtt98C0H/8aRMYGIiuXbuWmV5UVIR69erhxRdfVE9bt24dWrVqhZo1a8LJyQnNmzfHwoULK9U/umj73frnn38wadIkeHh4oGbNmujbty9u3LhR7n11WVlZOv9mDBw4EC1bttT4TJ8+faBSqRATE6Oe9tdff0GlUmHHjh0AgHv37mHq1Klo3rw5HB0d4eTkhB49euDkyZPqz+Tm5sLBwQFvv/12mbiuX78OS0tLREVF6e2HevXqoXPnzmV+p1avXo3mzZsjMDBQbxsAYGFhoT7+r1y5AgD45JNPoFKpsHr16jJJDPDkn8rZs2dX27MxAM/IKF52dnaZm+VUKhXc3d01pq1Zswb379/HuHHjoFKp8Pnnn2PgwIG4fPmy+pT69u3bMXToUDRv3hxRUVHIzMzE2LFjUa9ePdHxDBkyBL6+voiKisLx48exfPly1KpVC/PmzVMvM2fOHMycORNDhgzBa6+9hvT0dCxatAidO3fGiRMn4OLiUun+eOWVVzB9+nT88ccfeP3117Uuc/bsWfTu3RtBQUGYNWsWbGxskJycjLi4uDLLzpkzByqVCtOmTUNaWhoWLFiA5557DgkJCTr/s164cCH69u2LESNG4OHDh1i3bh0GDx6Mbdu2oVevXurlPvnkE3z88cfo0KEDZs2aBWtra/z111/Ys2cPXnjhBQDAjz/+iFGjRqFbt26YN28e8vPzsXTpUnTs2BEnTpzQSDILCwvRo0cPdO7cGZ9//jlWr16NCRMmwMHBATNmzMCIESMwcOBAfPPNNxg5ciRCQkLUlybz8/MRFhaGGzduYNy4cfDx8cGhQ4cQGRmJW7duYcGCBRrbqO+YGjduHG7evIldu3bhxx9/FLsLtZo7dy4sLCwwdepUZGdn4/PPP8eIESPw119/GdSuNvriHjduHFasWIExY8Zg0qRJSElJwddff40TJ04gLi5O4xJVYmIihg0bhnHjxuH1119H48aNK3T8lTR06FB8/PHHuH37Nry8vNTTDx48iJs3b+Kll14C8CRJGjZsGMLDw9W/d+fPn0dcXJzWL+zSHjx4oPUG3NzcXL2fBZ4kghs2bMArr7yC9u3bIzY2VuOYL03f34xOnTrhl19+QU5ODpycnCAIAuLi4mBhYYEDBw6gb9++AIADBw7AwsICoaGhAIDLly9j69atGDx4MHx9fXHnzh18++23CAsLw7lz51C3bl04OjpiwIAB6jMgJZOBtWvXQhAEjBgxQtR2Dx8+HG+//TZyc3Ph6OiIx48fY+PGjXj33Xe1XlYqz6VLlwAA7u7uyM/Px549e9ClSxd4e3uLbqPaEUiRoqOjBQBaXzY2NurlUlJSBACCu7u7cO/ePfX0X375RQAg/Prrr+ppzZs3F7y9vYX79++rp+3bt08AIDRo0EBj/QCEjz76SP3+o48+EgAIr776qsZyAwYMENzd3dXvr1y5IlhaWgpz5szRWO706dOClZVVmenlbXd8fHy5yzg7OwvBwcFlYiv21VdfCQCE9PT0ctvYu3evAECoV6+ekJOTo56+YcMGAYCwcOFC9bRRo0aV6Z/8/HyN9w8fPhQCAwOFZ599Vj0tKSlJsLCwEAYMGCAUFhZqLF9UVCQIgiDcv39fcHFxEV5//XWN+bdv3xacnZ01po8aNUoAIHz22WfqaZmZmYKdnZ2gUqmEdevWqadfuHChzD6cPXu24ODgIFy8eFFjXf/5z38ES0tLITU1VRCEih1TERERQkX+zISFhQlhYWHq98X74emnnxYKCgrU0xcuXCgAEE6fPq2zPTHHS/H2REdH6437wIEDAgBh9erVGtN///33MtMbNGggABB+//13jWXFHH/aJCYmCgCERYsWaUx/6623BEdHR/Ux9/bbbwtOTk7C48ePK9S+IAjl/k0p+SrZl6V/t44dOyYAECZPnqzR7ujRoyv9NyM+Pl4AIPz222+CIAjCqVOnBADC4MGDhXbt2qmX69u3r8bv/YMHD8r8XqWkpAg2NjbCrFmz1NN27twpABB27NihsWxQUJDGsVgeAEJERIRw7949wdraWvjxxx8FQRCE7du3CyqVSrhy5Yp6W0vu81GjRgkODg5Cenq6kJ6eLiQnJwufffaZoFKphKCgIEEQBOHkyZNa+1MQBOHu3bvqz6anp2v8flQ3vLSkcIsXL8auXbs0XsWnVksaOnQoXF1d1e87deoEAOq73W/evInTp09j5MiRcHR0VC8XFhaG5s2bi47nzTff1HjfqVMn3L17Fzk5OQCAzZs3o6ioCEOGDEFGRob65eXlhYCAAOzdu1f8xpfD0dFR59NLxWd8fvnlF41LJtqMHDlS43Tuiy++iDp16uC3337T+bmSZ2syMzORnZ2NTp064fjx4+rpW7duRVFRET788ENYWGj+Khafrt+1axeysrIwbNgwjf6ytLREu3bttPZXyacnXFxc0LhxYzg4OGDIkCHq6Y0bN4aLi4vG0w4bN25Ep06d4OrqqrGu5557DoWFhdi/f7/GevQdU1IaM2aMxv0zxlyXLhs3boSzszOef/55jT5q1aoVHB0dy+wPX19fdOvWTWNaRY6/kho1aoQWLVpg/fr16mmFhYXYtGkT+vTpoz7mXFxckJeXh127dlVqG/v161fmb8quXbvw3nvv6f3s77//DuDJvR4lTZw4sdzP6PubERwcDEdHR/Xxd+DAAXh7e2PkyJE4fvw48vPzIQgCDh48qD4ugCc30hb/XhUWFuLu3bvqy3glfw+fe+451K1bF6tXr1ZPO3PmDE6dOqVx/4o+rq6u6N69O9auXQvgyRnLDh06oEGDBuV+Ji8vD56envD09IS/vz+mT5+OkJAQbNmyBQDUfVDyb3Kxp556Sv1ZT09Pjcts1Q0vLSlc27ZtRd3s6+Pjo/G++Auo+Lr+1atXAWh/2snf31/jF7+y63FyckJSUhIEQUBAQIDWz5c8LV9Zubm5qFWrVrnzhw4diuXLl+O1117Df/7zH4SHh2PgwIF48cUXyyQUpeNUqVTw9/dXX78uz7Zt2/Dpp58iISFB41HKkvcTXLp0CRYWFmjatGm57SQlJQF4cv+PNk5OThrvbW1t4enpqTHN2dkZ3t7eZe5lcHZ21rivIykpCadOnSrz+WJpaWka7/UdU1Iy5bp0SUpKQnZ2drnHV+k+0vZEYUWOP22fnT59Om7cuIF69eph3759SEtLw9ChQ9XLvPXWW9iwYQN69OiBevXq4YUXXsCQIUPQvXt3Udvo7e2N5557rsz069ev6/3s1atXYWFhUWa7dT1Fqe9vhqWlJUJCQnDgwAEATxKZTp06oWPHjigsLMSRI0dQu3Zt3Lt3TyORKSoqwsKFC7FkyRKkpKSgsLBQPa/kpXcLCwuMGDECS5cuRX5+Puzt7bF69WrY2tpi8ODBere5pOHDh+OVV15Bamoqtm7dis8//1zn8ra2tvj1118BPEm8fH19NS4hFf8Tpe2y3i+//IJHjx7h5MmTmDp1aoXirGqYyFQT5d0IJgiCSddTVFSkviFP27La/vOoiOvXryM7O1vnH047Ozvs378fe/fuxfbt2/H7779j/fr1ePbZZ/HHH38YfNNc8XX7zp07Y8mSJahTpw5q1KiB6OhorTfY6lL8H/uPP/6ocV9EsdJPjJQXu5j9X1RUhOeffx7vv/++1mUbNWpU4TalYsp16VJUVIRatWpp/PdeUukkUNt9VIYcf0OHDkVkZCQ2btyIyZMnY8OGDXB2dtZIUmrVqoWEhATs3LkTO3bswI4dOxAdHY2RI0di5cqVldxy4xGzbzt27Ig5c+bgwYMHOHDgAGbMmAEXFxcEBgbiwIEDqF27NgBoJDKfffYZZs6ciVdffRWzZ8+Gm5sbLCwsMHny5DJnwkaOHIkvvvgCW7duxbBhw7BmzRr07t0bzs7OFdqWvn37wsbGBqNGjUJBQYHGWdDytl1b0ljM398fVlZWOHPmTJl5YWFhAMr+DaiO2AMEAOrTn9qeBJHq6RAA8PPzgyAI8PX1LfPFKIXimzNLn84vzcLCAuHh4QgPD8f8+fPx2WefYcaMGdi7d6/GH5biMyLFBEFAcnKyRp2a0n7++WfY2tpi586dsLGxUU+Pjo7WWM7Pzw9FRUU4d+4cWrRoobUtPz8/AE++nHT9wZOCn58fcnNzJV2PMSsqG1N5cfv5+eHPP/9EaGioQY9Riz3+SvP19UXbtm2xfv16TJgwAZs3b0b//v01jjPgyWPsffr0QZ8+fVBUVIS33noL3377LWbOnGnUGlMNGjRAUVERUlJSNM5mGvo3pFOnTnj48CHWrl2LGzduqBOWzp07qxOZRo0aqRMaANi0aRO6du2K77//XqOtrKwseHh4aEwLDAxEcHAwVq9eDW9vb6SmpmLRokUVjtPOzg79+/fHTz/9hB49epRZT0U5ODigS5cuiI2NVZ+Fo7J4jwwBAOrWrYvAwECsWrVK4zRmbGwsTp8+Ldl6Bg4cCEtLS3zyySdl/psWBAF3796tdNt79uzB7Nmz4evrq/NJg3v37pWZVpxIlK6ouWrVKo37bTZt2oRbt26hR48e5bZvaWkJlUqlcSr7ypUr2Lp1q8Zy/fv3h4WFBWbNmlXmP8TivunWrRucnJzw2Wef4dGjR2XWlZ6eXm4cFTVkyBAcPnwYO3fuLDMvKysLjx8/rnCbDg4O6s8rSXlxDxkyBIWFhZg9e3aZzzx+/FjUdlbk+NNm6NChOHLkCH744QdkZGRoXFYCUOZ3yMLCQp14i2nfEMX/QCxZskRjemWSgpLatWuHGjVqYN68eXBzc0OzZs0APElwjhw5gtjYWI2zMcCT38PSf2M2btyIGzduaF3HK6+8gj/++AMLFiyAu7u7zt9xXaZOnYqPPvoIM2fOrNTnS/vwww9RWFiIl19+WeslJlOflZQjnpFRuB07duDChQtlpnfo0AFPPfVUhdr67LPP0K9fP4SGhmLMmDHIzMzE119/jcDAQNGPXurj5+eHTz/9FJGRkbhy5Qr69++PmjVrIiUlBVu2bMEbb7wh6npv8XY/fvwYd+7cwZ49e7Br1y40aNAAMTExOguczZo1C/v370evXr3QoEEDpKWlYcmSJfD29kbHjh01lnVzc0PHjh0xZswY3LlzBwsWLIC/v3+5j3YDQK9evTB//nx0794dw4cPR1paGhYvXgx/f3+cOnVKvZy/vz9mzJiB2bNno1OnThg4cCBsbGwQHx+PunXrIioqCk5OTli6dCleeeUVtGzZEi+99BI8PT2RmpqK7du3IzQ0FF9//bWIntfvvffeQ0xMDHr37o3Ro0ejVatWyMvLw+nTp7Fp0yZcuXKlwv9htmrVCgAwadIkdOvWDZaWlurHhE3phx9+UN+IWlJ5jyOXF3dYWBjGjRuHqKgoJCQk4IUXXkCNGjWQlJSEjRs3YuHChRr1XLSpyPGnzZAhQzB16lRMnToVbm5uZc7gvPbaa7h37x6effZZeHt74+rVq1i0aBFatGiBp59+Wm/7hmjVqhUGDRqEBQsW4O7du+rHry9evAig8mfo7O3t0apVKxw5ckRdQwZ4ckYmLy8PeXl5ZRKZ3r17Y9asWRgzZgw6dOiA06dPY/Xq1eX+XRw+fDjef/99bNmyBePHj6/0/XrPPPMMnnnmmUp9VptOnTrh66+/xsSJExEQEKCu7Pvw4UNcvHgRq1evhrW1tdZLz9WGGZ6UIgnoevwaJR4lLX609IsvvijTBko9DikIgrBu3TqhSZMmgo2NjRAYGCjExMQIgwYNEpo0aaLzs9oeLywZZ0pKisb0n3/+WejYsaPg4OAgODg4CE2aNBEiIiKExMTECm23tbW14OXlJTz//PPCwoULNR6VLh1bsd27dwv9+vUT6tatK1hbWwt169YVhg0bpvHYcfFjv2vXrhUiIyOFWrVqCXZ2dkKvXr2Eq1evarSv7fHr77//XggICBBsbGyEJk2aCNHR0WXiKPbDDz8IwcHBgo2NjeDq6iqEhYUJu3bt0lhm7969Qrdu3QRnZ2fB1tZW8PPzE0aPHi38/fffGnE4ODiUaT8sLExo1qxZmekNGjQQevXqpTHt/v37QmRkpODv7y9YW1sLHh4eQocOHYQvv/xSePjwoSAIFTumHj9+LEycOFHw9PQUVCqV3kexy3v8euPGjRrLaXtkWht9vyfXrl3T2pa+uL/77juhVatWgp2dnVCzZk2hefPmwvvvvy/cvHlTvYy2/hUEccefPqGhoQIA4bXXXiszb9OmTcILL7wg1KpVS7C2thZ8fHyEcePGCbdu3dLbLv73KLE22h5l13ZM5+XlCREREYKbm5vg6Ogo9O/fX/3o+Ny5c8t8VuzfjPfee08AIMybN09jur+/vwBAuHTpksb0Bw8eCFOmTBHq1Kkj2NnZCaGhocLhw4fLHGMl9ezZUwAgHDp0SOt8bXT1WTFdj1+LdeLECWHkyJGCj4+PYG1tLTg4OAhBQUHClClThOTkZNHtVEUqQeB5KdKtRYsW8PT0rPTjnEq0b98+dO3aFRs3btT7HzYR6ZaQkIDg4GD89NNPogvMmcOAAQNw+vRpSe8LJOPjPTKk9ujRozL3Qezbtw8nT57UKBtPRFSef/75p8y0BQsWwMLCAp07dzZDROLcunUL27dvxyuvvGLuUKiCeI8Mqd24cQPPPfccXn75ZdStWxcXLlzAN998Ay8vrzJFq4iItPn8889x7NgxdO3aFVZWVupHwN944w3Ur1/f3OGVkZKSgri4OCxfvlw9tAYpCxMZUnN1dUWrVq2wfPlypKenw8HBAb169cLcuXPLjN1ERKRNhw4dsGvXLsyePRu5ubnw8fHBxx9/jBkzZpg7NK1iY2MxZswY+Pj4YOXKldX7plmF4j0yREREpFi8R4aIiIgUi4kMERERKVaVv0emqKgIN2/eRM2aNRVbLp2IiKi6EQQB9+/fR926dXUOqFrlE5mbN2/K8k55IiIi0u/atWsao4KXVuUTmeJh0K9duwYnJyczR0NERERi5OTkoH79+urv8fLIJpGZO3cuIiMj8fbbb2PBggUAoB71s6Rx48bhm2++Ed1u8eUkJycnJjJEREQKo++2EFkkMvHx8fj222/VI7SW9Prrr2PWrFnq9/b29qYMjYiIiGTM7E8t5ebmYsSIEVi2bBlcXV3LzLe3t4eXl5f6xbMqREREVMzsiUxERAR69epVZij6YqtXr4aHhwcCAwMRGRmJ/Px8ne0VFBQgJydH40VERERVk1kvLa1btw7Hjx9HfHy81vnDhw9HgwYNULduXZw6dQrTpk1DYmIiNm/eXG6bUVFR+OSTT4wVMhEREcmI2YYouHbtGlq3bo1du3ap743p0qULWrRoob7Zt7Q9e/YgPDwcycnJ8PPz07pMQUEBCgoK1O+L73rOzs7mZSkiIiKFyMnJgbOzs97vb7OdkTl27BjS0tLQsmVL9bTCwkLs378fX3/9NQoKCmBpaanxmXbt2gGAzkTGxsYGNjY2xguciIiIZMNsiUx4eDhOnz6tMW3MmDFo0qQJpk2bViaJAYCEhAQAQJ06dUwRIhEREcmc2RKZmjVrIjAwUGOag4MD3N3dERgYiEuXLmHNmjXo2bMn3N3dcerUKbzzzjvo3Lmz1se0iYiIqPqRRR0ZbaytrfHnn39iwYIFyMvLQ/369TFo0CB88MEH5g6NiIiIZMJsN/uaitibhYiIiEg+ZH+zL+kXm5iGhOtZaOnjik4BnuYOh4iISHaYyMjQ1bt56L84Dpn5j9TTXO1rICaiI+q7c4gGIiKiYmav7EtllU5iACAz/xH6Lj5opoiIiIjkiYmMzMQmppVJYopl5j/CgaR0E0dEREQkX0xkZCbhepbO+cdTM00TCBERkQIwkZGZFt4uOue39Ck7QjgREVF1xURGZsIa14KrfQ2t81zta/DpJSIiohKYyMhQTETHMslM8VNLRERE9C8+fi1D9d3tceLDF3AgKR3HUzNZR4aIiKgcTGRkrFOAJxMYIiIiHXhpiYiIiBSLiQwREREpFhMZIiIiUiwmMkRERKRYTGSIiIhIsZjIEBERkWIxkSEiIiLFYiJDREREisVEhoiIiBSLiQwREREpFhMZIiIiUiwmMkRERKRYTGSIiIhIsZjIEBERkWIxkSEiIiLFYiJDREREisVEhoiIiBSLiQwREREpFhMZIiIiUiwmMkRERKRYTGSIiIhIsazMHQCV73J6Lq7ey0dDdwf4ejiYOxwiIiLZYSIjQ1n5DzFpbQL2J6Wrp3UO8MSiYcFwtq9hxsiIiIjkhZeWZGjS2gTEJWdoTItLzsDEtSfMFBEREZE8MZGRmcvpudiflI5CQdCYXigI2J+UjpSMPDNFRkREJD9MZGTm6r18nfOv3GUiQ0REVIyJjMw0cLPXOb+hO2/6JSIiKsZERmae8nRE5wBPWKpUGtMtVSp0DvDk00tEREQlMJGRoUXDghHq76ExLdTfA4uGBZspIiIiInni49cy5GxfA6vGtkVKRh6u3M1jHRkiIqJyMJGRMV8PJjBERES68NISERERKZZsEpm5c+dCpVJh8uTJ6mkPHjxAREQE3N3d4ejoiEGDBuHOnTvmC5KIiIhkRRaJTHx8PL799lsEBQVpTH/nnXfw66+/YuPGjYiNjcXNmzcxcOBAM0VJREREcmP2RCY3NxcjRozAsmXL4Orqqp6enZ2N77//HvPnz8ezzz6LVq1aITo6GocOHcKRI0fMGDERERHJhdkTmYiICPTq1QvPPfecxvRjx47h0aNHGtObNGkCHx8fHD58uNz2CgoKkJOTo/EiIiKiqsmsTy2tW7cOx48fR3x8fJl5t2/fhrW1NVxcXDSm165dG7dv3y63zaioKHzyySdSh0pEREQyZLYzMteuXcPbb7+N1atXw9bWVrJ2IyMjkZ2drX5du3ZNsraJiIhIXsyWyBw7dgxpaWlo2bIlrKysYGVlhdjYWPz3v/+FlZUVateujYcPHyIrK0vjc3fu3IGXl1e57drY2MDJyUnjRURERFWT2S4thYeH4/Tp0xrTxowZgyZNmmDatGmoX78+atSogd27d2PQoEEAgMTERKSmpiIkJMQcIRMREZHMmC2RqVmzJgIDAzWmOTg4wN3dXT197NixePfdd+Hm5gYnJydMnDgRISEhaN++vTlCJiIiIpmR9RAFX331FSwsLDBo0CAUFBSgW7duWLJkibnDIiIiIplQCYIgmDsIY8rJyYGzszOys7N5vwwREZFCiP3+NnsdGSIiIqLKYiJDREREisVEhoiIiBSLiQwREREpFhMZIiIiUiwmMkRERKRYTGSIiIhIsZjIEBERkWIxkSEiIiLFYiJDREREisVEhoiIiBSLiQwREREpFhMZIiIiUiwmMkRERKRYTGSIiIhIsZjIEBERkWIxkSEiIiLFYiJDREREisVEhoiIiBSLiQwREREplpW5A6jOLqfn4uq9fDR0d4Cvh4O5wyEiIlIcJjJmkJX/EJPWJmB/Urp6WucATywaFgxn+xpmjIyIiEhZeGnJDCatTUBccobGtLjkDExce8JMERERESkTExkTu5yei/1J6SgUBI3phYKA/UnpSMnIM1NkREREysNExsSu3svXOf/KXSYyREREYjGRMbEGbvY65zd0502/REREYjGRMbGnPB3ROcATliqVxnRLlQqdAzz59BIREVEFMJExg0XDghHq76ExLdTfA4uGBZspIiIiImXi49dm4GxfA6vGtkVKRh6u3M1jHRkiIqJKYiJjRr4eTGCIiIgMwUtLREREpFg8I2NGsYlpSLiehZY+rugU4GnucIiIiBSHiYwZXL2bh/6L45CZ/0g9zdW+BmIiOqK+u+7Hs4mIiOhfvLRkBqWTGADIzH+EvosPmikiIiIiZWIiY2KxiWllkphimfmPcKDEQJJERESkGxMZE0u4nqVz/vHUTNMEQkREVAUwkTGxFt4uOue39HE1TSBERERVABMZEwtrXAuu9jW0znO1r8Gnl4iIiCqAiYwZxER0LJPMFD+1REREROLx8WszqO9ujxMfvoADSek4nprJOjJERESVxETGjDoFeDKBISIiMoBZLy0tXboUQUFBcHJygpOTE0JCQrBjxw71/C5dukClUmm83nzzTTNGLK3YxDQs3H2Rj1wTERFVklnPyHh7e2Pu3LkICAiAIAhYuXIl+vXrhxMnTqBZs2YAgNdffx2zZs1Sf8beXvmVb1nZl4iISBpmPSPTp08f9OzZEwEBAWjUqBHmzJkDR0dHHDlyRL2Mvb09vLy81C8nJyczRiwNVvYlIiKShmyeWiosLMS6deuQl5eHkJAQ9fTVq1fDw8MDgYGBiIyMRH5+vs52CgoKkJOTo/GSE1b2JSIiko7Zb/Y9ffo0QkJC8ODBAzg6OmLLli1o2rQpAGD48OFo0KAB6tati1OnTmHatGlITEzE5s2by20vKioKn3zyianCrzAxlX15AzAREZE4KkEQBHMG8PDhQ6SmpiI7OxubNm3C8uXLERsbq05mStqzZw/Cw8ORnJwMPz8/re0VFBSgoKBA/T4nJwf169dHdna2LC5LxSamYVR0fLnzfxzblokMERFVezk5OXB2dtb7/W32MzLW1tbw9/cHALRq1Qrx8fFYuHAhvv322zLLtmvXDgB0JjI2NjawsbExXsAGKq7sq+3yEiv7EhERVYxs7pEpVlRUpHFGpaSEhAQAQJ06dUwYkfRY2ZeIiEgaZj0jExkZiR49esDHxwf379/HmjVrsG/fPuzcuROXLl3CmjVr0LNnT7i7u+PUqVN455130LlzZwQFBZkzbIOxsi8REZE0zJrIpKWlYeTIkbh16xacnZ0RFBSEnTt34vnnn8e1a9fw559/YsGCBcjLy0P9+vUxaNAgfPDBB+YMWVKs7EtERGQYs9/sa2xibxYiIiIi+VDMzb7V2eX0XFy9l4+G7g7w9XAwdzhERESKw0TGDLLyH2LS2gTsL1H8rnOAJxYNC4ZzqZuAiYiIqHyye2qpOpi0NgFxyRka0+KSMzBx7QkzRURERKRMTGRM7HJ6LvYnpaOw1K1JhYKA/UnpSMnIM1NkREREysNExsSu3tM9VtSVu0xkiIiIxGIiY2IN3Ox1zm/ozpt+iYiIxGIiY2JPeTqic4AnLFUqjemWKhU6B3jy6SUiIqIKYCJjBouGBSPU30NjWqi/BxYNCzZTRERERMrEx6/NwNm+BlaNbYuUjDxcuZvHOjJERESVxETGjHw9mMAQEREZgolMJUlRlZeVfYmIiAzDRKaCpKjKy8q+RERE0uDNvhUkRVVeVvYlIiKSBhOZCpCiKi8r+xIREUmHiUwFSFGVl5V9iYiIpMNEpgKkqMrLyr5ERETSYSJTAVJU5WVlXyIiIukwkakgKarysrIvERGRNFSCUOqu0yomJycHzs7OyM7OhpOTk2TtSlGVl5V9iYiItBP7/c06MpUkRVVeVvYlIiIyDC8tERERkWKJPiNTVFSEs2fPonnz5gCAb775Bg8fPlTPt7S0xPjx42FhUT1yo/VHU3E45S5C/TwwuHV9c4cjexyOgYiIjEH0PTJr1qzBN998g/379wMAatasCRcXF1hZPcmFMjIysGDBAowdO9Z40VaC1PfInL6ehQFLDuFx0b/dZmWhQkxEKJrWcza4/aqGwzEQEVFliP3+Fn36JDo6GhERERrTYmNjkZKSgpSUFHzxxRf46aefKh+xQpROYgDgcZGAvovjzBSRvHE4BiIiMibRicyFCxfQunXrcueHhYXh5MmTkgQlV+uPppZJYoo9LhKw8e9rJo5I3jgcAxERGZvoRCY9PV3j/eXLl9GwYUP1+xo1aiAvr2p/MR1OuatzftylDJ3zqxsOx0BERMYmOpGpXbs2EhMT1e89PT01buw9f/48vLy8pI1OZkJ83XXOD/Xz0Dm/uuFwDEREZGyiE5nw8HDMmTNH6zxBEBAVFYXw8HDJApOjoW19YGWh0jrPykLFp5dK4XAMRERkbKITmRkzZuDMmTNo164dNm7ciJMnT+LkyZPYsGED2rVrh7Nnz2L69OnGjFUWYiJCyyQzxU8tUVkcjoGIiIypQkMUHD16FKNHj8aFCxeg+t9/2YIgoEmTJoiOjka7du2MFmhlGWuIgo1/X0PcpQzWkRGJwzEQEVFFiP3+rtRYSwkJCbh48SIAICAgAMHB8v3v2liJDBERERmPUcZaysnJwV9//YWHDx+ia9eu8PT0NDhQMowcKubOijmLQ5cz0NHfEx/0bqp1GTnESUREVY/oRCYhIQE9e/bE7du3ATyp7LthwwZ069bNaMFR+eRQMfePM7fwxk/H1e8v3M7F8oMp+H5ka4Q3rS2bOImIqOoSfbPvtGnT4Ovri7i4OBw7dgzh4eGYMGGCMWMjHeRQMbdkElPS2FV/q3+WQ5xERFR1iT4jc+zYMfzxxx9o2bIlAOCHH36Am5sbcnJyeO+JiRVXzC2tZMVcY1++mRVzVuf8T7edw/B2PmaPk4iIqjbRZ2Tu3bsHb29v9XsXFxc4ODjg7l3d1W5JenKomHvosu4qxgeT02URJxERVW0Vutn33Llz6ntkgCePXp8/fx73799XTwsKCpIuOtJKDhVzOzzlgQu3c8ud39HfUxZxEhFR1VahRCY8PByln9bu3bs3VCoVBEGASqVCYWGhpAFSWcUVc+OSMzQGZLRUqRDq72GSyzUf9m2GHw5dKXd+8dNL5o6TiIiqNtGJTEpKijHjoApaNCwYE9ee0LgHxdQVc78f2Vrjxt6S04vJIU4iIqq6KlUQT0mqekE8OVTM/XTbORxMTtdZR0YOcRIRkXJIXtk3NTVV1Ip9fHzERWgiVT2RISIiqookr+zr6+ur/rk491GVGNWY98gQERGRqYl+/FqlUqF+/fqYOXMm4uPjceLECRw/flz9Kn5fEUuXLkVQUBCcnJzg5OSEkJAQ7NixQz3/wYMHiIiIgLu7OxwdHTFo0CDcuXOnQuuQs8vpudibmIaUjMo/hixFG4aKTUzDwt0XcUBLzRgiIiJjEn1p6fbt21i5ciWio6ORlZWFl19+GWPHjsXTTz9d6ZX/+uuvsLS0REBAAARBwMqVK/HFF1/gxIkTaNasGcaPH4/t27djxYoVcHZ2xoQJE2BhYYG4uDjR65DjpSUpyvbLofT/1bt56L84Dpn5j9TTXO1rICaiI+q76370moiISBejjn598OBBREdHY+PGjWjatCnGjh2LsWPHwsJC9Amecrm5ueGLL77Aiy++CE9PT6xZswYvvvgiAODChQt4+umncfjwYbRv315Ue3JMZEZ+f7TcR5JXjW1rsjYMFTzrD40kppirfQ2c+PAFk8RARERVk9jv70plHh07dsT333+PpKQk2Nvb480330RWVlZlYwUAFBYWYt26dcjLy0NISAiOHTuGR48e4bnnnlMv06RJE/j4+ODw4cPltlNQUICcnByNl5wUDy9QWCp/LFm23xRtGCo2MU1rEgMAmfmPeJmJiIhMolKJzKFDh/Daa6+hUaNGyM3NxeLFi+Hi4lKpAE6fPg1HR0fY2NjgzTffxJYtW9C0aVPcvn0b1tbWZdqtXbu2RnXh0qKiouDs7Kx+1a9fv1JxGYsUZfvlUPo/4XqWzvnHUzONHgMREZHop5Zu3bqFVatWITo6GpmZmRgxYgTi4uIQGBhoUACNGzdGQkICsrOzsWnTJowaNQqxsbGVbi8yMhLvvvuu+n1OTo6skhkpyvbLofR/C28XnfNb+rgaPQYiIiLRiYyPjw/q1auHUaNGoW/fvqhRowaKiopw6tQpjeUqOtaStbU1/P39AQCtWrVCfHw8Fi5ciKFDh+Lhw4fIysrSOCtz584deHl5lduejY0NbGxsKhSDKUkxvIAchigIa1wLrvY1yr1HplOAp9FjICIiEn1pqbCwEKmpqZg9ezbatm2L4OBgtGjRQuMVHGx42fmioiIUFBSgVatWqFGjBnbv3q2el5iYiNTUVISEhBi8HnNaNCwYof4eGtMqWrZfijYMFRPREa6lnpAqfmqJiIjIFEQ/tXT16lVRDTZo0ED0yiMjI9GjRw/4+Pjg/v37WLNmDebNm4edO3fi+eefx/jx4/Hbb79hxYoVcHJywsSJEwE8uUdHLDk+tVRMirL9cij9fyApHcdTM9HSx5VnYoiISBKSV/atSIIiVlpaGkaOHIlbt27B2dkZQUFB6iQGAL766itYWFhg0KBBKCgoQLdu3bBkyRLJ4zAXXw/Dkw8p2jBUpwBPJjBERGQWHDSyki6n5+LqvXyDzoR8vTsJcZcy0CnAE2919a9UGz2/ikVyRh4a1XLEtrc7V6qN2MQ0JFzPqvQZFTF9sf5oKg6n3EWonwcGt5bPzddKJMWxR0Qkd0YtiKckUicyUlTUPZScjuHLj5aZvv719mjn5y6qjXm/ncPS/Sllpk/s6ocp3ZqIasPQyrxi+uL09SwMWHIIj4v+PcysLFSIiQhF03rOouKkJ+RQzZmIyFSMWhCvOpu0NgFxyRka0+KSMzBx7QnRbWhLYgBg6LIjotvQlsQAwKK9l0S3UTqJAZ4Us+u7+KCoz4vpi9JJDAA8LhLQd7H4YSboCSmOPSKiqoaJTAVIUVH3691JOucv2Zust42eX+mus9N74X69bRhamVdMX6w/mlomiSn2uEjAxr+v6Y2TnpBDNWciIjmqcCLz0UcfiX6CqaqRoqJu3KUMnfPFlPZP1vOldTEtV28bhlbmFdMXh1Pu6lxGX1/Qv+RQzZmISI4qnMj88ssv8PPzQ3h4ONasWYOCggJjxCVLUlTUDfXz0DlfzM22/npu8GxUy1FvG4ZW5hXTFyG+uu/30dcX9C85VHMmIpKjCicyCQkJiI+PR7NmzfD222/Dy8sL48ePR3x8vDHik5XiirqWKpXGdEuVCp0DPEU9QTIhPEDnfDFPL/32TpjO+WKeXiquzKuNmMq8YvpiaFsfWFmotH7eykLFp5cqQIpjj4ioKqrUPTLBwcH473//i5s3b+L777/H9evXERoaiqCgICxcuBDZ2dlSxykbUlTUXf96+wpN12ZiV78KTdfG0Mq8YvoiJiK0TDJT/NQSVYwcqjkTEcmNQY9fP3z4EFu2bMEPP/yAPXv2oEOHDrh58ybu3LmDZcuWYejQoVLGWinGqiMjRUXdJXuTcSAp3aA6Mr0X7sfFtFyD6sgYWplXTF9s/Psa4i5lsI6MBORQzZmIyNiMWkfm2LFjiI6Oxtq1a2FjY4ORI0fitddeUw/+uGjRInz66ae4c+dO5bdAInIeooCIiIi0M1oi07x5c1y4cAEvvPACXn/9dfTp0weWlpYay2RkZKBWrVooKiqqXPQSYiJDRESkPJKPtVRsyJAhePXVV1GvXr1yl/Hw8JBFElMdKKX0P8vqPyFFP5iiL7m/iEgpOESBQiml9D/L6j8hRT+Yoi+5v4hILox6j8z169cRExOD1NRUPHz4UGPe/PnzKx6tEVXVRMZ/+m9aq+ZaWaiQ/FlPM0Sk3cjvjyIuOUOjIq2lSoVQfw+sGtvWjJGZlhT9YIq+5P4iIrkw2qWl3bt3o2/fvnjqqadw4cIFBAYG4sqVKxAEAS1btjQoaBJHTOl/OVxmKi6rX1rJsvrV4bKFFP1gir7k/iIiJapwHZnIyEhMnToVp0+fhq2tLX7++Wdcu3YNYWFhGDx4sDFipFKUUvqfZfWfkKIfTNGX3F9EpEQVTmTOnz+PkSNHAgCsrKzwzz//wNHREbNmzcK8efMkD5DKUkrpf5bVf0KKfjBFX3J/EZESVTiRcXBwUN8XU6dOHVy6dEk9LyNDHmcCqjqllP5nWf0npOgHU/Ql9xcRKVGFE5n27dvj4MGDAICePXtiypQpmDNnDl599VW0by++xD4ZRiml/1lW/wkp+sEUfcn9RURKU+Gnli5fvozc3FwEBQUhLy8PU6ZMwaFDhxAQEID58+ejQYMGxoq1UqrqU0vFlFL6n2X1n5CiH0zRl9xfRGRuRn38WkmqeiJDRERUFYn9/q7wpaUPP/wQe/fuxYMHDwwKkKQRm5iGhbsv4oCWx2ZN1cb6o6mYvP4ENv59zaBllOByei72JqYhJaNyT/AY+nmp2pDDOoiIpFDhMzLPP/88Dh8+jMePH6NNmzYICwtDly5dEBoaCjs7O2PFWWlV9YzM1bt56L84Dpn5j9TTXO1rICaiI+q76376RKo2xFQXVkoFYn0MrXjLyr5ERBVjtDMyu3btQlZWFnbv3o2ePXvi77//xsCBA+Hi4oKOHTsaFDSJVzoBAYDM/Efou/igydoonaAATwry9V0cV6FllGDS2gTEJWs+lReXnIGJa0+Y5PNStSGHdRARSanCiQzwpH5MaGgoBg0ahAEDBqBbt24oKirChQsXpI6PtIhNTCuTgBTLzH8k6hKRoW2IqS4sZhklKK54W1jq5GXJirfG/LxUbchhHUREUqtwIvPdd99h+PDhqFevHjp06IDff/8dHTt2xN9//4309Mrfp0HiJVzP0jn/eGqm0dsQU11YKRWI9TG04i0r+xIRGU+Fx1p688034enpiSlTpuCtt96Co6OjMeIiHVp4u+ic39LH1ehthPi6Y+uJm+XOD/XzQFGRoHcZJTC04i0r+xIRGU+Fz8hs3rwZI0aMwLp16+Dp6YkOHTpg+vTp+OOPP5Cfr/s/OpJGWONacC3nxktX+xroFOBp9DbEVBdWSgVifQyteMvKvkRExlPhRKZ///6YP38+jh8/jtu3b2P69Om4ceMGevfuDTc3N2PESFrERHQsk4gUP3FkqjbEVBdWSgVifQyteMvKvkRExlGpgnh3795FbGws9u3bh3379uHs2bNwdXVFp06dsGXLFmPEWWlV9fHrYgeS0nE8NRMtfVxFnYkxRhtiqgsrpQKxPoZWvGVlXyIicYxW2bd58+Y4f/48XF1d0blzZ3Tp0gVhYWEICgoyOGhjqOqJDBERUVUk9vu7Ujf7hoWFITAw0KAAiYiIiAxV4UQmIiLCGHFUS5fTc3H1Xr5Bp++/3p2EuEsZ6BTgibe6+leqjdjENCRcz6r0pSUx2zEr5iwOXc5AR39PfNC7aaXi1MfQvhATo6F9JQV9/S1FjFK0IcXxTdWPUo4bpcRZHVT40lJhYSFWrFiB3bt3Iy0tDUVFRRrz9+zZI2mAhpLjpSUpysAfSk7H8OVHy0xf/3p7tPNzF9WGoUMUiNmOP87cwhs/HS/z2e9HtkZ409qi4tTH0L4QE6MUQ0IYSl9/y2HYCjFxEmmjlONGKXFWBUYbouDtt9/G22+/jcLCQgQGBuKZZ57ReJF+UpSB1/bFDQBDlx0R3YahQxSI2Q5tCQIAjF31t+g49TG0L8TEKMWQEIbS199yGLZCTJxE2ijluFFKnNVJhS8trVu3Dhs2bEDPnj2NEU+VV1wGvrSSZeD1nab8eneSzvlL9ibrvbQiZogCXZcUxGzHj4eu6Izh023nDL7MZGhfzIo5q/Pzn247h04BHgb1lRT09ff6+FSDYzT0mBATp5jjm6ofpRw3SomzuqnwGRlra2v4+1fuXgySpgy8vtL+YsZaMnSIAjHbceiy7jgPJhs+pIWhfSEmRimGhDCUvv4+fFn3cBCmGLYC4DAHVDlKOW6UEmd1U+FEZsqUKVi4cCEqUX6GIE0ZeH2l/cWcHTB0iAIx29HhKd1xdvQ3/CyGoX0hJkYphoQwlL7+DnlK971Aphi2AuAwB1Q5SjlulBJndSMqkRk4cKD6FRcXh9WrV8PPzw99+vTRmDdw4EBjx6t4UpSBnxAeoHO+mCd2DB2iQMx2fNi3mc42pHh6ydC+EBOjFENCGEpffw9t42P2YSvExMnT7qSNUo4bpcRZ3YhKZJydnTVeAwYMQFhYGDw8PMrMI/2kKAO//vX2FZqujaFDFIjZju9Httb62fKmV4ahfSEmRimGhDCUvv6Ww7AVYuIk0kYpx41S4qxOKjVEgZLI8fHrYlKUgV+yN1l9E2Zl68gYOkSBmO34dNs5HExON2odGUP7QkyMUgwJYSh9/S2HYSvExEmkjVKOG6XEqWRGG6JAaeScyBAREZF2RhuiIDg4GKpS1wcBQKVSwdbWFv7+/hg9ejS6du2qt62oqChs3rwZFy5cgJ2dHTp06IB58+ahcePG6mW6dOmC2NhYjc+NGzcO33zzTUVDl53qVBlSigrE+piiQvH6o6k4nHLXrINfmuK4qU7HJj3BfV4x7C/5qPAZmcjISCxduhTNmzdH27ZtAQDx8fE4deoURo8ejXPnzmH37t3YvHkz+vXrp7Ot7t2746WXXkKbNm3w+PFjTJ8+HWfOnMG5c+fg4PDkwOjSpQsaNWqEWbNmqT9nb28v+uyKHM/IVKfKkFJUINbHFBWKT1/PwoAlh/C46N9fFysLFWIiQtG0nmnuDTPFcVOdjk16gvu8YthfpmO0S0uvv/46fHx8MHPmTI3pn376Ka5evYply5bho48+wvbt2/H33xWr3pqeno5atWohNjYWnTt3BvAkkWnRogUWLFhQobaKyTGRGfn9UcQlZ6CwRNdbqlQI9ffAqrFtzRiZ9Br+Z3u5867M7SXJOoJn/aG1kJurfQ2c+PAFvZ8Xsz/8p/+mkcQUs7JQIfkz0xSHNMVxU52OTXqC+7xi2F+mY7QhCjZs2IBhw4aVmf7SSy9hw4YNAIBhw4YhMTGxok0jOzsbAODm5qYxffXq1fDw8EBgYCAiIyORn19+UaKCggLk5ORovOSkuDJkYan8sWRlyKpCTNVdQ4mpRquLmP2x/miq1iQGAB4XCdj497XKBV8BpjhuqtOxSU9wn1cM+0ueKpzI2Nra4tChQ2WmHzp0CLa2tgCAoqIi9c9iFRUVYfLkyQgNDUVgYKB6+vDhw/HTTz9h7969iIyMxI8//oiXX3653HaioqI0HgevX9889zGUpzpVhpSiArE+pqhQfDhFd9VcfdspBVMcN9Xp2KQnuM8rhv0lTxW+2XfixIl48803cezYMbRp0wbAk3tkli9fjunTpwMAdu7ciRYtWlSo3YiICJw5cwYHD2oOTvfGG2+of27evDnq1KmD8PBwXLp0CX5+fmXaiYyMxLvvvqt+n5OTI6tkpjpVhgz188Dhy/fKnS/F48umqFAc4uuOrSdulruMvurCUjDFcVOdjk16gvu8Ythf8lThMzIffPABli1bhqNHj2LSpEmYNGkSjh49imXLlmHGjBkAgDfffBO//vqr6DYnTJiAbdu2Ye/evfD29ta5bLt27QAAycnaL0vY2NjAyclJ4yUn1akypBQViPUxRYXioW19YGVR9kk94Mk9MqZ4eskUx011OjbpCe7zimF/yVOFExkAGDFiBA4fPox79+7h3r17OHz4MIYPH66eb2dnJ+rSkiAImDBhArZs2YI9e/bA19dX72cSEhIAAHXq1KlM6LJQnSpDSlGBWB9TVCiOiQgtk8wUP7VkKqY4bqrTsUlPcJ9XDPtLfsxaEO+tt97CmjVr8Msvv2jUjnF2doadnR0uXbqENWvWoGfPnnB3d8epU6fwzjvvwNvbu0xtmfLI8amlYtWpMqQUFYj1MUWF4o1/X0PcpQyz1pExxXFTnY5NeoL7vGLYX8Yn6ePXbm5uuHjxIjw8PODq6qq1IF6xe/fKvyeizMrLaSc6OhqjR4/GtWvX8PLLL+PMmTPIy8tD/fr1MWDAAHzwwQeKriNDREREukla2ferr75CzZo1AaDS9Vy00ZdD1a9fX/SZFyIiIqp+ONYSGUxMqW5Dy3mLGRrA0OEDTFFy3NBhFJSEJdyJqj5j/p5LXtlXbGE5uSULTGSMR0ypbkPLeYsZGsDQ4QNMUXLc0GEUlIQl3ImqPlP8nkueyFhYWOi8N0YQBKhUKhQWFlY8WiNiImM8Ykp1G1rOW8zQAIYOH2CKkuOGDqOgJCzhTlT1meL3XPLRr/fu3av+WRAE9OzZE8uXL0e9evUMi5QUqbhUd2klS3UL//tZ1zK6TkWKGRqgqEjQu4yuy0xitsPQ06VihlGoKpeZTNGfRGRecvs9F53IhIWFaby3tLRE+/bt8dRTT0keFMmfFKW6r9zVfbBLMTRA3KUMnYmMmO0w9BdSzDAKVSWRMUV/EpF5ye33vFIF8YjElOo2tJx3iK+7zvmhfh6iltHFFCXHDR1GQUlYwp2o6pPb7zkTGaoUMaW6DS3nLWZoAEOHDzBFyXFDh1FQEpZwJ6r65PZ7blAio+vmX6r6xJTqNrSct5ihAQwdPsAUJccNHUZBSVjCnajqk9PvueinlgYOHKjx/tdff8Wzzz4LBwfNzGvz5s3SRScBPrVkfGJKdRtazlvM0ACGDh9gipLjhg6joCQs4U5U9Rnz91zyx6/HjBkjasXR0dHiIjQRJjJERETKI/nj13JLUEhZTFHllZVkpSNFX8qlDUPJIYbqhP1NFSU6kSGqDFNUf2QlWelI0ZdyacNQcoihOmF/U2XxqSUyqklrExCXrFnvJS45AxPXnlDUOqoLKfpSLm0YSg4xVCfsb6osJjJkNMXVHwtL3YZVsvqjEtZRXUjRl3Jpw1ByiKE6YX+TIZjIkNFIUf1XDuuoLqToS7m0YSg5xFCdsL/JEExkyGhMUf1RbhUmlUyKvpRLG4aSQwzVCfubDMFEhozGFNUf5VZhUsmk6Eu5tGEoOcRQnbC/yRBMZMioTFH9UU4VJpVOir6USxuGkkMM1Qn7mypLdEE8pWJBPHkwRZVXVpKVjhR9KZc2DCWHGKoT9jcVk7yyr1IxkSEiIlIesd/fvLREREREisXKvqQIVWWIg9jENCRcz5L9oJEsE/8vpewzouqKiQzJWlUZ4uDq3Tz0XxyHzPxH6mmu9jUQE9ER9d11P3pqSiwT/y+l7DOi6o6XlkjWqsoQB6W/EAEgM/8R+i4+KNk6pMAy8f9Syj4jqu6YyJBsVZUhDmIT08p8IRbLzH+EAyXOfpgTy8T/Syn7jIiYyJCMVZUhDhKuZ+mcfzw10+B1SIFl4v+llH1GRExkSMaqyhAHLbxddM5v6eNq8DqkwDLx/1LKPiMiJjIkY1VliIOwxrXgWs6Nsq72NWTzJAzLxP9LKfuMiJjIkMxVlSEOYiI6lvliLH4CRk5YJv5fStlnRNUdK/uSIlSVIQ4OJKXjeGqm7GuSsEz8v5Syz4iqGg5R8D9MZIiIiJRH7Pc3C+IRURms7Psv9gWRvDGRISI1Vvb9F/uCSBl4sy8RqbGy77/YF0TKwESGiACwsm9J7Asi5WAiQ0QAWNm3JPYFkXIwkSEiAKzsWxL7gkg5mMgQEQBW9i2JfUGkHExkiEiNlX3/xb4gUgYWxCOiMljZ91/sCyLzYEE8Iqo0Xw9+aRdjXxDJGy8tERERkWKZNZGJiopCmzZtULNmTdSqVQv9+/dHYmKixjIPHjxAREQE3N3d4ejoiEGDBuHOnTtmipjM5evdSRj23WEs2Zts7lBIJO4zZYlNTMPC3RdxoEQl49Iup+dib2Ia6+iQrJj1Hpnu3bvjpZdeQps2bfD48WNMnz4dZ86cwblz5+Dg8ORU7vjx47F9+3asWLECzs7OmDBhAiwsLBAXFydqHbxHRtkOJadj+PKjZaavf7092vm5myEi0of7TFmu3s1D/8VxyMx/pJ7mal8DMREdUd/9yWPoHK6BzEGRo1+np6ejVq1aiI2NRefOnZGdnQ1PT0+sWbMGL774IgDgwoULePrpp3H48GG0b99eb5tMZJSt4X+2lzvvytxeJoyExOI+U5bgWX9oJDHFXO1r4MSHLwAARn5/FHHJGRqVji1VKoT6e2DV2LYmi5WqF7Hf37K6RyY7OxsA4ObmBgA4duwYHj16hOeee069TJMmTeDj44PDhw9rbaOgoAA5OTkaL1Kmr3cn6ZzPSxbyw32mLLGJaVqTGADIzH+EA0npHK6BZE82iUxRUREmT56M0NBQBAYGAgBu374Na2truLi4aCxbu3Zt3L59W2s7UVFRcHZ2Vr/q169v7NDJSOIuZeicr+taPpkH95myJFzP0jn/eGomh2sg2ZNNIhMREYEzZ85g3bp1BrUTGRmJ7Oxs9evatWsSRUimFurnoXN+pwBPE0VCYnGfKUsLbxed81v6uHK4BpI9WSQyEyZMwLZt27B37154e3urp3t5eeHhw4fIysrSWP7OnTvw8vLS2paNjQ2cnJw0XqRME8IDdM5/q6u/iSIhsbjPlCWscS24lnOzrqt9DXQK8ORwDSR7Zk1kBEHAhAkTsGXLFuzZswe+vr4a81u1aoUaNWpg9+7d6mmJiYlITU1FSEiIqcMlM1j/uvYbusubTubHfaYsMREdyyQzxU8tFeNwDSRnZn1q6a233sKaNWvwyy+/oHHjxurpzs7OsLOzA/Dk8evffvsNK1asgJOTEyZOnAgAOHTokKh18KmlqmHJ3mQcSEpHpwBP/levENxnynIgKR3HUzPR0se13EuAHK6BTEkRj1+rSp2qLBYdHY3Ro0cDeFIQb8qUKVi7di0KCgrQrVs3LFmypNxLS6UxkSEiIlIeRSQypsBEhpQmNjENCdezdP5nrIR1rD+aisMpdxHq54HBrZX79KC+vqoq23k5PRdX7+XzbAvJBhOZ/2EiQ0ohpsKqEtZx+noWBiw5hMdF//5psbJQISYiFE3rOUuyDlPQ11dVZTtZtZfkSpEF8Yiqs9JfmsCTomR9Fx9U1DpKf7kDwOMiAX0XixtWRC709VVV2c5JaxMQl6xZ/ycuOQMT154wU0REFcNEhkgGxFRYVcI61h9NLfPlXuxxkYCNfyujrpO+vpodc7ZKbCer9lJVwESGSAbEVFhVwjoOp9zVOV9f5V+50NdXcZd1b4dStpNVe6kqYCJDJANiKqwqYR0hvrpHt9ZX+Vcu9PVV6FO6t0Mp28mqvVQVMJEhkgExFVaVsI6hbX1gZaG9rIKVhUoxT/Xo66uZfZtVie1k1V6qCpjIEMmEmAqrylhHaJkv+eKneZREX19Vle1k1V5SOj5+TSQzYiqsKmEdG/++hrhLGYqvr6Kvr6rKdrJqL8kN68j8DxMZIiIi5WEdGSIiIqryrMwdABGZninK0UuxDkPbYNl9aRk6tIWY/VFVhnwg0+GlJaJqxBTl6KVYh6FtsOy+tAwd2kLM/qgqQz6QdHhpiYjKMEU5einWYWgbLLsvLUOHthCzP6rKkA9kekxkiKoJU5Sjl2IdhrbBsvvSMnRoCzH7o6oMbUHmwUSGqJowRTl6KdZhaBssuy8tQ4e2ELM/qsrQFmQeTGSIqglTlKOXYh2GtsGy+9IydGgLMfujqgxtQebBRIaomjBFOXop1mFoGyy7Ly1Dh7YQsz+qytAWZB5MZIiqEVOUo5diHYa2wbL70jJ0aAsx+6OqDPlApsfHr4mqIVOUo5diHYa2wbL70jJ0aAsx+6OqDPlAhuMQBf/DRIaIiEh5xH5/s7IvkQmJqVpqaPVUU9G3LVJUaJVDX+iLYcr6BPx15S5CnvLAF4OfMUsMYkhR5dgUVXdNsc+VUvFZKXGaG8/IEJmAmKqlhlZPNRV92yJFhVY59IW+GLYcu4Z3Np4q87n/Dm2BvsH1TBKDGFJUOTZF1V1T7HOlVHxWSpzGxsq+RDIipmqpodVTTUXftkhRoVUOfaEvBm1JDABMWp9gshjEkKLKsSmq7ppinyul4rNS4pQLJjJERiamaqmh1VNNRd+2vLfxpMEVWuXQF/piePm7wzo//97Gk0aPQUw/SFHl2BRVd02xz5VS8VkpccoJExkiIxNTtdTQ6qmmom9bDl/WXYFVTIVWOfSFvhhO3szWOV9fP0gRg5h+kKLKsSmq7ppinyul4rNS4pQTJjJERiamaqmh1VNNRd+2hDyluwKrmAqtcugLfTE8U1f3fSH6+kGKGMT0gxRVjk1RddcU+1wpFZ+VEqecMJEhMjIxVUsNrZ5qKvq25YvBzxhcoVUOfaEvhp/eCNH5eSmeXpKiH6SocmyKqrum2OdKqfislDjlhIkMkQmIqVpqaPVUU9G3LVJUaJVDX+iL4b9DW2j9XHnTjRGDGFJUOTZF1V1T7HOlVHxWSpxywceviUxITNVSQ6unmoq+bZGiQqsc+kJfDO9tPInDlzOMWkdGin6QosqxKarummKfK6Xis1LiNBZW9v0fJjJERETKwzoyREREVOVxiAIiIh30lcyXwzAKYshlmAMiqTGRISLSQl/JfDkMoyCGXIY5IDIWXloiItJCX8l8OQyjIIZchjkgMhYmMkREpegrmb94T5LZh1EQQy7DHBAZExMZIqJS9JXMP5isuyy/XIaUkMswB0TGxESGiKgUfSXzO/rrLssvlyEl5DLMAZExMZEhIipFX8n8iGcDzD6MghhyGeaAyJiYyBARaaGvZL4chlEQQy7DHBAZCyv7EhHpoK9kvhyGURBDLsMcEInFIQr+h4kMERGR8ihiiIL9+/ejT58+qFu3LlQqFbZu3aoxf/To0VCpVBqv7t27mydYIqqQy+m52JuYpvjHc/Vth1K2MzYxDQt3Xyz3kWsx22GKbZViHfq2laoWs1b2zcvLwzPPPINXX30VAwcO1LpM9+7dER0drX5vY2NjqvCIqBKqShVYfduhlO3UV9lXzHaYYlulWIdSqi2TtMx6RqZHjx749NNPMWDAgHKXsbGxgZeXl/rl6iqPxxqJSLuqUgVW33YoZTv1VfYVsx2m2FYp1qGUasskLdk/tbRv3z7UqlULjRs3xvjx43H37l2dyxcUFCAnJ0fjRUSmUVWqwOrbjv0X0xWxnfoq+26IT9W7HabYp1KsQ4oqxqRMsk5kunfvjlWrVmH37t2YN28eYmNj0aNHDxQWFpb7maioKDg7O6tf9evXN2HERNVbVakCq287TlzTXRFXLtupr7Lvocu6/zG8cjfPJPtUinVIUcWYlEnWo1+/9NJL6p+bN2+OoKAg+Pn5Yd++fQgPD9f6mcjISLz77rvq9zk5OUxmiEykqlSB1bcdwfV1X+KWy3bqq+zb4Sl3bD1xs9z5Dd0doO/BVim2VYrjRooqxqRMsj4jU9pTTz0FDw8PJCcnl7uMjY0NnJycNF5EZBpVpQqsvu3o3MhTEdupr7LvkDY+erfDFPtUinVIUcWYlElRicz169dx9+5d1KlTx9yhEFE5qkoVWH3boZTt1FfZV8x2mGJbpViHUqotk7TMWhAvNzdXfXYlODgY8+fPR9euXeHm5gY3Nzd88sknGDRoELy8vHDp0iW8//77uH//Pk6fPi36MWwWxCMyj6pSBVbfdihlO/VV9hWzHabYVinWoZRqy6SbIir77tu3D127di0zfdSoUVi6dCn69++PEydOICsrC3Xr1sULL7yA2bNno3bt2qLXwUSGiIhIeRSRyJgCExkiIiLlEfv9LeunloiIyDQup+fi6r182V8iMwX2hbIwkSEiqsaUMtSCKbAvlElRTy0REZG0lDLUgimwL5SJiQwRUTVVVYaUkAL7QrmYyBARVVNVZUgJKbAvlIuJDBFRNVVVhpSQAvtCuZjIEBFVU1VlSAkpsC+Ui4kMEVE1ppShFkyBfaFMLIhHRESKGWrBFNgX8sCCeEREJJqvB7+0i7EvlIWXloiIiEixmMgQERGRYjGRISIiIsViIkNERESKxUSGiIiIFIuJDBERESkWExkiIiJSLCYyREREpFhMZIiIiEixmMgQERGRYjGRISIiIsXiWEtERAaYFXMWhy5noKO/Jz7o3dTc4RBVO0xkiIgq4Y8zt/DGT8fV7y/czsXygyn4fmRrhDetbcbIiKoXXloiIqqEkklMSWNX/W3iSIiqNyYyREQVNCvmrM75n247Z6JIiIiJDBFRBR26nKFz/sHkdBNFQkRMZIiIKqjDUx4653f09zRRJETERIaIqII+7NtM53w+vURkOkxkiIgq4fuRrSs0nYiMQyUIgmDuIIwpJycHzs7OyM7OhpOTk7nDIaIq5tNt53AwOZ11ZIgkJvb7m3VkiIgMwOSFyLx4aYmIiIgUi4kMERERKRYTGSIiIlIsJjJERESkWExkiIiISLGYyBAREZFiMZEhIiIixWIiQ0RERIrFRIaIiIgUi4kMERERKVaVH6KgeCipnJwcM0dCREREYhV/b+sbErLKJzL3798HANSvX9/MkRAREVFF3b9/H87OzuXOr/KjXxcVFeHmzZuoWbMmVCqVucORXE5ODurXr49r165xdG8DsS+lxf6UDvtSWuxP6RizLwVBwP3791G3bl1YWJR/J0yVPyNjYWEBb29vc4dhdE5OTvyFlAj7UlrsT+mwL6XF/pSOsfpS15mYYrzZl4iIiBSLiQwREREpFhMZhbOxscFHH30EGxsbc4eieOxLabE/pcO+lBb7Uzpy6Msqf7MvERERVV08I0NERESKxUSGiIiIFIuJDBERESkWExkiIiJSLCYyChQVFYU2bdqgZs2aqFWrFvr374/ExERzh6VYS5cuRVBQkLqgU0hICHbs2GHusKqEuXPnQqVSYfLkyeYORZE+/vhjqFQqjVeTJk3MHZZi3bhxAy+//DLc3d1hZ2eH5s2b4++//zZ3WIrUsGHDMsemSqVCRESEyWOp8pV9q6LY2FhERESgTZs2ePz4MaZPn44XXngB586dg4ODg7nDUxxvb2/MnTsXAQEBEAQBK1euRL9+/XDixAk0a9bM3OEpVnx8PL799lsEBQWZOxRFa9asGf7880/1eysr/tmujMzMTISGhqJr167YsWMHPD09kZSUBFdXV3OHpkjx8fEoLCxUvz9z5gyef/55DB482OSx8PHrKiA9PR21atVCbGwsOnfubO5wqgQ3Nzd88cUXGDt2rLlDUaTc3Fy0bNkSS5YswaeffooWLVpgwYIF5g5LcT7++GNs3boVCQkJ5g5F8f7zn/8gLi4OBw4cMHcoVdLkyZOxbds2JCUlmXxcQ15aqgKys7MBPPnyJcMUFhZi3bp1yMvLQ0hIiLnDUayIiAj06tULzz33nLlDUbykpCTUrVsXTz31FEaMGIHU1FRzh6RIMTExaN26NQYPHoxatWohODgYy5YtM3dYVcLDhw/x008/4dVXXzXL4Mw8R6lwRUVFmDx5MkJDQxEYGGjucBTr9OnTCAkJwYMHD+Do6IgtW7agadOm5g5LkdatW4fjx48jPj7e3KEoXrt27bBixQo0btwYt27dwieffIJOnTrhzJkzqFmzprnDU5TLly9j6dKlePfddzF9+nTEx8dj0qRJsLa2xqhRo8wdnqJt3boVWVlZGD16tFnWz0tLCjd+/Hjs2LEDBw8erBajfBvLw4cPkZqaiuzsbGzatAnLly9HbGwsk5kKunbtGlq3bo1du3ap743p0qULLy1JJCsrCw0aNMD8+fN52bOCrK2t0bp1axw6dEg9bdKkSYiPj8fhw4fNGJnydevWDdbW1vj111/Nsn5eWlKwCRMmYNu2bdi7dy+TGANZW1vD398frVq1QlRUFJ555hksXLjQ3GEpzrFjx5CWloaWLVvCysoKVlZWiI2NxX//+19YWVlp3BxIFefi4oJGjRohOTnZ3KEoTp06dcr8Y/L000/zUp2Brl69ij///BOvvfaa2WLgpSUFEgQBEydOxJYtW7Bv3z74+vqaO6Qqp6ioCAUFBeYOQ3HCw8Nx+vRpjWljxoxBkyZNMG3aNFhaWpopsqohNzcXly5dwiuvvGLuUBQnNDS0TJmKixcvokGDBmaKqGqIjo5GrVq10KtXL7PFwERGgSIiIrBmzRr88ssvqFmzJm7fvg0AcHZ2hp2dnZmjU57IyEj06NEDPj4+uH//PtasWYN9+/Zh586d5g5NcWrWrFnmXi0HBwe4u7vzHq5KmDp1Kvr06YMGDRrg5s2b+Oijj2BpaYlhw4aZOzTFeeedd9ChQwd89tlnGDJkCI4ePYrvvvsO3333nblDU6yioiJER0dj1KhRZi0LwERGgZYuXQrgyb0HJUVHR5vtZislS0tLw8iRI3Hr1i04OzsjKCgIO3fuxPPPP2/u0Kiau379OoYNG4a7d+/C09MTHTt2xJEjR+Dp6Wnu0BSnTZs22LJlCyIjIzFr1iz4+vpiwYIFGDFihLlDU6w///wTqampePXVV80aB2/2JSIiIsXizb5ERESkWExkiIiISLGYyBAREZFiMZEhIiIixWIiQ0RERIrFRIaIiIgUi4kMERERKRYTGSIZWbFiBVxcXMwdhtqVK1egUqmQkJAgSXv79u2DSqVCVlaWJO1VFSqVClu3bjVa++x3qsqYyBCJMHr0aKhUqjKv7t27S7qeoUOH4uLFi5K2qU2XLl3U22BjY4N69eqhT58+2Lx5s8Zy9evXx61btzi8QCU1bNhQ1Kjft27dQo8ePYy2rg4dOqgrVwPyS5iJDMFEhkik7t2749atWxqvtWvXSroOOzs71KpVS9I2y/P666/j1q1buHTpEn7++Wc0bdoUL730Et544w31MpaWlvDy8jLrOCrVgZeXF2xsbIzWvrW1Nby8vKBSqSRtt7CwEEVFRZK2SVRRTGSIRLKxsYGXl5fGy9XVVT1fpVJh+fLlGDBgAOzt7REQEICYmBiNNmJiYhAQEABbW1t07doVK1eu1DjlX/o/5Y8//hgtWrTAjz/+iIYNG8LZ2RkvvfQS7t+/r16mqKgIUVFR8PX1hZ2dHZ555hls2rRJ7/bY29vDy8sL3t7eaN++PebNm4dvv/0Wy5Ytw59//gmg7KWlzMxMjBgxAp6enrCzs0NAQACio6M1ll23bh06dOgAW1tbBAYGIjY2ttwY7t69i2HDhqFevXqwt7dH8+bNyySHRUVF+Pzzz+Hv7w8bGxv4+Phgzpw56vnXrl3DkCFD4OLiAjc3N/Tr1w9XrlxRzx89ejT69++Pzz77DLVr14aLiwtmzZqFx48f47333oObmxu8vb3V21HRdr/88kvUqVMH7u7uiIiIwKNHjwA8Oet19epVvPPOO+qzX+UpeWmpuB83b96Mrl27wt7eHs888wwOHz5c7uf1KXlpad++fRgzZgyys7PVcX388ccAgIKCAkydOhX16tWDg4MD2rVrh3379qnbKT4+Y2Ji0LRpU9jY2CA1NRX79u1D27Zt4eDgABcXF4SGhuLq1auVjpeoIpjIEEnok08+wZAhQ3Dq1Cn07NkTI0aMwL179wAAKSkpePHFF9G/f3+cPHkS48aNw4wZM/S2eenSJWzduhXbtm3Dtm3bEBsbi7lz56rnR0VFYdWqVfjmm29w9uxZvPPOO3j55Zd1JhDlGTVqFFxdXctcYio2c+ZMnDt3Djt27MD58+exdOlSeHh4aCzz3nvvYcqUKThx4gRCQkLQp08f3L17V2t7Dx48QKtWrbB9+3acOXMGb7zxBl555RUcPXpUvUxkZCTmzp2rXveaNWtQu3ZtAMCjR4/QrVs31KxZEwcOHEBcXBwcHR3RvXt3PHz4UN3Gnj17cPPmTezfvx/z58/HRx99hN69e8PV1RV//fUX3nzzTYwbNw7Xr1+vULt79+7FpUuXsHfvXqxcuRIrVqzAihUrAACbN2+Gt7c3Zs2apT6DVxEzZszA1KlTkZCQgEaNGmHYsGF4/PhxhdrQpkOHDliwYAGcnJzUcU2dOhUAMGHCBBw+fBjr1q3DqVOnMHjwYHTv3h1JSUnqz+fn52PevHlYvnw5zp49Czc3N/Tv3x9hYWE4deoUDh8+jDfeeEPysz9E5RKISK9Ro0YJlpaWgoODg8Zrzpw56mUACB988IH6fW5urgBA2LFjhyAIgjBt2jQhMDBQo90ZM2YIAITMzExBEAQhOjpacHZ2Vs//6KOPBHt7eyEnJ0c97b333hPatWsnCIIgPHjwQLC3txcOHTqk0e7YsWOFYcOGlbs9YWFhwttvv611Xrt27YQePXoIgiAIKSkpAgDhxIkTgiAIQp8+fYQxY8Zo/VzxsnPnzlVPe/TokeDt7S3MmzdPEARB2Lt3r8b2atOrVy9hypQpgiAIQk5OjmBjYyMsW7ZM67I//vij0LhxY6GoqEg9raCgQLCzsxN27twpCMKTfdegQQOhsLBQvUzjxo2FTp06qd8/fvxYcHBwENauXVvhdh8/fqxeZvDgwcLQoUPV7xs0aCB89dVX5W5rMQDCli1bBEH4tx+XL1+unn/27FkBgHD+/Ply29C1rtL9Xvo4EwRBuHr1qmBpaSncuHFDY3p4eLgQGRmp/hwAISEhQT3/7t27AgBh3759ereTyBh44ZtIpK5du2Lp0qUa09zc3DTeBwUFqX92cHCAk5MT0tLSAACJiYlo06aNxvJt27bVu96GDRuiZs2a6vd16tRRt5mcnIz8/Hw8//zzGp95+PAhgoODRWxVWYIglPvf9Pjx4zFo0CAcP34cL7zwAvr3748OHTpoLBMSEqL+2crKCq1bt8b58+e1tldYWIjPPvsMGzZswI0bN/Dw4UMUFBTA3t4eAHD+/HkUFBQgPDxc6+dPnjyJ5ORkjf4BnpzpuXTpkvp9s2bNYGHx7wno2rVra9zAbGlpCXd3d3W/VqRdS0tL9fs6derg9OnTWmOtqJLHUp06dQAAaWlpaNKkiSTtl3b69GkUFhaiUaNGGtMLCgrg7u6ufm9tba0Rm5ubG0aPHo1u3brh+eefx3PPPYchQ4aoYyYyNiYyRCI5ODjA399f5zI1atTQeK9SqQy+GVJXm7m5uQCA7du3o169ehrLVebm0cLCQiQlJZVJuIr16NEDV69exW+//YZdu3YhPDwcERER+PLLLyu8LgD44osvsHDhQixYsADNmzeHg4MDJk+erL58Y2dnp/Pzubm5aNWqFVavXl1mnqenp/pnbX2or18r265UN7+WbLs4sTTmjbW5ubmwtLTEsWPHNJIzAHB0dFT/bGdnVybRjY6OxqRJk/D7779j/fr1+OCDD7Br1y60b9/eaPESFWMiQ2QijRs3xm+//aYxLT4+3qA2S95wGRYWZlBbALBy5UpkZmZi0KBB5S7j6emJUaNGYdSoUejUqRPee+89jUTmyJEj6Ny5MwDg8ePHOHbsGCZMmKC1rbi4OPTr1w8vv/wygCdf1BcvXkTTpk0BAAEBAbCzs8Pu3bvx2muvlfl8y5YtsX79etSqVQtOTk6V3m5jtWttbY3CwkLJ4pKKtriCg4NRWFiItLQ0dOrUqcJtBgcHIzg4GJGRkQgJCcGaNWuYyJBJ8GZfIpEKCgpw+/ZtjVdGRoboz48bNw4XLlzAtGnTcPHiRWzYsEF9Y2hlb4ysWbMmpk6dinfeeQcrV67EpUuXcPz4cSxatAgrV67U+dn8/Hzcvn0b169fx5EjRzBt2jS8+eabGD9+PLp27ar1Mx9++CF++eUXJCcn4+zZs9i2bRuefvppjWUWL16MLVu24MKFC4iIiEBmZiZeffVVre0FBARg165dOHToEM6fP49x48bhzp076vm2traYNm0a3n//faxatQqXLl3CkSNH8P333wMARowYAQ8PD/Tr1w8HDhxASkoK9u3bh0mTJqlv3K0Mqdpt2LAh9u/fjxs3blToWKmsGzduICEhQeOVmZmpNa7c3Fzs3r0bGRkZyM/PR6NGjTBixAiMHDkSmzdvRkpKCo4ePYqoqChs37693HWmpKQgMjIShw8fxtWrV/HHH38gKSmpzHFBZCxMZIhE+v3331GnTh2NV8eOHUV/3tfXF5s2bcLmzZsRFBSEpUuXqp9aMqSGyOzZszFz5kxERUXh6aefRvfu3bF9+3b4+vrq/NyyZctQp04d+Pn5YeDAgTh37hzWr1+PJUuWlPsZa2trREZGIigoCJ07d4alpSXWrVunsczcuXMxd+5cPPPMMzh48CBiYmLKPNlU7IMPPkDLli3RrVs3dOnSBV5eXujfv7/GMjNnzsSUKVPw4Ycf4umnn8bQoUPV97LY29tj//798PHxwcCBA/H0009j7NixePDggUFnUqRqd9asWbhy5Qr8/Pw0LkkZy5dffqk+M1L80paEdOjQAW+++SaGDh0KT09PfP755wCeXCIaOXIkpkyZgsaNG6N///6Ij4+Hj49Pueu0t7fHhQsXMGjQIDRq1AhvvPEGIiIiMG7cOKNtJ1FJKkEQBHMHQVRdzZkzB9988w2uXbtm7lAMduXKFfj6+uLEiRNo0aKFucMhomqC98gQmdCSJUvQpk0buLu7Iy4uDl988UW5948QEZF+TGSITCgpKQmffvop7t27Bx8fH0yZMgWRkZHmDouISLF4aYmIiIgUizf7EhERkWIxkSEiIiLFYiJDREREisVEhoiIiBSLiQwREREpFhMZIiIiUiwmMkRERKRYTGSIiIhIsZjIEBERkWL9PwMdcwjHar/2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "(mpg\n", + " .plot\n", + " .scatter(x='displ', y='hwy')\n", + " .set(title='Engine Displacement in Liters vs Highway MPG',\n", + " xlabel='Engine Displacement in Liters',\n", + " ylabel='Highway MPG'));" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAAPACAYAAABq3NR5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3RU5dbH8d9kEgKhJRBq6L2IdKRX6QLSexFRsTcuFhSxIGL3CtguIE2qNAUEpEnHAoKAdOklIYEQUgjJef/gzZghbSaZlsn3sxaLzJx9ztlTnil7nmIyDMMQAAAAAAAAAK/k4+4EAAAAAAAAADgPBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABID/V65cOZlMJplMJn377bfuTidH2bx5s+W+N5lM7k7HIVq3bm25PRMmTHB3OoDDJG+rmzdvdnc6bjFhwgTLfdC6dWt3pwNkyBM+44wYMcKSw4gRI9ySAwDkZL7uTgAAAAAAAMATXLx4UXv37lVoaKjCwsJ069YtBQYGKigoSDVr1lT16tXl60spBdkPz1ogB/r222/10EMPZekYb7zxBr2avNjmzZvVpk2bNLf7+Pgod+7cKlCggIoVK6aKFSuqVq1aat68uVq2bKlcuXK5MFsAkqxek0eMGKFy5cq5LRdPU65cOZ0+fVqS1KpVK5f1XNy3b5+WL18uSQoMDNRzzz3nkvPC8939WWzTpk129yYdMWKEZs2aZblsGIaj0gMkpf2d4e+//1bVqlXtOtZrr72miRMnprg+vedt69attWXLljS3+/j4qGDBggoODlbt2rXVqlUrDRkyRIGBgXblJt0p+n3yySdatWqVDh06lG5s7ty51aJFC/Xr10+9e/dWUFCQ3ecD3IECIADAbomJiYqOjlZ0dLQuXbqkP//8U0uXLpV050vuoEGD9OKLL6pChQpuzhTIOd58803L361bt6YA6AH27dtneVzKli1LARCAV5g1a5beffddm+MTExM1Z84ch+eRmJioiIgIRURE6NixY1qyZInGjh2rCRMmaMyYMfLxyXjGs9jYWL3++uuaOnWqYmJibDpvbGys1q9fr/Xr1+uFF17QM888ozFjxmSq8Ai4EgVAACpZsqTy5Mlj1z6FChVyUjbu888//7g7BY9VtGhR5c+f3+q6Gzdu6Pr164qLi7O6/tq1a5o2bZqmT5+uV199Va+99lqGH8Bat25NzwUgm6Ct3ultSS94ZCd8xoEjzZkzR++8845NBTZJ2rhxo86cOZOlc/r6+qps2bJW1yUkJCg8PFyRkZGW62JiYvTSSy/p4MGDVj1kU3Pp0iX17NlTu3btsro+MDBQrVu3Vu3atVW4cGHlzZtXoaGhunTpknbs2KFff/3V8l5448YNTZw4UcWLF9dTTz2VpdsIOBsFQACaN28ek5gjXZMnT05zwu6IiAjt3r1bv/zyi2bMmKHLly9LkuLi4vTGG29o//79WrRokc0fEgEAAOB5ihUrpsuXL+vcuXPauHGj7r//fpv2S77wTNIx7BUSEqLjx4+nuu3vv//Wf//7X3355ZeWwtzs2bPVokULjRo1KtV9IiIi1KxZM508edJyXaVKlTRhwgQNGDBAZrM5zVyuXLmiuXPn6v3338/UbQHchW9jAIAsCQoKUqdOnfTuu+/qzJkz+uSTT6zmAPz+++81duxYN2YIAACArBo8eLDl74x61yW5ceOGli1bJkkym80aMGCAw/OqVq2apk2bpm+++cbq+rfeeivVXuuGYWjo0KFWxb8ePXpo//79Gjx4cLrFP+nOyJgXXnhBJ0+e1BtvvJFhPOAp6AEIwGViYmK0adMm/fPPP4qMjFSRIkXUuHFj1axZM9PH/OOPP7Rv3z5duXJFhQsXVvny5dWqVSv5+fk5MHPb/fPPP9q9e7fOnj0rs9ms0qVLq127dlmaHDg+Pl7bt2/XyZMndeXKFQUEBCgkJEStWrVScHCwA7PPuly5cum5555T48aN1a5dO0VHR0uSPvroI3Xu3Fnt2rVz2Lni4+O1d+9eHThwQOHh4YqLi1NAQIBlUZLatWvbPbQ9ye3bt7VlyxadPHlSV69eVdGiRVWnTh3Vq1fPYfmnJi4uTvv379fff/+tK1euKDY2VkFBQQoJCVGzZs0c8nifO3dOu3bt0uXLl3Xt2jUFBASoTJkyql27tipVqmT38c6ePaudO3fq8uXLunnzpooWLaqaNWuqUaNGMplMWc43NDRUv/zyi86dO6eYmBiVL19e7dq1S/e+uHjxon755RedPn1aPj4+KlOmjDp06JCluXmuX7+urVu36vz58woPD1dQUJDl9SZ37tyZPm6SpOfciRMndPXqVRUuXFj16tVT/fr1HXI/eprDhw/rjz/+0Llz55QnTx6VL19ebdq0Ub58+dydmkdzdnu7fv26tmzZogsXLigiIkJFixbVsGHDUn1PjYyM1G+//aYjR47o2rVrkqS8efMqJCREVapUUc2aNbNVz29nvqdkZ6Ghodq0aZPV55pmzZqpePHiDj3P9evXtXnzZp05c0YxMTEqVqyYWrZsqfLlyzv0PM52/PhxHTx4UKdPn9aNGzcUEBCg4OBg1atXTzVq1Mj2r+dDhgzRZ599poSEBC1dulTTpk1LMUXM3RYtWmT5PNixY0eHP3eSe/jhhzVv3jxt2rRJ0p3XzH379qlu3bpWcd9++61WrVpludyuXTstXbrU7tesgIAATZgwQe3atVNYWFjWbwDgbAaAHGfmzJmGJMu/TZs2OezYb7zxhuW4rVq1MgzDMOLi4oyXX37ZCAwMtDpv0r8GDRoYv/76q13nWbdunVGtWrVUj1esWDFj8uTJRmJiomEYhs23tWzZspa4mTNn2hV39OhRo0OHDobJZEqRj9lsNh5//HEjMjLSrtt4+fJlY/To0UaBAgVSvZ1ms9no1q2bcfToUbuOa4tNmzZZnSu9+yMts2fPtjpG0vPBlvOlJyYmxnj99deNIkWKpHq/JP3z8/MzWrdubaxbt87mcyYmJhrvv/++UaxYsVSPWaNGDWPDhg023f5WrVpZ9nvjjTfSjIuIiDC+/PJLo127dkbu3LnTvD0mk8lo27atsW3bNpvOn1xCQoIxd+5co1atWuneZ2XLljVeffVVIzw8PMNjLl261KhTp06axypRooQxZcoUIyEhIcNjDR8+3LLf8OHDDcMwjNDQUGPAgAGGn59fimP7+/sbY8eONeLj462Oc+7cOaNv376Gj49Pin1y5cplvPbaayn2ycjevXuNLl26pJqHJCNv3rzGs88+a1y7di3DYyV/7S1btqxhGHeecx9++KFRvHjxVI9fpUoVY+3atWkeM/lrrq3/ssrW19TU4nbv3m00adIk1bzy5MljvPbaa8atW7eynOPdkr9up/daZKvU3uvSOp8t/5Ke92lxdnu7dOmSMXDgQMPf3z/FsSMiIqz2P3funDF06NB0X68kGfnz5zf69u1rHD9+3MZ7NaWYmBir98Dx48fbtf+iRYuscjpy5Eiq53DEe4q9HPFZLPljmVHbtvUzTpKLFy8a/fv3N3x9fVPcF76+vkafPn2MCxcupMgjvedyanGRkZHGo48+auTJkyfV+719+/bpfs65ePGiVXxGnyerVq1qFf/DDz+kG5/8vfzFF19MsT0xMdFYt26d8dBDDxklSpRI9zlUqlQp47PPPkv3NS46OtooWLCgZZ/0Pj+kJvlnL5PJZJw6dcqu/e929/P04sWLRufOnS2XZ8yYkeExmjdvbolftGiRMWnSJJuft8nv/6T3zYxMnTrV6vjTp0+32p6YmGj1PMifP79x5swZm44NZHcUAIEcyJUFwPDwcOO+++7L8MtPQECAsWXLFpvOcfcHh7T+9ejRw4iPj7f5tma2APjTTz8Z+fPnzzCfxo0bG1FRUTbdxtWrV9t0TOlOMWTlypU2HddWjigAGoZh1K9f36YP5rYWAK9evWrUrVvXpvsl6d+zzz5r0znj4+ONHj16ZHg8k8lkfPjhhxnedlsLgJ9//rldt8fHx8f45JNPMjx/kitXrhhNmza16xzptZObN28a3bt3t/lY999/v3Hz5s10c7z7S+Hhw4eNUqVKZXjsnj17Wgr9e/fuzfALvCRj6NChNt93b731VqrFxNT+lSlTJsNCx90FwLi4OOOBBx7I8Nhms9lYsGBBqsfMTgXAmTNnGrly5cowv+7duxu3b9/Ocp7JZdcCoCva2++//57mjx6SdQHw999/N4KCguy6bcuWLcv8HW0YxogRIyzHqlSpkl37Jn9Nb9iwYYrtjnxPsZcnFwAPHDhgBAcHZ3hflChRwvjzzz8zXQA8deqUUaVKlQzPU6RIEePQoUNpHjd5MeeDDz5IM+7uYqGUelEvSUxMjFVRPLVi4Y0bN+x+DW7btm2Kwnpyo0ePtsSWK1fO8j5nizZt2lj2bdeunc37pSW1AuCCBQssl1u2bJnu/sePH7fEBgUFGbGxsU4vAK5Zs8bq+O+9957V9h9//NFq+5NPPmnTcQFvwBBgAE6TmJiogQMHavfu3TKbzercubNatmypwoULKzQ0VMuXL7esuhUdHa0hQ4bo0KFD6Q4BmzVrll555RWr6+6//361b99ehQsX1sWLF7Vy5Ur9+uuvWrFihd58802n3sbDhw/rmWee0Y0bN1S0aFH17t1bNWvWlL+/vw4fPqy5c+fqypUrkqRdu3bptdde0yeffJLuMZcvX66+ffvq9u3blutatGih+++/XyEhIYqOjtaePXv0/fffKyYmRnFxcerdu7fWr1+vVq1aOfX22uvZZ5/VsGHDLJfXr1+vBg0aZPp4jz76qPbu3Wu5XK1aNXXp0kWVKlVSQECAoqKidP78ee3du1dbtmxRTEyMzceeMGGCVqxYIUmqWbOm+vTpo9KlSys8PFzr1q3Thg0bZNz54UxjxoxR8eLFrebCcYSSJUuqefPmql27toKDg+Xj46MLFy5o8+bNluEsiYmJev7551WhQgV179493eOFhoaqSZMmOnHihOW6vHnzqlOnTmrUqJGCg4N18+ZNnThxQlu3btUff/yR7vHi4uLUoUMHbd++3XJdcHCwevToodq1aytv3rw6c+aMli5dqgMHDkiSfv75Z/Xq1Utr1qyxaehTVFSUevXqpXPnzil//vzq06eP6tatqzx58lhW9IuIiJAkLVu2TF9//bV69Oihzp07KzQ0VPnz51fv3r1Vr169VPeZM2eOunXrpr59+6abx5gxY/TRRx9ZLufKlUtdu3ZV06ZNVahQIV29elU///yz1q1bJ0k6c+aMWrVqpX379tk8VPvJJ5/Ujz/+KElq06aN7r//fhUvXlzXr1/XTz/9ZDl2QkKCHnnkETVr1kylSpWyOkahQoVUsWJFSbJ6nDOzurszbd68WRMnTtTt27dVtmxZ9erVS1WqVJHJZNL+/fs1Z84c3bhxQ5K0cuVKTZkyRc8++6ybs868cuXKydfXVzdu3LC8B6S2gmWSYsWKpbjOFe0tIiJCvXv31uXLl5U7d25169ZNTZo0UYECBXTp0iX98MMPluNER0erZ8+elrYkSS1btlTr1q1VqlQp+fn5KTIyUsePH9evv/6qPXv2KDEx0fY7LQ1DhgyxLCBw/Phx7d69W/fdd59Nt23NmjWWy6m9XjvzPSW7unz5stq3b281nLF8+fLq16+fKlasqOjoaO3atUvLly/XxYsX1a9fP9WqVcvu80RHR6tHjx46evSocufOre7du6tx48YqWLCgzp8/r0WLFumvv/6SdOe9bNiwYdq9e3eqQzRbt26tI0eOSLrzWjNmzJhUz7l582abrkuya9cuxcXFSbozd12LFi3SvU3+/v5q1qyZGjZsqJCQEOXPn1/Xrl3T3r17tXz5cstKtRs3btTIkSO1dOnSVI8zatQoffnll5LuTC2zadMmtW3bNt1zJ8Umvz0jR47McJ/M6NGjhwIDA3Xt2jVt3bpVp06dSnOodvLFPwYMGCB/f3+n5JRc8s/PklLMz5f8dUFSmouEAF7J3RVIAK7nqh6AST1nKlSoYPz555+pxr/zzjtWuXz22WdpHvvSpUtWw4jz5cuX5tC4r7/+2vDx8UnRe8fRPQCTjj9ixAjjxo0bKWLDw8ONBg0aWOL9/PyMsLCwNI995swZq9tYsmRJ45dffkk19uTJk0bNmjUtsRUqVMiw54etHNUD8O5f2zt27GjT+VJz4sQJq5hJkyal+6v4zZs3jZkzZxrTpk2z6ZxJj+XEiRNTPe6aNWuMfPnyWf2SfeXKlTTPb2sPwClTphidO3c2Nm7cmO7wvV27dhllypSxHDMkJCTd4ayJiYlWw3QkGb179zYuXryY5j5HjhwxRo0aleYw4+eff97qeI8//niqz/ukodTJY7/44os0z5u8V0jSMPrmzZtbhpcld/78eaN8+fJWPQIefPBBS0+E1G7fuXPnjHLlyln2qV27dpq5GIZhrFixwir35s2bG//880+qsevXr7caoti/f/80j5v8tTfp+RYcHJzm69Ls2bOtphV4/vnn083bWa/rmT1Pau3rlVdeMeLi4lLEnj592upxLVq0qN3DtdPj6h6ASVIb9m0rV7S3pH916tQxTpw4kW4+06dPt8TnyZPH+Pnnn9ONv3jxovHWW28Zmzdvtu0GpyEhIcEoWbKk5dxPP/20Tft99dVXln3MZrNx6dIlq+2Ofk+xl6f2ABw4cKDVMZ966qlU2+zhw4eNypUrW7VvyfYegEn7NGjQINVhqrdv3zYee+wxq1xWrFiR6nHnz59viSlYsGCaPYiTH89sNlv+T2sKh+TtvH79+qnG3LhxwyhTpozxxRdfpNur79q1a0a/fv2sbs/q1avTjE8+5H/IkCFpxiU3fvx4yz6BgYFGTEyMTfulJ7UegIZhfV9OmDAh1X0TExOtnne7du0yDCPlSJ70ZKYH4Icffmh1/FmzZlltTz4dSmBgoF09LIHsjgIgkAO5qgCY9EEsrS/OSVq0aGGJb9y4cZpxY8eOtemDYJL33nsvxZccRxcAJRkPPvhgunkcOXLE8kFTkvHll1+mGdu/f3+rDyUZDSm8ePGiUahQIcs+U6ZMSTfeVo4qABqG9f1VtGhRm86XmuRfPuvWrZvpfNI6pyTjueeeS3ef5cuXW8W/8MILacbaWgC05wP6oUOHrIZQLlmyJM3YpUuXWuU6cOBAm+YHS8vBgwetilG2fAl/9dVXLfElSpRIs6Bz95fYihUrplroSHL34yDJqFy5crpD7JctW2YV//fff6caFx8fbzX8uEGDBkZsbGy6t3Pt2rVWx/7rr79Sjbv7tdfX19fYs2dPusceOnSo1X2YHme9rmf2PHc/RhkNndywYYNV/E8//eSwnLNbAdCV7a1o0aJGaGhohsdP/lzMqBjtaC+++KJVvrYMEW/ZsqVln9R+fHL0e4q9PLEAeOjQIavj9erVK91jnjhxwsibN6/VPrYWAJPaRHrzp8bFxRkVK1a0xA8YMCDVOFvnAUwaKuzj42MMGjTIEp/WPIAZzf9nGHcK1KkVSFNz+/Zto3Xr1pZjPvDAA2nGTpkyxRIXEBBgXL9+Pd1j311se/zxx23KKSNpFQB37txpua5ChQqpFtGSv6ZXq1bNcr2zC4D16tWzOv7hw4ct26Kjo61eWx0xTBrITrLP0lwAnKZNmzYymUw2/7NnJc1XXnklzSFPSR555BHL33v37k3RdV+6MwRu9uzZlsvt27fPcPjjCy+84PTV43x9fTVlypR0Y6pUqWI1NHfPnj2pxp07d07ff/+95fLEiRMtQ/vSUrx4cY0bN85y+euvv7YlbZcqV66c5e/w8PBMH+fSpUuWvytXrpyVlFIVHByst956K92YHj16qEOHDpbLc+bMUXx8fJbOa88KstWrV7caxrZ27do0Yz/++GPL38WKFdMXX3yRpRU5//vf/8owDElSqVKl9MEHH2S4z/jx41WkSBFJd1bm/eGHH2w61+TJk9OdCqBr164pXofee+895c2bN819HnjgARUsWNByOa12uGTJEp07d06SZDKZNHPmzAyHLHXo0EHdunWzXLa1HY4aNUoNGzZMNyb56+PFixd19uxZm47taQoVKqRJkyalG9O2bVtVqFDBcjmtxygncGV7e+ONN2watu7s1+D0DBkyxPL3lStXtH79+nTjz549q61bt6a6fxJ33p7U2PtZzGQyadasWQ7NYcaMGZa/zWZzhlOWVKhQQc8//3ymzzd58mSr1+W75cqVS8OHD7dcTus1oXjx4qpatarlcmrDei9dumQZJlynTh316NEj3fjY2FjLNDXSnWHGqfHx8VGuXLnSvA3Jmc1mq6lpNmzYoISEhFRjBw8ebJnGITo6WgsXLkz32Bs3btTp06ctl501/DdJ48aNLff5yZMntW3bthQxyYf/Jn8cnWn8+PFW05lUr15d1apVs1wOCwuzvLZKyvA7CuBtKAACcCpb3vAbN25s+TsuLk7//PNPipj9+/dbfVgfMWJEhsf18/Nz+Bxtd0ualy8jyW9j0gfQuy1ZssRS/MyXL5/NH96GDh1q+Xv//v1W8/Z4guSFmtu3b1vmwLFXQECA5e/ff/89y4W3uw0YMED58+fPMC55QSY0NNTqC4IrtGvXzvL377//nmrM5cuXrT6MP/roo+l+ycqIYRhatGiR5fLo0aNtmsfH39/faq69DRs2ZLhPgQIFrL6YpcbX19dqzqkCBQpk+IOAr6+v7r33XsvltNrhggULLH+3a9dO99xzT4Y5S9bt0JbbKdn2OtawYUOrwm1aeXu6fv362TQnoS2vld7Ole3NbDZr4MCBNuWV/DXY1a97derUUY0aNSyX582bl278/PnzLV/yAwIC9OCDD6aIcfZ7SnaUNO+odKcgX6ZMmQz3seV1LDVJ87VmJPlrwqlTp9J8nJIX6JLmzE0ueZGvTZs2GcbbO/+frZo1a2ZpzzExMTp06FCqcYGBgVb3z8yZM9M9bvLi7b333pul+ZZtlfwz/t3F6KioKMschz4+PlbvkY6UmJiosLAwrV69Wp07d9bbb79ttX3ixIlWl+/+ITorn42A7IgCIACVLFlSFStWtPlf8h4a6SlbtqyKFy9u0/mTu3btWoqYuwsdti524exFMWyZiFyyvo2p3T5JVhO9t27d2uaeYUWKFLHqZffrr7/atJ+r3N2TK2mif3vVqVPH8veJEyc0ePBgXbx4MSupWUnesy897du3t7r822+/OSwHWyRfLOD8+fOpxtz9S3xqX37tcejQIauJ/zt16mTzvo0aNbL8bctzs27duvL1zXiNsuT3Q7169ezeJ612uGPHDsvfmb2dhw8fVlRUVLrxfn5+qlevXobHzZ07twoVKmS5nFbens6Rr5XezpXtrVq1agoKCrLp2Mlfg2fPnq13333XpYtiJO/Ft3z5ckVHR6cZm7xA2KNHj1R7FDv7PcVe9n4Wq1ixok0/Wtnq7mKUrZ+fKlasaNMPoXez9XU7+WuCYRi6fv16qnHJC3rbtm1L0bMueQGwdevWKlq0qKpXry5J2rdvX4rjJo+vU6eOwwpFZrPZqsdtWu/jkvXiFDt37kzzR5Hr169r2bJllssPPfSQAzLN2NChQy0/UC1evNjq9WDx4sW6efOmJNt/LM/I6dOnU/SCNZvNKlKkiLp27aqffvrJKn7cuHHq2bOn1XV3fwZNb+RAclOmTLGpV25qnRgAT0IBEIDmzZun48eP2/wvo5VCk9hS/JNSvvkmfWBI7tSpU5a/8+fPb/MHiaQPd86SmduY2u2T7vTeS2Jv3skLG0nDFz3F3R+2ChQokKnjtGzZ0moYx+LFi1W2bFl17NhRH3/8sX7//fc0h9LYombNmjbFFSxYUKVLl7ZcPnr0aKbPmVx8fLx++OEHPfLII2rUqJGKFSumPHnypPhwmbwAmdYXocOHD1v+zpUrV6ZWaEwu+XNTsu/5ae9zMzNtKrUVVDPaJ7V2ePHiRYWGhlouZ/Z2JiYmZlhIKFSokPz8/Gw6ti2vH57Oka+V3s6V7S2jaSaSGzFihNVQx3HjxqlEiRIaPHiwZsyYoePHj9t8rMwYNGiQZUXiqKgoy6rtd/vrr7+s7sPUhv9Kzn9PsZe9n8WOHz+uXr16Oez8586ds5qCxZ7nXWY+aznyM6JkXQCMjIxM8Vk1qaCXvDdf0j6JiYn65ZdfUo2/+9jpOXjwoF5//XV17NhRZcuWVcGCBWU2m1O8jycv+qX1Pi7dKcImH56eVi/ABQsWWIpvuXLlSvM572ilSpWyjEqIjIy0KkImH/6b2V6iWclr4cKFeuedd1Jsu7tonlPfZ5BzUQAE4DT2zG2WXPK5OZIk7wlia28Fe2MzIzO3MbXbJ0lXr161/P3BBx/YNQ/Q7t27Lft6Wq+Z5Pn4+flluseCj4+PFixYYPXLeXx8vNatW6cXX3xRDRo0UOHChdWzZ08tWLDAMnTHVkWLFrU5NmmeLUlWPXUy66efflLVqlXVvXt3/e9//9Ovv/6qK1euKDY2Nt390tqe/LlkT6EpLcmPJ935Qmbrc7Nz586W/Wx5bmamTTmqHd59O7t27Wrz7bx7eGtGt9WRr4/ZgSNfK72dK9ubPa/H5cqV0zfffGPVa+v69ev67rvv9PDDD6ty5coqXbq0Ro0aleqcallVtmxZNW/e3HI5rWHAya8vUqRImr27nf2ekt3c/Xxx9mctR78GpjcPYPL5/+rWrWvpzZe8sJc83tb5/5JcvHhRvXv31j333KN33nlH69at05kzZxQZGanExMR0983off7hhx+2/D1nzpxUi9LJh/9269bNpjk9HSX5MOCkot/Jkyctc3AWKFAgy6MQkvj6+qboBVulShXVr19fHTt21NixY7Vq1Sr9888/6tevX6rHSN6jXkq/AJtcYGBgqr1wnf09A3A0CoAAsoVbt25Z/rZ1smV7Y93N1g8hGUlvWJQ7JB8OUbhw4Swdq3bt2tq7d6+GDRuW6mN7/fp1LV++XAMHDlTlypUt88/Ywpb5yZIknzsqo6GeGZk/f766du1q1cs1ScGCBRUSEmL1YfPuIfOpSd7rMr3FNGzlrc/Nuznqdkqef1vhuVzZ3mwZgpncsGHDtG3btjSHh547d07Tp09XmzZt1LhxY/311192HT8jyXs2rV27NsWct4ZhaP78+ZbL/fv3T/c2OvM9JbtJ/jlLyp6ftdIq6KXVmy+teHvm/7t48aJatGiR6nPD399fxYsXV/ny5a3ex5M/JzP6oWPEiBGW+AsXLqRY/OvQoUNWi6M4e/GPu/Xs2dMysmPDhg06f/68Zs2aZbldts7/aouQkJAUvWCPHDmi3377TT/99JMmT56sLl26yGw2p3mM4OBgS09iSTpz5oxN5x4yZEiqvXCfeeaZLN8uwJXse9cHADdJPmzUnoJLZuebc4eAgADLAhmFChXK9K+KnvRr5MWLF60+XNky51lGSpUqpVmzZumjjz7SqlWrtHHjRm3dujVFAe3s2bPq3bu3vvjiC40ePTrD48bExNhcLEv+xTorBbZLly7pscces/QQKFCggJ566il169ZN9957r1WhMcmmTZvUtm3bdI+bvFdPVguUklLkYc+wwezk7tsZEhKS6V4qmd0P8PT2dt9992nz5s06evSoVq9erU2bNmn79u0pei7u3r1bjRs31pYtW1S/fn2HnLtv3756+umndevWLd2+fVuLFi3SE088Ydm+fft2q5VQbVkIzFnvKdnN3dNzZMfPWq1bt9ZXX30lSdq6dasSEhJkNpvTLAAmzQN4+PBh7du3T9euXVNgYKBd8/8988wzOnHihOVyt27dNHLkSDVu3DjNYc5ly5a1ufBUrFgxPfDAA1q+fLmkO8OAu3TpYtmefFhwSEiIOnbsaNNxHSUgIEB9+/bV9OnTlZiYqNmzZ2v27NmW7a4e/puRPHny6J577tGBAwckpb2YGuCtKAACyBaSD2cIDQ1VbGysTV+wPW0+vPQULlzYUgB84oknUqxklh3d/Uu1IxdlCQ4O1vDhwy3DT/755x/98MMPmj59uv78809L3AsvvKAHH3www/mGrly5YnMxL/k8cVkpuM6cOdPyxSkgIEDbt2/PcNVZW4b1Je9pGR4ervj4+CwNA7675+bff/9td8+h7ODu2zlr1iyrVZcBV8gu7a1KlSqqUqWKnnvuORmGob1792rZsmWaPn26ZQ7Mmzdv6pFHHrF57uCMBAUFqUuXLpZiyLx586wKgMmH/1asWNFqBdmMOPo9Jbu5e9jo2bNnbd7XUz5rJS/u3bhxQ7///rsaNWqU6vx/Sdq0aaPDhw9b5gHs3r27zfP/XbhwQd9//73l8vjx4/Xmm29mmKe9U7WMGjXK8pxfuXKlrl69qsKFC+v27duaM2eOJW7YsGHp9n5zluHDh2v69OmSpEmTJlk+11SqVEnNmjVzeT4ZadGihaUAGBERoT///FO1a9d2c1aAazAEGEC2kHwRg4SEBMsbd0b27t3rrJQcLvncNemtCpedfP7551aX715B15HKlSunp59+Wnv37tXYsWMt18fExFhNTJ2WgwcP2nSe69evW30xqlKliv3J/r+NGzda/h42bFiGxT9JqQ4VvluNGjUsf9+6dcvm9pKW5M9N6c6XHm9UsmRJqyKwt7RDZC/Zsb2ZTCbVq1dPb7/9to4dO2ZVNNm7d6/VwkRZlXwY8I4dOyyvifHx8Vq8eLFlmy29/9KT1feU7KZEiRJWRUBbPz/dunXLavVgd0ptHsDk8//Vq1cvRU/Hu4cB2zP/36ZNmyxDXQsWLKhx48ZlmGN4eLjlx15bderUSaVKlZJ05/7+7rvvJEmrV6/W5cuXLXGuWv33bi1atLD0VE7eGzT5/ICeJPlcqZIsxUsgJ6AACCBbaNSokXx8/n3JSvolNCO2xnmC5L3j7l6NLjuaM2eOVa+Pdu3aqW7duk4/r8lk0rvvvmvVi8aWL5/r1q2z6fjr16+3utywYUP7Ekwm+Rd7W3993rRpU4YxySfKl7LeDurXr29VGNuyZUuWjuepfH19rXorZLfbmbyXWEYTz8M1kve8tfUxye7tLW/evPr000+trnNkAfCBBx6wGpKZVAxZu3at1TDkrBYAk2T2PSU7uu+++yx/r1y50qaFeH766acMF7JwpbsLehn15rs73p75/5K/h1erVs2muRBteQ+/m9lsthpKmzTsN/nw3xYtWlitGOxqw4YNs7psMplSXOcpunTpYvXj7axZs/jBDzkGBUAA2ULRokWt5j37+uuvM5wo/fDhw/rhhx+cnZrD9O7d21LkPHHihNasWePmjDJv165dKeZIev311112frPZbDVv1u3btzPcZ+HChTbNeZT8l+IiRYpYfWGyV/IvV7Z8gTp58qRNz4uiRYtaFZS/+eYbu3scJOfr62u1it/UqVMzfSxP17dvX8vfCxcuTLHIgCdLXjTKyuMNx8nMY+IN7e3untG2vAbbyt/fX3369LFcThr2m3z4b8OGDbPUO/tumXlPyY4GDhxo+fvcuXNprrSc3Pvvv+/MlOyWvKC3bds2bdiwwXK5TZs2KeKLFCli6TX/559/Wv1gltH8f/a+h0vSlClTbIq728iRIy2LV+zdu1fr16/XqlWrrLa70/Dhw1W7dm3Lv6FDh6pMmTJuzSktPj4+Vr16IyMjNXLkSH44Q45AARBAtvHkk09a/g4LC0v3zToqKkpDhw7NVh/SK1eurF69elkujx492mpohy3c/Sv8rVu39Omnn6pVq1ZWC2W89NJLWZ7/z9YJs6U798OxY8csl8uWLZvhPqGhoZowYUK6MT/88IN++ukny+WhQ4dmaW690qVLW/5O/kE+NfHx8Ro5cqQSEhJsOvYLL7xg+fvSpUt6/PHHberNkZaXXnrJ8uVj9+7dmjRpkl37G4Zh6VXhyYYOHaqQkBBJd+YvGz58uM33eRJ3tcPkz3NHr76KzEn+mFy/ft3mudI8sb0lX1wjI3dPO2DLa7A9kvfuO3z4sH755RetXLky1e1pcfZ7SnbUq1cvq7kNn3/+eavbfbdJkyZp+/btrkjNZnfPA5hUxPT19U3RO/7ufRITE/X111+neqzUJH8P/+uvvzJ8Tn3zzTdWPRLtUb58easfwocOHar4+HhJdxb+Sv7jlTuULVtW+/bts/ybNWuWW/PJyMiRI9WpUyfL5XXr1qlv375u/xwNOBsFQADZxoMPPmi1utnSpUvVtm1b7dy503JdQkKC1qxZo0aNGun3339X9erV3ZFqpn344YcqVKiQpDtfTho1apRiyOndEhMTtWPHDo0aNcqq14irREREaO3atRo3bpzKli2r559/Xrdu3bJs79evn91fXlMzfvx41a9fX7Nnz053xcHY2Fg98sgjioiIsFzXrVu3DI/v4+Ojjz76SJMnT061ULZu3TqrL5VBQUF6+eWX7bwV1pLPifjzzz/ro48+SjXu8uXL6tGjh7Zs2WI1FD493bt31wMPPGC5/N1336lfv37pFpVPnDih0aNHa8eOHSm23XPPPVZFxVdffVVPPvmkwsPD080jLCxMX331le655x6rtuqpcuXKpS+++MJSfFm9erXatWuno0ePprtfbGysVqxYoY4dO2ry5MmuSDWF5L1Rv/zyyyzP/Yisq1GjhlUvwJdfftmmnoCe2N7atGmjnj17au3atekWxc+fP69HH33UcrlEiRJZmiohNa1bt7bMiSbd+TKf9KOT2WzWgAEDMjyGs99TsqM8efLo448/tlwOCwtTkyZNNH36dN28edNy/dGjRzVy5Ei9+uqr8vHxSTFvpTvdPQ9gTEyMpDvz/+XPnz/VfZIX+pLi774+NW3atLEsupGQkKAhQ4akusBHYmKiPv/8cz3++OOSZPP7+N1GjRpl+Tv5e3m/fv2UN2/eTB0zpzKZTJo7d67KlStnuW7p0qWqU6eOFi5cmGFvQMMwtH79ei1dutTJmQKO5XlLigFwucGDBytPnjx27VOjRg2rX9tdZebMmWrRooVOnDgh6c7cSE2bNlXevHlVqFAhywrB0p1hQvPnz1edOnUs+7tjdTR7lC1bVvPnz1ePHj0UGxurM2fOqEOHDqpZs6bat2+vihUrKl++fLp586auXLmi/fv3a+fOnZYPgo5cZTe5l156Se+8847VdVFRUbp27VqavUz8/f01btw4jRs3zlJMyao//vhDw4cP1+jRo9WkSRM1bNhQISEhKlCggKKionTo0CEtW7bMsgKldOeLYfJFMdIybtw4vf3223r55Zc1b9489e7dW6VKlVJERITWr1+v9evXWxUG//vf/6pIkSJZuj2jRo3SpEmTLF/qx4wZo0WLFql79+4KCQlRZGSkfv/9dy1btkw3btyQ2WzWa6+9ZtMqg9Kd9tK0aVNLD44lS5ZozZo16tKlixo1aqTChQsrOjpaJ0+e1LZt27Rnzx5JSvPL83vvvacDBw5Y5kucNm2avv32W3Xq1EkNGza03B/Xrl3T8ePHtXfvXv32229296Bzt27dumnChAl64403JN15nalWrZpatWql5s2bKyQkRLlz57b06Nq3b5927txp+YLcpEkTt+Q9fPhwS++V8+fP695771XJkiVVuHBhqy+c+/btc0t+nmL37t2qVKmSXfvcd999Ng2HvFuuXLk0aNAgy+Myb948LVq0SOXKlVNAQIAlrnv37nrrrbes9vW09paYmKjly5dr+fLlCg4OVrNmzVSvXj0VLVpUefLk0dWrV/Xbb79pxYoVVj3AJ0+enOmCR1pMJpMGDRpkGX6a9JlAku6//34VK1bMpuM48z0luxo4cKC2bdumadOmSZKuXr2qUaNGafTo0SpWrJiio6OtiqFjx47VxYsXLQtteMLnrNatW1vySZLa8N/k8XfLaP4/6U6xcfjw4ZoxY4YkaevWrapSpYoGDhxoWdTrxIkTWr58uSWfkSNHasOGDXb1qE3Ss2dPFS5c2Gquy6Rjwn6FCxfW9u3b9eCDD+rXX3+VJB05ckQDBgzQE088oTZt2qhWrVoKDg5Wvnz5FBMTo9DQUP3999/atGmT1euCdGf6leQ/+ACeiAIggEytMOiuN7gSJUpo48aNGjhwoFUvpZs3b1r9Ol28eHEtWbJE1apVs9r/7tXfPFGHDh20adMm9erVy/Lh4uDBgzatUuusD95XrlzRlStXbIoNDAzUoEGDNGbMGJUvX94p+cTExGjjxo1Wq+impkePHpYvMRl544039Ndff2nZsmU6cOBAmr2nTCaT3n//fauVKDMrMDBQCxYsULdu3SyF1D179lgKccn5+flpypQpqlKlis0FwODgYG3fvl3dunXT7t27Jd1pK4sXL7ZaLdNWvr6++vHHH/XUU09ZChrR0dFaunSpTb+Ce8IXQ1uNHz9eJUqU0NNPP624uDgZhpFiQvm0uOt2Nm3aVOPGjdPEiRMt1124cCFbrCLrSrGxsVYFI1sk721mr0mTJmnnzp2W15T4+PgUwyqT/1CVxJPbW1hYmFasWKEVK1akGWMymTRx4kQNHTrUKTkMHjw41fnnMvPa7Iz3lOxsypQpCgwM1OTJky0F5du3b1stlGAymTRu3Di9+eabVr3jPeFzVuvWrfXVV1+luC4tSfMAJl/NOKP5/5J8+umn+v333/Xnn39KujOdyH//+99UYzt06KCpU6em+GxqK39/fw0ZMkSfffaZ5bpq1aqpadOmmToepJIlS2rLli169dVX9eWXX1o6EYSHh+v777/X999/n+ExAgIC9PTTT2vcuHFp9jIFPAVDgAFkO2XKlNHWrVs1f/58PfDAAypVqpRy5cql4sWLq2nTpvr444918OBBNWvWzOpXakk2fZjzBI0bN9axY8c0ceJEqzlmUpMnTx516NBBX3/9tZYtW+aS/Hx8fJQ7d24VK1ZM9957r3r27Knx48dr/fr1unz5sqZOnerw4t/zzz+vF198UTVq1MiwR+G9996r2bNna/ny5fL397fp+GazWd9//73ef//9NHuP1KhRQ+vXr9eYMWPszj8t7du317Zt29SoUaM0Y5o1a6atW7daDauzVZEiRbRjxw5Nnz49w0nxK1WqpAkTJqS7WrOfn5+++uor7dy5U126dMlw1cNKlSrp6aef1p49ezLsTeFpHnnkER09elSPPvpohq8dwcHBGjhwoFauXKlXXnnFRRmm9M477+iXX37RQw89pBo1aqhAgQIO730F+xQqVEh79uzRl19+qc6dO6tUqVI297r3pPY2depUDR8+3DJHZlp8fHzUsWNH7dixw6lt4d5771WtWrWsrgsICLB5Kgxnv6dkZ0nF2z/++ENPPfWUqlatqrx586pAgQKqUaOGHn/8cf3+++96++235ePjY/VZyxM+Z91d7Etv/r8kd/cQzGj4b5L8+fNr27ZtGj16dJrtMyQkRB988IF++ukn5c6d26bjpuXulXUfeuihLB0Pdz5Hf/LJJzpx4oTGjBljU4E2ICBArVu31tdff62LFy/qvffeo/iHbMFkZGVGcADwcD///LNlnjV/f39FRUXJ1zf7dX4+fPiw9u7dq9DQUN24cUN58+ZVsWLFVK1aNdWsWTNHfCFJLjw8XPv379fJkycVFhamW7duKX/+/CpZsqTq16+vChUqZHiMzZs3W33gT/52GB8fry1btujkyZO6evWqihYtqjp16qh+/fpOuT1JDh48qF27dunKlSsKCAhQiRIl1KhRI6s5arLq+PHj+vXXX3X58mVFRUUpf/78KlOmjOrUqZOpom1UVJS2b9+uM2fOWIYlBQYGqnz58rrnnnsyLBZkF7dv39avv/6qI0eOWD3nSpUqpRo1aqhKlSoOG+oOpMVT2tvp06d16NAh/fPPP7p27ZoMw1CBAgVUsWJFNWzYUMHBwS7Jw1Ec8Z6Sk5UqVcrSO3D27NlO6/Xp6a5evaotW7bo1KlTun37tooXL65KlSqpSZMmDvshZvbs2Ro+fLikO4XNs2fPWi3cAse4cOGC/vjjD4WFhSksLEzx8fEKDAxUoUKFVLVqVd1zzz3Z8vsEQAEQgFcbM2aMZWGF+vXr67fffnNzRvAU6RUAAQBAxv766y+rnpgHDhywzH8Hx2vTpo1lKoru3bunOwwfAO7GmBAAXis0NFQzZ860XO7UqZMbswEAAPAuyVc9L126tFcvkOJuR48e1ZYtWyyXH3nkETdmAyA7ogAIIFuJiIjQ0aNHM4yLiorSgAEDLKurmkwmVkkDAADIwJ49e2zqFf/FF19o7ty5lssPPfQQc4460bvvvmt5XMqUKaPOnTu7OSMA2Q2v0ACylcuXL6tGjRrq06ePli5dqtDQUKvtYWFh+vbbb1WvXj2r1fyefPJJ5vABAADIwDPPPKN7771XH3/8sf7+++8Uc+Ru3bpVffr00RNPPGG5PiQkRC+88II70vV6iYmJmjJlimbPnm25buzYsW5bcR5A9sUcgACylb///lvVq1e3ui4oKEgFChTQjRs3FBERkeJX6/vuu08bNmxQ3rx5XZkqPBxzAAIAkFLjxo21e/duy+U8efKocOHCSkhI0NWrV3Xr1i2r+Lx582rVqlVq1aqVq1P1WitXrtT48eOVkJCgM2fOKDIy0rKtevXq2rdvX4arggPA3Vi6BkC24uvrK5PJZFWsiYiIUERERIpYHx8fDR06VNOmTVNAQIAr0wQAAMiW/Pz8rC7HxMTo3Llzqcbec889mjlzpho0aOCK1HKM8PBw/fnnnymuDwwM1Pz58yn+AcgUCoAAspVKlSrp9OnTWrFihbZu3apDhw7p/PnzunHjhsxmswoXLqzy5curTZs2GjRoUIreggAAAEjbunXr9NNPP2njxo36448/dOrUKUVERCg+Pl6BgYEqVqyYmjRpoq5du6pHjx7M++dkvr6+CgkJUceOHTVu3DiVKVPG3SkByKYYAgwAAAAAAAB4MX6uAQAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi/m6OwH8KywszK3nN5vNCgoKUkREhBISEtyaS04XFBQks9mshIQERUREuDudHIs24RloD56DNuEZaBOegfbgOWgTnoE24RloD56DNuEZvLVNBAcH270PPQABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL+br7gTwL7PZ7BHnd3cesMbj4T60Cc/DY+FetAnPw2PhPrQHz8Tj4T60Cc/DY+FetAnPk9MfC5NhGIa7kwAAAAAAAADgHPQA9CARERFuPb/ZbFaBAgUUGRmphIQEt+aS0xUoUEBms1kJCQmKjIx0dzo5Fm3CM9AePAdtwjPQJjwD7cFz0CY8A23CM9AePAdtwjN4a5sICgqyex8KgB7EU14UEhISPCYXeM7zIiejTXgOHgfPQJvwHDwO7kd78Cw8Fu5Hm/AcPA6egTbhOXL648AiIAAAAAAAAIAXowAIAAAAAAAAeDEKgAAAAAAAAIAXowAIAAAAAAAAeDEKgAAAAAAAAIAXowAIAAAAAAAAeDEKgAAAAAAAAIAXowAIAAAAAAAAeDEKgAAAAAAAAIAXowAIAAAAAAAAeDEKgAAAAAAAAIAXowAIAAAAAAAAeDEKgAAAAAAAAIAXowAIAAAAAAAAeDEKgEAmRURE6JlnnlH58uVVtGhRFStWTNWqVdM777yjW7duuTs9AAAAAAAASRQAgUzZsGGDatSoofnz5ysqKkqGYSgxMVFXr17VZ599pqpVq+r48ePuThMAAAAAAIACIGCvgwcPatCgQbp9+3aaMVFRUWrXrp0iIyNdmBkAAAAAAEBKFAABOz399NNKTEzMMC46Olrjxo1zQUYAAAAAAABpowAI2CEiIkIHDhywOX7FihVOzAYAAAAAACBjFAABO2zYsMGu+JiYGEVFRTkpGwAAAAAAgIxRAATsEB0dbfc+FAABAAAAAIA7UQAE7FCrVi274k0mk4oWLeqkbAAAAAAAADJGARCwQ926dVWwYEGb42vWrCkfH5oZAAAAAABwHyoTgJ1Gjx5tc+z48eOdmAkAAAAAAEDGKAACdhozZoxatmyZYdzjjz+uNm3auCAjAAAAAACAtFEABDLh+++/16OPPip/f/8U2woWLKhJkybprbfeckNmAAAAAAAA1nzdnQCQXU2cOFFvv/22Fi9erL1798psNuv++++n1x8AAAAAAPAoFACBLPDx8VH//v3Vv39/d6cCAAAAAACQKoYAAwAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxSgAAgAAAAAAAF6MAiAAAAAAAADgxXzdnQCQ3Z0/f16nTp2Sj4+PqlWrpkKFCrk7JQAAAAAAAAsKgEAmbd++XZ999pk2bdpkuc7Pz0/dunXT888/r2rVqrkxOwAAAAAAgDsYAgxkwpw5c9SzZ0+r4p8kxcfHa+nSperYsaO2bt3qpuwAAAAAAAD+RQEQsNPOnTv14osvyjCMNGOio6M1bNgwXbhwwYWZAQAAAAAApEQBELDTlClT0i3+JYmKitKMGTNckBEAAAAAAEDaKAACdrhy5YrWr19vc/x3331nU7EQAAAAAADAWSgAAnY4c+aMXQW90NBQ3bx504kZAQAAAAAApI8CIGAHX1/7F87OzD4AAAAAAACOQgEQsEOlSpUUEBBgc3y1atWUO3duJ2YEAAAAAACQPgqAgB3y5cunPn362Bw/fPhwJ2YDAAAAAACQMQqAgJ2efvppBQYGZhhXuXJlDRgwwPkJAQAAAAAApIMCIGCncuXKaeHChQoODk4zpkqVKlq0aJHy5cvnwswAAAAAAABSogAIZEK9evW0bds2jRs3TuXKlZMkmUwm1apVSx999JHWr1+vUqVKuTdJAAAAAAAASSxPCmRS4cKF9dxzz+m5557T7du35ePjIx8fauoAAAAAAMCzUAAEHMDXl6YEAAAAAAA8E92VAAAAAAAAAC9GARAAAAAAAADwYhQAAQAAAAAAAC9GARAAAAAAAADwYhQAAQAAAAAAAC9GARAAAAAAAADwYr7uTsCd3nnnHe3Zs0eS1LZtWz333HNpxu7cuVNr1qzRiRMnFBcXp+DgYDVs2FB9+/ZVgQIFXJQxAAAAAAAAYJ8cWwDcvn27pfiXkS+//FKrV6+WJPn4+Mjf318XLlzQihUrtGXLFk2cOFGlS5d2ZroAAAAAAABApuTIIcA3b97UN998o7x586pUqVLpxq5du1arV6+WyWTSkCFDtHDhQi1cuFCfffaZypYtq2vXrumdd95RfHy8i7IHAAAAAAAAbJcjC4DffvutwsPDNWTIEAUGBqYZFx8fr++++06S1KVLF/Xr10/+/v6SpPLly+v111+Xv7+/Ll68qPXr17sidQAAAAAAAMAuOa4AeOjQIa1bt06VK1dW586d043dv3+/IiIiZDKZ1KtXrxTbixYtqpYtW0qSNm/e7Ix0AQAAAAAAgCzJUQXA+Ph4TZkyRSaTSU888YR8fNK/+fv375cklS5dWkWKFEk1pm7dupKkI0eOKDY21rEJAwAAAAAAAFmUowqAixcv1rlz59S1a1dVrFgxw/izZ89KksqWLZtmTNI2wzB07tw5xyQKAAAAAAAAOEiOKQCePXtWS5YsUaFChTR48GCb9gkPD5ckFSpUKM2Y5NsiIiKyliQAAAAAAADgYL7uTsAVDMPQ1KlTdfv2bY0aNUoBAQE27Zc0pDdp4Y/UJN8WHR2d7vHmzp1rWVQkNQMHDtSgQYNsys0ZTCaTJKlgwYIyDMNteUCW4ek+Pj4KCgpyczY5F23CM9AePAdtwjPQJjwD7cFz0CY8A23CM9AePAdtwjPQJv6VIwqAa9eu1aFDh1S/fn01b97cbXncvHlTV65cSXN7dHS0zGazCzNKXUZzI8J1TCaTRzwncjrahGegPXgO2oRnoE14BtqD56BNeAbahGegPXgO2oRnoE3kgAJgeHi4Zs2apVy5cumxxx6za9/cuXNLkuLi4tKMSb4to56FefPmVdGiRdPcHhAQoISEBLtydCSTySQfHx8lJibyC4Wb+fj4yGQyyTAMJSYmujudHIs24RloD56DNuEZaBOegfbgOWgTnoE24RloD56DNuEZvLVNZKaY6fUFwNmzZ+vmzZvq27evChYsqJiYGKvtSU+AhIQEyzZ/f3/5+PioUKFCOnnypGUuwNQk35ZRd9IhQ4ZoyJAhaW4PCwtz6zyCZrNZQUFBun79ulsLkbjzXDKbzUpMTGRuSTeiTXgG2oPnoE14BtqEZ6A9eA7ahGegTXgG2oPnoE14Bm9tE8HBwXbv4/UFwKQht4sXL9bixYvTjNuyZYu2bNkiSfr0009VoUIFlS5dWr/99pvOnDmT5n5J20wmk0qVKuXAzAEAAAAAAICsYzB6Ou69915Jd4p8YWFhqcbs3btXklS1alXLkGEAAAAAAADAU3h9D8B333033e2vvvqq/vrrL7Vt21bPPfec1bZ7771XQUFBioiI0LJly/TII49YbQ8NDdUvv/wiSWrdurUj0wYAAAAAAAAcgh6A6fDz89OgQYMkST/++KOWLFliWfTj1KlTevvttxUbG6sSJUqoffv27kwVAAAAAAAASJXX9wDMqo4dO+rUqVNavXq1Zs+erXnz5snf31/R0dGSpMDAQL322mvy8/Nzc6YAAAAAAABAShQAbTB69GjVrl1bq1ev1smTJy29/ho1aqQ+ffqoYMGC7k4RAAAAAAAASFWOLwBmNEdgkiZNmqhJkyZOzgYAAAAAAABwLOYABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi/m6OwHAlcLDw7Vw4ULt2rVLsbGxCgkJUd++fdW4cWOZTCZ3pwcAAAAAAOBwFACRIxiGoWnTpum9995TbGys1bY5c+aoXr16mj59ukqVKuWmDAEAAAAAAJyDIcDIET7++GNNmDAhRfEvyR9//KFu3brp8uXLLs4MAAAAAADAuSgAwuudOHFCkydPzjDu3Llzeuedd1yQEQAAAAAAgOtQAITX+/bbb2UYhk2xy5YtU3h4uJMzAgAAAAAAcB0KgPB6P//8s82xcXFx2rZtmxOzAQAAAAAAcC0KgPB6N27ccGo8AAAAAACAJ6MACK9XuHBhp8YDAAAAAAB4MgqA8HrdunWzObZAgQJq0aKFE7MBAAAAAABwLQqA8HpDhgyRv7+/TbGDBw9W3rx5nZwRAAAAAACA61AAhNcrXry4Pv30U5lMpnTj6tatq7Fjx7ooKwAAAAAAANegAIgcoU+fPpo1a5ZKly6dYpuvr6/69eunpUuXKl++fG7IDgAAAAAAwHl83Z0A4CqdO3dWhw4dtGHDBu3atUu3bt1SyZIl1atXLxUvXtzd6QEAAAAAADgFBUDkKGazWR06dFCHDh3cnQoAAAAAAIBLMAQYAAAAAAAA8GIUAAEAAAAAAAAvRgEQAAAAAAAA8GIUAAEAAAAAAAAvRgEQAAAAAAAA8GIUAAEAAAAAAAAvRgEQAAAAAAAA8GIUAAEAAAAAAAAvRgEQAAAAAAAA8GIUAJGjbNiwQW3btlWZMmUUEhKiqlWr6uWXX1ZkZKS7UwMAAAAAAHAKCoDIEW7duqXWrVtrwIABOnDggGJiYnTr1i2Fh4dr+vTpqlKlipYvX+7uNAEAAAAAAByOAiByhPvvv18HDx5Mc3tCQoIeffRRbdmyxYVZAQAAAAAAOB8FQHi9ZcuW6fDhwxnGGYahp556ygUZAQAAAAAAuA4FQHi9999/3+bYS5cuad++fc5LBgAAAAAAwMUoAMLr/fPPP3bFL1y40DmJAAAAAAAAuAEFQHi9xMREu+KjoqKclAkAAAAAAIDrUQCE1/P397crvly5cs5JBAAAAAAAwA0oAMLrtWzZ0uZYk8mkxx57zInZAAAAAAAAuBYFQHi9t99+2+bYZs2aKV++fE7MBgAAAAAAwLUoAMLrlS9fXuPGjcswrnDhwpo3b54LMgIAAAAAAHAdCoDIEZ577jl9/PHHafbua9Cggf744w8FBAS4ODMAAAAAAADn8nV3AoCrDB06VEOHDtXKlSu1cuVKxcbGqmzZsnrhhRdUuHBhd6cHAAAAAADgFBQAkeN0795d3bt3d3caAAAAAAAALsEQYAAAAAAAAMCLUQAEAAAAAAAAvBgFQAAAAAAAAMCLUQAEAAAAAAAAvBgFQAAAAAAAAMCLUQAEAAAAAAAAvBgFQAAAAAAAAMCLUQAEAAAAAAAAvBgFQAAAAAAAAMCLUQBEjpGYmKgpU6aoVq1aKlq0qIoUKaKQkBD1799fx48fd3d6AAAAAAAATkEBEDlCRESEateurTfffFOXLl2SYRiSpFu3bmnjxo1q0qSJpkyZ4uYsAQAAAAAAHI8CILxeYmKiWrVqpUuXLqUb9+abb2rJkiUuygoAAAAAAMA1KADC682cOVMXL160KXbcuHFOzgYAAAAAAMC1KADC602dOtXm2PDwcG3dutWJ2QAAAAAAALiWr7sTwL/MZrNHnN/deTiarb3/kvz4449q3bq1c5LJBG97PLITb20T2RmPhXvRJjwPj4X70B48E4+H+9AmPA+PhXvRJjxPTn8sTEbSagiAlzKbzUpMTLQ5/qGHHtKMGTOcmBEAAAAAAIDr0APQg0RERLj1/GazWQUKFFBkZKQSEhLcmosjBQQEKCoqyub48uXLu/2xKFCggMxmsxISEhQZGenWXHIyb20T2Q3twXPQJjwDbcIz0B48B23CM9AmPAPtwXPQJjyDt7aJoKAgu/ehAOhBPOVFISEhwWNycYTOnTtr8eLFNsWazWY9/PDDHnX7PSmXnMrb2kR2xuPgGWgTnoPHwf1oD56Fx8L9aBOeg8fBM9AmPEdOfxxYBARe780335SPj21P9c6dOytXrlxOzggAAAAAAMB1KADC6xUpUkRTpkyRyWRKN65ChQqaPn26i7ICAAAAAABwDQqAyBH69u2rhQsXKiQkJMU2Pz8/9ezZUzt37rS5pyAAAAAAAEB2wRyAyDHatGmjffv26dChQ1q+fLliYmJUuXJlDRo0SL6+NAUAAAAAAOCdqHogx6lRo4Zq1Kjh7jQAAAAAAABcgvGOAAAAAAAAgBejAAgAAAAAAAB4MQqAAAAAAAAAgBejAAgAAAAAAAB4MQqAAAAAAAAAgBejAAgAAAAAAAB4MQqAAAAAAAAAgBejAAgAAAAAAAB4MQqAyJHi4uJ048YNJSYmujsVAAAAAAAAp6IAiBzj1q1bmj9/vjp06KBSpUqpQoUKqly5sl566SUdP37c3ekBAAAAAAA4BQVA5AjXrl3Tgw8+qGeeeUZ79+61XB8ZGakZM2aoZcuW+v77792YIQAAAAAAgHNQAITXS0xM1PDhw/Xrr7+mGRMfH68nn3xSW7dudWFmAAAAAAAAzkcBEF5v06ZN2rFjR4ZxCQkJeu+991yQEQAAAAAAgOtQAITXmz17ts2xe/bs0eHDh52YDQAAAAAAgGtRAITXO3DggFPjAQAAAAAAPBkFQHi9hIQEp8YDAAAAAAB4MgqA8HoVK1Z0ajwAAAAAAIAnowAIrzdkyBCbY6tWraqGDRs6MRsAAAAAAADXogAIr9e1a1dVqlTJptjnnntOJpPJyRkBAAAAAAC4DgVAeD1/f3999913Kl26dLpx//nPf9SnTx8XZQUAAAAAAOAaFACRI5QvX15r167Vk08+qaCgIKttzZs317x58zR27Fg3ZQcAAAAAAOA8vu5OAHCVIkWKaMKECXr55Zd19OhR3bp1SyVKlFBISIi7UwMAAAAAAHAaCoDIcXLnzq17773X3WkAAAAAAAC4BEOAAQAAAAAAAC9GARAAAAAAAADwYhQAAQAAAAAAAC9GARAAAAAAAADwYhQAAQAAAAAAAC9GARAAAAAAAADwYhQAAQAAAAAAAC9GARAAAAAAAADwYr7uTgDeKSoqShcuXJDZbFapUqXk7+/v7pQsEhISdObMGcXFxalYsWIKCgpyd0oAAAAAAABOQwEQDnXw4EFNmzZNK1asUFxcnCQpMDBQAwcO1OOPP64SJUq4Lbfr16/rf//7n2bNmqWLFy9Kknx8fNShQweNHj1azZo1c1tuAAAAAAAAzsIQYDjMypUr1aFDBy1atMhS/JOka9eu6YsvvlDbtm21f/9+t+R2/vx5dezYUe+9956l+CdJiYmJ+umnn/Tggw9q2rRpbskNAAAAAADAmSgAwiH+/PNPjR49Wrdu3UozJiwsTAMGDNDVq1ddmJkUHx+vwYMH68SJE+nGvfHGG/rhhx9clBUAAAAAAIBrUACEQ3z22WeKj4/PMC40NFRz5sxxQUb/WrNmjQ4ePGhT7EcffSTDMJycEQAAAAAAgOtQAESWhYWFafXq1TbHz50714nZpGRPwfHgwYPat2+f85IBAAAAAABwMQqAyLJTp04pISHB5vjTp08rNjbWiRlZO3bsmF3xR44ccVImAAAAAAAArkcBEFlmMplcsk9m2XsuV+YGAAAAAADgbBQAkWUVK1aUn5+fXfH+/v5OzMha9erV7YqvUaOGkzIBAAAAAABwPQqAyLKgoCB1797d5vjhw4c7MZusna9evXqqVauWE7MBAAAAAABwLQqAcIhnn31WefLkyTCuVKlSGjRokAsy+tf999+v+vXrZxhnMpk0ZswYF2QEAAAAAADgOhQA4RDVq1fXzJkzFRAQkGZMSEiIFi5cqIIFC7owM8lsNmv27Nm655570ozx8fHRRx99pPbt27swMwAAAAAAAOejAAiHadeunTZv3qxHHnlEBQoUsFxfsmRJvfzyy9q4caOqVKniltyKFi2qVatWaeLEiapcubLlen9/f/Xr10/r1q3T0KFD3ZIbAAAAAACAM/m6OwF4l/Lly+vdd9/Vm2++qatXr8rHx0fBwcHy8XF/rTkgIECPPvqoHnnkEYWHh+vWrVsqVKiQSxckAQAAAAAAcDUKgHAKPz8/FS9e3N1ppMpkMqlw4cLuTgMAAAAAAMAl3N8tCwAAAAAAAIDTUAAEAAAAAAAAvBgFQAAAAAAAAMCLUQAEAAAAAAAAvJhTFwF56623MowJCQnRww8/7Mw0AAAAAAAAgBwr0wXAXbt2qXv37pKkUaNG6d13300RM2HCBJlMpnSPYzKZVLt2bTVo0CCzqQAAAAAAAABIQ6aHAL/55psKCwtTrly59Morr6QbaxhGmv8SExP1+uuvZzYNAAAAAAAAAOnIVA/A8+fPa926dTKZTHruueeUP3/+dOP79++vatWqpbh+//79WrZsmX7++WdduHBBJUuWzEw6AAAAAAAAANKQqQLgsmXLZBiGcufOrUceeSTD+IEDB1qGCyd348YNrV+/Xjdv3tT333+vp59+OjPpwAMtWbJEmzdvlp+fn3r37q3mzZu7OyXALmfOnNHJkycVGBiokJAQFSlSxN0pAQAAAACQKZkaArxz505JUpMmTVSwYMFMnzx//vzq2LGjJGn37t2ZPg48xzPPPKPixYvr8ccf18KFCzV37lz17NlTpUuX1hdffOHu9IAMbdu2TX369FH9+vXVt29ftW/fXrVq1dKIESO0f/9+d6cHAAAAAIDdMlUA3L9/v0wmk1q0aJHlBOrXry/DMLRv374sHwvu1aZNG82fP18JCQkptsXGxmr8+PF6/vnn3ZAZYJs5c+aoV69e2rJli9X1CQkJWrVqlbp27ar169e7KTsAAAAAADInUwXAy5cvS5JKlSqV5QRKly4tSQoNDc3yseA+//nPf/TXX39lGDd37lytW7fOBRkB9tm9e7fGjBkjwzDSjImNjdWoUaN0+vRpF2YGAAAAAEDWZKoAeP36dUlSUFBQunFffPGFpk2bpjp16qQZkydPHqtjInuaN2+ezbFjxoxxYiZA5kybNk2JiYkZxkVHR2v69OkuyAgAAAAAAMfIVAEwd+7ckqSoqKh04x577DE99thjKlOmTJoxN27ckCT5+/tnJhV4gJ9//lnx8fE2x1+8eDHVYcKAu4SFhemnn36yOX7BggU2FQsBAAAAAPAEmSoAFi5cWJJ06dKlLCeQNJw46ZjIfrZu3Wr3PleuXHFCJkDmnD9/3q6CXkREhCIjI52YEQAAAAAAjpOpAmDZsmUlSTt27MhyAknHSDomsp+kHqH2CAgIcEImQOb4+vq6ZB8AAAAAANwhUwXAli1byjAMbdq0SREREZk+eUREhDZs2CCTyaRWrVpl+jhwr379+tkVbzKZVLBgQSdlA9ivQoUKyp8/v83xlStXVr58+ZyYEQAAAAAAjpOpAmCXLl0kSTdv3tSkSZMyffLJkyfr5s2bVsdE9lOxYkUVKFDA5vi6des6MRvAfnny5NGAAQNsjh8xYoTzkgEAAAAAwMEyVQC877771Lx5cxmGoY8//lgLFiyw+xgLFy7UBx98IJPJpObNm6tRo0aZSQUe4uOPP7YpzmQy6dtvv3VuMkAmPPXUUypSpEiGcZUqVdKgQYNckBEAAAAAAI6RqQKgJL333nvy9fWVYRgaPHiwnnvuOYWGhma4X1hYmF544QUNHjxYhmHI19dX7733XmbTgIfo0aOH/vOf/6QbYzKZ9N1336lEiRIuygqwXcmSJbVo0SIVK1YszZgqVapo8eLFDP8FAAAAAGQrmZ7FvmnTpvrggw/0/PPPy2Qy6fPPP9dXX32l9u3bq2nTpqpYsaICAwMlSdeuXdOJEye0c+dOrV+/XnFxcTIMQ5L0wQcfqEmTJg65MXCvsWPHqkOHDnriiSd07Ngxy/U+Pj6677779M0336RbXAHc7Z577tH27ds1f/58zZ07V8ePH5ePj49q1aqloUOHqnfv3sqTJ4+70wQAAAAAwC4mI6kSl0lTp07VCy+8oPj4+DsHNJnSjU86nZ+fnz799FM9/vjjWTm9VwkLC3Pr+c1ms4KCghQREaGEhIQsHy/pGGazOcvHymmCgoJkNpuVkJCQpYV2kDU+Pj4KCgrStWvXHNImkDm0B8/h6PcJZA5twjPQHjwHbcIz0CY8A+3Bc9AmPIO3tong4GC798n0EOAkTz75pHbs2KFOnTpJulPgS++fdGfBj507d1L883Jms5niH7I1k8mU4Y8aAAAAAAB4ukwPAU6ufv36Wr16tY4cOaL169dr27ZtunDhgq5evSpJKly4sEqWLKkWLVqoffv2qlKliiNOCwAAAAAAACADDikAJqlataqqVq2qp556ypGHBQAAAAAAAJBJWR4CDAAAAAAAAMBzOaQH4Pnz57V//35dv35dBQsWVK1atVSqVClHHBoAAAAAAABAFmSpALhnzx49//zz2rVrV4ptjRs31ieffKJGjRpl5RQAAAAAAAAAsiDTQ4DXrVun1q1ba9euXamu9rtz5061atVKa9eudWS+AAAAAAAAAOyQqQLgjRs3NHz4cMXGxsowDElSpUqV1LRpU1WqVMkSFxcXp+HDhysyMtIx2QIAAAAAAACwS6YKgHPmzNHly5dlMpnUoEEDHTx4UEePHtW2bdt09OhRHTp0yDL0NzQ0VHPmzHFo0gAAAAAAAABsk6k5ANesWSNJCg4O1tq1axUUFGS1vVq1alqzZo2qV6+u0NBQrVmzRk8++WTWswW8XFRUlDZv3qyYmBgFBgaqdevW8vPzc3da2cLkyZM1Z84cxcfHq1ixYpo3b55Kly6dqWMZhqHdu3frxIkTKlCggCpUqKCaNWs6OGMAAAAAAFwjUwXA/fv3y2QyadiwYSmKf0mCgoI0bNgwffjhhzpw4ECWkgS8XVRUlN577z3NmzdPUVFRluv9/PzUo0cPjR8/XiVKlHBjhp7r2Wef1XfffWd1XXh4uOrVq6fcuXNr7969Cg4Otvl4ixcv1scff6zjx49bXV+3bl29/PLLatu2rUPyBgAAAADAVTI1BDg8PFySVKdOnXTjateuLUm6evVqZk4D5Ag3btxQz5499dVXX1kV/yQpPj5eS5YsUadOnXT69Gk3Zei5+vXrl6L4l1xsbKyqV6+usLAwm473wQcf6IknnkhR/JOkvXv3asCAAZo/f36m8wUAAAAAwB0yVQC8efOmJCl//vzpxuXLl0+SFBMTk5nTADnCSy+9pH379qUbc+HCBY0cOdKy6A6kX3/9VZs2bbIpNqMfKyTp559/1vvvv59ujGEYev7553X48GGbzgsAAAAAgCfIVAEQgGNcunRJS5cutSl2//792rFjh5Mzyj4GDx5sc2xcXJzOnj2bbswXX3xh07ESEhL0v//9z+ZzAwAAAADgbhQAATdatmyZEhISbI5ftGiRE7PJXiIiIuyKHzRoUJrbLl26pF9++cXmYy1ZssSuxw0AAAAAAHfKUgHQZDI5Kg8gR7pw4YJT4/Gvy5cvp7nt0qVLdh0rOjpa169fz2pKAAAAAAC4RKZWAU7y4IMP2hRnGIbMZnO6MSaTSbdv385KOkC24+/vb1d8njx5nJSJ9/Pz80tzm72PQ2b3AQAAAADAHbI8BNgwjDT/SXcKeyaTKd245PFATtKkSRO74hs3buykTLIfe3sgDxw4MM1tFStWVJEiRWw+Vu3atZU3b167zg8AAAAAgLtkugBoS9GO4h6QvjZt2qhcuXI2xebOnVsDBgxwbkLZSM+ePe2Kf+2119LclitXLrsWFRkxYoRd5wYAAAAAwJ0yVQBMTEx0+D8m1EdO5OPjo4kTJ8rHJ+Om+Morr6hQoUIuyCp7+Oqrr2zuBdi3b98MY5544gmbirENGjRQv379bDovAAAAAACegFWAATfr0KGDvvzyyzTn9zOZTHrllVf0+OOPuzgzz/fnn39mWARs3ry5pk2bluGxgoKCtHTpUlWrVi3NmKZNm+q7775Trly57M4VAAAAAAB3ydIiIAAco2fPnmrevLnmzZunlStX6tq1aypQoIA6duyo/v37q0KFCu5O0SOVKFFCV65c0ciRI/Xjjz9aTTdQsGBBzZ071655E0uXLq2NGzdqzZo1mjt3rk6cOCFfX1/VqFFDw4YNU6tWrWzqrQkAAAAAgCcxGUzQ5zHCwsLcen6z2aygoCBFREQwJNvNgoKCZDablZCQoIiICHenk2PRJjwD7cFz0CY8A23CM9AePAdtwjPQJjwD7cFz0CY8g7e2ieDgYLv3oSsLAAAAAAAA4MUoAAIAAAAAAABeLFNzAJrNZkfnIZPJpNu3bzv8uAAAAAAAAEBOlqkCINMGAgAAAAAAANlDplcBNplM8vX1VdGiRR2ZDwAAAAAAAAAHynQBUJJu376tEiVKaOTIkRo0aJAKFCjgqLwAAAAAAAAAOECmFgEZOHCgcufOLcMw9Pvvv+vJJ59UiRIlNGTIEG3cuNHROQIAAAAAAADIpEz1AJw3b54iIyM1b948zZw5U7/99ptiYmI0f/58zZ8/X2XKlNFDDz2k4cOHq2zZso7O2W7Hjx/Xnj17dOzYMV24cEGRkZGKi4tT/vz5VaFCBbVs2VKtWrWSj0/a9dCdO3dqzZo1OnHihOLi4hQcHKyGDRuqb9++9HwEAAAAAACAxzIZDljR4+DBg/rf//6nefPmKSws7M6BTSaZTCa1bt1aDz/8sHr16iV/f/8sJ5wZ06ZN008//WS5nDt3bklSbGys5bp77rlHr732mgICAlLs/+WXX2r16tWSJB8fH/n7+ysmJkaSFBgYqIkTJ6p06dJZzjPpvnMXs9msoKAgRUREKCEhwa255HRBQUEym81KSEhQRESEu9PJsWgTnoH24DloE56BNuEZaA+egzbhGWgTnoH24DloE57BW9tEcHCw3fs4pACY5Pbt21q5cqVmzJihtWvXKiEhQSaTSZJUsGBBDRw4UA899JAaNGjgqFPaZMOGDYqKilKNGjUUEhJiKfJdu3ZN69ev17x585SYmKgOHTroqaeestp37dq1mjp1qkwmkwYPHqwePXrI399fp06d0scff6zTp0+rRIkSmjJlivz8/LKUJwVA5zMMQzt37tSuXbsUFxenkJAQdevWTUFBQe5OTZJ07tw5rVq1Sjdv3lRgYKA6dOigUqVKuTstj5eYmKiZM2dqzZo1io2NValSpfSf//xHFStWzNJxc0KbyA689U07O6JNeAbahGegPXgO2oRnoE14BtqD56BNeAZvbRNuLwAmd/HiRX377bf69ttvdezYsTsn+/9iYM2aNfXCCy9oxIgRzji13ebOnatFixYpV65cWrBggXx974yMjo+P16hRoxQREaGuXbvqscces9rvypUrevLJJxUXF6fRo0erS5cuWcqDAqBzbdmyRa+99pr+/vtvq+tz586tgQMH6s0331SePHncktuVK1f00ksvafXq1UpMTLTa1qRJE73//vuqVq2aW3LzdF9++aXeeecdxcXFpdhWpUoVLV++XEWKFMnUsb29TWQX3vqmnR3RJjwDbcIz0B48B23CM9AmPAPtwXPQJjyDt7aJzBQAM7UIiC1KlCihV155RUeOHNGWLVs0YsQIBQQEyDAM/fXXX/r666+ddWq7Va5cWZJ069Yt3bhxw3L9/v37FRERIZPJpF69eqXYr2jRomrZsqUkafPmzS7JFZmzatUq9e/fP0XxT7ozFHzmzJnq37+/1bBwV7l06ZK6du2qH3/8MUXxT7oz/2TXrl114MABl+fm6SZNmqTXX3891eKfJB09elSNGjXS1atXXZwZAAAAAACew2kFwORatGihhx56SJ06dZL0b09AT5FUFMqdO7cCAwMt1+/fv1+SVLp06TR7ENWtW1eSdOTIEbcUj5CxsLAwPfHEExn+6rJz5059+OGHLsrqXy+++KL++eefdGMiIyP18MMP88tRMidOnNDHH3+cYVxUVJQGDBjggowAAAAAAPBMTi0AXrhwQZMmTVLVqlXVunVrLV26VNKdedjKlCnjzFNnKC4uTufOndOcOXO0bNkySVLXrl2tipNnz56VpHRXMk7aZhiGzp0758SMkVnz5s1TdHS0TbGzZ8+2LPDiCqdOndK6detsjt2wYYOTM8o+xo8fb3Psvn37FBoa6sRsAAAAAADwXL6OPuDt27e1fPlyzZgxQ+vXr1diYqKSphkMCgrSoEGDNHLkSEvPOVeKiorSoEGDUlzv6+urBx54QEOGDLG6Pjw8XJJUqFChNI+ZfJs3jSf3JsuXL7c5NiIiQlu3blWHDh2cl1AyK1eutCt++fLlLsvN023bts2u+C+++MKuoiEAAAAAAN7CYQXAP//8UzNnztR3331nmW/LMAz5+Pjo/vvv18iRI9WzZ0/lypXLUae0m4+Pj2WIb3R0tG7duiWTyaQHHnhAPXv2lNlstopPGtLr7++f5jGTb8uol9ncuXP13Xffpbl94MCBqRYoXSX5is1OWhvGLeyd/y06OtplqwJHRkbaFX/t2jWPWbHY3dKa9y8toaGhdt933tomshsfHx/L/zz/3Ys24RloE56B9uA5aBOegTbhGWgPnoM24RloE//KUgHw2rVrmjdvnmbMmKF9+/ZJkuWJXb58eY0YMUIjRoxQ6dKls5yoIwQEBGj27NmS7uR55coV/fDDD/rhhx+0YcMGjRs3TjVq1HDa+W/evKkrV66kuT06OjpFEdIdkhqIt8iXL59d8QUKFHDZ41CgQAG74vPnz+8RzxFP4Ovra9eciEmrP2WGt7WJ7MpkMvH89xC0Cc9Am/AMtAfPQZvwDLQJz0B78By0Cc9Am8hkAXDdunWaMWOGVq5cqbi4OEvRL3fu3OrVq5dGjhyptm3bOjRRRzOZTCpWrJhGjRqlokWL6n//+58++OADffnll5Zefblz55aUfk+j5NsCAgLSPWfevHlVtGjRNLcHBAS4dZEHk8kkHx8fq2Hb3qBDhw46duyYTbF+fn5q3ry5yx6H+++/X++8847N8e3atWMhkP9Xo0YN7d271+b4ESNG2H3feWubyG58fHxkMplkGEaqK2XDdWgTnoE24RloD56DNuEZaBOegfbgOWgTnsFb20RmipmZKgB26tTJcgdKUoMGDfTwww9rwIABKliwYGYO6VadOnXSrFmzdPXqVf3+++9q2rSppDvz+508edIyF2Bqkm/LqDvpkCFDUswzmFxYWJhb5xE0m80KCgrS9evXvarINHDgQE2dOtWm2O7duytXrlwuexxq1KihmjVr6uDBgxnG5s+fX126dGGuyf/3yiuvqF+/fjbFlihRQhUqVLD7vvPWNpHdJPXeTExM5PnvZrQJz0Cb8Ay0B89Bm/AMtAnPQHvwHLQJz+CtbSI4ONjufbI0BNjPz09dunRRrVq1dP78eX300UdZOZzeeuutLO2fWbly5VL+/PkVHh6uixcvWq4vXbq0fvvtN505cybNfZO2mUwmlSpVyum5wn5Vq1bVM888o//+97/pxhUtWlSvvfaai7K6w2Qy6YMPPlDPnj0znNNu8uTJdg9n9mZt2rRR48aNtWvXrnTjTCaTvvzySxdlBQAAAACA58lSAfD27dtauXKl3SuZpsVdBcCYmBjLYgx58uSxXH/vvfdq2bJlOnPmjMLCwlKtsCYNQaxataplyDA8z2uvvaZcuXLpk08+SfXXl6pVq2rWrFluKeI2bNhQCxcu1COPPKLQ0NAU2wMCAjR58mT17dvX5bl5uhUrVqhPnz7aunVrqtv9/Pz07bffWnr1AgAAAACQE2W6AOjoMexJK+Q4WkJCgmXMd1pWrFih27dvS5Jq1qxpuf7ee+9VUFCQIiIitGzZMj3yyCNW+4WGhuqXX36RJLVu3drxycNhTCaTXnrpJQ0bNkxz5szR7t27FRsbq5CQEPXt21dt27Z164SgzZo10x9//KEffvhBK1eu1PXr11WwYEF17NhR3bp1y5ZD613Bx8dHS5cu1f79+/XGG2/or7/+0u3bt1WwYEENGDBAL7zwgltXHgcAAAAAwBNkqgA4c+ZMR+fhNGFhYZo0aZK6dOmiunXrqkiRIpLuFDDPnTunVatWac2aNZKkJk2aqGzZspZ9/fz8NGjQIE2dOlU//vijgoKC1K1bN/n7++vUqVP65JNPFBsbqxIlSqh9+/ZuuX2wT4kSJTR27Fh3p5Gq3Llzq2/fvurbt69lnoKEhASvmqfAWZJ66wIAAAAAgJQyVQAcPny4o/NwqpMnT2rKlCmS7sz3lzt3bsXGxurWrVuWmIYNG+r5559PsW/Hjh116tQprV69WrNnz9a8efPk7++v6OhoSVJgYKBee+01+fn5uebGAAAAAAAAAHbI0hyA2UGhQoU0duxY7d+/X0ePHlVERIQiIyPl5+enkJAQValSRa1atVK9evXSPMbo0aNVu3ZtrV69WidPnrT0+mvUqJH69OnD8EwAAAAAAAB4LK8vAPr5+al58+Zq3rx5lo7TpEkTNWnSxEFZAQAAAAAAAK7h4+4EAAAAAAAAADgPBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi1EABAAAAAAAALwYBUAAAAAAAADAi/m6OwF4n4sXL2rhwoU6efKkzGaz7r33XvXp00f58+d3d2o6c+aMBg0apFOnTikxMVG5c+fWU089pRdffNHdqSk6Olp16tRRRESE5Tp/f3/t27dPwcHBbszsjgMHDuidd97RqVOnZDabdc8992jChAkKCQlxd2qKi4vTqlWrtHPnTsXExKhkyZLq27evKleunKnj/fLLL3rppZd06dIlmc1mlSlTRlOmTFGNGjUcnDmQPfz5559asWKFwsLCVKhQITVp0kTt2rWTry8fIwAAAIDswGQYhuHuJHBHWFiYW89vNpsVFBSkiIgIJSQk2L1/bGysXn75ZS1YsCDF/gEBAXr++ef17LPPymQyOSpluzRt2lTHjh1LdZvJZNL8+fPVrl07F2d1R6tWrXTo0KE0t+fLl0+nTp1yYUb/ioyMVOfOnXX06NFUtzdv3lzff/+9fHzc06H4+++/1+uvv67Q0NAU29q1a6fPP/9cRYoUselYoaGhatKkia5fv57q9tKlS2vXrl3KlStXlnKGfYKCgmQ2m5WQkGBVIIfznT59Wk888YT27NmTYlupUqX04Ycfuu11MyejTXiGrH5uguPQJjwDbcIz0B48B23CM3hrm8hMJyGGAMMh4uPjNXToUM2bNy/VF7fo6GhNnDhRb7zxhhuyk+rWrZtm8U+SDMPQgAEDtHv3bhdmdUebNm3SLf5JUlRUlMqWLeuijP4VGxurRo0apVn8k6Rt27apTZs2LszqX3PnztXo0aNTLf5J0oYNG9S9e3eFh4dneKyoqCjVrl07zeKfJJ09e1Y1a9bkDRw5wrlz5/TAAw+kWvxL2j548GCtXbvWxZkBAAAAsBcFQDjEjBkztHnz5gzjvvjiC+3YscP5CSUze/ZsnTt3zqbY3r17OzmblP766y+b4qKjo9P8Iu4sTz/9tK5evZph3KFDhzRt2jQXZPSvS5cu6aWXXsow7vjx43rnnXcyjOvVq5fi4+MzjLt27ZpeeOEFm3IEsrOxY8fq0qVL6cYkJCToqaee0s2bN12UFQAAAIDMcFgBsGnTppo9e7ZiY2MddUhkE4mJiZo+fbrN8TNmzHBiNinZ0+swLi5Oe/fudWI21urVq2dXfLdu3ZyUSUqJiYlavXq1zfGuLgDOmTNHt27dsil2yZIlunbtWprbExIStG/fPpvPvWTJEptjgezo1KlT+vnnn22KvXbtmpYuXerkjAAAAABkhcMKgLt27dJDDz2kkiVL6rnnnstwSCO8x5EjR+yan27NmjVKTEx0YkbWoqKi7Ip/+eWXnZRJSmfPnrUr3pX325YtW2wusEnS5cuXFR0d7cSMrNlTnIyJiUm3h+rixYtlz3Sot27dsmlYMZBdrV271q42YU97BAAAAOB6Dh0CbBiGrl27ps8//1y1atVSixYtNG/ePLuKCMh+0utZlZpbt24pJibGOck4gDdNDJoVtg6bTi6tuficwd7nXXrxp0+ftvv8//zzj937ANmFI9sXAAAAAPdzWAHw5MmTevnll1W8eHEZhiHDMLRjxw4NGzZMJUuW1Isvvqi///7bUaeDBylYsKBd8X5+fsqTJ4+Tssk6e2+PtypevLjd+9i62q4j2Ps4pRdfunRpu8+fmX2A7CIwMNCu+AIFCjgnEQAAAAAO4bACYLly5fTuu+/qzJkzWrx4sdq3by/pTq/A8PBwffrpp6pZs6Zat26tBQsW2DTZPrKHatWq2bVCbceOHeXj47r1Z/LmzWtX/KRJk5yUSUohISF2xZtMJidlklK7du3k5+dnc3yRIkUUEBDgxIysderUyebY3Llzq1WrVmlu79+/v13n9vPzc2mxE3C1pPdwW3Xu3NlJmQAAAABwBIdXYXx9fdW7d2+tXbtWx48f10svvaRixYpZegVu3bpVgwcPVkhIiMaOHatjx445OgW4mI+Pj0aOHGlz/MMPP+zEbFJ6/fXXbY7NlSuXGjRo4MRsrNmz8ITk2sUnfHx81KFDB5vjH330USdmk9KwYcPk6+trU2zPnj1VqFChNLebzWbVqlXL5nP36NHD5lggO6pYsaLatGljU2z+/PnVp08fJ2cEAAAAICuc2g2rfPnymjRpks6ePatFixZZ9QoMCwvTRx99pGrVqqldu3ZavHixbt++7cx04EQPP/ywmjVrlmHcyJEj1bx5cxdk9K+HH35YxYoVsyl23rx5Ts4mpapVq9oU5+/vr5YtWzo5G2tTpkyxaShg5cqV9cwzzzg/oWRKliypiRMnZhhXrlw5jR8/PsO4ZcuW2VRQzJ8/v6ZMmWJTjkB29v7772fY09VkMumzzz5Tvnz5XJQVAAAAgMxwyThMX19f9enTR2vXrtWxY8f08ssvW/UK3Lx5swYMGKBSpUpp3LhxmVp8AO7l7++vefPmqU+fPqkOU82dO7fGjBnj0uG1yf31118qU6ZMmttNJpNmzpyp1q1buy6p/7dt2zaVL18+3Rh/f3+3tIt8+fJpz549KleuXJoxDRo00C+//OLSYd1JRo4cqc8++yzNImXz5s31ww8/KDg4OMNjFSxYUH/88Ue6hYzixYvr4MGDMpvNmU0ZyDbKlSunH374QXXq1El1e9GiRTVr1ix169bNtYkBAAAAsJvJMAzD1Sf95ZdfNHXqVC1evNhSLEpKw2Qyyc/PT4899pgmTpyYo3oVhIWFufX8ZrNZQUFBioiIUEJCQqaPc/r0aS1cuFAnT560DK3s37+/goKCHJht5vz9998aOnSozp07J8Mw5O/vr4ceekgTJkxwd2qKjo5WzZo1FRUVZbnO19dXmzZtUrVq1dyY2R27d+/WpEmTdObMGZlMJlWvXl0TJkxQpUqV3J2aoqOjtXz5cu3atUuxsbEqUaKE+vTpY9ew3uRWrVql8ePHKywsTCaTSaVKldKnn37q0uHh+FdQUJDMZrMSEhJYpdsNDMPQb7/9pmXLliksLEyFChVS06ZN1alTJ+XKlcvd6eVItAnP4KjPTcg62oRnoE14BtqD56BNeAZvbRO2dHK5m8sKgBEREZo1a5a+/vprHTlyRNK/Rb8KFSqoXbt2Wr58uUJDQ+8kZjKpatWq2r59u0cUjlzBWwqAyDpvfZHKbmgTnoH24DloE56BNuEZaA+egzbhGWgTnoH24DloE57BW9tEZgqATh+z98svv2jIkCEKCQnRiy++qCNHjsgwDJlMJnXr1k2rV6/WsWPH9NVXX+ncuXOaN2+eqlevLsMwdOTIEb377rvOThEAAAAAAADwWk4pAIaHh+uTTz5R9erV1aZNG82fP1+xsbEyDENFixbVq6++qpMnT2rFihXq1KmTZRiwn5+fBg4cqL1796pp06YyDEMrV650RooAAAAAAABAjpDxkpd22LJli77++mstW7ZMcXFxkv4d5tuyZUs9/vjj6t27d4YrbebKlUuPPfaYduzYodOnTzsyRQAAAAAAACBHcVgBsFq1ajp27Jikf4t+BQoU0NChQ/X444+rRo0adh2vaNGikqT4+HhHpQgAAAAAAADkOA4rAB49etTyd+3atfXEE09o8ODBCggIyNTxChUqpJYtW1qGBwMAAAAAAACwn8MKgP7+/urXr58ef/xxNW7cOMvHa9iwoTZv3pz1xAAAAAAAAIAczGEFwPPnz6tQoUKOOhwAAAAAAAAAB3DYKsAU/wAAAAAAAADP47ACIAAAAAAAAADP47AhwGm5ceOGIiMjlZCQkGFsmTJlnJ0O4LGuX7+uxx9/XFu3btXt27dlNptVu3ZtTZkyReXLl3d3ejnKgQMHNG/ePB0/fly5c+dW1apVNXjwYFWoUMHdqcFLhYeHa8GCBdq+fbtiYmJUvHhx9e7dW23atJGPj3t/q7t9+7bWrVunFStWKCwsTIGBgWrWrJn69OmjAgUKuDU3R0tISND69eu1bNkyhYaGKm/evGrZsqX69+/vdbcVAAAAOYvJMAzDkQdMTEzUggULNGvWLO3Zs0eRkZG2JWIy6fbt245MJdsJCwtz6/nNZrOCgoIUERFhU8EWjvPWW2/p888/T3N727ZttXDhQhdmlDNFRkZq9OjRWr9+farbBw8erMmTJ8vf39/FmeVsQUFBMpvNSkhIUEREhLvTcSjDMPT111/rnXfeUWxsbIrtVapU0bfffqvKlSu7ITvpzz//1KhRo/TPP/+k2BYQEKBJkyZp0KBBrk/MCQ4cOKCRI0emeVsnTpyoIUOGuD6xVHhzm8hO+NzkOWgTnoE24RloD56DNuEZvLVNBAcH272PQ7sVXLlyRS1bttTQoUP1888/6/r16zIMw+Z/QE40efLkdIt/krRx40b179/fRRnlTDExMerXr1+axT9Jmjdvnh577DElJia6MDN4s2nTpum1115LtfgnSUePHlX37t11+vRpF2cmHT58WD179ky1ICZJ0dHRevbZZzV37lzXJuYER44c0YMPPpjubX3++ec1Z84c1yYGAAAAOIjDCoCGYahXr17asWOHDMNQ2bJlNWDAAEl3eve1adNGffr0Uf369eXr62u5vmPHjho+fLiGDRvmqFSAbCMhIUEfffSRTbEbN250SxEgp5gxY4Z+//33DONWrVqlVatWuSAjeLvz58/r7bffzjAuLCxM48ePd0FG1l566SXduHEjw7hXX3012/+a+vLLL9s0YuHVV19VeHi4CzICAAAAHMthBcClS5dqx44dMplMevLJJ3Xs2DF99913lu3PPvusFi1apF9//VVnzpzRY489JsMwdODAAT377LOaOXOmo1IBso2JEyfa1ft19OjRTswm50pMTLTrNWjGjBlOzAY5xezZs20eDvLTTz/p3LlzTs7oX4cOHdLOnTttio2JidGCBQucnJHzHDlyRNu2bbMpNjY2VvPnz3dyRgAAAIDjOawAmDQ/WcWKFfXZZ5/JbDanGVu8eHF98cUX+uCDD3ThwgX17t3b5rkCAW+ybNkyu+IPHDjgpExythMnTtjVu3L79u1pDtkEbLVx40abYxMTE7VlyxYnZmNt06ZNdsXbc1s8TU66rQAAAMi5HFYA/PXXX2UymdS3b99UVyxMrZfTiy++qAYNGuiff/7R119/7ahUgGwjJibGrngmj3WOqKgou+INw1B0dLSTskFOYe/zzpbhuI5ib272xnsSe+/X7HxbAQAAkHM5rAAYGhoqSapevbrV9SaTSZLS7C3Tv39/GYahpUuXOioVINvInz+/XfG5cuVyUiY5W+HChe2K9/Pzs/uxA+5m7/MuMyt9ZZa9udkb70ly0m0FAABAzuWwAmB8fLwkKW/evFbX58uXT9KdScxTU6ZMGUnSyZMnHZUKkG0899xzdsW3bdvWOYnkcGXKlFGdOnVsju/atav8/PyclxByhO7du9scmydPHrVv396J2Vjr0qVLulN53K1Hjx5OzMa5unTpYlmczBbZ+bYCAAAg53JYATDpF/G7h9IUK1ZMknT06NFU97t8+bIk6dq1a45KBcg2Bg8ebFch6fPPP3diNjnbI488YnPsww8/7MRMkFP079/f5p6k/fr1U8GCBZ2c0b9Kliyprl272hRbpEgRdevWzckZOU/x4sVtzr9IkSJ2FW4BAAAAT+GwAmCVKlUkSadOnbK6vlatWjIMQz/99FOq+yVdX6hQIUelAmQr3377rU1xY8aMsfSoheP17dtX/fr1yzDuxRdfVOPGjV2QEbxdwYIF9eWXX2bY+6xmzZp64403XJTVv9577z2VL18+3ZjcuXPrm2++Ue7cuV2UlXO8++67qlixYrox/v7++uabb5QnTx4XZQUAAAA4jsMKgPfdd58Mw9Dvv/9udX3Sr+rHjx/XuHHjrBYD+fjjj7V69WqZTCY1adLEUakA2UqHDh00f/78NHsC+vj46NVXX9VLL73k4sxyFpPJpP/+979pFlqLFCmiyZMn8zjAoTp06KBFixapcuXKKbaZzWb17t1bK1ascMuck0WKFNGqVavUtWtXy3y+yd1zzz1atmyZmjVr5vLcHC04OFg//vijunbtmupCZjVr1vSa2woAAICcyWSktjxvJvz888/q0KGD8uXLpytXrlh6A8TExKhq1ao6f/68JKlo0aIqX768Tpw4obCwMBmGIZPJpI0bN6pVq1aOSCXbSmueRFcxm80KCgpSREQEq826yYIFC/Tpp58qKipKAQEBGjp0qJ5++ml3p5XjREVFaeXKlTp58qQCAgJUqVIldezYUf7+/u5OLUcKCgqS2WxWQkKCIiIi3J2OUxiGoR07dmjbtm2KiYlR8eLF9eCDD6p48eLuTk2SdObMGf3www8KCwtTcHCwGjdurHr16qVaGMzuzp49q5UrVyo0NFR58+ZVy5Yt1ahRI4+6rTmhTWQHfG7yHLQJz0Cb8Ay0B89Bm/AM3tomMrNAoMMKgAkJCWrfvr1iYmI0ceJEq8UKduzYoU6dOikqKurOSU0mq56AEyZM0Pjx4x2RRrZGARBJvPVFKruhTXgG2oPnoE14BtqEZ6A9eA7ahGegTXgG2oPnoE14Bm9tE5kpANq+7F0GzGazNm7cmOq2pk2bav/+/Zo4caLWr1+vS5cuKW/evGrYsKGee+45derUyVFpAAAAAAAAAEjGYQXAjJQrV07ffPONq04HAAAAAAAAQA5cBAQAAAAAAACA56EACAAAAAAAAHgxhxUA+/fvr6+++krHjh1z1CEBAAAAAAAAZJHD5gBcvHixlixZIkkKCQlRmzZt1LZtW7Vt21alS5d21GkAAAAAAAAA2MGhi4AYhiFJOnfunObOnau5c+dKkipUqKC2bdtaioJFixZ15GkBAAAAAAAApMFhBcDLly9r06ZN2rhxozZt2mQ1FPjEiRM6efKk/ve//0mSqlevbukd2Lp1awUGBjoqDQAAAAAAAADJOKwAWKRIEfXr10/9+vWTJJ0/f14bN260FATPnDljiT106JAOHz6sqVOnysfHR7Vr11a7du00efJkR6UDAAAAAAAAQE5cBTgkJERDhw7VzJkz9c8//+j48eP6+uuvNWDAABUvXlyGYcgwDCUkJOiPP/7Qhx9+6KxUgGzh1KlTGjJkiMqVK6c8efIoICBALVu21K+//uru1HTr1i29++67qlmzpkqWLKmQkBDVq1dP33zzjRITE92dnr755htVqVJFRYsWVZEiRVS8eHF17dpV586ds/tYMTExGjVqlEJCQlSoUCH5+PioVKlSevnll5WQkOCE7OEKCQkJWrdunYYPH66mTZuqWbNmevTRR7Vt2zbL9BXudOzYMY0bN06tW7fWfffdpx49emjOnDm6efOmu1NTZGSk/ve//+mBBx5Qw4YNVa9ePU2YMEH//POPu1NzuOS39b777lPbtm315ptv6tSpU+5ODQAAAMgSk+GGbz779+/XlClT9O233yohIUGGYchkMuX4L9dhYWFuPb/ZbFZQUJAiIiJy/GPham+//bb++9//prm9Y8eOljk1Xe3333/Xgw8+qNjY2FS3FypUSJs2bVLJkiVdnNmdYl3t2rUVERGRZswLL7ygV155xabj/fzzzxo0aFCaBSFfX19t2rRJ1apVy1S+yJygoCCZzWYlJCSk+1in5dKlSxo6dKj27duX6vYWLVpoxowZbpmOIjExUW+++aamTZuW6vbg4GB9++23uu+++1yc2R0bN27Uo48+quvXr6fYZjKZNHbsWL344osymUxuyM6xtmzZolGjRunatWsptplMJv3nP//RmDFjPOK2ZrVNwDH43OQ5aBOegTbhGWgPnoM24Rm8tU0EBwfbvY/TegAmd+zYMX311Vfq37+/ihUrprp162r69Om6ffu25Yt2UFCQK1IBPM6nn36abvFPktauXauRI0e6KKN/nT59Wt26dUuz+CdJ4eHhatGiRboxzpJR8U+SPv74Y33zzTcZHuvQoUMaOHBgur3Bbt++rdatW6daDIFnunHjhvr06ZNm8U+Stm7dqkGDBunWrVuuS+z/pVf8k+78MNSvXz/99ddfLszqjl27dmno0KFpPt8Nw9DkyZP16aefujYxJ9izZ48GDRqUavFPunNb33//fX388ceuTQwAAABwEKcUAM+ePatZs2Zp+PDhKlOmjKpVq6YnnnhCS5YsUWhoqAzDUN68edW5c2e9//77+u233xQaGuqMVACPdvv2bb3//vs2xf7www86ffq0kzOy9sQTTyg+Pj7DuMjISI0bN84FGf1r6tSpNv+C88Ybb2QYM2jQIJuOlZCQoCFDhtgUC/f7+uuvdeTIkQzjfv31Vy1cuNAFGf3r+PHj6Rb/kkRHR9v0HHYkwzD06quv2lQUff/993Xp0iUXZOU848aNs+m2fvDBB7p48aILMgIAAAAcy2EFwIULF+qxxx5T5cqVVa5cOY0cOVJz587VuXPnZBiG/P391aZNG7399tvavn27IiIitGrVKo0ZM0b16tXziCE1gKtNnTrVpgJbktdff92J2ViLioqya/7B77//3onZpPTJJ5/8H3v3Hd9Uof9//J2mi7ZQUlo2FChLkA0O9lZBLihwBVmCIA4cCOIAuYgLRXCiCChTXKCoX1my1CsORJTlYMsQaKGMUgo0ze8PflR7oe05Jck5TV7Px4PH9eZ8cvJOk0/GJ2cYrj137pw+/vjjXJcfP35c+/fvN7y+H374wXAtrON2uzVnzhzD9W+//bYP01xs1qxZhmu/+uorbd++3Xdh/sf69eu1adMmQ7WZmZl65513fJzIdzZs2JDnFqL/5Ha7LTscAwAAAHA5vDYA7N27t2bMmKEdO3bI4/EoNDRUTZs21eOPP65Vq1bp2LFjWrFihUaPHq1rr71WTqfTWzcNFFrLli0zVf/TTz/5KMnFVq1aZerkCKdOncp19zlfMLsbbl7Dlg8++MDUurKysgp0ghH41+7du3XgwAHD9Zs3b9aJEyd8mCintWvX+rT+cpi9rW+++cZHSXzPbPbCfF8BAAAQvEK9vUKHw6GmTZtq7Nixatu2LYM+IA9nzpwxVe/PY5SdPHnS9HWOHz9uyYkUjEhPT891WUEOBnv48GGVL1/+ciLBx06fPl2g6xQrVswHaS59W2bk9Rz2NrPZCvK3tguzxy8tzPcVAAAAwcurxwD0eDzyeDxau3atrr/+erlcLt14442aNGmSNmzY4M2bAgJCqVKlTNX7c7hWkDPdlilTxgdJLi0kxNzLV2JiYq7LGjZsaPr2q1evbvo68C+z/RUREeHXE1KZ7Rd/9pfZ2ypdurSPkvie2eeJPx8HAAAAwFu8NgD8448/NHXqVP373/9WQkKCPB6P0tLStHjxYo0aNUqNGzdWfHy8evTooddff12//fabt24aKLQeeughU/X9+/f3UZKLNWrUSEWLFjVcX7VqVYWHh/swUU5XXnmlqfpnn30212Xt27c3tbVy0aJFFRMTY+r24X8JCQlq3bq14fquXbv69TncvXt3w7XFihVThw4dfJgmp86dOysiIsJwfc+ePX2YxrduvPFGRUZGGq7v0aOHD9MAAAAAvuG1AWDVqlV1xx136L333tPBgwe1adMmvfzyy+ratauKFy8uj8ejo0eP6uOPP9a9996r2rVrq3z58urXr59mzpzp97ObAnbQoEEDw7uRRkRE6O677/ZxopwGDhxouPaxxx7zYZKLvfHGG4Zry5cvr4SEhDxrOnfubHh9w4cPN1wLa915552G6hwOh4YMGeLjNDnddNNN+T4vLxgwYICioqJ8nOhvJUqU0L///W9DtZUqVVLHjh19nMh3XC6XevXqZag2MTFR1113nY8TAQAAAN7n1V2A/6l27dq699579fHHHyslJUU//vijnn/+eXXs2FHR0dHyeDw6cOCA5s+fr8GDByspKclXUQBbW7RoUb5b2oSEhGju3Lmmd3u9XI8//rgaNGiQb13Pnj3VpUsXPyT6W/Xq1Q0NbMLCwrRmzZp869566y1DuzE2aNBA9957r5GIsIF27dppxIgR+dY988wzql+/vu8D/UNUVJRmz56t6OjoPOtatmyphx9+2E+p/jZ+/Hg1atQozxqXy6XZs2crNNTrhxT2q3HjxqlJkyZ51hQvXlyzZs1SWFiYn1IBAAAA3uOXaYLD4VDDhg01cuRILVmyRD///LMGDx6c/YXhwrEDgWCUmJio77//PtdjypUuXVqffvqp2rRp4+dk5y1dulQ9evS45C6yERERevDBB/X6669bkOz80ObRRx/NdffdsmXL6tdff1VsbKyh9f38889q3LjxJZc5HA7deOONWr58eYHzwhqPPPKIXn75ZVWqVOmiZTVr1tTMmTM1ePBg/weT1KRJE33++eeX3FU5NjZW9957r+bPn29qd1xviYmJ0cKFCzVkyJCLhpQOh0PXXXedlixZolq1avk9m7dFR0drwYIFuuOOOy7avd/hcKhjx45aunSp6UMPAAAAAHbh8Phh8paSkqLVq1dr5cqVWrVqlXbs2JFjucfjkcPhkNvt9nUUW0tJSbH09p1Op1wul1JTU4P+sbDK3r179dprryk1NVVxcXEaPHiwqlatanUsSefPQPzGG29o06ZNCgkJUYsWLdSnTx+/b5WYm1mzZun999/X6dOnlZiYqAkTJhT4YP2nT5/WY489po0bNyosLEzNmjXTY489xlnNLeJyueR0OuV2uwt0xuYLsrKy9M0332jbtm1yOByqVauWrrrqKjkcDi+mLbgdO3Zo7dq1On36tMqUKaN27dr5dbffvKSlpemLL77QkSNHVLJkSTVu3Fhly5a1OpZPXLivycnJio6OVosWLVSxYkWrY+XgrZ7A5eFzk33QE/ZAT9gD/WAf9IQ9BGpPxMfHm76OTwaAJ0+e1JdffqlVq1Zp5cqV2rJlS/YWfv97c4mJiWrTpo3atm2rvn37ejtKocIAEBcE6otUYUNP2AP9YB/0hD3QE/ZAP9gHPWEP9IQ90A/2QU/YQ6D2REEGgF47aM+FrftWrVql9evX53iC/3PoV6ZMGbVp0yZ76Fe5cmVvRQAAAAAAAADwP7w2AOzQoUP2blT/HPiVKFFCrVu3Vtu2bdWmTRvVrFnTWzcJAAAAAAAAIB9ePW2fx+NRsWLF1LJlS7Vt21Zt27ZV3bp1vXkTAAAAAAAAAEzw2gBwwoQJatOmjRo1amSbkwIAAAAAAAAAwc5rA8BRo0Z5a1UAAAAAAAAAvIRN9QAAAAAAAIAAxgAQAAAAAAAACGBePQnIBZmZmVq3bp02b96s1NRUZWRkGLre2LFjfREHAAAAAAAACFpeHQBmZWXp+eef14svvqiUlBTT12cACAAAAAAAAHiX13YB9ng86tmzp0aPHq2UlBR5PB5T/wBfy8rK0ooVK9S3b19VrVpVFSpU0NVXX61Jkybp0KFDVsfTSy+9pAoVKighIUGhoaFyOByKjIzUfffdZ3U0HTx4UIMHD87Ol5CQoCpVqmjUqFFKS0uzNJvH49GqVavUv39/VatWTRUqVNBVV12liRMn6uDBg6bX991336lq1apKSEhQXFycHA6H4uLiVKdOHe3atcsH98A6W7ZsUYMGDbIf0wv/mjZtqv3791ua7dy5c+rYsWOOfggNDVW5cuU0bdo00+tLTk7WnXfeqYoVK2bfz8qVK+vBBx/UsWPHvH8HAsiePXs0fvx4NWzYUGXLllVCQoKGDBmi7777zvS6srKy9Prrr6tOnToqWbKkEhISVKZMGd14443asGGDD9Kb89133+m6665T6dKllZCQoJIlS6pBgwaaMWOGsrKyLM2Wnp6uuXPn6rrrrlNsbKyKFi2qZs2aaf78+Tp9+rSl2QDArn744QfdeeeduuKKK1ShQgU1aNBA48aN0+7du62OFlQOHjyoiRMn6qqrrlKFChVUrVo1DRgwQKtXr2YWAPiRw+Oljps9e7YGDhwoSXI6nerRo4c6dOig8uXLKyIiwtA6WrVq5Y0ohVZBtpr0JqfTKZfLpdTUVLndbkuzeFt6erruuOMOLVu27JLLo6Oj9fbbb6tt27Z+TnZe/fr18xy4REZGatu2bYqMjPRjqvM+//xzDRo0KNcvv5GRkVq8eLHq1Knj52TS6dOndeedd2rx4sWXXB4VFaXp06erY8eOhtY3fPhwzZs3L8+aZ599VoMHDzad1W4mTJigSZMm5VnzyiuvqHfv3n5K9Ldt27apadOmedYkJSUZHkB98cUX6tevX66vaxEREfrkk0/UqFEj01kD3XvvvacHH3xQ586du+Tyvn37auLEiQoNzX+HgrS0NLVo0UL79u3Ltebuu+/WE088UeC8l2PkyJGaPXt2rsuTkpK0Zs0aS16Hd+7cqV69euX6I0TVqlX1/vvvq2LFin5OFtwC+XNTYeNyueR0OuV2u5Wammp1nKBlp55wu9165JFHNGvWrEsuDw0N1aRJk3Trrbf6N5gf2K0fli9friFDhig9Pf2Syzt37qw33nhDRYoU8XMy37NTTwQzu/WEt8THx5u+jtcGgG3bts3+YLx06VK1bNnSG6sNKgwAfcPj8WjAgAFasmRJnnURERH67LPP1KBBAz8lO69Fixb67bff8q2LiYnx+xZoP//8szp27JjvL3MRERH65ZdfVKJECT8lO/+43n777frss8/yrAsPD9fHH3+sq666Ks+6mTNnatSoUYZue/ny5X5/nnjTJ598YniIuWbNGtWuXdvHiXIqWbKkoV+DmzZtqk8++STPmq1bt6pNmzb5br0VFhamDRs2qFSpUqayBrKlS5eqf//++T4WQ4YM0TPPPJPv+po0aWJoi4snnnhCd999t9GYXvHcc8/phRdeyLeuVq1a+vLLL/2Q6G9Hjx5V+/bttXfv3jzrKleurC+++EKxsbF+SoZA/dxUGAXql7vCxk498fjjj2vq1Kn51s2aNUudO3f2QyL/sVM/fP/997rpppty/SHxgm7dumnatGlyOBx+SuYfduqJYGannvCmggwAvbYL8MaNG+VwODR48GCGf7CVb7/9Nt/hnySdOXPG0JdYbzp27Jih4Z90fuuZ/IYd3jZ8+HBDg5gzZ87o0Ucf9UOiv/3444/5Dv8k6ezZs3r66afzrTOTv2fPnoZr7ejee+81XHvLLbf4MMnF+vXrZ3hXkLVr1+ZbM3z4cEO7bp47d04PPfSQodsNBllZWfrPf/5j6LGYMWNGvoO9RYsWGd7d6rnnnjNU5y1ZWVl6+eWXDdVu3bpVX3/9tY8T5TRjxox8h3+StGvXLs2cOdMPiQDA3v7880+9+eabhmrHjRtn+SEeAtlTTz2V7/BPOv854aeffvJDIiC4eW0AeOrUKUnKd7ctwN9y2/T/UtasWaMdO3b4Lsz/6NWrl6n6kSNH+ijJxVJTU7V582bD9bnthusrZh7XtWvX6vfff891+bZt20z9Knf8+HHDtXazf/9+U8cL8/fxMXPbTT83eW0plpaWZuq4citWrOBLwP/33//+Vzt37jRU6/F4NGfOnDxrJk6caPi209PT9eGHHxquv1zTpk0z9OXkgieffNKHaXJyu935/m3/afbs2TyHAQS9uXPnGv4xcffu3X7fsjtY/Pbbb6aOF8yPWIDveW0AWLZsWUnigydsZ/369abq/Xkg+l9//dVUvT8HT6tWrTJVf+bMGR05csRHaS5m9nHNq/7FF180ffvr1q0zfR07KMiHqx9//NEHSS7N7FEpVq5cmeuytWvXmlrfuXPnDG1pFQy82V/S+a0xzDA7CL4cZl/rtm/f7qMkF9u3b5+pIfy+fft0+PBhHyYCAPszuyWZ2fc8GOPtzxIALp/XBoAXdvvduHGjt1YJeIWZLTuk87uM+oudz3p15swZ09fJ7eC+vmD2cc2rviBn0CysX7JPnjxp+jpHjx71QRLvyMzMzHVZRkaG6fVd2Jo92HmzvyTzPw7683U4r+fQpfjzh06z2STzjx0ABBqz7yH+fM8JJt7+LAHg8nltAHjvvfcqJCREs2bNKtAXTMBXKlSoYKo+MTHRR0kuZvZg7WFhYT5KcrF69eqZqnc4HCpTpoyP0lzM7Nku86q//vrrTd9+8+bNTV/HDoyeEfmf7Hxohwtbn19KQc5MXaVKlcuJEzC82V+SVKxYMVPrq1atmqn6y1G5cmVT9S6Xy0dJLlaqVClTr/uRkZFKSEjwYSIAsD9vv4ehYHgcAPvx2gCwYcOGeuqpp3T48GF169YtoM6ugsKtd+/ehmsTExN17bXX+jBNTi+99JKp+ptuusk3QS6hdu3aps7qW6dOHYWGhvowUU5mjp9Yrlw5tWjRItflZk904XQ6C+2ZNtu1a2fqDGsRERGKiYnxYaKc8hroXcoHH3yQ67LKlSurdOnShtdVs2ZNRUZGmrr9QHXjjTcqOjracH1+r7NmTpzjcDh0//33G66/XEbP/n3BgAEDfJTkYjExMfrXv/5luP6mm27iOQwg6Jn57B8VFWXqdRbGtWzZ0tTGAWYeNwAFY3oA+NVXX+X679prr9Wtt96q1atXq3r16hoxYoQWLFigNWvW5Hm9C/8AX7j55psNDxXuvvtuhYR4bS6er3bt2ik8PNxwvdmB4eUy8yX8iSee8GGSi3Xt2lXly5c3VHvnnXfmO5y8+uqrDd/2XXfdZbjWjm688UbDtSNGjPBhkostWrTIcG1UVFS+HyzN5B87dqzh2kAXExOjQYMGGaqtU6dOngN2SXrkkUcMb8nWsmVL01sMXo5SpUqpcePGhmojIyM1bNgwHyfK6c4775TT6cy3LjQ0VEOHDvVDIgCwt2bNmql+/fqGagcMGODX95xgEhoamufJ2v6pYsWK6tKli48TAXB4TB6ELCQkxNDWIx6Px9RWJg6Ho0DHugkkKSkplt6+0+mUy+VSamqqqTOiFgabNm1Sjx498jyW2YABAzRx4kRTz1tv+PPPP9W4ceN8jwc4Y8YMde3a1U+p/jZgwIB8z/A7fPhwPfbYY35K9LetW7eqe/fuefbOrbfeqpdeesnQ45qUlKQTJ07kW2PmjGZ2Va9ePR04cCDPmvr16+uLL77wU6K/jRgxIt8znzocDu3evVtRUVH5rm/o0KH66KOP8qy56667NH78eFM5A925c+d02223afny5bnWVKxYUYsWLTJ0qIWVK1fq1ltvzfMYeuXLl9f3339v6ocRb0hPT1eTJk3yPLan0+nUokWLdM011/gx2Xnz58/X8OHDc/3bOZ1Ovfbaa+rRo4efkwW3QP7cVNi4XC45nU653W72QrKQnXpi//796tatm3bv3p1rTfv27TV79my/v+f4mp36ISsrSw888IDefffdXGsSEhK0cOFCXXHFFX5M5h926olgZqee8Kb4+HjT1ynQpk4ejyfff0br/vc6gC/UqVNHy5YtU8+ePS96k69evbomT55syfBPOv8FeuPGjSpevPgll0dGRmrhwoWWDP8kafbs2XrooYcuuRtofHy8Xn75ZUuGf5JUq1YtLVu2TLfccosiIiJyLKtatapeeOEFw8M/SdqxY4dq1aqV6/L27dsHxPBPkn755Zdct9pyOBzq0aOHJcM/SZo0aZLGjBmT6+MWGxtrePgnSW+++aZGjx6tokWLXrQsLi5OEydOZPh3CWFhYZo9e7bGjRt30YAvJiZGAwcO1NKlSw0fZ7Vdu3ZaunSpkpKSLloWGhqqLl26aN26dZZ8EYuKitL69evVsWPHS25tV7NmTa1atcqS4Z90/oeMBQsWXLJnW7durY8++ojhHwD8Q7ly5bRkyRINGjToos+w5cqV09ixYzVnzpyAG/7ZTUhIiF5++WW98MILqlq1ao5lkZGRuuWWW7Rs2bKAHP4BdmR6C0Bf7ub3n//8x2frLgzYAtA/jhw5op9//llnzpxRuXLlVLduXUsGf5eSkpKiUaNG6eDBg0pISNCECRP8emKN/HzxxRdat26dQkJC1K5dOzVp0sTqSNlSU1O1YcMGZWRkqGzZsqpXr95lPa6PPfaY1qxZo7CwMPXo0UP33nuvF9Pay6RJk7Rq1SqFhITo5ptv1sCBA62OlG358uWaOHGi0tPTVa1aNb3++uuGB3+Xsnr1an333XdyOBxq3bq1ZQOdwsbtdmv9+vU6cuSISpcurRo1alzW47B3714tXLhQJ06cUFJSkm655Ra/HkM0L2fPntX8+fP1559/KjY2Vj179jR9bEpf2rlzpw4cOCCn06maNWv69aQkyClYPjcVBoG6dUdhY9eeSEtL0/r165WWlqb4+Hg1btzY0KEVCiu79oPH49HPP/+sv/76S5GRkWrQoEHAv4fZtSeCjV174nIVZAtA0wNA+A4DQFwQqC9ShQ09YQ/0g33QE/ZAT9gD/WAf9IQ90BP2QD/YBz1hD4HaE37bBRgAAAAAAABA4cAAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgXjvlXkHPpORwOFS0aFHFxcWpXr16atOmjfr376/Y2FhvRQMAAAAAAACClte2APR4PAX6l5WVpePHj2vXrl365JNP9MADD6hChQqaMWOGt6IBAAAAAAAAQctrWwC2bNlSDodDJ0+e1E8//ZR9eWxsrCpXrqzo6GidOnVKu3bt0vHjxyWd3/qvYcOGioyM1JEjR/THH38oKytLaWlpGjp0qNLT03Xfffd5KyIAAAAAAAAQdLy2BeCaNWv02muv6cSJE5Kkvn37av369UpNTdVPP/2kr7/+Wj/99JNSU1O1fv169enTRx6PRydOnNCbb76prVu36siRI3r66acVHh4uj8ejUaNGae/evd6KCAAAAAAAAAQdrw0Ajx07pi5dumjHjh2aNm2a5syZowYNGlyytkGDBpo7d67efPNNbdu2Tf/61790/PhxxcbG6tFHH9W7774rSTp37pzefPNNb0UEsqWlpenIkSNyu91WR4FNZWRk6KuvvtK3336rzMxMq+P4VGZmpvbs2aP9+/crKyvL6jgXOXXqlFJSUrzyOLjdbm3atElbt26l/006d+6cjhw5otOnT1sdxecu3Nf09HSrowBAtszMTB05ckSnTp2yOgpQIDyHAWt5bQA4ZcoU7d69W9ddd50GDx5s6DpDhgxRx44dtWvXLk2ZMiX78ptuukktWrSQx+PRypUrvRURQS4jI0Nz5sxRmzZtVLlyZdWsWVNVqlTRgw8+qF9//dXqeLCJd999V5UqVVKFChXUrVs3NW3aVCVLllT16tX11VdfWR3Pq37++Wd16tRJZcuWVePGjVW/fn2VLVtWPXr00I4dOyzNdvbsWc2fP18dOnRQbGysEhIS5HK5dN9992nTpk2m17dq1SrVq1dPpUuXVtu2bdWqVSuVLl1aTZo0yXHYClzsxx9/1NChQ1WpUiVVq1ZNUVFR6tSpkz766KOAG6KuX79ed955Z/Z7RGJiojp37qyFCxcG3H0FUHj88ssvGjZsmKpUqaKaNWuqUqVKuu666/Tuu+/q3LlzVscD8rVlyxY98MADSkpKyn4Ot2/fXvPmzdPZs2etjgcEDYfH4/F4Y0UNGzbUL7/8otdff11Dhw41fL2pU6fq7rvvVv369XN8CXvuuef06KOPKj4+XocPH/ZGRNtLSUmx9PadTqdcLpdSU1MD7ovO0aNH1bt371y/6IeGhuqll17SLbfc4udkl+ZyueR0OuV2u5Wammp1nKAxaNAgffbZZ3nWjBgxQo888oifEvnOzJkzNWrUqFyXh4SEaPbs2br++uv9mOq848ePq0+fPvr+++8vuTwkJETPP/+8BgwYYGh948eP16uvvppnzVNPPWXqvStYvPTSS3r66adzXd6+fXu9/fbbKlKkiB9T+cYrr7yiJ598Mtflbdu21cyZMxUVFeXHVJfGe4Q9BPLnpsImkHvirbfe0qOPPqrcvrI1bdpU8+bNU9GiRf2c7GL0hD3YrR/mzp2rkSNH5rqXSZMmTTR//nwVL17cv8H8gJ6wB7v1hLfEx8ebvo7XtgDcvXu3JKlEiRKmrneh/sL1L0hMTJSk7BOGAAXldrvVv3//PLfyyczM1H333ac1a9b4Lxhs5dVXX813+CdJkyZN0tq1a/2QyHf++9//5jn8k6SsrCwNGDDA71sCejweDR48ONfhn3Q+28iRI7V06dJ81/fxxx/nO/yTpDFjxujHH380lTXQzZ8/P8/hnyStWLFC999/v58S+c7777+f5/BPOr8VKScmA+BP//d//6dHHnkk1+GfJK1du1ZDhgzJswawyvLly/Xggw/meYiZdevWadCgQTyHAT/w2gDwwubnu3btMnW9C/X/u/m60+mUJEVHR3shHYLZqlWr8hwmXJCVlaXnn3/eD4lgR88++6zh2oEDB/owie8Z3YIxKytLDz/8sI/T5LR27VrDg/gJEybk+2HRTP4777zTcG2gy8zM1HPPPWeo9uOPPy7Uh1Fwu92aMGGCodpPPvlEW7Zs8XEiADj/g5jRzyYrV67UDz/84ONEgDlmnsNff/21vv76ax8nAuC1AWClSpXk8Xg0e/Zsw5u3ZmZmas6cOdnX/6cLu/0WZLNG4J8uPMeMWLduHV/ugtCWLVtMHUPn6NGjhfbEIMnJyfr9998N1//3v//164lBZs+ebbh2y5YtWr9+fa7L//rrL1Ob+e/Zs4fdM/6/lStX6sCBA4brzbzO2s2qVau0b98+w/VmnqMAUFDfffed/vjjD8P1hfl1GIHp559/1ubNmw3X8/4K+F6ot1bUpUsXbdmyRb/++qsGDRqk6dOnKzw8PNf6s2fPavDgwdq6dascDof+9a9/5Vi+YcMGSVK5cuW8FdH2Lmz1aPXtW53D28y88UjS1q1bVbduXR+lMS/QHg87mj9/vunrbNy4UU2aNPFBGt9at26dqXq3260DBw5kH5bB18wO4Ldu3aqrr776kss+//xz07f/yy+/FMrH1du2bt1qqn7Lli2F9rWqsN9XO2UJNoH6uamwC5THw+yW1Zs3b7b8vtMT9mPlY1HY31+9gZ6wn2B/LLw2ABwxYoSmT5+uo0ePat68efrmm2901113qU2bNkpKSlJUVJTS09O1Y8cOrV69Wm+88Ub27r8lSpTQiBEjsteVlZWlxYsXy+Fw6Nprr/VWRNtzuVxWR5AkFStWzOoIloqKirLNY3HhwLHwrYK8EdjpeWJGRESE6etER0fb9r5GRkbmmi2vH6FyY+f76k9m/3YhISGF9u9mtifs9LpspyzBLNg/N9lJIPWE2dcmh8Nhm/tOT9iD1f0QGRlp+jp2eQ57Gz1hD1b3hB14bQBYokQJffTRR+rcubPS0tK0a9eufA8y7/F4FBMTo48//lhxcXHZl69du1ZxcXEqUaKEevTo4a2Itmf1GWmcTqeKFSumEydOBNRucElJSaZ27ypTpozlj0WxYsWyz1R04sQJS7MEg86dO+uNN94wdZ2kpCTLnycFUatWLVP1DodDxYsX99t9TUpKMrXLU9myZXPN1rRpU9O3X7ly5UL5uHpb+fLlTdVXqlSp0P7dCuN95T3CHgL1c1NhFIg9YXYvKDu8f9ET9mCXfjD7HK5SpYrlz2FvoyfswS494W0FGWZ6bQAoSS1atNAPP/ygoUOHGjqIZ8uWLfXmm2+qRo0aOS5v3ry56d02A4FdXhTcbrdtsnhDnz599OWXXxqqveKKK9SgQQNb3X87ZQlUV199dfabghExMTEKCwsrlI9NmTJlVLFiRf3555+G6hs2bCiHw+G3+9qnTx8tWbLEUG2lSpXUtGnTXLNVrVpV0dHROnXqlKH1lSxZUuHh4YXycfW26667TnFxcTp69Kih+r59+xbav1uHDh0UHx+vlJQUQ/V2u692yhKsAu1zU2EXKI9FixYtVL58ecM/YtvptYmesA8rH4errrpKVapU0c6dOw3V2+k57G30hH0E++PgtZOAXFCzZk19+eWXWr9+vR5//HFdf/31qlu3rpKSklS3bl1df/31evzxx/Xjjz9qzZo1Fw3/AG/r3Lmzqlevbqh2+PDhcjgcPk4EOxowYIDh2okTJ/owie89/vjjhmvNnB3ZG9q3b686deoYqr3//vsVEpL325iZswBzFvC/RUZG6p577jFU26JFCzVq1MjHiXwnIiJCw4YNM1TbrFkzjhEJwC+cTqceeOABQ7X169dXmzZtfBsIMCkkJETDhw83VFu7dm117NjRx4kAeHULwH9q0KCBGjRo4KvVA4aFh4dr/vz56t69u/bs2ZNr3aOPPqqbbrrJj8lgJ88995x+/PFHbdy4Mc+6rl27FvpDE3Tr1k0///yzpkyZkmfds88+6/fXcafTqXnz5ql79+7avn17rnUPPPCA+vbtm+/67rrrLn3//ff5nhDk9ttvV+fOnU3nDWTDhg3Tnj178jyzZN26dTVjxoxC/8PJ3XffrT179mjmzJm51tSpU0dvvfVWob+vAAqP/v37a/fu3Xrttddyralevbrmzp2b7w9igBV69eql3bt3a9KkSbnWVKlSRe+8845CQ302mgDw//FOgaCQmJio5cuX6/7771d8fHyOZa1bt9b777+vBx980KJ0sIuVK1dq0KBBlzwpSHh4uJ544gnNmDHDgmTeN27cOE2bNk0VKlS4aFm1atW0YMECDR482IJk54/rt3TpUo0cOVKlSpXKsaxFixaaN2+eRo8ebXh9s2bN0tixYxUVFXXRsmLFiumll17ShAkTLjt3oAkJCdELL7ygadOmXbTVW4UKFTRmzBh9+umnOY7hW1g5HA4999xzmj59uq666qocy8qXL6/Ro0fr008/VYkSJSxKCCAYORwO/ec//9GcOXPUrFmzHMtKly6tUaNGacmSJSpdurRFCYH8PfLII5o/f75atmyZ4/KSJUvqwQcf1LJly0wfLxBAwTg8Ho/H6hA4z+jxh3zlwllxUlNTA3rf+LNnz2rnzp06c+aMSpcufdGAwQ5cLlf2MekC7WC4hcXatWv12WefKTo6WrfccouqVatmdSSf2bt3r3744Qc5nU5de+21tuqJc+fOKSUlRWfPnlXJkiVVpEiRy1rf1q1btWLFCjkcDt14442qXLmyl5IGvv379+vIkSMqW7bsRT+kBJr9+/crOTlZ0dHRqlKlSoHOFO5LvEfYQ7B8bioMgqUn/vrrLx06dEhFihRRUlKS7baYoifswc79cPDgQR06dEiRkZGqUqWKwsLCrI7kU/SEPdi5Jy5HQT6PMwC0EQaAuCBQX6QKG3rCHugH+6An7IGesAf6wT7oCXugJ+yBfrAPesIeArUnCjIANP2z0aBBgySd3yT9rbfeuujygvrf9QEAAAAAAAC4fKYHgLNmzco+APY/B3b/vLygGAACAAAAAAAA3lWgA0d4PJ5LDvsuZ29izqoHAAAAAAAAeJ/pAeCuXbtMXQ4AAAAAAADAOqYHgImJiaYuBwAAAAAAAGCdEKsDAAAAAAAAAPAdBoAAAAAAAABAAGMACAAAAAAAAASwAp0FGADsJjMzU7t27dLp06dVpkwZJSQkXNb6Tpw4of3798vlcsnlcikiIsJLSS9fWlqaFixYoNTUVDVp0kTNmze/rPX98ccf+uKLLxQaGqrOnTurfPnyXkp6+TIzM/X777/rzJkzKlWqlMLDw62O5DMZGRn65ptvdOzYMdWsWVO1a9e2OhJsKC0tTXv37lVoaKgqVqxodRwAAADbOn36tPbv3y9JtvqOY5UCDQCdTqe3c8jhcCgzM9Pr6wUQ2I4dO6Y333xTc+fO1aFDh7Ivb926te666y61bdvW1Po2b96sKVOm6NNPP9XZs2clSTExMerZs6fuueceS094tHXrVvXp00f79u3LcXloaKhuvvlmTZkyxdT6pkyZoueff17p6enZl40ZM0axsbF69tln1bNnT6/kLogTJ05o2rRpmj17tg4ePJh9eatWrTR06FB16NDBsmzeduDAAQ0bNkzffPONsrKysi8vXry4Bg8erIcfftjCdLCLP/74Q6+99po+/vhjZWRkSJKKFCmi7t2765577lHVqlUtTggAAGAPe/fu1ZQpU/T+++8rLS1NkhQWFqYuXbro7rvvVr169SxOaA2Hx+PxmL1SSEiIHA6HCnDV3IM4HHK73V5bX2GUkpJi6e07nU65XC6lpqYG/WNhNZfLJafTKbfbrdTUVKvj2Nb+/ft18803a+fOnbnWPPzwwxo5cqSh9f3f//2fhg4dmj34+1+xsbGaP3++rrrqqgLlvRzLly9Xnz598qwpX768NmzYYGh9t912mz7//PM8a+688049+eSThjN6y8GDB3XzzTdr27ZtudY8+OCDevTRR/2Yyjc2bdqk66+/PtfnnCQ1adJEixcv9mOq3PE+YY2VK1dq4MCBOn369CWXR0VFae7cuWrZsqWfkwU3+sE++NxkD/SEPdAP9kFPWOOnn35Sr169cn3+h4WFacqUKbrpppv8nMy74uPjTV+nwMcAzG/453A45HA4Crp6AMhTZmam+vTpk+fwT5Kee+45ffjhh/mub9OmTXkO/yTp+PHj6tOnT44t0vzh9OnT6tu3b751+/btU9euXfOtmzJlSr7DP0maOnWqVqxYYSijt7jdbvXp0yfP4Z8kTZ48WfPnz/dTKt/IzMzUjTfemOdzTpLWrVunYcOG+SkV7GbHjh0aNGhQrsM/SUpPT1f//v21e/du/wUDAACwmeTkZN166615Dr/PnTunu+++2/CGE4GkQAPArKysfP9dGBAuWrTIUD0TcQBmLFu2TFu2bDFU++KLL+b7o8Vrr72W7yBGOr/L8cyZMw3drrcMGzbM8BbXa9euzfd+PP/884Zve/jw4YZrvWHlypXauHGjodoXX3wxxy6zhc1LL72UY/frvCxcuNDQ8xOB54033jD0PDl16pSmTZvmh0QAAAD2NHv2bB05ciTfuszMTL366qt+SGQvnAUYQKE0b948w7Xbtm3Td999l+vyY8eO6bPPPjN12948BEJ+li5daqp+7NixuS777bffDA+dpPO74/pz8GTmcd29e7e++eYbH6bxrdmzZxuuzczM1BtvvOHDNLCj06dPG9qC+YL33nuPQTEAAAhKHo/H1HeJxYsXW34YNn9jAAigUNq+fbvX6v/880+dO3fO8LoOHz6sEydOmLr9y2H2C/1PP/2U67IvvvjC9O1v3rzZ9HUKKr9dfy+33k6OHj1qqv7nn3/2TRDY1l9//WVqYH/y5EklJyf7MBEAAIA9/fOMv0a43e6gO3wKA0AAQSGvY5IW5Hildj7GaV7ZQkLMv+yHhYVdThxTzP5dC3J/Ciun02l1BPhZoL02AQAA+EpBPgMF03cJiQEggEKqdu3apuqvvPLKXJdVrlxZRYoUMbyuihUrqmjRoqZu/3JERkaaqm/dunWuy2688UbTt1+rVi3T1ykos4+r2Xo7KVWqlKn6a6+91kdJYFflypVT8eLFDdfHx8erZMmSvgsEAABgU0WKFFGVKlUM10dERCgpKcmHieyHASCAQmnAgAGGa+vWrat69erlujwmJkbdu3c3vL7+/fv7dSubnj17Gq51OBwaNWpUrssTExMVGxtreH2VKlXy65ZnZh7XWrVqqXHjxj5M41t33XWX4drw8HANHDjQh2lgR+Hh4erdu7fh+j59+ig0NNSHiQAAAOzLzHeJbt26mfpeFAgYAAIolFq1amVoiyiHw6GHH34434HdsGHDFBMTk+/6ypYtq/79+xvO6Q0TJ040PITr0qVLvrVPPfWU4dv294knmjVrphYtWhiqNfK42tntt98ul8tlqHbIkCFBt4sCzhs6dKih50l8fLwGDx7sh0QAAAD21LdvX1WoUCHfuqioKN13331+SGQvfJsAUCiFhIRo1qxZatSoUZ41kyZNUseOHfNdX1JSkubNm5fnrr1ly5bVBx98YHho4y1Op1NLly7NdwBUv359vfXWW/mur1evXrrjjjvyrXvqqaf8voWdw+HQ22+/rSZNmuRZ89xzz6lTp05+TOZ9ISEhWrlyZb67k3fp0kXjxo3zTyjYTrly5fTee+8pLi4u15qEhAS99957Kl26tB+TAQAA2EuxYsX0wQcfqHz58rnWREdHa+7cuapevbofk9kDA0AAhVZcXJw++eQTTZo0Kcex4IoUKaLevXtrxYoV6tevn+H1NWvWTF9//bXuvfdelShRIvvycuXK6dFHH9Xq1atVo0YNr94Ho+rXr6/NmzerUaNGF231FhMTo8cee8zUGX6ffvppvfPOO5ccGCQmJmrJkiUaOnToZecuiOLFi2vRokWaPHmy6tatm315ZGSkbrnlFn3xxRcaNGiQJdm8rUKFCtq4caNuueWWi45DmZiYqNdff11vv/22RelgFw0bNtSXX36pBx98UAkJCdmXly1bVg899JDWrFmT52EOAAAAgkXVqlW1evVqjRkzRhUrVsy+PC4uTvfcc4++/vprtWzZ0sKE1nF4PB6PL1YcEhIih8Ohjz/+WP/61798cRMBJyUlxdLbdzqdcrlcSk1NldvttjRLsHO5XHI6nXK73UpNTbU6TqGRlpam06dPq3jx4pd95tqsrCydOHEie6ubrKwsb0T0mh07dujw4cOqVavWZR+74uzZs9q4caNCQ0NVp04d251tNjQ0VGfPnlWxYsWUlpZmdRyfOnjwoI4ePapKlSopKirK6jgX4X3Cehdei5xOp4oVK6bjx49bnCh40Q/2wecme6An7IF+sA96wnoejyd744lixYrpxIkTFifynvj4eNPX8fmRogvz8ZkAFC4xMTGGjuNnREhIiEqUKJH9pm03SUlJXjtrVXh4uK1PplG0aNHsD7KBrnTp0uzGiTyFhITk+HIHAACAS3M4HHxu+ocCDQCNbh3i8XjUrVs3Q7UOh0OZmZkFiQMAAAAAAAAgFwUaAF7YjDKvvYf/ueWfj/YyBgAAAAAAAJCPAu8CnN9Qj6EfAAAAAAAAYL0CDQDtdjB8AAAAAAAAAJcWYnUAAAAAAAAAAL7DABAAAAAAAAAIYAwAAQAAAAAAgADGABAAAAAAAAAIYAU+CzAABLIdO3Zo165dio2NVYUKFVS6dGmrI/nMzp07tX37doWEhOiKK65QuXLlrI4EWCYrK0sbNmxQcnKyoqOj1aBBA8XExFgdK9uePXu0du1ahYaGqkaNGoqNjbU6UraTJ09qw4YNSk9PV6lSpVSvXj2FhPBbsxF//vmnfv/9d3k8HtWoUUOJiYlWRwICxqlTp7RhwwalpaUpPj5eDRo0kNPptDoWAPgdA0AA+IdVq1bppZde0rfffpt9mcPhUIcOHTRy5Eg1aNDAwnTetWbNGr344otau3Zt9mUOh0Pt27fXyJEj1bBhQwvTAf7ldrs1ffp0zZgxQ3v27Mm+PCYmRv/+9781cuRIJSQkWJbvm2++0Ysvvqgvv/wyx+Vt2rTRgw8+qGuuucaiZNKhQ4f0wgsv6IMPPlB6enr25ZUrV9aQIUN0++23MwjMxbfffqvJkydrzZo1OS5v1aqVhg8frmbNmlkTDAgAR44c0aRJk/Tee+/p5MmT2ZdXqFBBt99+u4YOHarQUL4OAwgeDo/H47E6BM5LSUmx9PadTqdcLpdSU1PldrstzRLsXC6XnE6n3G63UlNTrY4TNN5++209/PDDuS4PDw/XW2+9peuvv96PqXxj1qxZGjVqlHJ7CwgLC9OMGTPUqVMnPye7GP1gH4H6PpGZmanBgwfr888/z7WmYsWKWrRokSpUqODHZOe99957uv/++5WVlXXJ5U6nU6+//rpuvvlmPyeTdu/erW7dumn//v251nTr1k1Tp04NuC1uLrcfFi5cqHvuuSfX64aEhOjVV1/Vv//978uNGvB4n7AHO71H/PXXX/rXv/6l3bt351rTsWNHzZo1S2FhYf4L5gf0g33YqSeCWaD2RHx8vOnr8HMsAOj8VhiPPPJInjVnz57VkCFDtGvXLj+l8o3vv/8+z+GfJJ07d05Dhw7Vjh07/JgMsMZzzz2X5/BPOr+L5oABA3IdwvnKL7/8ogceeCDP23W73Ro2bJi2bt3qx2Tnb7dfv355Dv8kadGiRXrppZf8E6qQ2LJli4YNG5bnF8KsrCzdf//92rhxox+TAYWfx+PRbbfdlufwT5KWL1+up59+2j+hAMAGGAACgKQpU6bkORC7ICMjQ2+99ZYfEvnO66+/bvi+zpgxww+JAOucOnXKcE9v2rRJX331lY8T5TR16lRDWw2cO3dOb775ph8S/W3FihX67bffDNVOmzZNGRkZPk5UeEydOlWZmZn51mVmZvr9cQUKu7Vr1+qnn34yVDtz5swcuwcDQCBjAAgg6KWkpGj58uWG69977z2/bwXkLUePHtXSpUsN17///vvssoCAtnjxYlNf/ubPn+/DNDmlpaXp008/NVz/0Ucf+XXI9u677xquPXr0qJYtW+bDNIXH6dOntWjRIsP1ixYt0qlTp3wXCAgwZl6b0tPTTb3OAkBhxgAQQNDbv3+/oS3iLjh+/LiOHz/uw0S+s2/fPlPDy5MnT+rYsWO+CwRY7M8///Rp/eU4dOiQzp49a7g+IyNDycnJPkyU0z9PlmKEP/92dnb48GFTg9qzZ8/q0KFDPkwEBBZemwDg0hgAAgh6BTkDXGE9YHR4eLjp6xTW+woYYbb//dkPdn9tMvt6wmvJebwOA77FaxMAXBoDQABBLykpSbGxsYbra9SooZiYGB8m8p3KlSurePHihuurVq2qokWL+i4QYLFGjRr5tP5ylCtXTqVKlTJVX7JkSR8myqlhw4Y+rQ9UpUqVUtmyZQ3Xly5d2lQ9EOx4bQKAS2MACCDoRUZGqlevXobrb7vtNt+F8bGIiAjdeuuthutvu+02ORwOHyYCrNWsWTNVrVrVcH3//v19mCan0NBQ9evXz3D9gAEDFBLiv492AwYMMFxbu3ZtNWnSxIdpCo+QkBBTz6P+/fvL6XT6MBEQWPr162f4s0ulSpXUunVr3wYCAJtgAAgAkoYNG2Zoy5kaNWqod+/efkjkO3fddZehrYqqV6+uPn36+CERYB2Hw6Fx48YZ+rI4cOBAValSxQ+p/jZ48GCVL18+37pKlSpp0KBBfkj0t5o1axr6QSEkJERjx47lx4R/uP3225WYmJhvXcWKFXX77bf7IREQOCpWrKghQ4YYqh07dqxffzgBACvxagcAOr+L1YIFC/LczapWrVr64IMPFB0d7cdk3nfhvpYrVy7Xmpo1a+qDDz4otLs6A2Zcd911evXVV/M8DlSvXr30zDPP+DHVeSVKlNCCBQtUqVKlXGuSkpL04YcfmjqUgbdMnDhR3bt3z3V5eHi43njjDbVt29aPqeyvePHi+vDDD/McKFeqVEkffvih4uLi/JgMCAzjx4/Pcwtqp9OpyZMnq0uXLn5MBQDWcnjMnPoSPpWSkmLp7TudTrlcLqWmpsrtdluaJdi5XC45nU653W6lpqZaHSeonDx5Uu+//77mzZunHTt2KCQkRFdeeaX69++vbt26KSIiwuqIXpOWlqYPPvhAc+fO1fbt2xUSEqLatWtn39fIyEirI0qiH+wk0N8ndu/erdmzZ+ujjz5ScnKyoqOj1bJlSw0aNEhNmza1dAu2U6dOaeHChZozZ47++OMPSed3q+3Tp49uvvlmRUVFWZbN4/Hov//9r95++219/fXXSk9PV6lSpXTzzTdrwIABqlixomXZfMkb/ZCenq6FCxdq7ty5+u233ySd3/q6f//+6t69e6H/wclfeJ+wBzu+R3z77beaOXOm1qxZo7S0NMXHx6tbt2667bbb/L5Ft7/QD/Zhx54IRoHaE/Hx8aavwwDQRhgA4oJAfZEqbOgJe6Af7IOesAd6wh7oB/ugJ+yBnrAH+sE+6Al7CNSeKMgAkF2AAQAAAAAAgADGABAAAAAAAAAIYAwAAQAAAAAAgADGABAAAAAAAAAIYAwAAQAAAAAAgADGABAAAAAAAAAIYAwAAQAAAAAAgADGABAAAAAAAAAIYAwAAQAAAAAAgAAWanUAAIA5O3fu1LfffquMjAyVLVtWbdq0UWRkpNWxfGLXrl365JNPlJGRoTJlyqhJkyYqUqSI1bF84uuvv9aHH36o9PR0VaxYUffee69cLpfVsYJOWlqaVq1apeTkZEVHR6t58+YqX7681bEQwLKysjR79mx9//338ng8atKkiQYNGqSQEH6nBwAA3sMAEAAKic2bN+uJJ57QmjVrclweFxengQMHasSIEQoLC7MmnJdt3bpV48aN0+rVq3Nc7nK5dNttt2nkyJEKDw+3KJ13ff7553rwwQd19OjRHJe/9tpraty4sT744APFxMRYlC54pKena8KECZo3b55OnjyZfXlISIg6duyocePGKSkpycKECESjR4/WrFmzdPbs2ezLPvroI40dO1YDBgzQs88+a2E6AAAQSPhpEQAKge+//16dO3e+aPgnSUePHtWkSZPUv39/nTt3zv/hvGzdunXq1KnTRcM/SUpNTdWLL76ovn375vjCXFi98847uu222y4a/kmSx+PRunXr1LBhQ6WlpVmQLnicOnVKPXr00BtvvJFj+Ced3zpr6dKluuGGG7R161aLEiIQ9enTR9OmTbvka9m5c+c0Y8YM9erVy4JkAAAgEDEABACbS0tL08CBA5Wenp5n3YoVKzR58mQ/pfKNU6dOacCAATp16lSedatXr9YLL7zgp1S+ceTIET344IP51qWmpqpnz55+SBS8nnjiCa1bty7PmtTUVA0YMECZmZl+SoVANnPmTC1fvjzfupUrV2r69Ol+SAQAAAIdA0AAsLmPPvpIycnJhmpnzpypjIwMHyfyHTP3ddasWTp9+rSPE/nOE088oaysLEO1P/74o44cOeLjRMHp2LFjevfddw3V7t69W8uWLfNxIgSDF1980XDtyy+/7MMkAAAgWDAABACb+/DDDw3XHjly5JK7zhYWCxYsMFybmpqqVatW+TCNby1evNhUPUMA3/i///s/U0NzM/0IXMqhQ4f0119/mao/cOCADxMBAIBgwAAQAGzu4MGDpurNfLG0G7PZC/N9zW+X7v+1Z88eHyUJbsHUX7CHbdu2mb7O77//7oMkAAAgmDAABACbi4yM9Gm9nURFRZmqL8z31el0mqo3+7eBMcHUX7AHl8tl+jrFixf3fhAAABBUGAACgM1de+21Pq23k2uuucZUfWG+r1WrVjVVf/PNN/soSXBr2rSpqfpmzZr5KAmCxRVXXKGwsDDD9aGhoapXr54PEwEAgGDAABAAbG7gwIGGa9u0aaPKlSv7MI1vmbmvrVq1UlJSkg/T+NaYMWMM18bGxqpDhw4+TBO8GjRoYHi44nQ61a9fPx8nQqALCQlR+/btDde3adNGISF8ZAcAAJeHTxMAYHNXXHGFbr/99nzroqOjNW7cON8H8qEaNWpoyJAh+dZFRUUV+vvarl071a1b11Dtc8895+M0wcvhcOipp55SeHh4vrUjRoxQmTJl/JAKge7FF180tDt5REQEJwACAABewQAQAAqBp59+WoMHD851eUJCgj788EPVqlXLj6l848knn8xzCBgfH68PPvhAV155pR9T+caSJUtUp06dXJc7HA49++yz6t69ux9TBZ9rrrlG8+bNU7FixS653OFwaMSIERo5cqSfkyFQlShRQitXrlRMTEyuNdHR0Vq+fLkSEhL8mAwAAAQqh8fj8VgdAuelpKRYevtOp1Mul0upqalyu92WZgl2LpdLTqdTbrdbqampVscJWnbsid9++00zZ87Ut99+q9OnT6tMmTLq2bOnbr75ZkVHR1sdz6t+//13zZw5U99//332fb3pppvUvXv3gLuvy5cv19NPP60dO3bI7XarSJEi6tixo5544gmVKlXK6njZ7NgT3nTixAm9//77+vjjj5WcnKzo6Gi1bNlSt912m6pUqWJ1vGy8R9iDN/ohMzNTr7zyimbOnKkjR45IkuLi4jRw4EDdf//9Cg0N9WbkgEVP2EOgv0cUFvSDfdAT9hCoPREfH2/6OgwAbYQBIC4I1BepwoaesAf6wT7oCXugJ+yBfrAPesIe6Al7oB/sg56wh0DtiYIMANkFGAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgoVYHAAAAsIv9+/frs88+0+HDhxUdHa1WrVqpUaNGcjgcVkdDgMrIyNCSJUv066+/yuPxqGbNmurUqZOKFClidTQAABBAGAACAICgd+TIEY0aNUr/93//p6ysrOzLJ0yYoDp16mjixIlq1KiRhQkRaDwej6ZOnaqXXnpJR48ezbHM5XLpvvvu0z333MPwGQAAeAW7AAMAgKB25MgRdenSRZ9++mmO4d8FmzZtUrdu3bR27VoL0iFQjR07VmPHjr1o+CdJqampeuKJJ/TYY4/J4/FYkA4AAAQaBoAAACCojR49Wtu2bcuzJiMjQ4MHD1ZGRoafUiGQrVixQlOnTs23bsaMGVq+fLkfEgEAgEDHABAAAAStgwcP6pNPPjFUm5ycrE8//dTHiRAMpk+fbrh2xowZPkwCAACCBQNAAAAQtJYsWaLMzEzD9YsWLfJdGASFEydOaNWqVYbr16xZo9TUVB8mAgAAwYABIAAACFopKSmm6o8cOeKjJAgWlzrmny+uAwAA8E8MAAEAQNCKiYnxaT3wvwryHIqOjvZBEgAAEEwYAAIAgKDVpk0bn9YD/6tEiRKqU6eO4fratWurVKlSPkwEAACCAQNAAAAQtGrWrKmmTZsaqo2MjNStt97q40QIdA6HQwMHDjRcP3DgQDkcDh8mAgAAwYABIAAACGoTJkxQ0aJF86176qmnFBcX54dECHS9evVSq1at8q1r3ry5evfu7YdEAAAg0DEABAAAQe2KK67QokWLlJiYeMnlUVFRmjx5sgYMGODnZAhUYWFhmj17trp27ZprzY033qi5c+cqPDzcj8kAAECgCrU6AAAAgNXq1q2r7777TsuXL9dHH32k5ORkRUdHq2XLlurdu7diY2OtjogAEx0drRkzZmjkyJGaO3eufvvtN0lSjRo11K9fP11xxRUWJwQAAIGEASAAAICk0NBQderUSZ06dbI6CoJIzZo19fTTT1sdAwAABDh2AQYAAAAAAAACGANAAAAAAAAAIIAxAAQAAAAAAAACGANAAAAAAAAAIIAxAAQAAAAAAAACGANAAAAAAAAAIIAxAAQAAAAAAAACWKjVAfwhOTlZ3377rTZu3Kjdu3fr6NGjCg0NVUJCgurXr68uXbqodOnSea7j22+/1ZIlS7Rjxw6dOXNG8fHxatKkiXr27KlixYr56Z4AAAAAAAAA5gT8ADA5OVmDBw+Wx+PJviwqKkpnz57V3r17tXfvXi1btkwPPPCAmjdvfsl1TJ06VYsXL5YkhYSEKCIiQgcOHNAnn3yiL7/8Uk8//bQqVKjgl/sDAAAAAAAAmBHwA8CsrCxJUsOGDdW2bVvVr19fxYoVk9vt1q+//qpp06Zp9+7dmjx5ssqXL69KlSrluP6yZcu0ePFiORwO9enTR127dlVERIR27dqlyZMna8+ePXrqqaf02muvKSwszIJ7CCCY/Pnnn+rVq5d2796trKwsRUREqH///nryySetjgbAxz755BONGjVKJ06ckCS5XC5NmjRJN9xwg8XJAPjawoULNXXqVB05ckTh4eFq1aqVRo8eXaA9kc6dO6clS5ZozZo1Sk9PV3x8vLp166ZGjRrJ4XD4ID0AwA4cnn9uGheATp06pUOHDqlKlSqXXJ6amqr77rtPx48fV7t27XT//fdnLzt37pwGDx6s1NRUde7cWUOHDs1x3cOHD+uee+7RmTNndOedd6pTp06XlTUlJeWyrn+5nE6nXC6XUlNT5Xa7Lc0S7Fwul5xOp9xut1JTU62OE7Ts1hPNmjXTH3/8ccllDodDb775pm666SY/p/I9+sE+7NYTwSIlJUX169fXmTNnLrk8MjJSmzZtUvHixf0bLMjRD/YRyO8TGzZsUI8ePbIH///kcDg0ePBgPfPMM4bXt3z5co0YMUIHDx68aFnDhg31xhtv5Pq9KT/0hD0Ecj8UNvSEPQRqT8THx5u+TsCfBCQ6OjrPNzGXy6VGjRpJknbs2JFj2caNG5WamiqHw6Gbb775ouuWLFlSLVu2lCStWbPGe6EB4H80atQo1+GfJHk8Ht1xxx1asmSJH1MB8LWMjAzVrl071+HfhZqaNWsqIyPDj8kA+NqmTZt0ww03XHL4J51/758+fbqGDx9uaH1LlixRv379Ljn8k6SffvpJN954o/bs2VPgzAAA+wr4AaARFzad/9+p/MaNGyVJFSpUUEJCwiWv26BBA0nS77//zgdvAD6xYMEC/fnnn4ZqBw0a5OM0APypXbt22YczyYvb7Vbnzp39kAiAv/Tv39/QVkPz5s3L80dCSUpLS9O9996b7+tJcnKyRo0aZSonAKBwYAAoafPmzZKkxMTEHJfv3bv3kpf/04VlHo9H+/bt81FCAMHskUceMVybmZnJFslAAMnvS/0/XfjhEkDht2XLFlPfLR5//PE8ly9cuFDHjx83tK5Vq1Zp586dhm8bAFA4BPxJQPLz3Xffafv27ZLO/8r+T0ePHpUkxcXF5Xr9fy7Lb3/yefPmaf78+bku7927t2699dZ8M/vKhYP+xsbGKsAPDWl7ISEh2f/rcrksThO87NITRj+wXzBu3Dj98ssvPkrjf/SDfdilJ4LFxx9/bPo6mzZtyj48CXyLfrCPQHyfmDVrlqn6H374Ic/7vmLFClPr++qrr7IPk2QUPWEPgdgPhRU9YQ/0xN+CegCYnJysKVOmSJKuvvrqi97kLuzSGxERkes6/rksPT09z9s7deqUDh8+nOvy9PR0OZ3OfHP72oUGgfUcDoctnhPBrrD1xPHjxwPyeUM/2Edh64nCasuWLaavs3nzZrVp08YHaZAb+sE+Aul94sKGCEadPXs2z/tu9sfEy/ksQU/YQyD1Q2FHT9gDPRHEA8C0tDQ9+eSTOn78uEqXLq377rvP57cZHR2tkiVL5ro8KirK0rMDORwOhYSEKCsri18oLBYSEiKHwyGPx2Po2E/wjcLaE7GxsQF1pjH6wT4Ka08UVrVr1zZ9nfr16wdU/9sZ/WAfgfg+UaJECVP14eHhefa+2bOEF+SzBD1hD4HYD4UVPWEPgdoTBRlmBuUA8PTp03riiSe0e/duxcXFafz48SpatOhFdZGRkZKU55n3/rksKioqz9vt27ev+vbtm+vylJQUS09LfeE05cePH+fLg8UunKo8KysroE5VXtjYpSdiY2NN/XI/bty4gHre0A/2YZeeCBatW7c2fZ0rrriCPvET+sE+AvF9YsCAAZo5c6bh+quvvjrP+96+fXstWbLE8PpatWpl+m9JT9hDIPZDYUVP2EOg9kR8fLzp6wTdtqhnzpzR+PHj9fvvvys2NlZPPvmkSpcufcnaC8f3y2sT/H8uC/b9yQH4xsSJEw3XhoaGFmhoAMCeatSoYbi2bt26PkwCwJ9q166tChUqGK4fP358nstvvvlmw1sBtmvXTpUrVzZ82wCAwiGoBoBnzpzRk08+qS1btigmJkbjx4/P8431wrI///wz15oLyxwOh8qXL+/dwAAg6aabblKlSpUM1c6bN8+3YQD41YoVKwwdO8jpdGrZsmV+SATAX+bOnavQ0Px32Orfv7+qV6+eZ01MTIxeffXVfHcZK1mypJ5//nlTOQEAhUPQDADPnTunZ555Rhs3blRUVJTGjRuX7y9bF35J//PPP5WSknLJmg0bNkg6/wv9hV2GAcDb1q1bpyuuuCLX5Q6HQzNnzrzobOYACrfIyEht2bIlz88YRYoU0fbt2w0NCgAUHrVr19ayZcsUGxt7yeUOh0N33nmnJk2aZGh9119/vebNm6eyZctecnmTJk30+eefq2LFigXODACwr6D4pJiZmakJEyZow4YNioyM1NixY/P9lUw6PwB0uVxKTU3Vxx9/rCFDhuRYnpycrK+++kpSwY7TAwBmfPXVV9q/f7969eqlHTt2yOPxKCIiQoMHD9aYMWOsjgfAR+Lj47V3714tWbJEw4cPzz4maFxcnF555RUG/0AAq1u3rrZv365PP/1UU6ZMUUpKiiIiItSqVSuNHj1aMTExptbXvn17rV+/XsuWLdOaNWt06tQpJSQkqFu3bmrQoIGP7gUAwA4cngA/HY3b7dbEiRO1du1ahYeHa+zYsaaOkbNs2TJNmTJFDodD/fr1U5cuXRQREaFdu3bpxRdf1O7du1WmTBm99tprCgsLu6ysuW1l6C8XDlKamprKQUotduFApW63O6AOVFrY0BP2QD/YBz1hD/SEPdAP9kFP2AM9YQ/0g33QE/YQqD1RkJOABPwWgL/++qvWrl0rSfJ4PHrhhRfyrJ8zZ06O/3/ddddp165dWrx4sebMmaN33nlHERERSk9PlyQVL15cY8aMuezhHwAAAAAAAOALAT8A/OcGjufOndOxY8dMr+POO+9UvXr1tHjxYu3cuVMZGRkqU6aMrrrqKvXo0SPX43IAAAAAAAAAVgv4AWCdOnX06aefXvZ6rr32Wl177bVeSAQAAAAAAAD4T9CcBRgAAAAAAAAIRgwAAQAAAAAAgADGABAAAAAAAAAIYAwAAQAAAAAAgADGABAAAAAAAAAIYAwAAQAAAAAAgADGABAAgACzYMECtWjRQklJSapataratGmjJUuWWB3LJxYuXJjjvrZu3Vqff/651bF84pVXXlH16tUVERGhsLAwlSpVSm+88YbVsXCZPv30U7Vq1UpJSUlKSkpSy5YttWjRogKtKy0tTbfddpsqVKig0qVLq2zZsrr22mv1448/ejc0/Mrtdmvp0qUaMmSIunTpop49e+qVV15RSkqK1dEAAIWIw+PxeKwOgfOsfhN3Op1yuVxKTU2V2+22NEuwc7lccjqdcrvdSk1NtTpO0KIn7IF+MG7//v1q3759ru8n5cuX14oVK1SiRIkCrd9OPXHgwAF16NBBhw8fvuTysmXLasWKFUpISPBzMu/bsWOHWrZsqbNnz15yeWRkpP773/8qMTHRz8mC2+X2w6FDh9S+fXsdPHjwkstLlSqlFStWqHTp0obW9+qrr2r8+PG5Lq9Vq5a+/PJL0zkLg0B+n/j111912223aefOnRctCw8P1+jRo3XXXXfJ4XBYkC4nO71HBLNA7ofChp6wh0Dtifj4eNPXYQtAAAACwLFjx9S8efM8f0zat2+fmjZtqoyMDD8m874TJ06oefPmuQ7/pPMDwmbNmhX6+3r06FE1a9Ys1+GfJGVkZOiaa67R8ePH/ZgMlyM9PV3NmjXLdfgnnR8QNmvWTGlpafmub9asWXkO/yRp69atatGihemssM6OHTvUtWvXSw7/JOns2bP6z3/+o9dee83PyQAAhREDQAAAAsD9999vaFBw9OhRjR492g+JfOf+++/XyZMn861LTU3VI4884odEvtOzZ09DWw1kZmbq1ltv9UMieMPIkSMNDWxPnDihESNG5Fv36KOPGrrd3377TWvWrDFUC+s9/vjjhrZWefrpp7V//34/JAIAFGYMAAEAKOSysrL0xRdfGK5fuHChD9P4VlZWlpYtW2a4/qOPPvJhGt9yu93atGmT4fp169b5MA28JSsrS5999pnh+s8//1xZWVm5Lp8/f74yMzMNr8/IQBHW27Nnj1asWGGo1u12a/bs2T5OBAAo7BgAAgBQyP3www86d+6c4fpTp04V2q1FNmzYYOq+nj59Wnv27PFhIt9ZvXq1zByq2ePxcLKHQmD79u2mdk0/c+aMtmzZkuvyt956y9Tt79u3z1Q9rPHVV1+Z6n+27AQA5IcBIAAAhVxycrJfrmMHBcmd17EC7awgg5rCOtgNJgV5PuZ1bM9Tp06ZWhfn/ysczD6uRg4BAQAIbgwAAQAo5KpUqWL6OhUqVPBBEt8ryH2tVKmS94P4Qd26dU1f58orr/RBEnhTQZ7DeV3H7FkAnU6n6duH/5l9XAtyNkgAQHBhAAgAQCFXu3ZtFS1a1HB9qVKlVKJECR8m8p3q1asrNjbWcH3JkiWVkJDgw0S+07BhQ4WGhhquDwsLU1JSkg8TwRvKli1rqv9cLpcSExNzXZ7f2X//V/369U3VwxodOnRQkSJFDNd369bNd2EAAAGBASAAAAGgf//+hmvvueceHybxvQEDBhiuvfPOO32YxPc6d+5suLZHjx4+TAJvGjJkiOHaQYMG5bm8YcOGpn4AmDp1quFaWCc2Nla33HKL4dqePXv6OBEAoLBjAAgAQAAYO3asatasmW/dVVddpbvuussPiXxn9OjRqlWrVr51jRo10r333uuHRL7z5ptvKi4uLt+6UqVK6ZVXXvFDInjDiBEjDG2JV6dOHY0aNSrfusWLF8vhcORb169fvzy3JoS9jB07Nt9DAYSFhWnatGmmhsAAgODEABAAgAAQEhKiL7/8Uu3atbvkIMDhcKhbt2767LPPLEjnXSEhIVq9erU6dOiQ633t0qWLFi9ebEE673I6ndq6datq1KiRa02tWrX0yy+/+DEVvGHZsmXq1KlTrs/h6667TitWrFBISP4f12vWrKk1a9YoKirqkssdDofuueceTZ48+bJzw3+KFi2qRYsW6ZZbblFYWNhFy2vXrq2FCxeqbdu2FqQDABQ2Dg+nArONvM7w5g9Op1Mul0upqalyu92WZgl2LpdLTqdTbrdbqampVscJWvSEPdAP5qWmpuq5557Tli1b5HA4VL9+fY0aNUoxMTGXtV479sSxY8c0YcKE7Ptar149Pfzww5d9X+3o0KFDuvfee7V9+3Y5HA7VqlVLkydPLrTHOCzsvNUPJ06c0HPPPadNmzbJ4/GoTp06euSRR1SsWLECrW/NmjUaN26cjh49qoiICHXp0kWjR48O6JN/BMP7xKFDh/TZZ5/p0KFDKlKkiJo1a6arrrrK0Jaf/mLH94hgFAz9UFjQE/YQqD1RkJM/MQC0EQaAuCBQX6QKG3rCHugH+6An7IGesAf6wT7oCXugJ+yBfrAPesIeArUnCjIAZBdgAAAAAAAAIIAxAAQAAAAAAAACGANAAAAAAAAAIIAxAAQAAAAAAAACGANAAAAAAAAAIIAxAAQAAAAAAAACGANAAAAAAAAAIIAxAAQAAAAAAAACGANAAAAAAAAAIIAxAAQAAIWS2+3WsmXL1LdvXzVp0kRXXXWVbrvtNq1cuVJZWVlWx/Mqt9ut5cuXq1+/fqpRo4aqVq2q7t27a8WKFba4r3/88YceffRRNW/eXI0aNdINN9yg6dOn68SJE1ZH0/HjxzVt2jTdcMMNatSokVq0aKHHHntM27ZtszoaYInVq1erXbt2KleunEqXLq3ExET17dtXu3btsjqaTp48qbfffludOnVSo0aN1KxZM40aNUq//vprgdY3f/581apVSyVLllRCQoJKlSqlZs2a6eeff/ZucAAoBBwej8djdQicl5KSYuntO51OuVwupaamyu12W5ol2LlcLjmdTrndbqWmplodJ2jRE/ZAP9iHnXri4MGD6tu3r3755ZdLLm/SpInmzJmj+Ph4PyfzvoMHD6p///7asGHDJZc3adJEs2fPVkJCgp+TSVlZWRo/frymTJlyyeWxsbF666231KpVKz8nO2/NmjUaPHiwjh8/fsnlw4YN0+OPP66QEPO/idupH4Id7xPGZGVlqWvXrvruu+9yrRkxYoQeeeSRAq3/cnti7dq1GjhwoI4ePXrJ5YMHD9ZTTz0lp9OZ77rcbrcaN26sffv25Vrzr3/9S2+99ZbpnHZHP9gH7xP2EKg9UZDPuGwBCAAACpW0tDT16NEj1+GfJK1bt0633HKLTp8+7cdk3peWlqZ///vfuQ7/pL/va3p6uh+TnffUU0/lOvyTzm9916dPH61fv96Pqc5bt26d+vbtm+vwT5Jee+01PfPMM35MBVinR48eeQ7/JGnSpEmaOnWqnxL9bePGjerdu3euwz9JmjFjhsaOHWtofddcc02ewz9J+vTTTzVy5EhTOQGgMGMACAAACpUZM2bo999/z7du48aNmjdvnh8S+c7MmTMN7fq2adMmzZ071w+J/rZ792699tpr+dadOXNGjz/+uB8S5fT444/rzJkz+da98sor2rNnjx8SAdbZuHGjvv76a0O1Tz31lN8PLTBu3DhDP2JMmzZNf/zxR541X331lXbv3m3odufMmcOWWQCCBgNAAABQaGRlZWn27NmG62fNmqXCerQTs/d15syZfr2vc+bMMXx769at06ZNm3yc6G+//PKL4a0OPR6P5syZ4+NEgLWMbjknnR/a+7Mntm3bZng4KZ1/Xc/Lgw8+aHhdHo/H1N8GAAozBoAAAKDQ2Lt3b767df3TH3/8kecuZXZ24MABU1um7dixQ8nJyT5MlNO3337r0/rLYedsgBW2bNliqv7zzz/3UZKL5bdb8v9au3Ztnsv3799van3Lly83VQ8AhRUDQAAAUGhkZGT45Tp2YPf7avb4iv7MZva2CutzBDAqMzPTVH1hfi0xuyX02bNnTdUDQGHFABAAABQapUqVMnXG1rCwMMXFxfkwke+ULFnS1H0NDQ3161mPy5Yta6q+TJkyPkpyMTtnA6xQrFgxU/Xly5f3UZKLme2//Po7PDzc1PqsOIM6AFiBASAAACg0ihcvrg4dOhiu/9e//qUiRYr4MJHvFCtWTNdff73h+htvvFFRUVE+TJRTz549DdfGxMTohhtu8GGanG644QZTfwsz9wUojG655RZT9f48O2779u1VvHhxw/X59auZ101JmjBhgql6ACisGAACAIBC5c477zRU53A4dMcdd/g4jW+ZyT906FAfJrlY586dDW8l1K9fP8XExPg40d+KFi2qfv36GaqtUKGCOnXq5ONEgLVGjhypsLAwQ7XVq1dXUlKSjxP9rUiRIho4cKCh2lKlSqlbt2551rz88suGb7tYsWJq3Lix4XoAKMwYAAIAgEKlefPmGjNmTL51zzzzjBo2bOiHRL7TrFkz/ec//8m37qmnnvL7l9jw8HDNmTMn3y13WrRooccee8w/of5hzJgxatasWZ41LpdLc+bMMb3LIFDYhIeHa9asWXI4HHnWxcTEaNGiRf4J9Q8jR45Uu3bt8qwpWrSo5syZk+9W3UWKFNHEiRPzvc2QkBCtWLHCVE4AKMwYAAIAgELn/vvv17Rp01S9evWLltWuXVuzZ8/W4MGDLUjmfcOGDdP06dNVo0aNi5bVqlVLM2fO9PvWfxfUqVNHS5cu1fXXX3/R8QqLFy+u++67T++++64iIyP9ni0yMlLvvfee7rvvvouGlCEhIbrhhhu0ZMkSXXnllX7PBlihY8eO+uijj1S6dOlLLq9Xr55+/PFHS46JFx4errlz52rkyJEXHbfV4XCoQ4cOWrJkieEfdW677TbNmDEj19eehIQErV+/XpUrV77s7ABQWDg8Zk+TBJ9JSUmx9PadTqdcLpdSU1PldrstzRLsXC6XnE6n3G63UlNTrY4TtOgJe6Af7MOOPeHxePT9999r27ZtkqQrrrhCjRo1yncrl8LI4/Hohx9+0L59++R0OlWzZk3VqFHDNvd17969+vbbb5Wenq6SJUuqTZs2tjn+Ynp6utasWaPDhw8rKipKTZs2veyTHNixH4IV7xPm/fzzz5o3b55OnjypMmXK6J577rnswZ+3eiIjI0Nr1qzRwYMHVaRIEV1zzTVKTEws8PpWrFihKVOmKC0tTaVKldKTTz4Z0IM/+sE+eJ+wh0DtiYKc+I0BoI0wAMQFgfoiVdjQE/ZAP9gHPWEP9IQ90A/2QU/YAz1hD/SDfdAT9hCoPVGQASC7AAMAAAAAAAABjAEgAAAAAAAAEMAYAAIAAAAAAAABjAEgAAAAAAAAEMAYAAIAAAAAAAABjAEgAAAAAAAAEMAYAAIAAAAAAAABjAEgAAAAAAAAEMAYAAIAAAAAAAABjAEgAAAWcrvduueee1SuXDklJCRk/6tTp44+++wz0+s7ePCgBg8erAoVKmSvKzExUffcc4+OHDnig3uAS3G73brvvvsuelyvvPJKffLJJ6bXt2vXLrVv314lS5ZUaGioHA6HwsPDdd1112nPnj0+uAfGZWVl6eWXX9aVV16ZfT9LlSqljh07au3atZZms7vk5GTdeeedqlixYvbfrkKFCrrjjjt06NAh0+t79NFHVbJkyRzPuYSEBF111VU6e/asD+6Bdb777jtdd911KlWqVHZPlCtXTpMnT1ZWVpal2dLT0zV37lx16NBB5cuXV7ly5dS6dWu99dZbSktLszSb2+3WQw89lOM9IiEhQTVr1tT8+fMtzeZtWVlZevPNN1WvXr0cr01t2rTR6tWrrY7ndWvXrtWQIUNUokQJOZ1OlS9fXo899pi2b99udbSgcuDAAT377LNq2LChEhISFBMTo1tuuUXLly+3/LUJcHg8Ho/VIXBeSkqKpbfvdDrlcrmUmpoqt9ttaZZg53K55HQ65Xa7lZqaanWcoEVP2EMg98OhQ4fUqFEjnTlzJteaDh06GP5Stnz5cvXv3z/X52tYWJgWLFigpk2bFigvPWFMcnKyGjZsqIyMjFxrWrVqpQULFhha39y5c/Xggw/mWfP666+rZ8+epnJ6Q1pamlq0aKF9+/blWjNw4EA9//zzfkzlH5fbD19++aV69eqlzMzMSy4PDQ3V/Pnz1aZNG0Prq1atmo4dO5ZnzX//+1/VqFHDbFTbeeSRR/TWW2/lurxs2bL6+uuvVaxYMT+mOm/Pnj265ZZbtGPHjksur1Chgt577z1Vr17dz8nO92udOnXyHEI2btxYS5YsKdD67fQekZGRoVatWmnnzp251nTv3l1Tp071YyrfuDDUnTt37iWXh4SEaMKECRo4cKCfkwWfpUuX6o477tDp06cvubxDhw6aPn26oqOj/ZwsuAXqd4n4+HjT12ELQAAALNKkSZM8h3+S9MUXX2jkyJH5rmvr1q3q169fnl+6zp07p+7du2v//v2ms8K4Jk2a5Dn8k84Pf4YNG5bvun788cd8h3+SdPfdd2vTpk2GM3pL27Zt8xz+SdLMmTM1adIkPyUqHHbt2qVbbrkl1+GfJGVmZqp3796Gtt5p1KhRvsM/SWrevLmZmLb00ksv5Tn8k85vgdO2bVs/JfrbiRMn1KNHj1yHf5K0d+9e9ejRQ8nJyX5Mdl7Dhg3z3QLxxx9/VL9+/fyUyHeuv/76PId/krRw4UKNHTvWT4l85z//+U+uwz/p/JaQo0aN0qJFi/wXKgh9//33GjRoUK7DP+n8Z7q7775bbIMFqzAABADAAs8//3yeHxL/Ka8P9hcMHz7c0K4lmZmZhgaKKJhXX31Vp06dMlT7wQcf5LuVzODBgw3f9qBBgwzXesPnn3+uXbt2Gap98cUX2fXpH0aMGGFoCym3260RI0bkWXP27Fn9+eefhm97wIABhmvtJisry/Awec+ePX4feMycOVO7d+/Ot+6vv/7StGnTfB/oHz788EPDW74sXbq0UO8yvnbtWm3ZssVQ7fTp0/McxNvd3r17NX36dEO148ePt3zLzED29NNP69y5c/nWLV68WD/88IMfEgEXYwAIAIAF3nzzTcO1+X3pTUtL04YNGwyvb82aNQxjfOSVV14xXOvxePTMM8/kujwtLc3U1pq7d+/265d2M7v1njlzRrNnz/ZhmsIjMzNT33zzjeH67777Ls/HtUuXLqZuf/Hixabq7eTdd9/Nd+vaf3rhhRd8mCYnj8dj6jk+b948Q8MCb3niiSdM1T/00EM+SuJ7Tz75pOHazMxMvfzyyz5M41vz5s0z/H6+d+9erVy50seJgtPvv/+ub7/91nD9rFmzfBcGyAMDQAAALHDy5ElT9Xkdk2ndunWmdifJzMzMd9coFMzx48dN1a9YsSLXZV988YXp2/fnSTeMbOn0T4F40P2C2Lx5s6kBfFZWVp4D/s2bN3sjVqGQV79cipktIy9XSkqK9u7d67P6y2X2WOOF+QQ+Zk968d///tdHSXzvp59+MlX/888/+yZIkDP7OJitB7yFASAAABYwe/yXvLYUSU9PN337Rnc/hm/ltetZQR5Xo7sfe4PZrUgL8y6F3lSQxzWvrd6C6VhSZp9D/tzSuSBb8/lz11Ozz5PCvFus2d1c/bklpreZzV6Y76udme2XwtxfKNwYAAIAYIGwsDBT9XmdMbJ+/fqmbz8pKcn0dZA/s49r1apVc11WkLM1N27c2PR1Cqp48eKm6q0466kd1apVy6vXiY2NvZw4hYrZMxj7828THx+vqKgow/VhYWEqU6aMDxPlFBkZaaq+QoUKPkrieyVKlDBVX6VKFR8l8b3ExERT9RUrVvRRkuDG44DCggEgAAAWaNOmjan6vI5lVa5cOZUtW9bwumrWrGnqiyqM69ixo6n6vB7XypUrm3qcihYtqlKlSpm6/cvRp08fw7UOh8PQ2YyDQfHixVW5cmXD9YmJiUpISMh1+Ycffmjq9suVK2eq3k4eeOABORwOw/W9e/f2YZqcwsPD1aNHD8P1Xbp0UdGiRX2YKKeePXuaqi/Mx8Uzc/IkSXrkkUd8lMT3zDzHo6Ki1LVrVx+mCV7NmjUzNTS/9dZbfZgGyB0DQAAALPD6668brq1WrVq+W7I8+uijhtc3duxYw7Uw59VXXzU8oKhUqVKegx3p/MDDqIcffthwrTc8+OCDioiIMFTbvHlz01sMBrLHH3/ccO3o0aPzXH7llVcqNDTU8PpWrVpluNZuihUrplatWhmqDQ8P9/sZz4cOHarw8PB865xOp+666y4/JPrbc889p5AQY1/9SpcubWpIbTdDhgxRdHS0odoGDRqY+gHNbq6++mo1adLEUO1tt92mYsWK+ThRcHI6nbrnnnsM1SYmJpo+eRPgLQwAAQCwQGxsrKEtLGJiYrRmzZp863r16mVoi6x77rlHHTp0MBIRBRATE2NouBsVFWXoTLDDhw9X8+bN861r166dhg4daiijt4SHh+uDDz6Q0+nMs65ChQp67733/JSqcOjSpYuhrZQGDhyom266Kd+6LVu2GLrdwYMHKy4uzlCtXb377rv57j7ndDr13nvvmd7t9XJVr15dU6dOzfNQACEhIXrppZcKdOiGy+F0OvXOO+/kWxcREWHqbKZ2FBISok8//TTfQzKULFlSixYt8k8oH3E4HHr77bfzPJyEdH7r9DFjxvgpVXAaNGiQBg4cmGdNyZIl9c477/j9tQm4gAEgAAAWufXWW/X+++9fcus+h8OhRo0aafv27Ya2KJGkl156SU8++aRcLtdFyxISEvTSSy9p3Lhxlxsb+ejRo4cWLlyY6xZv9evX17Zt2ww/rh9//LHuuOOOS36ZDQsL07333mvZgK1p06ZatWrVJY9RFxYWpptuukk//PCD4fsaTJ599llNnDjxkscrK1GihCZMmKDnn3/e0Lri4uK0a9euPL9UPvnkk3r22WcLnNcuQkND9f3336t79+6X7ImaNWtq5cqVatGihQXpzg93P/30U3Xs2PGirYFbt26tjz76SL169bIkW/v27bVs2bJcj5F3xRVXaNu2bYqJifFzMu+rW7euvvnmG9WtW/eiZaGhobrhhhu0fv36gDgcRunSpbV48WLdfffdF73vJCYmavz48Zo9e7bpY9TCHIfDoeeee06vvPLKRe+JUVFR6tu3r5YvX276WKaANzk8wXTqMJtLSUmx9PadTqdcLpdSU1NNnz0L3uVyueR0OuV2u5Wammp1nKBFT9hDsPTDH3/8oenTp+v48eO64oordN999+W7ZVVevvvuO33zzTdyOBxq06aNGjRocNkZ6QnzduzYoalTp+r48eOqWbOm7r///st6XD/77DOtWrVKTqdTXbt2tWzIcSmHDh3Sxx9/rOPHj6tKlSrq3r274V0OCyNv9sO6dev09ddfy+PxqHnz5rr66qsLvK6zZ8+qV69e2rVrl6KiovTss8+qZcuWl5XPrrKysvTRRx/pwIEDKl68uHr27KkiRYpYHSvbgQMH9Ntvv8nj8ahatWq2OvD/vn379Nprr+no0aNKSkrS8OHDL3tQb9f3iCNHjmjBggU6duyYEhMT1aNHD1O7zRcmp0+f1vbt25Wenq64uDglJSUF9OuwXXk8Hm3ZskWHDh1SQkKCkpKSDO+WDu8L1O8S8fHxpq/DANBGGADigkB9kSps6Al7oB/sg56wB3rCHugH+6An7IGesAf6wT7oCXsI1J4oyACQnwMAAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgoVYHAAAAAIJZZmamtm/fLkmqWrWqQkMv7yP6iRMntGfPHsXFxalcuXLeiIgCyMzM1M6dO5WVlaUqVaooPDzc6kg5nDx5UqdOnVLx4sUVGRlpdRwAgI+xBSAAAABggU2bNqlz584qW7asWrRooRYtWqhs2bK64YYbtHHjRtPrmzt3rho0aKCkpCS1bdtW9evXV8WKFTVs2DClp6f74B7gUrZu3aouXbqoXLlyatasmVq0aKHy5cvruuuu088//2xptszMTL3//vu6/vrrVaVKFdWpU0eVK1fWwIEDtXbtWkuzAQB8iwEgAAAA4Gfvvfee2rVrpx9++EEejyf7co/Hox9//FHt27fXO++8Y3h9vXv31oMPPqh9+/bluPz06dN6//33VadOHR04cMBr+XFpCxcuVOvWrfXdd98pKysr+3KPx6OffvpJHTt21KxZsyzJlp6ert69e2vYsGFav3599uWZmZn6v//7P3Xt2lXPP/+8JdkAAL7HABAAAADwo59//ln33XdfjsHf//J4PBo+fHiOQU1uHn74Ya1YsSLPmhMnTqht27Y5hlLwri1btuiuu+7K93F96KGH9N133/kx2Xn33Xef1qxZk2fNxIkTNWfOHP8EAgD4FQNAAAAAwI9GjRqV55DoAo/Ho4cffjjPmszMTMMDmyNHjpjaqhDmGH1cJeX7uHrbli1b9MknnxiqnThxos6dO+fjRAAAf2MACAAAAPhJRkaGqePAbdy4UWlpabkuf+ONN5SZmWl4fa+++qrhWhh39uxZrVu3znD91q1bdezYMd8F+h9z5841XHvw4MF8tygFABQ+DAABAAAAP9m0aZPhrcSk81sB5nVCkO+//97U7R88eNBUPYz5/fffTT2ukrRhwwYfpbnY1q1bTdVv2bLFR0kAAFZhAAgAAAD4SUGOwZfXdcwOnczWw5iC/F39eTxGnicAAAaAAAAAgJ/Url3b9HWuvPLKXJfVrVvX1LoSEhJM3z7yV716dTkcDlPXqV+/vm/CXEK1atV8Wg8AsD8GgAAAAICfxMTEqFatWobra9asqeLFi+e6/P7771dIiPGP9HfccYfhWhgXGRlpahhbtWpVlShRwoeJcurbt6/h2hIlSuiGG27wYRoAgBUYAAIAAAB+9PTTTxuuHT9+fJ7LIyMj1a1bN0PrKlq0KANAH3r22WcN1+b3uHpbw4YN1bZtW0O19957ryIiInycCADgbwwAAQAAAD9q3ry5nnjiiXzrxowZozZt2uRb98Ybb6hhw4Z51kRGRmrp0qWmthaEOU2aNNEzzzyTb93DDz+sDh06+CFRTtOmTcv3eTJo0CDdfffdfkoEAPAnPgEAAAAAfnb33Xfrgw8+UPXq1S9aVq1aNb333nu6//77Da0rJCREy5Yt04gRIy7aXdjpdKpt27b66aefLnlb8K4hQ4boo48+Us2aNS9alpSUpHfeeUcjR460IJkUGxurRYsWafz48apcuXKOZU2bNtXMmTM1YcIE08cyBAAUDg4Pp3iyjZSUFEtv3+l0yuVyKTU1VW6329Iswc7lcsnpdMrtdis1NdXqOEGLnrAH+sE+6Al7oCfswZv9kJycrPXr18vj8ahx48aXfaKOrVu3avv27YqNjVWzZs0UGhp6WeuzO7v2xJEjR7Ru3Tp5PB41bNhQpUqVsjpStqysLP355586deqU4uPjvZKN9wh7sGs/BCN6wh4CtSfi4+NNXyewPw0AAAAANpeQkKDrr7/ea+urVauWqRONwDdKlCjh1cfVm0JCQlSpUiWrYwAA/IhdgAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGChVgcAAACAMcePH9fOnTvldDpVuXJlq+PAS06cOKFdu3ZJkipVqqTY2NjLWt++fft0+PBhFSlSRNWqVVNoKB/5rXDgwAGtXbtWHo9HV111lRITEy9rffv379ehQ4cUGRmpatWqKSwsrMDrcrvd2rZtm9LT0xUfH6+KFSteVjY7c7vd2r59u9LS0hQfH3/Zj4O3bdiwQb/++quKFi2qNm3aKCYmxupIAAIUnwYAAABsbuvWrXrttdf0ySef6OzZs5KkiIgIdevWTffee69q1KhhcUIUxG+//aZXX31Vn3zyic6cOSNJCg8PV9euXXXvvffqiiuuMLwuj8ejzz77TG+++aZ++OGH7MtLly6t/v37684771TRokW9fh9wseXLl2vMmDHZQ90LKlSooLFjx6pbt26m1vf5559r6tSp+u6777IvK1mypPr166e77rrL1MA4LS1N06ZN05w5c7R///7syxs2bKg77rhDN998sxwOh6l8dnXq1ClNnz5ds2fP1r59+7Ivb9CggYYMGaIePXpYel+feeYZvfXWWzpx4kT2ZQ6HQ02aNNHrr79uu0ElgMLP4fF4PFaHwHkpKSmW3r7T6ZTL5VJqaqrcbrelWYKdy+WS0+mU2+1Wamqq1XGCFj1hD/SDfdAT1li+fLluv/12ZWRkXHJ5VFSUZs6cqbZt2/o5WXC73H5YuXKlBg4cqNOnT19yeWRkpN566y117Ngx33V5PB6NHj1a06dPz7WmZs2aWrBggUqVKmU6q93Z6X3i1Vdf1fjx4/Osuf/++zVmzJh81+XxePSf//xHb7zxRq41VatW1ccff6zSpUvnu76jR4+qR48e2rRpU641ffr00eTJkxUSYv5IUXZ6j0hNTVWPHj20cePGXGt69+6tl156qUD39XJkZWWpU6dOWr9+fa41YWFh+uyzz9SoUSPT67dTPwQ7O/VEMAvUnoiPjzd9HY4BCAAAYFN//PFHnsM/SUpPT9fAgQO1c+dOPybD5dixY4cGDRqU6/BPkjIyMjR48GBt27Yt3/VNnz49z+GfdH5rw9tuu0389u87a9euzXf4J0kvv/yylixZkm/drFmz8hz+SdL27dvVt29fZWVl5Vnn8Xg0ePDgPId/kvTOO+/olVdeyTebnXk8Hg0ZMiTP4Z8kvfvuu3rxxRf9lOpv9957b57DP0k6d+6cunXrludrPwCYxQAQAADApqZOnWroC2B6erqmTZvmh0TwhjfffFPp6en51p0+fVpvvvlmnjXnzp3Tq6++auh2f/zxR3399deGamHe6NGjDdeOGzcuz+Vut1svv/yyoXX98ssvWrVqVZ41Zh77119/Pc/htN1t2LBBX375paHaqVOnGupFb8nMzNRHH31kqDYjI0OTJ0/2cSIAwYQBIAAAgA2dPn1aCxcuNFz//vvvZx8fEPZ15swZffDBB4brP/zwwzyHMatWrdLBgwcNr2/u3LmGa2Fcenq6Nm/ebLh+586dSk5OznX5mjVrchyjLz/z5s27rOX/lJqaamgLRbsyc1+PHTumxYsX+zBNTlOnTlVmZqbhejP3BQDyw0lAbMTpdNri9q3OgZx4PKxDT9gPj4W16An/OnTokKktU9LS0nTkyBGVL1/eh6lwQUH7ISUlRadOnTJcn56eruTk5FzP+rxjxw5Tt79jx46A7mGr7tv27dtNX2fjxo25HuPR7C79+T2u3l7fpdjlPcLOPZHfbsn/69ixY5eVzerHItjZpSfwt2B/LBgA2ojL5bI6giSpWLFiVkfA/3fhwLGwFj1hD/SDfdAT/hEXF1eg69An/mW2H9LS0kzfhsvlyvVxNXtm3/Dw8IB9jlj5PlGQg7EXL17ca49rWFhYnvc9IiLC1PpiYmIK/Le0+j3C7H2Njo722/OmSJEipuodDkeBs/G5yT6s7gmcR08wALQVq89I43Q6VaxYMZ04cYKzFFmsWLFi2WcqOnHihNVxghY9YQ/0g33QE/514Uup0c8HJUuWVEREhOWfJ4JFQfshMjJS8fHxSklJMVQfFxen6OjoXB/XpKQkw7ctSVdccUXAPUfs8D5RpkwZhYSE5Hsyjn+qWbOm1x7X2rVr5/m41qhRw/Bx8aTzZxc2+zyxy3tEzZo1tXr1asP11apV81tPXH311Zo/f77h+lKlSpnOZod+wHl26YlgF6g9UZBhJgNAG7HLi4Lb7bZNFtjneRHM6An74HGwB3rCP5xOp2699VZNmTLFUH3fvn0l0Sf+ZrYfHA6H+vTpY/gED3369FFISEiut3HNNdcoKSnJ8G6PAwYMCOjniFX3zeFw6JprrtHatWsN1detW1fR0dG55m3cuLFq1Kih33//3dD6+vXrl+d979+/v+ETBZUrV05t2rQp8N/S6veIfv365Xv25AtKly6tdu3a+S1vr1699PDDDxs+u+/QoUMvK1sg93phYnVP4G/B/jhwEhAAAACbGjp0qKFdC0uWLKnbb7/dD4ngDUOGDFFCQkK+dfHx8brjjjvyrAkJCdGjjz5q6HY7deqk+vXrG6qFeRMnTlRISP5frxwOh55//vl8ax577DFDt9u+fXs1adIkz5oaNWqoZ8+ehtb38MMPKzS08G4nUq1aNf373/82VOvv+xoSEqJ77rnHUK3L5dKQIUN8nAhAMGEACAAAYFNlypTRe++9l+ewqGTJknr//fdVsmRJPybD5ShVqlS+j1lCQoLee+89lS5dOt/1de3aVc8884wcDkeuNa1btza8NSkKpnr16nr77bfzHAI6HA698soratSoUb7r69SpU75DxebNm2v69Ol5PvYXTJ48Wdddd12eNY8//rh69+6d77rsbtKkSbrhhhvyrHnssceyt5z2p0ceeSTfAWXRokW1evVqQwNlADCKVxQAAAAbq1evnr788ks98sgjKlu2bPbliYmJeuyxx/TVV1/pyiuvtDAhCqJOnTr66quv9Oijj+Y4c3O5cuX0yCOP6KuvvlK9evUMr2/IkCFasWKFevfuneNEA1dddZWmTp2qd999VzExMV69D7hY586dtXbtWrVu3TrH2SZDQkLUrFkzrVmzRr169TK8vttuu00rV65Unz59FBUVlX15kyZN9Prrr+vDDz80/LhGRkZqzpw5mjFjhpo1a5Z9eUREhHr27Klly5bpvvvuM5zNziIjIzVr1iy99dZbat68efaANCIiQj169NDSpUs1fPhwy/JNmTJFb7/9tqpVq5bj8ujoaPXt21ebN29WuXLlLEoHIFA5PB6Px+oQOM/owaB95cJZcVJTU4N+33iruVyu7AOVBtqBugsTesIe6Af7oCes5/F4FBoaqtDQUBUpUkTHjh2zOlLQ8mY/eDwenTp1Sh6PRzExMYa25sqL2+3WyZMnFRkZqcjIyMtaV2Fg1/eJrKwsHT58WFlZWSpduvRlb83l7cf1zJkzOn36tGJiYryyG6yd3yO8fV+96ezZs/rrr78UGxur4sWLX/b67NoPwcjOPRFMArUnCnL2eXu9+gEAACBXDocjx9nsEBgcDodXt85zOp1eGSTg8oSEhBjahdsobz+uERERioiI8Nr67MzO9zU8PFyJiYlWxwAQBNgFGAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAAMYAEAAAAAAAAAhgDAABAAAAAACAABZqdQAAAAAAQO6ysrL0448/6tChQ4qMjFTjxo3lcrmsjoUAt2fPHm3dulUej0dJSUmqUaOG1ZEAXAYGgAAAAABgQ1lZWZoxY4amTZumPXv2ZF8eGRmpbt266ZFHHlG5cuUsTIhA9MMPP2jixIlas2ZNjsubNGmi4cOHq0OHDtYEA3BZ2AUYAAAAAGzG7XZr6NChGj16dI7hnyRlZGTovffeU8eOHbVt2zaLEiIQffbZZ+ratetFwz9JWrdunW699VZNnz7d/8EAXDYGgAAAAABgMy+//LIWLVqUZ83hw4d166236ty5c/4JhYC2Y8cO3XXXXcrMzMyz7rHHHtM333zjp1QAvIUBIAAAAADYyJkzZwxvZbV7924tXrzYx4kQDKZNm6YzZ84Yqp06daqP0wDwNgaAAAAAnZpTNwAAK2hJREFUAGAjK1euVEpKiuH6d99914dpEAzcbrc+/PBDw/XLly839RwFYD0GgAAAAABgI3/++aep+r179/ooCYLFsWPHdPLkScP1WVlZ2r9/vw8TAfA2BoAAAAAAYCPh4eE+rQf+V0GeQxERET5IAsBXGAACAAAAgI00atTIVH3jxo19lATBomjRoqpRo4bhepfLpcqVK/swEQBvYwAIAAAAADZSr149NWzY0HD9gAEDfJgGweK2224zXNunTx+2AAQKGQaAAAAAAGAzY8eOVWhoaL51vXr10pVXXumHRAh0t956q6644op868qUKaO77rrLD4kAeBMDQAAAAACwmWbNmumtt95SVFRUrjXdu3fXpEmT/JgKgSwqKkoffPBBngPlihUrauHChSpZsqQfkwHwhvx/UgIAAAAA+F2nTp30/fffa+7cuVqwYIEOHjyoqKgoNWvWTAMHDlTTpk3lcDisjokAUrp0aS1btkyff/65Zs2apc2bN8vj8ahq1arq16+fbr75ZkVHR1sdE0ABMAAEAAAAAJsqXbq0HnroIT300ENWR0GQCA8P10033aSbbrrJ6igAvIhdgAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAAAAAIAAxgAQAAAAAAAACGAMAAEAAIAAMXnyZCUmJqp06dIqW7asbrjhBp07d87qWAAAwGKhVgcAAAAAcHk+++wzDRo0KMdlbrdbP/74o8qWLaurrrpKn3/+uUXpAACA1dgCEAAAACjEPv/884uGf//rhx9+UOvWrf0TCAAA2A4DQAAAAKAQGzhwoKG6LVu26LvvvvNxGgAAYEcMAAEAAIBCasGCBfJ4PIbr+/fv78M0AADArhgAAgAAAIXU448/bqo+NTXVR0kAAICdMQAEAAAACqlTp05ZHQEAABQCDAABAACAQio8PNzqCAAAoBBgAAgAAAAUUkZPAHJBZGSkj5IAAAA7YwAIAAAAFFKjR482VT9hwgQfJQEAAHbGABAAAAAoxIYNG2aoLjY2Vn369PFxGgAAYEcMAAEAAIBC7D//+Y/69++fZ01cXJy2b9/up0QAAMBuGAACAAAAhdykSZO0Z88eXXnllXI4HNmXFy1aVAsWLNDvv/9uYToAAGC1UKsDAAAAALh8UVFRWr16tdUxAACADbEFIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAGAACAAAAAAAAAYwBIAAAAAAAABDAHB6Px2N1CAA5zZs3T6dOnVJ0dLT69u1rdRzAUvQDkBM9AeRETwB/ox+AnOiJvzEABGyoU6dOOnz4sEqWLKnFixdbHQewFP0A5ERPADnRE8Df6AcgJ3rib+wCDAAAAAAAAAQwBoAAAAAAAABAAGMACAAAAAAAAAQwBoAAAAAAAABAAGMACAAAAAAAAAQwBoAAAAAAAABAAAu1OgCAi9166606deqUoqOjrY4CWI5+AHKiJ4Cc6Angb/QDkBM98TeHx+PxWB0CAAAAAAAAgG+wCzAAAAAAAAAQwBgAAgAAAAAAAAGMASAAAAAAAAAQwBgAAgAAAAAAAAGMswADNpCcnKxvv/1WGzdu1O7du3X06FGFhoYqISFB9evXV5cuXVS6dGmrYwJ+sX37dv3www/atm2bDhw4oBMnTujMmTMqWrSoqlSpopYtW6pVq1YKCeE3LASvp556Sj/88IMkqW3btnrggQesDQT40cqVK/Xyyy/nWzdv3jwVK1bMD4kAezh27Jj+7//+T+vWrdPhw4d17tw5uVwuVa5cWVdffbXatWtndUTAp/71r38Zrr3//vuDricYAAIWS05O1uDBg/XPE3JHRUXp7Nmz2rt3r/bu3atly5bpgQceUPPmzS1MCvjH8uXLtXTp0uz/HxkZqdDQUKWmpmr9+vVav369vvjiC40ZM0ZRUVEWJgWs8c0332QP/4BgFhISkueAz+Fw+DENYK3vv/9eL730kk6dOiVJCg8Pl9Pp1KFDh3To0CHt3r076IYdCD7FixfPc3lGRoYyMjIkSVWrVvVDInthAAhYLCsrS5LUsGFDtW3bVvXr11exYsXkdrv166+/atq0adq9e7cmT56s8uXLq1KlStYGBnysRo0aKleunGrVqqVy5cplD/mOHTumL774Qu+88442b96st99+W8OGDbM4LeBfp06d0vTp0xUdHS2Xy6V9+/ZZHQmwTHx8vGbMmGF1DMByP//8s5577jllZmaqTZs26t69uypWrChJSktL0++//67ffvvN4pSA782ZMyfP5WPHjtXPP/+sqlWrKjEx0U+p7IP9pwCLxcTE6MUXX9S4cePUsmXL7F+ynU6nrrzySj3xxBOKjY1VZmamPvnkE4vTAr7Xrl07de3aVdWqVcuxhV/x4sXVs2dP9ejRQ5K0Zs0aZWZmWhUTsMSsWbN09OhR9e3bN99fuQEAge/06dN65ZVXlJmZqZtvvlnDhw/PHv5J579rNGrUSH369LEwJWC9lJQUbdy4UZKCdmtYBoCAxaKjo1WlSpVcl7tcLjVq1EiStGPHDn/FAmyrWrVqkqSzZ8/q5MmTFqcB/Gfr1q1avny5qlWrphtuuMHqOAAAG1i5cqVSUlJUokQJhnxAHlatWqWsrCyFhYWpVatWVsexBANAoBC4sFWg2+22OAlgvQu7sERGRrIFFILGuXPn9Nprr8nhcOjuu+/mJDgAAEnn94iQpKZNmyosLMzaMICNrV69WpJ01VVXKSYmxuI01uAYgEAhsHnzZkkKyuMUAJJ05swZJScna/Xq1fr4448lSZ07d+YA7wgaH374ofbt26cuXbooKSnJ6jiALRw/flwPPPCA9u/fL0kqUaKErrzySt14440cMxlB4ezZs9q5c6ckKSkpSfv27dP777+vX375RWlpaXK5XKpTp45uvvnmHLsFA8Hm119/zX6vaN++vcVprMMAELC57777Ttu3b5cUvMcqQHBKS0vTrbfeetHloaGhuvHGG9W3b18LUgH+t3fvXi1YsEBxcXHs3gX8w5kzZ7Rr1y5FR0crIyNDBw4c0IEDB7RixQoNGDBAN910k9URAZ86fPhw9vGQDxw4oDfeeENnzpxReHi4wsPDlZycrFWrVunrr7/W8OHD1bx5c4sTA9ZYuXKlJCkuLk7169e3NoyFGAACNpacnKwpU6ZIkq6++ursYwECwSAkJCR7F9/09HSdPXtWDodDN954o2666SY5nU5rAwJ+4PF4NGXKFGVmZmrw4ME5TowDBKu4uDj17t1bTZs2VdmyZRUWFqbMzExt3bpVc+bM0R9//KGZM2cqLi4uaI/zhOCQlpaW/d8LFixQbGysHn74YTVs2FAhISHauXOnXnvtNW3fvl0vvfSSqlSporJly1qYGPC/M2fO6L///a8kqU2bNkH9HYIDyAA2lZaWpieffFLHjx9X6dKldd9991kdCfCrqKgozZkzR3PmzNGHH36o6dOnq0uXLvrss880bNgwbd261eqIgM8tW7ZMW7duVaNGjdhyA/j/GjRooN69eysxMTH7mGehoaGqW7eunn32WdWoUUOSNHv2bGVlZVkZFfApj8eT/d9ZWVl64IEH1Lhx4+zjxFapUkVjxoxRZGSkzp49q08//dSqqIBlvv32W6Wnp0tijzoGgIANnT59Wk888YR2796tuLg4jR8/XkWLFrU6FmAZh8OhUqVKafDgwRo4cKBOnjypiRMn6syZM1ZHA3zm6NGjmj17tsLDwzV06FCr4wCFQlhYWPYhIlJSUrKPjwYEoiJFimT/d4UKFdSgQYOLauLi4tSyZUtJ0i+//OK3bIBdXNj9t0aNGipfvrzFaazFABCwmTNnzmj8+PH6/fffFRsbqyeffFKlS5e2OhZgG9dff73CwsJ05MgRrV+/3uo4gM/MmTNHp06dUteuXRUbG6vTp0/n+Hdhyya3233RZUAwu7AFoCQdPHjQwiSAb8XFxWX/d16DjQvLkpOTfZ4JsJPk5GRt2rRJElv/SRwDELCVM2fO6Mknn9SWLVsUExOj8ePHq0KFClbHAmwlPDxcRYsW1dGjR/XXX39ZHQfwmcOHD0s6fwbgDz/8MNe6L7/8Ul9++aUkZR/jCQAQ+IoVKyaXy6XU1FRD9Q6Hw8eJAHtZvXq1srKyFB4erhYtWlgdx3JsAQjYxLlz5/TMM89o48aNioqK0rhx41S5cmWrYwG2c/r0aZ04cUJSzl1fAACQpN9//z37v0uVKmVhEsD3LpzRdN++fbnWXFhWsmRJf0QCbOPC7r/XXHONoqOjLU5jPbYABGwgMzNTEyZM0IYNGxQZGamxY8eqevXqVscC/M7tdiskJCTPX6g/+eQTZWZmSpJq167tr2iA3z3zzDN5Ln/ssce0efNmtW3bVg888IB/QgEW83g8eb5HZGZm6p133pEklShRQklJSf6KBliibdu2Wr16tfbu3auffvpJDRs2zLH86NGj+uqrryRJjRs3tiIiYImtW7dm7y3E7r/nsQUgYDG3260XXnhB69atU3h4uMaMGaNatWpZHQuwREpKioYPH67ly5fnOE6Nx+PR3r17NXXqVL377ruSpGuvvVaJiYlWRQUAWODw4cMaOXKkli1bpkOHDmVf7na7tXnzZj322GP67bffJEkDBgzIPhsqEKjq1aunRo0aSZJefvllrV+/Pvt4sLt27dLTTz+tjIwMFS1aVF27drUyKuBXF7b+i4+PV7169SxOYw9sAQhY7Ndff9XatWslnR9yvPDCC3nWz5kzxx+xAMvs3LlTr732mqTzx/uLjIxURkaGzp49m13TpEkTDR8+3KqIAAAL/fHHH/rjjz8k/f0+kZ6enr11eGhoqAYMGKDWrVtbmBLwnxEjRmjMmDHauXOnnnjiCYWHhys0NFTp6emSpJiYGD366KM5ThoCBLIzZ87om2++kXR+K1l+DDqPASBgMY/Hk/3f586d07Fjx6wLA1gsLi5Oo0aN0saNG/XHH38oNTVV/6+9Ow+K6krbAP4g+44soqJCxAwuuASFAC6NgI6ijDgkETXuChmXODGTaI1G0RjHcbTiUhkHSwXMaFywMDqMuyxBQY0oGjHOGEBFEVCaRQQEud8fftxppFe2hs7zq+qqtu/p97z33tO3itdz7ykrK4OhoSGcnJzwm9/8BhKJpNHtLURE9OtgY2OD8PBw3LlzBzk5OSgtLUVFRQWMjY3Rs2dPDBw4EOPHj4eTk5O2UyVqMxYWFvjb3/6GhIQEpKSk4NGjR6itrYWTkxOGDh2KyZMnw87OTttpErWZS5cuiQVwf39/LWfTfugJstUHIiIiIiIiIiIi0imcB0lERERERERERKTDWAAkIiIiIiIiIiLSYSwAEhERERERERER6TAWAImIiIiIiIiIiHQYC4BEREREREREREQ6jAVAIiIiIiIiIiIiHcYCIBERERERERERkQ5jAZCIiIiIiIiIiEiHsQBIRERERERERESkw1gAJCIiIiIiIiIi0mEsABIREREREREREekwFgCJiIiIiIiIiIh0GAuAREREREREREREOowFQCIiIiIiIiIiIh3GAiAREREREREREZEOYwGQiIiIiIiIiIhIh7EASEREREREREREpMNYACQiIvqVS0pKgp6eHvT09BAZGantdDqcyMhI8fglJSVpOx2V/Pz8xHyJWlpH+z1owsXFBXp6enBxcdF2KkRERBoz0HYCRERE7VlTiyRSqRQ2NjYtmww1mZ+fH5KTkxt93qlTJ1haWsLa2hr29vYYPHgw3nnnHQQFBcHV1VULmRK1jdzcXMTExAB4/fvw8/PTaj6tTfYakJiY2Cr7e+PGDRw7dgwAEBISgiFDhrR4H0RERE3FAiARERH9atXV1aG0tBSlpaV48OABMjIyEB0djaVLl0IikeCLL76Av7+/ttMkanG5ublYu3at+G9dLwC2hRs3bojH1MXFhQVAIiJqV1gAJCIiUlN8fLzabc3NzVsxk5bl5+cHQRC0nUab+fLLL+Hu7i7++8WLFygpKUF2djYuX76MtLQ0vHr1CklJSUhOTsbChQuxbds26Ovry40XGRnJW6eJ/p8u/x5yc3O1nQIREVGTsQBIRESkppCQEG2nQC1gxIgRSmc73b9/Hxs2bMCuXbsgCAK++eYb1NXV4e9//3vbJUlERERE1IK4CAgRERGRDGdnZ0RFRWHfvn3iZzt37sSRI0e0mBURERERUdOxAEhERNRG6lfGrJ99VlVVhe3bt8PHxwd2dnYwNTVFnz598Ic//AE5OTlqxayoqMCGDRswdOhQWFtbw9LSEgMGDMCKFSvw6NEjAMDs2bPFvuXdwqbOKsBvrn5ZV1eHmJgYjB49Go6OjjAxMUGvXr0wY8YM3Lx5U+1j8uTJE6xbtw4jRoxA165dYWRkBHt7e/j6+mL9+vWQSqVqx2ppM2bMwB//+Efx32vXrkVdXV2jduquepqQkICpU6eiT58+MDc3h7GxMbp164aBAwdi0qRJ2Lx5M/Ly8hp9T975uXv3LpYsWQI3NzeYm5ujc+fO8Pb2xtdff43q6urm7jrKy8tx8OBBREREwNPTE7a2tjA0NISNjQ369++PBQsW4MqVKxrFzM3NxapVq+Dr6wtHR0cYGRnB0tIS7u7umD17NuLi4vDy5UulMVJSUhAeHo5+/frBxsYGJiYm6NmzJ0JDQ3H06FGlt7Ln5uaKx3H27NkAXo+/lStXwt3dHVZWVrC3t8fIkSNx+PDhRrF++uknLFiwAG5ubjAzM4OdnR0mTJig0Uq3zR3v8lZwjo+Px4QJE+Dk5ARjY2N0794doaGhSElJkRujfjyNHj1a/Gzt2rViXNlXU255VfV7kHceSkpKsGHDBnh4eMDGxgbm5ubo378/PvvsMxQWFmqcQ2tRtApwTEwM9PT0MGfOHPGzOXPmyD2mirT02Kirq8O+ffswbtw49OjRA4aGhnL7b+p1iYiIOiCBiIiIFAIgvloqlkQiEbKzs4WBAwc2iC/7Mjc3FxITE5XGy8rKEpydnRXGsLOzE5KSkoRZs2aJn+Xk5DSKk5iYKG5fs2aN3L7q+3F2dhaePn0qSCQShf0aGBgIBw4cUHk8tm3bJpiZmSmMA0Do3LmzcOrUKTWOrnKy+ao6rrIKCwsFExMT8bsXL15s1GbNmjVKY7948UIIDg5Wup/1r0WLFjX6/pvn5+DBg0qPW9++fYXc3Fy1joU81dXVDfZZ2SsiIkKoqalRegxra2uFFStWCIaGhirjbd26VW4MqVQqTJw4UeX3R40aJRQVFcmNkZOTI7abNWuWkJqaKnTp0kVhrPDwcKGurk4QBEGIiooSDAwMFLbduXOn0mMgCC0z3mXPXWVlpfDee+8pjbdp06ZGMWTHk6qXvOuFKqp+D2+eh2vXrgm9evVSmIOjo6Nw69YtjfN4U1OvAbJkr4OyoqOj1T6m8rT02CguLhZGjRqltP/mXpeIiKjj4TMAiYiI2lhZWRkmTJiAO3fuYOzYsQgODoajoyPy8/MRGxuLjIwMVFRUICwsDHfu3EHnzp0bxSgqKkJAQADy8/MBAL169cLcuXPh5uaG58+f48yZM4iLi0NoaGiLrkRZW1uL0NBQJCcnw8fHB6GhoejZsyeKi4tx6NAhJCUloba2FvPmzYOXlxdcXV3lxlm1ahW++uorAK8XTHnvvffEmZDFxcU4f/48jh49CqlUiokTJ+LChQsYOXJki+2HuhwcHDB27FgcP34cwOvZU76+vhrFWLlyJU6cOCHGmzJlCgYMGAA7OztUVVUhJycHV65cQWJiospY165dw8aNG1FTU4Np06YhICAApqamuH37Nvbu3Yv8/Hz8/PPPGD16NK5fvw5ra2uN97murg5VVVVwdHREQEAABg8ejO7du8PU1BRSqRQ//vgjDh8+DKlUiqioKFhZWWHTpk1yYwmCgKlTp4q3T+vp6WH8+PEYM2YMunfvjurqaty7dw9JSUlITU2VO4OvrKwMw4cPR1ZWFgDg7bffxvvvv49+/frByMgI2dnZ+O6773Dz5k2kpKQgMDAQ6enpMDExUbiPDx48QEhICEpLSzF79mxIJBKYmJjg6tWr2LlzJyorK7Fr1y74+PjAysoKERERsLe3x9y5czF48GDU1tYiISEBhw8fBgB8/PHH8PPzQ9++feX21xrjfd68eYiLi4O7uzumTp0KV1dXVFRU4MSJEzh27BgAYPny5fDx8cGIESPE77m7uyM+Ph4//fQTvvjiCwDAlClTEBYW1qiPLl26KM2huR4+fIigoCAUFRUhNDQUY8aMga2tLXJzc7Fr1y7cu3cPBQUFmDJlCm7cuAFDQ8NWzaep/P39ER8fjwsXLmDHjh0AgCVLlqi1gnhrjI3p06cjJSUFAwYMEMdGeXk5kpOTxTYteV0iIqIOQtsVSCIiovYMKmZuNDWWgYGBcOTIkUZtampqhHHjxonttmzZIjfWzJkzxTb+/v7C8+fPG7X517/+JRgZGamc0aPJDMD619dffy233fz588U2S5Yskdvm5MmTgp6engBA8Pb2FvLy8uS2S01NFSwtLQUAgouLi8qZZso0Z/bPX/7yF/G7ISEhjbYrm/FUW1srWFtbCwAEV1dXobi4WGE/paWlQkZGRqPP35yxZWZmJncfpFKp4OPjI7aLiIiQ24+qGYC1tbXCv//9b+HVq1cKc3369KnYl76+vsIZh1u2bGkwkystLU1hzOzsbOHatWuNPg8LCxNjREZGCrW1tY3avHr1Svj000/FditXrmzURnbmGQDB1tZW+PHHHxu1S0xMFMeni4uLYGdnJ3h6egrPnj1r1Hb16tVivIULF8rdr5Yc72/OvF22bJnc8/Tll1+KbYKDg+X2p87vvik0mQEIQLC0tBSSk5MbtSsvLxeGDBkitjt69Giz8mrNGYD1ZGcCRkdHq4zXmmNj0aJFcn8rgtAy1yUiIup4WAAkIiJSQvYPKnVfs2bNUhlr9erVCvu8c+eO2C4wMLDR9idPnoi3U1pbWwsFBQUKY61atarFC4AzZ85U2J9UKhVvH+3Tp4/cNh4eHgIAwcHBQW5RRdauXbvEfg8ePKi0rTLN+eP/wIED4neHDx/eaLuygkd+fr647bPPPmtS7m8WALdv366wbV5enmBhYSEAEIyNjYXCwsJGbVQVANX13//+V4yzfv36RtufP38u2NnZiUVCZcU/RTIzM8U+5s2bp7L98OHDxd9FVVVVg21vFp7279+vME5gYKDYztjYWGGB88WLF+Lx7t27t9w2LTneZc+dRCIRb1F+U21treDk5CQAEExMTOQWjNpLAXDv3r0KY508eVJsN3/+/Gbl1R4LgK01Njw8PJQW8FviukRERB0PFwEhIiJqY506dcLSpUsVbu/bty969OgB4PXCA29KSEhATU0NgNe3eim7TW/JkiXQ19dvZsYNLVu2TOE2GxsbDBs2DADwyy+/oKqqqsH2W7duISMjAwAwf/582NraKu1r2rRpMDB4/cSS06dPNyftJpO9BfvZs2cafdfMzEx8X7/fzWFjY4MFCxYo3O7k5ITp06cDAKqrq8Vb/FpDnz590LVrVwBAenp6o+0nT54Uj9ekSZPg7e2tcR+xsbHi+88//1xl+5kzZwIASktLcfnyZYXtunTpgilTpijcLnvLbHBwMJydneW2MzU1Fcd7Tk5Om473Tz75ROGiEvr6+uIiH1VVVfjll1+UxtIWe3t7zJgxQ+H20aNHi8dD3rWwI2vNsbFo0SJ06qT4z7yWvi4REVHHwGcAEhERqSk+Pl6tdr169VK63c3NTeUfez169EBeXp7clR+vXr0qvpddyVOeLl26YMCAARqtzKuMubk5Bg0apLRNffFSEASUlJSIRSIADVYmffXqlfisMmUsLCxQUlIiPgOurQkyz6VTtoqnPFZWVvD29kZ6ejrOnz+P3/3ud1i8eDH8/PxgZGSkcS4jRoxQ+mw7AAgMDERUVBQA4MqVK5g7d67G/QDA48eP8e233+L8+fPIysqCVCrFixcv5LaVt0roDz/8IL6fNGlSk3KoHy8mJibIyspSOQbqV74GgKysLIwaNUpuu2HDhiktjMuOWS8vL6V91rdt6/Hu4+OjdHv97xCAVlfTVsbT01MsasljbGwMe3t7PHnypN3uQ1O15thQ9YzAlr4uERFRx8ACIBERkZpCQkJaJI69vb3KNsbGxgBez+J60+PHj8X3ihbZkNW7d+8WKwDa2tqqLILV5w6g0Yyo3Nxc8b2ihSMUKS4u1qh9S5EtPNjZ2Wn8/W+++Qb+/v4oLS3FiRMncOLECZiamsLT0xO+vr7w9/dvMNNJmbffflujNrJjRRNRUVFYtmyZwoLfm8rKyhp9JlsU7N+/f5PyqB8vVVVVmDx5skbfVTZeVJ1H2TGsSdu2HO+qriPK8movNLkWttd9aKrWHBuyxV9FWvK6REREHQNvASYiImpjym7NUkdFRYX4XvZWLkXMzc2b1Z+s5uZeUlLS5O++fPmyWX03lewf6g4ODhp/38PDA5mZmZgzZ454LiorK5GSkoKNGzdi7Nix6NGjB7Zu3Yq6ujqlsdQ5l7JtysvLNc73yJEj+Oijj8Tin4+PD1asWIGoqCgcPHgQ8fHx4qv+eLx69apRHNmioIWFhcZ5AK03XjQZx80Z86053pv7W2wPdGEfmqo1x4apqanKGC15XSIioo6B/6VDRETUwcgWeNSZoSVbMNQ22ULQ8ePHERwcrMVs1JOWlia+f/fdd5sUw9nZGXv37sXOnTtx+fJlpKWlITU1FUlJSXj+/DkKCgrwySefIDMzE9HR0QrjqHMuZdtYWlpqnOuf//xnAK+fIxcfH6/0HCl7HqGVlZX4/vnz5xrnAfzvlkdbW1uNn7/YHnTE8U5toz2MjZa6LhERUcfw6/1vNyIiog6qe/fu4nt1Hu6fnZ3dmuloRPbWtIcPH2oxE/UUFhbi7Nmz4r8lEkmz4hkbG2PUqFFYvnw5Tpw4gaKiIkRFRcHQ0BAAEBMTg2vXrin8/r1791T2IdtGdqyoIycnR/x+SEiI0qJEWVmZ0lsRZc91U5/fWB+jpKSkyUVEbepo453aTnsaG829LhERUcfAAiAREVEH4+npKb5PTExU2rawsBC3b99u7ZTUJltAO3nypBYzUc+GDRvE5zAOGjSoyTMAFTExMUF4eDgWLlwofia7eMabfvjhB7nPhZR17tw58b2m+T558kR836dPH6VtT58+rfTWQNkFOL7//nuN8qhXP17q6uq0tgp0c7Tn8S57+63sQjfUdJoc0/Y8NjS9LhERUcfAAiAREVEHExQUJD6Yff/+/SgqKlLYdseOHXKfz6YtQ4cOhbu7OwAgISEBFy9e1HJGin377bfYtm2b+O81a9ZovAqwut566y3xfW1trcJ2JSUl2L17t8Lt+fn52L9/P4DXs3omTpyoUR6yt5crm2348uVLrF+/Xmms8ePHi4s8fP/990hPT9coFwCYOXOm+H7dunUdbiGI9jzeZW9BbU+PCejINDmm7Xls1FP3ukRERB0DC4BEREQdTNeuXTFt2jQAQGlpKcLCwuT+sZmQkKDx6pKtTU9PDxs3bgTweoZMSEhIgxlr8jx+/BiRkZEttpKxKg8ePMBHH33UoPi0ePFi/P73v9c41vXr17F27Vrk5+crbFNRUYF9+/aJ/x4yZIjSmMuXL0dKSkqjz8vKyvDBBx+IC3/MmTNH40VL+vbtKxYxjh8/3uD5h/UqKyvx4YcfqjwfZmZmWLlyJYDXi4SEhIQoLQLev38f169fb/CZl5cX3n//fQDAzZs3MWnSJKUFb0EQcPHiRfzpT39Smltbac/jXba4k5GR0ap9/Vpocky1OTZa47pERETtHxcBISIiUtOxY8fUbvvuu++iW7durZbL5s2bcfbsWeTn5+PChQvo378/5s6di759+6K8vBxnzpxBXFwcbG1tMWTIEJw/fx5A+1h1c8KECVi3bh1Wr16Np0+fYsyYMRg5ciTGjRsHFxcXGBoaoqSkBHfv3sWlS5eQnp4OQRAQGBjYIv2npqY2WIGzsrISpaWlyM7ORnp6Oi5duiTOmtTT08PixYuxdevWJvVVWlqKyMhIrFu3Dr6+vvD19YWbmxusrKxQUlKCn3/+Gd999x0eP34MAPD29oa/v7/CeBMnTsTZs2fh7++PsLAwBAQEwNTUFFlZWdizZ48Y56233sJf//pXjfM1MjLCwoULsWnTJtTU1EAikWD27Nnw8vKCubk5srKyEBsbi4cPHyIgIAB3795FXl6ewnhLly7FxYsXERcXh4KCAvj6+iIoKAhjxoxBt27d8PLlS2RnZyM5ORnJycnYvHkz3nnnnQYx9uzZg//85z/IzMzEmTNn4OLigtDQUHh7e8PBwQE1NTUoKCjAzZs3ce7cOeTl5cHV1RWbN2/WeP9bg7bHuyKdO3eGh4cHMjIykJiYiIiICAQGBjZYOEYikai1omxHs2fPHpXFtnqrVq2CiYmJWm0HDhwIR0dHFBQU4J///Cfs7e3h7e3dYLX2cePGie+1NTZa+rpEREQdhEBEREQKAWjSKz4+XmEsiUSisl+JRCK2VyQrK0vo1auXwhzs7OyEpKQkYfr06eJnxcXFjeIkJiaK29esWSO3L2dnZwGA4OzsrDL3WbNmifFycnIUtouNjRU6d+6s1vG0tLQUbt68qbJvRWSPpzovPT09wc/PT7hw4YLK2GvWrBG/l5iY2GBbUlKS2n2OGjVKKCwsbBT/zfNz6NAhwczMTGEcNzc3pcdd1diqrq4Wxo0bpzRXiUQiPH36VK1xUVtbKyxbtkzQ19dXeQy2bdsmN0Z5ebkwY8YMQU9PT61jKe83lpOTI26fNWuWwnwFQRCio6PFttHR0UrbtuV4V+e6UE/ZuKx36tQpwcDAQGEeyvanqf1qch4EQbNrjzKaXgPqX1KpVKNcdu/erTSePG09NlriukRERB0PZwASERF1UP369UNWVha2bduGuLg43Lt3D4IgoGfPnggODsbHH38MJycn8TYzAwMDWFlZaTnr/5k5cyYmT56M2NhYnD59GpmZmXj69Clqa2thbW2N3r17w8PDAwEBAQgKCmowi6aldOrUCRYWFrCysoKDgwMGDRqEoUOHIigoCK6urs2OL5FIcOvWLZw9exZpaWm4ffs28vLyUFFRARMTEzg5OWHYsGEICwtTuuKurA8++ACDBw/Gjh07cObMGTx69AiGhoZwc3PDlClTsGjRIhgbGzc5ZyMjIyQkJCAmJgaxsbHIzMxEZWUlHBwcMHDgQEydOhUffvih2rNJ9fX1sWXLFkRERGD37t04f/48cnNzUVpaCjMzMzg7O8PLywuTJk1CUFCQ3BgWFhbYt28fVqxYgZiYGCQnJyMnJwdSqRRGRkZwcHCAm5sbfH19MX78eHh5eTV5/1tLexjvb/rtb3+LtLQ0bN++HZcuXUJ+fj5evHjR6v3qsnnz5sHZ2Rn/+Mc/cPXqVRQWFqp8dmVbj43WuC4REVH7pycIXPaLiIhIV9XV1aFr164oKirC4MGDcePGDW2nRBpKSkrC6NGjAbxeiCQyMlK7CRERERFRh6P9BwERERFRqzl06JC4aEJ9EYmIiIiIiH5dWAAkIiLqoNLT01FdXa1we2pqKhYtWgTg9a2u4eHhbZUaERERERG1I3wGIBERUQe1fv16XLp0CePHj8ewYcPQvXt3AMCjR49w7tw5nDp1CvVP+vj888/Rr18/baZLRERERERawgIgERFRByaVSnHgwAEcOHBA7nY9PT18+umn+Oqrr9o4MyIiIiIiai9YACQiIuqgNm/eDE9PT6SmpuL+/ft49uwZysrKYGlpiV69ekEikSA8PBwDBgzQdqpERERERKRFXAWYiIiIiIiIiIhIh3ERECIiIiIiIiIiIh3GAiAREREREREREZEOYwGQiIiIiIiIiIhIh7EASEREREREREREpMNYACQiIiIiIiIiItJhLAASERERERERERHpMBYAiYiIiIiIiIiIdBgLgERERERERERERDqMBUAiIiIiIiIiIiIdxgIgERERERERERGRDmMBkIiIiIiIiIiISIexAEhERERERERERKTD/g/ydiWv4a2x9AAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "height": 480, + "width": 640 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "(ggplot(mpg) +\n", + " aes(x = 'displ', y = 'hwy') +\n", + " geom_point() + \n", + " ggtitle('Engine Displacement in Liters vs Highway MPG') +\n", + " xlab('Engine Displacement in Liters') +\n", + " ylab('Highway MPG')\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plotly.com" + }, + "data": [ + { + "hovertemplate": "Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "orientation": "v", + "showlegend": false, + "type": "scatter", + "x": [ + 1.8, + 1.8, + 2.0, + 2.0, + 2.8, + 2.8, + 3.1, + 1.8, + 1.8, + 2.0, + 2.0, + 2.8, + 2.8, + 3.1, + 3.1, + 2.8, + 3.1, + 4.2, + 5.3, + 5.3, + 5.3, + 5.7, + 6.0, + 5.7, + 5.7, + 6.2, + 6.2, + 7.0, + 5.3, + 5.3, + 5.7, + 6.5, + 2.4, + 2.4, + 3.1, + 3.5, + 3.6, + 2.4, + 3.0, + 3.3, + 3.3, + 3.3, + 3.3, + 3.3, + 3.8, + 3.8, + 3.8, + 4.0, + 3.7, + 3.7, + 3.9, + 3.9, + 4.7, + 4.7, + 4.7, + 5.2, + 5.2, + 3.9, + 4.7, + 4.7, + 4.7, + 5.2, + 5.7, + 5.9, + 4.7, + 4.7, + 4.7, + 4.7, + 4.7, + 4.7, + 5.2, + 5.2, + 5.7, + 5.9, + 4.6, + 5.4, + 5.4, + 4.0, + 4.0, + 4.0, + 4.0, + 4.6, + 5.0, + 4.2, + 4.2, + 4.6, + 4.6, + 4.6, + 5.4, + 5.4, + 3.8, + 3.8, + 4.0, + 4.0, + 4.6, + 4.6, + 4.6, + 4.6, + 5.4, + 1.6, + 1.6, + 1.6, + 1.6, + 1.6, + 1.8, + 1.8, + 1.8, + 2.0, + 2.4, + 2.4, + 2.4, + 2.4, + 2.5, + 2.5, + 3.3, + 2.0, + 2.0, + 2.0, + 2.0, + 2.7, + 2.7, + 2.7, + 3.0, + 3.7, + 4.0, + 4.7, + 4.7, + 4.7, + 5.7, + 6.1, + 4.0, + 4.2, + 4.4, + 4.6, + 5.4, + 5.4, + 5.4, + 4.0, + 4.0, + 4.6, + 5.0, + 2.4, + 2.4, + 2.5, + 2.5, + 3.5, + 3.5, + 3.0, + 3.0, + 3.5, + 3.3, + 3.3, + 4.0, + 5.6, + 3.1, + 3.8, + 3.8, + 3.8, + 5.3, + 2.5, + 2.5, + 2.5, + 2.5, + 2.5, + 2.5, + 2.2, + 2.2, + 2.5, + 2.5, + 2.5, + 2.5, + 2.5, + 2.5, + 2.7, + 2.7, + 3.4, + 3.4, + 4.0, + 4.7, + 2.2, + 2.2, + 2.4, + 2.4, + 3.0, + 3.0, + 3.5, + 2.2, + 2.2, + 2.4, + 2.4, + 3.0, + 3.0, + 3.3, + 1.8, + 1.8, + 1.8, + 1.8, + 1.8, + 4.7, + 5.7, + 2.7, + 2.7, + 2.7, + 3.4, + 3.4, + 4.0, + 4.0, + 2.0, + 2.0, + 2.0, + 2.0, + 2.8, + 1.9, + 2.0, + 2.0, + 2.0, + 2.0, + 2.5, + 2.5, + 2.8, + 2.8, + 1.9, + 1.9, + 2.0, + 2.0, + 2.5, + 2.5, + 1.8, + 1.8, + 2.0, + 2.0, + 2.8, + 2.8, + 3.6 + ], + "xaxis": "x", + "y": [ + 29, + 29, + 31, + 30, + 26, + 26, + 27, + 26, + 25, + 28, + 27, + 25, + 25, + 25, + 25, + 24, + 25, + 23, + 20, + 15, + 20, + 17, + 17, + 26, + 23, + 26, + 25, + 24, + 19, + 14, + 15, + 17, + 27, + 30, + 26, + 29, + 26, + 24, + 24, + 22, + 22, + 24, + 24, + 17, + 22, + 21, + 23, + 23, + 19, + 18, + 17, + 17, + 19, + 19, + 12, + 17, + 15, + 17, + 17, + 12, + 17, + 16, + 18, + 15, + 16, + 12, + 17, + 17, + 16, + 12, + 15, + 16, + 17, + 15, + 17, + 17, + 18, + 17, + 19, + 17, + 19, + 19, + 17, + 17, + 17, + 16, + 16, + 17, + 15, + 17, + 26, + 25, + 26, + 24, + 21, + 22, + 23, + 22, + 20, + 33, + 32, + 32, + 29, + 32, + 34, + 36, + 36, + 29, + 26, + 27, + 30, + 31, + 26, + 26, + 28, + 26, + 29, + 28, + 27, + 24, + 24, + 24, + 22, + 19, + 20, + 17, + 12, + 19, + 18, + 14, + 15, + 18, + 18, + 15, + 17, + 16, + 18, + 17, + 19, + 19, + 17, + 29, + 27, + 31, + 32, + 27, + 26, + 26, + 25, + 25, + 17, + 17, + 20, + 18, + 26, + 26, + 27, + 28, + 25, + 25, + 24, + 27, + 25, + 26, + 23, + 26, + 26, + 26, + 26, + 25, + 27, + 25, + 27, + 20, + 20, + 19, + 17, + 20, + 17, + 29, + 27, + 31, + 31, + 26, + 26, + 28, + 27, + 29, + 31, + 31, + 26, + 26, + 27, + 30, + 33, + 35, + 37, + 35, + 15, + 18, + 20, + 20, + 22, + 17, + 19, + 18, + 20, + 29, + 26, + 29, + 29, + 24, + 44, + 29, + 26, + 29, + 29, + 29, + 29, + 23, + 24, + 44, + 41, + 29, + 26, + 28, + 29, + 29, + 29, + 28, + 29, + 26, + 26, + 26 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Engine Displacement in Liters vs Highway MPG" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "Engine Displacement in Liters" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "Highway MPG" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.scatter(\n", + " mpg,\n", + " x='displ',\n", + " y='hwy',\n", + " title='Engine Displacement in Liters vs Highway MPG',\n", + " labels={\n", + " 'displ': 'Engine Displacement in Liters',\n", + " 'hwy': 'Highway MPG'\n", + " }\n", + ")\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scatter Plot, Faceted with Color" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Jeremy\\AppData\\Local\\Temp\\ipykernel_42836\\2769678361.py:1: FutureWarning:\n", + "\n", + "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSyUlEQVR4nO3deXwTdf4/8NckIemRpidtoRRErHJU0AKyBWW5lMMFWfFYRQX0q66LrtpdH4DrftdjV+DB99FVd1dWXAVcRTxWWPCHoIjUA0RsRUFEKyLUQsvZlvRISGZ+f6RX2mQyaSaTTPp6+uhDM/lk5p1JJW9m5vMaQZIkCUREREQaMUS6ACIiIupe2HwQERGRpth8EBERkabYfBAREZGm2HwQERGRpth8EBERkabYfBAREZGm2HwQERGRpkyRLqAjURRx9OhRJCUlQRCESJdDRERECkiShLNnz6J3794wGOSPbURd83H06FHk5uZGugwiIiLqgoqKCvTp00d2TNQ1H0lJSQA8xdtstghXQ0RERErU1dUhNze39XtcTkjNx5IlS7Bo0SLcf//9eOqppwAA48aNQ0lJide4u+++G//85z8VrbPlVIvNZmPzQUREpDNKLpnocvOxe/duPPfccxg6dGin5+688048/vjjrY8TEhK6uhkiIiKKMV2a7WK32zF79mw8//zzSE1N7fR8QkICsrOzW394BIOIiIhadKn5mD9/Pq6++mpMmjTJ5/OvvPIKMjIykJ+fj0WLFqGhocHvuhwOB+rq6rx+iIiIKHYFfdpl7dq1KCsrw+7du30+f/PNN6Nfv37o3bs3vvrqKyxYsADffvst3nrrLZ/jFy9ejMceeyzYMoiIiEinBEmSJKWDKyoqMGLECLz33nut13qMGzcOl1xySesFpx1t27YNEydOxPfff48BAwZ0et7hcMDhcLQ+brlatra2lqdriIiIdKKurg7JycmKvr+DOvJRWlqK48ePo6CgoHWZ2+3Ghx9+iL///e9wOBwwGo1erxk1ahQA+G0+LBYLLBZLMGUQERGRjgXVfEycOBF79+71WjZv3jwMHDgQCxYs6NR4AMCePXsAAL169ep6lURERBQzgmo+kpKSkJ+f77UsMTER6enpyM/Px8GDB7FmzRpMmzYN6enp+Oqrr/Dggw9i7NixPqfkEhERUfejasKp2WzG1q1b8dRTT6G+vh65ubmYNWsWHnnkETU3E7VElxOV29+A/UQlrD1zkDPuehhM5kiXRUREFFWCuuBUC8FcsBJNyv/zNLatfwd2Z1s/ZzW7MGHmVOTNuj+ClREREYVfMN/fXcr5IG/l/3kaG15/F3an9zUvdqcRG15/F+X/eTpClREREUUfNh8hEl1ObFv/TvOjjnn2nscfrH8HosupaV1ERETRis1HiCq3v9F8qsXfjXQEnHWaULn9DS3LIiIiilpsPkJkP1Gp6jgiIqJYx+YjRNaeOaqOIyIiinVsPkKUM+56WM0uAP4mDUlIMruQM+56LcsiIiKKWmw+QmQwmTFh5tTmRx0bEM/j8TOnMu+DiIioGZsPFeTNuh8zbrgKVrPba3mS2Y0ZN1zFnA8iIqJ2GDKmIiacEhFRdxW2u9qSPIPJjNxJsyNdBhERUVTjaRciIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0pQp0gXEElF0o/Kbr2GvOQNrSipyBg2BwWCMdFlERERRhc2HSsp37cC2VStgP32ydZk1LQMT5t6FvFGjI1gZERFRdOFpFxWU79qBDcVPejUeAGA/fRIbip9E+a4dEaqMiIgo+rD5CJEourFt1QrZMR+sXgFRdGtUERERUXRj8xGiym++7nTEo6Ozp06i8puvNaqIiIgourH5CJG95oyq44iIiGIdm48QWVNSVR1HREQU69h8hChn0BBY0zJkxySlZyBn0BCNKiIiIopubD5CZDAYMWHuXbJjxs+5i3kfREREzdh8qCBv1GjMKHq40xGQpPQMzCh6mDkfRERE7TBkTCV5o0ZjwMhRTDglIiIKIKQjH0uWLIEgCHjggQdalzU1NWH+/PlIT0+H1WrFrFmzUF1dHWqdumAwGJE7ZCgGjfk5cocMZeNBRETkQ5ebj927d+O5557D0KFDvZY/+OCD2LhxI9544w2UlJTg6NGjuPbaa0MulIiIiGJDl5oPu92O2bNn4/nnn0dqatsU0traWrzwwgsoLi7GhAkTMHz4cKxcuRI7duzAp59+qlrRREREpF9daj7mz5+Pq6++GpMmTfJaXlpainPnznktHzhwIPr27YudO3f6XJfD4UBdXZ3XDxEREcWuoC84Xbt2LcrKyrB79+5Oz1VVVcFsNiMlJcVreVZWFqqqqnyub/HixXjssceCLYOIiIh0KqgjHxUVFbj//vvxyiuvIC4uTpUCFi1ahNra2tafiooKVdZLRERE0Smo5qO0tBTHjx9HQUEBTCYTTCYTSkpK8Mwzz8BkMiErKwtOpxM1NTVer6uurkZ2drbPdVosFthsNq8fIiIiil1BnXaZOHEi9u7d67Vs3rx5GDhwIBYsWIDc3Fz06NED77//PmbNmgUA+Pbbb3HkyBEUFhaqVzURERHpVlDNR1JSEvLz872WJSYmIj09vXX5HXfcgaKiIqSlpcFms+G+++5DYWEhfvazn6lXNREREemW6gmnf/3rX2EwGDBr1iw4HA5MnjwZzz77rNqbISIiIp0SJEmSIl1Ee3V1dUhOTkZtbS2v/yAiItKJYL6/eWM5IiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItKUKdIF6IroBg7vAOzVgDUL6DcaMBgjXRUREZGusPlQav8GYPMCoO5o2zJbb2DKUmDwjMjVRUREpDM87aLE/g3A67d5Nx4AUHfMs3z/hsjURUREpENsPgIR3Z4jHpB8PNm8bPNCzzgiIiIKiM1HIId3dD7i4UUC6io944iIiCggNh+B2KvVHUdERNTNsfkIxJql7jgiIqJujs1HIP1Ge2a1QPAzQABsOZ5xREREFBCbj0AMRs90WgCdG5Dmx1OWMO+DiIhIITYfSgyeAdzwEmDr5b3c1tuznDkfREREijFkTKnBM+C64Ep8uXY5aqqPIiWrN4b96h6YzPGRroyIiEhX2HwoVPLyiyh9ez0kSWxecgAlm7Zj+C9m4ue33B7R2oiIiPSEzYcCJS+/iM83vtVpuSSJrcvZgBARESnDaz4CcLmcKH17veyY0v+3Hi6XU5uCiIiIdI7NRwBfbtnU7lSLb5Io4sstmzSqiIiISN/YfARQU12l6jgiIqLujs1HAClZ2aqOIyIi6u7YfAQwbPI0CIL8bhIMBgybPE2jioiIiPSNzUcAJpMZw38xU3bM8KtnwmQya1MQERGRznGqrQIt02i9cz48RzyGX82cDyIiomAIkiRJkS6ivbq6OiQnJ6O2thY2my3S5XhxuZz4cssm1FRXISUrG8MmT+MRDyIiIgT3/c0jH0EwARieVgkIPwKp7kiXQ0REpEtBXfOxfPlyDB06FDabDTabDYWFhXjnnXdanx83bhwEQfD6+fWvf6160RHx7h+Bv2QBWx4GPlvh+fdfsjzLiYiISLGgjnz06dMHS5YsQV5eHiRJwurVq3HNNdfgiy++wJAhQwAAd955Jx5//PHW1yQkJKhbcSS8+0dgxzOdl0ti2/KrntC2JiIiIp0KqvmYPn261+O//OUvWL58OT799NPW5iMhIQHZ2TGUeeFyAjv/Lj9m5z+ACX8EeP0HERFRQF2eaut2u7F27VrU19ejsLCwdfkrr7yCjIwM5OfnY9GiRWhoaJBdj8PhQF1dnddPVNn9vOcIhxzJ7RlHREREAQV9wenevXtRWFiIpqYmWK1WrFu3DoMHDwYA3HzzzejXrx969+6Nr776CgsWLMC3336Lt97qfEfYFosXL8Zjjz3W9XcQbmd+VHccERFRNxf0VFun04kjR46gtrYWb775Jv71r3+hpKSktQFpb9u2bZg4cSK+//57DBgwwOf6HA4HHA5H6+O6ujrk5uZGz1Tbnf/wXFwayOQngcL54a+HiIgoCgUz1TbknI9JkyZhwIABeO655zo9V19fD6vVis2bN2Py5MmK1hd1OR8up2dWi9ypF8EI/KGK13wQEVG3Fcz3d8jx6qIoeh25aG/Pnj0AgF69eoW6mcgxmYHCe+XHFM5n40FERKRQUNd8LFq0CFOnTkXfvn1x9uxZrFmzBtu3b8eWLVtw8OBBrFmzBtOmTUN6ejq++uorPPjggxg7diyGDh0arvq10TKNduffvY+ACEZP48FptkRERIoF1XwcP34ct912G44dO4bk5GQMHToUW7ZswZVXXomKigps3boVTz31FOrr65Gbm4tZs2bhkUceCVft2rrqCYjjHkbl+mWwH/8J1sw+yJn5EAzm+EhXRkREpCu8t4tC5bt2YNuqFbCfPtm6zJqWgQlz70LeqNERrIyIiCjyNL3mozso37UDG4qf9Go8AMB++iQ2FD+J8l07IlQZERGR/rD5CEAU3di2aoXsmA9Wr4Ao8kZzRERESrD5CKDym687HfHo6Oypk6j85muNKiIiItI3Nh8B2GvOqDqOiIiou2PzEYA1JVXVcURERN0dm48AcgYNgTUtQ3ZMUnoGcgYN0agiIiIifWPzEYDBYMSEuXfJjhk/5y4YDEaNKiIiItI3Nh8K5I0ajRlFD3c6ApKUnoEZRQ8z54OIiCgIQSWcdmd5o0ZjwMhRntkvNWdgTUlFzqAhPOJBREQUpG7TfIiiO+TGwQAgN6EWEE8ACTxoRERE1BXdovlQJRp9/wZg8wKg7mjbMltvYMpSYPAMlSsmIiKKXTH/13dVotH3bwBev8278QCAumOe5fs3qFgxERFRbIvp5kOVaHTR7TniAV/332tetnmhZxwREREFFNPNhyrR6Id3dD7i4UUC6io944iIiCigmG4+VIlGt1cr3JjCcURERN1cTDcfqkSjW7MUbkzhOCIiom4uppsPVaLR+432zGqB4GeAANhyPOOIiIgooJhuPlSJRjcYPdNpAXRuQJofT1niGUdEREQBxXTzAagUjT54BnDDS4Ctl/dyW2/PcuZ8EBERKSZIkuRrDmnE1NXVITk5GbW1tbDZbKqtt6nJjs1/+ytqq6uQnJWNKfc9iLg4a3ArEd2eWS32as81Hv1Gx+QRD7foRtnxMpxoOIGeCT1RkFkAYwy+TyIiUk8w39/dovlYv+wJHPx8V6flA0aMwsyH/qjKNmLF1sNbseSzJahuaJu9k5WQhYWXLcSkfpMiWBkREUWzYL6/Y/60i7/GAwAOfr4L65c9oXFF0Wvr4a0o2l7k1XgAwPGG4yjaXoSth7dGqDIiIoolMd18OJ2NfhuPFgc/3wWns1GjiqKXW3RjyWdLIPlIcm1ZtvSzpXAzyZWIiEIU083Hh/9eqeq4WFZ2vKzTEY/2JEioaqhC2fEyDasiIqJYFNPNR03VMVXHxbITDSdUHUdERORPTDcfKdm9Ag8KYlws65nQU9VxRERE/sR08zH21nmqjotlBZkFyErIguAnyVWAgOyEbBRkFmhcGRERxZqYbj7M5ngMGDFKdsyAEaNgNsdrVFH0MhqMWHjZQgDo1IC0PF5w2QLmfRARUchiuvkAgJkP/dFvA8KcD2+T+k1C8bhiZCZkei3PSshC8bhi5nwQEZEqukXIGOCZdvvhv1eipuoYUrJ7Yeyt83jEww8mnBIRUbCC+f42aVRTxJnN8Zh0x28iW0SUxLM3NtSieMtdONxYhX7x2SiavALxCcma10FERN1Tt2k+Im7/BmDzAqDuaNsyW2/PHXM1vDHdb1+9Eh84jgGC5zqOnedOY+3rYzDe0gvP3PQe49WJiCjsus1pl4javwF4/TagU3po84WdGt0Zt7XxAFqbDwBA869Afo9UfO2q7ZRy2nLBKa/7ICIif3hvl2giuj1HPHzElrcu27zQMy6MGhtqfTce7R7vO3eG8epERBR2bD7C7fAO71MtnUhAXaVnXBgVb7nL02R0bDxayD0HxqsTEZF62HyEm93//VK6NK6LDjdWqbIexqsTEVGo2HyEmzVL3XFd1C8+W5X1MF6diIhCxeYj3PqN9sxq8RNbDgiALcczLoyKJq/wXFjq7/piuefAeHUiIlIPm49wMxg902kBdG5Amh9PWRL2vI/4hGSMtzTfQK9jk9FutovQ/I93lYxXJyIi9bD50MLgGZ7ptLYOd8+19dZsmi0APHPTe20NSAfjLb3w6uyPGK9ORERhx5yPYISaUOpyArufB878CKSeB4y8EzCZw1WtX7X2E7j37ZtQ5axBtjkFf//Fq0i2tl3LwXh1IiIKVthyPpYvX46hQ4fCZrPBZrOhsLAQ77zzTuvzTU1NmD9/PtLT02G1WjFr1ixUV4d3Fodm9m8AnsoHVv8C+M8dnn8/le9ZrvT1zwwDtjwMfLbC8+9nhil/vUqKPy/G2LcmYY+jGlWSA3sc1Rj71iQUf17cOsZoMGJk9khMO38aRmaPZONBRESqCqr56NOnD5YsWYLS0lJ8/vnnmDBhAq655hp8/fXXAIAHH3wQGzduxBtvvIGSkhIcPXoU1157bVgK11RLQmnHvI66Y57lgRqIUF+vkuLPi7Hy65UQJdFruSiJWPn1Sq8GhIiIKFxCPu2SlpaGZcuW4brrrkPPnj2xZs0aXHfddQCAAwcOYNCgQdi5cyd+9rOfKVpf1J12Ed2eIxx+g8IEz7UbD+z1fQom1NerxOlyYuSakZ0aj/YMggG7b94NcwROBRERkb5pEq/udruxdu1a1NfXo7CwEKWlpTh37hwmTWq7KHHgwIHo27cvdu7c6Xc9DocDdXV1Xj9RJdSE0ihJOH3tu9dkGw/AcwTkte9eC2sdREREQTcfe/fuhdVqhcViwa9//WusW7cOgwcPRlVVFcxmM1JSUrzGZ2VloarKf7rm4sWLkZyc3PqTm5sb9JsIq1ATSqMk4bSirkLVcURERF0VdPNx0UUXYc+ePdi1axfuuecezJkzB/v37+9yAYsWLUJtbW3rT0VFlH35hZpQGiUJp7k2ZU2d0nFERERdFXTzYTabccEFF2D48OFYvHgxhg0bhqeffhrZ2dlwOp2oqanxGl9dXY3sbP/R3haLpXX2TMtPVAk1oTRKEk5vvPBGGAT5j9sgGHDjhTeGtQ4iIqKQQ8ZEUYTD4cDw4cPRo0cPvP/++63Pffvttzhy5AgKCwtD3UzkhJpQGiUJp2aTGXMGz5EdM2fwHF5sSkREYWcKZvCiRYswdepU9O3bF2fPnsWaNWuwfft2bNmyBcnJybjjjjtQVFSEtLQ02Gw23HfffSgsLFQ80yVqtSSUbl7gffGorbencQiUUBrq61VSNKIIALB6/2qvi08NggFzBs9pfZ6IiCicgppqe8cdd+D999/HsWPHkJycjKFDh2LBggW48sorAXhCxn73u9/h1VdfhcPhwOTJk/Hss8/KnnbpKOqm2rYXasJpqK9XidPlxGvfvYaKugrk2nJx44U38ogHERGFJJjv724Try6KblR+8zXsNWdgTUlFzqAhMAT5xe9ssuO194tQYf8JudY+uHFiMcxxVsWvbzxViXV/vgW19RKSEwX88pGXEZ+eE1QNbpcTZXv/jRN1R9DT1hcFF98KY7CNQ4AmSHQ2onL9MtiP/wRrZh/kzHwIBnN8cNugVoyrJ6LugM1HB+W7dmDbqhWwnz7ZusyaloEJc+9C3ihlF3oWv/FLrK4vhyi0XbdhkCTMScxD0fXrAr7++Xt+jtrTVq87xkqQkJxmx53LSxTVsPXjxVjy3SuoNratI8stYeGFszHp8kWK1oH9G/yc/lkKDJ6B8hX3YVvJAdhdltanrSYHJvx8IPLu+puybVCrrYe3YslnS1Dd0DaVOishCwsvW8gb9RFRTGHz0U75rh3YUPyk3+dnFD0csAEpfuOXWFlf7nnQrvlouRX9vAANSEvjAaBT8wFAUQOy9ePFKPr+Fc8r2tUgNNdQfIGCBqQl5h0dP3LP+sqTJmHDZ41ey1oqBYAZE89nAxKErYe3omh7Uevn3KLld4B3CiaiWKJJwqkeiKIb21atkB3zweoVEEW33+edTXas9tV4tHu8ur4czia7z9c3nqr02Xi0f1x72orGU5V+a3C7nFjyXefGAwCk5sdLv3sFbpfT7zoguj1HPDo1HgAgQZQkbCurba3Mm+fxByUHIDobQYG5RTeWfLakU+MBtDWdSz9bCrfM7x4RUayK6eaj8puvvU61+HL21ElUfvO13+dfe7/Ic6qlY+PRQhAgCgJee9/3TJF1f74FQvM/Pl/e/M+6P9/it4ayvf/2nGrxU4MkCKgyCijb+2+/6wgU817ZkNx8qsV/HslZlwWV65f53wa1Kjte5nWqpSMJEqoaqlB2vEzDqoiIokNMNx/2mjMhj6uw/6RoHf7G1dYrO6slN+5E3RFF65AdFyC+3e5SdtGq/biy/dHdnWg4oeo4IqJYEtPNhzUlNeRxudY+itbhb1xyor8jCcrH9bT1VbQO2XEB4tutJplTNu3HZSrbH91dz4Seqo4jIoolMd185AwaAmtahuyYpPQM5Awa4vf5GycWwyBJrReXdiJJMEgSbpxY7PPpXz7yMqTmf3y+vPmfXz7yst8aCi6+FVluqfXi0o4ESUK2W0LBxbf6XUegmPechFpYTQ74vibEU2mSyYGcmQ/53wa1KsgsQFZCluzptuyEbBRkFmhcGRFR5MV082EwGDFh7l2yY8bPuUs278McZ8WcxDzPg45f/s2P5yTm+c37iE/PQXKa52LUjg1I+9kucnkfRpMZCy+cDQCdGpCWxwsunC2f9xEg5t0gCJhQkNxamTfP4/E/H8i8D4WMBiMWXrYQgP8LjRdctoB5H0TULcV08wEAeaNGY0bRw52OgCSlZyiaZgsARdevw7zEvE47y4DA02wB4M7lJa0NSEdKcz4mXb4IxRfMRqbovTxLVDjNFmiLebf18l5u6w3c8BLyfvcmZkw8v9MpmCSTk9Nsu2BSv0koHleMzIRMr+VZCVmcZktE3VrM53y0iIaE07qqg1j1+P/A0WiEJd6Nuf/7L9iyBwRVgxYJp64mO7584VHUVFchJSsbw+54FKYg3mcsUSOdVIs4e6aoElGkMWQsCr256vc4sG0f4h1t9/JrtLgwcEI+rpv7fxGszJsaabCxQo10Ui0STpmiSkTRgM1HlHlz1e/x4zvfAPCdcHre1EFR0YCokQYbK9RIJ9Ui4ZQpqkQULZhwGkXOORtxYNs+AP4vPDzwwT6ci3ByqBppsLFCjXRSLRJOmaJKRHrF5iPMtm96GvEOk+yUy/gmE7ZvelrjyrypkQYbK9RIJ9Ui4ZQpqkSkV2w+wuzkSf/3bOnKuHBRIw02VqiRTqpFwilTVIlIr9h8hFlGhv/8jq6MCxc10mBjhRrppFoknDJFlYj0is1HmI2bdj8aLS7ZhNPGOBfGTbtf48q8qZEGGyvUSCfVIuGUKapEpFdsPsKshzkeAyfkA/CfcDpwfD56RDg5VI002FihRjqpFgmnTFElIr1i86GB6+b+H86bOghNFu9ZB01x7qiZZguokwYbK9RIJ9Ui4ZQpqkSkR8z50NA5ZyO2b3oaJ09WIiMjB+Om3R/xIx6+qJEGGyvUSA7VIn2UCadEFGnBfH+bZJ8lVRkNRgy05sLeaIDVmtOlLwc14tWdzka8tmspKuqOINfWFzeOWgBzuyZIcLnQ84cypJ+qgSE9BULeRYBZh19kAWLklTACGNnYBNQ3AEJTeOokIupmeORDI+X/eRrb1r8Du7Ot37OaXZgwcyryZim72HTrx4ux5LtXUG1sO7+f5Zaw8EKFN5YDULz5N1hd9SFEoW0dBknCnOyxKJryLBpf/htq9vWBG22nXow4iZT8nxB/y32KthEV9m8ANi8A6o62LbP19tzZd/AMzdbBeHUi6i4Yrx5lyv/zNDa8/m7zo/YXBnp2/YwbrgrYgGz9eDGKvn/F84p2jYPQ/PEpubNt8ebfYGXVh80vbFdH8zoeqR+LMRW/8lGnCEBAev6X+mhA9m8AXr8N6DTDqPk93fBS4OZBhXUwXp2IuhPGq0cR0eXEtvXvND/qOCXS8/iD9e9AdDnhj9vlxJLvOjceACA1P1763Stwy6zD6WzEal+NR/NjgyTgwmNT/NRpACChZl8OJKfD7zaiguj2HK3wObW5ednmhZ5xYVwH49WJiPxj8xFmldvfaD7V4juLARBw1mlC5fY3/K6jbO+/PadaOjYNzSRBQJVRQNnef/tdx2u7lnpOtfhZx5DGPPR0pcrUaYAbPeHY8qrfbUSFwzu8T5N0IgF1lZ5xYVwH49WJiPxj8xFm9hPKYtPlxp2oO6JoHXLjKgKsI82VrGgb4qkaReMixu7/y1jxOBXWwXh1IiL/2HyEmbWnsth0uXE9bX0VrUNuXG6AdZw21SrahiE9RdG4iLFmhT5OhXUwXp2IyD82H2GWM+56WM0u+L5+AAAkJJldyBl3vd91FFx8K7LcUuvFpR0JkoRst4SCi2/1u44bRy2AQZJaLy7t6Ov4cpwwnYHn4lJfRBhxApbJN/ndRlToN9ozI0XmNBdsOZ5xYVwH49WJiPxj8xFmBpMZE2ZObX7U8Yvf83j8zKkwyGR1GE1mLLxwNgB0akBaHi+4cLZs3ofZHI852WObN9uhDkmCKEj4rtdmeL5wOzYgntkuKfmVEMwWv9uICgajZyosAH8X+GLKEvm8DxXWwXh1IiL/2HxoIG/W/Zhxw1Wwmr1nHSSZ3Yqm2QLApMsXofiC2cjs0Bdkicqm2QJA0ZRnMS97bKcP3QBgXvZY3Dj/WaTnfwkjTns9b8Qp/UyzBTxTYG94CbD18l5u661smq1K62C8OhGRb8z5CEaIiZlOew0+XDofNadrkZKWjLEL/gGzNSWoEhxNdmxa/WecPl6NtMwsTJvzCCxx1qDW0dhkR/GHC3DY/hP6WfugaOxSxLdbh73mND555jkYG+LgTmjCmN/eDWtKWlDbCMTZZMdr7xehwv4Tcq19cOPEYpiDfR8NtSjechcON1ahX3w2iiavQHxC24WzgZJcFVEhJdXpcuK1715DRV0Fcm25uPHCG2Fud5Qq0PNKNDkb8crWZ3Hi+E/omdkHsyf9BnFBvFdG6lNXuEUJnx06jeNnm5CZFIfL+qfBaPB3ujJy9FKn3jFkLBxCTLss+fPtKN1bDand4XEBEoZfnIWfP/KiohJKXn4RpW+vhyS1Hf4QBAOG/2Imfn7L7YrWESgNc+1f/oJLz1yCRFPbvq931eGL1D341R/+oGgbgRS/8Uusri/vnLKamIei69cpWsdvX70SHziOdQpLG2/phWdueg/Fnxdj9f7VENvtK4NgwJzBc1A0okiV96FEoP2tRp1vvv1PHHhzI+Ib2/ZFY7yEgddNx3W/+HXA15fv2oFtq1bAfvpk6zJrWgYmzL2rW91MkIKzed8xPLZxP47Vtt12oFdyHP40fTCm5PeSeaW29FJnLGDzobYQ0y5L/nw7Pt9b7f0aoHV9IxQ0ICUvv4jPN77l9/kR068N2IAESsN84NAMXNl4lWdZuy/1ll+RT2wfhdyAFL/xS6ysL2/ecOeU1XkKGpDWxsPPOnKNiagQG/y+ft6QeZo0IIH297jccfig4gO/r1dS55tv/xM//nuj13qBtpCx826Vb0DKd+3AhuIn/T7f3e5mTMps3ncM97xc5u9PRCy/pSAqvtj1UmesYMKpmkJMu3Q12VHqs/Foe1y6txquJrvfElwuJ0rfXi9bZun/Ww+XXEpqgDRMoxsYYy/0VNUhiKzl8aVnLkF9w1nZOuQ4m+xY7avxaPd4dX05nDL7orGh1nfj0e5xhbteto7V+1fDKbOv1BBof0uQZBsPIHCd51xOHHizc+PR/vGBNzfinJ91iKIb21atkK3hg9UrIDIhldpxixIe27hf7k9EPLZxP9xiZP9eq5c6uys2H4GEmHb55QuPNp9q8T9tU4KAL1941O8WvtyyyetUi88qRBFfbtnk9/lAaZhTDw1FosnWqfForVIQkGiyYdOL8l9Wcl57v0g2ZRWCAFEQ8Nr7/v+2X7zlLs/rZdbh97lmoiTite9eU1p2lwTa30oEqnP7zv8ivlGQnWob3yhg+87/+ny+8puvvU61+HL21ElUfvO18qIp5n126LTXKYyOJADHapvw2aHTfsdoQS91dldsPgIJMe2yprpK0cvlxqmxjkAplz0dKYq24T7V9dvKV9h/Cnnc4UZl+yLgNuoqVFmPP2qlisrVefKEXFMceJy95oyi1ysdR93D8bPK/gxQOi5c9FJnd8XmI5AQ0y5TsrIVvVxunBrrCJRyecJSo2gbxvQ4ReN8ybX2CXlcv3hl+yLgNmy5qqzHH7VSReXqzOjZW9E6/I2zpqQqer3ScdQ9ZCYp+zNA6bhw0Uud3RWbj0BCTLscdsejECBBLuFUgIRhdzzqt4Rhk6dBEOQ/KsFgwLDJ0/w+HygN853+X6HeVQd/1x9LkoR6Vx2m3X6XbB1ybpxYLJuyCkmCQZJw48Riv+somrzC83qZdfh9rplBMODGC29UWnaXBNrfSgSqc1zhNWiMl3xeVwJ4ri1pjJcwrvAan8/nDBoCa1qGbA1J6RnIGTREedEU8y7rn4ZeyXFyfyKiV7JnOmsk6aXO7orNRyAhpl2a4qwYfnHLURHfCafDL86CSSbjwmQyY/gvZsqWOfzqmTDJpaQGSMN0G4FPrDs9VXX48m55/EXqHiQmJMnWIcccZ8WcxLyWlXo/2fx4TmKebN5HfEIyxlt6ya4j15goW8ecwXOCztEIVqD9LUDA+NzxsusIVGcPkxkDr5sOAJ0akJbHA6+bjh5+1mEwGDFhrnwzOX7OXcz7IC9Gg4A/TR8MwO+fiPjT9MERz9HQS53dFZsPJUJMu/z5Iy9ixMVZPv8HUDLNFgB+fsvtGDH92k5HQASDQdE0WyBwGubtj/4Zn9g+QoPbe0ZLg/usKtNsAaDo+nWYl5jnO2VVYc7HMze919aAdDDe0gubbt2FeUPmwdBhXxkEg2bTbIHA+/uZCc+EXOd1v/g1zrt1Opo65Ik1xQeeZgsAeaNGY0bRw52OgCSlZ3CaLfk1Jb8Xlt9SgOxk71MW2clxUTV9VS91dkfM+QhGiGmXriY7vnzhUdRUVyElKxvD7nhU9oiHz3W4nPhyy6a2dUyeJnvEwxe36EbZ8TKcaDiBngk9UZBZ4HX/j/qGs9j04gq4TzXBmB6HabffFdIRD180SThVITlUDYH2txp1nnM5sX3nf3HyxFFk9OyNcYXX+D3i4QsTTqkr9JIcqpc69S6Y72+TRjURmk/BzP+/0NZhMmP41TNDWofRYMTI7JF+n4839MDklBy4RQeMKRbEG3qEtD1fzCYzbk0bBgjJQOp5QBeaAnOcFVcV/r71S71j82IU3Rh47Buk1x5Gz3o7jBdEZ16F2WTGrYP935FYCaPBiIFpF8FuyIQ1JTXom8kZDEbkDhkaUg2krUBNrRaMBgGFA9I13SbFhqCOfCxevBhvvfUWDhw4gPj4eIwePRpLly7FRRdd1Dpm3LhxKCkp8Xrd3XffjX/+85+KthG1Rz5CjFfXi5p/vAR7RV8A7f8Qc8OaewQp829TZyPv/hHY+XegfXaJYAAK7wWuekLRKgLFlm/97x1YcnIHqk1t/XWWy4WFGaMx6ZoX1HkfKtSpBsajdz9a/F7FCsarayds8epTpkzBr371K4wcORIulwsPP/ww9u3bh/379yMx0XOR37hx43DhhRfi8ccfb31dQkKC4kYiKpuPEOPV9cLTeJzX/KhzDLw198fQG5B3/wjseMb/86N/G7ABCRRbPjdhAFbVl3uebRc4JjT/qhenjtKkAQlUpxp3nWU8evejxe9VrGC8urbCFq++efNmzJ07F0OGDMGwYcOwatUqHDlyBKWlpV7jEhISkJ2d3foTNU1EV4QYr64XYlNT8xEPwN+14faKvhCbQgjkcTk9Rzzk7PyHZ5wfgWLLAQmrfTQeACA1P156cgfczsYgiw9O4DqBpZ8thTuE3xvGo3c/WvxexQrGq0e3kGa71NbWAgDS0rznSb/yyivIyMhAfn4+Fi1ahIYG/zf5cjgcqKur8/qJKiHGq+uF/c318JxqkZsVb2we10W7n/c+1eKL5PaM8yNQbLkEyEa4S4KAKpMJZR8pO73TVYHrlFDVUIWy42Vd3gbj0bsfLX6vYgXj1aNbly84FUURDzzwAMaMGYP8/PzW5TfffDP69euH3r1746uvvsKCBQvw7bff4q23fN+RdfHixXjssce6Wkb4hRivrhfu0w5Vx/l05seQx6kVW36i9rAq6/G7foV1hvJ+GI/e/WjxexUrGK8e3brcfMyfPx/79u3Dxx9/7LX8rrvaQosuvvhi9OrVCxMnTsTBgwcxYMCATutZtGgRiora8gzq6uqQmxve6OughBivrhfGNAug4FYhxjRL1zeSel7I49SKLe+Z3E+V9fhdv8I6Q3k/jEfvfrT4vYoVjFePbl067XLvvffi7bffxgcffIA+feTv1zFq1CgAwPfff+/zeYvFApvN5vUTVUKMV9cL63UzAbghFwMPuJvHddHIOz2zWuQIRs84PwLFlguAbIS7IEnIdrlQcMUflVbdJYHrFJCdkI2CzIIub4Px6N2PFr9XsYLx6tEtqOZDkiTce++9WLduHbZt24b+/fsHfM2ePXsAAL166fSK4hDj1fXCEBcHa+6R5ke+Y+CtuUdgiAvhbwkms2c6rZzC+bKZH4FiywEBcxLzPP/VoQFpebwgYzSM5g6RoCoLXCew4LIFIeUyMB69+9Hi9ypWMF49ugXVfMyfPx8vv/wy1qxZg6SkJFRVVaGqqgqNjZ6ZAwcPHsQTTzyB0tJS/Pjjj9iwYQNuu+02jB07FkOH6jjAKMR4db1ImX8brLk/Auh4UaiozjRbwDONdvRvOx8BEYyKptkCgWPLi65fh+LUUch0e1/xn+V2azbNVkmdakyHZDx696PF71WsYLx69Aoq50PwM4Ng5cqVmDt3LioqKnDLLbdg3759qK+vR25uLn75y1/ikUce0XfOR4sQ49WjheR2o+HzUrhOnICpZ08kjBgOwdj2PtwNjah96R24a0QYUwxIvm0qjAnBHSlwOhvx4b9XoqbqGFKye2HsrfNgbne0wd1Qi7J1t+CE/Rh6Wnuh4Jcvw9guGl0J1zknvtq6FmePHUFSr74YOulXMPVoO2ridjai7KMncKL2MHom90PBFX8M+oiH6HTizJpX4ayogDk3F6k33wSDWd04ezWEGo/OeHX9iYaEU71gvHqbcO6LsIWMaSGqm48YUPfuu6h+cjFcVVWty0zZ2ch6eBFsV12Fxn0nUbPxINy1bVkbxmQzUqYPQHy+/PUFLdYvewIHP9/VafmAEaMw86E/qpI+Guh9qKF62TKcXrkKENsdCTIYkDZvLrIeekiVbUQDJqQSdQ/hTntl80E+1b37Lirvf6DzxZjNR7Qy//AMGvf5n82SfsuggA2Iv8ajhS3HjL8N/S6k9NFA7yPn6adCbkCqly3D6Rf832047Y7bY6IBYUIqUfegRdpr2BJOSb8ktxvVTy72PQtEkgAIqC+Vn+9es/EHSDJpgE5no2zjAQC1lQ4Y3Ohy+mjg9wFUP7kYkjuE5FCn03PEQ8bplasgOv0nseoBE1KJuodoTHtl89FNNHxe6nWKoiNj+gUwWOSvuXDXOuA4VOv3+Q//vTJgHQIEjDjge2qbkvTRQO8DkgRXVRUaPi/1PyaAM2te9T7V4osoesbpGBNSibqHaEx7ZfPRTbhOyCceCgEajxbiWf9/26+pOqZoHUkN8tl2cumjgd5HsON8cVZUqDouWjEhlah7iMa0VzYf3YSpp3zioeTwf0SjPUOS/5keKdnKzheeTXDJPi+XPhrofQQ7zhezwoRdpeOiFRNSibqHaEx7ZfPRTSSMGA5TdrbfG665T30PMUADYky2wNLf/xGSsbfOC1iHBAmlA30f2lOSPhrofUAQYMrORsKI4QFr8Sf15psAQ4D/NQwGzzgdY0IqUfcQjWmvbD66CcFoRNbDi5ofdPgVFAQAEhKHy3e9KdPPhyAzH9xsjseAEaNk15GcY4Hb2PX00cDvA8h6eJFXbkmwDGYz0ubNlR2TNm9u0Hkf0YYJqUTdQzSmvbL56EZsV12FnKefginL+yZ4pqws5Dz9FNJvmYT0WwbBmOz9pWpMtiiaZgsAMx/6o98GZMCIUbiz+K2Q00cDvQ81cj6yHnoIaXfc3vkIiMEQM9NsASakEnUX0Zb2ypyPbihQwqkkSnAcqoV41glDkhmW/smyRzx8CZhwqkL6aKD3oQY1Ek71gAmnRN0DE079YPMReWo0HwHFSFR9tAi1EVOjkYuGuG82UdpibDm1F8z3t/ycR+p21IhXD2j/BmDzAqDuaNsyW2/P3YNj5CZ9Wgo1al6NqPqth7diyWdLUN1Q3bosKyELCy9bqNmNzhgTr61wR3VTbOORD2rVuO8kTr38jd/nlV73IWv/BuD12wB/Ib8xdJdgLYQaNa9GVP3Ww1tRtL0IUofPtOUW71rcaZUx8drSIqqb9Ifx6hQ0SZRQs/Gg7JhA8eoBiW7PEQ+5kN/NCz3jKKBQo+bViKp3i24s+WxJp8YDQOuypZ8thTuMnylj4rUVjVHdpD9sPggA4DhU63WqxZdA8eoBHd7hfaqlEwmoq/SMo4BCjZpXI6q+7HiZ16mWTquAhKqGKpQdL/O/nRAxJl5b0RjVTfrD5oMAyMemd2WcT3b/X1JdGtfNhRo1r0ZU/YkGZetQOq4rGBOvrWiM6ib9YfNBAORj07syzidrVuAxwYzr5kKNmlcjqr5ngrJ1KB3XFYyJ11Y0RnWT/rD5IACApX9yp3CxjgLFqwfUb7RnVotcyK8txzOOAgo1al6NqPqCzAJkJWS1XlzaaRUQkJ2QjYLMAtn3EgrGxGsrGqO6SX/YfBAAQDAISJk+QHZMoHj1gAxGz3RazxY7VuD515QlzPtQKNSoeTWi6o0GIxZettDzkg6facvjBZctCGveB2PitRWNUd2kP2w+qFV8fkbI8eoBDZ7hmU5r6zANz9ab02y7INSoeTWi6if1m4TiccXITMj0Wp6VkKXJNFuAMfFai7aobtIf5nxQJ2oknIqihGPlNaivcyDRZkGvvBQY2q9DhYRTLZJY9RKvHmqdsZJwGijWn9TFhFNqj/HqFFEHvziOj14rR32No3VZYooFV9yYhwGXZsq8Ujktklirly3D6ZWrAFFsW2gwIG3e3Ki6sZwaCaWxoOTlF1H69npIUtvnJQgGDP/FTPz8ltsjWBlR98CQMYqYg18cx+bn9nk1HgBQX+PA5uf24eAXx0PeRksSa8dcEnetE6de/gaN++QzH5SoXrYMp1940bvxAABRxOkXXkT1smUhb0MNLQmlHfM6XNXVqLz/AdS9+26EKtNWycsv4vONb3k1HgAgSSI+3/gWSl5+MUKVEZEvbD5INaIo4aPXymXHfPx6OcQQkg+1SGIVnU7PEQ8Zp1eugugMIfNEBWoklMYCl8uJ0rfXy44p/X/r4XJF9vMiojZsPkg1x8prOh3x6Mh+xoFj5TVd3oYWSaxn1rza+YhHR6LoGRdBaiSUxoIvt2zqdMSjI0kU8eWWTRpVRESBsPkg1dTXyTcewY7zRYskVmdFharjwkWNhNJYUFMt04B1YRwRhR+bD1JNos2i6jhftEhiNefmqjouXNRIKI0FKVnZqo4jovBj80Gq6ZWXgsQU+cbCmuqZdttVWiSxpt58E2AI8L+GweAZF0FqJJTGgmGTp0EQ5D8vwWDAsMnTNKqIiAJh80GqMRgEXHFjnuyYy2/I8877CJIWSawGsxlp8+bKjkmbNzfieR9qJJTGApPJjOG/mCk7ZvjVM2EyRV8+C1F3xeaDVDXg0kxMuTu/0xEQa6oFU+7OVyXnQ4sk1qyHHkLaHbd3PgJiMCDtjtujJudDjYTSWPDzW27HiOnXdjoCIhgMGDH9WuZ8EEUZhoxRWARMOFUBE07bqJFQGgtcLie+3LIJNdVVSMnKxrDJ03jEg0gjwXx/mzSqiboZg0FAzkXhvYW5YBAQNyAlrNswmM1InzsnrNsg9RgMRmSedz4SUlJhTUnlzeSIohSbDyKdY7y6R/muHdi2agXsp9sSbq1pGZgw9y7eWI4oyvCaDyIdY7y6R/muHdhQ/KRX4wEA9tMnsaH4SZTv2hGhyojIFzYfRDrFeHUPUXRj26oVsmM+WL0Cohjb+4FIT9h8EOkU49U9Kr/5utMRj47OnjqJym++1qgiIgqEzQeRTjFe3cNec0bVcUQUfmw+iHSK8eoe1hRls6qUjiOi8GPzQaRTjFf3yBk0BNY0+WC5pPQM5AwaolFFRBQImw8inWK8uofBYMSEuXfJjhk/5y5mfhBFETYfRDrGeHWPvFGjMaPo4U5HQJLSMzCj6GHmfBBFGcarU1g4m1z44ZUDcJ9pgjE1DufPHghzHDPtwiXUePVzTS5Uv3oArjNNMKXGIeumgeihw89LFN2e2S81Z2BNSUXOoCExe8RDdImw7zwK9+kmGNPiYC3sDYOp7e+T3WlfUHQI5vs7qOZj8eLFeOutt3DgwAHEx8dj9OjRWLp0KS666KLWMU1NTfjd736HtWvXwuFwYPLkyXj22WeR1eFvZmoUT9Hp67+WIqmqHoZ2pwJEScLZ7EQMeTC2rz/Qo8N/K4Ohsh7tT9xIAMScRPS7ryBSZZGMmk0/wP5RpeeDaiEA1itykDLtfKa9UkQE8/0d1GmXkpISzJ8/H59++inee+89nDt3DldddRXq6+tbxzz44IPYuHEj3njjDZSUlODo0aO49tpru/ZOSHe+/mspbFXeX2QAIACwVdXj67/GduaE3hz+WxkMP9k7B5VJEgw/2XH4b2WRKYz8qtn0A+wfdmg8AEAC7B9W4tC/PmbaK0W9oI6rbt682evxqlWrkJmZidLSUowdOxa1tbV44YUXsGbNGkyYMAEAsHLlSgwaNAiffvopfvazn6lXOUUdZ5MLSVWeRlTocAGkIAiQJAlJVfVwNrl4CiYKnGtywVAp/3kZKutxrsmly1MwsUh0iZ4jHjKM5W4YYIAI0efzH6xegQEjR/EUDEVUSBec1tbWAgDS0tIAAKWlpTh37hwmTZrUOmbgwIHo27cvdu7c6XMdDocDdXV1Xj+kTz+8cgAGQej0RdZCEAQYBAE/vHJA48rIl+pXD0BA58ajhSAIEJrHUXSw7zza+YhHBwbBgAG2S/0+z7RXigZdbj5EUcQDDzyAMWPGID8/HwBQVVUFs9mMlJQUr7FZWVmo8hMDvXjxYiQnJ7f+5ObmdrUkijD3mSZVx1F4uRR+DkrHUfi5Tyv7LKwm+UA1pr1SpHW5+Zg/fz727duHtWvXhlTAokWLUFtb2/pTUVER0voocoypcaqOo/AyKfwclI6j8DOmKfss7C755oJprxRpXWo+7r33Xrz99tv44IMP0KdPn9bl2dnZcDqdqKmp8RpfXV2N7Oxsn+uyWCyw2WxeP6RP588eCFGS4G8ClSRJECUJ588eqHFl5EvWTQMhAbKfl9Q8jqKDtbA3Ol3N3YEoiThY94Xf55n2StEgqOZDkiTce++9WLduHbZt24b+/ft7PT98+HD06NED77//fuuyb7/9FkeOHEFhYaE6FVPUMseZcDY7EUDnL7SWx2ezE3mxaZToEWeCmCP/eYk5ibzYNIoYTAZYr8iRHePOM/q92BRg2itFh6ByPn7zm99gzZo1+O9//+uV7ZGcnIz4+HgAwD333INNmzZh1apVsNlsuO+++wAAO3Yom97FnA/9Y86HvjDnQ3+6kvORlJ6B8XOY80HhE7aQMX9Xxa9cuRJz584F0BYy9uqrr3qFjPk77RJK8RS9mHCqL7GScNqdMOGUok3Ymg8tsPkgPXG7RBz7uBKO002wpMWh1+U5MJrUvWWSJttwulG76Qe4TzXBmB6H5Gnnw2jW3xdVoC9kADjndOO79QfRdKoRcenxuHDmAPTQ4XuVRAmOQ7UQzzphSDLD0j8ZgiHABSFEYcTmg0gDhzYehPuTo2g//6AJgHFMb/SfPkA32zj50tdo2n+60/K4wWnIuE0/FyYGOhUBAGXP70VS+RnEt/uSbhQlnM1LRcGdF2tccdc17juJmo0H4a51ti4zJpuRMn0A4vMzZF5JFD5hi1cnIo9DGw/C9HElLB16d4skwfRxJQ5tPKiLbfhrPACgaf9pnHxJH2FUgSLHazb9gLLn96Ln92cQ1+HgQJwA9Pz+DMqe36tZvaFo3HcSp17+xqvxAAB3rROnXv4GjftO+nklUfRg80EUJLdLhPuTowB8x5IDgPuTo3C7/M84iIptON1+G48WTftPw+10d3kbWlASOW7/qBJJ5Z7sC3/701p+Buei/L1KooSaAE1nzcYfIIlRdUCbqBM2H0RBOvZxJeIgH0se1zwumrdRu+kHVcdFipLIcUhAvEE++j/BIOC79aEfTQonx6HaTkc8OnLXOuA4VKtRRURdw+aDKEgOhRHXSsdFahvuUwrj8BWOixSlkeNKNJ1qVG1d4SCelW88gh1HFClsPoiCZFEYca10XKS2YUxXGIevcFykKI0cVyIuPV61dYWDIcms6jiiSGHzQRSkXpfnoAnyseRNzeOieRvJzTNA1BoXKUoixyF4ZrXI7c8GUcKFM9WZQRQulv7JMCbLNxbGZAss/ZM1qoioa9h8EAXJaDLAOKY3AP+x5MYxvUPK4tBkG2Yj4ganyY6JG5wW9XkfSiLHrVfk4Gye52Zq/vanPS816vM+BIOAlABTrFOmn8+8D4p6bD6IuqD/9AFwXZ4DR4cLGB2CANflOapkcGixjYzbhvhtQPSU85Ey7XxYx+Z0PgIiANaxnpyPgjsvxokLUtHU4eBHowScuEA/OR/x+RlIv2VQpyMgxmQL0m8ZxJwP0gWGjBGFQIv0US0SOdWIV1cjcTPUdTDhtN39lBTsi1C3ESvJuKQOJpwSxYiDXxzHR6+Vo77G0bosMcWCK27Mw4BLM6NmG2okbjK1Uz1K0l4DCfR5xEoyLqmHzQdRDDj4xXFsfm6f3+en3J0fcgOixjZaEjf9UXIqQI11kEdr2qsfLaeh5AT6PHr0seLcT3a/z7MB6Z4Yr06kc6Io4aPXymXHfPx6OcQQkizV2IYaiZtM7VSP0rRXUSYZV8nnIdd4APpIxqXIYvNBFIWOldd4nQbxxX7GgWPlNRHdhhqJm0ztVI/StFf7zqN+n1byeSgR7cm4FFlsPoiiUH2dfFMQ7LhwbUONxE2mdqpHadqr3Di19nO0J+NSZLH5IIpCiTaLquPCtQ01EjeZ2qkepWmvcuPU2s/RnoxLkcXmgygK9cpLQWKKfHNgTbWgV15KRLehRuImUzvVozTt1VrY2+/TSj4PJaI9GZcii80HURQyGARccWOe7JjLb8iDIYQkSzW2oUbiJlM71aM07VUu70PJ59Gjj1X2eT0k41JksfkgilIDLs3ElLvzOx2dsKZaVJlmq9Y21EjcZGqnepSkvQYS6PPIuvfSmEjGpchhzgdRlBNFyTMzpc6BRJvnNEgoRzzCtY1oSDilNkw4Ja0F8/0dXH4yUTfjdpzDmTd2w32qAcb0BKRePxJGS4+25zWIVzcYBORclBrSOgJFiksuEfHfnIS5+UtE6m8DgvwScYsSDhyqQ+3JRiRnxCO/nw2mIBsHwSAgbkBKUK/xqkHB59Fkd6Lyn18C9nOAtQdyfj0McVZ1L2YN9YtfjWZQFCXUHW/AudNN6OESkSBKQR/qDvh5GAQ0pMTBIQKWlDgkh6FR1EtDqpc6owWPfBD5cfwf2+A4YoQgtP2RLUkiLH3dyJw/AYc2HoT7k6Nof01/Ezx3m1Xjpm9qKXt+L5LKzyC+3R+EjaKEs3mem6mpEZP9yX/K8eXWCrT/00QQgGGTcjFmlvx1JWpR8nl8//hOWOrPQWh3sz5JkuBI7IEL/rdQlTpCjTZXI+7+x1X7YDxwxuvMiwTAPTAV583NV/ZGAtDi918vkft6qTPcGK9OFCJP4+E5MNjxiwoAzlnd6GE3+n1erbvOhqrs+b3o+f0ZAL7rdCT2QFyDy+/rlTQgn/ynHHveq/D7/CVXhr8BObTxIEwfe5I9/X0e7i+Ow1J/zu8YNRqQUKPN1Yi7/3HVPhi/8TSTvt6ne1BayA2Ikv0d6u+/XiL39VKnFhivThQCt+McHEc6NxbtH/tqPNo/dn9yFG6ZCGstnHO6kVTeufFo/7jly9ifQDHZLpeIL7f6bzwA4MutFXCFcV+4XSLcn3gSO+U+D1+NR/vHlvpzaLJ3PWAr1GhzNeLuXU43jAfkP3PjgTNwhRB9rnR/h/L7r5fIfb3UGY3YfBB1cOaN3RAEQ6c/WFsIgtD64+/5OADHPpb/Igq379YfRLxBvk5/z7UnF5O9b/tPCHTsVJI848Ll2MeViEPnL8IWLZ9HoM9MEATPtSBdFGq0uRpx91UbD0KA/L4Qmsd1ldL9Hcrvv14i9/VSZzRi80HUgftUgyrrcSiMug6XplONqqxHLia79qSybSgd1xWq7me7/JEgOaFGm6sRd39OYQ1Kx/midH+H8rnoJXJfL3VGIzYfRB0Y0xNUWY9FYdR1uMSlx6uyHrmY7OQMZdtQOq4rVN3P1h6Bx/gRarS5GnH3PRTWoHScL0r3dyifi14i9/VSZzRi80HUQer1IyFJIvxdiy1JUuuPv+ebAPS6XD5pMtwunDkAjaJ8nUquN5eLyc4f1weBztwIgmdcuPS6PAdNQMDPI9BnJkkScn49rMt1hBptrkbcffb0AZAgvy+k5nFdpXR/h/L7r5fIfb3UGY3YfBB1YLT0gKWv54K8jn/Atp/tIve8cUxv1fM+gtXDbMTZPE8+iL86HYnyf9MPFJNtMhkwbFKu7DqGTcqFKYz7wmgywDjG84Uu93m0vFe5fRFK3keo0eZqxN2bzEa4B8p/5u6BqTCFEASmdH+H8vuvl8h9vdQZjdh8EPmQOX8CLH1d6HwFoQRLXxfO/+N4uC7PgaPDX/sdghA102wBoODOi3HiglQ0dXgbjRJw4oJUXPC/hSHHZI+ZlYdLrsztdAREELSZZgsA/acPCPh5XPC/hX6bLbVyPkKNNlcj7v68uflwD0qDrw9EjWm2gLL9HSq9RO7rpc5ow5wPIhnRkHCqhkAJp2rEZLtcIvZt/6kt4XRcn7Ae8fDF0eTCnpf2t34el9w2GJY47yBne00TfnyqDKYmN1xxRpz3QAGsKepenxNqwmmgz0vROppcqH71AFxnmmBKjUPWTQPRI07dUGstfv/1khyqlzrDiSFjRNTtKElZjYYk1kDUSA5l4iZFAu/tQkTdir+UVUmC1/JAYyLdgLQkh5oAr9MmFkkCPq7EISBgA+IvcdNd68Spl7/hqQCKCtF3fJiIKAhKU1blIuBbxoQziTUQNZJDmbhJesHmg4h0TWnKaiDhTmINRI3kUCZukl6w+SAiXVMzPTWcSayBqJEcysRN0gs2H0Ska2qmp4YziTUQNZJDmbhJesHmg4h0TWnKaiDhTmINRI3kUCZukl6w+SAiXVOasnrJlZFNYg1EjeRQJm6SXnCqLRHpXssUWSUZHtGc89F/+gAcAjrlfDgEQXHOR0viZuecDwtSpp/PabYUFRgyRkQxQ0nKajQksQaiRnIoEzdJawwZI6KgxMoXldEgYGB/G8SMOBiSzDD6eA9KxkSaBOCkS0KtU0SyS0K2rzEBPjMJwCmXhPpzIhJdEnoh8E13g65Thd8bvdyigNQVdPPx4YcfYtmyZSgtLcWxY8ewbt06zJw5s/X5uXPnYvXq1V6vmTx5MjZv3hxysUSkvliJ4lbyPvTwXn1FwO/4z/dep4YCvY+DXxzHR6+Vo77G0fp8YooFV9yYp+jmdEqosS/bR8m33Erv0OYfg4qSJ30Kur2sr6/HsGHD8I9//MPvmClTpuDYsWOtP6+++mpIRRJReLREcXcMpmqJ4m7cdzJClQVHyfvQw3ttiYnveDK8JQL+k/+UB3wfhzYexObn9nk1HgBQX+PA5uf24eAXx0OuU4192RIlb+nwZi2SBNPHlTgUIKmV9C3oIx9Tp07F1KlTZcdYLBZkZ/s6UEhE0UJpFHfc4PSoPgWj5H2c2RD4iyzS71VpTHz/b0/LjmmJaPfn49fL0X9YTxi6+D7V+L1piZI3wXeUvCRJnij5qf15CiZGheVT3b59OzIzM3HRRRfhnnvuwalTp/yOdTgcqKur8/ohovCLlShuJe9DrHNCrIvu96okJj7NKAR8H3EA0k3+Gwv7GQeOldcEX2AzNX5v1IiSJ31TvfmYMmUKXnrpJbz//vtYunQpSkpKMHXqVLjdbp/jFy9ejOTk5Naf3Fz5ufhEpI5YieJWs75Ivlcl0e5xCg9WBBpXX+eQHyBDjd8bNaLkSd9Un+3yq1/9qvW/L774YgwdOhQDBgzA9u3bMXHixE7jFy1ahKKiotbHdXV1bECINBArUdxq1hfJ96ok2r1JYTBCoHGJNov8ABlq/N6oESVP+hb2k2nnn38+MjIy8P333/t83mKxwGazef0QUfjFShS3kvdhsJlhsEX3e1USE3/aLQV8H03wTLH1x5pqQa+8lOALbKbG740aUfKkb2FvPn766SecOnUKvXr1CvemiCgIsRLFreR9pM4YgNQZ0f1elcbEB3ofLRHt/lx+Q16XLzYF1Pm9USNKnvQt6E/Wbrdjz5492LNnDwDg0KFD2LNnD44cOQK73Y6HHnoIn376KX788Ue8//77uOaaa3DBBRdg8uTJatdORCFqieLu+DdZY7IF6bcMiprsi0CUvA89vNcxs/JwyZW5nY6ACAJwyZWenI9A76P/9AGYcnc+ElO8T61YUy2Ycne+KjkfauzL/tMHwHV5Dhwd3qxDEOC6PIc5HzEu6Hj17du3Y/z48Z2Wz5kzB8uXL8fMmTPxxRdfoKamBr1798ZVV12FJ554AllZWYrWz3h1Iu3FSsKpkvehh/eqJAJedImw7zwK9+kmGNPiYC3sDUO7MaIo4Vh5DerrHEi0eU61hHLEw5doSTjVw2faHQTz/c17uxAR6Yweklq1wn0RPYL5/uYJNSIiHdFDUqtWuC/0i80HEZFOKE0XlcSoOqAdFtwX+sbmg4hIJ2IllVYN3Bf6xuaDiEgnYiWVVg3cF/rG5oOISCdiJZVWDdwX+sbmg4hIJ2IllVYN3Bf6xuaDiEgnYiWVVg3cF/rG5oOISEf0kNSqFe4L/VL9rrZERBRe8fkZiBuczlRPcF/oFZsPIiIdEgwC4gakRLqMqMB9oT887UJERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJpiwikRdStNDefwzfN7IdY6YEi2YNCdFyMuoUekyyLqVth8EFG3UfaXXcioc6Cn0HzfjwYXjj+2EydtFhT8YVRkiyPqRnjahYi6hbK/7ELPOgc63m5MANCzzoGyv+yKRFlE3RKbDyKKeU0N55BR5wAACIJ3+9HyOKPOgaaGc5rXRtQdsfkgopj3zfN7YRCETo1HC0EQYBAEfPP8Xo0rI+qe2HwQUcwTax2qjiOi0LD5IKKYZ0i2qDqOiELD5oOIYt6gOy+GKEmQJMnn85IkQZQkDLrzYo0rI+qe2HwQUcyLS+iBkzbPUY2ODUjL45M2C/M+iDTC5oOIuoWCP4zCCZsFHY99SABOMOeDSFMMGSOibqPgD6N8Jpz25REPIk2x+SCibiUuoQcuvb8g0mUQdWs87UJERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJqKuoTTlps81dXVRbgSIiIiUqrle9vf3aPbi7rm4+zZswCA3NzcCFdCREREwTp79iySk5NlxwiSkhZFQ6Io4ujRo0hKSoIgCJEuR3V1dXXIzc1FRUUFbDZbpMvRPe5P9XBfqov7Uz3cl+oK1/6UJAlnz55F7969YTDIX9URdUc+DAYD+vTpE+kyws5ms/F/IhVxf6qH+1Jd3J/q4b5UVzj2Z6AjHi14wSkRERFpis0HERERaYrNh8YsFgv+9Kc/wWKxRLqUmMD9qR7uS3Vxf6qH+1Jd0bA/o+6CUyIiIoptPPJBREREmmLzQURERJpi80FERESaYvNBREREmmLzoZHFixdj5MiRSEpKQmZmJmbOnIlvv/020mXp0vLlyzF06NDWgJzCwkK88847kS4rZixZsgSCIOCBBx6IdCm68+ijj0IQBK+fgQMHRrosXausrMQtt9yC9PR0xMfH4+KLL8bnn38e6bJ06bzzzuv0+ykIAubPn695LVGXcBqrSkpKMH/+fIwcORIulwsPP/wwrrrqKuzfvx+JiYmRLk9X+vTpgyVLliAvLw+SJGH16tW45ppr8MUXX2DIkCGRLk/Xdu/ejeeeew5Dhw6NdCm6NWTIEGzdurX1scnEP2a76syZMxgzZgzGjx+Pd955Bz179kR5eTlSU1MjXZou7d69G263u/Xxvn37cOWVV+L666/XvBZOtY2QEydOIDMzEyUlJRg7dmyky9G9tLQ0LFu2DHfccUekS9Etu92OgoICPPvss/jzn/+MSy65BE899VSky9KVRx99FOvXr8eePXsiXUpMWLhwIT755BN89NFHkS4lJj3wwAN4++23UV5ervm91HjaJUJqa2sBeL40qevcbjfWrl2L+vp6FBYWRrocXZs/fz6uvvpqTJo0KdKl6Fp5eTl69+6N888/H7Nnz8aRI0ciXZJubdiwASNGjMD111+PzMxMXHrppXj++ecjXVZMcDqdePnll3H77bdH5CauPB4YAaIo4oEHHsCYMWOQn58f6XJ0ae/evSgsLERTUxOsVivWrVuHwYMHR7os3Vq7di3Kysqwe/fuSJeia6NGjcKqVatw0UUX4dixY3jsscdwxRVXYN++fUhKSop0ebrzww8/YPny5SgqKsLDDz+M3bt347e//S3MZjPmzJkT6fJ0bf369aipqcHcuXMjsn2edomAe+65B++88w4+/vjjbnEH33BwOp04cuQIamtr8eabb+Jf//oXSkpK2IB0QUVFBUaMGIH33nuv9VqPcePG8bSLCmpqatCvXz8UFxfzlGAXmM1mjBgxAjt27Ghd9tvf/ha7d+/Gzp07I1iZ/k2ePBlmsxkbN26MyPZ52kVj9957L95++2188MEHbDxCYDabccEFF2D48OFYvHgxhg0bhqeffjrSZelSaWkpjh8/joKCAphMJphMJpSUlOCZZ56ByWTyukCNgpOSkoILL7wQ33//faRL0aVevXp1+gvFoEGDeCorRIcPH8bWrVvxP//zPxGrgaddNCJJEu677z6sW7cO27dvR//+/SNdUkwRRREOhyPSZejSxIkTsXfvXq9l8+bNw8CBA7FgwQIYjcYIVaZ/drsdBw8exK233hrpUnRpzJgxnSIJvvvuO/Tr1y9CFcWGlStXIjMzE1dffXXEamDzoZH58+djzZo1+O9//4ukpCRUVVUBAJKTkxEfHx/h6vRl0aJFmDp1Kvr27YuzZ89izZo12L59O7Zs2RLp0nQpKSmp07VHiYmJSE9P5zVJQfr973+P6dOno1+/fjh69Cj+9Kc/wWg04qabbop0abr04IMPYvTo0XjyySdxww034LPPPsOKFSuwYsWKSJemW6IoYuXKlZgzZ05Ep4Gz+dDI8uXLAXjOpbe3cuXKiF3wo1fHjx/HbbfdhmPHjiE5ORlDhw7Fli1bcOWVV0a6NOrmfvrpJ9x00004deoUevbsicsvvxyffvopevbsGenSdGnkyJFYt24dFi1ahMcffxz9+/fHU089hdmzZ0e6NN3aunUrjhw5gttvvz2idfCCUyIiItIULzglIiIiTbH5ICIiIk2x+SAiIiJNsfkgIiIiTbH5ICIiIk2x+SAiIiJNsfkgIiIiTbH5ICIiIk2x+SAiIiJNsfkgIiIiTbH5ICIiIk2x+SAiIiJN/X8I/A1JxfEbgQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for c, df in mpg.groupby('class'):\n", + " plt.scatter(df['displ'], df['hwy'], label=c)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Jeremy\\AppData\\Local\\Temp\\ipykernel_42836\\1913448170.py:2: FutureWarning:\n", + "\n", + "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSyUlEQVR4nO3deXwTdf4/8NckIemRpidtoRRErHJU0AKyBWW5lMMFWfFYRQX0q66LrtpdH4DrftdjV+DB99FVd1dWXAVcRTxWWPCHoIjUA0RsRUFEKyLUQsvZlvRISGZ+f6RX2mQyaSaTTPp6+uhDM/lk5p1JJW9m5vMaQZIkCUREREQaMUS6ACIiIupe2HwQERGRpth8EBERkabYfBAREZGm2HwQERGRpth8EBERkabYfBAREZGm2HwQERGRpkyRLqAjURRx9OhRJCUlQRCESJdDRERECkiShLNnz6J3794wGOSPbURd83H06FHk5uZGugwiIiLqgoqKCvTp00d2TNQ1H0lJSQA8xdtstghXQ0RERErU1dUhNze39XtcTkjNx5IlS7Bo0SLcf//9eOqppwAA48aNQ0lJide4u+++G//85z8VrbPlVIvNZmPzQUREpDNKLpnocvOxe/duPPfccxg6dGin5+688048/vjjrY8TEhK6uhkiIiKKMV2a7WK32zF79mw8//zzSE1N7fR8QkICsrOzW394BIOIiIhadKn5mD9/Pq6++mpMmjTJ5/OvvPIKMjIykJ+fj0WLFqGhocHvuhwOB+rq6rx+iIiIKHYFfdpl7dq1KCsrw+7du30+f/PNN6Nfv37o3bs3vvrqKyxYsADffvst3nrrLZ/jFy9ejMceeyzYMoiIiEinBEmSJKWDKyoqMGLECLz33nut13qMGzcOl1xySesFpx1t27YNEydOxPfff48BAwZ0et7hcMDhcLQ+brlatra2lqdriIiIdKKurg7JycmKvr+DOvJRWlqK48ePo6CgoHWZ2+3Ghx9+iL///e9wOBwwGo1erxk1ahQA+G0+LBYLLBZLMGUQERGRjgXVfEycOBF79+71WjZv3jwMHDgQCxYs6NR4AMCePXsAAL169ep6lURERBQzgmo+kpKSkJ+f77UsMTER6enpyM/Px8GDB7FmzRpMmzYN6enp+Oqrr/Dggw9i7NixPqfkEhERUfejasKp2WzG1q1b8dRTT6G+vh65ubmYNWsWHnnkETU3E7VElxOV29+A/UQlrD1zkDPuehhM5kiXRUREFFWCuuBUC8FcsBJNyv/zNLatfwd2Z1s/ZzW7MGHmVOTNuj+ClREREYVfMN/fXcr5IG/l/3kaG15/F3an9zUvdqcRG15/F+X/eTpClREREUUfNh8hEl1ObFv/TvOjjnn2nscfrH8HosupaV1ERETRis1HiCq3v9F8qsXfjXQEnHWaULn9DS3LIiIiilpsPkJkP1Gp6jgiIqJYx+YjRNaeOaqOIyIiinVsPkKUM+56WM0uAP4mDUlIMruQM+56LcsiIiKKWmw+QmQwmTFh5tTmRx0bEM/j8TOnMu+DiIioGZsPFeTNuh8zbrgKVrPba3mS2Y0ZN1zFnA8iIqJ2GDKmIiacEhFRdxW2u9qSPIPJjNxJsyNdBhERUVTjaRciIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0pQp0gXEElF0o/Kbr2GvOQNrSipyBg2BwWCMdFlERERRhc2HSsp37cC2VStgP32ydZk1LQMT5t6FvFGjI1gZERFRdOFpFxWU79qBDcVPejUeAGA/fRIbip9E+a4dEaqMiIgo+rD5CJEourFt1QrZMR+sXgFRdGtUERERUXRj8xGiym++7nTEo6Ozp06i8puvNaqIiIgourH5CJG95oyq44iIiGIdm48QWVNSVR1HREQU69h8hChn0BBY0zJkxySlZyBn0BCNKiIiIopubD5CZDAYMWHuXbJjxs+5i3kfREREzdh8qCBv1GjMKHq40xGQpPQMzCh6mDkfRERE7TBkTCV5o0ZjwMhRTDglIiIKIKQjH0uWLIEgCHjggQdalzU1NWH+/PlIT0+H1WrFrFmzUF1dHWqdumAwGJE7ZCgGjfk5cocMZeNBRETkQ5ebj927d+O5557D0KFDvZY/+OCD2LhxI9544w2UlJTg6NGjuPbaa0MulIiIiGJDl5oPu92O2bNn4/nnn0dqatsU0traWrzwwgsoLi7GhAkTMHz4cKxcuRI7duzAp59+qlrRREREpF9daj7mz5+Pq6++GpMmTfJaXlpainPnznktHzhwIPr27YudO3f6XJfD4UBdXZ3XDxEREcWuoC84Xbt2LcrKyrB79+5Oz1VVVcFsNiMlJcVreVZWFqqqqnyub/HixXjssceCLYOIiIh0KqgjHxUVFbj//vvxyiuvIC4uTpUCFi1ahNra2tafiooKVdZLRERE0Smo5qO0tBTHjx9HQUEBTCYTTCYTSkpK8Mwzz8BkMiErKwtOpxM1NTVer6uurkZ2drbPdVosFthsNq8fIiIiil1BnXaZOHEi9u7d67Vs3rx5GDhwIBYsWIDc3Fz06NED77//PmbNmgUA+Pbbb3HkyBEUFhaqVzURERHpVlDNR1JSEvLz872WJSYmIj09vXX5HXfcgaKiIqSlpcFms+G+++5DYWEhfvazn6lXNREREemW6gmnf/3rX2EwGDBr1iw4HA5MnjwZzz77rNqbISIiIp0SJEmSIl1Ee3V1dUhOTkZtbS2v/yAiItKJYL6/eWM5IiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItIUmw8iIiLSFJsPIiIi0hSbDyIiItKUKdIF6IroBg7vAOzVgDUL6DcaMBgjXRUREZGusPlQav8GYPMCoO5o2zJbb2DKUmDwjMjVRUREpDM87aLE/g3A67d5Nx4AUHfMs3z/hsjURUREpENsPgIR3Z4jHpB8PNm8bPNCzzgiIiIKiM1HIId3dD7i4UUC6io944iIiCggNh+B2KvVHUdERNTNsfkIxJql7jgiIqJujs1HIP1Ge2a1QPAzQABsOZ5xREREFBCbj0AMRs90WgCdG5Dmx1OWMO+DiIhIITYfSgyeAdzwEmDr5b3c1tuznDkfREREijFkTKnBM+C64Ep8uXY5aqqPIiWrN4b96h6YzPGRroyIiEhX2HwoVPLyiyh9ez0kSWxecgAlm7Zj+C9m4ue33B7R2oiIiPSEzYcCJS+/iM83vtVpuSSJrcvZgBARESnDaz4CcLmcKH17veyY0v+3Hi6XU5uCiIiIdI7NRwBfbtnU7lSLb5Io4sstmzSqiIiISN/YfARQU12l6jgiIqLujs1HAClZ2aqOIyIi6u7YfAQwbPI0CIL8bhIMBgybPE2jioiIiPSNzUcAJpMZw38xU3bM8KtnwmQya1MQERGRznGqrQIt02i9cz48RzyGX82cDyIiomAIkiRJkS6ivbq6OiQnJ6O2thY2my3S5XhxuZz4cssm1FRXISUrG8MmT+MRDyIiIgT3/c0jH0EwARieVgkIPwKp7kiXQ0REpEtBXfOxfPlyDB06FDabDTabDYWFhXjnnXdanx83bhwEQfD6+fWvf6160RHx7h+Bv2QBWx4GPlvh+fdfsjzLiYiISLGgjnz06dMHS5YsQV5eHiRJwurVq3HNNdfgiy++wJAhQwAAd955Jx5//PHW1yQkJKhbcSS8+0dgxzOdl0ti2/KrntC2JiIiIp0KqvmYPn261+O//OUvWL58OT799NPW5iMhIQHZ2TGUeeFyAjv/Lj9m5z+ACX8EeP0HERFRQF2eaut2u7F27VrU19ejsLCwdfkrr7yCjIwM5OfnY9GiRWhoaJBdj8PhQF1dnddPVNn9vOcIhxzJ7RlHREREAQV9wenevXtRWFiIpqYmWK1WrFu3DoMHDwYA3HzzzejXrx969+6Nr776CgsWLMC3336Lt97qfEfYFosXL8Zjjz3W9XcQbmd+VHccERFRNxf0VFun04kjR46gtrYWb775Jv71r3+hpKSktQFpb9u2bZg4cSK+//57DBgwwOf6HA4HHA5H6+O6ujrk5uZGz1Tbnf/wXFwayOQngcL54a+HiIgoCgUz1TbknI9JkyZhwIABeO655zo9V19fD6vVis2bN2Py5MmK1hd1OR8up2dWi9ypF8EI/KGK13wQEVG3Fcz3d8jx6qIoeh25aG/Pnj0AgF69eoW6mcgxmYHCe+XHFM5n40FERKRQUNd8LFq0CFOnTkXfvn1x9uxZrFmzBtu3b8eWLVtw8OBBrFmzBtOmTUN6ejq++uorPPjggxg7diyGDh0arvq10TKNduffvY+ACEZP48FptkRERIoF1XwcP34ct912G44dO4bk5GQMHToUW7ZswZVXXomKigps3boVTz31FOrr65Gbm4tZs2bhkUceCVft2rrqCYjjHkbl+mWwH/8J1sw+yJn5EAzm+EhXRkREpCu8t4tC5bt2YNuqFbCfPtm6zJqWgQlz70LeqNERrIyIiCjyNL3mozso37UDG4qf9Go8AMB++iQ2FD+J8l07IlQZERGR/rD5CEAU3di2aoXsmA9Wr4Ao8kZzRERESrD5CKDym687HfHo6Oypk6j85muNKiIiItI3Nh8B2GvOqDqOiIiou2PzEYA1JVXVcURERN0dm48AcgYNgTUtQ3ZMUnoGcgYN0agiIiIifWPzEYDBYMSEuXfJjhk/5y4YDEaNKiIiItI3Nh8K5I0ajRlFD3c6ApKUnoEZRQ8z54OIiCgIQSWcdmd5o0ZjwMhRntkvNWdgTUlFzqAhPOJBREQUpG7TfIiiO+TGwQAgN6EWEE8ACTxoRERE1BXdovlQJRp9/wZg8wKg7mjbMltvYMpSYPAMlSsmIiKKXTH/13dVotH3bwBev8278QCAumOe5fs3qFgxERFRbIvp5kOVaHTR7TniAV/332tetnmhZxwREREFFNPNhyrR6Id3dD7i4UUC6io944iIiCigmG4+VIlGt1cr3JjCcURERN1cTDcfqkSjW7MUbkzhOCIiom4uppsPVaLR+432zGqB4GeAANhyPOOIiIgooJhuPlSJRjcYPdNpAXRuQJofT1niGUdEREQBxXTzAagUjT54BnDDS4Ctl/dyW2/PcuZ8EBERKSZIkuRrDmnE1NXVITk5GbW1tbDZbKqtt6nJjs1/+ytqq6uQnJWNKfc9iLg4a3ArEd2eWS32as81Hv1Gx+QRD7foRtnxMpxoOIGeCT1RkFkAYwy+TyIiUk8w39/dovlYv+wJHPx8V6flA0aMwsyH/qjKNmLF1sNbseSzJahuaJu9k5WQhYWXLcSkfpMiWBkREUWzYL6/Y/60i7/GAwAOfr4L65c9oXFF0Wvr4a0o2l7k1XgAwPGG4yjaXoSth7dGqDIiIoolMd18OJ2NfhuPFgc/3wWns1GjiqKXW3RjyWdLIPlIcm1ZtvSzpXAzyZWIiEIU083Hh/9eqeq4WFZ2vKzTEY/2JEioaqhC2fEyDasiIqJYFNPNR03VMVXHxbITDSdUHUdERORPTDcfKdm9Ag8KYlws65nQU9VxRERE/sR08zH21nmqjotlBZkFyErIguAnyVWAgOyEbBRkFmhcGRERxZqYbj7M5ngMGDFKdsyAEaNgNsdrVFH0MhqMWHjZQgDo1IC0PF5w2QLmfRARUchiuvkAgJkP/dFvA8KcD2+T+k1C8bhiZCZkei3PSshC8bhi5nwQEZEqukXIGOCZdvvhv1eipuoYUrJ7Yeyt83jEww8mnBIRUbCC+f42aVRTxJnN8Zh0x28iW0SUxLM3NtSieMtdONxYhX7x2SiavALxCcma10FERN1Tt2k+Im7/BmDzAqDuaNsyW2/PHXM1vDHdb1+9Eh84jgGC5zqOnedOY+3rYzDe0gvP3PQe49WJiCjsus1pl4javwF4/TagU3po84WdGt0Zt7XxAFqbDwBA869Afo9UfO2q7ZRy2nLBKa/7ICIif3hvl2giuj1HPHzElrcu27zQMy6MGhtqfTce7R7vO3eG8epERBR2bD7C7fAO71MtnUhAXaVnXBgVb7nL02R0bDxayD0HxqsTEZF62HyEm93//VK6NK6LDjdWqbIexqsTEVGo2HyEmzVL3XFd1C8+W5X1MF6diIhCxeYj3PqN9sxq8RNbDgiALcczLoyKJq/wXFjq7/piuefAeHUiIlIPm49wMxg902kBdG5Amh9PWRL2vI/4hGSMtzTfQK9jk9FutovQ/I93lYxXJyIi9bD50MLgGZ7ptLYOd8+19dZsmi0APHPTe20NSAfjLb3w6uyPGK9ORERhx5yPYISaUOpyArufB878CKSeB4y8EzCZw1WtX7X2E7j37ZtQ5axBtjkFf//Fq0i2tl3LwXh1IiIKVthyPpYvX46hQ4fCZrPBZrOhsLAQ77zzTuvzTU1NmD9/PtLT02G1WjFr1ixUV4d3Fodm9m8AnsoHVv8C+M8dnn8/le9ZrvT1zwwDtjwMfLbC8+9nhil/vUqKPy/G2LcmYY+jGlWSA3sc1Rj71iQUf17cOsZoMGJk9khMO38aRmaPZONBRESqCqr56NOnD5YsWYLS0lJ8/vnnmDBhAq655hp8/fXXAIAHH3wQGzduxBtvvIGSkhIcPXoU1157bVgK11RLQmnHvI66Y57lgRqIUF+vkuLPi7Hy65UQJdFruSiJWPn1Sq8GhIiIKFxCPu2SlpaGZcuW4brrrkPPnj2xZs0aXHfddQCAAwcOYNCgQdi5cyd+9rOfKVpf1J12Ed2eIxx+g8IEz7UbD+z1fQom1NerxOlyYuSakZ0aj/YMggG7b94NcwROBRERkb5pEq/udruxdu1a1NfXo7CwEKWlpTh37hwmTWq7KHHgwIHo27cvdu7c6Xc9DocDdXV1Xj9RJdSE0ihJOH3tu9dkGw/AcwTkte9eC2sdREREQTcfe/fuhdVqhcViwa9//WusW7cOgwcPRlVVFcxmM1JSUrzGZ2VloarKf7rm4sWLkZyc3PqTm5sb9JsIq1ATSqMk4bSirkLVcURERF0VdPNx0UUXYc+ePdi1axfuuecezJkzB/v37+9yAYsWLUJtbW3rT0VFlH35hZpQGiUJp7k2ZU2d0nFERERdFXTzYTabccEFF2D48OFYvHgxhg0bhqeffhrZ2dlwOp2oqanxGl9dXY3sbP/R3haLpXX2TMtPVAk1oTRKEk5vvPBGGAT5j9sgGHDjhTeGtQ4iIqKQQ8ZEUYTD4cDw4cPRo0cPvP/++63Pffvttzhy5AgKCwtD3UzkhJpQGiUJp2aTGXMGz5EdM2fwHF5sSkREYWcKZvCiRYswdepU9O3bF2fPnsWaNWuwfft2bNmyBcnJybjjjjtQVFSEtLQ02Gw23HfffSgsLFQ80yVqtSSUbl7gffGorbencQiUUBrq61VSNKIIALB6/2qvi08NggFzBs9pfZ6IiCicgppqe8cdd+D999/HsWPHkJycjKFDh2LBggW48sorAXhCxn73u9/h1VdfhcPhwOTJk/Hss8/KnnbpKOqm2rYXasJpqK9XidPlxGvfvYaKugrk2nJx44U38ogHERGFJJjv724Try6KblR+8zXsNWdgTUlFzqAhMAT5xe9ssuO194tQYf8JudY+uHFiMcxxVsWvbzxViXV/vgW19RKSEwX88pGXEZ+eE1QNbpcTZXv/jRN1R9DT1hcFF98KY7CNQ4AmSHQ2onL9MtiP/wRrZh/kzHwIBnN8cNugVoyrJ6LugM1HB+W7dmDbqhWwnz7ZusyaloEJc+9C3ihlF3oWv/FLrK4vhyi0XbdhkCTMScxD0fXrAr7++Xt+jtrTVq87xkqQkJxmx53LSxTVsPXjxVjy3SuoNratI8stYeGFszHp8kWK1oH9G/yc/lkKDJ6B8hX3YVvJAdhdltanrSYHJvx8IPLu+puybVCrrYe3YslnS1Dd0DaVOishCwsvW8gb9RFRTGHz0U75rh3YUPyk3+dnFD0csAEpfuOXWFlf7nnQrvlouRX9vAANSEvjAaBT8wFAUQOy9ePFKPr+Fc8r2tUgNNdQfIGCBqQl5h0dP3LP+sqTJmHDZ41ey1oqBYAZE89nAxKErYe3omh7Uevn3KLld4B3CiaiWKJJwqkeiKIb21atkB3zweoVEEW33+edTXas9tV4tHu8ur4czia7z9c3nqr02Xi0f1x72orGU5V+a3C7nFjyXefGAwCk5sdLv3sFbpfT7zoguj1HPDo1HgAgQZQkbCurba3Mm+fxByUHIDobQYG5RTeWfLakU+MBtDWdSz9bCrfM7x4RUayK6eaj8puvvU61+HL21ElUfvO13+dfe7/Ic6qlY+PRQhAgCgJee9/3TJF1f74FQvM/Pl/e/M+6P9/it4ayvf/2nGrxU4MkCKgyCijb+2+/6wgU817ZkNx8qsV/HslZlwWV65f53wa1Kjte5nWqpSMJEqoaqlB2vEzDqoiIokNMNx/2mjMhj6uw/6RoHf7G1dYrO6slN+5E3RFF65AdFyC+3e5SdtGq/biy/dHdnWg4oeo4IqJYEtPNhzUlNeRxudY+itbhb1xyor8jCcrH9bT1VbQO2XEB4tutJplTNu3HZSrbH91dz4Seqo4jIoolMd185AwaAmtahuyYpPQM5Awa4vf5GycWwyBJrReXdiJJMEgSbpxY7PPpXz7yMqTmf3y+vPmfXz7yst8aCi6+FVluqfXi0o4ESUK2W0LBxbf6XUegmPechFpYTQ74vibEU2mSyYGcmQ/53wa1KsgsQFZCluzptuyEbBRkFmhcGRFR5MV082EwGDFh7l2yY8bPuUs278McZ8WcxDzPg45f/s2P5yTm+c37iE/PQXKa52LUjg1I+9kucnkfRpMZCy+cDQCdGpCWxwsunC2f9xEg5t0gCJhQkNxamTfP4/E/H8i8D4WMBiMWXrYQgP8LjRdctoB5H0TULcV08wEAeaNGY0bRw52OgCSlZyiaZgsARdevw7zEvE47y4DA02wB4M7lJa0NSEdKcz4mXb4IxRfMRqbovTxLVDjNFmiLebf18l5u6w3c8BLyfvcmZkw8v9MpmCSTk9Nsu2BSv0koHleMzIRMr+VZCVmcZktE3VrM53y0iIaE07qqg1j1+P/A0WiEJd6Nuf/7L9iyBwRVgxYJp64mO7584VHUVFchJSsbw+54FKYg3mcsUSOdVIs4e6aoElGkMWQsCr256vc4sG0f4h1t9/JrtLgwcEI+rpv7fxGszJsaabCxQo10Ui0STpmiSkTRgM1HlHlz1e/x4zvfAPCdcHre1EFR0YCokQYbK9RIJ9Ui4ZQpqkQULZhwGkXOORtxYNs+AP4vPDzwwT6ci3ByqBppsLFCjXRSLRJOmaJKRHrF5iPMtm96GvEOk+yUy/gmE7ZvelrjyrypkQYbK9RIJ9Ui4ZQpqkSkV2w+wuzkSf/3bOnKuHBRIw02VqiRTqpFwilTVIlIr9h8hFlGhv/8jq6MCxc10mBjhRrppFoknDJFlYj0is1HmI2bdj8aLS7ZhNPGOBfGTbtf48q8qZEGGyvUSCfVIuGUKapEpFdsPsKshzkeAyfkA/CfcDpwfD56RDg5VI002FihRjqpFgmnTFElIr1i86GB6+b+H86bOghNFu9ZB01x7qiZZguokwYbK9RIJ9Ui4ZQpqkSkR8z50NA5ZyO2b3oaJ09WIiMjB+Om3R/xIx6+qJEGGyvUSA7VIn2UCadEFGnBfH+bZJ8lVRkNRgy05sLeaIDVmtOlLwc14tWdzka8tmspKuqOINfWFzeOWgBzuyZIcLnQ84cypJ+qgSE9BULeRYBZh19kAWLklTACGNnYBNQ3AEJTeOokIupmeORDI+X/eRrb1r8Du7Ot37OaXZgwcyryZim72HTrx4ux5LtXUG1sO7+f5Zaw8EKFN5YDULz5N1hd9SFEoW0dBknCnOyxKJryLBpf/htq9vWBG22nXow4iZT8nxB/y32KthEV9m8ANi8A6o62LbP19tzZd/AMzdbBeHUi6i4Yrx5lyv/zNDa8/m7zo/YXBnp2/YwbrgrYgGz9eDGKvn/F84p2jYPQ/PEpubNt8ebfYGXVh80vbFdH8zoeqR+LMRW/8lGnCEBAev6X+mhA9m8AXr8N6DTDqPk93fBS4OZBhXUwXp2IuhPGq0cR0eXEtvXvND/qOCXS8/iD9e9AdDnhj9vlxJLvOjceACA1P1763Stwy6zD6WzEal+NR/NjgyTgwmNT/NRpACChZl8OJKfD7zaiguj2HK3wObW5ednmhZ5xYVwH49WJiPxj8xFmldvfaD7V4juLARBw1mlC5fY3/K6jbO+/PadaOjYNzSRBQJVRQNnef/tdx2u7lnpOtfhZx5DGPPR0pcrUaYAbPeHY8qrfbUSFwzu8T5N0IgF1lZ5xYVwH49WJiPxj8xFm9hPKYtPlxp2oO6JoHXLjKgKsI82VrGgb4qkaReMixu7/y1jxOBXWwXh1IiL/2HyEmbWnsth0uXE9bX0VrUNuXG6AdZw21SrahiE9RdG4iLFmhT5OhXUwXp2IyD82H2GWM+56WM0u+L5+AAAkJJldyBl3vd91FFx8K7LcUuvFpR0JkoRst4SCi2/1u44bRy2AQZJaLy7t6Ov4cpwwnYHn4lJfRBhxApbJN/ndRlToN9ozI0XmNBdsOZ5xYVwH49WJiPxj8xFmBpMZE2ZObX7U8Yvf83j8zKkwyGR1GE1mLLxwNgB0akBaHi+4cLZs3ofZHI852WObN9uhDkmCKEj4rtdmeL5wOzYgntkuKfmVEMwWv9uICgajZyosAH8X+GLKEvm8DxXWwXh1IiL/2HxoIG/W/Zhxw1Wwmr1nHSSZ3Yqm2QLApMsXofiC2cjs0Bdkicqm2QJA0ZRnMS97bKcP3QBgXvZY3Dj/WaTnfwkjTns9b8Qp/UyzBTxTYG94CbD18l5u661smq1K62C8OhGRb8z5CEaIiZlOew0+XDofNadrkZKWjLEL/gGzNSWoEhxNdmxa/WecPl6NtMwsTJvzCCxx1qDW0dhkR/GHC3DY/hP6WfugaOxSxLdbh73mND555jkYG+LgTmjCmN/eDWtKWlDbCMTZZMdr7xehwv4Tcq19cOPEYpiDfR8NtSjechcON1ahX3w2iiavQHxC24WzgZJcFVEhJdXpcuK1715DRV0Fcm25uPHCG2Fud5Qq0PNKNDkb8crWZ3Hi+E/omdkHsyf9BnFBvFdG6lNXuEUJnx06jeNnm5CZFIfL+qfBaPB3ujJy9FKn3jFkLBxCTLss+fPtKN1bDand4XEBEoZfnIWfP/KiohJKXn4RpW+vhyS1Hf4QBAOG/2Imfn7L7YrWESgNc+1f/oJLz1yCRFPbvq931eGL1D341R/+oGgbgRS/8Uusri/vnLKamIei69cpWsdvX70SHziOdQpLG2/phWdueg/Fnxdj9f7VENvtK4NgwJzBc1A0okiV96FEoP2tRp1vvv1PHHhzI+Ib2/ZFY7yEgddNx3W/+HXA15fv2oFtq1bAfvpk6zJrWgYmzL2rW91MkIKzed8xPLZxP47Vtt12oFdyHP40fTCm5PeSeaW29FJnLGDzobYQ0y5L/nw7Pt9b7f0aoHV9IxQ0ICUvv4jPN77l9/kR068N2IAESsN84NAMXNl4lWdZuy/1ll+RT2wfhdyAFL/xS6ysL2/ecOeU1XkKGpDWxsPPOnKNiagQG/y+ft6QeZo0IIH297jccfig4gO/r1dS55tv/xM//nuj13qBtpCx826Vb0DKd+3AhuIn/T7f3e5mTMps3ncM97xc5u9PRCy/pSAqvtj1UmesYMKpmkJMu3Q12VHqs/Foe1y6txquJrvfElwuJ0rfXi9bZun/Ww+XXEpqgDRMoxsYYy/0VNUhiKzl8aVnLkF9w1nZOuQ4m+xY7avxaPd4dX05nDL7orGh1nfj0e5xhbteto7V+1fDKbOv1BBof0uQZBsPIHCd51xOHHizc+PR/vGBNzfinJ91iKIb21atkK3hg9UrIDIhldpxixIe27hf7k9EPLZxP9xiZP9eq5c6uys2H4GEmHb55QuPNp9q8T9tU4KAL1941O8WvtyyyetUi88qRBFfbtnk9/lAaZhTDw1FosnWqfForVIQkGiyYdOL8l9Wcl57v0g2ZRWCAFEQ8Nr7/v+2X7zlLs/rZdbh97lmoiTite9eU1p2lwTa30oEqnP7zv8ivlGQnWob3yhg+87/+ny+8puvvU61+HL21ElUfvO18qIp5n126LTXKYyOJADHapvw2aHTfsdoQS91dldsPgIJMe2yprpK0cvlxqmxjkAplz0dKYq24T7V9dvKV9h/Cnnc4UZl+yLgNuoqVFmPP2qlisrVefKEXFMceJy95oyi1ysdR93D8bPK/gxQOi5c9FJnd8XmI5AQ0y5TsrIVvVxunBrrCJRyecJSo2gbxvQ4ReN8ybX2CXlcv3hl+yLgNmy5qqzHH7VSReXqzOjZW9E6/I2zpqQqer3ScdQ9ZCYp+zNA6bhw0Uud3RWbj0BCTLscdsejECBBLuFUgIRhdzzqt4Rhk6dBEOQ/KsFgwLDJ0/w+HygN853+X6HeVQd/1x9LkoR6Vx2m3X6XbB1ybpxYLJuyCkmCQZJw48Riv+somrzC83qZdfh9rplBMODGC29UWnaXBNrfSgSqc1zhNWiMl3xeVwJ4ri1pjJcwrvAan8/nDBoCa1qGbA1J6RnIGTREedEU8y7rn4ZeyXFyfyKiV7JnOmsk6aXO7orNRyAhpl2a4qwYfnHLURHfCafDL86CSSbjwmQyY/gvZsqWOfzqmTDJpaQGSMN0G4FPrDs9VXX48m55/EXqHiQmJMnWIcccZ8WcxLyWlXo/2fx4TmKebN5HfEIyxlt6ya4j15goW8ecwXOCztEIVqD9LUDA+NzxsusIVGcPkxkDr5sOAJ0akJbHA6+bjh5+1mEwGDFhrnwzOX7OXcz7IC9Gg4A/TR8MwO+fiPjT9MERz9HQS53dFZsPJUJMu/z5Iy9ixMVZPv8HUDLNFgB+fsvtGDH92k5HQASDQdE0WyBwGubtj/4Zn9g+QoPbe0ZLg/usKtNsAaDo+nWYl5jnO2VVYc7HMze919aAdDDe0gubbt2FeUPmwdBhXxkEg2bTbIHA+/uZCc+EXOd1v/g1zrt1Opo65Ik1xQeeZgsAeaNGY0bRw52OgCSlZ3CaLfk1Jb8Xlt9SgOxk71MW2clxUTV9VS91dkfM+QhGiGmXriY7vnzhUdRUVyElKxvD7nhU9oiHz3W4nPhyy6a2dUyeJnvEwxe36EbZ8TKcaDiBngk9UZBZ4HX/j/qGs9j04gq4TzXBmB6HabffFdIRD180SThVITlUDYH2txp1nnM5sX3nf3HyxFFk9OyNcYXX+D3i4QsTTqkr9JIcqpc69S6Y72+TRjURmk/BzP+/0NZhMmP41TNDWofRYMTI7JF+n4839MDklBy4RQeMKRbEG3qEtD1fzCYzbk0bBgjJQOp5QBeaAnOcFVcV/r71S71j82IU3Rh47Buk1x5Gz3o7jBdEZ16F2WTGrYP935FYCaPBiIFpF8FuyIQ1JTXom8kZDEbkDhkaUg2krUBNrRaMBgGFA9I13SbFhqCOfCxevBhvvfUWDhw4gPj4eIwePRpLly7FRRdd1Dpm3LhxKCkp8Xrd3XffjX/+85+KthG1Rz5CjFfXi5p/vAR7RV8A7f8Qc8OaewQp829TZyPv/hHY+XegfXaJYAAK7wWuekLRKgLFlm/97x1YcnIHqk1t/XWWy4WFGaMx6ZoX1HkfKtSpBsajdz9a/F7FCsarayds8epTpkzBr371K4wcORIulwsPP/ww9u3bh/379yMx0XOR37hx43DhhRfi8ccfb31dQkKC4kYiKpuPEOPV9cLTeJzX/KhzDLw198fQG5B3/wjseMb/86N/G7ABCRRbPjdhAFbVl3uebRc4JjT/qhenjtKkAQlUpxp3nWU8evejxe9VrGC8urbCFq++efNmzJ07F0OGDMGwYcOwatUqHDlyBKWlpV7jEhISkJ2d3foTNU1EV4QYr64XYlNT8xEPwN+14faKvhCbQgjkcTk9Rzzk7PyHZ5wfgWLLAQmrfTQeACA1P156cgfczsYgiw9O4DqBpZ8thTuE3xvGo3c/WvxexQrGq0e3kGa71NbWAgDS0rznSb/yyivIyMhAfn4+Fi1ahIYG/zf5cjgcqKur8/qJKiHGq+uF/c318JxqkZsVb2we10W7n/c+1eKL5PaM8yNQbLkEyEa4S4KAKpMJZR8pO73TVYHrlFDVUIWy42Vd3gbj0bsfLX6vYgXj1aNbly84FUURDzzwAMaMGYP8/PzW5TfffDP69euH3r1746uvvsKCBQvw7bff4q23fN+RdfHixXjssce6Wkb4hRivrhfu0w5Vx/l05seQx6kVW36i9rAq6/G7foV1hvJ+GI/e/WjxexUrGK8e3brcfMyfPx/79u3Dxx9/7LX8rrvaQosuvvhi9OrVCxMnTsTBgwcxYMCATutZtGgRiora8gzq6uqQmxve6OughBivrhfGNAug4FYhxjRL1zeSel7I49SKLe+Z3E+V9fhdv8I6Q3k/jEfvfrT4vYoVjFePbl067XLvvffi7bffxgcffIA+feTv1zFq1CgAwPfff+/zeYvFApvN5vUTVUKMV9cL63UzAbghFwMPuJvHddHIOz2zWuQIRs84PwLFlguAbIS7IEnIdrlQcMUflVbdJYHrFJCdkI2CzIIub4Px6N2PFr9XsYLx6tEtqOZDkiTce++9WLduHbZt24b+/fsHfM2ePXsAAL166fSK4hDj1fXCEBcHa+6R5ke+Y+CtuUdgiAvhbwkms2c6rZzC+bKZH4FiywEBcxLzPP/VoQFpebwgYzSM5g6RoCoLXCew4LIFIeUyMB69+9Hi9ypWMF49ugXVfMyfPx8vv/wy1qxZg6SkJFRVVaGqqgqNjZ6ZAwcPHsQTTzyB0tJS/Pjjj9iwYQNuu+02jB07FkOH6jjAKMR4db1ImX8brLk/Auh4UaiozjRbwDONdvRvOx8BEYyKptkCgWPLi65fh+LUUch0e1/xn+V2azbNVkmdakyHZDx696PF71WsYLx69Aoq50PwM4Ng5cqVmDt3LioqKnDLLbdg3759qK+vR25uLn75y1/ikUce0XfOR4sQ49WjheR2o+HzUrhOnICpZ08kjBgOwdj2PtwNjah96R24a0QYUwxIvm0qjAnBHSlwOhvx4b9XoqbqGFKye2HsrfNgbne0wd1Qi7J1t+CE/Rh6Wnuh4Jcvw9guGl0J1zknvtq6FmePHUFSr74YOulXMPVoO2ridjai7KMncKL2MHom90PBFX8M+oiH6HTizJpX4ayogDk3F6k33wSDWd04ezWEGo/OeHX9iYaEU71gvHqbcO6LsIWMaSGqm48YUPfuu6h+cjFcVVWty0zZ2ch6eBFsV12Fxn0nUbPxINy1bVkbxmQzUqYPQHy+/PUFLdYvewIHP9/VafmAEaMw86E/qpI+Guh9qKF62TKcXrkKENsdCTIYkDZvLrIeekiVbUQDJqQSdQ/hTntl80E+1b37Lirvf6DzxZjNR7Qy//AMGvf5n82SfsuggA2Iv8ajhS3HjL8N/S6k9NFA7yPn6adCbkCqly3D6Rf832047Y7bY6IBYUIqUfegRdpr2BJOSb8ktxvVTy72PQtEkgAIqC+Vn+9es/EHSDJpgE5no2zjAQC1lQ4Y3Ohy+mjg9wFUP7kYkjuE5FCn03PEQ8bplasgOv0nseoBE1KJuodoTHtl89FNNHxe6nWKoiNj+gUwWOSvuXDXOuA4VOv3+Q//vTJgHQIEjDjge2qbkvTRQO8DkgRXVRUaPi/1PyaAM2te9T7V4osoesbpGBNSibqHaEx7ZfPRTbhOyCceCgEajxbiWf9/26+pOqZoHUkN8tl2cumjgd5HsON8cVZUqDouWjEhlah7iMa0VzYf3YSpp3zioeTwf0SjPUOS/5keKdnKzheeTXDJPi+XPhrofQQ7zhezwoRdpeOiFRNSibqHaEx7ZfPRTSSMGA5TdrbfG665T30PMUADYky2wNLf/xGSsbfOC1iHBAmlA30f2lOSPhrofUAQYMrORsKI4QFr8Sf15psAQ4D/NQwGzzgdY0IqUfcQjWmvbD66CcFoRNbDi5ofdPgVFAQAEhKHy3e9KdPPhyAzH9xsjseAEaNk15GcY4Hb2PX00cDvA8h6eJFXbkmwDGYz0ubNlR2TNm9u0Hkf0YYJqUTdQzSmvbL56EZsV12FnKefginL+yZ4pqws5Dz9FNJvmYT0WwbBmOz9pWpMtiiaZgsAMx/6o98GZMCIUbiz+K2Q00cDvQ81cj6yHnoIaXfc3vkIiMEQM9NsASakEnUX0Zb2ypyPbihQwqkkSnAcqoV41glDkhmW/smyRzx8CZhwqkL6aKD3oQY1Ek71gAmnRN0DE079YPMReWo0HwHFSFR9tAi1EVOjkYuGuG82UdpibDm1F8z3t/ycR+p21IhXD2j/BmDzAqDuaNsyW2/P3YNj5CZ9Wgo1al6NqPqth7diyWdLUN1Q3bosKyELCy9bqNmNzhgTr61wR3VTbOORD2rVuO8kTr38jd/nlV73IWv/BuD12wB/Ib8xdJdgLYQaNa9GVP3Ww1tRtL0IUofPtOUW71rcaZUx8drSIqqb9Ifx6hQ0SZRQs/Gg7JhA8eoBiW7PEQ+5kN/NCz3jKKBQo+bViKp3i24s+WxJp8YDQOuypZ8thTuMnylj4rUVjVHdpD9sPggA4DhU63WqxZdA8eoBHd7hfaqlEwmoq/SMo4BCjZpXI6q+7HiZ16mWTquAhKqGKpQdL/O/nRAxJl5b0RjVTfrD5oMAyMemd2WcT3b/X1JdGtfNhRo1r0ZU/YkGZetQOq4rGBOvrWiM6ib9YfNBAORj07syzidrVuAxwYzr5kKNmlcjqr5ngrJ1KB3XFYyJ11Y0RnWT/rD5IACApX9yp3CxjgLFqwfUb7RnVotcyK8txzOOAgo1al6NqPqCzAJkJWS1XlzaaRUQkJ2QjYLMAtn3EgrGxGsrGqO6SX/YfBAAQDAISJk+QHZMoHj1gAxGz3RazxY7VuD515QlzPtQKNSoeTWi6o0GIxZettDzkg6facvjBZctCGveB2PitRWNUd2kP2w+qFV8fkbI8eoBDZ7hmU5r6zANz9ab02y7INSoeTWi6if1m4TiccXITMj0Wp6VkKXJNFuAMfFai7aobtIf5nxQJ2oknIqihGPlNaivcyDRZkGvvBQY2q9DhYRTLZJY9RKvHmqdsZJwGijWn9TFhFNqj/HqFFEHvziOj14rR32No3VZYooFV9yYhwGXZsq8Ujktklirly3D6ZWrAFFsW2gwIG3e3Ki6sZwaCaWxoOTlF1H69npIUtvnJQgGDP/FTPz8ltsjWBlR98CQMYqYg18cx+bn9nk1HgBQX+PA5uf24eAXx0PeRksSa8dcEnetE6de/gaN++QzH5SoXrYMp1940bvxAABRxOkXXkT1smUhb0MNLQmlHfM6XNXVqLz/AdS9+26EKtNWycsv4vONb3k1HgAgSSI+3/gWSl5+MUKVEZEvbD5INaIo4aPXymXHfPx6OcQQkg+1SGIVnU7PEQ8Zp1eugugMIfNEBWoklMYCl8uJ0rfXy44p/X/r4XJF9vMiojZsPkg1x8prOh3x6Mh+xoFj5TVd3oYWSaxn1rza+YhHR6LoGRdBaiSUxoIvt2zqdMSjI0kU8eWWTRpVRESBsPkg1dTXyTcewY7zRYskVmdFharjwkWNhNJYUFMt04B1YRwRhR+bD1JNos2i6jhftEhiNefmqjouXNRIKI0FKVnZqo4jovBj80Gq6ZWXgsQU+cbCmuqZdttVWiSxpt58E2AI8L+GweAZF0FqJJTGgmGTp0EQ5D8vwWDAsMnTNKqIiAJh80GqMRgEXHFjnuyYy2/I8877CJIWSawGsxlp8+bKjkmbNzfieR9qJJTGApPJjOG/mCk7ZvjVM2EyRV8+C1F3xeaDVDXg0kxMuTu/0xEQa6oFU+7OVyXnQ4sk1qyHHkLaHbd3PgJiMCDtjtujJudDjYTSWPDzW27HiOnXdjoCIhgMGDH9WuZ8EEUZhoxRWARMOFUBE07bqJFQGgtcLie+3LIJNdVVSMnKxrDJ03jEg0gjwXx/mzSqiboZg0FAzkXhvYW5YBAQNyAlrNswmM1InzsnrNsg9RgMRmSedz4SUlJhTUnlzeSIohSbDyKdY7y6R/muHdi2agXsp9sSbq1pGZgw9y7eWI4oyvCaDyIdY7y6R/muHdhQ/KRX4wEA9tMnsaH4SZTv2hGhyojIFzYfRDrFeHUPUXRj26oVsmM+WL0Cohjb+4FIT9h8EOkU49U9Kr/5utMRj47OnjqJym++1qgiIgqEzQeRTjFe3cNec0bVcUQUfmw+iHSK8eoe1hRls6qUjiOi8GPzQaRTjFf3yBk0BNY0+WC5pPQM5AwaolFFRBQImw8inWK8uofBYMSEuXfJjhk/5y5mfhBFETYfRDrGeHWPvFGjMaPo4U5HQJLSMzCj6GHmfBBFGcarU1g4m1z44ZUDcJ9pgjE1DufPHghzHDPtwiXUePVzTS5Uv3oArjNNMKXGIeumgeihw89LFN2e2S81Z2BNSUXOoCExe8RDdImw7zwK9+kmGNPiYC3sDYOp7e+T3WlfUHQI5vs7qOZj8eLFeOutt3DgwAHEx8dj9OjRWLp0KS666KLWMU1NTfjd736HtWvXwuFwYPLkyXj22WeR1eFvZmoUT9Hp67+WIqmqHoZ2pwJEScLZ7EQMeTC2rz/Qo8N/K4Ohsh7tT9xIAMScRPS7ryBSZZGMmk0/wP5RpeeDaiEA1itykDLtfKa9UkQE8/0d1GmXkpISzJ8/H59++inee+89nDt3DldddRXq6+tbxzz44IPYuHEj3njjDZSUlODo0aO49tpru/ZOSHe+/mspbFXeX2QAIACwVdXj67/GduaE3hz+WxkMP9k7B5VJEgw/2XH4b2WRKYz8qtn0A+wfdmg8AEAC7B9W4tC/PmbaK0W9oI6rbt682evxqlWrkJmZidLSUowdOxa1tbV44YUXsGbNGkyYMAEAsHLlSgwaNAiffvopfvazn6lXOUUdZ5MLSVWeRlTocAGkIAiQJAlJVfVwNrl4CiYKnGtywVAp/3kZKutxrsmly1MwsUh0iZ4jHjKM5W4YYIAI0efzH6xegQEjR/EUDEVUSBec1tbWAgDS0tIAAKWlpTh37hwmTZrUOmbgwIHo27cvdu7c6XMdDocDdXV1Xj+kTz+8cgAGQej0RdZCEAQYBAE/vHJA48rIl+pXD0BA58ajhSAIEJrHUXSw7zza+YhHBwbBgAG2S/0+z7RXigZdbj5EUcQDDzyAMWPGID8/HwBQVVUFs9mMlJQUr7FZWVmo8hMDvXjxYiQnJ7f+5ObmdrUkijD3mSZVx1F4uRR+DkrHUfi5Tyv7LKwm+UA1pr1SpHW5+Zg/fz727duHtWvXhlTAokWLUFtb2/pTUVER0voocoypcaqOo/AyKfwclI6j8DOmKfss7C755oJprxRpXWo+7r33Xrz99tv44IMP0KdPn9bl2dnZcDqdqKmp8RpfXV2N7Oxsn+uyWCyw2WxeP6RP588eCFGS4G8ClSRJECUJ588eqHFl5EvWTQMhAbKfl9Q8jqKDtbA3Ol3N3YEoiThY94Xf55n2StEgqOZDkiTce++9WLduHbZt24b+/ft7PT98+HD06NED77//fuuyb7/9FkeOHEFhYaE6FVPUMseZcDY7EUDnL7SWx2ezE3mxaZToEWeCmCP/eYk5ibzYNIoYTAZYr8iRHePOM/q92BRg2itFh6ByPn7zm99gzZo1+O9//+uV7ZGcnIz4+HgAwD333INNmzZh1apVsNlsuO+++wAAO3Yom97FnA/9Y86HvjDnQ3+6kvORlJ6B8XOY80HhE7aQMX9Xxa9cuRJz584F0BYy9uqrr3qFjPk77RJK8RS9mHCqL7GScNqdMOGUok3Ymg8tsPkgPXG7RBz7uBKO002wpMWh1+U5MJrUvWWSJttwulG76Qe4TzXBmB6H5Gnnw2jW3xdVoC9kADjndOO79QfRdKoRcenxuHDmAPTQ4XuVRAmOQ7UQzzphSDLD0j8ZgiHABSFEYcTmg0gDhzYehPuTo2g//6AJgHFMb/SfPkA32zj50tdo2n+60/K4wWnIuE0/FyYGOhUBAGXP70VS+RnEt/uSbhQlnM1LRcGdF2tccdc17juJmo0H4a51ti4zJpuRMn0A4vMzZF5JFD5hi1cnIo9DGw/C9HElLB16d4skwfRxJQ5tPKiLbfhrPACgaf9pnHxJH2FUgSLHazb9gLLn96Ln92cQ1+HgQJwA9Pz+DMqe36tZvaFo3HcSp17+xqvxAAB3rROnXv4GjftO+nklUfRg80EUJLdLhPuTowB8x5IDgPuTo3C7/M84iIptON1+G48WTftPw+10d3kbWlASOW7/qBJJ5Z7sC3/701p+Buei/L1KooSaAE1nzcYfIIlRdUCbqBM2H0RBOvZxJeIgH0se1zwumrdRu+kHVcdFipLIcUhAvEE++j/BIOC79aEfTQonx6HaTkc8OnLXOuA4VKtRRURdw+aDKEgOhRHXSsdFahvuUwrj8BWOixSlkeNKNJ1qVG1d4SCelW88gh1HFClsPoiCZFEYca10XKS2YUxXGIevcFykKI0cVyIuPV61dYWDIcms6jiiSGHzQRSkXpfnoAnyseRNzeOieRvJzTNA1BoXKUoixyF4ZrXI7c8GUcKFM9WZQRQulv7JMCbLNxbGZAss/ZM1qoioa9h8EAXJaDLAOKY3AP+x5MYxvUPK4tBkG2Yj4ganyY6JG5wW9XkfSiLHrVfk4Gye52Zq/vanPS816vM+BIOAlABTrFOmn8+8D4p6bD6IuqD/9AFwXZ4DR4cLGB2CANflOapkcGixjYzbhvhtQPSU85Ey7XxYx+Z0PgIiANaxnpyPgjsvxokLUtHU4eBHowScuEA/OR/x+RlIv2VQpyMgxmQL0m8ZxJwP0gWGjBGFQIv0US0SOdWIV1cjcTPUdTDhtN39lBTsi1C3ESvJuKQOJpwSxYiDXxzHR6+Vo77G0bosMcWCK27Mw4BLM6NmG2okbjK1Uz1K0l4DCfR5xEoyLqmHzQdRDDj4xXFsfm6f3+en3J0fcgOixjZaEjf9UXIqQI11kEdr2qsfLaeh5AT6PHr0seLcT3a/z7MB6Z4Yr06kc6Io4aPXymXHfPx6OcQQkizV2IYaiZtM7VSP0rRXUSYZV8nnIdd4APpIxqXIYvNBFIWOldd4nQbxxX7GgWPlNRHdhhqJm0ztVI/StFf7zqN+n1byeSgR7cm4FFlsPoiiUH2dfFMQ7LhwbUONxE2mdqpHadqr3Di19nO0J+NSZLH5IIpCiTaLquPCtQ01EjeZ2qkepWmvcuPU2s/RnoxLkcXmgygK9cpLQWKKfHNgTbWgV15KRLehRuImUzvVozTt1VrY2+/TSj4PJaI9GZcii80HURQyGARccWOe7JjLb8iDIYQkSzW2oUbiJlM71aM07VUu70PJ59Gjj1X2eT0k41JksfkgilIDLs3ElLvzOx2dsKZaVJlmq9Y21EjcZGqnepSkvQYS6PPIuvfSmEjGpchhzgdRlBNFyTMzpc6BRJvnNEgoRzzCtY1oSDilNkw4Ja0F8/0dXH4yUTfjdpzDmTd2w32qAcb0BKRePxJGS4+25zWIVzcYBORclBrSOgJFiksuEfHfnIS5+UtE6m8DgvwScYsSDhyqQ+3JRiRnxCO/nw2mIBsHwSAgbkBKUK/xqkHB59Fkd6Lyn18C9nOAtQdyfj0McVZ1L2YN9YtfjWZQFCXUHW/AudNN6OESkSBKQR/qDvh5GAQ0pMTBIQKWlDgkh6FR1EtDqpc6owWPfBD5cfwf2+A4YoQgtP2RLUkiLH3dyJw/AYc2HoT7k6Nof01/Ezx3m1Xjpm9qKXt+L5LKzyC+3R+EjaKEs3mem6mpEZP9yX/K8eXWCrT/00QQgGGTcjFmlvx1JWpR8nl8//hOWOrPQWh3sz5JkuBI7IEL/rdQlTpCjTZXI+7+x1X7YDxwxuvMiwTAPTAV583NV/ZGAtDi918vkft6qTPcGK9OFCJP4+E5MNjxiwoAzlnd6GE3+n1erbvOhqrs+b3o+f0ZAL7rdCT2QFyDy+/rlTQgn/ynHHveq/D7/CVXhr8BObTxIEwfe5I9/X0e7i+Ow1J/zu8YNRqQUKPN1Yi7/3HVPhi/8TSTvt6ne1BayA2Ikv0d6u+/XiL39VKnFhivThQCt+McHEc6NxbtH/tqPNo/dn9yFG6ZCGstnHO6kVTeufFo/7jly9ifQDHZLpeIL7f6bzwA4MutFXCFcV+4XSLcn3gSO+U+D1+NR/vHlvpzaLJ3PWAr1GhzNeLuXU43jAfkP3PjgTNwhRB9rnR/h/L7r5fIfb3UGY3YfBB1cOaN3RAEQ6c/WFsIgtD64+/5OADHPpb/Igq379YfRLxBvk5/z7UnF5O9b/tPCHTsVJI848Ll2MeViEPnL8IWLZ9HoM9MEATPtSBdFGq0uRpx91UbD0KA/L4Qmsd1ldL9Hcrvv14i9/VSZzRi80HUgftUgyrrcSiMug6XplONqqxHLia79qSybSgd1xWq7me7/JEgOaFGm6sRd39OYQ1Kx/midH+H8rnoJXJfL3VGIzYfRB0Y0xNUWY9FYdR1uMSlx6uyHrmY7OQMZdtQOq4rVN3P1h6Bx/gRarS5GnH3PRTWoHScL0r3dyifi14i9/VSZzRi80HUQer1IyFJIvxdiy1JUuuPv+ebAPS6XD5pMtwunDkAjaJ8nUquN5eLyc4f1weBztwIgmdcuPS6PAdNQMDPI9BnJkkScn49rMt1hBptrkbcffb0AZAgvy+k5nFdpXR/h/L7r5fIfb3UGY3YfBB1YLT0gKWv54K8jn/Atp/tIve8cUxv1fM+gtXDbMTZPE8+iL86HYnyf9MPFJNtMhkwbFKu7DqGTcqFKYz7wmgywDjG84Uu93m0vFe5fRFK3keo0eZqxN2bzEa4B8p/5u6BqTCFEASmdH+H8vuvl8h9vdQZjdh8EPmQOX8CLH1d6HwFoQRLXxfO/+N4uC7PgaPDX/sdghA102wBoODOi3HiglQ0dXgbjRJw4oJUXPC/hSHHZI+ZlYdLrsztdAREELSZZgsA/acPCPh5XPC/hX6bLbVyPkKNNlcj7v68uflwD0qDrw9EjWm2gLL9HSq9RO7rpc5ow5wPIhnRkHCqhkAJp2rEZLtcIvZt/6kt4XRcn7Ae8fDF0eTCnpf2t34el9w2GJY47yBne00TfnyqDKYmN1xxRpz3QAGsKepenxNqwmmgz0vROppcqH71AFxnmmBKjUPWTQPRI07dUGstfv/1khyqlzrDiSFjRNTtKElZjYYk1kDUSA5l4iZFAu/tQkTdir+UVUmC1/JAYyLdgLQkh5oAr9MmFkkCPq7EISBgA+IvcdNd68Spl7/hqQCKCtF3fJiIKAhKU1blIuBbxoQziTUQNZJDmbhJesHmg4h0TWnKaiDhTmINRI3kUCZukl6w+SAiXVMzPTWcSayBqJEcysRN0gs2H0Ska2qmp4YziTUQNZJDmbhJesHmg4h0TWnKaiDhTmINRI3kUCZukl6w+SAiXVOasnrJlZFNYg1EjeRQJm6SXnCqLRHpXssUWSUZHtGc89F/+gAcAjrlfDgEQXHOR0viZuecDwtSpp/PabYUFRgyRkQxQ0nKajQksQaiRnIoEzdJawwZI6KgxMoXldEgYGB/G8SMOBiSzDD6eA9KxkSaBOCkS0KtU0SyS0K2rzEBPjMJwCmXhPpzIhJdEnoh8E13g65Thd8bvdyigNQVdPPx4YcfYtmyZSgtLcWxY8ewbt06zJw5s/X5uXPnYvXq1V6vmTx5MjZv3hxysUSkvliJ4lbyPvTwXn1FwO/4z/dep4YCvY+DXxzHR6+Vo77G0fp8YooFV9yYp+jmdEqosS/bR8m33Erv0OYfg4qSJ30Kur2sr6/HsGHD8I9//MPvmClTpuDYsWOtP6+++mpIRRJReLREcXcMpmqJ4m7cdzJClQVHyfvQw3ttiYnveDK8JQL+k/+UB3wfhzYexObn9nk1HgBQX+PA5uf24eAXx0OuU4192RIlb+nwZi2SBNPHlTgUIKmV9C3oIx9Tp07F1KlTZcdYLBZkZ/s6UEhE0UJpFHfc4PSoPgWj5H2c2RD4iyzS71VpTHz/b0/LjmmJaPfn49fL0X9YTxi6+D7V+L1piZI3wXeUvCRJnij5qf15CiZGheVT3b59OzIzM3HRRRfhnnvuwalTp/yOdTgcqKur8/ohovCLlShuJe9DrHNCrIvu96okJj7NKAR8H3EA0k3+Gwv7GQeOldcEX2AzNX5v1IiSJ31TvfmYMmUKXnrpJbz//vtYunQpSkpKMHXqVLjdbp/jFy9ejOTk5Naf3Fz5ufhEpI5YieJWs75Ivlcl0e5xCg9WBBpXX+eQHyBDjd8bNaLkSd9Un+3yq1/9qvW/L774YgwdOhQDBgzA9u3bMXHixE7jFy1ahKKiotbHdXV1bECINBArUdxq1hfJ96ok2r1JYTBCoHGJNov8ABlq/N6oESVP+hb2k2nnn38+MjIy8P333/t83mKxwGazef0QUfjFShS3kvdhsJlhsEX3e1USE3/aLQV8H03wTLH1x5pqQa+8lOALbKbG740aUfKkb2FvPn766SecOnUKvXr1CvemiCgIsRLFreR9pM4YgNQZ0f1elcbEB3ofLRHt/lx+Q16XLzYF1Pm9USNKnvQt6E/Wbrdjz5492LNnDwDg0KFD2LNnD44cOQK73Y6HHnoIn376KX788Ue8//77uOaaa3DBBRdg8uTJatdORCFqieLu+DdZY7IF6bcMiprsi0CUvA89vNcxs/JwyZW5nY6ACAJwyZWenI9A76P/9AGYcnc+ElO8T61YUy2Ycne+KjkfauzL/tMHwHV5Dhwd3qxDEOC6PIc5HzEu6Hj17du3Y/z48Z2Wz5kzB8uXL8fMmTPxxRdfoKamBr1798ZVV12FJ554AllZWYrWz3h1Iu3FSsKpkvehh/eqJAJedImw7zwK9+kmGNPiYC3sDUO7MaIo4Vh5DerrHEi0eU61hHLEw5doSTjVw2faHQTz/c17uxAR6Yweklq1wn0RPYL5/uYJNSIiHdFDUqtWuC/0i80HEZFOKE0XlcSoOqAdFtwX+sbmg4hIJ2IllVYN3Bf6xuaDiEgnYiWVVg3cF/rG5oOISCdiJZVWDdwX+sbmg4hIJ2IllVYN3Bf6xuaDiEgnYiWVVg3cF/rG5oOISEf0kNSqFe4L/VL9rrZERBRe8fkZiBuczlRPcF/oFZsPIiIdEgwC4gakRLqMqMB9oT887UJERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJpiwikRdStNDefwzfN7IdY6YEi2YNCdFyMuoUekyyLqVth8EFG3UfaXXcioc6Cn0HzfjwYXjj+2EydtFhT8YVRkiyPqRnjahYi6hbK/7ELPOgc63m5MANCzzoGyv+yKRFlE3RKbDyKKeU0N55BR5wAACIJ3+9HyOKPOgaaGc5rXRtQdsfkgopj3zfN7YRCETo1HC0EQYBAEfPP8Xo0rI+qe2HwQUcwTax2qjiOi0LD5IKKYZ0i2qDqOiELD5oOIYt6gOy+GKEmQJMnn85IkQZQkDLrzYo0rI+qe2HwQUcyLS+iBkzbPUY2ODUjL45M2C/M+iDTC5oOIuoWCP4zCCZsFHY99SABOMOeDSFMMGSOibqPgD6N8Jpz25REPIk2x+SCibiUuoQcuvb8g0mUQdWs87UJERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJpi80FERESaYvNBREREmmLzQURERJqKuoTTlps81dXVRbgSIiIiUqrle9vf3aPbi7rm4+zZswCA3NzcCFdCREREwTp79iySk5NlxwiSkhZFQ6Io4ujRo0hKSoIgCJEuR3V1dXXIzc1FRUUFbDZbpMvRPe5P9XBfqov7Uz3cl+oK1/6UJAlnz55F7969YTDIX9URdUc+DAYD+vTpE+kyws5ms/F/IhVxf6qH+1Jd3J/q4b5UVzj2Z6AjHi14wSkRERFpis0HERERaYrNh8YsFgv+9Kc/wWKxRLqUmMD9qR7uS3Vxf6qH+1Jd0bA/o+6CUyIiIoptPPJBREREmmLzQURERJpi80FERESaYvNBREREmmLzoZHFixdj5MiRSEpKQmZmJmbOnIlvv/020mXp0vLlyzF06NDWgJzCwkK88847kS4rZixZsgSCIOCBBx6IdCm68+ijj0IQBK+fgQMHRrosXausrMQtt9yC9PR0xMfH4+KLL8bnn38e6bJ06bzzzuv0+ykIAubPn695LVGXcBqrSkpKMH/+fIwcORIulwsPP/wwrrrqKuzfvx+JiYmRLk9X+vTpgyVLliAvLw+SJGH16tW45ppr8MUXX2DIkCGRLk/Xdu/ejeeeew5Dhw6NdCm6NWTIEGzdurX1scnEP2a76syZMxgzZgzGjx+Pd955Bz179kR5eTlSU1MjXZou7d69G263u/Xxvn37cOWVV+L666/XvBZOtY2QEydOIDMzEyUlJRg7dmyky9G9tLQ0LFu2DHfccUekS9Etu92OgoICPPvss/jzn/+MSy65BE899VSky9KVRx99FOvXr8eePXsiXUpMWLhwIT755BN89NFHkS4lJj3wwAN4++23UV5ervm91HjaJUJqa2sBeL40qevcbjfWrl2L+vp6FBYWRrocXZs/fz6uvvpqTJo0KdKl6Fp5eTl69+6N888/H7Nnz8aRI0ciXZJubdiwASNGjMD111+PzMxMXHrppXj++ecjXVZMcDqdePnll3H77bdH5CauPB4YAaIo4oEHHsCYMWOQn58f6XJ0ae/evSgsLERTUxOsVivWrVuHwYMHR7os3Vq7di3Kysqwe/fuSJeia6NGjcKqVatw0UUX4dixY3jsscdwxRVXYN++fUhKSop0ebrzww8/YPny5SgqKsLDDz+M3bt347e//S3MZjPmzJkT6fJ0bf369aipqcHcuXMjsn2edomAe+65B++88w4+/vjjbnEH33BwOp04cuQIamtr8eabb+Jf//oXSkpK2IB0QUVFBUaMGIH33nuv9VqPcePG8bSLCmpqatCvXz8UFxfzlGAXmM1mjBgxAjt27Ghd9tvf/ha7d+/Gzp07I1iZ/k2ePBlmsxkbN26MyPZ52kVj9957L95++2188MEHbDxCYDabccEFF2D48OFYvHgxhg0bhqeffjrSZelSaWkpjh8/joKCAphMJphMJpSUlOCZZ56ByWTyukCNgpOSkoILL7wQ33//faRL0aVevXp1+gvFoEGDeCorRIcPH8bWrVvxP//zPxGrgaddNCJJEu677z6sW7cO27dvR//+/SNdUkwRRREOhyPSZejSxIkTsXfvXq9l8+bNw8CBA7FgwQIYjcYIVaZ/drsdBw8exK233hrpUnRpzJgxnSIJvvvuO/Tr1y9CFcWGlStXIjMzE1dffXXEamDzoZH58+djzZo1+O9//4ukpCRUVVUBAJKTkxEfHx/h6vRl0aJFmDp1Kvr27YuzZ89izZo12L59O7Zs2RLp0nQpKSmp07VHiYmJSE9P5zVJQfr973+P6dOno1+/fjh69Cj+9Kc/wWg04qabbop0abr04IMPYvTo0XjyySdxww034LPPPsOKFSuwYsWKSJemW6IoYuXKlZgzZ05Ep4Gz+dDI8uXLAXjOpbe3cuXKiF3wo1fHjx/HbbfdhmPHjiE5ORlDhw7Fli1bcOWVV0a6NOrmfvrpJ9x00004deoUevbsicsvvxyffvopevbsGenSdGnkyJFYt24dFi1ahMcffxz9+/fHU089hdmzZ0e6NN3aunUrjhw5gttvvz2idfCCUyIiItIULzglIiIiTbH5ICIiIk2x+SAiIiJNsfkgIiIiTbH5ICIiIk2x+SAiIiJNsfkgIiIiTbH5ICIiIk2x+SAiIiJNsfkgIiIiTbH5ICIiIk2x+SAiIiJN/X8I/A1JxfEbgQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "for c, df in mpg.groupby('class'):\n", + " plt.scatter(df['displ'], df['hwy'], label=c)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Jeremy\\AppData\\Local\\Temp\\ipykernel_42836\\3535434989.py:2: FutureWarning:\n", + "\n", + "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Highway MPG')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjRUlEQVR4nOzdd1wU1xYH8N/sIktZegcRCaCiYAFL7Fhi70aNHTVqjBoNMbEkJlETS3whmmaiSdDE3qOxN9Rg7w0VCTYEQRSQDrvz/lhZWbbNwmyD830fPi87e2fm7OzCHu/cey7DsiwLQgghhBAzJDB2AIQQQgghFUWJDCGEEELMFiUyhBBCCDFblMgQQgghxGxRIkMIIYQQs0WJDCGEEELMFiUyhBBCCDFblMgQQgghxGxRIkMIIYQQs0WJDKkQhmHw5ZdfGjsMTr788kswDKO340dGRqJ27dp6O351EhERgYiICIOe8/79+2AYBqtXrzboeauCyvxule777NkznqMi1Q0lMmZq9erVYBhG7c+ZM2eMHaJelH/dVlZW8Pb2RteuXfH999/j5cuXxg6RlLF3716jJryln5cLFy7otJ+x4zYWhmEwZcoUlc9V9FpWdaV/i959912Vz3/66afyNmWTtsjISIW/Zfb29mjUqBG+/fZbFBYWKh3n2rVrGDNmDPz9/WFlZQWxWIzGjRvjk08+wX///ae312cOLIwdAKmc+fPnw9/fX2l7YGCgXs+bn58PCwvjfXxKX3dxcTFSU1MRGxuL6dOnIzo6Grt27ULDhg3lbT/77DPMmjXLaLFWZ3v37sVPP/3EOSk4ePCgfgNSwc/PD/n5+ahRo4Z8m65xV1f0uyVjZWWFbdu24eeff4alpaXCcxs2bICVlRUKCgqU9hOJRPjtt98AAJmZmdi2bRtmzJiB8+fPY+PGjfJ2q1atwqRJk+Dq6orhw4ejXr16KCkpwY0bN/Dnn39i2bJlyM/Ph1Ao1O8LNVGUyJi57t27o2nTpgY/r5WVlcHPWVb51z179mwcPXoUvXr1Qp8+fRAfHw9ra2sAgIWFhVGTLsJd+S8BQyjt2dM3lmVRUFAg/1xWBfS7JdOtWzfs2rUL+/btQ9++feXbT506haSkJAwcOBDbtm1T2s/CwgIjRoyQP37//ffRokULbNq0CdHR0fD29sapU6cwadIktG7dGv/88w/s7OwUjvHtt9/i66+/1t+LMwN0a6mKK73//7///Q8rV65EQEAARCIRmjVrhvPnzyu137JlC+rXrw8rKyuEhIRgx44dKseAlB8jU3q/+969e4iMjISjoyMcHBwwZswY5OXlKZ1n7dq1CA8Ph7W1NZydnfHOO+/g0aNHlXqtHTt2xNy5c/HgwQOsXbtWKbayDh06hDZt2sDR0RFisRh169bFnDlz5M/HxsaCYRhs2rQJc+bMgaenJ2xtbdGnTx9Ocf7vf/9Dq1at4OLiAmtra4SHh2Pr1q0q265duxbNmzeHjY0NnJyc0K5dO6WeiX379qFt27awtbWFnZ0devbsiZs3byq0iYyMhFgsxsOHD9GrVy+IxWL4+Pjgp59+AgBcv34dHTt2hK2tLfz8/LB+/XqlWDIzMzF9+nT4+vpCJBIhMDAQS5YsgVQqlbfh+pmKjIyUn7tsF7om5cfIlL4Pmzdvxtdff42aNWvCysoKnTp1wr179zQei6vyY2S0xS2VSrFs2TI0aNAAVlZW8PDwwMSJE/HixQuF49auXRu9evXCgQMH0LRpU1hbW+PXX38FoP3zp0pISAg6dOigtF0qlcLHxwdvv/22fNvGjRsRHh4OOzs72NvbIzQ0FMuXL6/Q9dFE1e9Wfn4+PvjgA7i6usLOzg59+vRBcnKy2nF1mZmZGv9mDBgwAGFhYQr79O7dGwzDYNeuXfJtZ8+eBcMw2LdvHwDg+fPnmDFjBkJDQyEWi2Fvb4/u3bvj6tWr8n1ycnJga2uLadOmKcX1+PFjCIVCLFq0SOt18PHxQbt27ZR+p9atW4fQ0FCEhIRoPQYACAQC+ef//v37AIB58+aBYRisW7dOKYkBZP+oXLBgQbXtjQGoR8bsZWVlKQ2WYxgGLi4uCtvWr1+Ply9fYuLEiWAYBt988w0GDBiA//77T96lvmfPHgwZMgShoaFYtGgRXrx4gXHjxsHHx4dzPIMHD4a/vz8WLVqES5cu4bfffoO7uzuWLFkib/P1119j7ty5GDx4MN59912kp6fjhx9+QLt27XD58mU4OjpW+HqMHDkSc+bMwcGDBzF+/HiVbW7evIlevXqhYcOGmD9/PkQiEe7du4e4uDiltl9//TUYhsHMmTORlpaGZcuWoXPnzrhy5YrGf1kvX74cffr0wfDhw1FUVISNGzdi0KBB+Oeff9CzZ095u3nz5uHLL79Eq1atMH/+fFhaWuLs2bM4evQounTpAgD466+/MHr0aHTt2hVLlixBXl4eVqxYgTZt2uDy5csKSaZEIkH37t3Rrl07fPPNN1i3bh2mTJkCW1tbfPrppxg+fDgGDBiAX375BaNGjULLli3ltybz8vLQvn17JCcnY+LEiahVqxZOnTqF2bNnIyUlBcuWLVN4jdo+UxMnTsSTJ09w6NAh/PXXX1zfQpUWL14MgUCAGTNmICsrC9988w2GDx+Os2fPVuq4qmiLe+LEiVi9ejXGjBmDDz74AElJSfjxxx9x+fJlxMXFKdyiunPnDoYOHYqJEydi/PjxqFu3rk6fv7KGDBmCL7/8EqmpqfD09JRv//fff/HkyRO88847AGRJ0tChQ9GpUyf57118fDzi4uJUfmGXV1BQoHIAbk5OjtZ9AVkiuHnzZowcORJvvvkmjh8/rvCZL0/b34y2bdvi77//RnZ2Nuzt7cGyLOLi4iAQCHDy5En06dMHAHDy5EkIBAK0bt0aAPDff/9h586dGDRoEPz9/fH06VP8+uuvaN++PW7dugVvb2+IxWL0799f3gNSNhnYsGEDWJbF8OHDOb3uYcOGYdq0acjJyYFYLEZJSQm2bNmCqKgolbeV1ElMTAQAuLi4IC8vD0ePHkVERARq1qzJ+RjVDkvMUkxMDAtA5Y9IJJK3S0pKYgGwLi4u7PPnz+Xb//77bxYAu3v3bvm20NBQtmbNmuzLly/l22JjY1kArJ+fn8L5AbBffPGF/PEXX3zBAmDHjh2r0K5///6si4uL/PH9+/dZoVDIfv311wrtrl+/zlpYWChtV/e6z58/r7aNg4MD26RJE6XYSn333XcsADY9PV3tMY4dO8YCYH18fNjs7Gz59s2bN7MA2OXLl8u3jR49Wun65OXlKTwuKipiQ0JC2I4dO8q3JSQksAKBgO3fvz8rkUgU2kulUpZlWfbly5eso6MjO378eIXnU1NTWQcHB4Xto0ePZgGwCxculG978eIFa21tzTIMw27cuFG+/fbt20rv4YIFC1hbW1v27t27CueaNWsWKxQK2YcPH7Isq9tnavLkyawuf2bat2/Ptm/fXv649H0IDg5mCwsL5duXL1/OAmCvX7+u8XhcPi+lrycmJkZr3CdPnmQBsOvWrVPYvn//fqXtfn5+LAB2//79Cm25fP5UuXPnDguA/eGHHxS2v//++6xYLJZ/5qZNm8ba29uzJSUlOh2fZVm1f1PK/pS9luV/ty5evMgCYKdPn65w3MjIyAr/zTh//jwLgN27dy/Lsix77do1FgA7aNAgtkWLFvJ2ffr0Ufi9LygoUPq9SkpKYkUiETt//nz5tgMHDrAA2H379im0bdiwocJnUR0A7OTJk9nnz5+zlpaW7F9//cWyLMvu2bOHZRiGvX//vvy1ln3PR48ezdra2rLp6elseno6e+/ePXbhwoUswzBsw4YNWZZl2atXr6q8nizLshkZGfJ909PTFX4/qhu6tWTmfvrpJxw6dEjhp7RrtawhQ4bAyclJ/rht27YAIB/t/uTJE1y/fh2jRo2CWCyWt2vfvj1CQ0M5x/Pee+8pPG7bti0yMjKQnZ0NANi+fTukUikGDx6MZ8+eyX88PT0RFBSEY8eOcX/xaojFYo2zl0p7fP7++2+FWyaqjBo1SqE79+2334aXlxf27t2rcb+yvTUvXrxAVlYW2rZti0uXLsm379y5E1KpFJ9//jkEAsVfxdLu+kOHDiEzMxNDhw5VuF5CoRAtWrRQeb3Kzp5wdHRE3bp1YWtri8GDB8u3161bF46OjgqzHbZs2YK2bdvCyclJ4VydO3eGRCLBiRMnFM6j7TPFpzFjxiiMn9HnuTTZsmULHBwc8NZbbylco/DwcIjFYqX3w9/fH127dlXYpsvnr6w6deqgcePG2LRpk3ybRCLB1q1b0bt3b/lnztHREbm5uTh06FCFXmPfvn2V/qYcOnQIH3/8sdZ99+/fD0A21qOsqVOnqt1H29+MJk2aQCwWyz9/J0+eRM2aNTFq1ChcunQJeXl5YFkW//77r/xzAcgG0pb+XkkkEmRkZMhv45X9PezcuTO8vb2xbt06+bYbN27g2rVrCuNXtHFyckK3bt2wYcMGALIey1atWsHPz0/tPrm5uXBzc4ObmxsCAwMxZ84ctGzZEjt27AAA+TUo+ze51BtvvCHf183NTeE2W3VDt5bMXPPmzTkN9q1Vq5bC49IvoNL7+g8ePACgerZTYGCgwi9+Rc9jb2+PhIQEsCyLoKAglfuX7ZavqJycHLi7u6t9fsiQIfjtt9/w7rvvYtasWejUqRMGDBiAt99+WymhKB8nwzAIDAyU379W559//sFXX32FK1euKEylLDueIDExEQKBAPXr11d7nISEBACy8T+q2NvbKzy2srKCm5ubwjYHBwfUrFlTaSyDg4ODwriOhIQEXLt2TWn/UmlpaQqPtX2m+GTIc2mSkJCArKwstZ+v8tdI1YxCXT5/qvadM2cOkpOT4ePjg9jYWKSlpWHIkCHyNu+//z42b96M7t27w8fHB126dMHgwYPRrVs3Tq+xZs2a6Ny5s9L2x48fa933wYMHEAgESq9b0yxKbX8zhEIhWrZsiZMnTwKQJTJt27ZFmzZtIJFIcObMGXh4eOD58+cKiYxUKsXy5cvx888/IykpCRKJRP5c2VvvAoEAw4cPx4oVK5CXlwcbGxusW7cOVlZWGDRokNbXXNawYcMwcuRIPHz4EDt37sQ333yjsb2VlRV2794NQJZ4+fv7K9xCKv1HlKrben///TeKi4tx9epVzJgxQ6c4qxpKZKoJdQPBWJY16HmkUql8QJ6qtqr+5aGLx48fIysrS+MfTmtra5w4cQLHjh3Dnj17sH//fmzatAkdO3bEwYMHKz1orvS+fbt27fDzzz/Dy8sLNWrUQExMjMoBtpqU/ov9r7/+UhgXUar8jBF1sXN5/6VSKd566y188sknKtvWqVNH52PyxZDn0kQqlcLd3V3hX+9llU8CVY2jqsznb8iQIZg9eza2bNmC6dOnY/PmzXBwcFBIUtzd3XHlyhUcOHAA+/btw759+xATE4NRo0ZhzZo1FXzl+sPlvW3Tpg2+/vprFBQU4OTJk/j000/h6OiIkJAQnDx5Eh4eHgCgkMgsXLgQc+fOxdixY7FgwQI4OztDIBBg+vTpSj1ho0aNwtKlS7Fz504MHToU69evR69eveDg4KDTa+nTpw9EIhFGjx6NwsJChV5Qda9dVdJYKjAwEBYWFrhx44bSc+3btweg/DegOqIrQABA3v2paiYIX7NDACAgIAAsy8Lf31/pi5EPpYMzy3fnlycQCNCpUyd06tQJ0dHRWLhwIT799FMcO3ZM4Q9LaY9IKZZlce/ePYU6NeVt27YNVlZWOHDgAEQikXx7TEyMQruAgABIpVLcunULjRs3VnmsgIAAALIvJ01/8PgQEBCAnJwcXs+jz4rK+qQu7oCAABw+fBitW7eu1DRqrp+/8vz9/dG8eXNs2rQJU6ZMwfbt29GvXz+Fzxkgm8beu3dv9O7dG1KpFO+//z5+/fVXzJ07V681pvz8/CCVSpGUlKTQm1nZvyFt27ZFUVERNmzYgOTkZHnC0q5dO3kiU6dOHXlCAwBbt25Fhw4d8PvvvyscKzMzE66urgrbQkJC0KRJE6xbtw41a9bEw4cP8cMPP+gcp7W1Nfr164e1a9eie/fuSufRla2tLSIiInD8+HF5LxxRRmNkCADA29sbISEh+PPPPxW6MY8fP47r16/zdp4BAwZAKBRi3rx5Sv+aZlkWGRkZFT720aNHsWDBAvj7+2ucafD8+XOlbaWJRPmKmn/++afCeJutW7ciJSUF3bt3V3t8oVAIhmEUurLv37+PnTt3KrTr168fBAIB5s+fr/QvxNJr07VrV9jb22PhwoUoLi5WOld6erraOHQ1ePBgnD59GgcOHFB6LjMzEyUlJTof09bWVr6/OVEX9+DBgyGRSLBgwQKlfUpKSji9Tl0+f6oMGTIEZ86cwR9//IFnz54p3FYCoPQ7JBAI5Ik3l+NXRuk/IH7++WeF7RVJCspq0aIFatSogSVLlsDZ2RkNGjQAIEtwzpw5g+PHjyv0xgCy38Pyf2O2bNmC5ORklecYOXIkDh48iGXLlsHFxUXj77gmM2bMwBdffIG5c+dWaP/yPv/8c0gkEowYMULlLSZD90qaIuqRMXP79u3D7du3lba3atUKb7zxhk7HWrhwIfr27YvWrVtjzJgxePHiBX788UeEhIRwnnqpTUBAAL766ivMnj0b9+/fR79+/WBnZ4ekpCTs2LEDEyZM4HS/t/R1l5SU4OnTpzh69CgOHToEPz8/7Nq1S2OBs/nz5+PEiRPo2bMn/Pz8kJaWhp9//hk1a9ZEmzZtFNo6OzujTZs2GDNmDJ4+fYply5YhMDBQ7dRuAOjZsyeio6PRrVs3DBs2DGlpafjpp58QGBiIa9euydsFBgbi008/xYIFC9C2bVsMGDAAIpEI58+fh7e3NxYtWgR7e3usWLECI0eORFhYGN555x24ubnh4cOH2LNnD1q3bo0ff/yRw5XX7uOPP8auXbvQq1cvREZGIjw8HLm5ubh+/Tq2bt2K+/fv6/wvzPDwcADABx98gK5du0IoFMqnCRvSH3/8IR+IWpa66cjq4m7fvj0mTpyIRYsW4cqVK+jSpQtq1KiBhIQEbNmyBcuXL1eo56KKLp8/VQYPHowZM2ZgxowZcHZ2VurBeffdd/H8+XN07NgRNWvWxIMHD/DDDz+gcePGCA4O1nr8yggPD8fAgQOxbNkyZGRkyKdf3717F0DFe+hsbGwQHh6OM2fOyGvIALIemdzcXOTm5iolMr169cL8+fMxZswYtGrVCtevX8e6devU/l0cNmwYPvnkE+zYsQOTJk2q8Hi9Ro0aoVGjRhXaV5W2bdvixx9/xNSpUxEUFCSv7FtUVIS7d+9i3bp1sLS0VHnrudowwkwpwgNN069RZipp6dTSpUuXKh0D5aZDsizLbty4ka1Xrx4rEonYkJAQdteuXezAgQPZevXqadxX1fTCsnEmJSUpbN+2bRvbpk0b1tbWlrW1tWXr1avHTp48mb1z545Or9vS0pL19PRk33rrLXb58uUKU6XLx1bqyJEjbN++fVlvb2/W0tKS9fb2ZocOHaow7bh02u+GDRvY2bNns+7u7qy1tTXbs2dP9sGDBwrHVzX9+vfff2eDgoJYkUjE1qtXj42JiVGKo9Qff/zBNmnShBWJRKyTkxPbvn179tChQwptjh07xnbt2pV1cHBgrays2ICAADYyMpK9cOGCQhy2trZKx2/fvj3boEEDpe1+fn5sz549Fba9fPmSnT17NhsYGMhaWlqyrq6ubKtWrdj//e9/bFFREcuyun2mSkpK2KlTp7Jubm4swzBap2Krm369ZcsWhXaqpkyrou335NGjRyqPpS3ulStXsuHh4ay1tTVrZ2fHhoaGsp988gn75MkTeRtV15dluX3+tGndujULgH333XeVntu6dSvbpUsX1t3dnbW0tGRr1arFTpw4kU1JSdF6XLyaSqyKqqnsqj7Tubm57OTJk1lnZ2dWLBaz/fr1k08dX7x4sdK+XP9mfPzxxywAdsmSJQrbAwMDWQBsYmKiwvaCggL2o48+Yr28vFhra2u2devW7OnTp5U+Y2X16NGDBcCeOnVK5fOqaLpmpTRNv+bq8uXL7KhRo9hatWqxlpaWrK2tLduwYUP2o48+Yu/du8f5OFURw7LUL0U0a9y4Mdzc3Co8ndMcxcbGokOHDtiyZYvWf2ETQjS7cuUKmjRpgrVr13IuMGcM/fv3x/Xr13kdF0j0j8bIELni4mKlcRCxsbG4evWqQtl4QghRJz8/X2nbsmXLIBAI0K5dOyNExE1KSgr27NmDkSNHGjsUoiMaI0PkkpOT0blzZ4wYMQLe3t64ffs2fvnlF3h6eioVrSKEEFW++eYbXLx4ER06dICFhYV8CviECRPg6+tr7PCUJCUlIS4uDr/99pt8aQ1iXiiRIXJOTk4IDw/Hb7/9hvT0dNja2qJnz55YvHix0tpNhBCiSqtWrXDo0CEsWLAAOTk5qFWrFr788kt8+umnxg5NpePHj2PMmDGoVasW1qxZU70HzZopGiNDCCGEELNFY2QIIYQQYrYokSGEEEKI2aryY2SkUimePHkCOzs7sy2XTgghhFQ3LMvi5cuX8Pb21rigapVPZJ48eWKSI+UJIYQQot2jR48UVgUvr8onMqXLoD969Aj29vZGjoYQQgghXGRnZ8PX11f+Pa6OySQyixcvxuzZszFt2jQsW7YMAOSrfpY1ceJE/PLLL5yPW3o7yd7enhIZQgghxMxoGxZiEonM+fPn8euvv8pXaC1r/PjxmD9/vvyxjY2NIUMjhBBCiAkz+qylnJwcDB8+HKtWrYKTk5PS8zY2NvD09JT/UK8KIYQQQkoZPZGZPHkyevbsqbQUfal169bB1dUVISEhmD17NvLy8jQer7CwENnZ2Qo/hBBCCKmajHpraePGjbh06RLOnz+v8vlhw4bBz88P3t7euHbtGmbOnIk7d+5g+/btao+5aNEizJs3T18hE0IIqQSJRILi4mJjh0FMQI0aNSAUCit9HKMtUfDo0SM0bdoUhw4dko+NiYiIQOPGjeWDfcs7evQoOnXqhHv37iEgIEBlm8LCQhQWFsofl456zsrKottShBBiJCzLIjU1FZmZmcYOhZgQR0dHeHp6qhzQm52dDQcHB63f30brkbl48SLS0tIQFhYm3yaRSHDixAn8+OOPKCwsVMrUWrRoAQAaExmRSASRSKS/wAkhhOisNIlxd3eHjY0NFSit5liWRV5eHtLS0gAAXl5eFT6W0RKZTp064fr16wrbxowZg3r16mHmzJkqu5uuXLkCoHIvmBBCiGFJJBJ5EuPi4mLscIiJsLa2BgCkpaXB3d29wreZjJbI2NnZISQkRGGbra0tXFxcEBISgsTERKxfvx49evSAi4sLrl27hg8//BDt2rVTOU2bEEKIaSodE0PlM0h5pZ+J4uJi80tktLG0tMThw4exbNky5ObmwtfXFwMHDsRnn31m7NAIIYRUAN1OIuXx8ZkwqUQmNjZW/t++vr5KVX2rE2lJEZJjtyAnPRliNx/4RAyCwMLS2GERQgghJsWkEhkik7BtOY7u3Iecotdvj3jNX+jYrzuCBk4zYmSEEEKIaTF6QTyiKGHbcuzafBA5RYr3CnOKhNi1+SASti03UmSEEFK9LFq0CM2aNYOdnR3c3d3Rr18/3Llzx6AxREREYPr06QY9p7mhRMaESEuKcHTnvlePyt83lD0+tnMfpCVFBo2LEEJMgUTK4nRiBv6+kozTiRmQSPVbBu348eOYPHkyzpw5g0OHDqG4uBhdunRBbm6uXs+rD0VFVfd7gxIZE5Icu+XV7SR1g58YvCyyQHLsFkOGRQghRrf/RgraLDmKoavOYNrGKxi66gzaLDmK/TdS9HfO/fsRGRmJBg0aoFGjRli9ejUePnyIixcvApDVQvnyyy9Rq1YtiEQieHt744MPPpDvX1hYiBkzZsDHxwe2trZo0aKFwljQjIwMDB06FD4+PrCxsUFoaCg2bNggfz4yMhLHjx/H8uXLwTAMGIbB/fv3AQA3btxA9+7dIRaL4eHhgZEjR+LZs2fyfSMiIjBlyhRMnz4drq6u6Nq1q96uk7FRImNCctKTeW1HCCFVwf4bKZi09hJSsgoUtqdmFWDS2kt6TWbKysrKAgA4OzsDALZt24bvvvsOv/76KxISErBz506EhobK20+ZMgWnT5/Gxo0bce3aNQwaNAjdunVDQkICAKCgoADh4eHYs2cPbty4gQkTJmDkyJE4d+4cAGD58uVo2bIlxo8fj5SUFKSkpMDX1xeZmZno2LEjmjRpggsXLmD//v14+vQpBg8erBDvmjVrYGlpibi4OPzyyy+GuERGQYN9TYjYzYfXdoQQYu4kUhbzdt+CqptILGT91/N238Jb9T0hFOhverdUKsX06dPRunVreQ20hw8fwtPTE507d0aNGjVQq1YtNG/eXP5cTEwMHj58CG9vbwDAjBkzsH//fsTExGDhwoXw8fHBjBkz5OeYOnUqDhw4gM2bN6N58+ZwcHCApaUlbGxs4OnpKW/3448/okmTJli4cKF82x9//AFfX1/cvXsXderUAQAEBQXhm2++0ds1MRXUI2NCfCIGQWxZAqj8lQUAFnaWJfCJGGTIsAghxGjOJT1X6okpiwWQklWAc0nP9RrH5MmTcePGDWzcuFG+bdCgQcjPz8cbb7yB8ePHY8eOHSgpKQEAXL9+HRKJBHXq1IFYLJb/HD9+HImJiQBkFY8XLFiA0NBQODs7QywW48CBA3j48KHGWK5evYpjx44pHLdevXoAID82AISHh/N9GUwS9ciYEIGFJTr2645dmw/i9b81SsmSmw79ulM9GUJItZH2Un0SU5F2FTFlyhT8888/OHHiBGrWrCnf7uvrizt37uDw4cM4dOgQ3n//fSxduhTHjx9HTk4OhEIhLl68qFSxViwWAwCWLl2K5cuXY9myZQgNDYWtrS2mT5+udWBuTk4OevfujSVLlig9V3YJH1tb28q8bLNBiYyJCRo4DX0ApToydpYSdKA6MoSQasbdzorXdrpgWRZTp07Fjh07EBsbC39/f6U21tbW6N27N3r37o3JkyejXr16uH79Opo0aQKJRIK0tDS0bdtW5fHj4uLQt29fjBgxAoDs9tXdu3dRv359eRtLS0tIJBKF/cLCwrBt2zbUrl0bFhb0NU5XwAQFDZyGgL6TqLIvIaTaa+7vDC8HK6RmFai86c4A8HSwQnN/Z97PPXnyZKxfvx5///037OzskJqaCgBwcHCAtbU1Vq9eDYlEghYtWsDGxgZr166FtbU1/Pz84OLiguHDh2PUqFH49ttv0aRJE6Snp+PIkSNo2LAhevbsiaCgIGzduhWnTp2Ck5MToqOj8fTpU4VEpnbt2jh79izu378PsVgMZ2dnTJ48GatWrcLQoUPxySefwNnZGffu3cPGjRvx22+/VXjNInNFY2RMlMDCEr6dhyN46Cfw7TyckhhCSLUkFDD4orfsi111dS3gi9719TLQd8WKFcjKykJERAS8vLzkP5s2bQIAODo6YtWqVWjdujUaNmyIw4cPY/fu3fIVvmNiYjBq1Ch89NFHqFu3Lvr164fz58+jVq1aAIDPPvsMYWFh6Nq1KyIiIuDp6Yl+/fopxDBjxgwIhULUr18fbm5u8sHDcXFxkEgk6NKlC0JDQzF9+nQ4OjpCIKh+X+sMy7L6rShkZNnZ2XBwcEBWVhbs7e2NHQ4hhFQ7BQUFSEpKgr+/P6ysKnYLaP+NFMzbfUth4K+XgxW+6F0f3UK8NOxJTJmmzwbX72+6tUQIIcTkdQvxwlv1PXEu6TnSXhbA3U52O0mfU66JeaBEhhBCiFkQChi0DHAxdhjExFS/m2mEEEIIqTIokSGEEEKI2aJEhhBCCCFmixIZQgghhJgtSmQIIYQQYrYokSGEEEKI2aJEhhBCCCFmixIZQgghhJgtSmQIIYSQaoZhGOzcudPYYfCCKvsSQggxD1IJ8OAUkPMUEHsAfq0AQfVa6Zkoox4ZQgghpu/WLmBZCLCmF7BtnOz/l4XItuuRVCrFN998g8DAQIhEItSqVQtff/01AOD69evo2LEjrK2t4eLiggkTJiAnJ0e+b2RkJPr164eFCxfCw8MDjo6OmD9/PkpKSvDxxx/D2dkZNWvWRExMjHyf+/fvg2EYbNy4Ea1atYKVlRVCQkJw/PhxeRuJRIJx48bB398f1tbWqFu3LpYvX64U+x9//IEGDRpAJBLBy8sLU6ZMAQDUrl0bANC/f38wDCN/bK4okSGEEGLabu0CNo8Csp8obs9OkW3XYzIze/ZsLF68GHPnzsWtW7ewfv16eHh4IDc3F127doWTkxPOnz+PLVu24PDhw/JkodTRo0fx5MkTnDhxAtHR0fjiiy/Qq1cvODk54ezZs3jvvfcwceJEPH78WGG/jz/+GB999BEuX76Mli1bonfv3sjIyAAgS65q1qyJLVu24NatW/j8888xZ84cbN68Wb7/ihUrMHnyZEyYMAHXr1/Hrl27EBgYCAA4f/48ACAmJgYpKSnyx2aLreKysrJYAGxWVpaxQyGEkGopPz+fvXXrFpufn6/7zpISlv22Hst+Ya/mx4Flvw2WteNZdnY2KxKJ2FWrVik9t3LlStbJyYnNycmRb9uzZw8rEAjY1NRUlmVZdvTo0ayfnx8rkUjkberWrcu2bdtW/rikpIS1tbVlN2zYwLIsyyYlJbEA2MWLF8vbFBcXszVr1mSXLFmiNtbJkyezAwcOlD/29vZmP/30U7XtAbA7duzQ8OoNQ9Nng+v3N/XIEEIIMV0PTin3xChggexkWTuexcfHo7CwEJ06dVL5XKNGjWBrayvf1rp1a0ilUty5c0e+rUGDBhAIXn/Venh4IDQ0VP5YKBTCxcUFaWlpCsdv2bKl/L8tLCzQtGlTxMfHy7f99NNPCA8Ph5ubG8RiMVauXImHDx8CANLS0vDkyROVcVdFlMgQQggxXTlP+W2nA2tr60ofo0aNGgqPGYZRuU0qlXI+5saNGzFjxgyMGzcOBw8exJUrVzBmzBgUFRXxFrc5oUSGEEKI6RJ78NtOB0FBQbC2tsaRI0eUngsODsbVq1eRm5sr3xYXFweBQIC6detW+txnzpyR/3dJSQkuXryI4OBg+XlatWqF999/H02aNEFgYCASExPl7e3s7FC7dm2VcZeqUaMGJBJJpeM0BTT92kRJpRIkx99ETuYLiB2d4BPcAAKaZkgIqW78WgH23rKBvWBVNGBkz/u14v3UVlZWmDlzJj755BNYWlqidevWSE9Px82bNzF8+HB88cUXGD16NL788kukp6dj6tSpGDlyJDw8Kp9U/fTTTwgKCkJwcDC+++47vHjxAmPHjgUgS7D+/PNPHDhwAP7+/vjrr79w/vx5+Pv7y/f/8ssv8d5778Hd3R3du3fHy5cvERcXh6lTpwKAPNFp3bo1RCIRnJycKh2zsVAiY4ISzp7C0dUrkfP8mXyb2NkVHSMnIKgF/7+shBBisgRCoNsS2ewkMFBMZhjZ/3VbrLd6MnPnzoWFhQU+//xzPHnyBF5eXnjvvfdgY2ODAwcOYNq0aWjWrBlsbGwwcOBAREdH83LexYsXY/Hixbhy5QoCAwOxa9cuuLq6AgAmTpyIy5cvY8iQIWAYBkOHDsX777+Pffv2yfcfPXo0CgoK8N1332HGjBlwdXXF22+/LX/+22+/RVRUFFatWgUfHx/cv3+fl7iNgWFZVlWKW2VkZ2fDwcEBWVlZsLe3N3Y4WiWcPYVd0QvVPt8nag4lM4QQs1JQUICkpCT4+/vDysqqYge5tQvYP1Nx4K+9jyyJqd+Hn0BNwP379+Hv74/Lly+jcePGxg5H7zR9Nrh+f1OPjAmRSiU4unqlxjbH1qxEQLMWdJuJEFK91O8D1OtJlX2JEkpkTEhy/E2F20mqvMx4huT4m/Bt0NBAURFCiIkQCAH/tsaOgpgYSmRMSE7mC17bEUIIMS+1a9dGFR/xwTuafm1CxI7cRo1zbUcIIYRUdZTImBCf4AYQO7tqbGPn4gqf4AYGiogQQggxbZTImBCBQIiOkRM0tukwegIN9CWEEEJeoUTGxAS1aIU+UXOUembsXFxp6jUhhBBSDg32NUFBLVohoFkLquxLCCGEaEGJjIkSCIQ0xZoQQgjRwmRuLS1evBgMw2D69OnybQUFBZg8eTJcXFwgFosxcOBAPH3K/wqnhBBCCB9iY2PBMAwyMzPVtlm9ejUcHR05HU+XttWVSSQy58+fx6+//oqGDRV7ID788EPs3r0bW7ZswfHjx/HkyRMMGDDASFESQgghmrVq1QopKSlwcHDg5XhDhgzB3bt3eTlWVWX0RCYnJwfDhw/HqlWrFFbfzMrKwu+//47o6Gh07NgR4eHhiImJwalTpxSWNyeEEFI9SKQSnE89j73/7cX51POQSCXGDkmJpaUlPD09wTAML8eztraGu7s7L8eqqoyeyEyePBk9e/ZE586dFbZfvHgRxcXFCtvr1auHWrVq4fTp02qPV1hYiOzsbIUfQggh5u3wg8Pouq0rxh4Yi5knZ2LsgbHouq0rDj84rNfzRkREYOrUqZg+fTqcnJzg4eGBVatWITc3F2PGjIGdnR0CAwPlK0+rurW0evVq1KpVCzY2Nujfvz8yMjIUznH16lV06NABdnZ2sLe3R3h4OC5cuCDft+ytpdq1a4NhGKWfUo8ePcLgwYPh6OgIZ2dn9O3b16xXtubCqInMxo0bcenSJSxatEjpudTUVFhaWirdG/Tw8EBqaqraYy5atAgODg7yH19fX77DJoQQYkCHHxxGVGwUnuYpjpFMy0tDVGyU3pOZNWvWwNXVFefOncPUqVMxadIkDBo0CK1atcKlS5fQpUsXjBw5Enl5eUr7nj17FuPGjcOUKVNw5coVdOjQAV999ZVCm+HDh6NmzZo4f/48Ll68iFmzZqFGjRoqYzl//jxSUlKQkpKCx48f480330TbtrL1p4qLi9G1a1fY2dnh5MmTiIuLg1gsRrdu3VBUVMT/hTERRpu19OjRI0ybNg2HDh2q+LLuKsyePRtRUVHyx9nZ2ZTMEEKImZJIJVh8bjFYKK8/xIIFAwZLzi1BB98OEOqpREWjRo3w2WefAZB9xyxevBiurq4YP348AODzzz/HihUrcO3aNaV9ly9fjm7duuGTTz4BANSpUwenTp3C/v375W0ePnyIjz/+GPXq1QMABAUFqY3Fzc1N/t/Tpk1DSkoKzp8/DwDYtGkTpFIpfvvtN3kvTUxMDBwdHREbG4suXbpU5jKYLKP1yFy8eBFpaWkICwuDhYUFLCwscPz4cXz//fewsLCAh4cHioqKlEZ+P336FJ6enmqPKxKJYG9vr/BDCCHEPF1Ku6TUE1MWCxapeam4lHZJbzGUnYgiFArh4uKC0NBQ+TYPDw8AQFpamtK+8fHxaNGihcK2li1bKjyOiorCu+++i86dO2Px4sVITEzUGtPKlSvx+++/Y9euXfLk5urVq7h37x7s7OwgFoshFovh7OyMgoICTsc0V0brkenUqROuX7+usG3MmDGoV68eZs6cCV9fX9SoUQNHjhzBwIEDAQB37tzBw4cPlT4EhBBCqqb0vHRe21VE+ds8DMMobCvt/ZBKpRU6/pdffolhw4Zhz5492LdvH7744gts3LgR/fv3V9n+2LFjmDp1KjZs2KCQZOXk5CA8PBzr1q1T2qdsT05VY7RExs7ODiEhIQrbbG1t4eLiIt8+btw4REVFwdnZGfb29pg6dSpatmyJN9980xghE0IIMTA3G25fwFzbGVpwcDDOnj2rsE3VzNs6deqgTp06+PDDDzF06FDExMSoTGTu3buHt99+G3PmzFEqRxIWFoZNmzbB3d29Wt2NMPqsJU2+++479OrVCwMHDkS7du3g6emJ7du3GzssQgghBhLmHgYPGw8wUD2dmQEDTxtPhLmHGTgybj744APs378f//vf/5CQkIAff/xRYXxMfn4+pkyZgtjYWDx48ABxcXE4f/48goODlY6Vn5+P3r17o0mTJpgwYQJSU1PlP4Bs0LCrqyv69u2LkydPIikpCbGxsfjggw/w+PFjg71mQzOpRCY2NhbLli2TP7ayssJPP/2E58+fIzc3F9u3b9c4PoYQQkjVIhQIMav5LABQSmZKH89sPlNvA30r680338SqVauwfPlyNGrUCAcPHpQPHAZkY24yMjIwatQo1KlTB4MHD0b37t0xb948pWM9ffoUt2/fxpEjR+Dt7Q0vLy/5DwDY2NjgxIkTqFWrFgYMGIDg4GCMGzcOBQUFVbqHhmFZVnkoeBWSnZ0NBwcHZGVlVek3khBCTFVBQQGSkpLg7+9f4Vmqhx8cxuJzixUG/nraeGJm85no7NdZw57ElGn6bHD9/qZFIwkhhJi8zn6d0cG3Ay6lXUJ6XjrcbNwQ5h5msj0xxHAokSGEEGIWhAIhmnk2M3YYxMSY1BgZQgghhBBdUCJDCCGEELNFiQwhhBBCzBYlMoQQQggxW5TIEEIIIcRsUSJDCCGEELNFiQwhhBBCzBYlMoQQQghPYmNjwTAMMjMzOe8TGRmJfv366S2mqo4K4hFCCCE8adWqFVJSUuDg4MB5n+XLl6OKrxakV5TIEEIIMQusRIK8CxdRkp4OCzc32DQNByM0rSUKLC0tdV7cWJekhyijW0uEEEJMXvbBg7jXqTMejh6NJzNm4OHo0bjXqTOyDx7U63kjIiIwdepUTJ8+HU5OTvDw8MCqVauQm5uLMWPGwM7ODoGBgdi3bx8A5VtLq1evhqOjIw4cOIDg4GCIxWJ069YNKSkp8nOUvbW0cuVKeHt7QyqVKsTRt29fjB07FgCQmJiIvn37wsPDA2KxGM2aNcPhw4cV2teuXRsLFy7E2LFjYWdnh1q1amHlypV6ukrGRYkMIYQQk5Z98CCSp01HSWqqwvaSp0+RPG263pOZNWvWwNXVFefOncPUqVMxadIkDBo0CK1atcKlS5fQpUsXjBw5Enl5eSr3z8vLw//+9z/89ddfOHHiBB4+fIgZM2aobDto0CBkZGTg2LFj8m3Pnz/H/v37MXz4cABATk4OevTogSNHjuDy5cvo1q0bevfujYcPHyoc69tvv0XTpk1x+fJlvP/++5g0aRLu3LnD01UxHZTIEEIIMVmsRIKnCxcBqsaQvNr2dOEisBKJ3mJo1KgRPvvsMwQFBWH27NmwsrKCq6srxo8fj6CgIHz++efIyMjAtWvXVO5fXFyMX375BU2bNkVYWBimTJmCI0eOqGzr5OSE7t27Y/369fJtW7duhaurKzp06CCPZ+LEiQgJCUFQUBAWLFiAgIAA7Nq1S+FYPXr0wPvvv4/AwEDMnDkTrq6uCglSVUGJDCGEEJOVd+GiUk+MApZFSWoq8i5c1FsMDRs2lP+3UCiEi4sLQkND5ds8PDwAAGlpaSr3t7GxQUBAgPyxl5eX2rYAMHz4cGzbtg2FhYUAgHXr1uGdd96BQCD7ys7JycGMGTMQHBwMR0dHiMVixMfHK/XIlI2bYRh4enpqPK+5okSGEEKIySpJT+e1XUXUqFFD4THDMArbGIYBAKVxLZr21zRLqXfv3mBZFnv27MGjR49w8uRJ+W0lAJgxYwZ27NiBhQsX4uTJk7hy5QpCQ0NRVFSk9bzqYjRnNGuJEEKIybJwc+O1nTmwsrLCgAEDsG7dOty7dw9169ZFWFiY/Pm4uDhERkaif//+AGQ9NPfv3zdStMZHiYyxSCXAg1NAzlNA7AH4tQIEpjWNkBBCjM2maTgsPD1R8vSp6nEyDAMLDw/YNA03fHB6NHz4cPTq1Qs3b97EiBEjFJ4LCgrC9u3b0bt3bzAMg7lz51bJnhauKJExhlu7gP0zgewnr7fZewPdlgD1+xgvLkIIMTGMUAiPObORPG06wDCKycyrWzoec2abXD2ZyurYsSOcnZ1x584dDBs2TOG56OhojB07Fq1atYKrqytmzpyJ7OxsI0VqfAxbxcsJZmdnw8HBAVlZWbC3tzd2OLIkZvMoAOUvu+wXEoP/pGSGEFKlFBQUICkpCf7+/rCysqrQMbIPHsTThYsUBv5aeHrCY85s2HfpwleoxMA0fTa4fn9Tj4whSSWynhilJAavtjHA/llAvZ50m4kQQsqw79IFdp06mXxlX2J4lMgY0oNTireTlLBAdrKsnX9bg4VFCCHmgBEKYduiubHDICaGpl8bUs5TftsRQggh1RwlMoYk9uC3HSGEEFLNUSJjSH6tZLOTSgf2KmEAex9ZO0IIIYRoRYmMIQmEsinWAJSTmVePuy2mgb6EEEIIR5TIGFr9PrIp1vZeitvtvWnqNSGEEKIjmrVkDPX7yKZYU2VfQgghpFIokTGSEqkEV29lIPPpMzh6WKCRrwQWlMgQQgghOqFbS0ZwfO0f+H7E24j98zdcOfAPYv/8Dd+PeBvH1/5h7NAIIYTooHbt2li2bBmntqtXr4ajo6Ne46mOqEfGwI6v/QMXdm9X2s6yUvn29iPGGjosQgghFXD+/HnY2toaO4xqjXpkDKikpAgX/9mpsc3FPTtRUlJkmIAIIcSMSKUsku+8wN3zqUi+8wJSqfGXCnRzc4ONjY2xw6jWKJExoKsH9oJlNS+1zkqluHpgr4EiIoQQ85B4OQ1/zjmFnd9dxqHfb2Hnd5fx55xTSLycptfzRkREYMqUKZgyZQocHBzg6uqKuXPnonS95fK3ljIzMzFx4kR4eHjAysoKISEh+Oeff1QeOz09HU2bNkX//v1RWFiIiIgITJ8+XaFNv379EBkZKX9cu3ZtLFiwAEOHDoWtrS18fHzw008/8f2yzQolMgaU+TRVeyMd2hFCSHWQeDkN+3+9gdzMQoXtuZmF2P/rDb0nM2vWrIGFhQXOnTuH5cuXIzo6Gr/99ptSO6lUiu7duyMuLg5r167FrVu3sHjxYghVLGz56NEjtG3bFiEhIdi6dStEIhHneJYuXYpGjRrh8uXLmDVrFqZNm4ZDhw5V6jWaMxojY0COHp68tiOEkKpOKmVxclOCxjb/bk6AfyM3CATqqqZXjq+vL7777jswDIO6devi+vXr+O677zB+/HiFdocPH8a5c+cQHx+POnXqAADeeOMNpePduXMHb731Fvr3749ly5aBYXSLu3Xr1pg1axYAoE6dOoiLi8N3332Ht956q4Kv0LxRj4wBNeraAwyj+ZIzAgEade1hoIgIIcS0pSRkKvXElJfzohApCZl6i+HNN99USDZatmyJhIQESCQShXZXrlxBzZo15UmMKvn5+Wjbti0GDBiA5cuX65zElJ6//OP4+Hidj1NVUCJjQBYWlgjv1U9jm/Ce/WBhYWmYgAghxMTlZmtOYnRtp0/W1tZa24hEInTu3Bn//PMPkpOTFZ4TCATysTeliouLeY2xKqJExsDajxiLpr0HKPXMMAIBmvYeQFOvCSGkDFt7bmNHuLariLNnzyo8PnPmDIKCgpTGvjRs2BCPHz/G3bt31R5LIBDgr7/+Qnh4ODp06IAnT57In3Nzc0NKSor8sUQiwY0bN5SOcebMGaXHwcHBOr2mqoQSGSNoP2IsPli9HhHt6qFxXUdEtKuHD2LWUxJDCCHleAU5wtZRc5IidhLBK8hRbzE8fPgQUVFRuHPnDjZs2IAffvgB06ZNU2rXvn17tGvXDgMHDsShQ4eQlJSEffv2Yf/+/QrthEIh1q1bh0aNGqFjx45ITZVN8OjYsSP27NmDPXv24Pbt25g0aRIyMzOVzhMXF4dvvvkGd+/exU8//YQtW7aojKe6MGois2LFCjRs2BD29vawt7dHy5YtsW/fPvnzERERYBhG4ee9994zYsQ8OTgXFkt8EZ6+Cp0EuxGevgoWS3yBg3ONHRkhhJgUgYBB2yFBGtu0GRykt4G+ADBq1Cjk5+ejefPmmDx5MqZNm4YJEyaobLtt2zY0a9YMQ4cORf369fHJJ58ojaUBAAsLC2zYsAENGjRAx44dkZaWhrFjx2L06NEYNWoU2rdvjzfeeAMdOnRQ2vejjz7ChQsX0KRJE3z11VeIjo5G165deX/d5oJhy9+QM6Ddu3dDKBQiKCgILMtizZo1WLp0KS5fvowGDRogIiICderUwfz58+X72NjYwN7envM5srOz4eDggKysLJ3205uDc4FT36t/vtUHQJcFhouHEEL0rKCgAElJSfD394eVlVWFjpF4OQ0nNyUoDPwVO4nQZnAQApq48xWqkoiICDRu3JjzMgT6Vrt2bUyfPl2p3oy50vTZ4Pr9bdTp171791Z4/PXXX2PFihU4c+YMGjRoAECWuHh6VpHpyCVFwOkfNbc5/RPQcS5AA34JIUQuoIk7/Bu5yWYxZRfC1l52O0mfPTHEPJjMGBmJRIKNGzciNzdXYWrZunXr4OrqipCQEMyePRt5eXkaj1NYWIjs7GyFH5NxfhWgpbIvWImsHSGEEAUCAQOfuk6o08wTPnWdKIkhAEygIN7169fRsmVLFBQUQCwWY8eOHahfvz4AYNiwYfDz84O3tzeuXbuGmTNn4s6dO9i+XXnRxVKLFi3CvHnzDBW+bl7c57cdIYQQvYqNjTV2CAru379v7BBMjtETmbp16+LKlSvIysrC1q1bMXr0aBw/fhz169dXGEwVGhoKLy8vdOrUCYmJiQgICFB5vNmzZyMqKkr+ODs7G76+vnp/HZw41ea3HSGEEFLNGf3WkqWlJQIDAxEeHo5FixahUaNGWL58ucq2LVq0AADcu3dP7fFEIpF8FlTpj8loNh7QUtkXjFDWjhBCCCFaGT2RKU8qlaKwUHWFxitXrgAAvLy8DBgRjywsgZZTNLdpOZkG+hJCCCEcGfXW0uzZs9G9e3fUqlULL1++xPr16xEbG4sDBw4gMTER69evR48ePeDi4oJr167hww8/RLt27dCwYUNjhl05pVOrT/+oOPCXEcqSGJp6TQghhHBm1EQmLS0No0aNQkpKChwcHNCwYUMcOHAAb731Fh49eoTDhw9j2bJlyM3Nha+vLwYOHIjPPvvMmCHzo8sC2RTr86tkA3udastuJ1FPDCGEEKIToyYyv//+u9rnfH19cfz4cQNGY1hSgRDJ9m2RIw2B2N4JPgKh6d3nI4QQQkyc0WctVUcJZ0/h6OqVyHn+TL5N7OyKjpETENSilREjI4QQwpeqVoXXVFEngIElnD2FXdELFZIYAMh5/gy7ohci4ewpI0VGCCGE8CM2NhYMw6hc9JJvlMgYkFQqwdHVKzW2ObZmJaRS5QXGCCGkupNKJXh08xri447j0c1r9LeSAKBExqCS428q9cSU9zLjGZLjbxooIkIIMQ8JZ09h1eRx2Dx/DvZ+vxSb58/Bqsnj9N6LvXXrVoSGhsLa2houLi7o3LkzcnNzERERoXTLqF+/foiMjFTY9vLlSwwdOhS2trbw8fHBTz/9pPB8ZmYmJk6cCA8PD1hZWSEkJAT//POP/Plt27ahQYMGEIlEqF27Nr799luF/WvXro2vvvoKo0aNglgshp+fH3bt2oX09HT07dsXYrEYDRs2xIULF+T7rF69Go6Ojti5cyeCgoJgZWWFrl274tGjR/I2iYmJ6Nu3Lzw8PCAWi9GsWTMcPnxY4dyFhYWYOXMmfH19IRKJEBgYiN9//x3379+Xr9rt5OQEhmGUrgufKJExoJzMF7y2I4SQ6sBYt+RTUlIwdOhQjB07FvHx8YiNjcWAAQPAsiznYyxduhSNGjXC5cuXMWvWLEybNg2HDh0CIKub1r17d8TFxWHt2rW4desWFi9eDKFQCAC4ePEiBg8ejHfeeQfXr1/Hl19+iblz52L16tUK5/juu+/QunVrXL58GT179sTIkSMxatQojBgxApcuXUJAQABGjRqlEHdeXh6+/vpr/Pnnn4iLi0NmZibeeecd+fM5OTno0aMHjhw5gsuXL6Nbt27o3bs3Hj58KG8zatQobNiwAd9//z3i4+Px66+/QiwWw9fXF9u2bQMA3LlzBykpKWoL3fKBBvsakNjRidd2hBBS1XG9JR/QrAUEAiGv505JSUFJSQkGDBgAPz8/ALLlcnTRunVrzJo1CwBQp04dxMXF4bvvvsNbb72Fw4cP49y5c4iPj0edOnUAAG+88YZ83+joaHTq1Alz586V73/r1i0sXbpUoYejR48emDhxIgDg888/x4oVK9CsWTMMGjQIADBz5ky0bNkST58+haenJwCguLgYP/74o7xi/po1axAcHIxz586hefPmaNSoERo1aiQ/x4IFC7Bjxw7s2rULU6ZMwd27d7F582YcOnQInTt3Vord2dkZAODu7g5HR0edrpmuqEfGgHyCG0Ds7KqxjZ2LK3yCGxgoIkIIMW3GvCXfqFEjdOrUCaGhoRg0aBBWrVqFFy906zFv2bKl0uP4+HgAsmr1NWvWlCcx5cXHx6N169YK21q3bo2EhARIJK/HB5UtEuvh4QFAMeEq3ZaWlibfZmFhgWbNmskf16tXD46OjvLYcnJyMGPGDAQHB8PR0RFisRjx8fHyHpkrV65AKBSiffv2HK+E/lAiY0ACgRAdIydobNNh9ATe/1VBCCHmypi35IVCIQ4dOoR9+/ahfv36+OGHH1C3bl0kJSVBIBAo3WIqLi7W6fjW1ta8xFmjRg35fzMMo3abVCoFVzNmzMCOHTuwcOFCnDx5EleuXEFoaCiKiooA8Bc7HyiRMbCgFq3QJ2qOUs+MnYsr+kTNoToyhBBShrFvyTMMg9atW2PevHm4fPkyLC0tsWPHDri5uSElJUXeTiKR4MaNG0r7nzlzRulxcHAwAFlPyuPHj3H37l2V5w4ODkZcXJzCtri4ONSpU0c+jqaiSkpKFAYA37lzB5mZmfLY4uLiEBkZif79+yM0NBSenp64f/++vH1oaCikUqnawrWWlrJK9WV7jvSFxshUgFQqkXV3Zr6A2NEJPsENdOpFCWrRCgHhTZEcuwU56ckQu/nAJ2IQBLREASGEKCi9Ja/p9pK+bsmfPXsWR44cQZcuXeDu7o6zZ88iPT0dwcHBsLW1RVRUFPbs2YOAgABER0errJkSFxeHb775Bv369cOhQ4ewZcsW7NmzBwDQvn17tGvXDgMHDkR0dDQCAwNx+/ZtMAyDbt264aOPPkKzZs2wYMECDBkyBKdPn8aPP/6In3/+udKvrUaNGpg6dSq+//57WFhYYMqUKXjzzTfRvHlzAEBQUBC2b9+O3r17g2EYzJ07V6FHp3bt2hg9ejTGjh2L77//Ho0aNcKDBw+QlpaGwYMHw8/PDwzD4J9//kGPHj1gbW0NsVhc6bhVoURGR7xU5b21C4L9M+Gb/UT2+A6Aa18B3ZYA9fvwHzQhhJip0lvyu6IXqm2jr1vy9vb2OHHiBJYtW4bs7Gz4+fnh22+/Rffu3VFcXIyrV69i1KhRsLCwwIcffiifclzWRx99hAsXLmDevHmwt7dHdHQ0unbtKn9+27ZtmDFjBoYOHYrc3FwEBgZi8eLFAICwsDBs3rwZn3/+ORYsWAAvLy/Mnz+fl6nMNjY2mDlzJoYNG4bk5GS0bdtWYdmg6OhojB07Fq1atYKrqytmzpyJ7OxshWOsWLECc+bMwfvvv4+MjAzUqlULc+bMAQD4+Phg3rx5mDVrFsaMGYNRo0YpzbbiC8PqMo/MDGVnZ8PBwQFZWVmwt7ev1LFKpwCqw+nW0K1dwOZRAMpfdtk9TAz+k5IZQkiVUlBQgKSkJPj7+8PKyqpCx1D1j0g7F1d0GE1Lu+hq9erVmD59ukGq7mqj6bPB9fubemQ44mUKoFQC7J8J5SQGr7YxwP5ZQL2eAA34JYQQuaAWrRDQrEWlbuuTqokSGY50mQLo26Ch6gYPTgGlt5NUYoHsZFk7/7YVD5YQQqoggUCo/u8rqbZo1hJHvEwBzHnK8WQc2xFCCCE6ioyMNInbSnyhRIYjXqYAij04noxjO0IIIaSao0SGI16q8vq1Auy9IR/Yq4QB7H1k7QghhBCiFSUyHPFSlVcglE2xBqCczLx63G0xDfQlhBBCOKJERge8VOWt30c2xdreS3G7vTdNvSaEEEJ0RLOWdMTLFMD6fWRTrB+ckg3sFXvIbidRTwwhhBCiE0pkKqCkpAh3zvyLzNQUOHp6wSMoCJaWOi6gJRBWmynWEqkEl9IuIT0vHW42bghzD4OQkjZCCCE84JzISKVS3Lx5U740+C+//CJfBROQrRI6adIkCARV+27VzqULkHjhrPzxg2uXcfXgXgQ0bYF+H881YmSm6fCDw1h8bjGe5r2eUu5h44FZzWehs19nI0ZGCCGkKuCcyGzcuBG//PILTpw4AQD4+OOP4ejoCAsL2SGePXsGKysrjBs3Tj+RmoDySUxZiRfOYufSBZTMlHH4wWFExUaBLVfJOC0vDVGxUYiOiKZkhhBCSKVw7j6JiYnB5MmTFbYdP34cSUlJSEpKwtKlS7F27VreAzQVRUX5apOYUokXzqKoKN9AEZk2iVSCxecWKyUxAOTblpxbAolU/0u8E0KqBlbKoiAxE3lX0lCQmAlWqv+lArdu3YrQ0FBYW1vDxcUFnTt3Rm5uLiIiIjB9+nSFtv369ZMv6Dhnzhy0aNFC6XiNGjXC/Pnz9R53dcI5kbl9+zaaNm2q9vn27dvj6tWrvARlik78FcNru6ruUtolhdtJ5bFgkZqXiktplwwYFSHEXOXfeIbUJefwbNV1PN94B89WXUfqknPIv6F56ZjKSElJwdChQzF27FjEx8cjNjYWAwYMAJe1locPH45z584hMTFRvu3mzZu4du0ahg0bpreYqyPOiUx6errC4//++w+1a9eWP65RowZyc3N5C8zUZKam8NquqkvPS9feSId2hJDqK//GM2SsjYckq0hhuySrCBlr4/WWzKSkpKCkpAQDBgxA7dq1ERoaivfffx9isVjrvg0aNECjRo2wfv16+bZ169ahRYsWCAwM1Eu81RXnRMbDwwN37tyRP3Zzc1MY2BsfHw9PT09+ozMhjp5e2hvp0K6qc7Nx47UdIaR6YqUsMncnamyTufs/vdxmatSoETp16oTQ0FAMGjQIq1atwosX3NbdA2S9MqWJDMuy2LBhA4YPH857nNUd50SmU6dO+Prrr1U+x7IsFi1ahE6dOvEWmKlpN3IMr+2qujD3MHjYeIBRsxwDAwaeNp4Icw8zcGSEEHNSmJSl1BNTniSrEIVJWbyfWygU4tChQ9i3bx/q16+PH374AXXr1kVSUhIEAoHSLabi4mKFx0OHDsWdO3dw6dIlnDp1Co8ePcKQIUN4j7O645zIfPrpp7hx4wZatGiBLVu24OrVq7h69So2b96MFi1a4ObNm5gzZ44+YzUqS0trBDRVHrhVVkDTFrrXk6mihAIhZjWfBQBKyUzp45nNZ1I9GUKIRtKXmpMYXdvpimEYtG7dGvPmzcPly5dhaWmJHTt2wM3NDSkpr4cSSCQS3LhxQ2HfmjVron379li3bh3WrVuHt956C+7u7nqJszrjnMgEBATg0KFDePnyJYYMGYKwsDCEhYXhnXfeQU5ODg4ePFjl7/v1+3iu2mSG6sgo6+zXGdER0XC3UfzF9bDxoKnXhBBOBHaWvLbTxdmzZ7Fw4UJcuHABDx8+xPbt25Geno7g4GB07NgRe/bswZ49e3D79m1MmjQJmZmZSscYPnw4Nm7ciC1bttBtJT3RqbJv8+bNcevWLVy5cgV3794FAAQFBaFJkyZ6Cc4U9ft4LoqK8nHirxh5Zd92I8cYpydGKjH6Mgf5eVmIPjABD/JT4WftiaiuK2Ft4yB/vrNfZ7TzaYdNdzfhUfYj+Nr7YkidIbC04P+PDiGk6hH5O0DoYKnx9pLQQQSRv4Pa5yvK3t4eJ06cwLJly5CdnQ0/Pz98++236N69O4qLi3H16lWMGjUKFhYW+PDDD9GhQwelY7z99tuYMmUKhEIh+vXrx3uMBGBYLvPIXsnOzsbZs2dRVFSE5s2bw83N9AdqZmdnw8HBAVlZWbC3tzd2OPy5tQvYPxPIfvJ6m723bHVtAy08+cGGt3CsMAVgytw6Yll0EHnh+6GHAFBlX0IIUFBQgKSkJPj7+8PKykrn/UtnLanjMiIY1iGuap8npkvTZ4Pr9zfnW0tXrlxBvXr10LVrV/Tu3RuBgYE4cOBAxaMnFXdrF7B5lGISAwDZKbLtt3bpPQR5EqPCscIUfLDhLXll3/L1ZEor+x5+cFjvcRJCzJ91iCtcRgRD6KDYkyt0EFESQ7jfWpo5cyb8/f2xbds2WFlZYcGCBZgyZQoSEhL0GR8pTyqR9cSoqJgr28YA+2fJVtfW022m/Lys10kMU25WEsMALItjhSm4cfprtZV9GTBYcm4JOvh2oAG/hBCtrENcYVXfBYVJWZC+LILAzhIifwcwAtUzI0n1wTmRuXjxIg4ePIiwMNl02T/++APOzs7Izs6uWrdsTN2DU8o9MQpYIDtZ1k5Pq2tHH5ignMCU9eq59EL1RarKVvZt5tmM7xAJIVUQI2BgFeBo7DCIieF8a+n58+eoWbOm/LGjoyNsbW2RkZGhl8CIGjnqy/5XqF0FPMhP5e1YVNmXEEJIZeg0a+nWrVtITX39JcayLOLj4/Hy5Uv5toYNG/IXHVEm9uC3XQX4WXvidPFzXo5FlX0JIYRUhk6JTKdOnZQqGfbq1QsMw4BlWTAMA4mEVjPWK79WstlJ2SlQPU6GkT3v10pvIUR1XYmNm1u/Op2KW0yvPiNuVm54VpihcpwMAwYeNh5U2ZeQakSHSbKkmuDjM8E5kUlKSqr0yQgPBELZFOvNowAwUExmXiUV3RbrtZ6MtY0DOoi8ZAN+WVZp+jUAdBB5oU/LmYiKjQIDRiGZocq+hFQvNWrUAADk5eXB2pqqn5PX8vLyALz+jFSETnVkzFH1qiPjI0tiTLyOjKeNJ2Y2n0l1ZAipRlJSUpCZmQl3d3fY2NiA0TRhgFR5LMsiLy8PaWlpcHR0hJeX8oLLXL+/OScyDx8+5BRcrVq1OLUzlCqbyABmUdkXACRSCS6lXUJ6XjrcbNwQ5h5GPTGEVDMsyyI1NVVlGX9SfTk6OsLT01NlYsv1+5vzrSV/f3/5f5fmPmVPTGNkdGQCSQgfhJbWqFW3F5hXyw8IVSzVIBQIaYo1IdUcwzDw8vKCu7u70irRpHqqUaMGhMLKf+9xTmQYhkHNmjURGRmJ3r17w8JCp3HCKq1YsQIrVqzA/fv3AQANGjTA559/ju7duwOQlS7+6KOPsHHjRhQWFqJr1674+eef4eGhvxk5BsHH8gImsERB9IVorLm1BlJWKt/2vwv/w+j6oxHVNMogMRBCzItQKOTly4uQUpxvLaWmpmLNmjWIiYlBZmYmRowYgXHjxiE4OLjCJ9+9ezeEQiGCgoLAsizWrFmDpUuX4vLly2jQoAEmTZqEPXv2YPXq1XBwcMCUKVMgEAgQFxfH+Rwmd2updHkBpZk8r3q3Bv+pPRHh4xiVFH0hGjE3Y9Q+P6bBGEpmCCGEVBjvY2TK+vfffxETE4MtW7agfv36GDduHMaNGweBgHN9PbWcnZ2xdOlSvP3223Bzc8P69evx9ttvAwBu376N4OBgnD59Gm+++San45lUIiOVAMtCNFTmfTV1evp19beZ+DhGJRWVFKHZ+mYKPTHlCRgBzg87T6tcE0IIqRDeF40sq02bNvj999+RkJAAGxsbvPfee5UewCWRSLBx40bk5uaiZcuWuHjxIoqLi9G58+uZLfXq1UOtWrVw+vRptccpLCxEdna2wo/J0GV5AX0eo5I23d2kMYkBACkrxaa7m/QWAyGEEAJUMJE5deoU3n33XdSpUwc5OTn46aef4OjoWKEArl+/DrFYDJFIhPfeew87duxA/fr1kZqaCktLS6Xjenh4KFQXLm/RokVwcHCQ//j6+lYoLr3gY3kBE1ii4FH2I17bEUIIIRXFecRuSkoK/vzzT8TExODFixcYPnw44uLiEBISUqkA6tatiytXriArKwtbt27F6NGjcfz48Qofb/bs2YiKej02Izs723SSGT6WFzCBJQp87bldT67tCCGEkIrinMjUqlULPj4+GD16NPr06YMaNWpAKpXi2rVrCu10XWvJ0tISgYGBAIDw8HCcP38ey5cvx5AhQ1BUVITMzEyFXpmnT5/C09NT7fFEIhFEIpFOMRgMH8sLmMASBUPqDMH/LvxP6xiZIXWG6C0GQgghBNDh1pJEIsHDhw+xYMECNG/eHE2aNEHjxo0Vfpo0aVLpgKRSKQoLCxEeHo4aNWrgyJEj8ufu3LmDhw8fomXLlpU+j1GULi8AQD7DSI7j8gJ8HKOSLC0sMbr+aI1tRtcfTQN9CSGE6J1R11qaPXs2unfvjlq1auHly5dYv349YmNjceDAATg4OGDcuHGIioqCs7Mz7O3tMXXqVLRs2ZLzjCWTVL+PbHq0yhowHJcX4OMYlVQ6tbp8HRkBI6A6MoQQQgzGqGstjRs3DkeOHEFKSgocHBzQsGFDzJw5E2+99RaA1wXxNmzYoFAQT9OtpfL0Mf1aKpUgOf4mcjJfQOzoBJ/gBhDo2ANSlJeFTXvG4lFeKnxtPDGk5x+wLFfaX5v89IfYsWAEsvIZOFiz6D93LazddFsiQlJShEvX/0J69kO42ddCWOhICHXoSSkqysems0vwKPshfO1rYUiLmbAsV91XWpSP5J1LkZP2GGL3mvDp9zEEKioAE+1ouQdCSHWh1zoy5oTvRCbh7CkcXb0SOc+fybeJnV3RMXICglpwG5cSvaU/1uQmQFpmiQcBy2K0bRCiBu3gdIxVk9oj67lYvpI0ALBg4eCcg/EruA2WPvzvIiy+uw5Pha+P4SFhMavOcHRuM1v7AThUF05YORVHj99GTsnrcUtii0J0bF8PQRN+4BQnkVG1AKeHjQdmNZ9FC3ASQqocSmRe4TORSTh7CruiF6p9vk/UHK3JTPSW/ojJTZA9KLdqNACM4ZDMlCYxAJQSGQCckpnD/y5C1L11sj3KxMG8iiM6UEsyw6G6cMK/h7DryH+K219FCgB9Or1ByQxHhx8cRlRslPw9LlX6/kdHRFMyQwipUvRaEK86kkolOLp6pcY2x9ashFSqftHMooIcrFGVxJR5vCY3AUUFOWqPkZ+RrDKJKfs467kY+RnJao8hKSnC4rvKSQwAsK8eL7m7DpKSItUHkEpkPTEqZ03Jtkn3fIKjx2/LI1Mke3zs+G1Ii/LVxklkJFIJFp9brJTEAK+T1yXnlkCi4bNHCCFVFSUyHCXH31S4naTKy4xnSI6/qfb5TUeiZLeTVCxXDgBgGEgZBpuOqB8ou+OrEWBe/U/lIV79b8dXI9Qe49L1v2S3k9TEwTIMUoUMLl3/S/UBOFQXTk7Le3U7Sc1rBYOXJSIk71yq4TgEAC6lXVK4nVQeCxapeam4lHbJgFERQohp0DmR+eKLL/DgwQN9xGLScjJfVLrdo5zHnI6hqV1WLrc7gZrapWc/5HQMte04VA3OKeE2YDgnjds1qc7S89J5bUcIIVWJzonM33//jYCAAHTq1Anr169HYWGhPuIyOWJHp0q38xXX5HQMTe0cbNX1cHBv52bPbWaT2nYcqgaLLdTclirfzp3bNanO3GzceG1HCCFVic6JzJUrV3D+/Hk0aNAA06ZNg6enJyZNmoTz58/rIz6T4RPcAGJnV41t7Fxc4RPcQO3zQzpFQ8Cy8oG9SlgWApbFkE7Rao/R/7O1YF/9T+UhXv2v/2dr1R4jLHQkPCSsfGBveQzLwlPCIix0pOoDlFYX1nDbyMfdBmKLQqgeRyOL1M6iED79PlYbJ5EJcw+Dh42HxtuJnjaeCHMPM3BkhBBifBUaI9OkSRN8//33ePLkCX7//Xc8fvwYrVu3RsOGDbF8+XJkZWXxHafRCQRCdIycoLFNh9ETNNaTsbQSY7RtkOxB+STi1ePRtkGwtBKrPYa1iw8cnGWDgcsnM2VnLVm7+Kg9htDCErPqDAcApWSm9PHMOsPV15PhUF1Y0PMbdGxfTx6ZItnjDu3rUT0ZDoQCIWY1nwVA/QDvmc1nUj0ZQki1VKnBvizLori4GEVFRWBZFk5OTvjxxx/h6+uLTZs28RWjyQhq0Qp9ouYo9czYubhymnoNAFGDdmCMbZDShReA29RrABi/4rg8mSmPax2Zzm1mIzpwONzLLZfkIeUw9Rp4XV3Y3ktxu723bHv9Pgia8AP6dHpD6TaTnUURTb3WUWe/zoiOiIa7jbvCdg8bD5p6TQip1ipUR+bixYuIiYnBhg0bIBKJMGrUKLz77rvyxR9/+OEHfPXVV3j6VPugUH0z2cq+BTnYdCQKj3Iew1dcE0M6RWvsiVElPyMZO74agaxcFg62DPp/tlZjT4wqla3sC6lENosp56ls7IxfK6V1nqiyL3+osi8hpLrQW0G80NBQ3L59G126dMH48ePRu3dvCIWKf0ifPXsGd3d3SKXqV0c2FH0kMqaiuCgfsXuX49mzZLi6+iCixzTUMMEEgY/EryrgIwkxRCJDyRIhxBRw/f7mvGhkqcGDB2Ps2LHw8VH/L39XV1eTSGKqsq2rZ+D20RuwLpS9hU+QhLPbY1GvYwjejvyfkaN7jY8lHaoCPpYXMMQSBbQMAiHE3NASBWZo6+oZuL8vHoDqJQpqdw82iWSGjyUdqgI+lhcwxBIFtAwCIcSU6K1HBgAeP36MXbt24eHDhygqUhzIGR2tfuowqbzionzcPnoDVhCqnMHCgsXtYzdQPCzfqLeZuC7pENCsRZW+zaRteQEGDJacW4IOvh3U3r7h4xiGiJMQQoxB50TmyJEj6NOnD9544w3cvn0bISEhuH//PliWRVgY1bHQt9i9y+W3k1RhwMC6wAKxe5fjrX6zDBiZIl2WdPBt0NBAURmeLssLNPNsprdjGCJOQggxBp2nX8+ePRszZszA9evXYWVlhW3btuHRo0do3749Bg0apI8YSRnPnqlfDLIi7fSFjyUdqgI+lhcwxBIFtAwCIcRc6ZzIxMfHY9SoUQAACwsL5OfnQywWY/78+ViyZImWvUllubpym17NtZ2+8LGkQ1XAx/IChliigJZBIISYK50TGVtbW/m4GC8vLyQmJsqfe/ZM860EUnkRPaYhX1SicYmCfKsSRPSYZuDIFPGxpENVwMfyAoZYooCWQSCEmCudE5k333wT//77LwCgR48e+Oijj/D1119j7NixePPNN3kPkCiqYWmNeh1DAKhfoqBehxCj15PhY0mHqoCP5QUMsUQBLYNACDFXOk+//u+//5CTk4OGDRsiNzcXH330EU6dOoWgoCBER0fDz89PX7FWSFWcfg0o15EBgHyrEtTrYPp1ZOxcXNFhNNWR8bTxxMzmMytVR0bXY5jCOQghhAu9VfY1N1U1kQGAwrxs7P31Izx/9gzOrq7oMfFbiGx0e42VXaKgqCgfm84uwaPsh/C1r4UhLWbCslxvkKQgD0/W/YaCjBxYuYjhPfxdCK1sdIrTJHBYjkGTSi8HAaCopAib7m7Co+xH8LX3xZA6Q2Cp4zFM4RyEEKKN3hKZzz//HB06dEDLli1hZWVV6UD1raomMgnbluPozn3IKXrdIyO2LEHHft0RNJDb+JjD/y7C4rvr8FT4+laCh4TFrDocFo0EEL3/faxJPQEp83p/ActitGc7RHX7GQCQv/YHZN6oCQlej5cR4hkcQx7DesRUTnGahFu7gP0zgewnr7fZe8tWAa/fR//7gyr7EkKqF70lMm+99RZOnz6NkpISNGvWDO3bt0dERARat24Na2vTW+enKiYyCduWY9fmg68elR3PIHsr+wzuojWZOfzvIkTdWyfbo0wiwrz6OGhbATt6//uIST3xaqcyMbzaf4xnO0x6FoyMG41UxCkFwMAl5Kp5JDO3dgGbRwFKA6xfvaZXq33rbX9QZV9CSPXD9ftb58G+hw4dQmZmJo4cOYIePXrgwoULGDBgABwdHdGmTZtKBU20k5YU4ejOfa8elZ9hInt8bOc+SEuKoI6kpAiL7yonMQDAvnq85O46SNQco6goH2tUJTFlHv+VchIvbtRUE6cAAIvMGz5giwrVxmkSpBJZT4rKWWKvtu2fJWunj/2hveouACw5twQSDcfQxhDnIIQQfdA5kQFk9WNat26NgQMHon///ujatSukUilu377Nd3yknOTYLa9uJ6meJgsweFlkgeTYLWqPcen6X7LbSeWTkFdYhkGqkMGl63+pfH7T2SWy20lq9gfDIDg/CFK4aohTAAncUHhgg9o4TcKDU4q3g5SwQHayrJ0+9oduVXcryhDnIIQQfdA5kVm5ciWGDRsGHx8ftGrVCvv370ebNm1w4cIFpKdT1U99y0nnVrFXU7v07IecjqGu3SMO+zuXOHA6hzQjk1M7o8lR/+XOqV1l9wdV9iWEEE10Xmvpvffeg5ubGz766CO8//77EIvF+oiLqCF241axV1M7N/tanI6hrp2vfS3g2XmN+z63yOJ0DoGLI6d2RiP2qFy7yu4PquxLCCGa6Nwjs337dgwfPhwbN26Em5sbWrVqhTlz5uDgwYPIy8vTR4ykDJ+IQRBblkD1mAsAYGFnWQKfCPXrXoWFjoSHhJUP7C2PYVl4SliEhY5U+fyQFjMhYFn5wF7lEFjEWydAgGeQDexVRQoh0iHqOlRtnCbBr5VsdpGGW3mw95G108f+oMq+hBCiic6JTL9+/RAdHY1Lly4hNTUVc+bMQXJyMnr16gVnZ2d9xEjKEFhYomO/7q8elU8kZI879OsOgYa6H0ILS8yqMxwAlJKZ0scz6wxXW+PE0tIaoz3bvTpluRhePR7p1RZOIY8h+wIvn8zIZi05hiSDsRSpjdMkCISyKdIA1A2uRrfF6uvJVHZ/UGVfQgjRpEKDfTMyMrB9+3bMnTsXc+bMwdq1a2Fvb4/u3btr35lUWtDAaegzuAvEloozSOwsJZymXgNA5zazER04HO7lcgwPqfap1wAQ1e1njPFsp/QBEkA29Tqq28+wHjEVLiFXIcRzhTZCZJjP1GtANjV68J+AvZfidntvTlOnK70/gM5+nREdEQ13G3eF7R42HrxNizbEOQghhG8615EJDQ1FfHw8nJyc0K5dO0RERKB9+/Zo2LChvmKslKpYR6aUtKRINospPRliNx/4RAzS2BOjiiEq+7JFhSg8sAHSjEwIXBwh6jrU9HtiVKlkZd9K7w/ZNOlLaZeQnpcONxs3hLmH8d5LYohzEEKINly/vys02Ld9+/YICQmpVIDVHg9fatKSIqTduYzMp6lwfJ4GrzZ9dU5kWACCJy4QPS2GwMMFbKhOu0NoYYl6QT3h8upLT1USlFdShL0PMiDJKIAwR4IeJUWw5TmRKSrIwaYjUXiU8xi+4poY0ikallbcB6Ln52Uh+sAEPMhPhZ+1J6K6roS1jeLMqyKpBJvy7+NR7iP4CvMxRNoClrq8ZwIh4N+We/sK4GN5AalUgsyE+8hKf4IabrmQujbSOZGRSiVIjr+JnMwXEDs6wSe4QZVfIJRUnkTK4lzSc6S9LIC7nRWa+ztDKFA3vsx4zCXO6oLWWjIGHsrVH/9qLC5efwq2zHgGBizCQz3Q/rM/uB1j7R+4+M9OsOzr+0sMI0B4r35oP2Ks1v25lLPf+PXXaPKiMWwtXl/73JJsXHa6gnc+/ZRTnNpEb+mPNbkJyksl2AYhatAOrft/sOEtHCtMUapQ3EHkhe+HHpKd40I01txaA2mZayVgBBhdfzSimkbx8jq00Xa9+Yhx6z+/4PbW3bDOf30t8q1Z1Hu7N97u9R6nY6haKFTs7IqOkdVroVCim/03UjBv9y2kZBXIt3k5WOGL3vXRLcRLw56GZS5xVgV6W6JAIpFg9erVOHLkCNLS0iCVKg6yOHr0aMUi1hOTS2R4KFd//KuxuHC99MtMeYmCphySmeNr/8CF3dvVPt+09wCNyQyXcvbP1p5F62xZDwRTJkko/cjF2Z+sdDITvaU/YnITXp1cxVIJWpIZeRKjZv8OIi/UDuqOmJsxao8xpsEYvScz2q53hG8Ejj06VqkYt/7zC+7/tVvhuMDryr61R2pPZhLOnsKu6IVqn+8TNYeSGaJk/40UTFp7Sd1fRawYEWYSSYK5xFlV6G2JgmnTpmHatGmQSCQICQlBo0aNFH6IBjyUqy8pyMFFlUnM68cXrz9FSUGO+mOUFOHiPzs1hnpxz06UqFmigEs5+8Vxi9HkRWNZVOUqAJc+bvKiMXLzXmqMQ5OighysUZXElHm8JjcBRWquRX5eluokpszjY4UpGpMYAFhzaw2KNCwJUVnarjcLVmMSA2iPsbikCLe3KicxZR/f3robxRqOIZVKcHT1So1xHFuzElJa5oCUIZGymLf7lqa/ipi3+xYkUuPePDCXOKsjnROZjRs3YvPmzdi0aROWLVuG7777TuGHaMBDufqrv3/56naS+rokLBhc/f1L9cc4sFfhdpLKSKRSXD2wV+VzXMrZN4/3hK2FvVISI4+SYWBrYY+9f2j+4tNk05EorUslSBkGm46o7omIPjBBtq+G/dU+V4aUlWLT3U1cw9aZtuvNhbYYY0//Det8RmMdGet8BrGn/1Z7jOT4mwq3k1R5mfEMyfE3uQVNqoVzSc8VbtOUxwJIySrAuaTnatsYgrnEWR3pnMhYWloiMDBQH7FUfTyUq898msrpEJraVfYYXMrUuxU6cjqHJEP9HwZtHuU8rlS7B/ncrgOnc2Q/4u1Y5fG1LICmGJ+la0qwubXLyXzB6Rhc25HqIe0lt78BXNvpi7nEWR3pnMh89NFHWL58Oar4GGH94KFcvaOHJ6dDaGpX2WNwKVOfLsrkdA6hixWndqr4imtqb6ShnZ81t+vA6Rz2vrwdqzy+lgXQFKOrmzenY2hqJ3Z04nQMru1I9eBux+1vANd2+mIucVZHnBKZAQMGyH/i4uKwbt06BAQEoHfv3grPDRgwQN/xmjceytU3GvclGLDQtEQBAxaNxn2p/hhde4BhNL/1jECARl17qHyOSzn7c8GpyC3JVpvwsiyL3JJs9Bg7QWMcmgzpFK11qQQBy2JIp2iVT0d1XSnbV8P+ap8rQ8AIMKTOEK5h60zb9eZCW4wRLfsi35pVOQ4HkN0uzLdmEdGyr9pj+AQ3gNjZVWMcdi6u8AluwC1oUi0093eGl4OVpr+K8HKQTXE2JnOJszrilMg4ODgo/PTv3x/t27eHq6ur0nNEAx7K1VtYiREeWtpjo3qJgvBQD1hoqKFiYWGJ8F79NIYa3rMfLNTUH+FSzn5W61m47HRFFlW5ZKD08WWnK7C1sdMYhyaWVmKMtg0qPajik68ej7YNUltPxtrGAR1EXhr37yDywpgGYzTGMbr+aJ1rtehC2/VmwKCDb4dKxVjDwhL13u4NAErJTOnjem/3Rg0NxxAIhOgYqTkx7TB6AtWTIQqEAgZf9K4PQO1fRXzRu77R67SYS5zVEdWRMQaVdWR8ZEmMsevICAQI71nxOjKeNp6Y2Xwm1ZHRA23X25TryNi5uKLDaKojQ9Qzl/os5hJnVaC3OjLmxiQTGQAoKQLOrwJe3AecagPNxgM6/qu+pCAHV3//UlbZ18MTjcZ9qbEnRuUxSopw9cDe18fo2kNtT4wqXMrZv3yegSvLN8Gy0BZFolw0njYEds4uOsWpTVHuc2zaPhiPCjLga+WCIQM2w9KWexdvTu5zzNk7Co8Ln6GmyBULe/wJcbn9uVT/1TdtlXv5qOxbWJSPvdt+w/PUZDh7+qDHwHchKrfshDZU2de8mMqyFOZSMbeoRIq/Tt/Hg+d58HO2wciWtWFpUaGlC4kGektkmjRponJKLcMwsLKyQmBgICIjI9Ghg+aubgBYtGgRtm/fjtu3b8Pa2hqtWrXCkiVLULduXXmbiIgIHD9+XGG/iRMn4pdffuEUr0kmMjxU9jUXmT/9iZxHtQCU/aMogdj3IRwnj+LnJAfnAqd/BMpOKWcEQMspQJcFWnfnUqH48N/jsPjZKTy1eL2qh0dJCWa5tkLnvr/z8zp4iLOyqCpv9WOIz1VVQj0yhqO3gnjdunXDf//9B1tbW3To0AEdOnSAWCxGYmIimjVrhpSUFHTu3Bl//62+3kSp48ePY/LkyThz5gwOHTqE4uJidOnSBbm5uQrtxo8fj5SUFPnPN998o2vYpqO0sm/5ejLZKbLtt3YZJy49kCUxtaH8MRMg51FtZP70Z+VPcnAucOp7xSQGkD0+9b3seQ1KK+aWr9OSlpeGqNgoHH5wGIf/HoeoF2fxVKj4L9Q0oRBRL87i8N/jKv86tOASZ2WVVuUtXwsm5/kz7IpeiISz6usbEfNkiM9VVVJa2bd8PZnUrAJMWnsJ+2+kGCmy6k3nHpnx48ejVq1amDtX8Qviq6++woMHD7Bq1Sp88cUX2LNnDy5cuKBTMOnp6XB3d8fx48fRrl07ALIemcaNG2PZsmU6HauUSfXISCXAshANRfEYWc/M9Os6LyBpaqQFBXjy5RnIkhhVXcMsACm8v3wTAqsKTlcsKQK+9lBOYspihMCnqSpv20mkEnTd1lVtsTkGDNxt3MFmJyNNKFRZHI9hWXhIJNg/8hKEOt5+4YpLnB42Htg/cH+FbwdIpRKsmjxOY0E7OxdXvPvj73SLqIowxOeqKpFIWbRZclRtUTwGgKeDFf6d2dEkb4eZI731yGzevBlDhw5V2v7OO+9g8+bNAIChQ4fizp07uh4aWVlZAABnZ8WxCevWrYOrqytCQkIwe/Zs5OXlqT1GYWEhsrOzFX5MBg+Vfc1FztadkN1O0jRZUfiqXQWdX6U5iQEAViJrpwKXCsVP854izcJCbYVflmGQamGBSye138KqKC5xpual4lLapQqfg6ryVj+G+FxVJVTZ13RZaG+iyMrKCqdOnVKq7nvq1ClYvfqXtVQqlf83V1KpFNOnT0fr1q0REhIi3z5s2DD4+fnB29sb165dw8yZM3Hnzh1s3656wcNFixZh3rx5Or4qA+Ghsq+5kDwv5LWdSi/uV6odXxVzASA96wFvx1I6Nsc4K/N6qCpv9WOIz1VVQpV9TZfOiczUqVPx3nvv4eLFi2jWrBkA4Pz58/jtt98wZ84cAMCBAwfQuHFjnY47efJk3LhxA//++6/C9gkTXtelCA0NhZeXFzp16oTExEQEBAQoHWf27NmIino91TQ7Oxu+vvqruqoTHir7mguhswjgUPVe6Cyq+EmcaleqHV8VcwHAzcGPt2MpHZtjnJV5PVSVt/oxxOeqKqHKvqZL51tLn332GVatWoVz587hgw8+wAcffIBz585h1apV+PRVXZD33nsPu3fv5nzMKVOm4J9//sGxY8dQs6bmsvMtWrQAANy7d0/l8yKRCPb29go/JoOHyr7mQvx2PwASaKpADEhetaugZuNls5M0YYSydipwqVDsYeMB95ISMGqGkjEsC8+SEoS11TyouDK4xOlp44kw97AKn4Oq8lY/hvhcVSVU2dd0VWji+/Dhw3H69Gk8f/4cz58/x+nTpzFs2DD589bW1pxuLbEsiylTpmDHjh04evQo/P39te5z5coVAICXlxlOc+Ohsq+5EFhZQez78NUj1RWIxb4PKz7QF5AN4G05RXOblpPV1ufhVKG4+SzMdpUlluWTmdLHM11b6W2gL9c4ZzafWakBmVSVt/oxxOeqKqHKvqbLqBV8Jk+ejLVr12L9+vWws7NDamoqUlNTkZ+fDwBITEzEggULcPHiRdy/fx+7du3CqFGj0K5dOzRs2NCYoVdc/T7A4D8B+3KJmL23bHsVqiPjOHkUxL73AZQfkCuF2Pc+P3VkuiwAWn2g3DPDCGXbtdSR6ezXGdER0XC3cVfY7mHjgeiIaHT264zOfX9HtFMLuEskim0kEkQ7tTBIHRkucVZWUItW6BM1R6lnxs7FFX2i5lAdmSrIEJ+rqqRbiBdWjAiDp4PiP8A8HaywYkQY1ZExEk7Tr52dnXH37l24urrCyclJZUG8Us+fcx+xre44MTExiIyMxKNHjzBixAjcuHEDubm58PX1Rf/+/fHZZ59xvmVkUtOvy5JKZLOTcp7KxsT4taoSPTGqSAsKkLN1JyTPCyF0FkH8dr/K9cSoUslKyVwqm0qK8nHp5AKkZz2Am4MfwtrO1WtPTEXjrCyqylv9mEplX3NhLhWIzR3X729Og32/++472NnJFveraD0XVbTlUL6+vkpVfasMgRDwb2vsKCqNlUiQd+EiStLTYeHmBpum4WDKFY5jLEWwbNkN0pdFENhZgrHUbYBvUVE+TvwVg8zUFDh6eqHdyDGwLJdASKQSXMpLRnrBE7jl1UCYVAJd/gwLWKD+AxYl6Sws3FgIVIxvFFpao1mnhTrFXpa0qAgv1m9A0aNHsPT1hdOwoRBY6rZ8gFAgRDPPZhWOgQuBQAjfBpXr8aRkyLwY4nNVlQgFDFoG8LvMijkylYSO1loiFZZ98CCeLlyEktRU+TYLT094zJkN+y5dAAD5N54hc3ciJFlF8jZCB0s49g6AdYjmwaUAsHPpAiReOKu0PaBpC/T7WDbAtrLLB3B5HZX1dOlSPI9ZDUjL3GYTCOA8JhIeH3/MyzlMBS1zQEjVZ4ilGnhfa4lrYTlTSxYokdGP7IMHkTxtOlD+4/PqdqHP8mWo4R2GjLXxao/hMiJYYzKjLokpFdC0BcR17iPqxVnZ8OEytypLB+JqG8PC5XVUNpl5unQpnv+ufkVy53Fjq0wyU7rMgTo01oYQ81e6VEP55KH0LzBf44V4T2QEAoHGsTEsy4JhGEjKDYg0Nkpk+MdKJLjXqbNCD4YChoGFhydsuyyCNLtIdRsAQgcRPGc2A6OiK7KoKB8/jBykNZZ9nRLx1LJiywdwex0eCDxyWOl2GVfSoiLcadxEsSemPIEAda9c1vk2k6mhZQ4IqfoMuVQDr2NkAODYsWPy/2ZZFj169MBvv/0GHx+fSgVKzE/ehYvqv/wBgGXBlthpTGIAQJJViMKkLFgFOCo9d+KvGE6x1E5ww9MQ1dVmyy4foGpsC5fXUZKairwLF2HbojmneMp7sX6D5iQGAKRSvFi/AS6Royt0DlOhyzIHlR2DQwgxDl2WajDUOCLOiUz79u0VHguFQrz55pt44403eA+KmLaSdO0lyxmRA6djSV+qTnYyU7mtImuXp/0jrG75AC6vQ5d2qhQ9esRrO1NGyxwQUvWZ4lINRq0jQ8yThZv2kuVsYRanYwnsVN9OcfTkdn/1pU2J1jbqlg/g8jp0aaeKJcflMbi2M2W0zAEhVZ8pLtVAiQzRmU3TcFh4eqpdERoMA8biJQT2msd8CB1EEPmr7rlpN3IMp1juB6VXePkALq/DwtMTNk3DOcWiitOwoYBAy6+ZQCBrZ+ZomQNCqj5TXKqhUomMpsG/pOpihEJ4zJn96kG5z8Crxx5zZsGpj/KinmU59n5D5UBfALC0tEZA0xYa9w9o2gKzPCq+fAC31zG7wgN9AUBgaQnnMZEa2ziPiTT7gb4ALXNASHVgiks1cJ61NGDAAIXHu3fvRseOHWFra6uwffv27fxFxwOataQ/Fa8jI4Jj7zf0WkfGs6QEM6mOjFGoqiNj5+KKDqOpjgwhVYVZ1pEZM4ZbV39MDLfZJoZCiYx+cansKy2RIuf0E0ieF0DobAVxS28ILLh3BnKq7FuQg0v7piL95SO42fkirPsPEFqJeX0dlcVHZV9D4ONaSIqLkPj3TuSkPIHYyxsBfftBWEO312oKZfOpQrFhmUqlWMKNvt8v3hMZc0WJjHFVtrIvJ7d2AftnAtlPXm+z95atNF6FFuE0BD56p/g4xuEHh7H43GI8zXsq3+Zh44FZzWcZbCFDqlBsWIb4Fz4xL5TIvEKJjPHk33hWqcq+nNzaBWweBairMVnFVhTXJz6qHPNxjMMPDiMqNgpsufeUefWeGmJVZqpQbFiGqhRLzAvX72+atUT0gpWyyNydqLFN5u7/wEorkUdLJbKeGKU/f3i9bf8sWTuiESuR4OnCRcoJCCDf9nThIrAaKnfzcQyJVILF5xYrJTEA5NuWnFsCiR7fU6lUgqOrV2psc2zNSkjpc8ULiZTFvN23NP0WY97uW5BU5m8FqdIokSF6UZiUpXA7SZXSyr4V9uCU4u0kJSyQnSxrRzTSpcqxPo9xKe2Swu0kpUOARWpeKi6lXVJ/nkrSpUIxqTxdKsUSogolMkQv1FXsrWg7lXLUf+FVqF01xkeVYz6OkZ7H7Rhc21UEVSg2LFOsFEvMCyUyRC/UVeytaDuVxB78tqvG+KhyzMcx3Gy4HYNru4qgCsWGZYqVYol5oUSG6IXI3wFCh4pX9uXEr5VsdpKmGpP2PrJ2RCM+qhzzcYww9zB42HjIB/YqHQIMPG08EeYepvYYlUUVig3LFCvFEvNCiQzRC0bAwLF3xSv7ciIQyqZYy85YPgLZ/3VbLGtHNOKjyjEfxxAKhJjVfJZsl3Lvaenjmc1n6rWeDFUoNixTrBRLzAslMkRvrENc4TIiWKlnRugg4mfqNSCbWj34T8C+3NRMe2+aeq0j+y5d4LN8GSw8FG/FWXh4cJo2zdcxOvt1RnRENNxt3BW2e9h4GGTqNQAEtWiFPlFzlHpm7Fxcaeq1HnQL8cKKEWHwdFC8feTpYEVTr4lWVEeG6B0rZVGYlAXpyyII7Cwh8neoXE+MKlKJbHZSzlPZmBi/VtQTU0F8VPblpTowVfatdqiyLymL6/e3hdpnCOEJI2BgFeBY4f2lUhYpCZnIzS6Erb0IXkGOEJT/4yYQAv5tK3wOQyRb5rJEAR8YoRC2LZpX6hhCgRDNPJvxFFHFSKUSpN3/D5lPU+Ho4QmvuvUokdEjoYBBywAXY4dBzAz1yBCTlng5DSc3JSA3s1C+zdZRhLZDghDQxF3DntwZYhkFc1k00hALaJqL42v/wMV/doJlX79nDCNAeK9+aD9irBEjI6R6oMq+xOwlXk7D/l9vKCQxAJCbWYj9v95A4uW0Sp+jdBmF8sX7JFlFyFgbj/wbmgujcfF06VI8//0PxSQGAKRSPP/9DzxdurTS5+BD6fIC5YvalTx9iuRp05F98KCRIjO842v/wIXd2xWSGABgWSku7N6O42v/MFJkhJDyKJEhJkkqZXFyU4LGNv9uToC0EmXLDbGMgrSoSNYTo8HzmNWQFlWiMCAP+FheoKooKSnCxX92amxzcc9OlJQY9z0jhMhQIkNMUkpCplJPTHk5LwqRkpBZ4XMYYhmFF+s3KPfElCeVytoZER/LC1QVVw/sVeqJKY+VSnH1wF4DRUQI0YQSGWKScrM1JzG6tlPFEMsoFD16xGs7feFjeYGqIvOphoSuAu0IIfpFiQwxSbb2Il7bqWKIZRQsfX15bacvfCwvUFU4enjy2o4Qol+UyBCT5BXkCFtHzUmK2Ek2FbuiDLGMgtOwoYBAy6+ZQCBrZ0R8LC9QVTTq2gMMo/k9YwQCNOraw0AREUI0oUSGmCSBgEHbIUEa27QZHKRcT0YHhlhGQWBpCecxkRrbOI+JNHo9GT6WF6gqLCwsEd6rn8Y24T37wcKiatYAIsTcUCJDTFZAE3d0mxii1DMjdhKh28QQXurIGGIZBY+PP4bzuLHKPTMCAZzHjTWZOjJ8LC9QVbQfMRZNew9Q6plhBAI07T2A6sgQYkKoIB4xeZwq+1YSVfZ9zVziNISionyc+CsGmakpcPT0QruRY2BpaW3ssAipFrh+f1MiQwiRo8q+ryWcPYWjq1ci5/nroohiZ1d0jJxAi0YSYgBU2ZcQohOq7PtawtlT2BW9UCGJAYCc58+wK3ohEs6eMlJkhJDyKJEhhFBl3zKkUgmOrl6psc2xNSshlVb9a0GIOaBEhhBClX3LSI6/qdQTU97LjGdIjr9poIgIIZpQIkMIocq+ZeRkvuC1HSFEvyiRIYRQZd8yxI5OvLYjhOgXJTKEEKrsW4ZPcAOInTXXD7JzcYVPcAMDRUQI0YQSGUIIVfYtQyAQomPkBI1tOoyeAIGg6l8LQswBJTKEEABU2besoBat0CdqjlLPjJ2LK/pEzaE6MoSYECqIRwhRwEoksllM6emwcHODTdPwatETo4pUKpHNYsp8AbGjE3yCG1BPDCEGwvX728KAMRFSIUUFJfhv3W1IXhRA6GSFN4bXg6UVfXT1hREKYduieaWOUVxQgqcbbqPkRQEsnKzgMbQeapjheyYQCOHboKGxw9A7aYkUOaefQPK8AEJnK4hbekNgodhhT0kdMVVG7ZFZtGgRtm/fjtu3b8Pa2hqtWrXCkiVLULduXXmbgoICfPTRR9i4cSMKCwvRtWtX/Pzzz/Ao1/2tDvXImLeb312EXWouBGXGbUhZFi89bdHgw6o/8NQcPfjhEgTJuSg70oYFIPWxhd/UMGOFRdTI3Psfck4my96kUgwgbusDxx5vAKDlGohxmMUSBcePH8fkyZNx5swZHDp0CMXFxejSpQtyc3PlbT788EPs3r0bW7ZswfHjx/HkyRMMGDDAiFETQ7n53UXYpyp+IQIAA8A+NRc3v6v6xdnMzYMfLkHwOEe5QjDLQvA4Bw9+uGScwIhKmXv/Q86JckkMALBAzolkZO79j5ZrICbPqH29+/fvV3i8evVquLu74+LFi2jXrh2ysrLw+++/Y/369ejYsSMAICYmBsHBwThz5gzefPNNY4RNDKCooAR2qbKElik3i4ZhGLAsC7vUXBQVlNBtJhNRXFACQbLm90yQnIvighKzvM1U1UhLpLKeGA1yTibjaGaMxjbH1qxEQLMWdJuJGI1JzVrKysoCADg7OwMALl68iOLiYnTu3Fnepl69eqhVqxZOnz6t8hiFhYXIzs5W+CHm5791tyFgGKUvxFIMw0DAMPhv3W0DR0bUebrhNhgoJzGlGIYB86odMb6c00+Ue2LKYwGvEl+NTWi5BmJsJpPISKVSTJ8+Ha1bt0ZISAgAIDU1FZaWlnB0dFRo6+HhgVQ168IsWrQIDg4O8h9fX82/hMQ0SV4U8NqO6F8Jx/eCazuiX5Ln3N4HsYX2Csa0XAMxJpNJZCZPnowbN25g48aNlTrO7NmzkZWVJf959OgRTxESQxI6WfHajuifBcf3gms7ol9CZ27vQ06J9iSFlmsgxmQSicyUKVPwzz//4NixY6hZs6Z8u6enJ4qKipCZmanQ/unTp/D09FR5LJFIBHt7e4UfYn7eGF4PUpaFukl1LMtCyrJ4Y3g9A0dG1PEYWg8soPE9Y1+1I8YnbukNpZH05TFAioXmfwzScg3E2IyayLAsiylTpmDHjh04evQo/P39FZ4PDw9HjRo1cOTIEfm2O3fu4OHDh2jZsqWhwyUGZGllgZeetgCUvxhLH7/0tKWBviakhpUFpD6a3zOpjy0N9DURAgsBxG19NLYRt/VBx8h3Nbah5RqIsRm1jsz777+P9evX4++//1aoHePg4ABra2sAwKRJk7B3716sXr0a9vb2mDp1KgDg1CluU/6ojox5ozoy5ofqyJiXitaRsXNxRYfRVEeG6A/X72+jJjLqZjfExMQgMjISwOuCeBs2bFAoiKfu1lJ5lMiYv+pU2VdSIkXKv8kofF4AkbMVvNr4QGjBb8epIc5RkF2IZz9dhjSvBAIbC7hObgIrexGv5zAEbRVvi4skuLszEQUZ+bBysUadfgGoYWl+vROSIgmy9v4HSUYBhC5WcOjxBoTlXgdV9iWGZhaJjCFQIkPMRdLuREjinqDsEMwCAMLW3vDvHWA253j2500U3HqutN2qvjNcR5nPWAptPRWXVl2HXcILWAte/4MsX8riZZATwsaHGj7gCsq/8QyZuxMhySqSbxM6WMKxdwCsQ1w17EmIflEi8wolMsQcJO1OhMW/suJkZXsqS389S9r4VDrRMMQ51CUxpcwlmZFXvFUj18ESNpmFAFRfy/RA80hm8m88Q8baeLXPu4wIpmSGGI1ZLFFACJHd6pHEPQGguiIuAEjinkBSIjXtcxRJNCYxAFBw6zkkRZIKn8MQuFS8VZXElH0sTniBYhN/nayURebuRI1tMnf/B1Zapf+tS6oASmQIMbKUf5NhBc0Vca1etTPlc2Tt/Y/XdsbCpeIto6XqtI2Awd2dmpMEYytMylK4naSKJKsQhUlZBoqIkIqhRIYQIyvkWGGVaztjnUOSwbEaM8d2xsK14q02BRn5vBxHX6QvNScxurYjxFgokSHEyEQcK6xybWescwhdOFZj5tjOWLhWvNXGysWal+Poi8DOktd2hBgLJTKEGJlXGx8UQHNF3IJX7Uz5HA6vao7w1c5YuFS8ZbVUnc6TsqjTj59ZYPoi8neA0EFzkiJ0EEHk72CgiAipGEpkCDEyoYUAwtbeANRXxBW29q5UrReDnMNSCKv6zhrbWNV3VqpPYmq4VLzNc5TVxFF3LXOCnEy+ngwjYOCoZZaaY+83wAi0rWNAiHFRIkOICfDvHYCSNj4oLDeAtJBheJkWbahzuI5qoDaZMZep1wDg2OMNiNv5KPfMMIC4nQ/qzm6B9EAnFJTrlMlnzWfqNQBYh7jCZUSwUs+M0EFEU6+J2aA6MoSYkKpS2ZdLpVhzUF0q+7JSFoVJWZC+LILAzhIifwfqiSFGx/X7u2rWeSfETAktBKgZ4avXczACBoyXGBLbGmDsRXr5wmIsBMgPdkVudiFs7UVwrECiVNkvVz6+nAUWAti3ran2+RqWQjQYXEenY5oiRsDAKsBRYxttSZ02XN6PqpIAE8OiRIaQaiTxchpObkpA7quCbgBg6yhC2yFBCGjibjLnqGzZfCq7zy9VyzVk701SWFhSEy7vh1JV6AQg70yqWd2SJMZBt5YIqSYSL6dh/6831D7fbWJIpZMZPs5R2bL5VHafX9qWaxC305zMcHk/ci89rRJLWxB+0RIFhBA5qZTFyU0JGtv8uzkB0kqUo+fjHJUtm09l9/nFZbmGnJPJkKpZ2oLL+/F8170qsbQFMR5KZAipBlISMhVu9aiS86IQKQmZRj1HZcvmU9l9fnFZrgHsq3YqcHk/2OxiTrGY+tIWxHgokSGkGsjN1pxg6NpOX+eobNl8KrvPL67LNahrx+d1NvWlLYjxUCJDSDVgay/itZ2+zlHZsvlUdp9fXJdrUNeOz+ts6ktbEOOhRIaQasAryBG2jpoTDbGTCF5BjkY9R2XL5lPZfX5xWa4BzKt2KnB5Pxj7GpxiMfWlLYjxUCJDSDUgEDBoOyRIY5s2g4MgqERNGT7OUdmy+VR2n19clmsQt/VRW0+Gy/vh3CewSixtQYyHEhlCqomAJu7oNjFEqddE7CTiZeo1X+eobNl8KrvPL23LNWirI8Pl/agqS1sQ46A6MoQYiKSwGC+2nIckIw9CFxs4DWoGoUixW90QywdIpaxshtGrqrteQY4698RoK81fXFCCpxtuo+RFASycrOAxtB5qWOlWf7Oy5f/5qOyr7f0oyClC8i9XgZxiQFwDPu81gpWY3/E3la2oC/DznhflFSMt5gYkWYUQOojgPiYEljbcbgsB3N6Pyp6DrzhMgbnEqU9cv78pkSHEANJ+OorCh0IwzOsvIJaVQlRLAvfJHQEASbsTIYl7grJDGgsgW5WajwUd+XJp1XXYJbyAdZk/qvlSFi+DZIslKlVofUWXf1nHbUvA1cOPUPavE8MAjTr7ovVAzbev+KLt/bg3/zREucVgyizCybIsCm1rIPDzlrzEoKqiLhhwrqgL8FNp+f7qGxDefqHQKcMCkNRzQu3IEE7H0MYQn39zqfhsLnHqGyUyr1AiQ4xNlsTIeiPKf+kBgKhWCXJr+cHi32S1bfhanbqyLq26Drd7LwCojrPQtgas8krU7s8lmYnbloArhx6pfb7xW/pPZpJ2J2p8PwotBBC9KgKn7jpUNpmpbEVdgJ9Ky/dX34AwXpaYqnqtkmDnSicz2q43H59/c6n4bC5xGgJV9iXEBEgKi1H4UHY7pOwf6LKPCx8KIYl7orGNJO4JJGqqpxpKcZEEdgnKSUzZx6JczcXNtFVoLSmR4uph9UkMAFw9/AglerwWkhKp1vdDVRKj8HxuMQpyKl5DpbIVdQF+Ki2XFEkgvK35PRfefoGSSlTd5XK9K/v5N5eKz+YSp6mhRIYQPXqx5TwYRqD0B7oUwzBgGAGsoPxHvGwbKwAp/2r+YtO3uzsTYS1gtLwW7ffwNVVovRH7GNr6iFlW1k5fUv5N1vp+aHqtpc8l/3K1wjFUtqIuwE+l5dTdiWCg5Vq8aldRXK53ZT//5lLx2VziNDWUyBCiR5KMPN6OVcixyqq+FGTk83IcTRVas55xOwfXdhXB23XO4VZ6X5XKVtQF+Km0XMwxDq7tVOF6vSvzvphLxWdzidPUUCJDiB4JXWx4O5aIY5VVfbFyseblOJoqtDq4cjsH13YVwdt1Fld8tk1lK+oC/FRarsExDq7tVOF6vSvzvphLxWdzidPUUCJDiB45DWoGlpVC3Zh6lmXBslIUABrbFADwaqO5MJm+1ekXgHwpq+W1aL93r6lCa0hETWi7O8Uwsnb64tXGR+v7oem1lj7n816jCsdQ2Yq6AD+Vlj17B4CFlmvxql1Fcbnelf38m0vFZ3OJ09RQIkOIHglFNSCqJRsIWf4P9etZSxIIW3trbCNs7c17PRld1bAU4mWQEwD1cRbaau6F0Fah1cJCgEadfTUeo1FnX1jo8VoILQRa34/CV+fXdB0qU0+mshV1AX4qLVtYCiGpp/k9l9RzgkUlqu5yud6V/fybS8Vnc4nT1FAiQ4ieuU/uCFGtEiiP3mQhqlUC98kd4d87ACVtfFBYrjuikGFMZuo1AISND0V6oBMKyr2UfBZID3RC4OctK12htfXAIDR+y1epZ4ZhDDP1GoDW9yPw6zZqkza+6shUtqIuwE+l5dqRIZAEO0PVG8LH1GtA+/Xm4/NvLhWfzSVOU0J1ZAgxEFOp7MsHbVV3JUUSZO39D5KMAghdrODQ4w2d18opKZHiRuxjZD3Lh4OrNUIiauq1J0YVquz7WkmRBKm7E1H8vAA1nK3g2TugUj0xqhji828uFXPNJU59ooJ4r1AiQwipKG3JlCkkW1zwkSDQFysxNEpkXqFEhhBSEdqWSTCFZRS44KP0P5XMJ8ZAicwrlMgQQnSlbZkENz8x0h/kqH3eUGN5tOGj9D+VzCfGQksUEEJIBXBZJkFTEgPofxkFLvgo/U8l84k5oESGEELK4LJMgjb6XkaBCz5K/1PJfGIOKJEhhJAy+Fr+QJ/LKHDBR+l/KplPzAElMoQQUgZfyx/ocxkFLvgo/U8l84k5oESGEELK4LJMgjb6XkaBCz5K/1PJfGIOKJEhhJAyuCyT4OYn1vi8vpdR4IKP0v9UMp+YA0pkCCGkHG3LJAye3dzoyyhwwUfpfyqZT0wd1ZEhhPCuqlSB1bYUg7bnTUVhQQmu/HlLXtm38aj6EFlZyJ/n8n6Zy/IB5rLMB9HOLArinThxAkuXLsXFixeRkpKCHTt2oF+/fvLnIyMjsWbNGoV9unbtiv3793M+ByUyhBhWVakCq+11mMvr1FaBmMvrSLychpObEpCbWShvY+soQtshQZwWnuSCj+vJRxVjYjrMoiBebm4uGjVqhJ9++kltm27duiElJUX+s2HDBgNGSAjRRWkV2PK1RyRZRchYG4/8G8+MFJlutL2OzL3/mcXrLK1QXP6fqywLXDn0CJdWXdf6OhIvp2H/rzcUkhgAyM0sxP5fbyDxclql4+Tjc1NaxVhU7sWKWBYW/yYjSUthP2K+LLQ30Z/u3buje/fuGtuIRCJ4enoaKCJCSEVxrQJrVd/FpG8zcXkdOSfVF5EDTON1cqlQbJfwAtAQ44vdiTiZVazxGP9uToB/IzedV9MuxcfnprSKsQVUVzFmWVZWxbi7P91mqoJM/h2NjY2Fu7s76tati0mTJiEjI0Nj+8LCQmRnZyv8EEL0r6pUgeXyOqDlhrwpvE5tFYpdLBhYa0k+pFlFsMrRnMjkvChESkJmBSKU4eNzw0cVY2K+TDqR6datG/78808cOXIES5YswfHjx9G9e3dIJBK1+yxatAgODg7yH19fzdMoCSH8qCpVYPmKz9ivU1tlYSuOHShc2uVmF2pvpAYfnxs+qhgT82XUW0vavPPOO/L/Dg0NRcOGDREQEIDY2Fh06tRJ5T6zZ89GVFSU/HF2djYlM4QYQFWpAstXfMZ+ndoqCxdwnObBpZ2tvYjbwVTg43PDRxVjYr5MukemvDfeeAOurq64d++e2jYikQj29vYKP4QQ/asqVWC5vA5o6aUwhdeprUJxRgmLfC2rVgscLFEgrqGxjdhJBK8gxwpEKMPH54aPKsbEfJlVIvP48WNkZGTAy8vL2KEQQsqpKlVgubwOcVvNX4im8Dq5VCh+GeSk8Xmn3gFoO6SOxjZtBgdVeKAvwM/nho8qxsR8GfVdzcnJwZUrV3DlyhUAQFJSEq5cuYKHDx8iJycHH3/8Mc6cOYP79+/jyJEj6Nu3LwIDA9G1a1djhk0IUaOqVIHV9joce7xhFq9TW4XisPGhWl9HQBN3dJsYAltHxdtHYicRuk0M4aWODB+fGz6qGBPzZNSCeLGxsejQoYPS9tGjR2PFihXo168fLl++jMzMTHh7e6NLly5YsGABPDw8OJ+DCuIRYnhVpbKvttdhLq+zpESKG7GPkfUsHw6u1giJqKmwFhSX1yGVskhJyERudiFs7WW3kyrTE6MKVfYlZZlFZV9DoESGEEI0M5eEzBDoWpgOrt/fJj1riRBCiH6Zy1ILhkDXwjxRfxshhFRTVWVJCT7QtTBflMgQQkg1xHVpAFbLFO2qgK6FeaNEhhBCqqGqsqQEH+hamDdKZAghpBqqKktK8IGuhXmjRIYQQqqhqrKkBB/oWpg3SmQIIaQaqipLSvCBroV5o0SGEEKqoaqypAQf6FqYN0pkCCGkmqoqS0rwga6F+aKCeIQQUo1Zh7jCqr4LVbMFXQtzRYkMIYRUc4yAgVWAo7HDMAl0LcwP3VoihBBCiNmiRIYQQgghZosSGUIIIYSYLUpkCCGEEGK2KJEhhBBCiNmiRIYQQgghZosSGUIIIYSYLUpkCCGEEGK2KJEhhBBCiNmiyr6EEFJBBXnFiF91HdKsQggcRAgeHwormxrGDouQaoUSGUIIqYBLX5+Fa3Yh3JhX6/DklSBt3mk8sxch7NMWxg2OkGqEbi0RQoiOLn19Fm7ZhSi/lCADwC27EJe+PmuMsAipliiRIYQQHRTkFcM1uxAAwDCKqUzpY9fsQhTkFRs8NkKqI0pkCCFEB/GrrkPAMEpJTCmGYSBgGMSvum7gyAipniiRIYQQHUizCnltRwipHEpkCCFEBwIHEa/tCCGVQ4kMIYToIHh8KKQsC5ZlVT7PsiykLIvg8aEGjoyQ6okSGUII0YGVTQ08s5f1tpRPZkofP7MXUT0ZQgyEEhlCCNFR2KctkG4vQvk+GRZAOtWRIcSgqCAeIYRUQNinLVRW9q1FPTGEGBQlMoQQUkFWNjXQZFqYscMgpFqjW0uEEEIIMVuUyBBCCCHEbFEiQwghhBCzRYkMIYQQQswWJTKEEEIIMVuUyBBCCCHEbFEiQwghhBCzRYkMIYQQQswWJTKEEEIIMVtVvrJv6SJu2dnZRo6EEEIIIVyVfm+rW2m+VJVPZF6+fAkA8PX1NXIkhBBCCNHVy5cv4eDgoPZ5htWW6pg5qVSKJ0+ewM7ODgzDGDsc3mVnZ8PX1xePHj2Cvb29scMxa3Qt+UXXkz90LflF15M/+ryWLMvi5cuX8Pb2hkCgfiRMle+REQgEqFmzprHD0Dt7e3v6heQJXUt+0fXkD11LftH15I++rqWmnphSNNiXEEIIIWaLEhlCCCGEmC1KZMycSCTCF198AZFIZOxQzB5dS37R9eQPXUt+0fXkjylcyyo/2JcQQgghVRf1yBBCCCHEbFEiQwghhBCzRYkMIYQQQswWJTKEEEIIMVuUyJihRYsWoVmzZrCzs4O7uzv69euHO3fuGDsss7VixQo0bNhQXtCpZcuW2Ldvn7HDqhIWL14MhmEwffp0Y4dilr788kswDKPwU69ePWOHZbaSk5MxYsQIuLi4wNraGqGhobhw4YKxwzJLtWvXVvpsMgyDyZMnGzyWKl/Z9//t3X0wVfkfB/C337V0702eIpb1sIWoiEhIZSRs27C1yKjoYanR2izW3p5rK3qYVruz6WlHaldqWmRJbbWuSmymKEnrYVFJays9WINc398fTefXXVSK7u+0n9fMmbnnnO/3cz7ndCefe77fe8/bKC8vD+Hh4XBwcEBHRweWLl2KKVOm4OrVqxCLxYpOj3cMDQ0RHx8PMzMzMMaQnJwMHx8fFBcXY8SIEYpOj7eKioqwc+dOWFtbKzoVXhsxYgROnjzJrSsr03/br6KpqQkuLi5wc3NDTk4OdHR0UFlZCU1NTUWnxktFRUWQyWTc+pUrV+Dh4QE/P783ngt9/fot8Ndff0FXVxd5eXmYMGGCotN5K2hpaWHz5s2YP3++olPhpebmZtjZ2WH79u1Yt24dRo8ejYSEBEWnxTurV69GRkYGSkpKFJ0K73355ZfIz8/HmTNnFJ3KW2nJkiXIyspCZWXlG3+uIQ0tvQUePHgA4MkfX/J6ZDIZUlNT8ffff8PJyUnR6fBWeHg4pk6dismTJys6Fd6rrKzEu+++i/fffx9BQUG4fv26olPipczMTNjb28PPzw+6urqwtbXF7t27FZ3WW6G9vR0//PAD5s2bp5CHM9M9Sp7r7OzEkiVL4OLigpEjRyo6Hd4qLS2Fk5MTWltbMXDgQKSnp8PKykrRafFSamoqLl68iKKiIkWnwnuOjo7Yu3cvLCws0NDQgDVr1sDV1RVXrlyBmpqaotPjlT/++AOJiYn4/PPPsXTpUhQVFSEiIgIqKioIDg5WdHq8lpGRgfv37yMkJEQhx6ehJZ5btGgRcnJycPbs2X/FU777S3t7O65fv44HDx7g8OHD2LNnD/Ly8qiY6aUbN27A3t4eJ06c4ObGTJo0iYaW+sj9+/dhbGyMrVu30rBnL6moqMDe3h7nzp3jtkVERKCoqAgFBQUKzIz/PD09oaKigp9//lkhx6ehJR5bvHgxsrKykJubS0XMa1JRUcGwYcMwZswYxMXFwcbGBtu2bVN0Wrxz4cIFNDY2ws7ODsrKylBWVkZeXh6++eYbKCsry00OJL2noaEBc3NzVFVVKToV3tHX1+/ywcTS0pKG6l5TXV0dTp48iQULFigsBxpa4iHGGD799FOkp6dDKpXC1NRU0Sm9dTo7O9HW1qboNHjH3d0dpaWlctvmzp2L4cOHIzY2FgKBQEGZvR2am5tRXV2N2bNnKzoV3nFxcenyMxUVFRUwNjZWUEZvh6SkJOjq6mLq1KkKy4EKGR4KDw9HSkoKjhw5AjU1Ndy+fRsAoK6uDqFQqODs+EcikcDb2xtGRkZ49OgRUlJSIJVKcfz4cUWnxjtqampd5mqJxWJoa2vTHK5XEB0djWnTpsHY2Bi3bt3CqlWrIBAIEBgYqOjUeCcyMhLOzs7YsGED/P39cf78eezatQu7du1SdGq81dnZiaSkJAQHByv0ZwGokOGhxMREAE/mHjwrKSlJYZOt+KyxsRFz5sxBQ0MD1NXVYW1tjePHj8PDw0PRqZF/uZs3byIwMBB3796Fjo4Oxo8fj8LCQujo6Cg6Nd5xcHBAeno6JBIJ1q5dC1NTUyQkJCAoKEjRqfHWyZMncf36dcybN0+hedBkX0IIIYTwFk32JYQQQghvUSFDCCGEEN6iQoYQQgghvEWFDCGEEEJ4iwoZQgghhPAWFTKEEEII4S0qZAghhBDCW1TIEPJ/ZO/evdDQ0FB0Gpza2looKSmhpKSkT+JJpVIoKSnh/v37fRLvbaGkpISMjIx+i0/XnbzNqJAh5CWEhIRASUmpy+Ll5dWnxwkICEBFRUWfxuzOpEmTuHNQVVWFgYEBpk2bhrS0NLl27733HhoaGujxAq/IxMTkpZ763dDQAG9v7347lrOzM/fL1cD/X8FMyOugQoaQl+Tl5YWGhga55cCBA316DKFQCF1d3T6N2ZNPPvkEDQ0NqK6uxk8//QQrKyvMnDkToaGhXBuBQAA9PT2FPkfl30BPTw+qqqr9Fl9FRQV6enpQUlLq07gymQydnZ19GpOQ3qJChpCXpKqqCj09PblFU1OT26+kpIQ9e/bgo48+gkgkgpmZGTIzM+ViZGZmwszMDAMGDICbmxuSk5Plbvn/85Py6tWrMXr0aOzfvx8mJiZQV1fHzJkz8ejRI65NZ2cn4uLiYGpqCqFQCBsbGxw+fPiF5yMSiaCnpwdDQ0OMGzcOGzduxM6dO7F7926cPHkSQNehpaamJgQFBUFHRwdCoRBmZmZISkqSa5uamgpnZ2cMGDAAI0eORF5eXo853L17F4GBgTAwMIBIJMKoUaO6FIednZ3YtGkThg0bBlVVVRgZGWH9+vXc/hs3bsDf3x8aGhrQ0tKCj48Pamtruf0hISHw9fXFhg0bMGTIEGhoaGDt2rXo6OhATEwMtLS0YGhoyJ1Hb+Nu2bIF+vr60NbWRnh4OB4/fgzgyV2vuro6REZGcne/evLs0NLT65iWlgY3NzeIRCLY2NigoKCgx/4v8uzQklQqxdy5c/HgwQMur9WrVwMA2traEB0dDQMDA4jFYjg6OkIqlXJxnr4/MzMzYWVlBVVVVVy/fh1SqRRjx46FWCyGhoYGXFxcUFdX98r5EtIbVMgQ0ofWrFkDf39/XL58GR988AGCgoJw7949AEBNTQ0+/vhj+Pr64tKlSwgLC8OyZcteGLO6uhoZGRnIyspCVlYW8vLyEB8fz+2Pi4vDvn37sGPHDpSVlSEyMhKzZs16bgHRk+DgYGhqanYZYnpqxYoVuHr1KnJyclBeXo7ExEQMHjxYrk1MTAyioqJQXFwMJycnTJs2DXfv3u02XmtrK8aMGYPs7GxcuXIFoaGhmD17Ns6fP8+1kUgkiI+P546dkpKCIUOGAAAeP34MT09PqKmp4cyZM8jPz8fAgQPh5eWF9vZ2Lsavv/6KW7du4fTp09i6dStWrVqFDz/8EJqamvjtt9+wcOFChIWF4ebNm72Km5ubi+rqauTm5iI5ORl79+7F3r17AQBpaWkwNDTE2rVruTt4vbFs2TJER0ejpKQE5ubmCAwMREdHR69idMfZ2RkJCQkYNGgQl1d0dDQAYPHixSgoKEBqaiouX74MPz8/eHl5obKykuvf0tKCjRs3Ys+ePSgrK4OWlhZ8fX0xceJEXL58GQUFBQgNDe3zuz+E9IgRQl4oODiYCQQCJhaL5Zb169dzbQCw5cuXc+vNzc0MAMvJyWGMMRYbG8tGjhwpF3fZsmUMAGtqamKMMZaUlMTU1dW5/atWrWIikYg9fPiQ2xYTE8McHR0ZY4y1trYykUjEzp07Jxd3/vz5LDAwsMfzmThxIvvss8+63efo6Mi8vb0ZY4zV1NQwAKy4uJgxxti0adPY3Llzu+33tG18fDy37fHjx8zQ0JBt3LiRMcZYbm6u3Pl2Z+rUqSwqKooxxtjDhw+Zqqoq2717d7dt9+/fzywsLFhnZye3ra2tjQmFQnb8+HHG2JN/O2NjYyaTybg2FhYWzNXVlVvv6OhgYrGYHThwoNdxOzo6uDZ+fn4sICCAWzc2NmZff/11j+f6FACWnp7OGPvfddyzZw+3v6ysjAFg5eXlPcZ43rH+ed3/+T5jjLG6ujomEAhYfX293HZ3d3cmkUi4fgBYSUkJt//u3bsMAJNKpS88T0L6Aw18E/KS3NzckJiYKLdNS0tLbt3a2pp7LRaLMWjQIDQ2NgIAfv/9dzg4OMi1Hzt27AuPa2JiAjU1NW5dX1+fi1lVVYWWlhZ4eHjI9Wlvb4etre1LnFVXjLEeP00vWrQIM2bMwMWLFzFlyhT4+vrC2dlZro2TkxP3WllZGfb29igvL+82nkwmw4YNG3Do0CHU19ejvb0dbW1tEIlEAIDy8nK0tbXB3d292/6XLl1CVVWV3PUBntzpqa6u5tZHjBiB//znfzeghwwZIjeBWSAQQFtbm7uuvYkrEAi4dX19fZSWlnaba289+17S19cHADQ2NmL48OF9Ev+fSktLIZPJYG5uLre9ra0N2tra3LqKiopcblpaWggJCYGnpyc8PDwwefJk+Pv7czkT0t+okCHkJYnFYgwbNuy5bd555x25dSUlpdeeDPm8mM3NzQCA7OxsGBgYyLV7lcmjMpkMlZWVXQqup7y9vVFXV4ejR4/ixIkTcHd3R3h4OLZs2dLrYwHA5s2bsW3bNiQkJGDUqFEQi8VYsmQJN3wjFAqf27+5uRljxozBjz/+2GWfjo4O97q7a/ii6/qqcftq8uuzsZ8Wlv05sba5uRkCgQAXLlyQK84AYODAgdxroVDYpdBNSkpCREQEjh07hoMHD2L58uU4ceIExo0b12/5EvIUFTKEvCEWFhY4evSo3LaioqLXivnshMuJEye+ViwASE5ORlNTE2bMmNFjGx0dHQQHByM4OBiurq6IiYmRK2QKCwsxYcIEAEBHRwcuXLiAxYsXdxsrPz8fPj4+mDVrFoAnf6grKipgZWUFADAzM4NQKMSpU6ewYMGCLv3t7Oxw8OBB6OrqYtCgQa983v0VV0VFBTKZrM/y6ivd5WVrawuZTIbGxka4urr2OqatrS1sbW0hkUjg5OSElJQUKmTIG0GTfQl5SW1tbbh9+7bccufOnZfuHxYWhmvXriE2NhYVFRU4dOgQNzH0VSdGqqmpITo6GpGRkUhOTkZ1dTUuXryIb7/9FsnJyc/t29LSgtu3b+PmzZsoLCxEbGwsFi5ciEWLFsHNza3bPitXrsSRI0dQVVWFsrIyZGVlwdLSUq7Nd999h/T0dFy7dg3h4eFoamrCvHnzuo1nZmaGEydO4Ny5cygvL0dYWBj+/PNPbv+AAQMQGxuLL774Avv27UN1dTUKCwvx/fffAwCCgoIwePBg+Pj44MyZM6ipqYFUKkVERAQ3cfdV9FVcExMTnD59GvX19b16r7yq+vp6lJSUyC1NTU3d5tXc3IxTp07hzp07aGlpgbm5OYKCgjBnzhykpaWhpqYG58+fR1xcHLKzs3s8Zk1NDSQSCQoKClBXV4dffvkFlZWVXd4XhPQXKmQIeUnHjh2Dvr6+3DJ+/PiX7m9qaorDhw8jLS0N1tbWSExM5L619Dq/IfLVV19hxYoViIuLg6WlJby8vJCdnQ1TU9Pn9tu9ezf09fUxdOhQTJ8+HVevXsXBgwexffv2HvuoqKhAIpHA2toaEyZMgEAgQGpqqlyb+Ph4xMfHw8bGBmfPnkVmZmaXbzY9tXz5ctjZ2cHT0xOTJk2Cnp4efH195dqsWLECUVFRWLlyJSwtLREQEMDNZRGJRDh9+jSMjIwwffp0WFpaYv78+WhtbX2tOyl9FXft2rWora3F0KFD5Yak+suWLVu4OyNPl+6KEGdnZyxcuBABAQHQ0dHBpk2bADwZIpozZw6ioqJgYWEBX19fFBUVwcjIqMdjikQiXLt2DTNmzIC5uTlCQ0MRHh6OsLCwfjtPQp6lxBhjik6CkH+r9evXY8eOHbhx44aiU3lttbW1MDU1RXFxMUaPHq3odAgh/xI0R4aQN2j79u1wcHCAtrY28vPzsXnz5h7njxBCCHkxKmQIeYMqKyuxbt063Lt3D0ZGRoiKioJEIlF0WoQQwls0tEQIIYQQ3qLJvoQQQgjhLSpkCCGEEMJbVMgQQgghhLeokCGEEEIIb1EhQwghhBDeokKGEEIIIbxFhQwhhBBCeIsKGUIIIYTwFhUyhBBCCOGt/wI0YlAZ8AZMbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "for c, df in mpg.groupby('class'):\n", + " ax.scatter(df['displ'], df['hwy'], label=c)\n", + "ax.legend()\n", + "ax.set_title('Engine Displacement in Liters vs Highway MPG')\n", + "ax.set_xlabel('Engine Displacement in Liters')\n", + "ax.set_ylabel('Highway MPG')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAIACAYAAAA2SJB+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjdklEQVR4nOzdd1xT5xoH8F8SZIYNAiKiAk7QKlXrXlTUqkWtWrUqaqt1VWttHa2to656i3pb622tReveVuteqMW6xT3QihPcgCBDknP/iKSEDEJISIDf93743ObkPee85xDw4X3f8zwiQRAEEBEREZHFEJu7A0RERESkigEaERERkYVhgEZERERkYRigEREREVkYBmhEREREFoYBGhEREZGFYYBGREREZGEYoBERERFZGAZoRERERBaGAZqFEolEmDJlirm7oZcpU6ZAJBKZ7PiRkZGoXLmyyY5flrRq1QqtWrUq1nMmJCRAJBJh6dKlxXre0qAoP1u5+z558sTIvSKi4sAATYulS5dCJBJp/Tp27Ji5u2gS+a/b1tYWFSpUQHh4OP773//ixYsX5u4i5bFjxw6zBvK5n5dTp04Vaj9z99tcRCIRRo4cqfE9Q+9laZf7u+jDDz/U+P6XX36pbJM3GI2MjFT5Xebk5IS6devi+++/R1ZWltpxzp8/j4EDB6JKlSqwtbWFVCrFG2+8gS+++AL//POPya6PSBsrc3fA0k2bNg1VqlRR2x4YGGjS82ZkZMDKynzfntzrfvXqFZKSkhATE4MxY8YgKioKW7duRZ06dZRtv/rqK0yYMMFsfS3LduzYgYULF+od7OzZs8e0HdLA398fGRkZKFeunHJbYftdVvFnS8HW1hYbN27ETz/9BGtra5X3Vq9eDVtbW2RmZqrtZ2Njg19//RUAkJycjI0bN2LcuHE4efIk1qxZo2y3ePFiDBs2DB4eHujbty9q1KiBnJwcXLx4Eb///jvmz5+PjIwMSCQS014oUR4M0ArQoUMHvPnmm8V+Xltb22I/Z175r3vixIk4cOAAOnXqhC5duuDKlSuws7MDAFhZWZk1mCT95f/HrTjkjsSamiAIyMzMVH4uSwP+bCm0b98eW7duxc6dO/Huu+8qtx89ehS3bt1C9+7dsXHjRrX9rKys8MEHHyhfDx8+HI0aNcLatWsRFRWFChUq4OjRoxg2bBiaNm2KP//8E46OjirH+P777zFjxgzTXRyRFpziLKLc9TX/+c9/8MsvvyAgIAA2NjZo0KABTp48qdZ+/fr1qFWrFmxtbREcHIzNmzdrXGOVfw1a7nqSGzduIDIyEi4uLnB2dsbAgQPx8uVLtfOsWLECoaGhsLOzg5ubG95//33cvXu3SNfapk0bTJ48Gbdv38aKFSvU+pbX3r170axZM7i4uEAqlaJ69eqYNGmS8v2YmBiIRCKsXbsWkyZNgre3NxwcHNClSxe9+vmf//wHTZo0gbu7O+zs7BAaGooNGzZobLtixQo0bNgQ9vb2cHV1RYsWLdRGknbu3InmzZvDwcEBjo6OeOedd3Dp0iWVNpGRkZBKpbhz5w46deoEqVQKX19fLFy4EABw4cIFtGnTBg4ODvD398eqVavU+pKcnIwxY8bAz88PNjY2CAwMxJw5cyCXy5Vt9P1MRUZGKs+ddypHl/xr0HK/D+vWrcOMGTNQsWJF2Nraom3btrhx44bOY+kr/xq0gvotl8sxf/581K5dG7a2tvDy8sLQoUPx/PlzleNWrlwZnTp1wu7du/Hmm2/Czs4OP//8M4CCP3+aBAcHo3Xr1mrb5XI5fH198d577ym3rVmzBqGhoXB0dISTkxNCQkKwYMECg+6PLpp+tjIyMvDJJ5/Aw8MDjo6O6NKlC+7fv6913WpycrLO3xndunVD/fr1Vfbp3LkzRCIRtm7dqtx2/PhxiEQi7Ny5EwDw7NkzjBs3DiEhIZBKpXByckKHDh1w7tw55T5paWlwcHDA6NGj1fp17949SCQSzJo1q8D74OvrixYtWqj9TK1cuRIhISEIDg4u8BgAIBaLlZ//hIQEAMDUqVMhEomwcuVKteAMUPyxPH36dI6eUbHjn2YFSElJUVtkKxKJ4O7urrJt1apVePHiBYYOHQqRSITvvvsO3bp1wz///KOc2tm+fTt69eqFkJAQzJo1C8+fP8fgwYPh6+urd3969uyJKlWqYNasWThz5gx+/fVXlC9fHnPmzFG2mTFjBiZPnoyePXviww8/xOPHj/HDDz+gRYsWOHv2LFxcXAy+H/369cOkSZOwZ88efPTRRxrbXLp0CZ06dUKdOnUwbdo02NjY4MaNG4iNjVVrO2PGDIhEIowfPx6PHj3C/PnzERYWhri4OJ0jIQsWLECXLl3Qt29fZGdnY82aNejRowf+/PNPvPPOO8p2U6dOxZQpU9CkSRNMmzYN1tbWOH78OA4cOIB27doBAJYvX44BAwYgPDwcc+bMwcuXL7Fo0SI0a9YMZ8+eVQmeZTIZOnTogBYtWuC7777DypUrMXLkSDg4OODLL79E37590a1bN/zvf/9D//790bhxY+UU+cuXL9GyZUvcv38fQ4cORaVKlXD06FFMnDgRiYmJmD9/vso1FvSZGjp0KB48eIC9e/di+fLl+n4LNZo9ezbEYjHGjRuHlJQUfPfdd+jbty+OHz9epONqUlC/hw4diqVLl2LgwIH45JNPcOvWLfz44484e/YsYmNjVaZKr127ht69e2Po0KH46KOPUL169UJ9/vLq1asXpkyZgqSkJHh7eyu3//XXX3jw4AHef/99AIrgr3fv3mjbtq3y5+7KlSuIjY3VGIjkl5mZqXHhflpaWoH7AooAd926dejXrx/eeustHDp0SOUzn19BvzOaN2+OP/74A6mpqXBycoIgCIiNjYVYLMaRI0fQpUsXAMCRI0cgFovRtGlTAMA///yDLVu2oEePHqhSpQoePnyIn3/+GS1btsTly5dRoUIFSKVSdO3aVTlilTfIWb16NQRBQN++ffW67j59+mD06NFIS0uDVCpFTk4O1q9fj7Fjx2qc3tTm5s2bAAB3d3e8fPkSBw4cQKtWrVCxYkW9j0FULATSKDo6WgCg8cvGxkbZ7tatWwIAwd3dXXj27Jly+x9//CEAELZt26bcFhISIlSsWFF48eKFcltMTIwAQPD391c5PwDhm2++Ub7+5ptvBADCoEGDVNp17dpVcHd3V75OSEgQJBKJMGPGDJV2Fy5cEKysrNS2a7vukydPam3j7Ows1KtXT61vuebNmycAEB4/fqz1GAcPHhQACL6+vkJqaqpy+7p16wQAwoIFC5TbBgwYoHZ/Xr58qfI6OztbCA4OFtq0aaPcFh8fL4jFYqFr166CTCZTaS+XywVBEIQXL14ILi4uwkcffaTyflJSkuDs7KyyfcCAAQIAYebMmcptz58/F+zs7ASRSCSsWbNGuf3q1atq38Pp06cLDg4OwvXr11XONWHCBEEikQh37twRBKFwn6kRI0YIhfkxbtmypdCyZUvl69zvQ82aNYWsrCzl9gULFggAhAsXLug8nj6fl9zriY6OLrDfR44cEQAIK1euVNm+a9cute3+/v4CAGHXrl0qbfX5/Gly7do1AYDwww8/qGwfPny4IJVKlZ+50aNHC05OTkJOTk6hji8IgtbfKXm/8t7L/D9bp0+fFgAIY8aMUTluZGSkwb8zTp48KQAQduzYIQiCIJw/f14AIPTo0UNo1KiRsl2XLl1Ufu4zMzPVfq5u3bol2NjYCNOmTVNu2717twBA2Llzp0rbOnXqqHwWtQEgjBgxQnj27JlgbW0tLF++XBAEQdi+fbsgEomEhIQE5bXm/Z4PGDBAcHBwEB4/fiw8fvxYuHHjhjBz5kxBJBIJderUEQRBEM6dO6fxfgqCIDx9+lS57+PHj1V+PoiKA6c4C7Bw4ULs3btX5St3iD+vXr16wdXVVfm6efPmAKB8+ufBgwe4cOEC+vfvD6lUqmzXsmVLhISE6N2fjz/+WOV18+bN8fTpU6SmpgIANm3aBLlcjp49e+LJkyfKL29vbwQFBeHgwYP6X7wWUqlU59OcuSN0f/zxh8rUnSb9+/dXmVZ477334OPjgx07dujcL+/o2vPnz5GSkoLmzZvjzJkzyu1btmyBXC7H119/DbFY9aOeO220d+9eJCcno3fv3ir3SyKRoFGjRhrvV96nyVxcXFC9enU4ODigZ8+eyu3Vq1eHi4uLytNf69evR/PmzeHq6qpyrrCwMMhkMhw+fFjlPAV9poxp4MCBKuvTTHkuXdavXw9nZ2e8/fbbKvcoNDQUUqlU7ftRpUoVhIeHq2wrzOcvr2rVquGNN97A2rVrldtkMhk2bNiAzp07Kz9zLi4uSE9Px969ew26xnfffVftd8revXvx+eefF7jvrl27ACjWUuU1atQorfsU9DujXr16kEqlys/fkSNHULFiRfTv3x9nzpzBy5cvIQgC/vrrL+XnAlAswM/9uZLJZHj69KlyOjnvz2FYWBgqVKiAlStXKrddvHgR58+fV1kfVhBXV1e0b98eq1evBqAYYW7SpAn8/f217pOeng5PT094enoiMDAQkyZNQuPGjbF582YAUN6DvL+Tc1WtWlW5r6enp8p0L1Fx4BRnARo2bKjXQwKVKlVSeZ37D2vuupnbt28D0Pz0Z2BgoMovNEPP4+TkhPj4eAiCgKCgII37550eMlRaWhrKly+v9f1evXrh119/xYcffogJEyagbdu26NatG9577z21QCl/P0UiEQIDA5XrQ7T5888/8e233yIuLk7lkfm863Vu3rwJsViMWrVqaT1OfHw8AMX6Ok2cnJxUXtva2sLT01Nlm7OzMypWrKi2VsjZ2Vll3VR8fDzOnz+vtn+uR48eqbwu6DNlTMV5Ll3i4+ORkpKi9fOV/x5pesK6MJ8/TftOmjQJ9+/fh6+vL2JiYvDo0SP06tVL2Wb48OFYt24dOnToAF9fX7Rr1w49e/ZE+/bt9brGihUrIiwsTG37vXv3Ctz39u3bEIvFatet66nygn5nSCQSNG7cGEeOHAGgCNCaN2+OZs2aQSaT4dixY/Dy8sKzZ89UAjS5XI4FCxbgp59+wq1btyCTyZTv5V0CIhaL0bdvXyxatAgvX76Evb09Vq5cCVtbW/To0aPAa86rT58+6NevH+7cuYMtW7bgu+++09ne1tYW27ZtA6AIKKtUqaIylZn7x6Gm6eU//vgDr169wrlz5zBu3LhC9ZPIGBigGYm2BaSCIBTreeRyuXIhr6a2mv5SLIx79+4hJSVF5z8IdnZ2OHz4MA4ePIjt27dj165dWLt2Ldq0aYM9e/YUebFt7rqYFi1a4KeffoKPjw/KlSuH6OhojQvzdckdYVm+fLnKuqNc+Z+g09Z3fb7/crkcb7/9Nr744guNbatVq1boYxpLcZ5LF7lcjvLly6uMtuSVP7jVtE6xKJ+/Xr16YeLEiVi/fj3GjBmDdevWwdnZWSX4Kl++POLi4rB7927s3LkTO3fuRHR0NPr3749ly5YZeOWmo8/3tlmzZpgxYwYyMzNx5MgRfPnll3BxcUFwcDCOHDkCLy8vAFAJ0GbOnInJkydj0KBBmD59Otzc3CAWizFmzBi1kcv+/ftj7ty52LJlC3r37o1Vq1ahU6dOcHZ2LtS1dOnSBTY2NhgwYACysrJURq21XbumYDhXYGAgrKyscPHiRbX3WrZsCUD9dwBRceEnr5jkDsNrejLOWE/LAUBAQAAEQUCVKlXU/sE3htxF3fmnlfITi8Vo27Yt2rZti6ioKMycORNffvklDh48qPILM3cEK5cgCLhx44ZKnrX8Nm7cCFtbW+zevRs2NjbK7dHR0SrtAgICIJfLcfnyZbzxxhsajxUQEABA8Y+url/kxhAQEIC0tDSjnseUFRxMSVu/AwICsG/fPjRt2rRI6TL0/fzlV6VKFTRs2BBr167FyJEjsWnTJkRERKh8zgBFupLOnTujc+fOkMvlGD58OH7++WdMnjzZpDkS/f39IZfLcevWLZXR56L+DmnevDmys7OxevVq3L9/XxmItWjRQhmgVatWTRmoAcCGDRvQunVrLFmyROVYycnJ8PDwUNkWHByMevXqYeXKlahYsSLu3LmDH374odD9tLOzQ0REBFasWIEOHTqonaewHBwc0KpVKxw6dEg5akpkKbgGrZhUqFABwcHB+P3331WG0w8dOoQLFy4Y7TzdunWDRCLB1KlT1UY/BEHA06dPDT72gQMHMH36dFSpUkXnk1fPnj1T25YbIOXP4P3777+rrGfbsGEDEhMT0aFDB63Hl0gkEIlEKlMqCQkJ2LJli0q7iIgIiMViTJs2Te0v+tx7Ex4eDicnJ8ycOROvXr1SO9fjx4+19qOwevbsib///hu7d+9Wey85ORk5OTmFPqaDg4Ny/5JEW7979uwJmUyG6dOnq+2Tk5Oj13UW5vOnSa9evXDs2DH89ttvePLkicr0JgC1nyGxWKz8g0Kf4xdF7h9GP/30k8p2Q4KdvBo1aoRy5cphzpw5cHNzQ+3atQEoArdjx47h0KFDKqNngOLnMP/vmPXr1+P+/fsaz9GvXz/s2bMH8+fPh7u7u86fcV3GjRuHb775BpMnTzZo//y+/vpryGQyfPDBBxqnOot7FJkoF0fQCrBz505cvXpVbXuTJk1QtWrVQh1r5syZePfdd9G0aVMMHDgQz58/x48//ojg4GC9H7EvSEBAAL799ltMnDgRCQkJiIiIgKOjI27duoXNmzdjyJAheq2nyL3unJwcPHz4EAcOHMDevXvh7++PrVu36kw8Om3aNBw+fBjvvPMO/P398ejRI/z000+oWLEimjVrptLWzc0NzZo1w8CBA/Hw4UPMnz8fgYGBWlN4AMA777yDqKgotG/fHn369MGjR4+wcOFCBAYG4vz588p2gYGB+PLLLzF9+nQ0b94c3bp1g42NDU6ePIkKFSpg1qxZcHJywqJFi9CvXz/Ur18f77//Pjw9PXHnzh1s374dTZs2xY8//qjHnS/Y559/jq1bt6JTp06IjIxEaGgo0tPTceHCBWzYsAEJCQmFHhEIDQ0FAHzyyScIDw+HRCJRpoMoTr/99ptyAXte2tJOaOt3y5YtMXToUMyaNQtxcXFo164dypUrh/j4eKxfvx4LFixQyUemSWE+f5r07NkT48aNw7hx4+Dm5qY24vbhhx/i2bNnaNOmDSpWrIjbt2/jhx9+wBtvvIGaNWsWePyiCA0NRffu3TF//nw8ffpUmWbj+vXrAAwfUbW3t0doaCiOHTumzIEGKEbQ0tPTkZ6erhagderUCdOmTcPAgQPRpEkTXLhwAStXrtT6e7FPnz744osvsHnzZgwbNszg9bB169ZF3bp1DdpXk+bNm+PHH3/EqFGjEBQUpKwkkJ2djevXr2PlypWwtrbWuASCyJQYoBXg66+/1rg9Ojq60AFa586dsXr1akyZMgUTJkxAUFAQli5dimXLlqklRS2KCRMmoFq1apg3bx6mTp0KAPDz80O7du2UOY0Kknvd1tbWcHNzQ0hICObPn4+BAwdqTOaYV5cuXZCQkKAcgfDw8EDLli0xdepUtTUnkyZNwvnz5zFr1iy8ePECbdu2xU8//QR7e3utx2/Tpg2WLFmC2bNnY8yYMahSpQrmzJmDhIQElQAN+Ldk1Q8//IAvv/wS9vb2qFOnDvr166ds06dPH1SoUAGzZ8/G3LlzkZWVBV9fXzRv3hwDBw7U637pw97eHocOHcLMmTOxfv16/P7773ByckK1atU03ht9dOvWDaNGjcKaNWuwYsUKCIJglgBt0aJFGrdHRkZq3K6r3//73/8QGhqKn3/+GZMmTYKVlRUqV66MDz74QJmDS5fCfP40qVixIpo0aYLY2Fh8+OGHaoHEBx98gF9++QU//fQTkpOT4e3trcyhVtBDCMbw+++/w9vbG6tXr8bmzZsRFhaGtWvXonr16kWq2JA7WpY3iPX29kZgYCBu3LihFqBNmjQJ6enpWLVqFdauXYv69etj+/btWktTeXl5oV27dtixY4fKz58lGDZsGBo3box58+Zh/fr1SEpKQrly5RAQEIABAwZg2LBhyuUQRMVFJHD81uzeeOMNeHp6GvzYfkkUExOD1q1bY/369QWOiBCRbnFxcahXrx5WrFihd+JXc+jatSsuXLhg1HW3RKUV16AVo1evXqmtM4qJicG5c+dUyu8QEWmTkZGhtm3+/PkQi8Vo0aKFGXqkn8TERGzfvt3iRs+ILBWnOIvR/fv3ERYWhg8++AAVKlTA1atX8b///Q/e3t5qySSJiDT57rvvcPr0abRu3RpWVlbKVB9DhgyBn5+fubun5tatW4iNjcWvv/6qLFFGRAVjgFaMXF1dERoail9//RWPHz+Gg4MD3nnnHcyePVutticRkSZNmjTB3r17MX36dKSlpaFSpUqYMmUKvvzyS3N3TaNDhw5h4MCBqFSpEpYtW8bF9kR64ho0IiIiIgvDNWhEREREFoYBGhEREZGFKfUBmiAISE1NZTZoIiIiKjFKfYD24sULODs7q5QTIiIiIrJkpT5AIyIiIippGKARERERWRiLCdBmz54NkUiEMWPGKLe1atUKIpFI5YsJXYmIiKi0s4hEtSdPnsTPP/+MOnXqqL330UcfYdq0acrXuopoExEREZUGZh9BS0tLQ9++fbF48WK4urqqvW9vbw9vb2/ll5OTkxl6SURERFR8zB6gjRgxAu+88w7CwsI0vr9y5Up4eHggODgYEydOxMuXL3UeLysrC6mpqSpfRERERCWJWac416xZgzNnzuDkyZMa3+/Tpw/8/f1RoUIFnD9/HuPHj8e1a9ewadMmrcecNWsWpk6daqouExEREZmc2Wpx3r17F2+++Sb27t2rXHvWqlUrvPHGG5g/f77GfQ4cOIC2bdvixo0bCAgI0NgmKysLWVlZytepqanw8/NDSkoKp0eJiIioRDBbgLZlyxZ07doVEolEuU0mk0EkEkEsFiMrK0vlPQBIT0+HVCrFrl27EB4ertd5UlNT4ezszACNiIiISgyzTXG2bdsWFy5cUNk2cOBA1KhRA+PHj1cLzgAgLi4OAODj41McXSQiIiIyC7MFaI6OjggODlbZ5uDgAHd3dwQHB+PmzZtYtWoVOnbsCHd3d5w/fx6ffvopWrRooTEdBxEREVFpYRF50DSxtrbGvn37MH/+fKSnp8PPzw/du3fHV199Ze6uEREREZmU2dagFReuQSMiIqKSxmJH0MoCeU427sesR9rj+5B6+sK3VQ+IrazN3S0iIiIyM46gmUn8xgU4sGUn0rL/jZGl1jloE9EBQd1Hm7FnREREZG5mryRQFsVvXICt6/YgLVv1SdW0bAm2rtuD+I0LzNQzIiIisgQM0IqZPCcbB7bsfP1KlO9dxeuDW3ZCnpNdrP0iIiIiy8EArZjdj1n/elozf3CWS4QX2Va4H7O+OLtFREREFoQBWjFLe3zfqO2IiIio9GGAVsyknr5GbUdERESlDwO0Yubbqgek1jkAtD08K8DROge+rXoUZ7eIiIjIgjBAK2ZiK2u0iejw+lX+IE3xunVEB+ZDIyIiKsMYoJlBUPfR6NKzHaTWMpXtjtYydOnZjnnQiIiIyjgmqjUjVhIgIiIiTRigEREREVkYTnESERERWRgGaEREREQWhgEaERERkYVhgEZERERkYRigEREREVkYBmhEREREFoYBGhEREZGFYYBGREREZGEYoBERERFZGAZoRERERBaGARoRERGRhWGARkRERGRhGKARERERWRgGaEREREQWhgEaERERkYVhgEZERERkYRigEREREVkYBmhEREREFoYBGhEREZGFYYBGREREZGEYoBERERFZGAZoRERERBaGARoRERGRhWGARkRERGRhGKARERERWRgrc3egLJPLZbh/5RLSkp9D6uIK35q1IRZLzN0tIiIiMjMGaGYSf/woDiz9BWnPnii3Sd080CZyCIIaNTFjz4iIiMjcOMVpBvHHj2Jr1EyV4AwA0p49wdaomYg/ftRMPSMiIiJLwACtmMnlMhxY+ovONgeX/QK5XFZMPSIiIiJLwwCtmN2/cklt5Cy/F0+f4P6VS8XUIyIiIrI0DNCKWVryc6O2IyIiotKHAVoxk7q4GrUdERERlT4M0IqZb83akLp56Gzj6O4B35q1i6lHREREZGkYoBUzsViCNpFDdLZpPWAI86ERERGVYQzQzCCoURN0GTtJbSTN0d0DXcZOYh40IiKiMk4kCIJg7k6YUmpqKpydnZGSkgInJydzd0cFKwkQERGRJqwkYEZisQR+teuYuxtERERkYTjFSURERGRhLCZAmz17NkQiEcaMGaPclpmZiREjRsDd3R1SqRTdu3fHw4cPzddJIiIiomJgEQHayZMn8fPPP6NOHdXpvk8//RTbtm3D+vXrcejQITx48ADdunUzUy+JiIiIiofZA7S0tDT07dsXixcvhqvrv8lZU1JSsGTJEkRFRaFNmzYIDQ1FdHQ0jh49imPHjpmxx0RERESmZfYAbcSIEXjnnXcQFhamsv306dN49eqVyvYaNWqgUqVK+Pvvv7UeLysrC6mpqSpfRERERCWJWZ/iXLNmDc6cOYOTJ0+qvZeUlARra2u4uLiobPfy8kJSUpLWY86aNQtTp041dleJiIiIio3ZRtDu3r2L0aNHY+XKlbC1tTXacSdOnIiUlBTl1927d412bCIiIqLiYLYA7fTp03j06BHq168PKysrWFlZ4dChQ/jvf/8LKysreHl5ITs7G8nJySr7PXz4EN7e3lqPa2NjAycnJ5UvIiIiopLEbFOcbdu2xYULF1S2DRw4EDVq1MD48ePh5+eHcuXKYf/+/ejevTsA4Nq1a7hz5w4aN25sji4TERERFQuzBWiOjo4IDg5W2ebg4AB3d3fl9sGDB2Ps2LFwc3ODk5MTRo0ahcaNG+Ott94yR5eJiIiIioVFl3qaN28exGIxunfvjqysLISHh+Onn34yd7eIiIiITIrF0omIiIgsjNnzoBERERGRKgZoRERERBaGARoRERGRhWGARkRERGRhGKARERERWRgGaEREREQWhgEaERERkYVhgEZERERkYRigEREREVkYBmhEREREFoYBGhEREZGFYYBGREREZGEYoBERERFZGAZoRERERBaGARoRERGRhWGARkRERGRhGKARERERWRgGaEREREQWhgEaERERkYVhgEZERERkYRigEREREVkYBmhEREREFoYBGhEREZGFYYBGREREZGGszN2BUk8uA24fBdIeAlIvwL8JIJaYu1dERERkwRigmdLlrcCu8UDqg3+3OVUA2s8BanUxX7+IiIjIonGK01QubwXW9VcNzgAgNVGx/fJW8/SLiIiILB4DNFOQyxQjZxA0vPl6264JinZERERE+TBAM4XbR9VHzlQIQOp9RTsiIiKifBigmULaQ+O2IyIiojKFAZopSL2M246IiIjKFAZopuDfRPG0JkRaGogAJ19FOyIiIqJ8GKCZgliiSKUBQD1Ie/26/WzmQyMiIiKNGKCZSq0uQM/fAScf1e1OFRTbmQeNiIiItBAJgqApF0SpkZqaCmdnZ6SkpMDJyan4O8BKAkRERFRIrCRgamIJUKW5uXtBREREJQgDNBPLycnGud07kPwwCS5e3qgb3hFWVtbm7hYRERFZME5xmtChFb/h9J9bIAhy5TaRSIzQThFo+cGgYu0LERERlRwcQTORQyt+w6ltm9S2C4JcuZ1BGhEREWnCpzhNICcnG6f/3KKzzentW5CTk108HSIiIqIShQGaCZzbvUNlWlMTQS7Hud07iqlHREREVJIwQDOB5IdJRm1HREREZQsDNBNw8fI2ajsiIiIqWxigmUDd8I4QiXTfWpFYjLrhHYupR0RERFSSMEAzASsra4R2itDZJvSdCOZDIyIiIo2YZsNEclNoqOVBE4sR+g7zoBEREZF2TFRrYqwkQERERIXFAI2IiIjIwnANGhEREZGFMWuAtmjRItSpUwdOTk5wcnJC48aNsXPnTuX7rVq1gkgkUvn6+OOPzdhjA+RkA38vBHZ8rvh/Vg8gIiKiAph1inPbtm2QSCQICgqCIAhYtmwZ5s6di7Nnz6J27dpo1aoVqlWrhmnTpin3sbe3L9RUpVmnOPdMBv7+EchbVUAkBhqPBNpNL96+EBERUYlh1qc4O3furPJ6xowZWLRoEY4dO4batWsDUARk3t4lMKHrnsnA0f+qbxfk/25nkEZEREQaWMwaNJlMhjVr1iA9PR2NGzdWbl+5ciU8PDwQHByMiRMn4uXLl2bspZ5yshUjZ7pwupOIiIi0MHsetAsXLqBx48bIzMyEVCrF5s2bUatWLQBAnz594O/vjwoVKuD8+fMYP348rl27hk2bNmk9XlZWFrKyspSvU1NTTX4Nak4uVp3W1ESQKdo1HlE8fSIiIqISw+wBWvXq1REXF4eUlBRs2LABAwYMwKFDh1CrVi0MGTJE2S4kJAQ+Pj5o27Ytbt68iYCAAI3HmzVrFqZOnVpc3dfseYJx2xEREVGZYvYpTmtrawQGBiI0NBSzZs1C3bp1sWDBAo1tGzVqBAC4ceOG1uNNnDgRKSkpyq+7d++apN86uVY2bjsiIiIqU8weoOUnl8tVpijziouLAwD4+Pho3d/GxkaZtiP3q9g1+EjxtKYuIomiHREREVE+Zp3inDhxIjp06IBKlSrhxYsXWLVqFWJiYrB7927cvHkTq1atQseOHeHu7o7z58/j008/RYsWLVCnTh1zdrtgVtaKVBqanuLM1XiEoh0RERFRPmYN0B49eoT+/fsjMTERzs7OqFOnDnbv3o23334bd+/exb59+zB//nykp6fDz88P3bt3x1dffWXOLusvN4WGWh40iSI4Y4oNIiIi0oK1OE0tJ1vxtObzBMWaswYfceSMiIiIdDL7U5ylnpU1U2kQERFRoTBAMzG5XIb7Vy4hLfk5pC6u8K1ZG2KxxNzdIiIiIgvGAM2E4o8fxYGlvyDt2RPlNqmbB9pEDkFQoyZm7BkRERFZMotLs1FaxB8/iq1RM1WCMwBIe/YEW6NmIv74UTP1jIiIiCwdAzQTkMtlOLD0F51tDi77BXK5rJh6RERERCUJAzQTuH/lktrIWX4vnj7B/SuXiqlHREREVJIwQDOBtOTnRm1HREREZQsDNBOQurgatR0RERGVLQzQTMC3Zm1I3Tx0tnF094BvzdrF1CMiIiIqSRigmYBYLEGbyCE627QeMIT50IiIqNRISEiASCRCXFycubtSKjBAM5GgRk3QZewktZE0R3cPdBk7iXnQiIiISCsmqjWhoEZNENCgESsJEBERUaFwBM3ExGIJ/GrXQc2mLeFXuw6DMyIiKtHkcjm+++47BAYGwsbGBpUqVcKMGTPU2slkMgwePBhVqlSBnZ0dqlevjgULFqi0iYmJQcOGDeHg4AAXFxc0bdoUt2/fBgCcO3cOrVu3hqOjI5ycnBAaGopTp04VyzVaAo6g6cngmppyGXD7KJD2EJB6Af5NAAZpRERUQk2cOBGLFy/GvHnz0KxZMyQmJuLq1atq7eRyOSpWrIj169fD3d0dR48exZAhQ+Dj44OePXsiJycHERER+Oijj7B69WpkZ2fjxIkTEIlEAIC+ffuiXr16WLRoESQSCeLi4lCuXLnivlyzEQmCIJi7E6aUmpoKZ2dnpKSkwMnJyaBjGFxT8/JWYNd4IPXBv9ucKgDt5wC1uhjUFyIiInN58eIFPD098eOPP+LDDz9UeS8hIQFVqlTB2bNn8cYbb2jcf+TIkUhKSsKGDRvw7NkzuLu7IyYmBi1btlRr6+TkhB9++AEDBgwwxaVYPE5xFsDgmpqXtwLr+qsGZwCQmqjYfnmriXpMRERkGleuXEFWVhbatm2rV/uFCxciNDQUnp6ekEql+OWXX3Dnzh0AgJubGyIjIxEeHo7OnTtjwYIFSExMVO47duxYfPjhhwgLC8Ps2bNx8+ZNk1yTpWKApoPBNTXlMsXIGTQNTr7etmuCoh0REVEJYWdnp3fbNWvWYNy4cRg8eDD27NmDuLg4DBw4ENnZ2co20dHR+Pvvv9GkSROsXbsW1apVw7FjxwAAU6ZMwaVLl/DOO+/gwIEDqFWrFjZv3mz0a7JUDNB0MLim5u2j6iNnKgQg9b6iHRERUQkRFBQEOzs77N+/v8C2sbGxaNKkCYYPH4569eohMDBQ4yhYvXr1MHHiRBw9ehTBwcFYtWqV8r1q1arh008/xZ49e9CtWzdER0cb9XosGQM0HQyuqZn2UM8T6NmOiIjIAtja2mL8+PH44osv8Pvvv+PmzZs4duwYlixZotY2KCgIp06dwu7du3H9+nVMnjwZJ0+eVL5/69YtTJw4EX///Tdu376NPXv2ID4+HjVr1kRGRgZGjhyJmJgY3L59G7GxsTh58iRq1qxZnJdrVnyKUweDa2pKvfQ8gZ7tiIiILMTkyZNhZWWFr7/+Gg8ePICPjw8+/vhjtXZDhw7F2bNn0atXL4hEIvTu3RvDhw/Hzp07AQD29va4evUqli1bhqdPn8LHxwcjRozA0KFDkZOTg6dPn6J///54+PAhPDw80K1bN0ydOrW4L9ds+BSnDnK5DItHDNY5zeno7oEPf1yimnJDLgPmByseCNC4Dk2keJpzzAWm3CAiIiI1nOLUweCammKJIpUGAECUb4/Xr9vPZnBGREREGjFAK4DBNTVrdQF6/g44+ahud6qg2M48aERERKQFpzj1xEoCREREVFwYoBERERFZGD7Fqafs7AwcXh6N5KREuHj7oEW/gbC21j9hX0kmk8tw5tEZPH75GJ72nqhfvj4kHAUkIiIyGY6g6WHL3Om4eeq42vaANxsh4vPJRe2iRdt3ex9mn5iNhy//zdnmZe+FCQ0nIMw/zIw9IyIiKr34kEABtAVnAHDz1HFsmTu9mHtUfPbd3oexMWNVgjMAePTyEcbGjMW+2/vM1DMiIqLSjQGaDtnZGVqDs1w3Tx1HdnZGMfWo+MjkMsw+MRuChjxuudvmnJgDGeuJEhERGR0DNB0OL9ev5pe+7UqSM4/OqI2c5SVAQNLLJJx5dKYYe0VERFQ2MEDTITkp0ajtSpLHLx8btR0RERHpjwGaDi7ePgU3KkS7ksTT3tOo7YiIqGSZNWsWGjRoAEdHR5QvXx4RERG4du1asfahVatWGDNmTLGe01IwQNOhRb+BRm1XktQvXx9e9l4QqZWqUhBBBG97b9QvX7+Ye0ZEVDbJ5AL+vvkUf8Tdx983n0ImN20ShkOHDmHEiBE4duwY9u7di1evXqFdu3ZIT0836XlNITs729xdKDS9AzS5XI4LFy4oX//vf//Df//7X+XXwoULIZfLTdJJc7G2tkPAm410tgl4s1GpzIcmEUswoeEEAFAL0nJfj284nvnQiIiKwa6LiWg25wB6Lz6G0Wvi0HvxMTSbcwC7Lppuic2uXbsQGRmJ2rVro27duli6dCnu3LmD06dPAwAEQcCUKVNQqVIl2NjYoEKFCvjkk0+U+2dlZWHcuHHw9fWFg4MDGjVqhJiYGOX7T58+Re/eveHr6wt7e3uEhIRg9erVyvcjIyNx6NAhLFiwACKRCCKRCAkJCQCAixcvokOHDpBKpfDy8kK/fv3w5MkT5b6tWrXCyJEjMWbMGHh4eCA8PNxk98lU9A7Q1qxZgxEjRihff/7555g7dy7mzZuHefPmYcKECYiOLn2L5SM+n6w1SCvtedDC/MMQ1SoK5e3Lq2z3svdCVKso5kEjIioGuy4mYtiKM0hMyVTZnpSSiWErzpg0SMsrJSUFAODm5gYA2LhxI+bNm4eff/4Z8fHx2LJlC0JCQpTtR44cib///htr1qzB+fPn0aNHD7Rv3x7x8fEAgMzMTISGhmL79u24ePEihgwZgn79+uHEiRMAgAULFqBx48b46KOPkJiYiMTERPj5+SE5ORlt2rRBvXr1cOrUKezatQsPHz5Ez549Vfq7bNkyWFtbIzY2Fv/73/+K4xYZld6Jat9++218+OGH6NWrFwDA0dER586dQ9WqVQEoRtTWrl2LgwcPmq63BjBWqSdWEmAlASKi4iaTC2g254BacJZLBMDb2RZ/jW8DiVjzkhRjkMvl6NKlC5KTk/HXX38BAKKiovDzzz/j4sWLKFeunEr7O3fuoGrVqrhz5w4qVKig3B4WFoaGDRti5syZGs/TqVMn1KhRA//5z38AKEbC3njjDcyfP1/Z5ttvv8WRI0ewe/du5bZ79+7Bz88P165dQ7Vq1dCqVSukpqbizJmSm2lA71JPV69exZtvvqn1/ZYtW2LSpElG6ZQlsra2Q9jg4ebuhllIxBI08G5g7m4QEZU5J2490xqcAYAAIDElEyduPUPjAHeT9WPEiBG4ePGiMjgDgB49emD+/PmoWrUq2rdvj44dO6Jz586wsrLChQsXIJPJUK1aNZXjZGVlwd1d0U+ZTIaZM2di3bp1uH//PrKzs5GVlQV7e3udfTl37hwOHjwIqVSq9t7NmzeV5wwNDS3qZZuV3gHa48eq6RT++ecf5U0GgHLlypXIhYMWSy4Dbh8F0h4CUi/AvwlgwlGrjJcpiNo9BLczkuBv542x4b/Azt4ZAEfQiIjM5dEL7cGZIe0MMXLkSPz55584fPgwKlasqNyeO2K1b98+7N27F8OHD8fcuXNx6NAhpKWlQSKR4PTp05BIVP+9yA2s5s6diwULFmD+/PkICQmBg4MDxowZU+CC/rS0NHTu3Blz5sxRe8/H59+sCg4ODkW5bLPTO0Dz8vLCtWvXEBAQAADw9FRNr3DlyhV4e3sbt3dl1eWtwK7xQOqDf7c5VQDazwFqdTH66T5Z/TYOZiUCIsXw+N+vnmHNuqZobeODLk3GsxYnEZGZlHe0NWq7whAEAaNGjcLmzZsRExODKlWqqLWxs7ND586d0blzZ4wYMQI1atTAhQsXUK9ePchkMjx69AjNmzfXePzY2Fi8++67+OCDDwAoplGvX7+OWrVqKdtYW1tDJlOtWFO/fn1s3LgRlStXhpWV3mFMiaP3QwJt27bFjBkzNL4nCAJmzZqFtm3bGq1jZdblrcC6/qrBGQCkJiq2X95q1NMpgzMNDmYl4tOYT1mLk4jITBpWcYOPs62WhEeKNWg+zrZoWMXN6OceMWIEVqxYgVWrVsHR0RFJSUlISkpCRoaivOHSpUuxZMkSXLx4Ef/88w9WrFgBOzs7+Pv7o1q1aujbty/69++PTZs24datWzhx4gRmzZqF7du3AwCCgoKwd+9eHD16FFeuXMHQoUPx8KHqvzeVK1fG8ePHkZCQgCdPnkAul2PEiBF49uwZevfujZMnT+LmzZvYvXs3Bg4cqBbMlWR6B2hffvklLl68iEaNGmH9+vU4d+4czp07h3Xr1qFRo0a4dOlSqV6DVizkMsXImYb6l8ptuyYo2hlBxsuUf4MzUb4f/9zXGp4hYS1OIqLiIRGL8E1nxYhS/iAt9/U3nWuZ5AGBRYsWISUlBa1atYKPj4/ya+3atQAAFxcXLF68GE2bNkWdOnWwb98+bNu2Tbn8KTo6Gv3798dnn32G6tWrIyIiAidPnkSlSpUAAF999RXq16+P8PBwtGrVCt7e3oiIiFDpw7hx4yCRSFCrVi14enoqHzqIjY2FTCZDu3btEBISgjFjxsDFxQVicelJ76r3U5wAcOLECURGRuLq1asQvf4HXBAE1KhRA9HR0WjUSHfOMHMw1lOcxeLWEWBZp4LbDfgTqKJ5yLgwZmzuhTWpl4t0jN/Cf+MDBEREJrbrYiKmbrus8sCAj7MtvulcC+2DS181GyrEGjQAaNiwIS5fvoy4uDhcv34dgGKIsl69eibpXJmTpr04uUHtCnA7I6nIx2AtTiIi02sf7IO3a3njxK1nePQiE+UdFdOapkytQeZVqAAtNTUVx48fR3Z2Nlq3bq32oAAVkdTLuO0K4G/njb9fPSvSMViLk4ioeEjEIpOm0iDLovdkbVxcHGrUqIHw8HB07twZgYGBKkniyAj8myie1tS1HNTJV9HOCMaG/6JYY6ZtllvHe6zFSUREZDp6B2jjx49HlSpVEBsbi9OnT6Nt27YYOXKkKftW9oglilQaALQuB20/22j50OzsndHa5vXahfyBWO5rkYi1OImIiIqZ3g8JeHh4YM+ePahfXzFikpycDDc3NyQnJ1v04vsS9ZBALo150HwVwVkx5EEDAAiC1jxo3vbeGN9wPPOgERERmYjeAZpYLEZSUhLKl/+3cLajoyPOnz+vMXmdpSiRARrASgJERERlWKEeErh8+TKSkv598k8QBFy5cgUvXrxQbqtTp47xeleWiSVGSaWhLzt7Z3zZda3G91iLk4iIqHgVagRNJBJBU/Pc7SKRyOKy+Jp9BM3QkbBiHkHLzsnG2utrcTf1Lvyc/NCrWi9YW1mb7HxERESknd4B2u3bt/U6oL+/v94nX7RoERYtWoSEhAQAQO3atfH111+jQ4cOAIDMzEx89tlnWLNmDbKyshAeHo6ffvoJXl76p5kwa4BmaE3NYq7FGXUqCssuL4NckCu3iUViDKg1AGPfHGv08xEREZFuhaokYGzbtm2DRCJBUFAQBEHAsmXLMHfuXJw9exa1a9fGsGHDsH37dixduhTOzs4YOXIkxGIxYmNj9T6H2QK03JqaamWbXi/E7/m75mDL0P0MFHUqCtGXorW+P7D2QAZpRERExUzvAO3OnTt6HTC3xpah3NzcMHfuXLz33nvw9PTEqlWr8N577wEArl69ipo1a+Lvv//GW2+9pdfxzBKgyWXA/GD1gudKIsWI2JgLqtOWhu5noOycbDRY1UBl5Cw/sUiMk31OcrqTiIhKDZFIhM2bN6vV/rQkej8kkPdJzdyYTpQnLUNR16DJZDKsX78e6enpaNy4MU6fPo1Xr14hLOzfVA41atRApUqVdAZoWVlZyMrKUr5OTU01qD9FcvuojiALAAQg9b6iXd4HAQzdz0Brr6/VGZwBgFyQY+31tehXq1+Rz0dEREVQzGuTybz0TlQrEong5+eHyZMn4+TJkzh79izOnDmj/Mp9XVgXLlyAVCqFjY0NPv74Y2zevBm1atVCUlISrK2t4eLiotLey8tL5UnS/GbNmgVnZ2fll5+fX6H7VGSG1tQs5lqcd1PvGrUdERGZyOWtihmWZZ2AjYMV/z8/WLHdhORyOb777jsEBgbCxsYGlSpVwowZMwAo/v1u06YN7Ozs4O7ujiFDhiAtLU25b2RkJCIiIjBz5kx4eXnBxcUF06ZNQ05ODj7//HO4ubmhYsWKiI7+d5lNQkICRCIR1qxZgyZNmsDW1hbBwcE4dOiQso1MJsPgwYNRpUoV2NnZoXr16liwYIFa33/77TfUrl0bNjY28PHxUSbXr1y5MgCga9euEIlEyteWRu8A7d69exg2bBjWrFmDd955B8uXL4e1tTXq1q2r8lVY1atXR1xcHI4fP45hw4ZhwIABuHz5cqGPk2vixIlISUlRft29a4bgwtCamsVci9PPSb/gVd92RERkArlrk/PPsKQmKrabMEibOHEiZs+ejcmTJ+Py5ctYtWoVvLy8kJ6ejvDwcLi6uuLkyZNYv3499u3bp1Zh6MCBA3jw4AEOHz6MqKgofPPNN+jUqRNcXV1x/PhxfPzxxxg6dCju3bunst/nn3+Ozz77DGfPnkXjxo3RuXNnPH36FIAiaKxYsSLWr1+Py5cv4+uvv8akSZOwbt065f6LFi3CiBEjMGTIEFy4cAFbt25FYGAgAODkyZMAgOjoaCQmJipfWxqDHhL466+/EB0djfXr16NWrVoYPHgwBg8eDLFY73hPq7CwMAQEBKBXr15o27Ytnj9/rjKK5u/vjzFjxuDTTz/V63jmXYOWCPXF/kDBa9AKuZ+BuAaNiMjCFfPa5LxevHgBT09P/Pjjj/jwww9V3lu8eDHGjx+Pu3fvwsHBAQCwY8cOdO7cGQ8ePICXlxciIyMRExODf/75Rxkf1KhRA+XLl8fhw4cBKEbDnJ2d8euvv+L9999HQkICqlSpgtmzZ2P8+PEAgJycHFSpUgWjRo3CF198obGvI0eORFJSEjZs2AAA8PX1xcCBA/Htt99qbF8S1qAZFFE1a9YMS5YsQXx8POzt7fHxxx8jOTnZKB2Sy+XIyspCaGgoypUrh/379yvfu3btGu7cuYPGjRsb5VwmY2hNzWKuxWltZY0BtQbobDOg1gAGZ0RE5lKYtclGduXKFWRlZaFt27Ya36tbt64yOAOApk2bQi6X49q1a8pttWvXVhm88fLyQkhIiPK1RCKBu7s7Hj16pHL8vP/OW1lZ4c0338SVK1eU2xYuXIjQ0FB4enpCKpXil19+UT7M+OjRIzx48EBjv0sSgwK0o0eP4sMPP0S1atWQlpaGhQsXqq0V08fEiRNx+PBhJCQk4MKFC5g4cSJiYmLQt29fODs7Y/DgwRg7diwOHjyI06dPY+DAgWjcuLHeT3CaVa0uipQYTj6q250q6E6VYeh+Bhr75lgMrD0QYpHqR0EsEjPFBhGRuRXz2uS87OzsinyMcuXKqbwWiUQat8nluh9Yy2vNmjUYN24cBg8ejD179iAuLg4DBw5Edna20fptCfR+ijMxMRG///47oqOj8fz5c/Tt2xexsbEIDg42+OSPHj1C//79kZiYCGdnZ9SpUwe7d+/G22+/DQCYN28exGIxunfvrpKotsSo1QWo8U7hn7oxdD8DjX1zLEa+MZKVBIiILE0xr03OKygoCHZ2dti/f7/aFGfNmjWxdOlSpKenK0fRYmNjIRaLUb169SKf+9ixY2jRogUAxRTn6dOnlevbYmNj0aRJEwwfPlzZ/ubNm8r/dnR0ROXKlbF//360bt1a4/HLlStncZWP8tM7QKtUqRJ8fX0xYMAAdOnSBeXKlYNcLsf58+dV2hWmFueSJUt0vm9ra4uFCxdi4cKFeh/T4hhaU7OYa3FaW1kzlQYRkaXxb6KYQSlobbJ/E6Of2tbWFuPHj8cXX3wBa2trNG3aFI8fP8alS5fQt29ffPPNNxgwYACmTJmCx48fY9SoUejXr1+hqv1os3DhQgQFBaFmzZqYN28enj9/jkGDBgFQBI6///47du/ejSpVqmD58uU4efKkSjqwKVOm4OOPP0b58uXRoUMHvHjxArGxsRg1ahQAKAO4pk2bwsbGBq6urkXus7HpHaDJZDLcuXMH06dPVy66y/98gSXW4jQWuVyG+1cuIS35OaQurvCtWRtiPUa0sjPTsHb/WNxNuwc/aUX0ahsFa1tpgftlPL2Pzd9+gJR0Ac4OInT9agXs3H0L3E+Wk40zF5bjceodeDpVQv2QfpDoMxKmI7+OPDsD97fMRdqje5CWrwjfiM8hti4dQ8hFIZPLcObRGTx++Rie9p6oX74+JMxJRETGlLs2eV1/KNYi5/131/hrk/ObPHkyrKys8PXXX+PBgwfw8fHBxx9/DHt7e+zevRujR49GgwYNYG9vj+7duyMqKsoo5509ezZmz56NuLg4BAYGYuvWrfDw8AAADB06FGfPnkWvXr0gEonQu3dvDB8+HDt37lTuP2DAAGRmZmLevHkYN24cPDw8lEnvAeD777/H2LFjsXjxYvj6+ipLTloSs9biLA7GeIoz/vhRHFj6C9KePVFuk7p5oE3kEAQ10v5XS9T6rliWHg95noS+YkHAAIcgjO2xWet+i4e1RMozKUR5HhQQIMDZLQ0fLTqkdb99f83C7Osr8VDy735eMgETqvVFWLOJ2i9QR+3P+L/24sChq0jLsVG+JbXKQpuWNRA05Aftxyzl9t3eh9knZuPhy3/XfXjZe2FCwwkI8w/TsScRkQE0/p72VQRnJqjRbC65T3GePXsWb7zxhrm7Y1ZmrcVZHIoaoMUfP4qtUTO1vt9l7CSNQVrU+q6ITo9XvMgToOH17R6oJUjLDc4AqAVoALQGafv+moWxN1YqWuU5n+j1+aICtQRpOmp/xqe6Yev9msrXeS4CANClbdUyGaTtu70PY2PGKr8nuXK/X1GtohikEZHxlYFKAgzQ/lX0xGWlmFwuw4Glv+hsc3DZL5DLVad1szPTsExTcJbn9bL0eGRnpqm8lfH0vsbgLO/rlGdSZDy9r/KeLCcbs6+rB2cAILx+Pef6SshysvNdoEzxF5mGdQ1yQcCBhwHKs+e7CADAwUNXIc/OUNu3NJPJZZh9YrZacAb8G0TPOTEHMnnpnOonIjPKXZsc8p7i/0tZcEaqGKDpcP/KJZVpTU1ePH2C+1cuqWxbu3+sYlozf3CWSySCXCTC2v2qKSw2f/sBRK//p3G31//b/O0HKtvPXFiumNbUcj5BJEKSRIQzF5arvqEjv879l86vpzW1XANEeJFjg/tb5mp5v3Q68+iMyrRmfgIEJL1MwplHhS97RkRU1lWuXBmCIJT50TOAAZpOacnPDWp3N+2elpaq8rdLSddvtjl/u8epd/TaT62djrw5aTn6pdhIe6TftZYWj18+Nmo7IiIiTRig6SB10e+x2/zt/KQV9dovfztnB22jVaryt/N0qqTXfmrtdOTNkVpla31PpV15/a61tPC09zRqOyIiIk0KHaB98803ej/RWdL51qwNqZuHzjaO7h7wrVlbZVuvtlEQC4LygQA1ggCxIKBXW9XHkbt+tQLC6/9p3O31/7p+tUJle/2QfvCSCcoHAvITCQK8ZQLqh+TLc5abX0fDNKavfQqkVlnQnHdH0RtHqyz4Rnyu5f3SqX75+vCy99I5De1t74365esXc8+IiKg0KXSA9scffyAgIABt27bFqlWrkJWVZYp+WQSxWII2kUN0tmk9YIhaPjRrWykGOAQpXuQPml6/HuAQpJYPzc7dF85uigcH8gdpeZ/izJ8PTWJljQnV+gKAWpCW+3p8tb7q+dB01P4Ui0Ro45WbmTl/kKZ43bpljTKXD00ilmBCwwkAtD/IMb7heOZDIyKiIil0gBYXF4eTJ0+idu3aGD16NLy9vTFs2DCcPHnSFP0zu6BGTdBl7CS1kTRHdw+tKTYAYGyPzRjoEKR2g8XQnmIDAD5adEgZpOWnKw9aWLOJiArsi/L5ypl5yXWk2AB01v4M+nA+urStqjbd6WiVXWZTbABAmH8YolpFobx9eZXtXvZeTLFBRERGUaQ8aK9evcK2bdsQHR2N3bt3o0aNGhg8eDAiIyPh7OxszH4azBiJagFWEmAlAXWsJEBERKZSpAAtOzsbmzdvxm+//YYDBw6gSZMmePDgAR4+fIjFixejV69exuyrQYwVoBEREZF2MTExaN26NZ4/fw4XFxeNbZYuXYoxY8YgOTm5wOMVpm1ppHctzrxOnz6N6OhorF69GjY2Nujfvz8WLlyIwMBAAMAPP/yATz75xCICtJLqVXYGYnYswJMn9+Hh4YtWHUejnJlGrQwdPSwpDB0JM/YIGkfkiKgka9KkCRITE402g9arVy907NjRKMcqiQodoIWEhODq1ato164dlixZgs6dO0MiUf1HpHfv3hg9erTROlnWbFg6DlcPXIRdluLb8wC3cHxTDGq0CcZ7kf8p1r4YWoe0pDC0pqaxa3GyticRFcTS/4iztraGt7e30Y5nZ2cHO7uyu5ym0A8J9OzZEwkJCdi+fTsiIiLUgjMA8PDwgFwu17A3FWTD0nFI2HkFtlmq99U2S4KEnVewYem4YutLbh3S/NUU0p49wdaomYg/frTY+mIKuTU181cGePTyEcbGjMW+2/uMup+x+0FEZce+2/sQvjEcg3YPwvgj4zFo9yCEbww36e+HVq1aYdSoURgzZgxcXV3h5eWFxYsXIz09HQMHDoSjoyMCAwOxc+dOAIopTpFIpDIluXTpUlSqVAn29vbo2rUrnj59qnKOc+fOoXXr1nB0dISTkxNCQ0Nx6tQp5b55p0orV64MkUik9pXr7t276NmzJ1xcXODm5oZ3330XCQkJJrs/plboAG3y5Mnw9S14sToV3qvsDFw9cBGA9hQOVw9exKtiqH9paB3SksLQmprGrsXJ2p5EVBBz/hG3bNkyeHh44MSJExg1ahSGDRuGHj16oEmTJjhz5gzatWuHfv364eXLl2r7Hj9+HIMHD8bIkSMRFxeH1q1b49tvv1Vp07dvX1SsWBEnT57E6dOnMWHCBJQrV05jX06ePInExEQkJibi3r17eOutt9C8eXMAiocWw8PD4ejoiCNHjiA2NhZSqRTt27dHdrZ+idctjUFr0O7du4etW7fizp07ahceFRWlZS8qSMyOBcppTU1EEMEu0woxOxbg7YgJJu1LYeqQ+tWuY9K+mEJhamo28G5Q5P2M3Q8iKhsK+iNOBBHmnJiD1n6tTTLdWbduXXz11VcAgIkTJ2L27Nnw8PDARx99BAD4+uuvsWjRIpw/f15t3wULFqB9+/b44osvAADVqlXD0aNHsWvXLmWbO3fu4PPPP0eNGjUAAEFBQVr74un5b4WW0aNHIzExUZnia+3atZDL5fj111+Vo2rR0dFwcXFBTEwM2rVrV5TbYBaFDtD279+PLl26oGrVqrh69SqCg4ORkJAAQRBQvz6zpxfFkyf3jdquKAytQ1pSGFpT09i1OFnbk4h0MfcfcXXq/PsHuEQigbu7O0JCQpTbvLwUJQMfPXqklinhypUr6Nq1q8q2xo0bqwRoY8eOxYcffojly5cjLCwMPXr0QEBAgM4+/fLLL1iyZAmOHj2qDNrOnTuHGzduwNHRUaVtZmYmbt68qekwFq/QU5wTJ07EuHHjcOHCBdja2mLjxo24e/cuWrZsiR49epiij2WGh4d+U8f6tisKQ+uQlhSG1tQ0di1O1vYkIl3M/Udc/ulGkUiksi13tMrQdedTpkzBpUuX8M477+DAgQOoVasWNm/WnMgdAA4ePIhRo0bh999/Vwke09LSEBoairi4OJWv69evo0+fPgb1zdwKHaBduXIF/fv3BwBYWVkhIyMDUqkU06ZNw5w5cwrYm3Rp1XE0MmxydNbizLDNQauOpn9C1tA6pCWFoTU1jV2Lk7U9iUiXkvxHXM2aNXH8+HGVbceOHVNrV61aNXz66afYs2cPunXrhujoaI3Hu3HjBt577z1MmjQJ3bp1U3mvfv36iI+PR/ny5REYGKjyZSmJ8wur0AGag4ODct2Zj4+PytDhkye61yyRbuWs7VCjTTAA7bU4a7QOLpZ8aIbWIS0pDK2paexanKztSUS6lOQ/4j755BPs2rUL//nPfxAfH48ff/xRZXozIyMDI0eORExMDG7fvo3Y2FicPHkSNWvWVDtWRkYGOnfujHr16mHIkCFISkpSfgGKhw08PDzw7rvv4siRI7h16xZiYmLwySef4N69e8V2zcZU6ADtrbfewl9//QUA6NixIz777DPMmDEDgwYNwltvvWX0DpY170X+B5U71ESmjepTe5m2MlTuULNY86AZWoe0pDC0pqaxa3GyticRaVOS/4h76623sHjxYixYsAB169bFnj17lA8cAIo1bU+fPkX//v1RrVo19OzZEx06dMDUqVPVjvXw4UNcvXoV+/fvR4UKFeDj46P8AgB7e3scPnwYlSpVQrdu3VCzZk0MHjwYmZmZJbaKUKFLPf3zzz9IS0tDnTp1kJ6ejs8++wxHjx5FUFAQoqKi4O/vb6q+GqSklnpiJYHiw0oCRGTpNCWz9rb3xviG4/lHXClVpFqcJUFJDdCIiIjy4h9xZUuh02x8/fXXaN26NRo3bgxbW1tT9IkAyHOycT9mPdIe34fU0xe+rXpAbGVd4H6ynGycubAcj1PvwNOpEuqH9INEj/2yszOw9vgc3E29Az+nSujVaDysX4/YCdlZyNq9GvKnyRC7u8AmvDdE1jZFvkajk8uA20eBtIeA1AvwbwLo88vLwP04gkZExUkiljAfYhlS6BG0t99+G3///TdycnLQoEEDtGzZEq1atULTpk0tsmZWSRxBi9+4AAe27ERa9r/xs9Q6B20iOiCou/YnOPf9NQuzr6/EQ8m/6xS8ZAImVOuLsGYTte4XtWs4liUdhjxPyQyxIGCAdwsMe1ITyRcrQoZ/16FJ8AQuwfdg98EoQy/R+C5vBXaNB1If/LvNqQLQfg5Qq4vR92MtTiIiMiWDpjhzcnJw/PhxHD58GIcOHcLRo0eRlZWFBg0aKB8gsBQlLUCL37gAW9ftef0q74JQxbepS892GoO0fX/NwtgbKxWt8gRaotff3qhAzUFa1K7hiE46/LpxnvMJApq8eANf3R/yuhd5+yIHIIJ78DnLCNIubwXW9QfU0pO87nPP3zUHWwbul1t2Jf+TtrkLdgu7sN/YxyMiopKv0E9xAor8Z02bNkX37t3RtWtXhIeHQy6X4+rVq8buX5kiz8nGgS07X7/K/0i14vXBLTshz1EtryXLycbs6+rBGQAIr1/Pub4Ssnz7ZWdnYJmm4AyAGGJ8/LCnlr6IAQhIvugLITtLr2szGblMMQKmMXfc6227JijaGWE/1uIkIqLiUOgA7ZdffkGfPn3g6+uLJk2aYNeuXWjWrBlOnTqFx49ZjqYo7sesfz2tqTnfDSDCi2wr3I9Zr7L1zIXlimlNkeb9BJEISRIRzlxYrrJ97fE5imlNDfvVfhkIzxxXrbl3ADFk8ETW7tUFXJWJ3T6qOj2pRgBS7yvaGWG/wpRd0Yexj0dERKVDoR8S+Pjjj+Hp6YnPPvsMw4cPh1QqNUW/yqS0x/rV2Mzf7nHqHb32y9/uro793HL0y7wsf5qsVzuTSdMe3OhsZ+B+rMVJRETFodAjaJs2bULfvn2xZs0aeHp6okmTJpg0aRL27NmDly9fmqKPZYbUU78am/nbeTpV0mu//O38dOz3zCpFr2OK3V30amcyUi/D2hm4H2txEhFRcSh0gBYREYGoqCicOXMGSUlJmDRpEu7fv49OnTrBzc3NFH0sM3xb9YDUOgea10UBgABH6xz4tlItSl8/pB+8ZILygYD8RIIAb5mA+iH9VLb3ajQeYkEANOx3yf4GHls9h1xrX+SQ4DFswnsXcFUm5t9E8dSljmlhOPkq2hlhP9biJCKi4mDQQwJPnz7Fpk2bMHnyZEyaNAkrVqyAk5MTOnToYOz+lSliK2u0ici9h/kDI8Xr1hEd1PKhSaysMaFaXwBQC9JyX4+v1lctH5q1tR0GeLd4fXjV/eSQ439e616HDfJ8fVE8xekSfN/8+dDEEkVKDADaHqxA+9nqec0M3I+1OImINIuJiYFIJEJycrLe+0RGRiIiIsJkfSrJCp1mIyQkBFeuXIGrqytatGiBVq1aoWXLlqhTp46p+lgkJS3NBqA5D5qjdQ5aG5AHzVsmYLzR86A9hkvwfctIsZFLYz4zX0WQVeg8aAXvZ+yyKyzjQkQlXXZ2Np49ewYvLy+ItDy0ll9KSgoEQYCLi4tpO1cCFTpAW7hwIVq2bIng4GBT9cmoSmKABrCSgEFYSYCISjFBJsPLU6eR8/gxrDw9Yf9mKEQS/o4otYRSLiUlRQAgpKSkmLsrREREBknZvVu43rKVcLl6DeXX9ZathJTdu012zpYtWwojR44URo8eLbi4uAjly5cXfvnlFyEtLU2IjIwUpFKpEBAQIOzYsUMQBEE4ePCgAEB4/vy5IAiCEB0dLTg7Owu7du0SatSoITg4OAjh4eHCgwcPlOcYMGCA8O677wqCIAg///yz4OPjI8hkMpV+dOnSRRg4cKAgCIJw48YNoUuXLkL58uUFBwcH4c033xT27t2r0t7f31+YMWOGMHDgQEEqlQp+fn7Czz//bKK7ZDqFXoMmk8mwZMkS9OnTB2FhYWjTpo3KFxERERlP6p49uD96DHKSklS25zx8iPujxyB1zx4texbdsmXL4OHhgRMnTmDUqFEYNmwYevTogSZNmuDMmTNo164d+vXrpzWLw8uXL/Gf//wHy5cvx+HDh3Hnzh2MGzdOY9sePXrg6dOnOHjwoHLbs2fPsGvXLvTtq1hnnZaWho4dO2L//v04e/Ys2rdvj86dO+POHdW0Ud9//z3efPNNnD17FsOHD8ewYcNw7do1I92V4lHoKc6RI0di6dKleOedd+Dj46M2zzxv3jyjdrCozD7FaeD0WU5mGs4tmYLkh0lw8fJG3cFTYGVbcM65nJxsnNu949/9wjvCSp+pUR3Ta+kvX2DHb79A9jQTEndbdBw0BA72jgVfuw7ZmWlYu38s7qbdg5+0Inq1jYK1HteX8TIFUbuH4HZGEvztvDE2/BfY2StytmXnZGPt9bW4m3oXfk5+6FWtF6z1uHZD6bpnhvTlVU42Yv7+A08eP4CHZwW0avwuyunRf7lchvtXLiEt+TmkLq7wrVkbYk6NlgoyuYATt57h0YtMlHe0RcMqbpCI9VvbU5r7UpYIMhlutA1TC86URCJYeXkhcP8+o093tmrVCjKZDEeOHAGgGKBxdnZGt27d8PvvvwMAkpKS4OPjg7///huZmZlo3bo1nj9/DhcXFyxduhQDBw7EjRs3EBAQAAD46aefMG3aNCS9vp7IyEgkJydjy5YtABSZItzd3bFkyRIAiuT4U6dOxd27dyEWax5TCg4Oxscff4yRI0cCACpXrozmzZtj+XJFcnZBEODt7Y2pU6fi448/Nuo9MqVCJ6pds2YN1q1bh44dO5qiP6WLgYW4D307CKcvPISQ+1TftWQcOtwLoSFeaPnVb9r3W/EbTv+5BYLw71OXh5b/htBOEWj5wSCt++kq1P1kxXHUe/4GGls1VLxxD7j39WGcdY3D+19+WcAN0CxqfVcsS4//96GEzLv4z5q3MMAhCGN7bNa63yer38bBrERl5YO/Xz3DmnVN0drGB5WDOmDZ5WWQ57n2/5z6DwbUGoCxb441qJ+66Lpn5x+fL3RfNvz5P1zdsA12GYprewDg+JKlqPFeZ7zXSfsvlPjjR3Fg6S9Ie/ZEuU3q5oE2kUMQ1KiJ1v3I8u26mIip2y4jMSVTuc3H2RbfdK6F9sE+ZbYvZc3LU6e1B2cAIAjISUrCy1On4dCoodHPn/cBQIlEAnd3d4SEhCi3eXkpckU+evRI4yCIvb29MjgDAB8fHzx69Ejr+fr27YuPPvoIP/30E2xsbLBy5Uq8//77yuAsLS0NU6ZMwfbt25GYmIicnBxkZGSojaDl7bdIJIK3t7fO81qiQk9xWltbIzAw0BR9KV1yC3HnLyeUmqjYfnmrxt0OfTsIpy481Jhk49SFhzj0reZA69CK33Bq2yaV4AwABEGOU9s24dAKzYFdbqHu/OWGHr18hDOLNqBpanPYS1RHy+wljmia2hxrZszQeExdotZ3RXR6vMbEHdHp8Yha31XjfsrgTIODWYmIvhStEhABgFyQI/pSNKJORRW6n7roumefxnxa6L5s+PN/SFi+DbYZqtttM4CE5duw4c//aexH/PGj2Bo1UyU4A4C0Z0+wNWom4o8f1bgfWb5dFxMxbMUZlYAIAJJSMjFsxRnsuqj5Z6G096UsytGzhKK+7QqrXLlyKq9FIpHKttxZNLk8/2917fvrmrjr3LkzBEHA9u3bcffuXRw5ckQ5vQkA48aNw+bNmzFz5kwcOXIEcXFxCAkJQXa2aq1pTefV1kdLVegA7bPPPsOCBQt03uAyz8BC3DmZaTh9Ifcffc25uU5feIiczDTV/XKycfrPLTq7dHr7FuTkL7Kuo1C3RAa8m9NZceZ809i5r+s9fwPpL1/oPG9e2ZlpWJYen3sQ1Tdfv16WHo/sfNeX8TLl3+BMy36aku3mWnZ5GbLzXbuh9Clurkv+vrzKycbVDdsAaM+DdnXDNrzK13+5XIYDS3/Rea6Dy36BnEXWSxyZXMDUbZd1/fbA1G2XIZOb/newJfWlrLLy1K+KiL7tLJ2trS26deuGlStXYvXq1ahevTrq1/83UXdsbCwiIyPRtWtXhISEwNvbGwkJCebrsAnpFaB169ZN+RUbG4uVK1ciICAAnTt3VnmvW7dupu5vyWBgIe5zS6a8ntbUnt1egAjnlkxR3W/3DrWRM7UzyuU4t3uHyjZdhbo73KoDBysnrblsRCIRHKycsOM33UFCXmv3j9VanP31QSEXibB2v+o0YNTuIYp9dOyn9T0oRq/WXl+rdz91Kai4eUHy9yXm7z9glyHSWUnALkOEmL//UNl+/8oltZGz/F48fYL7Vy4Z3FcyjxO3nqmNVuUlAEhMycSJW8/KVF/KKvs3Q2Hl7a3z95+Vtzfs3wwt3o6ZUN++fbF9+3b89ttvKqNnABAUFIRNmzYhLi4O586dQ58+fUrcyJi+9FqD5uysWji7a1fN01D0moGFuJMf6lhnoKOdofvpKsDtmeWiV/gue6r9l3d+d9PuGdTudoZ+16fzmKl3i3wMwDhFy/P25cljXYH8v/K3S0t+rtd++rYjy/HohX4/U/q2KwpL6ktZJZJI4DVpIu6PHqMI0vLOFrwO2rwmTSxV+dDatGkDNzc3XLt2DX369FF5LyoqCoMGDUKTJk3g4eGB8ePHIzU11Uw9NS29ArTo6GhT96N0MbAQt4uXN3AtucDdXLy8db7Wdz9dBbgf2yQDrwo+psTdVq9zA4CftCKQWXCg5CetqPLa384bf78q2l/ofk5+Rdo/lzGKlufti4dnBegTonl4VlB5LXVx1etc+rYjy1HeUb+fKX3bFYUl9aUsc2rXDlgwHw9nzlJ5YMDKywtekyYq3jeBmJgYtW2aphPzLnnK+9+RkZGIjIxUaRsREaHSZunSpWrHE4vFePBA82/GypUr48CBAyrbRowYUWAf4+LiNB7PkhlUi5MKYGAh7rqDp0AEAbqKpYsgoO7gKar7hXeESKT7WykSi1E3XPXJW12FundWOY/0nFStaw0FQUB6Tio6Dhqi87x59WobpbU4++uDQiwI6NVWdSH92PBfFPvo2E/XGjSxSIxe1Xrp3U9dCipuXpD8fWnV+F1k2Ala168JEJBhJ6BV43dVtvvWrA2pm4fGfXI5unvAt2Ztg/pJ5tOwiht8nG11/faAj7MizUVZ6ktZ59SuHQL370OlZctQ4T//QaVlyxC4f5/JgjMyv0IHaPXq1UP9+vXVvkJDQ9G0aVMMGDBAJclcmWRgIW4rWylCQ3JH1TQXSw8N8VLLh2ZlZY3QThE6uxT6ToRaPjRdhbplEuAPK8Xi9fxBWu7rs65xhcqHZm0rxQCHoNyDqL75+vUAhyC1fGh29s5obeOjcz9da9AG1BpgtHxo+hQ31yV/X8pZWaPGe4qHMfIHabmva7zXWS0fmlgsQZtI3cFx6wFDmA+tBJKIRfimcy0AWn974JvOtYolB5kl9YUU050OjRrCudM7cGjUsFRNa5K6Qgdo7du3xz///AMHBwe0bt0arVu3hlQqxc2bN9GgQQMkJiYiLCwMf/zxR8EHK81qdQF6/g445csR5FRBsV1LHrSWX/2GN0O8NP4yfFNHHrSWHwzCm527qY2kicRivNm5m9Y8aGH+YYhqFYXy9uVVtnvZe6H+sPcQ63QEL2WqT2q+lL1ArNMRg/Kgje2xGQMdgtQ+eGIAA3XkQftv773/Bmn5tLbxwcDaAyHOd+1ikRgDaw80eh40XfdsXqt5he7Le50+RuV+nZFpp7o90w6o3E97HrSgRk3QZewktZE0R3cPdBk7iXnQSrD2wT5Y9EF9eDurTh16O9ti0Qf1izX3mCX1hagsKXQlgY8++giVKlXC5MmTVbZ/++23uH37NhYvXoxvvvkG27dvx6lTp4zaWUOwkgArCZgKKwmQqVlS9n5L6gtRWVDoAM3Z2RmnT59WS1Z748YNhIaGIiUlBVevXkWDBg3w4oX+ObJMxewBGhEREVEhFbrUk62tLY4ePaoWoB09ehS2toohcLlcrvzvMs/AETRLIs/MRNqGLZA9y4LEzQbS9yIgLur3NycbOLkYeJ4AuFYGGnwEFHGkT5adgTNHpuNxym14OvujfvPJkFjbFXBEw+nqiyE4Emb5jP09L0k4gkZUvAodoI0aNQoff/wxTp8+jQYNGgAATp48iV9//RWTJk0CAOzevRtvvPFGgceaNWsWNm3ahKtXr8LOzg5NmjTBnDlzUL16dWWbVq1a4dChQyr7DR06FP/7n+byNxbFwFqcliR54e9Iu1sJgK9iwwMg9eIxSP3uwGVEf8MOumcy8PePQN7kunu+AhqPBNpN17qbrvqXiFuN2U+O4qHV64/0i/PwWr4ZEzyaIOzdJYb1UwddfQnzDyv08VhT0/IZ+3tekrAWJ1HxK/QUJwCsXLkSP/74I65duwYAqF69OkaNGqVMKJeRkQGRSFTgKFr79u3x/vvvo0GDBsjJycGkSZNw8eJFXL58GQ4ODgAUAVq1atUwbdo05X729vZ6T1eabYoztxan2tOYr//i1PGggKVQBGeVX7/K+5ey4pqkfgmFD9L2TAaO/lf7+00+0Rik5da/zP+kowgixTYNT3OKXm+Lcm1k1CBNV18AIKpVVKH+wc6tqakNF/ybn7G/5yVJbi1OLb/J+KAAkYkYFKCZyuPHj1G+fHkcOnQILVq0AKAI0N544w3Mnz/foGOaJUCTy4D5wTrKPYkUI2ljLljsdKc8MxMPphyD4vlKTdMYAgA5Kkx5S//pzpxsYIaX6shZfiIJ8GWSynSnTC5D+MZw7SWWdKTaEAkCvGQy7Op3xijTnQX1RQQRvOy9sKv7Lr2mvuRyGRaPGKyzbJOjuwc+/HEJpzvNxNjf85JEJhfQbM4BreWeRFA8zfnX+Dac7iQyMotKVJuSkgIAcHNTTXq4cuVKeHh4IDg4GBMnTsTLly+1HiMrKwupqakqX8XOwFqcliRtwxYAEuhMtgvJ63Z6OrlYd3AGAIJM0S6PAutf6qjFKYhESLKywpkj2qdOC6OgvggQkPQyCWcendHreKypafmM/T0vSViLk3SpXLmy3oMnS5cuhYuLi0n7U9rotQbNzc0N169fh4eHB1xdXbUW0AaAZ88M+0GVy+UYM2YMmjZtiuDgYOX2Pn36wN/fHxUqVMD58+cxfvx4XLt2DZs2bdJ4nFmzZmHq1KkG9cFoDKzFaUlkz7KM2g6A4oEAA9oZo/7l45TbRT4GoH9f9G3HmpqWz9jf85KEtThJl5MnTyqXI5Hx6RWgzZs3D46OirxXhk41FmTEiBG4ePEi/vrrL5XtQ4b8my09JCQEPj4+aNu2LW7evImAgAC140ycOBFjx/6bDDQ1NRV+fsapw6g3A2txWhKJmw30KRIpcbPR/6CulQ1qZ4z6l57O/kU+BqB/X/Rtx5qals/Y3/OShLU4LYtcLiAxPhnpqVlwcLKBT5ALxGacWvb0LH2feUuiV4A2YMAAjf9tLCNHjsSff/6Jw4cPo2LFijrbNmrUCIAi75qmAM3GxgY2NoUIGkwhtxZnaiI019V8vQbN33IXfkvfi0DqxYLXoEnfi9D/oA0+UjytWdAatAYfqWzKrX/56OUjzTUr9ViDVr/5ZLX3DFFQX3LXI9UvX1+v4+XW1CxoDRprapqPsb/nJUluLc6klExtv8ngzVqcxeLm2Uc4sjYe6cn/zlo4uNigea8gBNQrr2NPw7Vq1Uo5o7V8+XKUK1cOw4YNw7Rp0yASiVC5cmWMGTMGY8aMAQAkJydj/Pjx2LJlC1JSUhAYGIjZs2ejU6dOasd+/PgxOnToAD8/P6xZswbh4eFq680jIiLg4uKiLKheuXJlDB48GJcvX8bWrVvh4uKCSZMmqRVLLy30XoOWf12Xtq/CEAQBI0eOxObNm3HgwAFUqVKlwH1yK9L7+FjwU0MG1uK0JGJbW0j97rx+pbkuqNTvTuHyoVlZK1Jp6NJ4hFo+tALrX74OzET5nnfJfT3eo4nR8qHpU4tzfMPxei8WZ01Ny2fs73lJwlqcluHm2UfY9fNFleAMANKTs7Dr54u4efaRyc69bNkyWFlZ4cSJE1iwYAGioqLw66+/qrWTy+Xo0KEDYmNjsWLFCly+fBmzZ8+GREO90Lt376J58+YIDg7Ghg0bCjWoMnfuXNStWxdnz57FhAkTMHr0aOzdu7dI12ip9A7QXFxc4OrqqvUr9/3CGDFiBFasWIFVq1bB0dERSUlJSEpKQkZGBgDg5s2bmD59Ok6fPo2EhARs3boV/fv3R4sWLVCnTp3CXWlxM7AWpyVxGdEfUr8EAPlHvOSGpdgAFCk0mnwC5KtVCZFEa4oNoOD6l/NcG6G8TKb6nkxm9BQbBfXFkHQLrKlp+Yz9PS9JWIvTvORyAUfWxuts89e6eMjlpknI4Ofnh3nz5qF69ero27cvRo0ahXnz5qm127dvH06cOIFNmzbh7bffRtWqVdGpUyd06NBBpd21a9fQtGlThIeHIzo6WmMAp0vTpk0xYcIEVKtWDaNGjcJ7772nsT+lgd6Jag8ePKj8b0EQ0LFjR/z666/w9fU1+OSLFi0CoBhGzSs6OhqRkZGwtrbGvn37MH/+fKSnp8PPzw/du3fHV199ZfA5i1WtLkCNd0p0JQGXEf3hpLGSQCvDD9puOtBmcqErCYT5h6G1X2vNmdz9w9C6GCsJ6OyLAYIaNUFAg0asJGDBjP09L0naB/vg7VrerCRgBonxyWojZ/mlPc9CYnwyfKsbf63qW2+9pfJgYOPGjfH9999Dlu8P4ri4OFSsWBHVqlXTeqyMjAw0b94cffr0MXg9e+PGjdVem2ptvLnpHaC1bNlS5bVEIsFbb72FqlWrGnzyglKw+fn5qVURKHHEEqBKc3P3okjEtrZw+uB94x7UyloxnVlIErEEDbwbaH7P2g4N2mpP+GpsuvpiCLFYAr/aFj4yXMYZ+3tekkjEIjQOcDd3N8qc9FT9npTXt52p2NkV/MewjY0NwsLC8Oeff+Lzzz9XGeARi8VqMcGrV6+M3s+SpNClnqh0EmQyvDx1GjmPH8PK0xP2b4ZC9HroWZALyLqVAvmLbIgdrWFTxRkiPf5yzs7OwOHl0UhOSoSLtw9a9BsI69cjWobWzdTVT0PJs7PxfNVqZN+9C2s/P7j26Q2xdcF1QS0Fa3gSFZ2l1hp1cNJvfZa+7Qrr+PHjKq+PHTuGoKAgtanJOnXq4N69e7h+/brWUTSxWIzly5ejT58+aN26NWJiYlChQgUAiidCExMTlW1lMhkuXryI1q1bq50//+uaNWsafH2WjAEaIXXPHjycOQs5SUnKbVbe3vCaNBHlKtRH8rabkKVkK9+TOFvDpXMA7II9NB0OALBl7nTcPPXvD/bt82dxbs8OBLzZCNJqCQbVzdTVT6d27Qy5dDycOxfPopcC8n/X2T367ju4DYyE1+efG3TM4sQankRFZ8m1Rn2CXODgYqNzmlPqqki5YQp37tzB2LFjMXToUJw5cwY//PADvv/+e7V2LVu2RIsWLdC9e3dERUUhMDAQV69ehUgkQvv27ZXtJBIJVq5cid69e6NNmzaIiYmBt7c32rRpg7Fjx2L79u0ICAhAVFQUkpOT1c4TGxuL7777DhEREdi7dy/Wr1+P7du3m+Taza1IlQR0JaylkiF1zx7cHz1GJegBgJyHD/Fw9jI8XXFZJTgDAFlKNp6uuIKMi5pTQ+QPzvK6eeo4tu77Bw/z/fX1SCLB2OfHse+PwYXu5/3RY5C6Z4/O69Tk4dy5eLbkN5XgDAAgl+PZkt/wcO7cQh+zOOXW8MyfoiPt2RNsjZqJ+OOWW6mCyFLk1hrNXzEhKSUTw1acwa6LiVr2LB5isQjNewXpbNOsZ5DJ8qH1798fGRkZaNiwIUaMGIHRo0er5CfNa+PGjWjQoAF69+6NWrVq4YsvvlBbqwYAVlZWWL16NWrXro02bdrg0aNHGDRoEAYMGID+/fujZcuWqFq1qtroGQB89tlnOHXqFOrVq4dvv/0WUVFRCA8PN/p1WwK9a3F269ZN5fW2bdvQpk0btSzC2jL8m4vZiqWXAIJMhhttw9SCHgURHMJnQWSrvXKExNkG3uMbqEx3Zmdn4Id+PbSf83WKjhXhdyDLNwunrW6m7n4CEIlg5eWFwP379J7ulGdn49ob9dSDs7zEYlSPO2uR052s4UlUdCWp1qimPGhSVxs062naPGhFqYVtbPnzrpV2ek9xOjs7q7z+4IMPjN4ZKl4vT53WGvRIPIIgttOdfFKWkoWsWymwDXBRbju8PFrnPrl5o9684orjwarli/LWzcy72F9XPxU7CshJSsLLU6fh0KihzvPner5qte7gDADkcjxftRrukcZPzlxUhanhyQcPiDQrTK1Rcz8gEVCvPKrU9bSoSgJkWnoHaNHRuv/hpZIn57H22oEiG2et7+Ulf6E6/ZmcpN90gONL7R+9/HUzdfXTkHYAkH33rlHbFTfW8CQqupJWa1QsFpkklQZZJj4kUIZZ6aijJmSl6HUMsaPq9J+Ltw9unz9b4H4v7HO0vpe/bqaufhrSDgCs9azPqm+74sYankRFx1qjusXExJi7CyoSEhLM3YViVaSHBKhks38zFFbe3hprWMqexEOe8UxnrjqJsw1sqqiOtLXoN1DnOYXX/ztVU31kRyQI8M7JUaubqaufih1FsPL2hv2boTrPnZdrn96AuICPv1isaGeBcmt46sIankS65dYa1TZJKILiaU7WGiVzYIBWhokkEnhNmvj6Rb5fUSIg68I6rTERALh0rqqWD83a2g4BbzbSfk6IcKf8S8jF+tfN1N1PxWuvSRMLlQ9NbG0Nt4GROtu4DYy0yAcEANbwJDIG1holS8YArYxzatcOvgvmw8rLS2W7lZcXvCYMgPsHtSBxzle83NkG7h/U1JoHLeLzyVqDtIA3G6FLWNVC183U1U/fBfMNyoPm9fnncBs8SH0kTSyG2+BBFp8HjTU8iYqOtUbJUumdZqOkYpoN/bCSACsJEJVlllpJgMouBmhEREREFoZPcVKBDB1B00kuA24fBdIeAlIvwL+JorB8GWbo6KCh+8nkMpx5dAaPXz6Gp70n6pevD4kJvwcc6Ss8juoQlV0M0EinjItPDKrFqdPlrcCu8UDqg3+3OVUA2s8BanUpYo9LJkPrjBq6377b+zD7xGw8fPlQuc3L3gsTGk5AmH9YEa9GHWuGFp4l14ck0kdZy/xvbHxIgLTKuPgET1dcKXQtTp0ubwXW9VcNzgAgNVGx/fLWIvS4ZDK0zqih++27vQ9jY8aqBGcA8OjlI4yNGYt9t/cV4WrUsWZo4Vl6fUgi0i0mJgYikUhjwXd9MUAjjQS5gORtN3W2Sd72DwR5IZYwymWKkTNo2uf1tl0TFO3KCEEmw8OZswBNS0Ffb3s4cxaEfE+9GrqfTC7D7BOzlTVRVXZ7vW3OiTmQGel7IJfLcGDpLzrbHFz2C+Rl6HteEJlcwNRtl3X9lGDqtsuQFeZnj0oFuVyGu5fO40rsIdy9dJ4/N6UcAzTSKOtWitrIWX65tTj1dvuo+siZCgFIva9oV0YUps6oMfY78+iM2siZym4QkPQyCWcendGr/wUpTM1QUihMfUgqO+KPH8XiEYOxbtok7PjvXKybNgmLRww2+Qj0hg0bEBISAjs7O7i7uyMsLAzp6elo1aqV2tRlREQEIiMjVba9ePECvXv3hoODA3x9fbFw4UKV95OTkzF06FB4eXnB1tYWwcHB+PPPP5Xvb9y4EbVr14aNjQ0qV66M77//XmX/ypUr49tvv0X//v0hlUrh7++PrVu34vHjx3j33XchlUpRp04dnDp1SrnP0qVL4eLigi1btiAoKAi2trYIDw/H3Tyl/W7evIl3330XXl5ekEqlaNCgAfbtU51dyMrKwvjx4+Hn5wcbGxsEBgZiyZIlSEhIQOvWrQEArq6uEIlEavdFHwzQSKP8NTaL2g6A4oEAY7YrBQytM2rofo9f6refvu0KwpqhhVfS6kOS6ZlrmUBiYiJ69+6NQYMG4cqVK4iJiUG3bt10VpjJb+7cuahbty7Onj2LCRMmYPTo0di7dy8AQC6Xo0OHDoiNjcWKFStw+fJlzJ49G5LXDzmdPn0aPXv2xPvvv48LFy5gypQpmDx5MpYuXapyjnnz5qFp06Y4e/Ys3nnnHfTr1w/9+/fHBx98gDNnziAgIAD9+/dX6ffLly8xY8YM/P7774iNjUVycjLef/995ftpaWno2LEj9u/fj7Nnz6J9+/bo3Lkz7ty5o2zTv39/rF69Gv/9739x5coV/Pzzz5BKpfDz88PGjRsBANeuXUNiYiIWLFhQ6PvPhwRIo/w1NovaDoDiaU1jtisFDK0zauh+nvb67advu4KwZmjhsT4k5aXvMoGABo2M/lR0YmIicnJy0K1bN/j7K2okh4SEFOoYTZs2xYQJEwAA1apVQ2xsLObNm4e3334b+/btw4kTJ3DlyhVUq1YNAFC1alXlvlFRUWjbti0mT56s3P/y5cuYO3euyohUx44dMXToUADA119/jUWLFqFBgwbo0aMHAGD8+PFo3LgxHj58CG9vbwDAq1ev8OOPP6JRI0VS9WXLlqFmzZo4ceIEGjZsiLp166Ju3brKc0yfPh2bN2/G1q1bMXLkSFy/fh3r1q3D3r17ERYWptZ3NzdFebDy5cvDxcWlUPcsF0fQSCObKs5qFQTy01SLUyf/JoqnNXVVvnPyVbQrIwytM2rofvXL14eXvRdEWr4HIojgbe+N+uXrF/paNGHN0MJjfUjKy5zLBOrWrYu2bdsiJCQEPXr0wOLFi/H8eeFGuxs3bqz2+sqVKwCAuLg4VKxYURmc5XflyhU0bdpUZVvTpk0RHx8PWZ71tXXq1FH+t9frajN5A8ncbY8ePVJus7KyQoMGDZSva9SoARcXF2Xf0tLSMG7cONSsWRMuLi6QSqW4cuWKcgQtLi4OEokELVu21PNOFB4DNNJIJBbBpXOAzjaaanHqJJYoUmkozpD/jIr/az+7TOVDM7TOqKH7ScQSTGio+Gs2f5CW+3p8w/FGy4fGmqGFx/qQlJc5lwlIJBLs3bsXO3fuRK1atfDDDz+gevXquHXrFsRisdpU56tXrwp1fDu7gqvH6KNcuXLK/xa9/v2naZtcLtf7mOPGjcPmzZsxc+ZMHDlyBHFxcQgJCUF2tmJZj7H6rgsDNNLKLtgD7h/ULHQtTp1qdQF6/g445cvj5FRBsb0M5kEztM6oofuF+YchqlUUytuXV9nuZe+FqFZRRs+Dxpqhhcf6kJTL3MsERCIRmjZtiqlTp+Ls2bOwtrbG5s2b4enpicTEf9O9yGQyXLx4UW3/Y8eOqb2uWbMmAMXI171793D9+nWN565ZsyZiY2NVtsXGxqJatWrKdWqGysnJUXlw4Nq1a0hOTlb2LTY2FpGRkejatStCQkLg7e2NhIQEZfuQkBDI5XIcOnRI4/GtX5cLlMkMf9KWa9BIJ7tgD9jWcjduJYFaXYAa77CSQB5O7drBsW3bQlcEMHS/MP8wtPZrXWyVBIIaNUFAg0asJFAI7YN98HYtb1YSKONylwnomuY01TKB48ePY//+/WjXrh3Kly+P48eP4/Hjx6hZsyYcHBwwduxYbN++HQEBAYiKitKY8ys2NhbfffcdIiIisHfvXqxfvx7bt28HALRs2RItWrRA9+7dERUVhcDAQFy9ehUikQjt27fHZ599hgYNGmD69Ono1asX/v77b/z444/46aefinxt5cqVw6hRo/Df//4XVlZWGDlyJN566y00bNgQABAUFIRNmzahc+fOEIlEmDx5ssoIXOXKlTFgwAAMGjQI//3vf1G3bl3cvn0bjx49Qs+ePeHv7w+RSIQ///wTHTt2hJ2dHaRSaaH6yACNCiQSi2Ab4GLcg4olQJXmxj1mCSeSSODQqGGx7ScRS9DAu0HBDY1ELJbAr3adghuSkkQsQuMAd3N3g8wod5nA1qiZWtuYapmAk5MTDh8+jPnz5yM1NRX+/v74/vvv0aFDB7x69Qrnzp1D//79YWVlhU8//VSZWiKvzz77DKdOncLUqVPh5OSEqKgohIeHK9/fuHEjxo0bh969eyM9PR2BgYGYPXs2AKB+/fpYt24dvv76a0yfPh0+Pj6YNm2aQSkr8rO3t8f48ePRp08f3L9/H82bN8eSJUuU70dFRWHQoEFo0qQJPDw8MH78eKSmpqocY9GiRZg0aRKGDx+Op0+folKlSpg0aRIAwNfXF1OnTsWECRMwcOBA9O/fX+3p04KwWDqZjFwuIDE+GempWXBwsoFPkAvERfzr3xR1QeXZ2Xi+ajWy796FtZ8fXPv0hti6EE+nGomhNTVLipycbJzbvQPJD5Pg4uWNuuEdYWVV/PeZqCTSVC7N0d0DrQewXFphLV26FGPGjClSlv/iwBE0MombZx/hyNp4pCdnKbc5uNigea8gBNQrr2NP7UxRF/Th3Ll4Fr0UyDN0/ei77+A2MBJen39u0DENYWhNzZLi0IrfcPrPLRCEf+/zoeW/IbRTBFp+MMiMPSMqGbhMoOzhQwJkdDfPPsKuny+qBGcAkJ6chV0/X8TNs4+07KmdKeqCPpw7F8+W/KYSnAEA5HI8W/IbHs6dW+hjGsLQmpolxaEVv+HUtk0qwRkACIIcp7ZtwqEVv5mpZ0QlS+4ygZpNW8Kvdh0GZ6UcAzQyKrlcwJG18Trb/LUuHvJC1BE0RV1QeXa2YuRMh2fRSyHPLkSlBAMYWlOzpMjJycbpP7fobHN6+xbk5Jj2PhMR5YqMjLT46U2AARoZWWJ8strIWX5pz7OQGJ+s9zFNURf0+arV6iNn+cnlinYmZGhNzZLi3O4daiNn+QlyOc7t3lFMPSIiKhkYoJFRpafqDs4K2w4wTV3Q7DxFcY3RzlCG1tQsKZIf6gg+DWhHRFRWMEAjo3JwsjFqO8A0dUGt/fyM2s5QhtbULClcvLyN2o6IqKxggEZG5RPkAgcX3cGX1FWRckNfpqgL6tqnNyAu4OMvFivamZChNTVLirrhHSES6b7PIrEYdcM7FlOPiIhKBgZoZFRisQjNewXpbNOsZ1Ch8qGZoi6o2NoabgMjdbZxGxhp8nxohtbULCmsrKwR2ilCZ5vQdyKYD42IKB8GaGR0AfXKo/3QYLWRNKmrDdoPDTYoD5op6oJ6ff453AYPUh9JE4vhNnhQseVBM7SmZknR8oNBeLNzN7WRNJFYjDc7d2MeNCIiDVhJgEyGlQQKh5UEiIgoFwM0IiKiEsAUf6CS5eIUJ5GFEGQypB8/gZQ/tyP9+IkSm5xWG7lchruXzuNK7CHcvXQecnnpuj4iU8q4+ARJc07gyeILeLbmGp4svoCkOScMqqJSGBs2bEBISAjs7Ozg7u6OsLAwpKeno1WrVhgzZoxK24iICGUh80mTJqFRo0Zqx6tbty6mTZtm0j6XFqzFSWQBSnstTk2FnqVuHmgTyULPRAXJLXWXX26pO0PX4RYkMTERvXv3xnfffYeuXbvixYsXOHLkCPSZeOvbty9mzZqFmzdvIiBA8ZDXpUuXcP78eWzcuNHofS2NOIJGZGalvRZn/PGj2Bo1UyU4A4C0Z0+wNWom4o8fNVPPiCyfKUrd6SsxMRE5OTno1q0bKleujJCQEAwfPhxSqbTAfWvXro26deti1apVym0rV65Eo0aNEBgYaPS+lkYM0IjMqLTX4pTLZTiw9BedbQ4u+4XTnURamKLUnb7q1q2Ltm3bIiQkBD169MDixYvx/Plzvffv27evMkATBAGrV69G3759jd7P0ooBGpEZlfZanPevXFIbOcvvxdMnuH/lUjH1iKhkMUWpO31JJBLs3bsXO3fuRK1atfDDDz+gevXquHXrFsRisdpU56tXr1Re9+7dG9euXcOZM2dw9OhR3L17F7169TJ6P0srBmhEZlTaa3GmJev317a+7YjKGlOUuisMkUiEpk2bYurUqTh79iysra2xefNmeHp6IjExUdlOJpPh4sWLKvtWrFgRLVu2xMqVK7Fy5Uq8/fbbKF++8Hkwyyo+JEBkRqW9FqfUxdWo7YjKmtxSd7qmOQtb6k5fx48fx/79+9GuXTuUL18ex48fx+PHj1GzZk04ODhg7Nix2L59OwICAhAVFYXk5GS1Y/Tt2xfffPMNsrOzMW/ePKP3sTRjgEZkRrm1OHMePtS8Dk0kgpWXV4mtxelbszakbh46pzkd3T3gW7N2MfaKqOTILXWn6SnOXIUtdacvJycnHD58GPPnz0dqair8/f3x/fffo0OHDnj16hXOnTuH/v37w8rKCp9++ilat26tdoz33nsPI0eOhEQiQUREhNH7WJoxUS2RmeU+xQlANUh7XYuzpJd7yn2KU5suYycx1QZRATIuPkHytpsqI2kSZxu4dK5qkhQbZH4M0IgsQFnMg+bo7oHWA5gHjUhfrCRQtjBAI7IQpb0Wp1wuUzzVmfwcUhdX+NasDbG49FwfEZExMUAjIiIisjB8SIBMJjszB/+svArZ80xIXG1RtW8NWNvyI2dsrzJz8HD1VeQ8z4SVqy28etdAOd5nk5DnyJH29wPInmVC4mYLaeMKEFspshVxhJCIjMmsI2izZs3Cpk2bcPXqVdjZ2aFJkyaYM2cOqlevrmyTmZmJzz77DGvWrEFWVhbCw8Px008/wcvLS69zcATNPC7NOw3HpHSIRf+uj5ALAl54O6D2pyXziURLdPuHMxDfT0feVSgCALmvA/xH1TdXt0ql5B3/IO3IfcUNziUCpM198dg9ibVGiciozJqo9tChQxgxYgSOHTuGvXv34tWrV2jXrh3S09OVbT799FNs27YN69evx6FDh/DgwQN069bNjL2mglyadxpOSapBAwCIADglpePSvJKZFd/S3P7hDMT30tTTcwgCxPfScPuHM+bpWCmUvOMfpB3OF5wBgAC8OHwfCdFHWWuUiIzKrPMgu3btUnm9dOlSlC9fHqdPn0aLFi2QkpKCJUuWYNWqVWjTpg0AIDo6GjVr1sSxY8fw1ltvmaPbpEN2Zg4ckxQBtkikGqKJRCIIggDHpHRkZ+ZwurMIXmXmQHxf930W30/Hq8wcTncWkTxHrhg500YQUN25AS4+Pww55GpvH1z2CwIaNOJ0JxEVikWVekpJURR7dXNzAwCcPn0ar169QlhYmLJNjRo1UKlSJfz9998aj5GVlYXU1FSVLyo+/6y8CrFIpBY05BKJRBCLRPhn5dVi7lnp8nD1VYigHpzlEolEEL1uR0WT9vcD9ZGzPBSfaTECnOppfJ+1RonIEBYToMnlcowZMwZNmzZFcHAwACApKQnW1tZwcXFRaevl5YUkLQWmZ82aBWdnZ+WXn5+fqbtOecieZxq1HWmWo+f907cdaSd7pt89lFppL1fFWqNEVFgWE6CNGDECFy9exJo1a4p0nIkTJyIlJUX5dffuXSP1kPQhcbU1ajvSzErP+6dvO9JO4qbfPUzL0R6EsdYoERWWRQRoI0eOxJ9//omDBw+iYsWKyu3e3t7Izs5WK8D68OFDeHt7azyWjY0NnJycVL6o+FTtWwNyQYC2h4MFQYBcEFC1b41i7lnp4tW7BgRA530WXrejopE2rgC1J17yUHym5biZelbj+6w1SkSGMGuAJggCRo4cic2bN+PAgQOoUqWKyvuhoaEoV64c9u/fr9x27do13LlzB40bNy7u7pIerG2t8MLbAYB68JD7+oW3Ax8QKKJytlaQ++q+z3JfBz4gYARiKzGkzX21NxCJcC3lpMYHBACg9YAhfECAiArNrHnQhg8fjlWrVuGPP/5QyX3m7OwMOzs7AMCwYcOwY8cOLF26FE5OThg1ahQA4OhR/R5dZx4082AetOLBPGjFp7B50FhrlIiKwqwBmrYn0KKjoxEZGQng30S1q1evVklUq22KMz8GaObDSgLFg5UEig8rCRBRcWEtTiIiIiILwz+ziXSQ5ciR+Nd9ZD3LhI2bLXya+UJiZfjSTWMfDwBk2TKk7PgHsqeZkLjbwrljVUisLW/kRtfo06tsGa5vuYnMpxmwdbdDtYgAlLPAaxDkArJupUD+IhtiR2vYVHGGSKzjCQIiIgNxBI1Ii1vbbkIW+wB5kyxkApA0rYAqnQPMfjwAePL7JWRefqa23baWGzz6W86Tg7rWb/1zPx2O8c9hlyfQyZALeBHkivofhRR/Z7XIuPgEydtuQpaSrdwmcbaGS+cA2AV7mLFnRFQaMUAj0uDWtpuw+ktR3ifvWsncH5ecZr6FCqqMfTxAe3CWy1KCNGUdSw0EQFlLVNN9eRxoGUFaxsUneLriitb33T+oySCNiIzKIvKgEVkSWY4cstgHADTXuQQAWewDyHI0p1Uw9fEAxbSmruAMADIvP4MsW6b3MU1BnzqWgPb7Io1/jldmvgZBLiB5202dbZK3/QNBXqr/1iWiYsYAjSifxL/uwxa661zavm5njuMBQMqOf4zazlT0qWOp677Yi0W4vkV3cGRqWbdSVKY1NZGlZCHrVkox9YiIygIGaET5ZOlZe9Fc7QBA9lTPmqd6tjMVfetY6pL5NMMIPTGc/IXu4Kyw7YiI9MEAjSgfGz1rL5qrHQBI3PWseapnO1PRt46lLrbudkboieHEjtZGbUdEpA8GaET5+DTzRSZ017nMfN3OHMcDAOeOVY3azlT0qWOp6768lAuoFmHYE67GYlPFGRJn3cGXxNkGNlWci6lHRFQWMEAjykdiJYakaQUA2utcSppW0Dt/mbGPBwASawlsa7npbGNby83s+dD0qWMJaL8vaUGuZs+HJhKL4FLAE7YunasyHxoRGRUDNCINqnQOQE4zX2TlW8CeJRIZlBLD2McDAI/+tbUGaZaSYgMAXDpWhbSFr/pImghwbOGLx4GuyMw3iJYhWE6KDQCwC/aA+wc11UbSJM42TLFBRCbBPGhEOrCSgPGwkgARkf4YoBERERFZGE5xEhEREVkYFksnKkZyuYDE+GSkp2bBwckGPkEuEBdxiszQYxo6XcdpPs10TeHqout+lpTpayIyPk5xEhWTm2cf4cjaeKQnZym3ObjYoHmvIATUK1+sxzS08DcLhmumqxi8i45UJ7ruZ/qZhxrLeVnSAyBEZDoM0IiKwc2zj7Dr54ta328/NLjQQZqhxzS08DcLhmumqxg8AEhbaA7SCrqfujBIIyr9uAaNyMTkcgFH1sbrbPPXunjIC1Fs29BjGlr4mwXDNSuwGDyAtCP3Ic+Rq2zT537qknn5GWRmLiJPRKbFAI3IxBLjk1WmIDVJe56FxPhkkx/T0MLfLBiuWUHF4AEAwut2eehzPwuSsuOfIu1PRJaNARqRiaWn6g6kCtuuKMc0tPA3C4Zrpm8x+PztjHGfZE+LXoieiCwXAzQiE3NwsjFqu6Ic09DC3ywYrpm+xeDztzPGfZK4F70QPRFZLgZoRCbmE+QCBxfdAZXUVZEew9THNLTwNwuGa1ZQMXgAiqc5G1dQ2aTP/SyIs46nQ4mo5GOARmRiYrEIzXsF6WzTrGdQofKhGXpMQwt/s2C4ZgUWg4ci1Ub+fGj63E9dbGu5MR8aUSnHNBtExURTzjKpqw2a9TRuHjR9jqk5/5YNXDpXNSAPWsH7lXbGzYOmuJ/Mg0ZUtjFAIypGrCRQerGSABEZEwM0IiIiIgvDWpxU5smyXuH5+pOQPX0Jibs9XHs0gMSmnOK9HDkS/7qPrGeZsHGzhU8zX0j0GBUxtlfZMlzfchOZTzNg626HahEBKPd6JMXQUZacHDkuxtxDypMMOHvYIbhVRViZ8Np03cvMtGzc/985IO0VIC0H34/rwlZatEX0ho5oGToimZMtQ9K2m3j1LBPl3Gzh3TkAVkUc7TLF58+SRkAtqS9EloYjaFSmPVp4AFl3JBCJ/v1HTxDksKkkQ3olf8hiHyBvMoNMAJKmFVClCAu8C+vM4gtwjH8Ouzz/cGXIBbwIckUlG7FB65RiN8bj3L67yPvTLxIBdcP80LS77ocPDHFr202t91J29hFs0l9BJPr3+gRBQJZDOQR+3dig8xm6JszQ2qYJSy9CcvW5ygOdAgBZDVdUjgw26Bp03TNDP3+WVEvVkvpCZIkYoFGZpQjOFIPI+YODvDS9l9PMt1iCtDOLL8DzxnPtfRSJtGZ50BakxW6MR9zeu1rP+cbbxg3Sbm27Cau/FOWQCnufDQnSDK2NaWht04SlFyG5ogiSNV2DrKZboYO0gu6ZIZ8/S6qlakl9IbJUTLNBZZIs6xWy7iimn/L+A5j/tbb3ZLEPIMtXX9HYXmXL4BivHpypvNbx95Wmeo05OXKc26c9OAOAc/vuIsdI1ybLkUMWqyhzZMh9tkl/hcw0/bPuG1ob09DapjnZMkiu6v4eSa4+R04h6mbqc88K+/mzpFqqltQXIkvGAI3KpOfrT0IkEqv9A5hLJBLpfM8WQOJfugOBorq+5SbsxLr7oe29XPnrNV6MuacrpgOgiPkuxtwrVF+1SfzrPmyhHmjkKug+i0Qixdo0PRlaG9PQ2qZJ225ChAKu73U7felzzwr7+bOkWqqW1BciS8YAjcok2dOXRT5Glp51GA2V+TSjyMfIX68x5Yl+x9S3XUGMco/SXund1NDamIbWNn2l5/n0bQfof88Kc28tqZaqJfWFyJIxQKMySeJuX+Rj2OhZh9FQtu52RT5G/nqNzh76HVPfdgUxyj2SltO7qaG1MQ2tbVpOz/Pp2w7Q/54V5t5aUi1VS+oLkSVjgEZlkmuPBhAEudpC9VyCIOh8LxOATzPdJX6KqlpEADLkuvtR0DM++es1BreqiAJmRSESKdoZg08zX2RC/YGAXAXdZ0EQ4PtxXb3PZ2htTENrm3p3DoCAAq7vdTt96XPPCvv5s6RaqpbUFyJLxgCNyiSJTTnYVFIs3M7/D2He19rekzStYPJ8aOWsJXgR5Kq7jzqiLU31Gq2sxKgb5qfzvHXD/IyWD01iJYakqSIYMuQ+ZzmUK1Q+NENrYxpa29TKWgJZDd3fI1kN10LlQ9PnnhX282dJtVQtqS9ElowBGpVZ5Ue0gU2lHKivKhdgUykHOc18kZUvAMoSiYotxQYA1P8oBI8DXZGZr4sZAvA40BV2tdw07qcrD1rT7kF4420/tdhOJDJ+ig0AqNI5QOe9zHLQPIVpaB40l45VIW3hqz6SJtKeYgMAAuqVR/uhwWojaVJXG60pNgCgcmQwZDXd1INlkcigFBtAwffMkM+fXbAH3D+oqTZ6JXG2Kfa0FpbUFyJLxTxoVOaxkgArCajsx0oCxcaS+kJkaRigEREREVkY1uIkomKha8SuuEfzdDF01IqjQURkTBxBIyKT01X7E0Cx1gXVxdD6l6wrSUTGxgCNiEyqoNqfupjioQVtDK1/ybqSRGQKfIqTiExGn9qfuhizLqguhta/ZF1JIjIVBmhEZDL61P7UxZh1QXUxtP4l60oSkakwQCMikzFGTU9j1QXVxdD6l6wrSUSmwgCNiEzGGDU9jVUXVBdD61+yriQRmQoDNCIyGX1qf+pizLqguhha/5J1JYnIVBigEZHJ6FP7Uxdj1gXVxdD6l6wrSUSmwgCNiEyqoNqfxVkXVBdD61+yriQRmQLzoBFRsWAlASIi/TFAIyIiIrIwrMVJVMKVlJEbXf20pGvQNZqnq59yuYDE+GSkp2bBwckGPkEuEBfxGgy9L4aOAhKR5TDrCNrhw4cxd+5cnD59GomJidi8eTMiIiKU70dGRmLZsmUq+4SHh2PXrl16n4MjaFSalZQakLr6CcBirkFXzdD61V219vPBKzmOrI1HenKW8j0HFxs07xWEgHrlDeqLod9bQ+uJEpFlMWuAtnPnTsTGxiI0NBTdunXTGKA9fPgQ0dHRym02NjZwdXXV+xwM0Ki0Kik1IAvqpy7FeQ26aob6lBOhgYMVNI1dCQBOpucg8ZXmX6XthwYXOkgz9HtraD1RIrI8Zp3i7NChAzp06KCzjY2NDby9vYupR0Qlg741IG1ruZt1ulOffupSXNdQUM3QEDuJou6UlqRuwXYSJL7K0fjeX+viUaWup97TnYZ+b3PriVpBcz1RQRAU9UQ7VOF0J1EJYPE/pTExMShfvjyqV6+OYcOG4enTpzrbZ2VlITU1VeWLqLQpKTUg9emnLsV1DbpqhrpbiWAnFmmv0wnAXiyCu5Xm99OeZyExPlnvvhj6vTW0nigRWSaLDtDat2+P33//Hfv378ecOXNw6NAhdOjQATKZTOs+s2bNgrOzs/LLz8/wJJlElqqk1IA0xvmL4xp01fu01XPwTle79NQs7W/mY+j31tB6okRkmSz6Kc73339f+d8hISGoU6cOAgICEBMTg7Zt22rcZ+LEiRg7dqzydWpqKoM0KnVKSg1IY5y/OK5BV73PTD1X6epq5+Bko3dfDP3eGlpPlIgsk0WPoOVXtWpVeHh44MaNG1rb2NjYwMnJSeWLqLQpKTUg9emnLsV1Dbpqhj7NEZAhF7TX6QTwUi7gaY7m96WuipQb+jL0e2toPVEiskwlKkC7d+8enj59Ch8fH3N3hcisSkoNSH36qUtxXUNBNUMvZMi0PiAAABcztC+7aNYzqFD50Az93hpaT5SILJNZf1LT0tIQFxeHuLg4AMCtW7cQFxeHO3fuIC0tDZ9//jmOHTuGhIQE7N+/H++++y4CAwMRHh5uzm4TWYSSUgOyoH5ayjXoqhnq1aoiPLT00+ODmqg7qDYcXFSnMaWuNgal2AAM/94aWk+UiCyPWfOgxcTEoHXr1mrbBwwYgEWLFiEiIgJnz55FcnIyKlSogHbt2mH69Onw8vLS+xzMg0alnSVl4deFlQQKj5UEiMou1uIkIiIisjAW/RQnEZElsaSRPlMo7ddHVJIwQCMi0kNJqXtqqNJ+fUQlDRclEBEVILc2Zv4M/7KUbDxdcQUZF5+YqWfGUdqvj6gkYoBGRKSDvrUxBXnJXM5b2q+PqKRigEZEpENJqXtqqNJ+fUQlFQM0IiIdSkrdU0OV9usjKqkYoBER6VBS6p4aqrRfH1FJxQCNiEiHklL31FCl/fqISioGaEREOpSUuqeGKu3XR1RSMUAjIipASal7aqjSfn1EJRFLPRER6am0Z9ov7ddHVJKwkgARkZ5EYhFsA1zM3Q2TKe3XR1SScIqTiIiIyMIwQCMiIiKyMAzQiIiIiCwMAzQiIiIiC8MAjYiIiMjCMEAjIiIisjAM0IiIiIgsDAM0IiIiIgvDAI2IiIjIwjBAIyIiIrIwDNCIiIiILAwDNCIiIiILw2LpRGR2mS9f4criC5CnZEHsbIOaH4XA1r6cubtFRGQ2IkEQBHN3wpRSU1Ph7OyMlJQUODk5mbs7RJTPmRnH4ZGaBbFIpNwmFwQ8cbJB/S8bmbFnRETmwylOIjKbMzOOwzM1C6J820UAPFOzcGbGcXN0i4jI7BigEZFZZL58BY/ULACASKQaouW+9kjNQubLV8XeNyIic2OARkRmcWXxBYhFIrXgLJdIJIJYJMKVxReKuWdERObHAI2IzEKekmXUdkREpQkDNCIyC7GzjVHbERGVJgzQiMgsan4UArkgQNuD5IIgQC4IqPlRSDH3jIjI/BigEZFZ2NqXwxMnxehY/iAt9/UTJxvmQyOiMokBGhGZTf0vG+Gxkw3yj6EJAB4zDxoRlWFMVEtEZsdKAkREqhigEREREVkYTnESEf2/vXsPqqLs4wD+PR0CzzmCXAQhkUsJiBcUFRW8MmpC5kiaFwYVLyU6mGlghPdMBS9TVJN4axAtRcdACSXTErxhkkreUJEQFTFS8cLrCHJ43j983dcTB02F2RW+n5mdYXefffa7j0f9sfucc4iIFIYFGhEREZHCsEAjIiIiUhgWaEREREQKwwKNiIiISGFYoBEREREpDAs0IiIiIoVhgUZERESkMCzQiIiIiBSGBRoRERGRwrBAIyIiIlIYFmhERERECmMid4C69ui74O/cuSNzEiIiamjMzc2hUqnkjkEvoXpfoN29excA0KJFC5mTEBFRQ3P79m1YWFjIHYNeQirx6BZTPVVVVYWrV6++lL/F3LlzBy1atMDly5f5F/wxHJfqOCbGcVyM47gYVxfj8jL+30PKUO/voL3yyitwdHSUO8YLsbCw4D+iRnBcquOYGMdxMY7jYhzHhZSAbxIgIiIiUhgWaEREREQKwwJNwczMzDBv3jyYmZnJHUVROC7VcUyM47gYx3ExjuNCSlLv3yRARERE9LLhHTQiIiIihWGBRkRERKQwLNCIiIiIFIYFGhEREZHCsEBTmJiYGPj4+MDc3Bx2dnYICgrCuXPn5I4lu/j4eHh5eUkfIOnr64v09HS5YylObGwsVCoVpk2bJncUWc2fPx8qlcpgadWqldyxFKGoqAijRo2CjY0NNBoN2rVrh99//13uWLJycXGp9npRqVQIDw+XOxo1YPX+mwReNpmZmQgPD4ePjw8qKysxc+ZMvPnmmzhz5gx0Op3c8WTj6OiI2NhYuLm5QQiBxMREDB48GMePH0ebNm3kjqcI2dnZWLVqFby8vOSOoght2rTBnj17pHUTE/5zV1paiu7du8Pf3x/p6emwtbVFXl4erKys5I4mq+zsbOj1emn91KlT6N+/P4YNGyZjKmro+DEbCvf333/Dzs4OmZmZ6NWrl9xxFMXa2hrLli3DhAkT5I4iu7KyMnTs2BErVqzAwoUL0aFDB8TFxckdSzbz58/Htm3bkJOTI3cURfnkk09w8OBB7N+/X+4oijZt2jSkpaUhLy+P36NJsuEjToW7ffs2gIfFCD2k1+uRlJSE//znP/D19ZU7jiKEh4dj4MCB6Nevn9xRFCMvLw+vvfYaXn/9dYSEhODSpUtyR5JdamoqOnfujGHDhsHOzg7e3t5Ys2aN3LEUpaKiAt999x3Gjx/P4oxkxXv+ClZVVYVp06ahe/fuaNu2rdxxZHfy5En4+vri/v37aNy4MVJSUtC6dWu5Y8kuKSkJx44dQ3Z2ttxRFKNr165Yt24dPDw8UFxcjE8//RQ9e/bEqVOnYG5uLnc82fz555+Ij4/HRx99hJkzZyI7OxtTp06FqakpQkND5Y6nCNu2bcOtW7cwduxYuaNQA8dHnAo2efJkpKen48CBA3B0dJQ7juwqKipw6dIl3L59G1u3bsXatWuRmZnZoIu0y5cvo3Pnzti9e7c096xPnz4N/hHnP926dQvOzs74/PPPG/QjcVNTU3Tu3BmHDh2Stk2dOhXZ2dnIysqSMZlyDBgwAKampvjxxx/ljkINHB9xKtSUKVOQlpaGvXv3sjj7H1NTU7Rs2RKdOnVCTEwM2rdvjy+//FLuWLI6evQoSkpK0LFjR5iYmMDExASZmZn46quvYGJiYjDxuSGztLSEu7s7Lly4IHcUWTk4OFT7hcbT05OPf/+nsLAQe/bswXvvvSd3FCI+4lQaIQQ++OADpKSkICMjA66urnJHUqyqqiqUl5fLHUNWffv2xcmTJw22jRs3Dq1atUJUVBTUarVMyZSlrKwM+fn5GD16tNxRZNW9e/dqH9tz/vx5ODs7y5RIWRISEmBnZ4eBAwfKHYWIBZrShIeHY+PGjdi+fTvMzc1x7do1AECTJk2g0WhkTief6OhoBAYGwsnJCXfv3sXGjRuRkZGBXbt2yR1NVubm5tXmJ+p0OtjY2DToeYuRkZEYNGgQnJ2dcfXqVcybNw9qtRrBwcFyR5PV9OnT4efnh8WLF2P48OE4cuQIVq9ejdWrV8sdTXZVVVVISEhAaGgoP5KFFIGvQoWJj48H8HAe0eMSEhIa9KTVkpISjBkzBsXFxWjSpAm8vLywa9cu9O/fX+5opEBXrlxBcHAwbty4AVtbW/To0QOHDx+Gra2t3NFk5ePjg5SUFERHR2PBggVwdXVFXFwcQkJC5I4muz179uDSpUsYP3683FGIAPBNAkRERESKwzcJEBERESkMCzQiIiIihWGBRkRERKQwLNCIiIiIFIYFGhEREZHCsEAjIiIiUhgWaEREREQKwwKNGpR169bB0tJS7hiSixcvQqVSIScnp1b6y8jIgEqlwq1bt2qlv/pCpVJh27ZtddY/x52IahsLNFKEsWPHQqVSVVsCAgJq9TwjRozA+fPna7VPY/r06SNdg5mZGZo3b45BgwYhOTnZoF2LFi1QXFzcoL+W6UW4uLggLi7uqe2Ki4sRGBhYZ+fy8/OTvuUCUN4vAkT08mGBRooREBCA4uJig2XTpk21eg6NRgM7O7ta7bMm77//PoqLi5Gfn48ffvgBrVu3xsiRIzFx4kSpjVqthr29Pb/7r47Z29vDzMyszvo3NTWFvb09VCpVrfar1+tRVVVVq30S0cuBBRophpmZGezt7Q0WKysrab9KpcLatWvxzjvvQKvVws3NDampqQZ9pKamws3NDY0aNYK/vz8SExMNHj39887G/Pnz0aFDB2zYsAEuLi5o0qQJRo4cibt370ptqqqqEBMTA1dXV2g0GrRv3x5bt2596vVotVrY29vD0dER3bp1w5IlS7Bq1SqsWbMGe/bsAVD9EWdpaSlCQkJga2sLjUYDNzc3JCQkGLRNSkqCn58fGjVqhLZt2yIzM7PGDDdu3EBwcDCaN28OrVaLdu3aVSt6q6qqsHTpUrRs2RJmZmZwcnLCokWLpP2XL1/G8OHDYWlpCWtrawwePBgXL16U9o8dOxZBQUFYvHgxmjVrBktLSyxYsACVlZWYMWMGrK2t4ejoKF3Hs/a7fPlyODg4wMbGBuHh4Xjw4AGAh3cpCwsLMX36dOluZU0ef8T5aByTk5Ph7+8PrVaL9u3bIysrq8bjn+bxR5wZGRkYN24cbt++LeWaP38+AKC8vByRkZFo3rw5dDodunbtioyMDKmfR6/P1NRUtG7dGmZmZrh06RIyMjLQpUsX6HQ6WFpaonv37igsLHzuvESkfCzQ6KXy6aefYvjw4Thx4gTeeusthISE4ObNmwCAgoICvPvuuwgKCsIff/yBsLAwzJo166l95ufnY9u2bUhLS0NaWhoyMzMRGxsr7Y+JicH69euxcuVKnD59GtOnT8eoUaOeWBjVJDQ0FFZWVtUedT4yZ84cnDlzBunp6cjNzUV8fDyaNm1q0GbGjBmIiIjA8ePH4evri0GDBuHGjRtG+7t//z46deqEHTt24NSpU5g4cSJGjx6NI0eOSG2io6MRGxsrnXvjxo1o1qwZAODBgwcYMGAAzM3NsX//fhw8eBCNGzdGQEAAKioqpD5+/fVXXL16Ffv27cPnn3+OefPm4e2334aVlRV+++03TJo0CWFhYbhy5coz9bt3717k5+dj7969SExMxLp167Bu3ToAQHJyMhwdHbFgwQLpjuuzmDVrFiIjI5GTkwN3d3cEBwejsrLymfowxs/PD3FxcbCwsJByRUZGAgCmTJmCrKwsJCUl4cSJExg2bBgCAgKQl5cnHX/v3j0sWbIEa9euxenTp2FtbY2goCD07t0bJ06cQFZWFiZOnFjrd+uISGEEkQKEhoYKtVotdDqdwbJo0SKpDQAxe/Zsab2srEwAEOnp6UIIIaKiokTbtm0N+p01a5YAIEpLS4UQQiQkJIgmTZpI++fNmye0Wq24c+eOtG3GjBmia9euQggh7t+/L7RarTh06JBBvxMmTBDBwcE1Xk/v3r3Fhx9+aHRf165dRWBgoBBCiIKCAgFAHD9+XAghxKBBg8S4ceOMHveobWxsrLTtwYMHwtHRUSxZskQIIcTevXsNrteYgQMHioiICCGEEHfu3BFmZmZizZo1Rttu2LBBeHh4iKqqKmlbeXm50Gg0YteuXUKIh392zs7OQq/XS208PDxEz549pfXKykqh0+nEpk2bnrnfyspKqc2wYcPEiBEjpHVnZ2fxxRdf1HitjwAQKSkpQoj/j+PatWul/adPnxYARG5ubo19POlc/xz3f77OhBCisLBQqNVqUVRUZLC9b9++Ijo6WjoOgMjJyZH237hxQwAQGRkZT71OIqo/OPGFFMPf3x/x8fEG26ytrQ3Wvby8pJ91Oh0sLCxQUlICADh37hx8fHwM2nfp0uWp53VxcYG5ubm07uDgIPV54cIF3Lt3D/379zc4pqKiAt7e3v/iqqoTQtR492Py5MkYOnQojh07hjfffBNBQUHw8/MzaOPr6yv9bGJigs6dOyM3N9dof3q9HosXL8aWLVtQVFSEiooKlJeXQ6vVAgByc3NRXl6Ovn37Gj3+jz/+wIULFwzGB3h4Zy4/P19ab9OmDV555f835Js1a2bwxge1Wg0bGxtpXJ+lX7VaLa07ODjg5MmTRrM+q8dfSw4ODgCAkpIStGrVqlb6/6eTJ09Cr9fD3d3dYHt5eTlsbGykdVNTU4Ns1tbWGDt2LAYMGID+/fujX79+GD58uJSZiOonFmikGDqdDi1btnxim1dffdVgXaVSvfAk6if1WVZWBgDYsWMHmjdvbtDueSad6/V65OXlVSskHwkMDERhYSF27tyJ3bt3o2/fvggPD8fy5cuf+VwAsGzZMnz55ZeIi4tDu3btoNPpMG3aNOkxokajeeLxZWVl6NSpE77//vtq+2xtbaWfjY3h08b1efutrUnzj/f9qGCuywn5ZWVlUKvVOHr0qEHRCQCNGzeWftZoNNUK+ISEBEydOhU//fQTNm/ejNmzZ2P37t3o1q1bneUlInmxQKN6w8PDAzt37jTYlp2d/UJ9Pj5Ru3fv3i/UFwAkJiaitLQUQ4cOrbGNra0tQkNDERoaip49e2LGjBkGBdrhw4fRq1cvAEBlZSWOHj2KKVOmGO3r4MGDGDx4MEaNGgXgYQFy/vx5tG7dGgDg5uYGjUaDX375Be+991614zt27IjNmzfDzs4OFhYWz33dddWvqakp9Hp9reWqLcZyeXt7Q6/Xo6SkBD179nzmPr29veHt7Y3o6Gj4+vpi48aNLNCI6jG+SYAUo7y8HNeuXTNYrl+//q+PDwsLw9mzZxEVFYXz589jy5Yt0oTy551QbW5ujsjISEyfPh2JiYnIz8/HsWPH8PXXXyMxMfGJx967dw/Xrl3DlStXcPjwYURFRWHSpEmYPHky/P39jR4zd+5cbN++HRcuXMDp06eRlpYGT09PgzbffPMNUlJScPbsWYSHh6O0tBTjx4832p+bmxt2796NQ4cOITc3F2FhYfjrr7+k/Y0aNUJUVBQ+/vhjrF+/Hvn5+Th8+DC+/fZbAEBISAiaNm2KwYMHY//+/SgoKEBGRgamTp0qTfh/HrXVr4uLC/bt24eioqJneq08r6KiIuTk5BgspaWlRnOVlZXhl19+wfXr13Hv3j24u7sjJCQEY8aMQXJyMgoKCnDkyBHExMRgx44dNZ6zoKAA0dHRyMrKQmFhIX7++Wfk5eVVe10QUf3CAo0U46effoKDg4PB0qNHj399vKurK7Zu3Yrk5GR4eXkhPj5eehfni3wG1meffYY5c+YgJiYGnp6eCAgIwI4dO+Dq6vrE49asWQMHBwe88cYbGDJkCM6cOYPNmzdjxYoVNR5jamqK6OhoeHl5oVevXlCr1UhKSjJoExsbi9jYWLRv3x4HDhxAampqtXd6PjJ79mx07NgRAwYMQJ8+fWBvb4+goCCDNnPmzEFERATmzp0LT09PjBgxQporptVqsW/fPjg5OWHIkCHw9PTEhAkTcP/+/Re681Vb/S5YsAAXL17EG2+8YfBotK4sX75cupP1aDFWXPn5+WHSpEkYMWIEbG1tsXTpUgAPH1WOGTMGERER8PDwQFBQELKzs+Hk5FTjObVaLc6ePYuhQ4fC3d0dEydORHh4OMLCwursOolIfiohhJA7BFFdWbRoEVauXInLly/LHeWFXbx4Ea6urjh+/Dg6dOggdxwiIqpDnING9cqKFSvg4+MDGxsbHDx4EMuWLatxfhYREZFSsUCjeiUvLw8LFy7EzZs34eTkhIiICERHR8sdi4iI6JnwEScRERGRwvBNAkREREQKwwKNiIiISGFYoBEREREpDAs0IiIiIoVhgUZERESkMCzQiIiIiBSGBRoRERGRwrBAIyIiIlIYFmhERERECvNfqHrHzI/7zGkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "(sns\n", + " .FacetGrid(mpg, hue='class', height=5)\n", + " .map(plt.scatter, 'displ', 'hwy')\n", + " .add_legend()\n", + " .set(\n", + " title='Engine Displacement in Liters vs Highway MPG',\n", + " xlabel='Engine Displacement in Liters',\n", + " ylabel='Highway MPG'\n", + "))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAAPACAYAAABq3NR5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5hTZfr/8U+S6Y1p9DI0kQ6CIr2ooKCAIKhIFbGXVZefDQu6Yll3rVh3pSlipalUadKRJtKlSB2YGWaY3nN+f/Cd7IRJZpIwNbxf18VFkvOc59znzJN25ykmwzAMAQAAAAAAAPBK5ooOAAAAAAAAAEDZIQEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDESgIALGjZsKJPJJJPJpBkzZlR0OJeV1atX2669yWSq6HBKRe/evW3nM3ny5IoOByg1hZ+rq1evruhwKsTkyZNt16B3794VHQ5QosrwGWfcuHG2GMaNG1chMQAA4O18KjoAAAAAAAAqu9jYWO3YsUPx8fFKSEhQTk6OwsPDFRERoVatWqlFixby8eErNoDKiVcn2JkxY4buvvvuS6rjpZdeoleTF1u9erX69OnjdLvZbFZAQIDCwsJUs2ZNNWnSRG3atFH37t3Vs2dP+fn5lWO0ACTZvSaPGzdODRs2rLBYKpuGDRvq2LFjkqRevXqVW8/FnTt3av78+ZKk8PBwPf744+VyXFR+F38WW7Vqldu9SceNG6eZM2fa7huGUVrhAZKcf2fYv3+/rrzySrfqev755zVlypQijxfXbnv37q01a9Y43W42m1WtWjVFR0erXbt26tWrl0aNGqXw8HC3YpMuJP3eeecd/fzzz9q7d2+xZQMCAtSjRw/dfvvtuu222xQREeH28QCgrJAABFCqrFarMjIylJGRoTNnzuj333/X3LlzJV34knvXXXfp73//uxo3blzBkQKXj5dfftl2u3fv3iQAK4GdO3fa/i4xMTEkAAF4hZkzZ+q1115zubzVatUXX3xR6nFYrVYlJSUpKSlJf/75p77//ns99dRTmjx5siZOnCizueSZsLKysvTCCy/oww8/VGZmpkvHzcrK0vLly7V8+XI9+eSTeuyxxzRx4kSPEo8AUNpIAKJYderUUWBgoFv7REZGllE0Feevv/6q6BAqrRo1aig0NNTusdTUVCUnJys7O9vu8fPnz+ujjz7S559/rueee07PP/98iR/AevfuTc8FoIrguXqhtyW94FGV8BkHpemLL77Qq6++6lKCTZJWrlyp48ePX9IxfXx8FBMTY/dYfn6+EhMTlZKSYnssMzNTTz/9tPbs2WPXQ9aRM2fOaMiQIdq0aZPd4+Hh4erdu7fatWunqKgoBQcHKz4+XmfOnNGGDRv022+/2d4LU1NTNWXKFNWqVUuPPPLIJZ0jAJQGEoAo1uzZs5nEHMV68803nU7YnZSUpM2bN+vXX3/VtGnTdPbsWUlSdna2XnrpJe3atUvffvutyx8SAQAAUPnUrFlTZ8+e1cmTJ7Vy5UrdcMMNLu1XeOGZgjrcVbduXR06dMjhtv379+v999/XJ598YkvMzZo1Sz169NCECRMc7pOUlKRu3brpyJEjtseaNm2qyZMn684775TFYnEaS1xcnL788kv985//9OhcAKAs8a0bQJmJiIjQTTfdpNdee03Hjx/XO++8YzcH4A8//KCnnnqqAiMEAADApRo5cqTtdkm96wqkpqZq3rx5kiSLxaI777yz1ONq3ry5PvroI/3nP/+xe/yVV15x2GvdMAyNHj3aLvk3ePBg7dq1SyNHjiw2+SddGBnz5JNP6siRI3rppZdKLA8A5YkegKgUMjMztWrVKv31119KSUlR9erV1blzZ7Vq1crjOrdv366dO3cqLi5OUVFRatSokXr16iVfX99SjNx1f/31lzZv3qwTJ07IYrGofv36uv766y9pcuDc3FytX79eR44cUVxcnIKCglS3bl316tVL0dHRpRj9pfPz89Pjjz+uzp076/rrr1dGRoYk6d///rf69++v66+/vtSOlZubqx07duiPP/5QYmKisrOzFRQUZFuUpF27dm4PbS+Ql5enNWvW6MiRIzp37pxq1Kih9u3bq0OHDqUWvyPZ2dnatWuX9u/fr7i4OGVlZSkiIkJ169ZVt27dSuXvffLkSW3atElnz57V+fPnFRQUpAYNGqhdu3Zq2rSp2/WdOHFCGzdu1NmzZ5Wenq4aNWqoVatW6tSpk0wm0yXHGx8fr19//VUnT55UZmamGjVqpOuvv77YaxEbG6tff/1Vx44dk9lsVoMGDdSvX79LmpsnOTlZa9eu1alTp5SYmKiIiAjb601AQIDH9RYoaHOHDx/WuXPnFBUVpQ4dOqhjx46lch0rm3379mn79u06efKkAgMD1ahRI/Xp00chISEVHVqlVtbPt+TkZK1Zs0anT59WUlKSatSooTFjxjh8T01JSdHWrVt14MABnT9/XpIUHBysunXrqlmzZmrVqlWV6vldlu8pVVl8fLxWrVpl97mmW7duqlWrVqkeJzk5WatXr9bx48eVmZmpmjVrqmfPnmrUqFGpHqesHTp0SHv27NGxY8eUmpqqoKAgRUdHq0OHDmrZsmWVfz0fNWqU3nvvPeXn52vu3Ln66KOPikwRc7Fvv/3W9nnwxhtvLPW2U9g999yj2bNna9WqVZIuvGbu3LlTV111lV25GTNm6Oeff7bdv/766zV37ly3X7OCgoI0efJkXX/99UpISLj0EwCA0mAAhUyfPt2QZPu3atWqUqv7pZdestXbq1cvwzAMIzs723jmmWeM8PBwu+MW/Lv66quN3377za3jLFu2zGjevLnD+mrWrGm8+eabhtVqNQzDcPlcY2JibOWmT5/uVrmDBw8a/fr1M0wmU5F4LBaL8eCDDxopKSlunePZs2eNBx54wAgLC3N4nhaLxRg4cKBx8OBBt+p1xapVq+yOVdz1cGbWrFl2dRS0B1eOV5zMzEzjhRdeMKpXr+7wuhT88/X1NXr37m0sW7bM5WNarVbjn//8p1GzZk2HdbZs2dJYsWKFS+ffq1cv234vvfSS03JJSUnGJ598Ylx//fVGQECA0/MxmUzGddddZ6xbt86l4xeWn59vfPnll0abNm2KvWYxMTHGc889ZyQmJpZY59y5c4327ds7rat27drG1KlTjfz8/BLrGjt2rG2/sWPHGoZhGPHx8cadd95p+Pr6Fqnb39/feOqpp4zc3Fy7ek6ePGkMHz7cMJvNRfbx8/Mznn/++SL7lGTHjh3GgAEDHMYhyQgODjb+9re/GefPny+xrsKvvTExMYZhXGhz//rXv4xatWo5rL9Zs2bG0qVLndZZ+DXX1X+XytXXVEflNm/ebHTp0sVhXIGBgcbzzz9v5OTkXHKMFyv8ul3ca5GrHL3XOTueK/8K2r0zZf18O3PmjDFixAjD39+/SN1JSUl2+588edIYPXp0sa9XkozQ0FBj+PDhxqFDh1y8qkVlZmbavQe++OKLbu3/7bff2sV04MABh8cojfcUd5XGZ7HCf8uSntuufsYpEBsba9xxxx2Gj49PkWvh4+NjDBs2zDh9+nSROIpry47KpaSkGPfdd58RGBjo8Lr37du32M85sbGxduVL+jx55ZVX2pX/8ccfiy1f+L3873//e5HtVqvVWLZsmXH33XcbtWvXLrYN1atXz3jvvfeKfY3LyMgwqlWrZtunuM8PjhT+7GUymYyjR4+6tf/FLm6nsbGxRv/+/W33p02bVmId3bt3t5X/9ttvjddff93ldlv4+he8b5bkww8/tKv/888/t9tutVrt2kFoaKhx/Phxl+oGgKqABCDslGcCMDEx0bj22mtL/PITFBRkrFmzxqVjXPzBwdm/wYMHG7m5uS6fq6cJwCVLlhihoaElxtO5c2cjLS3NpXNctGiRS3VKF5IhCxcudKleV5VGAtAwDKNjx44ufTB3NQF47tw546qrrnLpuhT8+9vf/ubSMXNzc43BgweXWJ/JZDL+9a9/lXjuriYAP/jgA7fOx2w2G++8806Jxy8QFxdndO3a1a1jFPc8SU9PNwYNGuRyXTfccIORnp5ebIwXfynct2+fUa9evRLrHjJkiC3Rv2PHjhK/wEsyRo8e7fK1e+WVVxwmEx39a9CgQYmJjosTgNnZ2cYtt9xSYt0Wi8X4+uuvHdZZlRKA06dPN/z8/EqMb9CgQUZeXt4lx1lYVU0Alsfzbdu2bU5/9JDsE4Dbtm0zIiIi3Dq3efPmeX6hDcMYN26cra6mTZu6tW/h1/RrrrmmyPbSfE9xV2VOAP7xxx9GdHR0ideidu3axu+//+5xAvDo0aNGs2bNSjxO9erVjb179zqtt3Ay56233nJa7uJkoeQ4qVcgMzPTLinuKFmYmprq9mvwddddVySxXtgDDzxgK9uwYUPb+5wr+vTpY9v3+uuvd3k/ZxwlAL/++mvb/Z49exa7/6FDh2xlIyIijKysrDJPAC5evNiu/jfeeMNu+08//WS3/eGHH3apXgCoKhgCjAphtVo1YsQIbd68WRaLRf3791fPnj0VFRWl+Ph4zZ8/37bqVkZGhkaNGqW9e/cWOwRs5syZevbZZ+0eu+GGG9S3b19FRUUpNjZWCxcu1G+//aYFCxbo5ZdfLtNz3Ldvnx577DGlpqaqRo0auu2229SqVSv5+/tr3759+vLLLxUXFydJ2rRpk55//nm98847xdY5f/58DR8+XHl5ebbHevTooRtuuEF169ZVRkaGtmzZoh9++EGZmZnKzs7WbbfdpuXLl6tXr15ler7u+tvf/qYxY8bY7i9fvlxXX321x/Xdd9992rFjh+1+8+bNNWDAADVt2lRBQUFKS0vTqVOntGPHDq1Zs0aZmZku1z158mQtWLBAktSqVSsNGzZM9evXV2JiopYtW6YVK1bIuPCDiiZOnKhatWrZzYVTGurUqaPu3burXbt2io6Oltls1unTp7V69WrbcBar1aonnnhCjRs31qBBg4qtLz4+Xl26dNHhw4dtjwUHB+umm25Sp06dFB0drfT0dB0+fFhr167V9u3bi60vOztb/fr10/r1622PRUdHa/DgwWrXrp2Cg4N1/PhxzZ07V3/88Yck6ZdfftHQoUO1ePFil4Y+paWlaejQoTp58qRCQ0M1bNgwXXXVVQoMDLSt6JeUlCRJmjdvnj777DMNHjxY/fv3V3x8vEJDQ3XbbbepQ4cODvf54osvNHDgQA0fPrzYOCZOnKh///vftvt+fn66+eab1bVrV0VGRurcuXP65ZdftGzZMknS8ePH1atXL+3cudPlodoPP/ywfvrpJ0lSnz59dMMNN6hWrVpKTk7WkiVLbHXn5+fr3nvvVbdu3VSvXj27OiIjI9WkSRNJsvs7e7K6e1lavXq1pkyZory8PMXExGjo0KFq1qyZTCaTdu3apS+++EKpqamSpIULF2rq1Kn629/+VsFRe65hw4by8fFRamqq7T3A0QqWBWrWrFnksfJ4viUlJem2227T2bNnFRAQoIEDB6pLly4KCwvTmTNn9OOPP9rqycjI0JAhQ2zPJUnq2bOnevfurXr16snX11cpKSk6dOiQfvvtN23ZskVWq9X1i+bEqFGjbAsIHDp0SJs3b9a1117r0rktXrzYdt/R63VZvqdUVWfPnlXfvn3thjM2atRIt99+u5o0aaKMjAxt2rRJ8+fPV2xsrG6//Xa1adPG7eNkZGRo8ODBOnjwoAICAjRo0CB17txZ1apV06lTp/Ttt99q9+7dki68l40ZM0abN292OESzd+/eOnDggKQLrzUTJ050eMzVq1e79FiBTZs2KTs7W9KFuet69OhR7Dn5+/urW7duuuaaa1S3bl2Fhobq/Pnz2rFjh+bPn29bqXblypUaP3685s6d67CeCRMm6JNPPpF0YWqZVatW6brrriv22AVlC5/P+PHjS9zHE4MHD1Z4eLjOnz+vtWvX6ujRo06Hahde/OPOO++Uv79/mcRUWOHPz5KKzM9X+HVBktNFQgCgyqroDCQql/LqAVjQc6Zx48bG77//7rD8q6++ahfLe++957TuM2fO2A0jDgkJcTo07rPPPjPMZnOR3jul3QOwoP5x48YZqampRcomJiYaV199ta28r6+vkZCQ4LTu48eP251jnTp1jF9//dVh2SNHjhitWrWylW3cuHGJPT9cVVo9AC/+tf3GG2906XiOHD582K7M66+/Xuyv4unp6cb06dONjz76yKVjFvwtp0yZ4rDexYsXGyEhIXa/ZMfFxTk9vqs9AKdOnWr079/fWLlyZbHD9zZt2mQ0aNDAVmfdunWLHc5qtVrthulIMm677TYjNjbW6T4HDhwwJkyY4HSY8RNPPGFX34MPPuiw3RcMpS5c9uOPP3Z63MK9QgqG0Xfv3t02vKywU6dOGY0aNbLrEXDrrbfaeiI4Or+TJ08aDRs2tO3Trl07p7EYhmEsWLDALvbu3bsbf/31l8Oyy5cvtxuieMcddzitt/Brb0F7i46Odvq6NGvWLLtpBZ544oli4y6r13VPj+Po+fXss88a2dnZRcoeO3bM7u9ao0YNt4drF6e8ewAWcDTs21Xl8Xwr+Ne+fXvj8OHDxcbz+eef28oHBgYav/zyS7HlY2NjjVdeecVYvXq1ayfsRH5+vlGnTh3bsR999FGX9vv0009t+1gsFuPMmTN220v7PcVdlbUH4IgRI+zqfOSRRxw+Z/ft22dcccUVds9vyfUegAX7XH311Q6Hqebl5Rn333+/XSwLFixwWO+cOXNsZapVq+a0B3Hh+iwWi+1/Z1M4FH6ed+zY0WGZ1NRUo0GDBsbHH39cbK++8+fPG7fffrvd+SxatMhp+cJD/keNGuW0XGEvvviibZ/w8HAjMzPTpf2K46gHoGHYX8vJkyc73Ndqtdq1u02bNhmGUXQkT3E86QH4r3/9y67+mTNn2m0vPB1KeHi4Wz0sAaAqIAEIO+WVACz4IObsi3OBHj162Mp37tzZabmnnnrKpQ+CBd54440iX3JKOwEoybj11luLjePAgQO2D5qSjE8++cRp2TvuuMPuQ0lJQwpjY2ONyMhI2z5Tp04ttryrSisBaBj216tGjRouHc+Rwl8+r7rqKo/jcXZMScbjjz9e7D7z58+3K//kk086LetqAtCdD+h79+61G0L5/fffOy07d+5cu1hHjBjh0vxgzuzZs8cuGeXKl/DnnnvOVr527dpOEzoXf4lt0qSJw0RHgYv/DpKMK664otgh9vPmzbMrv3//foflcnNz7YYfX3311UZWVlax57l06VK7unfv3u2w3MWvvT4+PsaWLVuKrXv06NF217A4ZfW67ulxLv4blTR0csWKFXbllyxZUmoxV7UEYHk+32rUqGHEx8eXWH/htlhSMrq0/f3vf7eL15Uh4j179rTt4+jHp9J+T3FXZUwA7t27166+oUOHFlvn4cOHjeDgYLt9XE0AFjwnips/NTs722jSpImt/J133umwnKvzABYMFTabzcZdd91lK+9sHsCS5v8zjAsJakcJUkfy8vKM3r172+q85ZZbnJadOnWqrVxQUJCRnJxcbN0XJ9sefPBBl2IqibME4MaNG22PNW7c2GESrfBrevPmzW2Pl3UCsEOHDnb179u3z7YtIyPD7rW1NIZJA0BlU3WWYEOF6NOnj0wmk8v/3FlJ89lnn3U65KnAvffea7u9Y8eOIl33pQtD4GbNmmW737dv3xKHPz755JNlvnqcj4+Ppk6dWmyZZs2a2Q3N3bJli8NyJ0+e1A8//GC7P2XKFNvQPmdq1aqlSZMm2e5/9tlnroRdrho2bGi7nZiY6HE9Z86csd2+4oorLiUkh6Kjo/XKK68UW2bw4MHq16+f7f4XX3yh3NzcSzquOyvItmjRwm4Y29KlS52Wffvtt223a9asqY8//viSVuR8//33ZRiGJKlevXp66623StznxRdfVPXq1SVdWJn3xx9/dOlYb775ZrFTAdx8881FXofeeOMNBQcHO93nlltuUbVq1Wz3nT0Pv//+e508eVKSZDKZNH369BKHLPXr108DBw603Xf1eThhwgRdc801xZYp/PoYGxurEydOuFR3ZRMZGanXX3+92DLXXXedGjdubLvv7G90OSjP59tLL73k0rD1sn4NLs6oUaNst+Pi4rR8+fJiy584cUJr1651uH+BijwfR9z9LGYymTRz5sxSjWHatGm22xaLpcQpSxo3bqwnnnjC4+O9+eabdq/LF/Pz89PYsWNt9529JtSqVUtXXnml7b6jYb1nzpyxDRNu3769Bg8eXGz5rKws2zQ10oVhxo6YzWb5+fk5PYfCLBaL3dQ0K1asUH5+vsOyI0eOtE3jkJGRoW+++abYuleuXKljx47Z7pfV8N8CnTt3tl3zI0eOaN26dUXKFB7+W/jvWJZefPFFu+lMWrRooebNm9vuJyQk2F5bJZX4HQUAqiISgKgwrrzhd+7c2XY7Oztbf/31V5Eyu3btsvuwPm7cuBLr9fX1LfU52i5WMC9fSQqfY8EH0It9//33tuRnSEiIyx/eRo8ebbu9a9cuu3l7KoPCiZq8vDzbHDjuCgoKst3etm3bJSfeLnbnnXcqNDS0xHKFEzLx8fF2XxDKw/XXX2+7vW3bNodlzp49a/dh/L777iv2S1ZJDMPQt99+a7v/wAMPuDSPj7+/v91ceytWrChxn7CwMLsvZo74+PjYzTkVFhZW4g8CPj4+atu2re2+s+fh119/bbt9/fXXq3Xr1iXGLNk/D105T8m117FrrrnGLnHrLO7K7vbbb3dpTkJXXiu9XXk+3ywWi0aMGOFSXIVfg8v7da99+/Zq2bKl7f7s2bOLLT9nzhzbl/ygoCDdeuutRcqU9XtKVVQw76h0ISHfoEGDEvdx5XXMkYL5WktS+DXh6NGjTv9OhRN0BXPmFlY4ydenT58Sy7s7/5+runXrZns+Z2Zmau/evQ7LhYeH212f6dOnF1tv4eRt27ZtL2m+ZVcV/ox/cTI6LS3NNseh2Wy2e48sTVarVQkJCVq0aJH69++vf/zjH3bbp0yZYnf/4h+iL+WzEQBUViQAUaw6deqoSZMmLv8r3EOjODExMapVq5ZLxy/s/PnzRcpcnOhwdbGLsl4Uw5WJyCX7c3R0fpLsJnrv3bu3yz3DqlevbtfL7rfffnNpv/JycU+ugon+3dW+fXvb7cOHD2vkyJGKjY29lNDsFO7ZV5y+ffva3d+6dWupxeCKwosFnDp1ymGZi3+Jd/Tl1x179+61m/j/pptucnnfTp062W670javuuoq+fiUvHZV4evQoUMHt/dx9jzcsGGD7ban57lv3z6lpaUVW97X11cdOnQosd6AgABFRkba7juLu7IrzddKb1eez7fmzZsrIiLCpboLvwbPmjVLr732WrkuilG4F9/8+fOVkZHhtGzhBOHgwYMd9igu6/cUd7n7WaxJkyYu/WjlqouTUa5+fmrSpIlLP4RezNXX7cKvCYZhKDk52WG5wgm9devWFelZVzgB2Lt3b9WoUUMtWrSQJO3cubNIvYXLt2/fvtQSRRaLxa7HrbP3ccl+cYqNGzc6/VEkOTlZ8+bNs92/++67SyHSko0ePdr2A9V3331n93rw3XffKT09XZLrP5aX5NixY0V6wVosFlWvXl0333yzlixZYld+0qRJGjJkiN1jF38GLW7kQGFTp051qVeuo04MAFDeSACiWLNnz9ahQ4dc/lfSSqEFXEn+SUXffAs+MBR29OhR2+3Q0FCXP0gUfLgrK56co6Pzky703ivgbtyFExsFwxcri4s/bIWFhXlUT8+ePe2GcXz33XeKiYnRjTfeqLffflvbtm1zOpTGFa1atXKpXLVq1VS/fn3b/YMHD3p8zMJyc3P1448/6t5771WnTp1Us2ZNBQYGFvlwWTgB6eyL0L59+2y3/fz8PFqhsbDCbVNyr3262zY9eU45WkG1pH0cPQ9jY2MVHx9vu+/peVqt1hITCZGRkfL19XWpbldePyq70nyt9Hbl+XwraZqJwsaNG2c31HHSpEmqXbu2Ro4cqWnTpunQoUMu1+WJu+66y7YicVpamm3V9ovt3r3b7ho6Gv4rlf17irvc/Sx26NAhDR06tNSOf/LkSbspWNxpd5581irNz4iSfQIwJSWlyGfVgoRe4d58BftYrVb9+uuvDstfXHdx9uzZoxdeeEE33nijYmJiVK1aNVksliLv44WTfs7ex6ULSdjCw9Od9QL8+uuvbck3Pz8/p22+tNWrV882KiElJcUuCVl4+K+nvUQvJa5vvvlGr776apFtFyfNL9f3GQDejQQgKoQ7c5sVVnhujgKFe4K42lvB3bKe8OQcHZ2fJJ07d852+6233nJrHqDNmzfb9q1svWYKx+Pr6+txjwWz2ayvv/7a7pfz3NxcLVu2TH//+9919dVXKyoqSkOGDNHXX39tG7rjqho1arhctmCeLUl2PXU8tWTJEl155ZUaNGiQ/vvf/+q3335TXFycsrKyit3P2fbCbcmdRJMzheuTLnwhc7Vt9u/f37afK23Tk+dUaT0PLz7Pm2++2eXzvHh4a0nnWpqvj1VBab5WervyfL6583rcsGFD/ec//7HrtZWcnKyvvvpK99xzj6644grVr19fEyZMcDin2qWKiYlR9+7dbfedDQMu/Hj16tWd9u4u6/eUqubi9lLWn7VK+zWwuHkAC8//d9VVV9l68xVO7BUu7+r8fwViY2N12223qXXr1nr11Ve1bNkyHT9+XCkpKbJarcXuW9L7/D333GO7/cUXXzhMShce/jtw4ECX5vQsLYWHARck/Y4cOWKbgzMsLOySRyEU8PHxKdILtlmzZurYsaNuvPFGPfXUU/r555/1119/6fbbb3dYR+Ee9VLxCdjCwsPDHfbCLevvGQDgCRKAqPJycnJst12dbNndshXN1Q8hJSluWFRFKDwcIioq6pLqateunXbs2KExY8Y4/NsmJydr/vz5GjFihK644grb/DOucGV+sgKF544qaahnSebMmaObb77ZrpdrgWrVqqlu3bp2HzYvHjLvSOFel8UtpuEqb22bFyut85Qq/7mi8irP55srQzALGzNmjNatW+d0eOjJkyf1+eefq0+fPurcubN2797tVv0lKdyzaenSpUXmvDUMQ3PmzLHdv+OOO4o9x7J8T6lqCn/OkqrmZy1nCT1nvfmclXdn/r/Y2Fj16NHDYdvw9/dXrVq11KhRI7v38cJtsqQfOsaNG2crf/r06SKLf+3du9ducZSyXvzjYkOGDLGN7FixYoVOnTqlmTNn2s7L1flfXVG3bt0ivWAPHDigrVu3asmSJXrzzTc1YMAAWSwWp3VER0fbehJL0vHjx1069qhRoxz2wn3ssccu+bwAoLS59+kOqIQKDxt1J+Hi6XxzFSEoKMi2QEZkZKTHvypWpl8jY2Nj7T5cuTLnWUnq1aunmTNn6t///rd+/vlnrVy5UmvXri2SQDtx4oRuu+02ffzxx3rggQdKrDczM9PlZFnhL9aXkmA7c+aM7r//flsPgbCwMD3yyCMaOHCg2rZta5doLLBq1Spdd911xdZbuFfPpSYoJRWJw51hg1XJxedZt25dj3upeLofUNmfb9dee61Wr16tgwcPatGiRVq1apXWr19fpOfi5s2b1blzZ61Zs0YdO3YslWMPHz5cjz76qHJycpSXl6dvv/1WDz30kG37+vXr7VZCdWUhsLJ6T6lqLp6eoyp+1urdu7c+/fRTSdLatWuVn58vi8XiNAFYMA/gvn37tHPnTp0/f17h4eFuzf/32GOP6fDhw7b7AwcO1Pjx49W5c2enw5xjYmJcTjzVrFlTt9xyi+bPny/pwjDgAQMG2LYXHhZct25d3XjjjS7VW1qCgoI0fPhwff7557JarZo1a5ZmzZpl217ew39LEhgYqNatW+uPP/6Q5HwxNQCoykgAosorPJwhPj5eWVlZLn3Brmzz4RUnKirKlgB86KGHiqxkVhVd/Et1aS7KEh0drbFjx9qGn/z111/68ccf9fnnn+v333+3lXvyySd16623ljjfUFxcnMvJvMLzxF1KwnX69Om2L05BQUFav359iavOujKsr3BPy8TEROXm5l7SMOCLe27u37/f7Z5DVcHF5zlz5ky7VZeB8lBVnm/NmjVTs2bN9Pjjj8swDO3YsUPz5s3T559/bpsDMz09Xffee6/LcweXJCIiQgMGDLAlQ2bPnm2XACw8/LdJkyZ2K8iWpLTfU6qai4eNnjhxwuV9K8tnrcLJvdTUVG3btk2dOnVyOP9fgT59+mjfvn22eQAHDRrk8vx/p0+f1g8//GC7/+KLL+rll18uMU53p2qZMGGCrc0vXLhQ586dU1RUlPLy8vTFF1/Yyo0ZM6bY3m9lZezYsfr8888lSa+//rrtc03Tpk3VrVu3co+nJD169LAlAJOSkvT777+rXbt2FRwVAJQehgCjyiu8iEF+fr7tjbskO3bsKKuQSl3huWuKWxWuKvnggw/s7l+8gm5patiwoR599FHt2LFDTz31lO3xzMxMu4mpndmzZ49Lx0lOTrb7YtSsWTP3g/0/K1eutN0eM2ZMick/SQ6HCl+sZcuWtts5OTkuP1+cKdw2pQtferxRnTp17JLA3vI8RNVSFZ9vJpNJHTp00D/+8Q/9+eefdkmTHTt22C1MdKkKDwPesGGD7TUxNzdX3333nW2bK73/inOp7ylVTe3ate2SgK5+fsrJybFbPbgiOZoHsPD8fx06dCjS0/HiYcDuzP+3atUq21DXatWqadKkSSXGmJiYaPux11U33XST6tWrJ+nC9f7qq68kSYsWLdLZs2dt5cpr9d+L9ejRw9ZTuXBv0MLzA1YmhedKlWRLXgKAtyABiCqvU6dOMpv/15QLfgktiavlKoPCveMuXo2uKvriiy/sen1cf/31uuqqq8r8uCaTSa+99ppdLxpXvnwuW7bMpfqXL19ud/+aa65xL8BCCn+xd/XX51WrVpVYpvBE+dKlPw86duxolxhbs2bNJdVXWfn4+Nj1Vqhq51m4l1hJE8+jfBTueevq36SqP9+Cg4P17rvv2j1WmgnAW265xW5IZkEyZOnSpXbDkC81AVjA0/eUqujaa6+13V64cKFLC/EsWbKkxIUsytPFCb2SevNdXN6d+f8Kv4c3b97cpbkQXXkPv5jFYrEbSlsw7Lfw8N8ePXrYrRhc3saMGWN332QyFXmsshgwYIDdj7czZ87kBz8AXoUEIKq8GjVq2M179tlnn5U4Ufq+ffv0448/lnVopea2226zJTkPHz6sxYsXV3BEntu0aVOROZJeeOGFcju+xWKxmzcrLy+vxH2++eYbl+Y8KvxLcfXq1e2+MLmr8JcrV75AHTlyxKV2UaNGDbuE8n/+8x+3exwU5uPjY7eK34cffuhxXZXd8OHDbbe/+eabIosMVGaFk0aX8vdG6fHkb+INz7eLe0a78hrsKn9/fw0bNsx2v2DYb+Hhv9dcc80l9c6+mCfvKVXRiBEjbLdPnjzpdKXlwv75z3+WZUhuK5zQW7dunVasWGG736dPnyLlq1evbus1//vvv9v9YFbS/H/uvodL0tSpU10qd7Hx48fbFq/YsWOHli9frp9//tlue0UaO3as2rVrZ/s3evRoNWjQoEJjcsZsNtv16k1JSdH48eP54QyA1yABCK/w8MMP224nJCQU+2adlpam0aNHV6kP6VdccYWGDh1qu//AAw/YDe1wRUX/Cp+Tk6N3331XvXr1slso4+mnn77k+f9cnTBbunAd/vzzT9v9mJiYEveJj4/X5MmTiy3z448/asmSJbb7o0ePvqS59erXr2+7XfiDvCO5ubkaP3688vPzXar7ySeftN0+c+aMHnzwQZd6czjz9NNP2758bN68Wa+//rpb+xuGYetVUZmNHj1adevWlXRh/rKxY8e6fM0LVNTzsHA7L+3VV+GZwn+T5ORkl+dKq4zPt8KLa5Tk4mkHXHkNdkfh3n379u3Tr7/+qoULFzrc7kxZv6dURUOHDrWb2/CJJ56wO++Lvf7661q/fn15hOayi+cBLEhi+vj4FOkdf/E+VqtVn332mcO6HCn8Hr579+4S29R//vMfux6J7mjUqJHdD+GjR49Wbm6upAsLfxX+8aoixMTEaOfOnbZ/M2fOrNB4SjJ+/HjddNNNtvvLli3T8OHDK/xzNACUBhKA8Aq33nqr3epmc+fO1XXXXaeNGzfaHsvPz9fixYvVqVMnbdu2TS1atKiIUD32r3/9S5GRkZIufDnp1KlTkSGnF7NardqwYYMmTJhg12ukvCQlJWnp0qWaNGmSYmJi9MQTTygnJ8e2/fbbb3f7y6sjL774ojp27KhZs2YVu+JgVlaW7r33XiUlJdkeGzhwYIn1m81m/fvf/9abb77pMFG2bNkyuy+VEREReuaZZ9w8C3uF50T85Zdf9O9//9thubNnz2rw4MFas2aN3VD44gwaNEi33HKL7f5XX32l22+/vdik8uHDh/XAAw9ow4YNRba1bt3aLqn43HPP6eGHH1ZiYmKxcSQkJOjTTz9V69at7Z6rlZWfn58+/vhjW/Jl0aJFuv7663Xw4MFi98vKytKCBQt044036s033yyPUIso3Bv1k08+ueS5H3HpWrZsadcL8JlnnnGpJ2BlfL716dNHQ4YM0dKlS4tNip86dUr33Xef7X7t2rUvaaoER3r37m2bE0268GW+4Ecni8WiO++8s8Q6yvo9pSoKDAzU22+/bbufkJCgLl266PPPP1d6errt8YMHD2r8+PF67rnnZDabi8xbWZEungcwMzNT0oX5/0JDQx3uUzjRV1D+4scd6dOnj23Rjfz8fI0aNcrhAh9Wq1UffPCBHnzwQUly+X38YhMmTLDdLvxefvvttys4ONijOi9XJpNJX375pRo2bGh7bO7cuWrfvr2++eabEnsDGoah5cuXa+7cuWUcKQC4r/ItHYdKZeTIkQoMDHRrn5YtW9r92l5epk+frh49eujw4cOSLsyN1LVrVwUHBysyMtK2QrB0YZjQnDlz1L59e9v+FbE6mjtiYmI0Z84cDR48WFlZWTp+/Lj69eunVq1aqW/fvmrSpIlCQkKUnp6uuLg47dq1Sxs3brR9ECzNVXYLe/rpp/Xqq6/aPZaWlqbz58877WXi7++vSZMmadKkSbZkyqXavn27xo4dqwceeEBdunTRNddco7p16yosLExpaWnau3ev5s2bZ1uBUrrwxbDwohjOTJo0Sf/4xz/0zDPPaPbs2brttttUr149JSUlafny5Vq+fLldYvD9999X9erVL+l8JkyYoNdff932pX7ixIn69ttvNWjQINWtW1cpKSnatm2b5s2bp9TUVFksFj3//PMurTIoXXi+dO3a1daD4/vvv9fixYs1YMAAderUSVFRUcrIyNCRI0e0bt06bdmyRZKcfnl+44039Mcff9jmS/zoo480Y8YM3XTTTbrmmmts1+P8+fM6dOiQduzYoa1bt7rdg66iDRw4UJMnT9ZLL70k6cLrTPPmzdWrVy91795ddevWVUBAgK1H186dO7Vx40bbF+QuXbpUSNxjx4619V45deqU2rZtqzp16igqKsruC+fOnTsrJL7KYvPmzWratKlb+1x77bUuDYe8mJ+fn+666y7b32X27Nn69ttv1bBhQwUFBdnKDRo0SK+88ordvpXt+Wa1WjV//nzNnz9f0dHR6tatmzp06KAaNWooMDBQ586d09atW7VgwQK7HuBvvvmmxwkPZ0wmk+666y7b8NOCzwSSdMMNN6hmzZou1VOW7ylV1YgRI7Ru3Tp99NFHkqRz585pwoQJeuCBB1SzZk1lZGTYJUOfeuopxcbG2hbaqAyfs3r37m2Lp4Cj4b+Fy1+spPn/pAvJxrFjx2ratGmSpLVr16pZs2YaMWKEbVGvw4cPa/78+bZ4xo8frxUrVrjVo7bAkCFDFBUVZTfXZUGdcF9UVJTWr1+vW2+9Vb/99psk6cCBA7rzzjv10EMPqU+fPmrTpo2io6MVEhKizMxMxcfHa//+/Vq1apXd64J0YfqVwj/4AEBFIQGIYnmywmBFvcHVrl1bK1eu1IgRI+x6KaWnp9v9Ol2rVi19//33at68ud3+F6/+Vhn169dPq1at0tChQ20fLvbs2ePSKrVl9cE7Li5OcXFxLpUNDw/XXXfdpYkTJ6pRo0ZlEk9mZqZWrlxpt4quI4MHD7Z9iSnJSy+9pN27d2vevHn6448/nPaeMplM+uc//2m3EqWnwsPD9fXXX2vgwIG2ROqWLVtsibjCfH19NXXqVDVr1szlBGB0dLTWr1+vgQMHavPmzZIuPFe+++47u9UyXeXj46OffvpJjzzyiC2hkZGRoblz57r0K3hl+GLoqhdffFG1a9fWo48+quzsbBmGUWRCeWcq6jy7du2qSZMmacqUKbbHTp8+XSVWkS1PWVlZdgkjVxTubeau119/XRs3brS9puTm5hYZVln4h6oClfn5lpCQoAULFmjBggVOy5hMJk2ZMkWjR48ukxhGjhzpcP45T16by+I9pSqbOnWqwsPD9eabb9oSynl5eXYLJZhMJk2aNEkvv/yyXe/4yvA5q3fv3vr000+LPOZMwTyAhVczLmn+vwLvvvuutm3bpt9//13ShelE3n//fYdl+/Xrpw8//LDIZ1NX+fv7a9SoUXrvvfdsjzVv3lxdu3b1qD5IderU0Zo1a/Tcc8/pk08+sXUiSExM1A8//KAffvihxDqCgoL06KOPatKkSU57mQJAeWIIMLxKgwYNtHbtWs2ZM0e33HKL6tWrJz8/P9WqVUtdu3bV22+/rT179qhbt252v1JLcunDXGXQuXNn/fnnn5oyZYrdHDOOBAYGql+/fvrss880b968conPbDYrICBANWvWVNu2bTVkyBC9+OKLWr58uc6ePasPP/yw1JN/TzzxhP7+97+rZcuWJfYobNu2rWbNmqX58+fL39/fpfotFot++OEH/fOf/3Tae6Rly5Zavny5Jk6c6Hb8zvTt21fr1q1Tp06dnJbp1q2b1q5dazeszlXVq1fXhg0b9Pnnn5c4KX7Tpk01efLkYldr9vX11aeffqqNGzdqwIABJa562LRpUz366KPasmVLib0pKpt7771XBw8e1H333Vfia0d0dLRGjBihhQsX6tlnny2nCIt69dVX9euvv+ruu+9Wy5YtFRYWVuq9r+CeyMhIbdmyRZ988on69++vevXqudzrvjI93z788EONHTvWNkemM2azWTfeeKM2bNhQps+Ftm3bqk2bNnaPBQUFuTwVRlm/p1RlBcnb7du365FHHtGVV16p4OBghYWFqWXLlnrwwQe1bds2/eMf/5DZbLb7rFUZPmddnOwrbv6/Ahf3ECxp+G+B0NBQrVu3Tg888IDT52fdunX11ltvacmSJQoICHCpXmcuXln37rvvvqT6cOFz9DvvvKPDhw9r4sSJLiVog4KC1Lt3b3322WeKjY3VG2+8QfIPQKVhMi5l5negCvvll19s86z5+/srLS1NPj5Vr1Psvn37tGPHDsXHxys1NVXBwcGqWbOmmjdvrlatWl0WX0gKS0xM1K5du3TkyBElJCQoJydHoaGhqlOnjjp27KjGjRuXWMfq1avtPvAXfpnMzc3VmjVrdOTIEZ07d041atRQ+/bt1bFjxzI5nwJ79uzRpk2bFBcXp6CgINWuXVudOnWym6PmUh06dEi//fabzp49q7S0NIWGhqpBgwZq3769R0nbtLQ0rV+/XsePH7cNSwoPD1ejRo3UunXrEpMFVUVeXp5+++03HThwwK7N1atXTy1btlSzZs1Kbag74Exleb4dO3ZMe/fu1V9//aXz58/LMAyFhYWpSZMmuuaaaxQdHV0ucZSW0nhPuZzVq1fP1jtw1qxZZdbrs7I7d+6c1qxZo6NHjyovL0+1atVS06ZN1aVLl1L7IWbWrFkaO3aspAuJzRMnTtgt3ILScfr0aW3fvl0JCQlKSEhQbm6uwsPDFRkZqSuvvFKtW7eukt8nAFweSADisjVx4kTbwgodO3bU1q1bKzgiVBbFJQABAEDJdu/ebdcT848//rDNf4fS16dPH9tUFIMGDSp2GD4A4PLE2B9cluLj4zV9+nTb/ZtuuqkCowEAAPAuhVc9r1+/vlcvkFLRDh48qDVr1tju33vvvRUYDQCgsiIBCK+RlJSkgwcPllguLS1Nd955p211VZPJxCppAAAAJdiyZYtLveI//vhjffnll7b7d999N3OOlqHXXnvN9ndp0KCB+vfvX8ERAQAqI96J4TXOnj2rli1batiwYZo7d67i4+PttickJGjGjBnq0KGD3Wp+Dz/8MHP4AAAAlOCxxx5T27Zt9fbbb2v//v1F5shdu3athg0bpoceesj2eN26dfXkk09WRLhez2q1aurUqZo1a5btsaeeeqrCVpwHAFRuzAEIr7F//361aNHC7rGIiAiFhYUpNTVVSUlJRX61vvbaa7VixQoFBweXZ6io5JgDEACAojp37qzNmzfb7gcGBioqKkr5+fk6d+6ccnJy7MoHBwfr559/Vq9evco7VK+1cOFCvfjii8rPz9fx48eVkpJi29aiRQvt3LmzxFXBAQCXJ5Yogtfw8fGRyWSyS9YkJSUpKSmpSFmz2azRo0fro48+UlBQUHmGCQAAUCX5+vra3c/MzNTJkycdlm3durWmT5+uq6++ujxCu2wkJibq999/L/J4eHi45syZQ/IPAOAUCUB4jaZNm+rYsWNasGCB1q5dq7179+rUqVNKTU2VxWJRVFSUGjVqpD59+uiuu+4q0lsQAAAAzi1btkxLlizRypUrtX37dh09elRJSUnKzc1VeHi4atasqS5duujmm2/W4MGDmfevjPn4+Khu3bq68cYbNWnSJDVo0KCiQwIAVGIMAQYAAAAAAAC8GD/LAQAAAAAAAF6MBCAAAAAAAADgxUgAAgAAAAAAAF6MBCAAAAAAAADgxUgAAgAAAAAAAF6MBCAAAAAAAADgxUgAAgAAAAAAAF6MBCAAAAAAAADgxUgAAgAAAAAAAF6MBCAAAAAAAADgxUgAAgAAAAAAAF6MBCAAAAAAAADgxXwqOgD8T0JCQpkfw2KxKCIiQklJScrPzy/z43mLiIgIWSwW5efnKykpqaLDqTJob56hvbmPtuYZ2ppnaG+eob25j7bmGdqaZ2hvnqlK7S06OrqiQwBQgegBCAAAAAAAAHgxEoAAAAAAAACAFyMBCAAAAAAAAHgxEoAAAAAAAACAFyMBCAAAAAAAAHgxEoAAAAAAAACAFyMBCAAAAAAAAHgxEoAAAAAAAACAFyMBCAAAAAAAAHgxEoAAAAAAAACAFyMBCAAAAAAAAHgxn4oOAP9jsVjK7RjlcSxvxbVzHe3t0nHtXENbu3RcO9fR3i4d1841tLVLx7VzHe3t0nHtAFRmJsMwjIoOAgAAAAAAAEDZoAdgJZKUlFTmx7BYLAoLC1NKSory8/PL/HjeIiwsTBaLRfn5+UpJSanocKoM2ptnaG/uo615hrbmGdqbZ2hv7qOteYa25hnam2eqUnuLiIio6BAAVCASgJVIeb7R5ufn88buIa6b+2hvnuO6uYe25jmum/tob57jurmHtuY5rpv7aG+e47oBqMxYBAQAAAAAAADwYiQAAQAAAAAAAC9GAhAAAAAAAADwYiQAAQAAAAAAAC9GAhAAAAAAAADwYiQAAQAAAAAAAC9GAhAAAAAAAADwYiQAAQAAAAAAAC9GAhAAAAAAAADwYiQAAQAAAAAAAC9GAhAAAAAAAADwYiQAAQAAAAAAAC9GAhAAAAAAAADwYiQAAQAAAAAAAC/mU9EBAGXp3Kk47Vl9Rif2hSk320/+gdlq0CpVrXrXUXjN6IoODwAAAAAAoMyRAIRXslqt2vbzHu1YWldSA9vjOZlB2rM2QnvX5avToD1q17dVxQUJAAAAAABQDhgCDK+0a/le7VhaX86auGFYtHlBXe1bu698AwMAAAAAAChnJADhdbLTM7R9aXWXym75KUx5OTllHBEAAAAAAEDFIQEIr7N/w1Hl5fi7VDY7PViHth4p44gAAAAAAAAqDglAeJ2zR63ulT9CD0AAAAAAAOC9SADC6+TnmdwsX0aBAAAAAAAAVAIkAOF1QsLd6wEYEu5ewhAAAAAAAKAqIQEIr9OsS7Qbpa1q1qVOmcUCAAAAAABQ0UgAwuvUbFRHtRrHulS2QavTCq8ZVcYRAQAAAAAAVBwSgPBK191dR2FRicWWiagdr16jG5VTRAAAAAAAABWDBCC8UkhENQ2aWEPNrj0uH79su22+AZlq2f24Bj1RT4EhwRUUIQAAAAAAQPnwqegAgLISFBqi3qPbqsttmTq176SyM/PkH+yr+i3qyzegdkWHBwAAAAAAUC5IAMLr+QcFqnHHKyo6DAAAAAAAgArBEGAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALyYT0UHAJQ1a76hcyfzlZ1pKCDYpMi6FpnNpooOCwAAAAAAoFyQAITXyssxtGtltvaty1b6ecP2eGiUWS17+Kl1b39ZfEgEAgAAAAAA70YCEF4pJ9PQog/TFPdXfpFtqees2jw/Syf35enG+4Pl40cSEAAAAAAAeC/mAIRXWjM7w2Hyr7BTB/K04fvMcooIAAAAAACgYpAAhNc5fzZfR3fmulT2wKYcZSRbyzgiAAAAAACAikMCEF7n4KYcl8saVunP31wvDwAAAAAAUNWQAITXSU5wr0dfcjw9AAEAAAAAgPciAQivY3azVbtbHgAAAAAAoCoh9QGvU72BpUzLAwAAAAAAVCUkAOF1ml3rJ4uPa2X9AqUmHf3KNiAAAAAAAIAKRAIQXicgxKx2ff1dKttxQIB8/ExlHBEAAAAAAEDFIQEIr9Sxf4Ba9Sq+Z1+Hm/zVurdriUIAAAAAAICqysWBkkDVYjKb1G14kBpf5ac9v2br+O5c5eVIvv5Sw3a+atXLXzViaP4AAAAAAMD7kQGBV6vd1Ee1m/rIMAwZVslsYbgvAAAAAAC4vJAAxGXBZDLJxGK/AAAAAADgMsQcgAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXIwEIAAAAAAAAeDGfig6gIr366qvasmWLJOm6667T448/7rTsxo0btXjxYh0+fFjZ2dmKjo7WNddco+HDhyssLKycIgYAAAAAAADcc9kmANevX29L/pXkk08+0aJFiyRJZrNZ/v7+On36tBYsWKA1a9ZoypQpql+/flmGCwAAAAAAAHjkshwCnJ6erv/85z8KDg5WvXr1ii27dOlSLVq0SCaTSaNGjdI333yjb775Ru+9955iYmJ0/vx5vfrqq8rNzS2n6AEAAAAAAADXXZYJwBkzZigxMVGjRo1SeHi403K5ubn66quvJEkDBgzQ7bffLn9/f0lSo0aN9MILL8jf31+xsbFavnx5eYQOAAAAAAAAuOWySwDu3btXy5Yt0xVXXKH+/fsXW3bXrl1KSkqSyWTS0KFDi2yvUaOGevbsKUlavXp1WYQLAAAAAAAAXJLLKgGYm5urqVOnymQy6aGHHpLZXPzp79q1S5JUv359Va9e3WGZq666SpJ04MABZWVllW7AAAAAAAAAwCW6rBKA3333nU6ePKmbb75ZTZo0KbH8iRMnJEkxMTFOyxRsMwxDJ0+eLJ1AAQAAAAAAgFJy2SQAT5w4oe+//16RkZEaOXKkS/skJiZKkiIjI52WKbwtKSnp0oIEAAAAAAAASplPRQdQHgzD0Icffqi8vDxNmDBBQUFBLu1XMKS3YOEPRwpvy8jIKLa+L7/80raoiCMjRozQXXfd5VJsnjKZTJKkatWqyTCMMj2WNykYLm42mxUREVHB0VQdtDfP0N7cR1vzDG3NM7Q3z9De3Edb8wxtzTO0N8/Q3gBUFZdFAnDp0qXau3evOnbsqO7du1dYHOnp6YqLi3O6PSMjQxaLpVxiKWn+QzhmMpnK7W/kTWhvnqG9uY+25hnammdob56hvbmPtuYZ2ppnaG+eob0BqOy8PgGYmJiomTNnys/PT/fff79b+wYEBEiSsrOznZYpvK2knoXBwcGqUaOG0+1BQUHKz893K0Z3mUwmmc1mWa1Wftlzg9lslslkkmEYslqtFR1OlUF78wztzX20Nc/Q1jxDe/MM7c19tDXP0NY8Q3vzTFVqbyQogcub1ycAZ82apfT0dA0fPlzVqlVTZmam3faCF+n8/HzbNn9/f5nNZkVGRurIkSO2uQAdKbytpC7fo0aN0qhRo5xuT0hIKPN5BC0WiyIiIpScnFzmyUZvEhERIYvFIqvVylyPbqC9eYb25j7ammdoa56hvXmG9uY+2ppnaGueob15piq1t+jo6IoOAUAF8voEYMGQ2++++07fffed03Jr1qzRmjVrJEnvvvuuGjdurPr162vr1q06fvy40/0KtplMJtWrV68UIwcAAAAAAAAuHRM8FKNt27aSLiT5EhISHJbZsWOHJOnKK6+0DRkGAAAAAAAAKguv7wH42muvFbv9ueee0+7du3Xdddfp8ccft9vWtm1bRUREKCkpSfPmzdO9995rtz0+Pl6//vqrJKl3796lGTYAAAAAAABQKugBWAxfX1/dddddkqSffvpJ33//vW3Rj6NHj+of//iHsrKyVLt2bfXt27ciQwUAAAAAAAAc8voegJfqxhtv1NGjR7Vo0SLNmjVLs2fPlr+/vzIyMiRJ4eHhev755+Xr61vBkQIAAAAAAABFkQB0wQMPPKB27dpp0aJFOnLkiK3XX6dOnTRs2DBVq1atokMEAAAAAAAAHLrsE4AlzRFYoEuXLurSpUsZRwMAAAAAAACULuYABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi5EABAAAAAAAALwYCUAAAAAAAADAi/lUdABASfJzTyknfZPy8+Ikk0kW3/ryD+oqs09ERYcGAAAAAABQ6ZEARKVltWYoI2mW8rJ22z2el7Vb2alL5BfcU4HVhspkslRQhAAAAAAAAJUfCUBUSoY1R+kJHyo/95izEspJXyPDmqGgiDEymUzlGh8AAAAAAEBVwRyAqJSy01cVk/z7n9zM35SXvbccIgIAAAAAAKiaSACi0jEMq7LT17lcPjttTRlGAwAAAAAAULWRAESlY82LlZGf5HL5vOz9MgxrGUYEAAAAAABQdZEARKVjWLPc3MMqGTllEgsAAAAAAEBVRwIQlY7JHOLmHr6Sya9MYgEAAAAAAKjqSACi0jH71JDZp7bL5X0D28lkoikDAAAAAAA4QtYElY7JZJJ/SC+Xy/sH9yzDaAAAAAAAAKo2EoColPyCuso3oF2J5fxD+8vHv3E5RAQAAAAAAFA1kQBEpWQymRUUOV7+ITc4nN/PZA5RYLXhCggdUAHRAQAAAAAAVB0+FR0A4IzJZFFgtVvlH9pPuZnbZM2Nk0xmWXzr/9+8f74VHSIAAAAAAEClRwIQlZ7ZHCT/4B4VHQYAAAAAAECVxBBgAAAAAAAAwIuRAAQAAAAAAAC8GAlAAAAAAAAAwIuRAAQAAAAAAAC8GAlAAAAAAAAAwIuRAAQAAAAAAAC8GAlAAAAAAAAAwIuRAAQAAAAAAAC8GAlAAAAAAAAAwIv5VHQAQHGseVbtWJatfetzlJ1uSCYpJNys9v38dcW1vjKbyWEDAAAAAAAUh+wJKq24v/I0/f+laNuibGUkG8rPk/JzpeR4q9bMztRXz6cqI8Va0WECAAAAACqZGTNmyGQyyWQyacaMGRUdDlDhSACiUkpJyNfCd9KUn+u8TEaKoe+mpCovjyQgAAAAAACAMyQAUSmtnJkha37J5bLTDW2em1X2AQEAAAAAAFRRJABR6eRkWRX3lwvZv//z55acMowGAAAAAACgaiMBiErn+J5cyXC9fE6WlJfDMGAAAAAAAABHSACi0slO92CfjNKPAwAAAAAAwBv4VHQAwMUiaruflw4MK4NAAAAAAAAVLjs7W1988YUWLVqk7du3Kz4+Xnl5eapRo4batGmj6667TnfddZfq1KnjVr2GYWjDhg1aunSpNm7cqH379ikhIUEmk0lRUVHq0KGDbr31Vo0aNUp+fn7F1mW1WvX111/r22+/1Y4dOxQXFyfDMBQVFaXo6Gg1a9ZMffr00R133KGoqCiH5zhjxgzNnz9fu3bt0rlz52Q2mxUdHa3o6Gi1bNlSN9xwg4YNG6aQkBC3zhOQSACiEqpzha98/KQ8F6f2C69pltlMZ1YAAAAA8DarVq3S6NGjderUqSLbTp48qZMnT2rx4sWaPXu2duzY4Vbd99xzj6ZPn+5w26lTp3Tq1Cn9+OOPeuutt7Rw4UJdccUVDsueO3dOt9xyizZt2lRk2+nTp3X69Gnt2rVL33//vTIyMjRx4kS7MkePHtVNN92kgwcPFtn/xIkTOnHihHbs2KHZs2crJCREw4YNc+s8AYkEICqp5l38tHuNaxnAa24JKONoAAAAAADlbf78+Ro+fLjy8vIkSc2aNdPw4cN15ZVXyt/fX7GxsdqyZYt+/vlnGYYbE8n/n4yMDPn5+al79+669tpr1bRpU4WFhSk7O1uHDh3S3LlztWvXLu3fv1/9+/fX9u3bFRZWdPjZvffea0v+1a9fX3feeaeuuOIKRUREKD09XX/++ac2btyotWvXOoxj2LBhtuRf8+bNNXz4cMXExKhatWpKSUnRgQMH9Ouvv2rLli1unyNQgAQgKqXOtwXo9J95Sjxd/OIeTa/2VaOriu+KDQAAAACoWo4dO6YxY8bYkn8vv/yyJk2aJIvFUqRsVlaWVqxY4fYxHnroIX388ceKiIhwuP3FF1/Um2++qWeffVaHDx/W+++/r+eff96uTFxcnBYsWCBJ6tq1q1asWKGAAMedVOLj45WQkGD32NatW7V9+3ZJ0vDhw/X11187HeF27NgxjxKdgMQiIKikzGazhj4TokbtfWUyOdjuI7Xv56/rxgWXf3AAAAAAgDL1xhtvKDU1VdKFRN2LL77oMPknSQEBAbr55pvdPkbPnj2dJv8kyWQy6ZlnnlH37t0lSTNnzixS5siRI7JaL3RcGTlypNPknyRVr15dLVq0sHvs0KFDttvjxo0rdnqrmJgYNWzY0Ol2oDj0AESlZTab1XdCsPJyrNq5PFvnTubLbDapzpU+atHdl3n/AAAAAMAL5efn66uvvpIk+fv7a/LkyRUaT/fu3bVu3TodOnRI586ds1vEIzj4f51Stm3b5nbdF+8/YMCASwsWcIIEICo9Hz+zrr45sKLDAAAAAACUg127diklJUXShWG11atXL7Nj5eXlae7cuZo/f7527typ06dPKzU11dar72InT560SwC2bNlSdevW1alTpzRt2jTl5+fr3nvvVefOnZ32WCysW7duCgoKUkZGhl555RWdO3dOY8eOVfv27WVyNBwO8BBdqAAAAAAAQKVx8uRJ2+2WLVuW2XEOHDigdu3a6Y477tCcOXO0b98+JScnO03+SbIlJgtYLBZ99tln8vf3l3RhmHD37t0VGRmpfv366eWXX9b69eudzt0XGRmp9957T2azWXl5eXrvvffUoUMHVa9eXQMHDtSbb77p9urGgCMkAAEAAAAAQKVROMkWEhJSJsdITk7Wddddp71790qS6tSpo3vvvVdvv/22Zs+erR9++EHz5s3TvHnzdMcdd9j2y8/PL1LXgAEDtHXrVg0bNkx+fn62c1i+fLkmT56s7t27q0mTJvryyy8dxjJhwgStWbNG/fr1s011de7cOf3000965pln1KFDB7Vt21aLFy8u7cuAywhDgAEAAAAAQKURFhZmu52WllYmx5g6dapOnz4t6cLiHdOmTbMl7y62fv36Eutr3bq1vvvuO6Wnp2v9+vXatGmT1q5dq7Vr1yo7O1tHjx7V6NGjdfjwYb300ktF9u/evbuWLl2qpKQkrVu3Ths3btTatWu1adMm5eXl6Y8//tCAAQM0ffp0jRs37pLOHZcnegACAAAAAIBKo169erbbBT30StuyZcskST4+Pvrggw+cJv8k6ejRoy7XGxwcrH79+unFF1/U8uXLFR8fr3/84x+27VOmTNGZM2ec7h8REaGBAwfqtdde09q1a3X69Gk98sgjtu1///vflZub63I8QAESgAAAAAAAoNJo27atqlWrJknasGGD4uPjS/0YBUm4qKgoRUREOC2XlZWl1atXe3yc0NBQPf/88xo8eLAkKTc3V5s2bXJ5/+rVq+uDDz5Qu3btJEmJiYnas2ePx/Hg8kUCEAAAAAAAVBoWi0UjR46UJGVnZ2vy5Mmlfozg4GBJUlxcXJGFPQp77733dO7cuUs+XqNGjWy38/Lyyn1/gAQgAAAAAACoVJ5++mnbXIAfffSRXnnlFYcLcEgXkoTuLpBxzTXXSJIMw9CkSZMclpkzZ45eeOGFYutZunSp3nnnHSUlJTktExcXpx9++MF2v6A3nyTNnj1bn3/+udLT053uf/DgQa1YsUKSFBAQoCuvvLLYmABHWAQEAAAAAABUKg0aNNDMmTM1fPhw5eXl6aWXXtLs2bM1fPhwNW/eXH5+fjp79qy2bt2qn376SfXr11f//v1drv+RRx7RtGnTlJeXp6lTp2r79u0aNmyY6tatq7Nnz2rBggVasWKFQkJCNGjQILsEXmGxsbF68skn9fTTT6t3797q3LmzGjdurJCQEJ07d067du3SnDlzbAnC22+/XVdccYVt/z///FMvv/yyHnvsMd1www265ppr1KBBAwUGBio+Pl5btmzR999/b0sQPvbYYwoNDb2EK4vLFQlAAAAAAABQ6dx6661atGiRxowZozNnzujgwYOaMmWKw7IxMTFu1d2mTRt9+umnuv/++5WXl6cNGzZow4YNdmWioqL01VdfacOGDU4TgCaTSdKFuf2WL1+u5cuXOz3msGHDNH36dIf7Z2RkaOHChVq4cKHT4zz00EN67bXXXD5HoDASgKjUrHkpykyZq9ysXZKRI0kymYLkG9xZAaG3yGx2vlITAAAAAKBq69u3r44cOaLp06frxx9/1K5du5SQkCCTyaSaNWuqTZs26tu3r+666y636x4/frzat2+vt99+W2vWrNHZs2cVGhqqBg0aaODAgXrggQdUp06dIonBwsaMGaOWLVvql19+0ebNm7Vv3z6dPn1amZmZCgoKUoMGDdS5c2eNHj1avXr1KrL/pEmT1KdPH61cuVJbtmzRgQMHFBsbq5ycHIWEhKhx48bq1q2bxo8fr6uuusrtcwQKmAzDMCo6CFyQkJBQ5sewWCyKiIhQUlKS0/kTKouczF3KSPyvJKvjAiY/hUT/P/n41S7zWCIiImSxWJSfn1/s3A6wV5XaW2VCe3Mfbc0ztDXP0N48Q3tzH23NM7Q1z9DePFOV2lt0dHRFhwCgArEICCqlvJzjykj8j5wm/yTJyFFawj9ltWaUW1wAAAAAAABVDQlAVEoZSbMludA51chV5nnHczEAAAAAAACABCAqIWt+mqx5p1wun5u1vQyjAQAAAAAAqNpYBKQSsVgs5XaM8jiWp/Ky9ru3g5ErkylXZnNA2QR0kcp87SqbqtDeKjuunWtoa5eOa+c62tul49q5hrZ26bh2rqO9XTquHYDKjEVAUOmcT1iuhFOfu7VPwxafyMcvvGwCAgAAAAAAqMLoAViJlMeqURaLRWFhYUpJSam0q3vl5rm/OlVyar7M5rK7fmFhYbbVvVJSUsrsON6mKrS3yoj25j7ammdoa56hvXmG9uY+2ppnaGueob15piq1t4iIiIoOAUAFIgFYiZTnG21+fn6lfWM3+9SXyRQkw3BtdV+Lb30ZhlFu51NZr1tlVpnbW2XHdXMPbc1zXDf30d48x3VzD23Nc1w399HePMd1A1CZsQgIKiW/kOtcLhsQNqQMIwEAAAAAAKjaSACiUgoMu0k+/i1KLOcf0k++Ac3KISIAAAAAAICqiQQgKq2Q6IflF3KDZPIrss1kClZg+AgFVhtUAZEBAAAAAABUHcwBiEotqNqtCqp2q3Iydygv56gks3wDWsnX/4qKDg0AAAAAAKBKIAGIKsEv8Cr5BV5V0WEAAAAAAMpIampqRYfgltDQ0IoOAXAZQ4ABAAAAAAAAL0YCEAAAAAAAAPBiJAABAAAAAAAAL0YCEAAAAAAAAPBiJAABAAAAAAAAL0YCEAAAAAAAAPBiJAABAAAAAAAAL0YCEAAAAAAAAPBiPhUdAOAKwzCUlyOZTJKPn6miwwEAAAAAAKgySACiUks/b9XetdnavzFHmSmGJKlaTbNadPNT8y7+8gskGQgAAAAAAFAcEoCotGIP5Wnpp+nKyTTsHk8+a9WmuVna+2uOBjwSrLBoSwVFCAAAAACAcydOnNDcuXO1cuVK/f7774qNjZWvr69iYmJ0ww036G9/+5saN25c0WFekp07d2r+/PkKDw/X448/XtHhwAkSgKiUzp/N15JP0pSb5bxMSoJVi6ama+jTofQEBAAAAABUKidOnFBMTIwM43+dWsLCwpSZmam9e/dq7969+s9//qMZM2bo9ttvr8BIL83OnTv18ssvKyYmhgRgJcYiIKiUdi7PLjb5VyAlwaoDm3LKPiAAAAAAANyQn58vSbrppps0Z84cxcfHKzk5WRkZGVqzZo3atm2rzMxMjRo1Sn/88UcFRwtvRwIQlU5OpqHD21xP6u1bn12G0QAAAAAA4L6IiAht375dixcv1p133qno6GhJko+Pj3r27Klly5apevXqys3N1TvvvFPB0cLbkQBEpXP+bL7yc90of8aqvFyj5IIAAAAAAJSTatWqqX379k6316xZUwMGDJAkbdu2rcj2Y8eO6eGHH1bz5s0VFBSkwMBANWjQQN27d9fkyZN1/Phxh/VmZmbqnXfeUbdu3RQZGSl/f381aNBAo0eP1o4dOxzuY7Va9csvv+jhhx9Wp06dVLt2bfn5+dlinDt3rsP9TCaT7r77blu8JpPJ7t+MGTOK7PPnn3/qwQcfVLNmzRQUFKTQ0FC1b99eL7/8spKTkx0ep3fv3jKZTJo8ebKys7M1ZcoUtW3bVqGhoTKZTDp//rzD/fA/zAGISsewerJTqYcBAAAAAKiiDKtVOQf3K/uPnTIy0mUKCpZ/m/bya9ZcJnPl6QtV0CswLy/P7vEdO3aod+/eSklJkST5+voqODhYJ06c0IkTJ7R+/XrVq1dPEyZMsNvv0KFDGjBggP78809JksViUWBgoE6cOKEvv/xSc+bM0ccff6x7773Xbr/jx4+rb9++tvthYWHy9/dXXFycFi9erMWLF+v+++/XJ598YrdfzZo1lZmZqZSUFJnNZlWvXt1ue2BgoN39zz//XA8++KBycy/0+gkKClJ2drZ+//13/f7775o5c6aWL1+uJk2aOLxeWVlZ6tmzp7Zs2SJfX18FBQU5v7iwU3laPfB/wqqbZXJjTY/gcJMsvmUXDwAAAACg6sg9dlTnpryk8x++o8xfVylr6xZl/rpK5z98R+emvKTcY0crOkSbNWvWSJJat25t9/jEiROVkpKiTp06aevWrcrOzlZSUpIyMzP1+++/67nnnlPNmjXt9klNTVX//v31559/atCgQdq6dauysrKUmpqqU6dO6W9/+5vy8/P14IMPavPmzXb7+vj4aPTo0Vq8eLHOnz+v5ORkpaamKi4uTq+99pp8fHz06aef6rvvvrPb78yZM3rvvfckSfXr19eZM2fs/t1xxx22sosWLdK9994rX19f/eMf/1BsbKzS09OVkZGh9evX6+qrr9bRo0c1dOhQWa2OewZ9+OGHOnjwoL7++mulpaXp/Pnz+uuvvxQcHOzZH+AyQg9AVDqBoWbFtPHVX7tcGwd8ZRc/mdzJGAIAAAAAvFLusaNKfP9fUo7jeeXz484o8f1/KfKxifKNaVTO0dmbP3++tm7dKkm2YbQFNm7cKEl677331LFjR9vjAQEBatu2rdq2bVukvn//+986dOiQbr31Vs2dO9fue3KdOnX07rvvKisrS59++qmmTJmihQsX2rbXq1dPs2bNKlJn9erV9eyzz8pqter555/XRx99pOHDh7t9rvn5+Xr00UdlGIa+/PJLDRkyxLbNx8dHXbt21dKlS9W6dWvt2rVL8+fP19ChQ4vUk5aWpqVLl6pfv362x2JiYtyO53JED0BUSu1u8JfJhdbpH2RSyx7+ZR8QAAAAAKBSM6xWJc+a5jT5Z5OTo+RZ02Q46WVWHo4fP6777rtPkjR48GDddNNNdtvDwsIkXehh56pp06ZJkv7+97877SQzcuRISdLKlSttqxS74uabb5Ykbdq0ya39CqxZs0ZHjhxRkyZN7JJ/hUVGRqp///6SpGXLljks07ZtW7vkH1xHD0BUSjUb+6jXyCCtmZ3hdE5Av0DpxvuDFRRGHhsAAAAALnc5B/crP861hFl+3BnlHNwv/+Ytyziqos6fP6+BAwcqPj5ejRs3tiXuChswYICmT5+uMWPG6IEHHtCtt96qq6++Wn5+fg7rPHnypE6cOCFJuu2225wmAAuSd+np6Tp37pxq1Khh25aZmalPPvlECxYs0N69e5WUlFRkbsKsrCwlJSXZ5i501YYNG2xx1qpVy2m5tLQ0SXK6wEmXLl3cOi7+hwQgKq1m1/qpWg2zfv8lW8f+yLUlAn38pKZX+6ldX39Vq26p2CABAAAAAJVC9h873S5f3gnAtLQ09e/fX7t27VKdOnW0fPlyRUZGFin31ltv6eDBg1q/fr3eeustvfXWW/Lz89O1116rIUOG6J577rH1EpSk2NhY2+24uDiXYsnIyLDbv3fv3jp48KDtsaCgIEVERMhsNis/P18JCQmSLiQP3U0AFsSXnZ2ts2fPuhVbYRcvMgLXkQBEpVazkY/63eujzFSrUs9ZZTJJ1Wpa5BfAnH8AAAAAgP8xMtLdLO84yVRWMjIydPPNN2vTpk2qXr26fvnlFzVu3Nhh2aioKK1bt04rV67UTz/9pLVr12rnzp1au3at1q5dqzfffFPLly9XmzZtJMluWG5sbGyxvewcefzxx3Xw4EGFhYVp6tSp6t+/v12S7/Dhw2ratKkkyTAMd0/dFt+NN96oJUuWuL1/AYuFTkCeIgGIKiEw1KzAUIb6AgAAAAAcMwW5txKsKSiojCIpKjMzUwMHDtSvv/6qiIgILV++XC1atChxv+uuu07XXXedJCklJUULFizQ008/rdjYWN1zzz3asmWLJNmtCHz8+HG3EoA5OTlasGCBJOndd9/V6NGji5RxpddecQricza0F2WPjAoAAAAAAKjy/Nu0L9PynsrOztaQIUO0cuVKhYWFacmSJWrXrp3b9YSFhWn06NH64IMPJElbt25VevqFXo+NGjWyJf1++uknt+pNSEhQdna2JOmaa65xWGbVqlVO9zebL6SWiusZ2LVrV0nS/v37dfjwYbfiQ+kgAQgAAAAAAKo8v2bNZanhWs83S81a8mvWvIwjknJzczVs2DAtXbpUwcHBWrRokTp16lTsPnl5ebIWs0JxYGCgpAsJt5xCKx6PHz9ekvT+++/r0KFDxR4jKSnJdjs0NNS2aMj+/fuLlI2Li9P777/vtK6CuQiTk5OdlrnuuusUExMjwzD0xBNPFHt+ubm5tsVAUHpIAAIAAAAAgCrPZDar2pjxkpOVcm38/FRt9HiZzGWbEsnPz9ddd92ln376SYGBgfrxxx/VrVu3Evc7efKkmjVrpjfeeEO7d++2zZ9nGIbWrVunJ598UpJ07bXXKiIiwrbf008/rWbNmik5OVndu3fXzJkzlZqaatseFxenb7/9Vv3799dTTz1lezw0NFSdO3eWJP3973/X+vXrZRiGDMPQr7/+qj59+tjNMXix1q1bS7qQAPzhhx8clvH19dVHH30ks9msH3/8UTfeeKM2bdpkSwRarVbt3btXb7zxhpo1a6adO3eWeJ3gHhKAAAAAAADAK/jGNFLkYxOd9gS01KylyMcmyjemUZnHsn79en3//feSLiS4RowYoVq1ajn9V9jhw4f17LPPqk2bNgoMDFR0dLT8/PzUo0cPHThwQDVr1tTnn39ut09YWJiWLVumdu3a6ezZsxo3bpzCw8MVFRWlkJAQ1axZU3fccYfDRTjeeecdBQYG6vjx4+revbuCg4MVEhKiXr166cyZM0WOVVjTpk3Vu3dvSdKwYcMUHh6uhg0bqmHDhrbzl6QBAwboyy+/VGBgoH755Rd16dJFQUFBio6OVkBAgFq1aqVnn31Wf/31l61HIkoPi4AAAAAAAACv4RvTSFGTXlbOwf3K/mOnjIwMmYKC5N+mvfyubFFuyaXCw1yzs7NdXkijbt26WrBggVasWKGNGzfq1KlTio+PV2BgoK644goNGDBAjz/+uKKioorsGxMTo99++01ffvmlvv32W23fvl2JiYny9/fXlVdeqY4dO6p///4aMmSI3X7XXnutNm7cqMmTJ2vNmjVKT09X7dq1ddNNN2nSpEnF9gCUpLlz52ry5Mn6+eefdfLkSR07dkySigzlHTFihHr27KmpU6dqyZIlOnLkiM6fP69q1aqpWbNm6tq1q4YOHepST0m4x2R4sn4zykRCQkKZH8NisSgiIkJJSUklPoHxPxEREbJYLMrPz7ebKwHFo715hvbmPtqaZ2hrnqG9eYb25j7ammdoa56hvXmmKrW36Ojoig6hRIWHq1YFoaGhFR0C4DKGAAMAAAAAAABejAQgAAAAAAAA4MWYAxAuy86wKj3ZkMVHCo00y2wpv0k5DWuWrPnnJZlk9omUyeRbbscGAAAAAACoykgAokRnjuRp14psHfsjV8b/zWEaGGZSi65+at3bXwEhZdeRND/3lLJSVyg3c7ukPEmSyRQkv+DO8g/pI7MlovgKAAAAAAAALnMkAFGsPb9ma/13mdJFS8VkphjaviRbf/6Wq5sfDVZYtKXUj52TuUMZiTNVkPgrYBgZyk5bqZyMLQqOelg+fvVL/dgAAAAAAADegjkA4dTxPbla/23R5F9hqeesWvxRuvJyS3cx6byc48pInKGLk3+FGdY0pZ/7SNb8qrVSFAAAAAAAQHkiAQinti/OcqlccpxVR7bnluqxs9OWS8ovsZxhTVVOxvpSPTYAAAAAAIA3IQEIhxJP5yvur5ITcAX2b8gutWNb89OUm/m7y+Wz0zeU2rEBAAAAAAC8DQlAOHT+jOvJP0lKOmMttWNb8+MluV6fkZ8ow8gpteMDAAAAAAB4ExKAcMzkZnE3y5fqwT3eBwAAAAAAwPuRAIRDkXXcW9XX3fLFMfvUkDsLVJst1WUy+Zba8QEAAAAAALwJCUA4FF7TotpNXU/qtejmV2rHNpuD5Bt4lcvl/YK7ldqxAQAAAAAAvA0JQDjVcUCAS0N7o+qa1bBd6fbACwjtK7nQq89kiZBfcNdSPTYAAAAAAIA3IQEIp+o081Wv0UEyFdNKImqZddODIbL4lO4cfBbfOgqOvFcyOe9ZaLKEKyTqIZnNQaV6bAAAAAAAAG/i+kRruCw16+SnqLoW7V6drUNbc5Sfe+HxatXNatHDTy26+cvXv2wW4PANaKnQGs8qO22NcjI2S0amJMlkDpd/cDf5BfeQ2RJSJscGAAAAAJSv0NDQig4B8FokAFGiqLoW9RoZpO63Byor3ZDZIgWEmGQq3aV/HbL4VFdQ+DAFVhsiw5oqySyTOUSm4rolAgAAAAAAwIYEIFxm8TUpOLzsk36OmEwWmSzhFXJsAAAAAACAqoxuVAAAAAAAAIAXIwEIAAAAAAAAeDESgAAAAAAAAIAXYw5AAAAAAABQ4VJTUys6BLewajGqkjJNAL7yyisllqlbt67uueeesgwDAAAAAAAAuGx5nADctGmTBg0aJEmaMGGCXnvttSJlJk+eLJOp+FVjTSaT2rVrp6uvvtrTUAAAAAAAAAA44fEcgC+//LISEhLk5+enZ599ttiyhmE4/We1WvXCCy94GgYAAAAAAACAYnjUA/DUqVNatmyZTCaTHn/88RLHvd9xxx1q3rx5kcd37dqlefPm6ZdfftHp06dVp04dT8IBAAAAAAAA4IRHCcB58+bJMAwFBATo3nvvLbH8iBEjbMOFC0tNTdXy5cuVnp6uH374QY8++qgn4aCc7Fmbpbij+fLxk1p081d0fdaQgXPn8s8oNf+8wjPCFWQNl58CKjokAAAAAAAuSx5lcDZu3ChJ6tKli6pVq+bxwUNDQ3XjjTdq7ty52rx5MwnASmrJx2k6vjdPMv732L51ufL1l3qMCFTTq/0rLjhUOgdydmhL9i+KzT924YFUyUe+au7XQV39+yvcEl2xAQIAAAAAcJnxaA7AXbt2yWQyqUePHpccQMeOHWUYhnbu3HnJdaH0fTkpWcf32Cf/CuRmSytnZGrH0szyDwyV0trMH7Ug4/P/Jf/+T55ytTtns2al/VNn8o5XUHQAAAAAAFyePEoAnj17VpJUr169Sw6gfv36kqT4+PhLrgul66cPUpWR7CDzd5HffsxWUmx+OUSEymxvzm/amL202DJZRoZ+SP9E2QZJYwAAAAAAyotHCcDk5GRJUkRERLHlPv74Y3300Udq37690zKBgYF2daJyyM/P1+kDrif1Vs5KL8NoUNkZhqHNWb+4VDbdSNGenC1lHBEAAAAAACjg0RyAAQEBSktLU1paWrHl7r///hLrSk1NlST5+zOPXGWyY2mOW+XPnbSWUSSoCs7mn1S89ZTL5XflbFQH/15lGBEAAAAAACjgUQIwKipKaWlpOnPmzCUHUDCcOCoq6pLrQumJ/yvPvR1KHikML5ZsTXCvfP65MooEAAAAAABp586dmj9/vsLDw/X4449XdDgVzqMhwDExMZKkDRs2XHIABXUU1InKwWwxVXQIqELMbr6UmE2WMooEAAAAAIALCcCXX35Z7777bkWHUil4lADs2bOnDMPQqlWrlJSU5PHBk5KStGLFCplMJvXqxXDAyuSKa/3cKm8mn3NZq+nTQJLrSePalgZlFwwAAAAAALDjUQJwwIABkqT09HS9/vrrHh/8zTffVHp6ul2dqBwat/dzK6nXqL1Ho8nhJcLMEWri08rl8u39e5RhNAAAAAAAoDCPEoDXXnutunfvLsMw9Pbbb+vrr792u45vvvlGb731lkwmk7p3765OnTp5EgrKUIf+ri3MYjJLPUYGlnE0qOy6B9wsH/mWWK6+pakau5EsBAAAAICq7vDhw3rsscfUsmVLhYaGKiQkRC1atNDYsWO1ZMmSIuXPnTun5557Tm3atFFISIhCQkLUpk0bTZo0SYmJiQ6PsXr1aplMJplMF0Znbd++Xbfddptq1qyp4OBgXX311Xb5G8Mw9N///ledOnVSWFiYwsPDNXjwYO3bt89h/TNmzJDJZFLDhg0lST///LOuv/56RUZGKjg4WNdee61mzpzp9BrExsbq3Xff1S233KIrr7zSdl6tWrXSxIkTFRsbW+J13Llzp+655x41bdpUQUFBCg8PV+vWrfXQQw/ZTVNnMpl09913S5KOHTtmuy4F/2bMmFHisbyNx9223njjDfXu3Vv5+fkaOXKkNm3apEmTJql69erF7peQkKDXXntN77//vgzDkK+vr9544w1Pw0AZ6nBToFLirTq4OddpGZNJGvpUiPz8GAN8uavpU19Dg+/T/PTPlaMsh2XqWZpoSPB9Mps8+u0BAAAAAFxiGFblZO5XdsZOGdZ0mczB8g9qL7/A5jKV8/eR//znP3r44YeVm3vhu3VAQIACAwN14MAB7d+/XwsWLND58+dt5Xfu3KmbbrrJtmhqUFCQJGn37t3avXu3pk2bpqVLl6pt27ZOj/nTTz/ptttuU25ursLCwpSRkaFt27ZpxIgRio+P1yOPPKKRI0dqzpw58vX1lZ+fn1JTU7Vw4UKtW7dOv/32mxo3buy0/vfff19/+9vfZDKZVK1aNWVlZWnLli3asmWLfv31V/33v/+1JSILPPvss7YEoZ+fn0JCQnT+/Hnt3btXe/fu1axZs/TLL784Pa/JkyfrlVdekWFcWIU0ODhYJpNJe/bs0Z49e7Rhwwbt3LlTklSzZk1lZmYqJSVFZrO5SK4qMPDy68Tkcavv2rWr3nrrLduF/+CDD9SgQQMNGjRIb7zxhr777jstX75cy5cv13fffac33nhDgwcPVoMGDfTee+/JarVKkt566y116dKldM4Gpa736GD1fzhIIZH2TcVklhq09tHYf4Yqqh7Df3FBQ98WmhD2groF3Kxq5ihJJvmYfBXj00yDgsbrzpDHFGAOqugwAQAAAHix3KyjOnfyJZ0/844yU1YpK22LMlNW6fyZd3Tu5EvKzTpabrHMnz9f9913n3JzczVgwABt375dmZmZSkxMVHJyshYuXKj+/fvbyicnJ2vQoEE6e/asrrjiCq1Zs0bp6elKT0/XqlWr1LhxY505c0aDBg1SSkqK0+OOHj1ao0ePVmxsrM6fP6+4uDgNHjxYkvTcc8/pxRdf1I8//qgvvvhCaWlpSk1N1dq1a1WrVi0lJibqueeec1p3fHy8Jk6cqDFjxig2NlZJSUk6d+6cnnrqKUnStGnT9NlnnxXZ74orrtDbb7+t/fv3KzMzU+fOnVNWVpZ+/fVXXXvttYqPj9ddd91lyzMV9t577+nll1+WYRgaM2aMDhw4oLS0NNuxv/rqK7vc0pkzZ/Tee+9JkurXr68zZ87Y/bvjjjtK+Mt5H5Ph6Mq64cMPP9STTz5py2RfnOG9WMHhfH199e677+rBBx+8lMN7lYSEhDI/hsViUUREhJKSkpSfn+/2/vn5+bJYLr/efhEREbJYLMrPz7+khW8uN2azWZGRkR63t8sV7c19l/radrmirXmG9uYZ2pv7aGueoa15hvbmmarU3qKjoys6hBKlpqZech25WUeVGPsvychxXsjkp8jaE+Ub0OiSjhUaGlp8LLm5atq0qY4fP67Bgwdr7ty5MpuL74f12muvadKkSQoJCdHu3bsVExNjt/3w4cNq06aNMjMz9cYbb+jpp5+2bVu9erX69OkjSerTp49Wrlxpt296errq1KljSxzOnDlTY8aMsSvzxRdfaMyYMQoICFBKSop8ff83zdOMGTNsw2r79u2rpUuXFskBTZgwQZ9//rlq166t48ePy8fHtQ5DSUlJuvLKKxUfH6/Vq1fbLRSbmJioBg0aKD09XY8++qjef/99l+osiDcmJkZ//fWXS/t4s0vu9/rwww9rw4YNuummmyRdSPAV90+6sODHxo0bSf5VQZdj8g+eK+kHAQAAAAAoLYZhVXL8tOKTf5Jk5Cg5fpoMw1qm8axcuVLHjx+XyWTS22+/XWLyT5K+/fZbSdLYsWOLJP8kqUmTJrak3TfffOO0nmeeeabIY8HBwercubMkqV69eho1alSRMtdff70kKSsrS3/++afT+p999lmH3/cKeg7GxsZq/fr1Tve/WEREhLp27SpJRfb77rvvlJ6erpCQEE2ZMsXlOmGvVMZuduzYUYsWLdKBAwe0fPlyrVu3TqdPn9a5c+ckSVFRUapTp4569Oihvn37qlmzZqVxWAAAAAAAAElSTuZ+5eeecalsfu4Z5WTul39QyzKLZ+PGjZKk5s2bFzufXoGcnBzt3r1bknTdddc5LXfDDTfo008/1a5du5Sbm2vXS69AmzZtHO5bo0YNSVLLli0dJiRr1qxpu+2sV6uvr6+6devmcFvjxo1Vv359nThxQtu3b7frySdJW7Zs0SeffKINGzbo5MmTSk9PL1LH6dOn7e4XXMcePXqU2OsSzpXq5G1XXnmlrrzySj3yyCOlWS0AAAAAAECxsjN2ul2+LBOABYt4OOrJ50hiYqJtCH7dunWdlqtXr56kC1N0JSYm2iXtCtSuXdvhvgWj+kraLsk21dvFoqOj5efn5zS+unXr6sSJE4qLi7N7/F//+peeeuop2+hQs9msiIgIW13JycnKysoqkhR09zrCMZbiBAAAAAAAVZ5hLdqbrPjyGWUUCS62Z88ePf300zIMQ0OGDNH27duVnZ2txMRE28Icw4YNkySHi4Dg0pVKD8BTp05p165dSk5OVrVq1dSmTRtbRhoAAAAAAKCsmczBbpYPKqNILqhVq5Yk6dixYy6Vj4yMtC0qc+rUKaflTp48KelCb73IyMhLD9RNCQkJysnJcdoLsGAIb8FwY0n64YcfZLVa1aRJE3377bcOFwcp6Ol3MXevIxy7pB6AW7ZsUbdu3dSgQQPdcsstGjlypG655RbFxMSoW7du2rJlS2nFCQAAAAAA4JR/UPsyLe+uLl26SJL279+vI0eOlFjez8/PNnffihUrnJb75ZdfJElt27Z1OP9fWcvNzbXNy3exo0eP6vjx45KkDh062B4vSFq2b9/eYfIvIyNDmzdvdlhnwXVcu3atWytFF8xxSI/CCzxOAC5btky9e/fWpk2bHK72u3HjRvXq1UtLly4tzXgBAAAAAACK8AtsLotvLZfKWnxryS+weZnGc91116lBgwYyDENPPvmkrNaSVx2+/fbbJUmzZs2yJdIKO3z4sGbNmiVJuvPOO0s3YDe8/vrrDhNrb7zxhiSpTp06dguFVKtWTZJ08OBBh/u99dZbSklJcXisYcOGKTg4WGlpaZo0aZLLMYaFhUm6MLcgPEwApqamauzYscrKyrL94Zo2baquXbuqadOmtnLZ2dkaO3as0z8iAAAAAABAaTCZzKpWfbxkcr5AxYWCfqpWfbxMprJdFsHHx0fvvvuuJGnBggUaNGiQdu7caduelpam7777TkOGDLE99tBDD6l+/fpKS0tT37599euvv9q2rVmzRjfeeKMyMzMVExOjBx98sEzjdyYoKEgrV67UPffcY1voIzk5Wc8995w+++wzSdKLL75o19Ovb9++kqQ//vhDTzzxhC1PlJiYqBdeeEEvv/yyoqKiHB4vMjJSr776qiTpgw8+0Lhx4/Tnn3/aticmJmratGm655577PZr3bq1LbYffvihNE69SvOotX/xxRc6e/asTCaTrr76au3Zs0cHDx7UunXrdPDgQe3du1edOnWSJMXHx+uLL74o1aABAAAAAAAu5hvQSJG1JzrtCWjxraXI2hPlG9CoXOIZMmSIPvzwQ1ksFv3888+66qqrFBQUpKioKIWFhen222/XqlWrbOWrVaumBQsWqEaNGjp48KB69eqlkJAQBQcHq3fv3jp8+LBq1aqlhQsXKjQ0tFzO4WLVq1fXv/71L02fPl21atVSZGSkoqKi9Prrr0uS7r77bt133312+/Tr109Dhw6VJL333nsKDw9XZGSkqlevrldffVXjx4/XLbfc4vSYjz/+uJ599llJ0syZM9WsWTOFhoYqIiJCUVFRuueee7Rt2za7fZo2barevXtLutCLMDw8XA0bNlTDhg31/fffl9blqDI8SgAuXrxY0oWln5cuXaoWLVrYbW/evLkWL15sm/CxoDxQ1RiGobycY0pNWq2UcyuVlfHnZTN/wKHUH7Ur7jn9cfYp/Z7wmtJzXe82bTXydTR3n3ZmrdPWlDU6l+94MlcAAAAAKG2+AY0UVe9lhdd6QoFhfRQQcq0Cw/oovNYTiqr3Srkl/wo89NBD2r17t+6//341bdr0wvfMvDw1b95cd999d5Fk1FVXXaU9e/bomWeeUcuWLW3fQVu1aqVnn31Wu3fvVtu2bcv1HC722GOP6aefflLv3r1lGIb8/f11zTXXaPr06Zo2bZpMJlORfb755hu98cYbatGihXx9fWUYhrp27aqZM2fqv//9b4nHfO2117R582aNHj1aMTExys3NlclkUps2bfTwww/r008/LbLP3Llz9dhjj6lJkybKysrSsWPHdOzYMaWlpZXKdahKTIYH2YyYmBidPHlSTz75pN566y2n5Z566in961//Uv369VmtxQUJCQllfgyLxaKIiAglJSUpPz+/zI9XleVm7lJW6iLl5560e9zsU1sBYf3lF9jByZ5V257kWYpM26LAix43JJ2x+KpR1BQF+DpeLcswrNqavVpbs1cq1Thvty3G50r1DBik2j4xZRK3N4mIiLCt/pWUlFTR4VQJvLZ5hrbmGdqbZ2hv7qOteYa25hnam2eqUnuLjo6u6BBK5M4CD5VBRfXAqygzZszQ3XffrZiYGP31118VHQ7c5FEPwMTEREkXVm8pTrt27SRJ586d8+QwQIXJTvtV6YmfFUn+SZI1L1YZidOUlfpLBURWtnYlvqc6DpJ/kmSSVDs/V+finlJWbkaR7YZh1eLM2VqVNbdI8k+SjuUd0Jy0d/VX7r5SjxsAAAAAADjnUQIwPT1dUsnZ7pCQEElSZmamJ4cBKkRezjFlJn9XYrmslPnKy/6zxHJVRUL2AdXP/FNFO2rbC5Z09FzRlZd25KzV7hzHy7YXyFOu5qd/rgxr1fplDwAAAACAqqxsl7wBqqDstFW6MOC1ZFlpq0ouVEWcOf/fEpN/BWrm59rNCXhh6K9r1yJHWdqVs9GDCAEAAAAAgCdIAAKFGEaOcjN3ulw+L+sPWa1Fh8NWRTXyXO+pa5Z0KPkj2/3T+X/pvNX1OSz35GxxJzQAAAAAAHAJLikB6GhVF6AqM/LTJOW5s4eM/JSyCqdc+bhZ3pz/vx6Aqdbzbu3rbnkAAAAAQMUaN26cDMNgAZAqyt3v/HZuvfVWl8oZhiGLxVJsGZPJpLw8dxIvQBkw+ZbPPpWQu8uBG6b/vXz4uHkNfL3kmgEAAAAAUBVc8hBgwzCc/pMuJPZMJlOx5QqXByqSyRwis09N18tbImS2RJRhROUnzY0evYak4KDutvu1LQ1lVvFJ/sLq+TR1JzQAAAAAAHAJPE4AupK0I7mHqsZkMsk/uIfL5f2Du8tk8o6pNFOC2rhcNktSk5CbbPeDzaG60re9y/u39+teciEAAAAAAFAqPMpcWK3WUv+Xn59f2ucGeMQvqKssvvVKLGf2qSX/4J7lEFH5aBN+n5Jd6AVoSDof0qXI490DblGAKajE/a/0vUoNfJp5EiIAAAAAAPCAd3RdAkqRyeyn4KiHZfFt6LSMxbeeQqIfkckcWH6BlYPo6q8WmwQ0JJ0Iaq4W1UYW2RZhqa47gh9ViCnc6f7NfTvo5qAxLCAEAAAAAEA5uqRFQABvZbaEKqT6k8rL3qfs9HVS/lnJJPn61ZHZr5N8AlrJZHJ9zruqIti3moLrfKDd5/+r0IzfFWIYMunCushnfYJUL/xBtfVv5HT/mj71dW/Yi9qfs01/5GxWipEoP4ufaplj1N63u2pbGpL8AwAAAACgnJEABJwwmczyDWgl34BWioiIkMViUX5+vpKSkio6tDLXOnyCFG7/WA0X9/U1+amNfxe18e8ii8WiiIgIJSUlMcwfAAAAAIAKwhBgAAAAAAAAwIuRAAQAAAAAAAC8mEdDgC2W0p/7zGQyKS8vr9TrBQAAAAAAlV9oaGhFhwB4LY8SgIZhlHYcAAAAAAAAAMqAx4uAmEwm+fj4qEYNV5cGAAAAAAAAAFDeLmkV4Ly8PNWuXVvjx4/XXXfdpbCwsNKKCwAAAAAAAEAp8GgRkBEjRiggIECGYWjbtm16+OGHVbt2bY0aNUorV64s7RgBAAAAAAAAeMijHoCzZ89WSkqKZs+erenTp2vr1q3KzMzUnDlzNGfOHDVo0EB33323xo4dq5iYmNKO2W2HDh3Sli1b9Oeff+r06dNKSUlRdna2QkND1bhxY/Xs2VO9evWS2ew8H7px40YtXrxYhw8fVnZ2tqKjo3XNNddo+PDh9HwEAAAAAABApWUySmFFjz179ui///2vZs+erYSEhAsVm0wymUzq3bu37rnnHg0dOlT+/v6XHLAnPvroIy1ZssR2PyAgQJKUlZVle6x169Z6/vnnFRQUVGT/Tz75RIsWLZIkmc1m+fv7KzMzU5IUHh6uKVOmqH79+pccZ8G1K0sWi0URERFKSkpSfn5+mR/PW0RERMhisSg/P19JSUkVHU6VQXvzDO3NfbQ1z9DWPEN78wztzX20Nc/Q1jxDe/NMVWpv0dHRFR1CiVJTUys6BLewajGqklJJABbIy8vTwoULNW3aNC1dulT5+fkymUySpGrVqmnEiBG6++67dfXVV5fWIV2yYsUKpaWlqWXLlqpbt64tyXf+/HktX75cs2fPltVqVb9+/fTII4/Y7bt06VJ9+OGHMplMGjlypAYPHix/f38dPXpUb7/9to4dO6batWtr6tSp8vX1vaQ4SQA6ZlhzlJv1u/Lz4mSSWRbfevIJaCWTyaMR7O4d28hTbtZu+fkkXlj4xq+OcvIby2S6tL91ZWe1WrUjd60O5f6hPCNX1cwR6hZwsyIs1d2qpyq2t8qgKn2QrCxoa56hrXmG9uYZ2pv7aGueoa15hvbmmarU3kgAlj4SgKhKSjUBWFhsbKxmzJihGTNm6M8//7xwsP9LBrZq1UpPPvmkxo0bVxaHdtuXX36pb7/9Vn5+fvr666/l43NhZHRubq4mTJigpKQk3Xzzzbr//vvt9ouLi9PDDz+s7OxsPfDAAxowYMAlxUEC0J5hWJWdulTZaatkGBl220yWCAWGDZRfUKcyOrahnPR1ykpdLMOaYn9sc4j8Q/vJP7iPrU17ky1Zv2ht1k/KV16RbdHm2hoR8jcFmkNcqqsqtbfKpCp9kKwsaGueoa15hvbmGdqb+2hrnqGteYb25pmq1N5IAJY+EoCoSsqsC1Xt2rX17LPP6sCBA1qzZo3GjRunoKAgGYah3bt367PPPiurQ7vtiiuukCTl5OTYveDs2rVLSUlJMplMGjp0aJH9atSooZ49e0qSVq9eXS6xXi4Mw1BG0pfKSv25SPJPkoz8JGUkzVJW6i9lcvyslB+VmfxNkeSfJBnWNGUlz1Vm8g8qo/x5hVmTsUCrs+Y7TP5JUoI1Vp+mTFamNa18AwMAAAAAAB4r+zGUknr06KG7775bN910kyRVul5T+/fvl3RhbsDw8HDb47t27ZIk1a9fX9WrOx76eNVVV0mSDhw4YDenIC5NTsZm5WZuKbFcVsp85eUcL9Vj52YdUHbashLL5aSvVl7W7lI9dkU6lxerzTnLSyyXoyx9n/5JOUQEAAAAAABKg0erALvq9OnTmjlzpmbMmKFDhw7ZHjcMQw0aNCjLQ5coOztb8fHxWrVqlebNmydJuvnmm+2SkydOnJCkYlcyLthmGIZOnjyppk2blmHUl4cLw29Xu1w+J32NfPxGl9rxs904dnb6avkGtim1Y1eklVnzXC4bm/+XMq1pLg8FBgAAAAAAFafUE4B5eXmaP3++pk2bpuXLl8tqtdqGSUZEROiuu+7S+PHjbT3nylNaWpruuuuuIo/7+Pjolltu0ahRo+weT0xMlCRFRkY6rbPwtso+50NVYc2PV37uSZfL52TuUGD4yFJZFMSwZrvVqy8v+4Cs+WkyW6p+IuxE3p9uld+avUo9AgeWUTQAAAAAAKC0lFoC8Pfff9f06dP11Vdf6dy5c5Iu9OQym8264YYbNH78eA0ZMkR+fn6ldUi3mc1m2xDfjIwM5eTkyGQy6ZZbbtGQIUNksVjsyhcM6fX393daZ+FtGRlF56or7Msvv9RXX33ldPuIESMcJihLU+FVmSvr/HVZ6XFya+pXI0f/n737jo+izh8//pqZ7Zu2CSn00DuCgtIJKAoqYkdULNhOz67nWb5nuZ/t7vQsp2dHsGIHRewKIqBIExDpvYb0unXm90cukZi2m8ym8X4+Hj7Umc/M572Tz87uvudTEuJdqJqzwXUH/IfJPxDZdYmNUbA5PA2uu6mF8qqf968mPmsJHk/tr7sltLfmSFXVin/XdY1FGWlr9SNtrX6kvdWPtLfISVurH2lr9SPtrX6kvQkhWooGJQDz8vJ48803mTlzJmvWrAGo+LDo0qULl112GZdddhkdO3ZscKBmcLlcvPbaa0BZnJmZmXzyySd88sknfPPNN9xzzz307ds3avUXFxeTmZlZ4/6SkpIqSchoKf+gao4sVneERyhYrE4UxYRrF3HdZfE21t8tmlRUQoS/4ptTC/91N+f21pwpitIq2lZjkrZWP9LW6kfaW/1Ie4uctLX6kbZWP9Le6kfamxCiuatXAvDLL79k5syZfPzxx/h8voqkn8Ph4Oyzz2bGjBmMHz/e1EDNpigKqampXHnllaSkpPDyyy/zr3/9i+eff76iV5/D4QDK5gusyZH7XC5XrXW63W5SUlJq3O9yuQiFwk/A1IeiKKiqWmlodnOjWdPQLB5CwfCGVDvc/dB1IILkVY0UFzZHF/zeHWEVt9rboagJUf+7NYZkW3sORrCgynExGXW+7pbQ3pojVVVRFAXDMNDLGreog7S1+pG2Vj/S3upH2lvkpK3Vj7S1+pH2Vj8tqb1JglKIo1u9EoATJ06suMkBDBkyhCuuuIILLriA+Ph4UwNsDBMnTmT27NlkZ2ezcuVKRowYAZTN77d9+/aKuQCrc+S+urp8X3zxxVXmGTxSVlZW1OcR1DQNj8dDfn5+s05aWZ3DCRUuCKusah9u6nXTHCMgzASgxTGCvLw80+puSiMtp/KBP7zVfeMUD47iGHKLa7/uLaW9NTcejwdN09B1XeYWDZO0tfqRtlY/0t7qR9pb5KSt1Y+0tfqR9lY/Lam9tWnTpqlDECZLT09n165dvPrqq1x22WURHbtw4ULGjRsHYErS/7LLLmP27NlceumlzJo1q8HnE+Zr0BBgq9XKqaeeyoABA9i3bx+PP/54g4L5+9//3qDj68tmsxEbG0tOTg4HDhyo2N6xY0dWrFjB7t0194oq36coCh06dIh6rEcLe8x4/KW/oAf31VrO6jgGq8PcVXhtruMJlK4g6NtUaznN1hWbe6SpdTelbrb+tPN1YX+o9uSngsJk9+WNFJUQQgghhBBCCCEaqkEJwGAwyMcff8zHH39sSjBNlQAsLS2loKAAAKfz94UkBg4cyEcffcTu3bvJysqq9onJ6tWrAejVq1fFkGHRcIrqIKbN9ZTkzCTor351WqvrBFwJF5iy+m+luhUNd+LVlOS+TsC7ptoyFns/3ImXoShWU+tuahe6b2FO8dPsDW2tdr+Gxtnua2hv6drIkQkhhBBCCCGEOFK3bt1wOBzNYiRm27Zt6dWrF23btm3qUEQN6p0ANHteiPJVp8wWCoUq5mWoybx58wgGy1ZA7devX8X2gQMH4vF4yM3N5aOPPuKqq66qdNzhw4f5/vvvAcjIyDA/+KOcqsXibnMjIf8O/CXLCAUzUVDRrB2wuUeiWdOiVrei2nEnXUkosA9f8RJU4zAoYLW1xbAMwWLrFLW6m5KqqlwYezMHgrtZ6P2Iw6F96EYIu+JigG04w+wnY1FNWzxcCCGEEEIIIUQ9ffPNN00dQoVHHnmERx55pKnDELWo1y/5V1991ew4oiYrK4tHHnmEU089lcGDB5OcnAyUJTD37t3Lp59+ymeffQbA8OHD6dy5c8WxVquVCy+8kGeffZb58+fj8XiYPHkydrudHTt28MQTT+D1emnbti0TJkxoktfX2imKgsXeFYu9aXqcadb2uBLOr5jbIxQKNfu5PczQ1tKJaTE3NXUYQgghhBBCCCGEMEG9EoCXXnqp2XFE1fbt23nmmWeAsvn+HA4HXq8Xv99fUWbo0KHccsstVY495ZRT2LFjBwsWLOC1117jzTffxG63U1JSAkBCQgL/93//h9XauoaCCiGEEEIIIYQQomEyMjJYtGgR9913H/fccw+PP/44b7zxBtu3b8fj8TBp0iT+3//7fxVDZ7du3crDDz/MV199xeHDh+ncuTNXXXUVt956K6paefqruhYByczM5IEHHuCTTz4hMzOTlJQUJk2axL333ltn3D/88ANPP/00y5Yt49ChQzgcDpKTk+nVqxcTJ07kqquuqjSFWk2LgJS//rrUtHjIBx98wKxZs/j555/JyckhPj6eIUOGcPXVV3PWWWfVeV7xu1Y/li8xMZE77riDtWvXsnnzZnJzcykoKMBqtdK+fXt69uzJ2LFjOfbYY2s8x5/+9CeOOeYYFixYwPbt2yt6/R1//PGce+65zWK8vRBCCCGEEEIIIcoYhs4O/0Y2+9ZQahTjVNz0tA+ii6236fPIhyMQCHDyySezcOHCivUD9u/fzyuvvML333/PsmXL2LJlC5MmTSIvL4/4+Hj8fj+bN2/mL3/5C3v37uXJJ58Mu75NmzaRkZHBwYMHgbL1DnJycnjxxReZO3cuDz/8cI3HvvLKK1x11VUVU7+VJ/q2b9/O9u3b+eyzzzj11FPp3r17nXEkJiaSmppa4/6srKxqVx4vLi7mggsuYP78+RXb4uLiyMrK4vPPP+fzzz/nsssuY+bMmVGbUq61afUJQKvVyqhRoxg1alSDzjN8+HCGDx9uUlRCCCGEEEIIIYSIhv2BHczNn0l26GCl7T+XfkeSlsaZ8TNoZ+3SqDH997//xeFwMH/+fCZNmoRhGMyfP5/p06ezZcsW7r33XubPn8+oUaN46qmn6Nq1KwUFBfz1r3/l+eef5+mnn+aaa66hT58+ddYVCAQ477zzOHjwIB06dOCVV15hwoQJKIrCwoULmTFjBrfddlu1x5aUlHDzzTdjGAaXXXYZ999/f8VUafn5+axevZo33ngDu90e1uv+8MMPa9z33nvvMXXqVAAmTZpUad+MGTOYP38+/fv35+GHH+bEE0/E5XJRWFjI66+/zp133smsWbPo168ft99+e1ixHO0aP+0thBBCCCGEEEIIEQX7Azt4LeexKsm/ctmhg7yW8xj7AzsaNa68vDzmzJnDaaedhqqqaJrGlClT+Mtf/gL8niD86KOP6Nq1bA78uLg4nn32Wbp3745hGLz//vth1fXOO++wbt06NE1j/vz5nHzyyRW95DIyMvjss8/wer3VHrt+/XqKiopwu928/PLLldZJiI+PJyMjg5dffpmOHTs25HKwcuVKLr30UgzD4K677qpIBAIsXLiQd999ly5durBw4UImT56My+UCIDY2luuuu44XX3wRKFt8JBAINCiWo4UkAIUQQgghhBBCCNHiGYbO3PyZBPDXWi6An7n5MzEMvZEiKxtVOHbs2CrbTzrppIr/vv3227FYKg/UVFWVcePGAbBu3bqw6ipPFJ522mkcc8wxVfb36tWL8847r9pj4+LigLJehNnZ2WHVF6n9+/dzxhlnUFpaypQpU3jooYcq7Z85cyZQ1gswKSmp2nOce+652O12cnJyWLlyZVTibG0kASiEEEIIIYQQQogWb4d/Y409//4oO3SQHf6NUY7odwMGDKh2e0pKSsV/9+/fv9oy5XPo5ebmhlVXeUIsIyOjxjLlScU/6tGjBz169MDv9zNs2DAef/xxfv3114r5ABuqPOm3f/9+Bg4cyBtvvFFlDr+lS5cC8Pjjj5OWllbtPx06dKjo+bd7925TYmvtJAEohBBCCCGEEEKIFm+zb01UyzdE+Sq/f6RpWthlwh3qevjwYQDat29fY5ma9mmaxltvvUWHDh3YsWMHt99+O/3798fj8XDmmWcyZ86cahftCIdhGFx66aWsWLGC5ORkPv74Y2JiYqqUO3DgAFA2bPrQoUM1/qPrZT04S0pK6hXP0UYSgEIIIYQQQgghhGjxSo3iCMtL4qg6Q4YMYcuWLbz99ttcfvnl9OjRg/z8fObNm8e0adMYPnw4xcWRXWuA++67j/feew+bzcaHH35YaX7BI5UnGN9++20Mw6jzn8suu6whL/eoIQlAIYQQQgghhBBCtHhOxR1heVeUImlaycnJQNlcezXZt29fredwOBxccMEFzJw5k82bN7Nnzx4eeughrFYrP//8Mw888EBEMc2ZM4f/9//+HwDPPfcco0aNqrFs+ZBnGdprLkvdRYSAgsMhNi/3U5RjoFkgtYuFrsdasdiUug9uoH2ly/m+9APy8aIAKcQxLuZyEmxdo173rq0LWZGzkjyLjgEkBFWGJA4kvfuEqNftCxWwt+gjgv7dKOigJZIaexrx1ui/bsMIEChdQ9C/DcMIoGoebM6haNbUsI7P3ruVTcv2UpxnQ7MYJHcO0mvEsdgcsVGOXBxtdCPEtuCv7CrdhOI3sATs9LIMJs3SqalDE0IIIYQQjaynfRA/l34XUfnW6LjjjmPv3r0sWrSIm2++udoyCxcujOicHTp04O677+bAgQM888wzER2/fPlyLr/8cgBuvfVWZsyYUWv5ESNGsHv3bubPn88dd9wRUZyiZpIAFLXylegserOUnb9UnmvgtyV+ln2ocPwUB31G2qNSd0kwi9cL/h/5SqhSX9V8ctlS/G86FLk4P+7hKqskmaGgMJePN73C/s57oU2wYnsOsD24m9QVv3Bm9+nEJ4SXEIuErutsy3+R+JL1VF7v6DCh0k1stibROek27Fqc6XUD+EuWU5r/IYZeVGm7r/BzLI7+uBIuRtWqztMAUFKQzcLXtrJ3Yy+gTcX2rSth5YJCBp28gkEnVz/ZrBCR2hHYwBclb1Ng/G8yZF/Zv37iK9prXTnNdQkJWpuaTyCEEEIIIVqVLrbeJGlpYS0EkqSl0cXWuxGianznnXce8+bNY/78+axbt67KAiRbtmzhvffeq/ZYv9+PzWar8dxOpxMAn88XVix79+5lypQpeL1eJk2axL/+9a86j5kxYwZz5sxh8eLFvPfeezWuWAxlC6N4PJ6wYjnayRBgUSO/12D+08VVkn/lfCUGi98uZe03XtPr9gaLeKnwfvLVEFTXyVCBvWoJrxX8xfS6S0pKeGfrS+zvvhOswaoFLCEOdd/J27tmUVIY3ipMkdia+xTJJeup7parAimBbPYe/jsB3fz5KnzFP1CS+1qV5F+5oHc9RVlPoldTt684n0+fPvS/5F9Vfq+L5R8P5ud54T+RE6ImWwPreL/4+d+Tf3+wL7SdN4v+Tb6e08iRCSGEEEKIpqIoKmfGz8Ba7a+p31mxcWb8DBSldaZEzj//fAYMGEAwGOS0007jq6++qljF9/vvv2fixInY7dV35Hn77bcZM2YMr7zySqUhuD6fj7feeov//ve/AEyaNKnOOHw+H2eccQYHDx6kT58+zJkzB1Wt+5pPmDCBqVOnAnDRRRdx//33VxrOXFRUxLfffsuVV17J6NGj6zyfKNM6W7swxarPvGTvrXt1n5/mesk7VL9VgGoyv+BhfGGMLs5SA/xY8KKpdf+w/nlyu9Q910BB5z1899tMU+s+WPojKd5tdZZLCnnZkf+qqXXrwVxK86p/ClS53EG8BZ9U2b583hpyD7ar8/jVXx1D1q5N9YpRCAC/4WNByesY6LWWKzYK+KrknUaKSgghhBBCNAftrF24JPF2krS0avcnaWlckng77axdGjmyxmO1WnnvvfdIS0tjz549nHzyycTExBATE8PYsWMpKiri8ccfr/ZYwzBYvHgxV155JZ07d8blcpGUlITT6eSiiy6iuLiYYcOG8X//9391xnHgwAFWr14NlPUE7NmzJ2lpadX+c9NNN1U69tVXX2XatGkEAgEeeOAB2rdvT0JCAgkJCcTFxXHiiSfyyiuvhN0TUZiYABwxYgSvvfYaXq/5vcFE4wv6DTYt84dV1jDgtx/CKxtW3UEvO5WCsMuvDK0zrW6ATe7SsMtujYt85aPaFBR+HnZZd+lGQrp5191XsgQIL5HrL/kJQ//9Ovm9hWxb1SPMmlTWLzoUeYBC/M9v/hV4w1yxbXtwA7mhw1GOSAghhBBCNCftrF24NukBLkq4haHOcfR3nMBQ5zguSriFa5P+3qqTf+V69erFmjVruPbaa+nQoQPBYJDExESuvvpqVq1aRbdu3ao97owzzmDWrFlccsklDBgwALfbTUFBAYmJiWRkZPD888+zePFiYmKqnxaqJoWFhRw6dKjGf/Lz8yuVdzqdvPXWW3z99ddMmzaNTp064fV68Xq9dOzYkdNOO41///vfLFq0qN7X6GijGOX9QBtIVVUURSE+Pp5LLrmEq6++mr59+5px6qNGVlZW1OvQNA2Px0Nubm7F0trV2bMhwGf/DT+5FZukMu0Bc+ak+63oEz4JfhH+AQbcGvsYFoujwXXv272CN+NmRXTMmYdOoWevyQ2uGyBz3/V1dFavzJt4MWnOYabUXXDoIfTggbDLuxKvxOYcBMD2lT/y9avhz5/his/l4oda/4dufXk8HjRNIxQKkZtr/jDzlu79oufYHvw17PLjHecwxCFzT1ZH2lr9hPtZKiqT9hY5aWv1I22tfqS91U9Lam9t2jT/uZELCwubOoSIxMbKIoei5TB1CLBhGOTl5fGf//yHAQMGMHr0aN588038fvN6KYnG4SuJLC/sK6l9KF4kCvXMyA5QoCTSY2qQk78j4mMKS8ypW9eDESX/AAKh/LoLhcmIcE7BI8t7SyJ7j/tLnRGVF+JIXiOynrelEZYXQgghhBBCiNbGtATg9u3bufPOO0lLS8MwDAzDYOnSpVxyySW0a9eO2267jY0bN5pVnYgyuyuMCfiOYHNGVr42sWqET6YMcKgpptTtie0U8TExjmRT6lZVC5Gmyq0mrgSsqJEl5Y4sb3dFlrq0OWSqAFF/DsUVYXlJOAshhBBCCCGObqYlANPT03n44YfZvXs37733HhMmTADKegXm5OTw5JNP0q9fPzIyMpgzZw6BQPUry4rmIa2bBVsEv5nTB1pNq7uH4xSUCDogulCwmTD8F6BD+gk491c/WWx1bIeS6dXnDFPqBsizJoVdtkRRSLYfZ1rdVsfA8AsrNiz231f77di3H1ZH+HMntu9V9yIrQtSkm3VAVMsLIYQQQgghRGtj+irAFouFc845hy+++IKtW7fy17/+ldTU1IpegYsXL+aiiy6iffv23HHHHWzZssXsEIQJrHaFnsOqXxa8CgX6jgqzbBgsFgedjfDnUhismjvXZI+i8HsXdc+PbOLTusTFnBx22SJHTzQ10kHDNbO7RxHuLcHmHIqquo74/1i6DtocZk06/cY2//lHRPPV1zYUO+E9oehi6UOiZk4PYSGEEEIIIYRoqUxPAB6pS5cuPPLII+zZs4d33323Uq/ArKwsHn/8cXr37s2JJ57Ie++9RzAYjGY4IkJDTnWQ2K7uJjL0dAcJaZqpdZ8R91dsYfQC9OgWTnBfZWrdY/pcTvzOjnWWi93dgTF9Zphad5prJIccdQ9DztHspCdcbmrdqiURZ/zZYZRLwRFXddGTE84cSHzKwTqPHzj+F1LSZYEgUX92xcEk10Uo1D71gEuJZYJzaiNFJYQQQgghhBDNV1QTgOUsFgvnnnsuX3zxBVu2bOHOO++s1Ctw4cKFXHDBBXTo0IF77rmHvXv3NkZYog42p8LpN8bQqZ+l2v1WB4w418ngU8wZfnskhyWBK2P+j1hdheoSgQak6Q4uj3sUi6X6+OrLFethWvplpG5Nh2A1b5GQSpvtnZna4WLiYj2m1g3Qw3M7mc7e1DRIPtOaQLvkv2FTze19CGCPycCZcCHUMGeaxd6LmDY3o2pV63bEeDjtRg/tum+t/libl+MmrWbolDGmxiyOTj1tgzjTfRVupfp5MFO1jlwYcwsJmvQ2FUIIIYQQQgjFMIzIlns1wffff8+zzz7Le++9h6KU9eAoD0NRFKxWK9dccw0PPfQQMTHmJzmaq6ysrKjXoWkaHo+H3NxcQqFQ2MflHgixebmfohwdzQIpXSz0GGrDajdv8Y+a7ChZyA/e+RTiRwGScDPOPZ1ke/R7kW3d8jmr8n4lzxICBeICGoNiutG7z5lRr7s0mM3eoo8w/HsAHbREkmNOxXPE3HvRYug+/KWrCPm3YhhBVC0Bm+t4NGv7sI7P3LmRTcsOUpzrQLMaJHf20XvEIBwxCdENvJXweDxomkYoFCI3N7epw2nWQkaQLYG17AptBKuBNeigl2Uw7bQuFZ8vombS1uqnvp+lRztpb5GTtlY/0tbqR9pb/bSk9tamTfN/MFpYWNjUIUQkNjb8qauEaGqNlgDMzc1l9uzZvPjii2zatAn4PenXtWtXTjzxRObOncvhw4fLAlMUevXqxZIlS/B4zO9l1Rw15wTg0a4lfbA3J9Le6kfaW+SkrdWPtLX6kfZWP9LeIidtrX6krdWPtLf6aUntTRKA5pMEoGhJoj4E+Pvvv+fiiy+mffv23HbbbWzatAnDMFAUhcmTJ7NgwQK2bNnCCy+8wN69e3nzzTfp06cPhmGwadMmHn744WiHKIQQQgghhBBCCCFEqxWVBGBOTg5PPPEEffr0Ydy4cbz99tt4vV4MwyAlJYW7776b7du3M2/ePCZOnFgxTMtqtTJt2jRWr17NiBEjMAyDjz/+OBohCiGEEEIIIYQQQghxVDB19YRFixbx4osv8tFHH+Hz+YDfh/mOGTOGa6+9lnPOOafORRtsNhvXXHMNS5cuZdeuXWaGKIQQQgghhBBCCCHEUcW0BGDv3r3ZsmUL8HvSLy4ujunTp3PttdfSt29kCzakpKQAEAjUtBaqEEIIIYQQQgghhBCiLqYlADdv3lzx38cccwzXXXcdF110ES6Xq17nS0xMZMyYMbKKoxBCCCGEEEIIIYQQDWBaAtBut3P++edz7bXXMmzYsAafb+jQoSxcuLDhgQkhhBBCCCGEEEIIcRQzLQG4b98+EhMTzTqdEEIIIYQQQgghjiKxsbFNHYIQrZZpqwBL8k8IIYQQQgghhBBCiObHtASgEEIIIYQQQgghhBCi+TFtCHBNCgsLKSgoIBQK1Vm2U6dO0Q5HiIhs2/cryzKXkG/LBSAumMAJScPo2eGYJo6s+TIMg4PbQmz+yU9RjoHDWUpiR4New6y44uWZQ2tUoheyzv8je4JbCRIgTvHQ1zaUzpZeUV/IyWeU8qt/ObuCmzBKQlhDTnpbBtPN2h9V0aJad0PlhA7xi38ph0P7AEhS0xhoH06y1r6JIxNCCCGEEEK0NqYnAHVdZ86cOcyePZvly5dTUFAQ1nGKohAMBs0OR4h6KfUW8caml8ntvBW6/L69mD3MZR1xa7tycfcriHHFN12QzVBRrs7XrxSTufPIhH+AbWtgxaelDDrZzpBTHSiqrO7dGhiGwXLf1/zg/ZQQle/f6wM/kaK2Z4r7SjxaclTqX+f7ka9L3yOAr2xDoOxfv/lXEK8mMcV1JWmWjlGpuyGCRoAvSt7m18DyStt3spGV/oX0sA7kVNcl2BVHE0UohBBCCCGEaG1MTQBmZmZy9tlns2zZMqDsx6EQLU0g4GPm1v9S3Hl3jWUKOm3n1Z3/5eruN2O3ORsxuuartFDnk6eKKMzSq91v6LD6cx9BPww/W65Za7DU9zlLvJ/WuD9T38fbRU8yPfZ2YlWPqXWv8y3js9I3a9yfr2czp+gpLoq9pVn1qNMNnXnFr7AtuL7GMlsCa/mg6DnOj7kei2JtxOiEEEIIIZpWYWFhU4cQEVm0RLQkpo3HMwyDs88+m6VLl2IYBp07d+aCCy4Aynr3jRs3jnPPPZfjjjsOi8VSsf2UU07h0ksv5ZJLLjErFCEa5LuNCyjuUHPyr1xpu318+dvHjRBRy7BygbfG5N+R1n3rI2uP9PZt6XJCmSzxLqizXJGRz8LSeabW7dVL+Lr0vTrL+fHyVcm7ptbdUBsDK2tN/pXbG9rGL/4ljRCREEIIIYQQ4mhgWgLwww8/ZOnSpSiKwp///Ge2bNnCW2+9VbH/pptu4t133+Xnn39m9+7dXHPNNRiGwbp167jpppt49dVXzQpFiAb5zVb3j/NyW90bwprfsrXzlxps/skfdvlfvw+/rGie1vgXA+H18t4UWE2xbt7T3HX+HwkQXhvaG9pWMcdec7DatziistKTXgghhBBCCGEG0xKA77zzDgDdunXjqaeeQtNqnnw9LS2N5557jn/961/s37+fc845J+y5AoWIppyCTHyph8IuH2iTTWbenihG1DIc3B4kGEFOb+9vgegFIxrFjsBvYZfVCbE7uMm8uoMbIisfQazR5DNK2RfaHnb5HP0QBXpOFCMSQgghhBBCHC1MSwD+/PPPKIrCeeedh6pWPW11vRhuu+02hgwZws6dO3nxxRfNCkWIeivxFkV8TJG3Zc1TEQ0BX2S9lPxe6dXU0vkNb4TlfSbWHdm5fBHGGi31uQZ+mkfsQgghhBBCiJbNtATg4cOHAejTp0+l7YpSttqn11v9j5ipU6diGAYffvihWaEIUW8JMUmgR7ZCrcedFKVoWg5nTGTXzBFj2q1HNBGnGhNReZcSWXkzz+WKMNZocSguFCJ7rzhNvG5CCCGEEEKIo5dpv8IDgbIhfW63u9L2mJiyHy9ZWVnVHtepUycAtm8Pf1iUENES44onZl+nsMs797enTUK7KEbUMqR2teCMCz+x0W2wrGza0vW2Dg67rB0nna29Tau7ly38uhVUelqPMa3uhrAqNrpZBoRdvoPWjRg1PooRCSGEEEIIIY4WpiUAk5LKekH9cdnu1NRUADZv3lztcYcOlc23lpeXZ1YoQjTIsbZjwy47gOaRWGhqmkWh7yh7WGUVFfqMskU5IhFtA2wjsBLe33GAfTg2Jbz2EY5e1sG4lbiwyva0HkOs6jGt7oY6zj427LLHRlBWCCGEEEIIIWpjWgKwZ8+eAOzYsaPS9gEDBmAYBp9//nm1x5VvT0xMNCsUIRpkWK8Tabuj7l46yTv7MLrXKY0QUcswaIKddj0tdZYbPc1JbFLNiwSJlsGtxjLJdXGdQ1rbap0Z5TjN1LotipUz3DOwUHtP0gQ1mZOc55tad0N1tvbiePtJdZYbaBtBrwh6WQohhBBCCCFEbUxLAJ5wwgkYhsHKlSsrbZ88eTIAW7du5Z577qm0GMi///1vFixYgKIoDB8+3KxQhGiwCwdeSY8dw1FKnFX2KaUOuuwYyiUD/lTratdHG82qMPFPbvqOtqFVkweMTVI56QoXvYeb1xNMNK3etmM5x/0nPGpylX0qGv1tJzA15kZTe/+V62jpzgUxN5Gidahmr0IP60AuirkVtxpret0NNdYxhfHOc6qd38+Ok1GO0zjFeUHFHLpCCCGEEEII0VCKUd3yvPXw9ddfc/LJJxMTE0NmZiYOhwOA0tJSevXqxb59+wBISUmhS5cubNu2jaysLAzDQFEUvv32W8aOPbqHO9U0T6KZNE3D4/GQm5tLKBSKen0tXamvmCVbviYrlA1Asi2F4eljcTmbX1KhOfEW6WxbFaA418Ad4yS+XZB2vVRUVRIa4fB4PGiaRigUIjc3t6nDqZNh6OwKbmJPcBshgsSqCfSyHkuMGt4w3YbVbbA/tINdoU2odgWL30YP7Rjitea/OE/QCLA58AtZof0YGCRpqfS0Do5KwrQmLa2tNRfyWVo/0t4iJ22tfqSt1Y+0t/ppSe2tTZs2TR1Cnf44pVhzFxvbtL8L09PT2bVrF6+++iqXXXaZaee9//77eeCBBxg7diwLFy407byiadU9Xi9M48aNIyMjg9LSUpYuXcr48eMBcDqdzJkzh4kTJ1JUVMShQ4fIzMys1BPwvvvuO+qTf6J5ctrdnNR/Sov6YG8OHDEq/cbY5YvkUUJRVNKtfUi39qm7sOl1K7S3dKWTvUeLa2sWxUpf25CmDkMIIYQQQghxFDAtAahpGt9++221+0aMGMHatWt56KGH+Oqrrzh48CBut5uhQ4dy8803M3HiRLPCEEIIIYQQQgghhGj1unXrhsPhID4+3tTztmnThl69etGpUydTzyualmkJwLqkp6fz0ksvNVZ1QgghhBBCCCGEEK3WN998E5XzXn/99Vx//fVRObdoOqYtAiKEEEIIIYQQQgghhGh+JAEohBBCCCGEEEIIEQUZGRkoisL9999PIBDg0UcfpX///rhcLtq3b8+VV17JgQMHKspv3bqVGTNm0LFjRxwOB7169eKxxx5D1/Uq505PT0dRFGbNmlVp+86dO1EUBUVR2LlzJ/v27ePaa6+lU6dO2O12OnbsyLXXXktmZma1Md9///0oikJGRkbFtgMHDqBpGoqisGzZslpf83HHHYeiKNx9990V23Rd5+uvv+bPf/4zxx9/PG3btsVms5Gamsqpp57Khx9+WOP5Zs2ahaIopKenA/Djjz9y5plnkpKSgsPhoF+/fjzyyCMEAoFa4zramTYEeOrUqYwfP57x48fTo0cPs04rhBBCCCGEEEIIERHdMNjoz2aNL5NiI4BbsTLInkJvWxKqojR6PIFAgJNPPpmFCxficDgA2L9/P6+88grff/89y5YtY8uWLUyaNIm8vDzi4+Px+/1s3ryZv/zlL+zdu5cnn3wy4nrXrVvHjBkzyMrKIjY2Fl3X2bt3L88//zxfffUVK1asICEhoc7ztG3blvHjx/P111/z1ltvMXz48GrLbdy4kVWrVgFw8cUXV2zfvXs3EyZMqPj/uLg47HY7mZmZfPbZZ3z22Wdcc801PP/887XG8frrrzNjxgxCoRBxcXH4fD42bNjA3XffzcqVK3n//ffDuCpHJ9N6AL733ntcd9119O7dm06dOnHppZcye/Zs9uzZY1YVQgghhBBCCCGEELXaEcjnvuwfeCJvBd+V7ma59wDfle7mibwV3Jf9AzsC+Y0e03//+182btzI/PnzKS4upqioiLlz5xIbG8uWLVu49957mTp1KqNGjWLbtm3k5eWRl5fHn/70JwCefvppfvvtt4jrvfTSSxk4cCDr1q2joKCAoqIiXnnlFex2O9u2bePRRx8N+1wXXXQRAO+88w7BYLDaMm+++SYAgwYNom/fvhXbLRYL06dP57PPPiMvL4/8/HwKCwvJzMzk4YcfxmKx8MILL/Dee+/VWP/hw4e58sor+dOf/sSBAwfIy8sjNzeXG264AYAPPviAzz//POzXc7QxdQiwYRgYhsHevXt54403mDFjBunp6fTo0YNrrrmGOXPm1NjFVAghhBBCCCGEEKIhdgTyeSxnOQdDxdXuPxgq5rGc5Y2eBMzLy2POnDmcdtppqKqKpmlMmTKFv/zlL0BZgtDhcPDRRx/RtWtXoKyX3LPPPkv37t0xDKNevdvatWvHggUL6N+/PwB2u50ZM2Zw1VVXAfDuu++Gfa6zzz4bh8PB4cOH+eqrr6ot8/bbbwOVe/8BdOjQgddee42JEydWWrU4OTmZu+66i/vvvx8ouw41KSkp4ZJLLuE///kPqampACQkJPD0008zYMCAiF/P0ca0BOChQ4eYM2cOV199NT169KhIBhqGwbZt23j55Ze56KKLaNu2Lf379+fGG29k7ty55OXlmRWCEEIIIYQQQgghjlK6YTAzfy1+QrWW8xNiZv5adMNopMhg+PDhjB07tsr2k046qeK/b7/9diyWyjO1qarKuHHjgLLhvJG69dZbsdvtVbafeeaZAOzYsYPi4uqTpX8UFxfH5MmTgd97+h3pxx9/ZNu2baiqyrRp0yKK87TTTqs4RyhU89/vrrvuqnb7lClTAFi/fn1E9R5NTEsAJicnc/755/P888+zadMm9uzZw+zZs7n00kvp1KlTpYTghg0bePbZZznnnHNITk5myJAh/PWvfzUrFCGEEEIIIYQQQhxlNvqza+z590cHQ8Vs9GdHOaLflfdQ+6OUlJSK/y7vpfdH5b3dcnNzI6536NCh1W5v3759xX9H0jGrfBjw3LlzqyQO33rrLQDGjRtHu3btqhxbWlrKE088QUZGBikpKVit1orFSgYPHgyA1+ut8XUmJiZW9I6s6fXU5xodLUxbBOSP2rdvz/Tp05k+fToA27dv59tvv+Xbb79l4cKFHDx4EIBQKMSqVatYvXo1//jHP6IVjhAR03WdPet38tvSEvIOugAFT2opPYfb6TwgHVXTolp3pncZBcVfYQ/moWDgV51YXMfTwX06FtUWtboBtpV8Q17RFySESrAYUKKqFNu60Df+Mlyap9ZjQ75iSnZ9QMiyFix+snco4EvA7jgFZ8cRUY37aGUYBqHALvzFiwn6dwM6qpaEzT0Mq+MYFCV6bRUgFNiPr/gHgr5tYPhRLR6szqHYXMehKNFtq3mhLNb4f2BXcBOhggAOw00v62D6207ArjijWndDGIbB7uBmfvEv4XBoPwYGSVoaA20j6GLpg6qYOkOHEEIIIcRRYY0vsinH1vgy6WtvE6VoKmvbtm2127UjflfWVaY+q9zGxsZWu718IZJIzztp0iQSExPJyclh3rx5XHjhhUBZbuedd94Bfk8SHunAgQNkZGSwefPmim0ulwuPx4OqqoRCIbKysgAoLi6mTZuqf5eaXsuRr0dWAq5Z1BKAf9S1a1e6du3KlVdeydq1a3nmmWeYNWsWoVAIoxG73QoRjpKCQr58YR+Zu9KAxIrtBVkedv0KSe23ccqfUonxxNd8knryh4rYlf0IyYF8HEfu0Iug4Fv2Fy0iNvE6PPZeptcdCJWyNvs+ugVKSDpie3xIh9Jt5Hr/xt740+jpnlTt8d59P+PVXwP3H97Trmx8vIVvywJiO9+NZnOZHvvRyjD8lOS8TsC7utJ2PXiIoG8DqiUVd9I1aJaUGs7QkLpDlOZ/gL/4+8p1hw4T9G3GWzAfd9LVWGydo1C3wTLf5/zgXQD8r739b6TA3uA2fij9lDPcl9PF2rfGczQVr17C3JKX2R3cXGl7jn6ILYFfSNM6c7b7GmLUuCaKUAghhBCiZSo2Ikv+lERYXoDNZuO8887jhRde4M0336xIAH799ddkZmbicDg455xzqhx38803s3nzZuLi4njmmWeYNGlSpSTftm3b6N69O4DkiKKkUboYbNmyhRdeeIGpU6eSmprK4MGDeeWVVwgGgxV/WI+n9l5FQjSWgN/PgmcO/C/5V73sfSks+M9h/KVeU+vW9SC7sh4iuZYJaeP0ECXZz1AY2Gdq3QDrsu+lW6Ckxv1uA+LzPmVHyeIq+3yZG/Eas0Gt5WbtyqNw94O1zukgwmcYOsU5M6sk/46kBw9RlPU0esj8SY5L89+vkvyrFJ+eT1HWM4QCB02v+yffl/zg/ZSK5N8f+Cjlw+IX2RPcanrdDRE0Arxf/N8qyb8jHQzt4t2i/+AzzL2/CCGEEEK0dm7FGlF5V4TlRZnyHn5ffvklhw8fBn6fE3Dy5MnExVV+kO33+5k3bx4ATz75JNOnT6/Sw+/QoUPRDvuoF5UE4B/n/+vduzfXXXcd77//PocPH8YwDNxuN5MmTeKf//wnK1asqGg0QjS1DYs2k7O/7t5SeZltWPvNFlPr3lOygORgYZ3l3IbB/vzZpta9ufgLugZKay1jAHagqOCDKvtK818HJYyKnAX4dn1drxhFZUHvrwS9dU9ya4Ty8BZ+bm7d/r34i6smgqtWXkppwVxT6y7S8/+X/KtdiCDflL7frJ4grvf/xP7QzjrLZekHWOVbFP2AhBBCCCFakUH2yEa9RFpelBk1ahSdOnUiGAzy7rvvUlpayty5c4Hqh/9mZWXh8/mAmuck/O6776IWryhj2hDgd955p2KOv+3bt1dsL//h5XA4GDFiBOPGjWP8+PEcf/zxlca6C9Ec6LrOb0vCnzds07I4jp0UMm0+wEDxkrDLenz78YUKsGvmDBMsKv6Kuj7+yvN77UNBDvjW0tY+EIBA3j5wht/DzK8vxMUp9QtUVPCFk4D7H3/JzzjjzkRRq64AVh+19fz7o6D3V/RgDqolse7CYVjrX4qOHlbZzNBeDoR20s7SxZS6G2q1L/y/2RrfD5xgnyDzAQohhBBChKm3LYk0zR3WQiBpmpvetqQ6y4mqFEXhwgsv5NFHH+Wtt96iTZs2FBYWkpiYyKmnnlqlfGxsLIqiYBgGGzdurLLYSWZmJk8//XRjhX/UMi0BOG3atIo/KIDVauX4449n/PjxjBs3jhEjRmCzRXcyeCEaqrSwiIKs8D8EivPjKcjKIyG14R8cuq6TEAxvxSoAG5DtW0M715gG1w2QFAx/uKEK7C/9viIB6Dv8E0QyrZ+97l6Oom5BfwQ9UA0vocAeLPbuJtUdydBag6B/GzaTEoCRDuvdHdzSLBKAXr2Ew3r4Q/cLjVzy9Ww8WnIUoxJCCCGEaD1URWFG/EAey1mOn5qnHbKhMSN+IKoSzhAmUZ2LLrqIRx99lKVLl+L1lv2WPO+887Baqw6rjo2NZdiwYSxbtozbbruNtm3bMmJE2QKRixcv5tprr5VpohqB6d0KFEVh5MiRzJ8/n4ULF/LAAw+QkZEhyT/RIoT8wYiPCfrNmjhWjzgjH9JrH7IbiUj7MBq67/f/jnSuMvmcbTDDMMCIrL0aht/E+iNr92bWHYjwXJGWj5YAkccRrMcxQgghhBBHsy7WeG5PPJ40zV3t/jTNze2Jx9PFav6CjkeT/v37M3BgWYeQVatWAXDxxRfXWP6JJ57A6XSye/duRo0ahdvtJiYmhrFjx3Lw4EFeeeWVRon7aGbqKsDlvf+WLl3KxIkTcbvdjBkzpmLY7+DBg82sTgjTOWPdKGoRhh5uOkzHlRBjSt2qaqFUUXBGMF+Zw5JqSt0ApYpCTAR1W4/olaRZU2t5vlYNXYY0NpSiKChqHIYe/tBrVTPvS46qxhMK5UZQd4JpdceqCUTS4GJV8+puCKfiRsNCiPATt25FVgIWQgghhIhUF2s8DySNYqM/mzW+TEqMAC7FyiB7Cn1sSSjS888UF110EWvXrgWgc+fOjBw5ssayJ5xwAsuWLeP+++9n0aJFFBcX07ZtWyZOnMg999wjPQAbgWKYNDv61q1bK+YAXLhwIZmZmb9X8r83l8fjISMjg/HjxzN+/Hh69+5tRtWtRlZWVtTr0DQNj8dDbm6uvMFq8MXz69i1vmNYZdv13MfpN/Yzre5N2f8k1bs7rLL5qpWOqY+jquYk037OeZgepfvDKluiQFLqo9i1suRnKBig8MCtta8AfAS1sAtxvW+rd6ytncfjQdM0QqEQubk1J9lK8+fiKwpvQRXV0p7YlDtN+7LjK1pIaf77YZVV1Fji0v4fimLOM6ct/l/4qOSlsMpqWLg27kFcqjmJ+oaaXzybDYGfwyrbxdKX82Kui2o84bY1UZl8ltaPtLfISVurH2lr9SPtrX5aUnv746qrzVFhYcuaKig2NrapQxAibKZ1w+nevTtXX301c+bM4eDBg6xbt46nnnqKKVOmkJCQgGEY5OTk8NFHH3HDDTfQr18/OnTowPTp03n11VfZtWuXWaEI0SADxoXfS2rAuEgmvqtbasyZYXdsCrmHmJb8A+gRewnhDuTda2tTkfwD0CxW1OJe4R1sgCP1/MgDFFXY3KMJtyO3PSbD1CedNtcJKEp47d/uHmNa8g+gm7U/CWp48+L1sx3fbJJ/AMfZMwh3DPwQ+7ioxiKEEEIIIYQ4ekRtHF6/fv244YYb+Oijj8jKymLFihX885//5OSTT8btdmMYBvv37+ett97iyiuvpFu3btEKRYiItOvViSGn7qmz3KCT9tB5gLkLCyTYe1IQO6bO9U0P2VJJj5lmbt3WDhyOG1Xn4MS9msZgz1+rbHd3vwZK6xiuaICl9ERsnvB6WIraaZYkXJ5LqOtWbnONwOYaZmrdiurElXQlKFUn+T2SxdEfe+zJptatKhpnua/CqVQ/r0u5tlpnxjvPMbXuhmpr6cyJYcQ0wj6JLtY+jRCREEIIIYQQ4mjQKBNxKYrCsccey+23385nn33GmjVruPLKK7FYynqEGIaBSSORhTDFsacOYOxFh4hrk1NlX2xiLqOnHuD4MwdEpe4ucedTkjCFXLXqwjklisJh10B6JN1jau+/cgNiLyA7/lQOqlV7KHmBLTYPPZIfxao5q+zXLFZi0x9ALewK1b2dAzZsgbOI6XGW6XEfzWyuY3En/RnN2rnKPkWNxxF/Ns6EaVGZ58Rq70lMm1uw2HpUrVtxYY+diDvxKhQl0iVm6pasteOimNvoZunPH3vUWbFzrG0sU2NuxKbYTa+7oY6zZzDFdQVJalqVfQlqGyY5L2aU87QmiEwIIYQQQgjRWpk2B2BtsrKy+O677/jmm2/49ttv2bZtW6X9hmGgKMpRP9eEzAHY/Oi6zv5NuynMDKAoCkkdYkjqnIyqmZ/QqM6h0uUU+n4FdOyWtrRznYRWTWIwGnaWLOaw9ycggEVNonfsVJxhLiIR8pdQuusz9NAhrFYnqrM/9nZDoxtwK1LfuWSC/j2EArvACKFa2mCx945K8q06ocBBgv5tYARQNA9WR1+UOnoHmiVfz2FPaAsWp4ritZCu9cauVE1SNzeGYbAvtJ3Dof2AQaKaSidLDxSl8RbJaUnzFjUn8llaP9LeIidtrX6krdWPtLf6aUntTeYANJ/MAShaElNXAS5XWFjIokWL+Pbbb/nmm2/49ddfK3r4/THf2Llz54pVgoVoblRVpUOfdDwjmuaDPdV5PKnO4xutviOlu0aT7hpdr2M1m4uYHufIF8lGZrF1xGJrmuHVmjUNzVq1R1tjiFcTSbSOwJPQstqaoih0sHSjg0WmwBBCCCGEEEJEl2kJwPLefd9++y0rV66s9APsyKRf27ZtGTduXEXSr0sXc+dQE0IIIYQQQgghhBBC/M60BOCECRMq5pg6MuGXlJRERkYG48ePZ9y4cfTu3dusKoUQQgghhBBCCCGEEHUwdQiwYRjExcUxZswYxo8fz/jx4xk4cKCZVQghhBBCCCGEEEIIISJgWgLw0UcfZdy4cRx33HFRWZ1UCCGEEEIIIYQQQggROdMSgHfccYdZpxJCCCGEEEIIIYQQQphEuuoJIYQQQgghhBBCCNGKSQJQCCGEEEIIIYQQQohWzNRFQMoFg0F+/vln1q9fT25uLl6vN6zj7r333miEI4QQQgghhBBCCCHEUcvUBKCu6/zzn//kiSeeICsrK+LjJQEohBBCCCGEEEIIIYS5TEsAGobBeeedx9y5cyv+PxKKopgVimhFDL0Uf8ly/CXLCAUzARXN2gG7exRW5yAUJSqdWAEoKSpi3dc/s2dDGwqyUjAMiEvKokOfTI6ZcByuuLio1R306/w838vmHwP4SsreS5oFOvSxMPwcJ3FttKjVbRg6O4K/scb3A3tD2wgaAWLVBPrZjmegbSQxau2ve+eWAyx7s5SirAQMFCALixokud9hTrq0G06HPWqxN9S6wvdYFviBPCUEgAIkGBZG2cbRJ2ZKVOveVPgBlqJFeHSd3H1l2woVyHf1Y0DCtbUeG9T9LPbOZ13gR7xGCQAaFtItvTnReS4JWpuoxt6U9ga3sdr3PTuDmwjk+HApsfS2Hssg26g6X3ehnse3pR+wLbCeIAEAbDjoaxtKhmMKNtURtbi9fj8/bP2ZDdpSfAkHMBSw5yXTMzCcsd2G4XJEr249ZLBzbYDffvCTtacAPWQQn2yh+1CNXsNt2F0yO4gQR7NQ1mH8yxbj/2U1RlERit2OpVcf7CNGY0nv2tThNVvBndvxLV1McNNvGD4fSkwMtmMGYxs+Gq1NclOHJ0SLERsb29QhCNFqKUakmboazJ49m8svvxwATdM499xzmTBhAh06dMBuD+8H/9ixY80IpcWqT6/JSGmahsfjITc3l1AoFPX6GiIU2EtR1vMYel61+zVrR9xJ16Jq5ifi9m/ZzqI3ghRmp1S7352QzZgLA3Ts29v0uvMOBfnon0UEfDUUUGDsRU56DTM/kRYw/HxcPJNtwfXV7rdiZ4r7Crpa+1a7/8u3N7BzSduyIKthUQNM+qtK2/ZJZoVsimAwyFsFd3JQrWG6AgM6GW4uSPxHVOpff+gO2gdLarhqkKModEz+B1arq+q+4CFeK/onfmpuMJOcFzLAPty0eJsD3dD5snQOa/1Lq92vojHRNY3+tmHV7t/sX8O8klcwqP4j0IKVi2JuJdXS0bSYyx3IyWJO7n8JJGVWu1/L93CO81rSU9qZXre3WOfLF4s5uK36+78jRmHin9ykpEfv4Upr0JI+S5sTj8eDpmmEQiFyc3ObOpwWobHbmu+npZR+MAd0vdr9thGjcZ55HoravB8UNGZbM3Sd0rnv4V+6uPoCqorznAuwnzAiqnGYQe5t9dOS7m1t2rTeh8JCiLqZlgAcP348CxcuxOFw8PnnnzNmzBgzTntUkQTg7/RgLoWH/4GhF9VaTrN2ICb5VhTFZlrdBVnZzH8yj6K82pNUrrhcTv2zg8T2bU2rO+jXee2uAoI15XKOcNoNbtr3sppWt2EYzC15iS2BtbWW07BwYczNtLWkV9q+7MtNrPs4hZqSf+UsaoDp/4zD2ox6As7JuZPdau1tDaCH7uGsxP9nat2/ZP4fnQN5dZbLVDV6tn2q0ja/7ufZgrsI1Jj8+9357htIt/aqb5jNzjcl77PSv7COUgpnua+ih3Vgpa0Hgrt5o+hfNSb/ymlYuDbuQVxqTMOCPUJRaSkvHvwHQU/t93utIJ7LEu4gKS7etLr1kMEnTxVxaHvt936bE876SyzxKdHradzStZTP0uamJf1Ibi4as635f1lNyeuv1FnOnnESztPPjGosDdWYba30k4/wLfqmznKu6VdgO2ZwVGNpKLm31U9LurdJAlCIo5tpj+/Wrl2LoihceeWVkvwTDeYt+qrO5B+U9RL0l/xsat1rvvilzuQfQEmBh1++3mhq3T9+5A0r+Qew+O1SU+veG9pWZ/IPIESQ772fVNm+8VMPdSX/AIK6lS/e2FafEKMix7+V3UrdbQ1gi5JLcbD6Xlv14Q3k0zGM5B9Ash5id8kPlbZ9750bVvIP4MuStyMNr9nKC2Wx0r8ojJIGC0s/wjAq92T5ouTNOpN/UNbWvy59r55RVu+brYvqTP4BhOLy+Wpn3T8oI7Hjl0CdyT8Afyms+jy8xbuEEK2Doet4588Nq6xv0Tfoec07ydFY9LxcfN9/G1ZZ76dzMWroWSmEEEI0BtMSgMXFxQCMGNH8u7eL5s3QffhLlodd3l9cw5CLeggGg+ze0CXs8rs3dMcf5irX4djysz/ssgVZOgVZ5j2dXeML/zruCm4iJ/R7ImzDL7sJhMLvjXh4XfN5+vht0avh5C3LKPBd4fOm1b0p78mwb8IKUFLwQaVt6/3hv0/yjCxyQ4fDD64Z+8W/BMJI4AHk6ofZHdxS8f+lehGZ+r6w69oS+CXS8Gqk6zrbYpeFXX5v0k8EgkHT6t+wOPz7y7ZVAbxF8kNViKNFcNNv6LnZ4RU2DHw/VT/9wtHG9+MSCHMwlZ6TTXDTb1GOSAghhKiZaQnAdu3K5irS5cmWaKBQ8CAY4SfVQoG9GIY5P5Jz9x2kJN8TdnlfcSyZO3abUreu6wQizCXuWmdecmB/aGdE5Q8cUX7rsmLCz6IRUbIw2jIpjKj8ASPHtLpdwcjOFR8KVPy3ruv4iazBhNPDsyWItK3uD+2o+O8dgch67YYIUhJGb+Rw5BcXEUwI8wc2oLuL2ZdjXtI2c2f49ws9CNn7ZPiXEEeL4O6dEZUP7dpRd6GjQCjC6xbpdRZCCCHMZNos32PGjGHnzp2sXbuWCy+80KzTiqORUY8fnUYITFgROFiP3jahQKDuQuGoR+48GDBlCs+y6iO87qEjyuvm5SEbXThDQY+kR1i+NmqE52roWukhw6S22sQa0lZDRH4NAoYPaPg8gMF6zKcUDJn35tIjrN7EqoUQzV2kb3iZH65MpNdBbqxC1KmwMLKH801NVi0WLYlpPQBvuOEGVFVl1qxZLe5NK5oX1ZIYUXlFjQGTFgHxpCWjWcIfJqeoQTwmLQKiWlSUCN+RyR3Nm6Q/Xo1sZd4jy3s6RZaaijTxFU1uIuuNGIt5i5eUqpGdy6v8fp1VVUWJ8BaeZukUUfnmqiFtNVWL/BrEKuYsxJEQEwv+CO5VIZXkuPB7JNclNjGy9hKX1LxX+RRCmEdNjOy+Gmn51kqumxBCiJbEtG/3xx57LA8++CCZmZmceeaZzX4FJNF8qVoCFnvvsMvbXMNQlIb2jSrjcLtp32tz2OXbdd9CXFJkCcvapHULvxej1Q4d+pg3lLa/bVjYZePVJDpaulf8/4hJ3VAi6MIYm2beMNqGOsE2LvzCBoxynGFa3Z64qRGlQgucfSv9/5F/g7rYsNPF2rfugi1Af9sJYZe1YqenbVDF/6dY2uNUwu/Nl6p1QFXN6SxvtVhIPRj+CpAJB/oR7zZvBeKew8JPPqakaySkySrAQhwtrAOPBWv43ylsQ8P/ztCa2YZEcB2sVqzHHBu9YIQQQog6RPyr5vvvv69x3/Dhw7nwwgt566236NmzJ5dccgnDhw+nTZs2qGrduUZZPViUs8ecSNAXxlxdihWbe7SpdfcaFs+e34IYeh1vD0Wnx/Hm9QYDGH62gw//Ed58Y/3Gmlt3H9txLPF+SqGRV2fZofbxqEd0V7RarSR2zSR7e1otRxmUDWI1GHmJOT2qzNAnZjJf5X6BN4wccoyh0sk1yrS62zuHsEOZjSeMCcR9QJ+YKyttO9FxDq8WPRJWXYNtref+2tnSk1StI4dCe+osO9g+GrviqLTtBPsEFno/CquucY6z6xVjTUanjuf94Aqw1DFsTFcYEXeiqXX3GWlj7Tde/GEsIH7MSebeX4QQzZvqcmEbNhL/4oV1ltU6paN16Rb1mFoCrWs3tE7pYc0FaBs2EtXpin5QQgghRA0Uwwhz6ar/UVU1rN5WhmFE1CtLUZR6zb/WmmRlZUW9Dk3T8Hg85ObmEmrm87d4C7/BW1Dbj3QL7qQrsTr6m173z58sZM2XAzCMGnrAKDoDx69h2FnjTa/7l6+9/DS39sUd2vWycPoN5vUMKpcZ2ss7Rc9QatSchDzGNpKTnRdUeX8HAgHm/O0ApUVxtdRg0H38Qcaf3cekiM2R5d/E7OL/EKrllmUx4Er3HcTZzB1GWxA4QEnmQzhqKRMCij0XVJt8XO79ps5kVkdLT6bF3NiwQJuZAj2Ht4ueIl+veVGNbpb+nOm+Ck2p+j7+qPjFOhdFGWY/mTFO83p8llu0aTk/tXkDtBp6zeoKAw+cw8R+GabXvX9zgM+fLyZYy0wHx06yM+Q0p+l1tyYt6bO0OfF4PGiaRigUkpEiYWrMtmYEAxS/+mKtK9WqbZKJufYm1PiEqMbSUI3Z1vT8PIr++yR6ds3f4y29+uC+/GoUS/NZBK06cm+rn5Z0b2vTpk1Th1CnljadmMwBKFqSeiUAoxKIohz1HzSSAKwqULoOb9GXhPxHrjanYHH0wxE7CYutc9Tq3rD4Jzb/aCVzV9dK29t03EnPE0rpnzE8anVvX+1n6fullORXfntabNBnlI3hZ0fvCXJeKIsfvJ+yKbCaEL8n5ZPUNIbYxzPQNrzG5H4gEODjZ7aRuy0FvdIMAwY2q4++Uwo5PqNH1GJviHz/Tj4qeppMxV95tQ0D2hoOzoq9nRhrbT0c6684kMWe7IdICQX+cNUgV1FwJl5JW8cxNR6/0b+ab0vfp8jIr7Tdgo3BtlGMc5nbi625KNYLWepdwHr/cgL4KrbHKR4G28cy1D4OtZrkX7kfShewwvcN/iOOBXApMYx1TGGAPXrv8bW7NvND8ecUtas85YDrYBdOsJ7C0G7mP9gol7MvxMrPvOxcG8A4IgfZpqPGoAl2uh5rzpyqrVlL+yxtLlrSj+TmorHbmhEK4Vv0Db4l32Pk5/2+w+HANuQEHBMmoZo4NUG0NHZb04uL8H71Gf4VP4H394e4SoIH+4jR2MeeiKI1/2kV5N5WPy3p3iYJQPNJAlC0JBEnAB944IFoxcJ9990XtXO3BJIArFkocBA9mAmKimZpj2oxb2L8uuzdtIW8fVkoKKR1aU9Sl46NVvfh3UF2rQughyC5k0aXQY33w7xUL+JAaDchI0CMmkCa1insXr2BQICfvtpO7m4dm1Oj54hYuvQwZ7GUaCsJZrGm+H2KjUJi1XgGuc7HYUlolLq9gXw2F85CpQDFEkPv5EvRfOHPMXkouIctgXWECJKmdaSXLfz55loyn+HlkL4bm9uCUaKSqnSqNES9Ltv869kX2o6CSldrX9pbutZ9kEn2ZWeyO2c/BgYd4tPolNJ475OSfB1vnhMMhbgkDUtscaPV3dK11M/SptaSfiQ3F03V1oxQiNDunehFRSh2O5bOXVDsLWdqgKZqa4bPR3DXDgyfDzUmBq1TeotI/JWTe1v9tKR7myQAzScJQNGSRJwAFNEjCcDmqyV9sDcn0t7qR9pb5KSt1Y+0tfqR9lY/0t4iJ22tfqSt1Y+0t/ppSe1NEoDmkwSgaEmiM55XCCGEEEIIIYQQQgjRLEgCUAghhBBCCCGEEEKIVkwSgEIIIYQQQgghhBDNyMKFC1EUJex52MNRfr6FCxeadk7RckgCUAghhBBCCCGEEEKIVsxi1om0eq5wpSgKsbGxJCYmcswxxzBu3DguueQS4uPjzQpNCCGEEEIIIYQQosVwuVz06tWrqcMQrYhpPQANw6jXP7quk5+fz44dO5g3bx4333wzHTt25OWXXzYrNCGEEEIIIYQQQogW4/jjj2fjxo1s3LixqUMRrYRpPQDHjBmDoigUFhayatWqiu3x8fF06dIFt9tNcXExO3bsID8/Hyjr/XfsscficDjIzs5m8+bN6LpOUVER11xzDSUlJdx4441mhSiEEEIIIYQQQgghxFHHtB6ACxcu5JlnnqGgoACAiy++mJUrV5Kbm8uqVatYvHgxq1atIjc3l5UrV3LRRRdhGAYFBQW88MILbNiwgezsbB566CFsNhuGYXDHHXewZ88es0IUQgghhBBCCCGEaDQZGRkoisL999+P1+vlgQceoE+fPjidTpKTkzn//PPZsGFDlePCWQQkPz+fhx9+mGHDhpGYmIjD4aBr166cfvrpzJ49G6/XG3acJSUlTJo0CUVR6NSpE5s2bQLgsssuQ1EULrvsshqPra1Meno6iqIwa9Ys8vLyuO222+jWrRsOh4N27dpxxRVXSN6nkZjWAzAvL4/Jkyeza9cuXnzxRa688soayw4ePJjXX3+dMWPGcM0113DGGWewcuVK4uPjueuuu+jduzfnnHMOgUCAF154gQcffNCsMEULZRg6hlGKggqKw9SVkER0BP1+gnlZeANesDqaOpyI6HopeigPVUtAVZ2NWnfICFIUKsCluFGJbG7VUCiEX88kRACnmoam2aIUZfMTMPwUhwoIGaGmDiUihmHgLzUAsDnNXeVNCGGOgOEnYPixK040pX5zXoujhxHwY/j9KA4nSj3nSBdCmEM3DDYe8rNmn49iv4HbpjCovZ3eqTbUJvjO5fP5GD9+PMuWLcNms+FwOMjKyuK9997j448/5uOPP+bkk08O+3w//fQTU6ZM4dChQwBYLBbi4uLYs2cPO3bs4NNPP+WYY45h0KBBdZ4rNzeX0047jWXLltG7d2++/PJLOnbsWN+XWq2cnByGDh3K1q1bcTqdWK1WDhw4wMyZM/noo4/49ttvw4pV1J9pCcBnn32WnTt3MnHixFqTf0e66qqr+OCDD/jqq6949tlnufvuuwE466yzGD16NIsXL+abb76RBOBRTA/m4Cv+Hn/Jjxh6EQCq1gabeyQ290hU1dXEEYo/Kt20Al/gE0jIBgWKDgBBDeVwd9w9p2OJS2jqEKul6zq+wgX4ixdjGMUV2xU1Fps7A3vMBFQ1egun7wluZZVvEVsCv6Dn6wB0dfRlgDqcntZjUJSa6/YGDrGy8GXWc4D8/xWzG9ArFMNxrnNIdg2NWtxNSTd0NgZWsca3mL2hbZADGhZ6WI/hOPtY2lu6NnWINfIW6Wz4wc9vS3wU55YlAJ1xCr2H2+g3xo4rPnptTQhRN93Q2RRYzWrfYvaGtgKgotHTegzH2sfSwdKtiSMUzYmh6wTWrsG39HtC28vaC5qGtf8x2EeNxdJF2osQjW1HdoCZP+VzsLDyw+HvtpaSFqsx44R4uiRZGzWm5557jkAgwOzZs5k2bRpWq5W1a9dyxRVXsGLFCqZOncpvv/1GWlpanefauXMnkyZNIjc3l969e/P4448zYcIErFYrgUCAn3/+mddeew2bre4OAQcOHODkk09m/fr1HHfccXz++ee0adPGjJdcyd///nfsdjsff/wxp512GqqqsnjxYi6//HK2bdvGOeecw/r163E6G7cDxtHEtF8YH3zwAYqiMGXKlIiOO/PMMzEMg/fff7/S9lNPPRWAbdu2mRWiaGECvs0UZD6Mr+jriuQfgB7Kwlswj6LMfxAKZjZhhOKPCn5+DZ97FnjKkn8VLCGMtpsoyrkP377m957W9SBFmX/HV/R5peQfgKEX4iv8hKLDj6LrQdPrNgyD70s/5u2iJ9kUWI2OXrFvu3cD80pe4eOSVwkZ1dedU7qG2YX/jyXq78k/AJ8Cay1FvO6bzW/5s0yPu6kFDD8fFr/A/JJZZcm//wkRZGNgJW8W/Ztl3i+aMMKa5ewL8f4jhayY761I/gGUFhis/sLHew8VcmiH+W1NCBGeoBHgo+IX+aTk1YrkH4BOiI2BVbxV9ARLvJ81YYSiOTGCAYpnv0zJGzN/T/4BhEIEfllF0bNP4P1yQdMFKMRRaEd2gMe+y6mS/Ct3sDDEY9/lsCM70Khx5efn8+KLL3LJJZdgtZYlHwcOHMgXX3xBcnIyeXl5/Pvf/w7rXHfddRe5ubl07tyZJUuWcOqpp1ac02q1MmLECJ5//nn69u1b63m2bdvGyJEjWb9+PRkZGXz33XdRSf4BFBQU8MEHHzB58uSKjhWjR4/m888/x263s337dl599dWo1C3KmJYA3LlzJwBJSUkRHVdevvz4cp07dwaoWDBEHF1CgYMUZz8PRs1zFuihbIqznsXQSxsxMlGTojUL0Nsur5z4+yNriNLAfwhGMBdFYyjOegI9lFVrGT24n5Ls/5pe9yr/In70fVlrmU2B1XxV+m6V7b5QLu+Xvlwp8fdHQQUW6CvYU9Q8k2H19XnJW2wP/lprmcXeT1jrW9ZIEYWntFBnwbNFlOQbNZbxlRh8/lwxhTl6jWWEENHzRcnbbAuur7XMEu+nrPH90EgRieas5P05BH9dW2sZ75cL8C1d3EgRCXF00w2DmT/l469jVhh/CGb+lI9u1PydzGydO3fmwgsvrLI9MTGRa6+9FoD33nuvzvMUFxdXdKC67777SExMrFc8v/zyCyNHjmTHjh2cccYZfPbZZ8TGxtbrXOEYPXo0o0aNqrK9e/fuTJ06FQjv9Yv6My0BGAiUZc937NgR0XHl5cuPL6f9b84Mt9ttQnSipfEWfQWGv85yeigbX0nz+oF/tArGfFN78q+cNUjxuneiHk+4gv59hAK7wiy7GT2Ya17dRoClYfYiWetfRt4fkpRr818hL4y7eEiBH32tp7fK4dB+fgusCKvsEu+n6M1oXsANi/2UFNT9RdNXYrD2m+aVKBfiaJAdOsivgeVhlV3iXdDi5h0V5gplHiKw4qewynq/+gwjKL27hYi2jYf8Nfb8+6ODhSE2Hqr7N6dZxo4dW+N8z2PHjgXKOkbl5OTUep6ff/6Z4P/uJ6eddlq9Ylm8eDFjx47l0KFDXHLJJXzwwQc4HNGdtz0jI6PGfeWvf9WqVVGN4WhnWgIwPT0dwzCYPXs2oVB4b7hgMMhrr71WcfyRMjPLhnZGq/upaL50vYRAycqwy/uLl0QxGhGO0i1rwOkLu7yRWPuT8sbkLZgXUfnSgrmm1b05sIbSPww5rpnBWv/SSlvWG+ElLgF2qkHyfZsiiK75+sUX/nu+0Mhje7DqqmpNwdANflsS/vtk809+gv7GeyothIBf/OHfX4qNArYFau8pKFo3/0/htxejsIDAhnVRjEYIAbBmX/jftepTviHat28f1r7Dhw/Xep7yRT8cDgcpKSn1iuXee+8lPz+f4cOHM2vWLCwW05aHqFE4r7+goACfr/H+Jkcb0/7KkydP5tdff+W3335jxowZvPTSS7VOOOn3+7nyyivZsGEDiqJwxhlnVNq/evVqoPZG0tpojbBSWHkdjVFXfenBbCD8J6R68BCqqqMojTOJa3O+dk0lWLABIlmPxe5rNtdRDx6MqHwosM+02LP0AxGVP6zvr6g7FAqRrYafHDIUyPSvJNFV+zwgLcFhfX/E5Xtpg6ITTARKivVah/7+UcALJXngads475Xm8p5sCVrCZ2lz11yv3eFQhPcXYx99tGOjFI20NTNE89rpByJrL8aB/WiDh0QpmoaT9tZwcu2aXnGED09LAkfnw9YLLriAOXPmsGzZMh5//HFuv/32pg5JNALTEoC33XYbL730Ejk5ObzxxhssWbKEa6+9lnHjxtGtWzdcLhclJSVs27aN7777jueee65i+G9SUhK33XZbxbl0XWfBggUoisLw4cPNCrHZ83g8jVZXXFxco9UVqdLiwxQciuyYhIR4VNUenYCOoGlao/6dWopCTSHSQVDN5TrmHwA9guA1TTUtdlvIChGM8rRYf29/oVAII8LRyDabrdlc94bQitVInhHgcNqbxeu2KkEgsj9abFw8Hk/dq7c1lNzb6qc5f5Y2Z825vUV8f3E0zv1F2lr9RLutlWgakSwh4LA3j8+jukh7q5/mfG87mrht4cxJ9DuXNbLyDbF/f80PDY7cl5ycXOt5ylcJ9nq9ZGZm1qsX4DXXXMOIESO48cYb+ctf/oKmadxyyy3Vli3vHeitZR73cNZuCOf1x8XFYbdH/3f90cq0BGBSUhIffvghp512GkVFRezYsYM77rij1mMMwyAmJoaPPvqo0sSVS5cuJTExkaSkJM4991yzQmz2cnPNm1usJpqmERcXR0FBQdhDtRubHnJQNjo9vAnwVc1DXl4xilIStZji4uLQNI1QKERBQUHU6mmpFHsXIIKh2AFro7T3sCiJQO3zbFQun2Ra7O5AQkTlY/XESnUnGJAbwXeWWLo3n+veAPFGZItNufxxzeJ16yEDu1vBVxzek2bNCrpWRG4kf+QIyb2tflrCZ2lz1BLaW7wR2dQzrkB8VO8v0tbqp7Hamp4Y2edRIC667aWhpL3VT0u4t5U7GhKUg9rb+W5r+ItEDmrfeMmmRYsW1bkvPT29zkU9hgwZgtVqJRAI8Omnn3L55ZfXK54bbriBUCjELbfcwq233oqmadx4441VypW3m71791Z7HsMwWLmy7im8wnn9xx4bvV71wsQEIJSt6rJ8+XKuueYaFi+ue6WrMWPG8MILL9CrV69K20eNGsX69UffnCqN+UEbCoWa8Qe7C6tjAAHvL2GVtrlGoOuNt1pm871uTcfZZxi+He+ALbzn4EpWL0Jdmsd1tMedTjDryfDLx55hWhvoaRnE17xPgPDmuRhgHV6p7r60ZQnhDSPuENJItA9qFe13gHU4v/iW1l0QcCpuumkDms3r7nWCjbXfhvf37nasDc2q01ihN5dr1JI078/S5q25Xrf+1mGs9oW3WqtDcdFdG9gor0XaWv1F87pZhw7Ht+T78Ao7nGj9j2kRf0dpb/Un163p9U61kRarhbUQSFqsRu/U6I+0KLdz507efvttpk2bVml7bm4uzz//PADnnXdenedxu92ce+65vP322zzwwAOceeaZ9U7u3nzzzei6zm233cZNN92ExWLhuuuuq1RmwIABQNniIwcOHKBt27aV9r/55pvs2bOnzroWLVrE0qVLGTFiRKXt27dv5513yhaJDOf1i/ozbRGQcr1792bRokWsXLmSv/3tb0ycOJGBAwfSrVs3Bg4cyMSJE/nb3/7GihUrWLhwYZXknxAA9tgJhNM8FdWNzT0y+gGJOqnZJ4RXMKTg7nVBdIOJgNXeHUULr8eHammHxda27oJhsitOhtgzwirb3TKQZK1dpW2DYi/FFU7u24Ch1tYznUJbLZ3OlvA+O4baT8TSSPODhqNfhh1rGAusaRYYeKIMfxCisbW1dKaLpU9YZYfYx2NVGu+Ho2h+LB06Yukd3ty6jjHjUWqZH10IYQ5VUZhxQjy2OqZjtGkw44R41BpW5Y2G+Ph4rrrqKt544w0CgbKOE+vWrWPixIkcOnSIhIQEbr311rDO9dBDD5GQkMCuXbsYOXIkn332WcU5A4EAixcvZvr06WzYUPdieLfeeiv//Oc/Abj++usrkpHlJk+ejMvlwu/3M23atIqp3EpKSnjhhRe46qqrwkpAxsXFcfbZZ/Ppp59WdOBZsmQJEydOxOv10rVr13r3ZhThMT0BWG7w4ME88MADLFiwgDVr1rBlyxbWrFnDggULeOCBB6Rrp6iVxZaOy3MJtTVRRXHhTroWVZN5SpqDuCEXoBzoUXshXcFeeimWuIRGiSlcsSm3oyi1r2KiqHHEJIf3gRyJkY7T6GsdWmuZ9lpXTnNPr7Ldbe3AWbYpOGsZUaoYMM5Ip0dc80m6NpSiKJzhmkGq1rHWcgNtIzjBflIjRRWe2ESVU652Y60lt6dZ4MQZbhLbyUTiQjSFya7LSdM611pmgG04w+0nN1JEojlzXXQZWsfa24ttyAnYTzqlkSISQnRJsnL7uETSYqv/LpUWq3H7uES6JDXuQ+Jrr72WAQMGMH36dGJjY0lISGDgwIEsX74cu93OnDlzKub3q0uXLl2YP38+bdq04bfffuPUU0/F7XbTpk0b3G43Y8aM4Y033sDv94d1vr/85S888sgjGIbBddddx0svvVSxz+Px8K9//Qso68XXtWtX4uPjiY+P509/+hOXXHJJlUVdq3PvvfcSGxvL6aefTkxMDLGxsYwaNYotW7bg8Xj44IMPcDqdYcUr6idqCUAhGsrmGkJM8m1YncdSqakqdmzu0cSk3IHFlt5U4YlqxA+5Ce3QyVDihCOTUgaQlYpTvRVnr+a3+p2qxhCb9iBWx2Dgj18ULFidQ4lN/TuqGkbXrUjrVlROc03nVNd00rROlfYlWlLJcJzF1JgbsCvVfxi2j5nAxc5rGBB0YzvimisGpIcsnGs5iaGJrW9VL6fqZlrMzYxxnEGcUnmelHZaFya7LuMU5zQUpfl9zLXraeWsO2LpPcKGdsT3TtUC3YdaOfMvsaQPbD69FoU42jhUF9NibmKsYwrxauU53tpp6ZzuupSJzgub5f1FND7V6SLmuptwnHYm6h/mBNQ6peO68FKcUy9GUaW9CNGYuiRZeWBSEreMTWBcdycndHYwrruTW8Ym8PdJSY2e/AOw2+1899133H///aSnp+Pz+WjTpg3nnXceK1eu5JRTIntQMHLkSDZt2sS9997L4MGDcTgcFBcX07FjRyZPnsxrr71Gnz7h9WoHuPPOO3nwwQcxDINrrrmGmTNnVuy77rrr+PDDDxk5ciRutxtd1znuuOOYPXs2L7zwQljnT0xMZPny5dxyyy2kpaURCARo27Ytl19+Ob/88guDBg2K6PWLyCmGYRyd6143Q1lZWVGvo3x1qtzc3BY1R4WuF6MHc1AUFVVLRlEbdwiFx+OpmNy3OU/e3Jz49u1Ez92JIyYBUnuiOGvvYddc6LpOyL8FPZSHqnnQbN1RG/FLe34oG0usisviJkFNJj+v7hW1yvlCuWR7VxEyAiTYehFr6xLFSJsP3dApULKxx9jQi8BNfFOHFDa/16AwS8fAIC5Jw+ZsvGEoIPe2+mqpn6VNrSW2N93QydUP4ze8uNVY4tTaJ2Y3m7S1+mmqtmboOnrWYQyfFzUmFtXTuO2loaS91U9Lure1aRPZQkdNobCwsKlDiEhsbGydZTIyMli0aBH33Xcf999/f/SDambS09PZtWsXr776KpdddllTh3NUM3URECGiRVXdqDZ3U4chImBvn47WqVuL+yKpqiqqo+nmJo3XkvDYf/8iGQm75qGd+8QoRdZ8qYpKkpaGx+Eht7TltDUAm0MhqYMM9RWiuSq7v6Q2dRiihVBUFS1F2osQQojmKeIE4IwZM4CyOZheeeWVKtvr64/nE0IIIYQQQgghhBBCNFzECcBZs2ah/G+lnCMTdkdury9JAAohhBBCCCGEEEIIYa56DQE2DKPaZF9DphNsaPJQCCGEEEIIIYQQQghRVcQJwB07dkS0XQghhBBCCCGEEOJotHDhwqYOoUnt3LmzqUMQ/xNxArBz584RbRdCCCGEEEIIIYQQQjQdtakDEEIIIYQQQgghhBBCRI8kAIUQQgghhBBCCCGEaMUkASiEEEIIIYQQQgghRCtWr1WAhRCtX8jQOayXEjB0ElQ7saotouP1oiBGgR9/sQ3DrkMjLvSdsz/E7l8DaBp0GWwlxqOFfWwoFKLQtxp/KAubJY1Y2wA0LfzjGypX95LnyyXG4iBJdTRavQ3l14NsDubhNUK019y0tcQ0dUiiDqGAQdZeP6DiTmjEN6gQQgjRSuglxfgK87HY7KhJbZo6HCGEqFW9EoDR+DGsKArBYND08wohIlOsB/jOt4cl/gMUGn6gLHfXx5LIOHtH+lgTaz0+uLUY7zfZBNcXggH5gBKjYRvuwT4+CTU2es8dVn9RyuovfAT9v29b9qEXuwtGTXXS7Th7jccGQqUcyvkPTv9uNKA83ZkLeO1dSPPcgEWLLAkaLsMwWBE4xELfXnaFCqGgbHuaJYaRljRG2dtjVZpnh+2sUCmvl/zG9lA+xhHb3YqV8baOnOKUBaKam+I8nbXf+tj8ox9fST4AigrpA60MHG8ntas8GxRCCCFqE9y5Hd+ibwj8uo4CXQdAdbmxDj0B+9gTUePimzhCIYSoSjEMw6i7WGWqqqIoCvU4tOZAFIVQKGTa+VqirKysqNehaRoej4fc3Nyj/npHwuPxoGkaoVCI3Nzcpg4nanJ0L/8pWsNhvbTGMpMdXTnFUX1Sx7cwm9L3D9Z4rOKxEnN9Z7TUmhNx9fXZfwvZs6H2Nj3oFDvHT3ZW2e4L5ZJ/6H5sRs3H+xQLiamPYNWqHt8QumHwRslGlgdqvm7dtHiujRmIQ2leiZntwXyeKlpNiJo/C3pZPNwQMyjqsci9LTw5+0N8+kwRpQXV/80UBUZPc9J7hPnv0dZE2lv9HC2fpWaStlY/0tbqR9pbeHw/LqH0gzlQw29hJS6OmKtvQEtr28iR1a1Nm+bfS7GwsLCpQ4hIbGxsU4cgRNjq3aWkruSfoigoigwpEqKlCBk6zxWtrTX5B/CJdzsr/YeqbA+sK6w1+Qdg5AYofm4Xhl9vUKx/tGJBaZ3JP4A1X/jYt9lfZXtO5kO1Jv8A7EaQw4fvr2+INVrg3VFr8g9gWyif10t+M73uhvDrQZ6uI/kHsCmYy7slmxspKlEbf6nBZ/+tOfkHZb9lFr9dyv7NgUaMTAghhGgZAls21Zr8AzAKCih6+b8YXm8jRiaEEHWrVwJQ1/U6/ylPEM6dOzes8vKUSYim9UsgiwN6cVhlP/fuqvIQwPvF4bCO1bMC+FfmRxxfbX75yhd22UVvVP4ylle6Boce3hc0Z6iYIt/WiGKrjdcI8p1vb1hlfwlkcSAU3t+nMcz37iBYR/Kv3FL/fnTd3KSviNzmn/wU59X9NzMMWP1l+O8pIYQQ4mjh++aLWpN/5Yy8XPwrfmqEiIQQInzNazyZEKLJLPXvD7vsAb2YnaECuljK5jcJHfAS2ll7z8Ej+ZfkYh/uiTjG6hzaESAUQWelopyyBw7lc5kW53+AO8xjFSAvfw4xKf8XcZzVWeXPxEf4Dz+W+vdzjrOHKXU31E+Bqr1AaxLEYGngAKPs7aMYkajLxqXhJ/X2bQxSkBUirk3jLYAjhBBCNGeh7CyCW8Mf1eD7aSn2UWOjGFHrJENqhYie5jmrvBCi0R0KldS7fOhg1WG1tdEPmde7aPf6yBcPKsr5/b81vSiiY9WQeb0XD+n1v+ZNrdSI7LrvDBZEKRIRrrxDkfXCzM+UXptCCCFEOT0z/IefAPrhyMoLIUS0SQJQCAGAQoRzdio1/HdYx5o4P2g9ThWFhczrJeLLFpUoxFEj0re4NDghhBDidxF/MMoHqRCieZEEoBACgPZaTETlO2i/d8/X2ke2YqjWwRFR+dp0O9YW8THO+N//O2hJiOhY3ZIccX01ifSaR1o+mmIUa0Tle1sSoxSJCFdS+/Az34oCnrbNJFMuhBBCNANaWtuIkoBaO5n6RAjRvEgCUAgBwCh7u7DLpmtxdDgiGaUl27H0CncmPbCNNGf+P4DEdhrWCPKPCalqxfx/APHx08JcygIMICnh4ojiq80gazIuJbypWBVghC38v1G0jYogFhsqQ+ypUYxGhKPPyPCT5Z0HWHEnyFcEIYQQopya4MHSp1/Y5W3DRkYxGiGEiJwsAiKEAKCPJZGuWjzb65jjTgFOdaRX2e6YlEzRlmKoY9owrYMD6zHmTu57wpkOfngnvJV8T7zcVen/Y+092afF4g4V1nlssSURj9W8JJxV0ZhkT+cDb90rCw+ztaWN5jSt7oY62d6Zb3178IaxiMlJ9k6NEJGoS/chNtZ+46tzLkDVAoNPiaxXrxBCCHE0cJw0iaJNGyFU+1zIamoatsFDGimq1qWwsO7v5M2JLFoiWhJ5vC+EAEBVFK5296eTVvOHmIrChc7e9LUmVdln6e7GdWkH0GoeGqG2teP+UycUi7m3nr6jHfQeWfeQ1FFTHSR1qPrcIzX5XkqV2ntHlagu2rYxZ/XfI2XYOzChjgTZMdY2THX2NL3uhrCoKn+JGYKtjo+RE6ypnOrs0khRidpYbAqT/hxDfErNfzPNCifNcJPcWZ4PCiGEEH9k6dQZ9/QZYKn5e6eanErMldehWCObLkUIIaJNvuELISrEqDZuiRnMj/6D/ODbxz69GCgbwnmcLZUMe4da56GzHReP1t6Bb1E2/uX54CvraaSl2bGN8mAb7kGxR+e5w5hpbjr08bPk3VJKCyoP6o1LVhl/uYuUTtXf8iyak5TUf3Gw4FWspeuwGiEUyob8+hWNkPM4UuMuqjR02CyKojDF2Y0+lkQW+fexLpCF/r9Byb0dbRihpjLImozaDFdkSLW4eDBuBO+UbuaXQBbBI7p/JqtOTnd05ThbShNGKP4oNlHlrL/EsnGpj99+8JN/uOxvZnep9DjeQr+xduKTZe4/IYQQoibW/gOJve0ufEsW4V/xE3jLRqFYUtOwnDAC+/EjUBzmzXcthBBmUQzDCHf6q4ioqoqiKHz00UecccYZ0aii1cnKyop6HZqm4fF4yM3NJRSqe+ieKOPxeNA0jVAoRG5ublOH02hKjSBBQ8elWNCUyBJ3RshA9UJCsocCX2Gjtje/P0TuPh1FU0hqr0ScuPOFcvEHD2O3pGLT4us+wEQBQ8ce78ZtsWMxlBbV3nJ1L149SJLqwKY27vMlubdFzjAMXPZ4QMPmNMjPz2vqkFoMaW/1c7R+ljaEtLX6kbZWP9LeImfoOvE2K5rVhmG3k5eX19Qh1apNmzZNHUKdZAiwENET9V9oSjPstSKECI9TsZRN+lcPiqagxmloLgv4zI2rLjabRmqX+vdismse7Jp5C5VEwqqoxGsONFVrcV++PapDJpZoQRRFweHWKn4kCyGEECIyiqqixcbJZ6kQokWoVwIw3N40hmFw5plnhlVWURSCwdonUxVCCCGEEEIIIYQQQkSmXglAwzBQFIXaRg8f2fMvSqOMhRBCCCGEEEIIIYQQdaj3EOC6knqS9BNCCCGEEEIIIYQQounVKwGo63rdhYQQQgghhBBCCCGEEE1OpmsXQgghhBBCCCGEEKIVkwSgEEIIIYQQQgghRAu3cOFCFEWptCaDEOXqPQegEEIIIYQQQgghhBCi4dasWcPcuXNJSEjg5ptvNv380gNQCCGEEEIIIYQQQogmtGbNGh544AGefPLJqJxfegAKIUxnGAb6fh+hvBDFCQZ6YgicLaMbumEECPl3YeglKKobzdYZRZFbpYiOHN3LgVAxBgapqptkzdlodRfofvaUHEJXoY3qxN1oNYNXL+FgaBcBAsQqHlK1DkfFUJVQwCBzVwhfiYHdpZCSrqFZWv/rFi2PoeuEdu/EKC4CuwNLx84odntThyWEEEKIBpBftUII0xiGQWBFPr5vsgnt9QJQCKApWAfH4ZiUjJbaPH9AGLoXb+GX+EuWYuhFFdsVNQ6beySO2Akoiq0JIxStyfZgPp97d/JbMAfjiO09LQmcYu9ML2ti1Oo+ECpmgXcHvwSy0At+r72zFssEe2cG2ZKjVne+nsNS7wJ+868kSKBie5KaxlD7eAbYhrfKRGDAZ7DmSy+/LfHjLfr9mjtjFfqMsjFoggOLrfW9btHyGKEQvu+/w7dkEUZe7u87HE5sQ0/AcdJEVHdM0wUohBBCiHqTIcBCCFMYhoF33iFKZu+rSP5VCJUlBgsf205wZ0nTBFgLXS+hKOtJfEVfVkr+ARh6Ab7CzyjKegZD9zVRhKI1We3P5Mmi1Wz4Q/IPYHMwj2eKf2Gpb39U6t4azOOxwpWsDhxG/0Ptu0KFvFyyns+8O6JS9+HQfl4v/Bfr/D9WSv4BZOsH+bz0Lb4ofRvD+ONVadl8JTqfPFnE6i98lZJ/AKWFBqs+8zH/6SL83tb1ukXLYwSDFL/6At5P51ZO/gF4S/EvXkjRfx5Hz89rivCEEKLFMgyD119/nZNOOonk5GSsVitJSUn07t2biy++mPfee69S+fJFPBYuXFjjOcMpA7B06VImT55McnIyTqeTgQMH8sQTTxAKhWo9btu2bdx444307duX2NhYYmJi6NOnD5deeimff/55tcdkZ2dz9913M2DAAGJiYoiJiWHAgAHcc8895OTkVHvMHxctWbVqFeeccw6pqam43W6GDBnCnDlzKsobhsHLL7/M8ccfT1xcHAkJCUyZMoXffvut2vPPmjULRVFIT08H4NNPP+XEE08kMTERt9vNCSecwOzZs2u8DgcOHODJJ5/k9NNPp1evXhWvq1+/ftx+++0cOHCg1usIZcN6r7jiCrp3747L5SIhIYH+/ftz3XXXsXTp0opyiqJw+eWXA7Br166K61L+z6xZs+qsqy7SA1AIYYrAz/n4vs6uvVCpTvELu4n9Ww9Ul9Y4gYWhJPd1QoG9tZYJ+bdTkjcHd+KljRSVaI0OhoqZXbKhSvLtSAbwdukm2mlu0i3xptVdqPt5oXgdPmr/wvepdyft1BiOMbEnYNAI8GHxC5QYhbWWW+tfSrLWjuPsGabV3dQWvVlK1p7ar3nmzhCL3y7hxMsbcyC2EJV5P51HcOOGWsvoWYcpfu0VYq6/tVX21hVCtC6GbrBno58da3x4iw0cboUug+x07G1DURvvHnbppZfy+uuvV/x/XFwcxcXF5OTksGnTJhYuXMh5551ner0ffvghU6dOJRgMkpCQQDAYZN26ddx666188cUXfPzxx9hsVUc4vfTSS/z5z38mECh7YOtwOHA6nWzatImNGzcyb9488vLyKh2zZs0aJk6cyKFDhwBwuVwArF+/nvXr1zNz5ky++OILBg4cWGO88+fP55xzziEQCBAXF0dJSQkrV65k2rRpHD58mOuvv56LLrqIt99+G6vVis1mo7CwkI8//pgffviBn3/+ma5du9Z4/qeffpqbbroJRVGIj4/H6/WyfPlyli9fzvfff8/LL79c5bPtrrvuqkgQ2mw2YmJiyMvLY8OGDWzYsIHXXnuNr7/+usbXdf/99/P3v/+94gG32+1GURR+/fVXfv31V5YuXcqaNWsASE1NpbS0lIKCAlRVJTm58ndxp7PhUwVJD0AhRIMZhoH3q6zwyhaGCCzPi25AEQgFDhL0rgurbKB0BXowt+6CQtRgoW8vwVqSf+UM4BvfHlPrXurfT6kRDKvs177dpta9MbCKfL2OBwT/87P3G3RDN7X+ppJ3KMTOXwJ1FwS2rQpQmF17olCIaNFLS/D9+ENYZUO7dhDauT3KEQkhRMMc2hHgjfuymfdEHmu/K2Xzci9rvytl3hN5vHFfNod2hPf53FCLFy/m9ddfR1VVHn/8cfLy8sjPz6e0tJRDhw7xzjvvMGnSpKjUPWPGDE466SS2b99Obm4u+fn5PP7442iaxhdffMF9991X5Zi5c+dy9dVXEwgEOPXUU1m1ahWlpaXk5OSQn5/Pxx9/XCXe/Px8zjjjDA4dOkSPHj1YtGgRxcXFFBcX891339G1a1cOHjzIGWecQUFBQY3xTp8+nenTp3PgwAHy8vLIzMxkypQpANx9993ce++9fPLJJ7z++usUFRVRWFjI4sWLSUtLIycnh7vvvrvGcx8+fJjbb7+dSy65hAMHDpCbm0t2djZ33HEHADNnzuTFF1+sclyPHj3497//zcaNGyktLSU7Oxuv18v333/PCSecwOHDh7nwwgurHcHy1FNP8cADD2AYBpdccgmbNm2iqKioou633nqL4cOHV5Q/ePAgTz31FAAdO3bk4MGDlf6ZOnVqja8vXJIAFEI0WGiPF/1A+MNj/T/mRS+YCPlLfoqgtIG/dHnUYhGtW8jQ+dl/KOzyvwSyKNHN+3L6o/9g2GV3hAo4GCo2re71/vDfZwVGLruDm0yruyltWe4Pv7ABm5c3zo8RIf4o8MtqCITf/vw//xjFaIQQomEO7Qjw4WM55B2s/sFa3sEQHz6W0yhJwGXLlgEwYcIEbr31VuLjy0Z3KIpCSkoK559/Pi+99FJU6u7QoQNz586lS5cuQFmvvFtvvZX7778fgCeffLLS0NxAIMBNN90EwJQpU/jkk08YPHhwxf7Y2FgmT57M22+/XameZ599lj179hATE8NXX33FmDFjKvZlZGTw5Zdf4nQ62bVrF88991yN8Q4ePJiXX36Z1NRUAJKTk3nzzTeJi4ujqKiIBx98kGeffZaLL74Ym82GoiiMGjWKf/7znwDMmzevotfiH5WUlJCRkcGsWbMqzp+QkMA//vEPrrjiCgAeeOABgsHKD8vvuecebrnlFnr16oWqlqXPrFYro0eP5rPPPiM5OZlff/2V77//vtJxOTk53HPPPQDccMMNzJ49m549e1bsT0xMZNq0abVej2iQBKAQosH0rAh+5AKh7MjKR5MeCq/nYkX5YHi9mIT4oyIjUOfw2yPpGOQZ5s07ma176y7UgPK1Cbf3X7m8CMs3VwVZkfVkLIywvBBm0XMi/CzMbh3vUSFE62PoBl/OzCdYx8+NoB++nJmPoUd3Dt64uDigrAearjfu5/xtt92GvZoV3G+++WZcLhder5dPPvmkYvu3337L7t27URSFf//73xUJr7q8++67QNlQ586dO1fZ361bNy655BIA3nnnnRrPc+edd1bZ5na7GTZsGFCW0Lz44ourlDnxxBMB8Hq9bNmypcbz33XXXdVOX1Hec/DAgQMsWbKkxuP/yOPxMGLECIAqx7333nsUFxcTExPDQw89FPY5o00SgEKIBlMskc2hoWjNad6gCKdCVZrP3IWiZdGIvN1rJn5MR1q/pR7x1kSN8HVorWSKYi3Cl6HK7UU0lUgbqyY/IYQQzdOejf4ae/79Ud7BEHs2RrdjwoknnojNZmPVqlWMHTuW1157jb17a5973CwZGRnVbo+JieG4444DyhbdKFfeW7F37961zqV3JL/fz/r16wEYP358jeVOOukkANauXVtjL70BAwZUuz0lJQWAvn37VpuULO/RB5CbW/10TVarlZEjR1a7r2vXrnTs2BGofD3KLV++nBkzZtC7d29iYmIqLcwxb948APbvr7yAX/m1HD16NLGxsdXW2xTk01sI0WBaRyeR5Aq0zg2fwNQsFlvVp1S1lrdGVl6Icm7FShs1/LYfo1hJUh2m1d9Ziwu7rAWF9pp5X1baaumRlbe0jvdZSnpkSZWUdMkAiqZh6ZQeUXktwvJCCNFYdqyJbPREpOUj1aNHD55//nlcLhc//PADl156KR07dqRjx45cccUV/PBDePOv1kf79u3r3JeZmVmxrXwBj+p68dUkJyenYkXh2urr0KEDAKFQqMYVgdu2bVvtdk3TwtoP1JhcbNOmTbULnpSr7noAPPbYYwwbNoxXX32VTZs2UVpaisfjITU1ldTUVByOsu/qxcWVp86pz7VsDJIAFEI0mOqxYhkQfrLAPjoxitFExuo6HpSaPwyOpCgurK5joxyRaK0URWGUrV3Y5Yfb2mJRzPuYHm0Pv+7B1hRiVKtpdQ+yjwq7bEetO2206r/gtTTdh9iwhHd7weaEbseFWVgIk1l69UHxhPnZrCjYh1Xfi0IIIZqatziyIb2+kugOAQa4/PLL2bFjB//5z384++yzSU1NZe/evcycOZPRo0dz3XXXRT0GEblff/2Vv/71rxiGwVlnncWqVavw+Xzk5ORULMxx7rnnAlS7CEhzJAlAIYQpnKelgK3uboCWXm4sfWMaIaLwqKoLR2x4K2854iajhJksFKI6I+3tSAmjF2CCYmecvaOpdQ+yJtMljF6ATixMdKSbWnd7rSs9rcfUWU7DwmjnZFPrbko2p8Jxp4bXi3PIaU6s9uY0PYI4miiqivO0M8Mqax8zDjXBE92AhBCinhzuyD5L7a7G+exNSUnh+uuv54MPPuDgwYOsWbOG6dOnA/Dcc8+xYMGCirLlPdq83urnY87Pzw+rzj8OS61uX/nwWoC0tDQAdu3aFdb5oWwxi/J49+3bV2O58mHPmqaRmNj4nUGysrLw+2se7l3d9fjggw/QdZ1u3brx7rvvMnjwYCyWyqM7ynv6/VF9rmVjkASgEMIUWnsH7j91BmfNtxVLTzfuKzuiqM3rR6495iTsMSfXWsYRNxl7zOhGiki0Vk7FwvUxg0hTXTWWSVQcXB9zDHGquclmTVG5xj2QrrUkAd2KlWtjBpKq1RxffSiKwmmuS+lm6V9jGSs2privoIOlm6l1N7WBJ9o5dmLVCbiPNOQ0B/3GysMF0bRsg47Fee4FUMuk77ZhI3GEmSgUQoim0GVQ7Z+5DS1vlmOOOYbXXnutYt67hQsXVuzzeMoestQ0V+DPP/8cVh2LFi2qdntxcTErVqwA4Nhjfx/dNHz4cAA2btzI9u3bw6rDZrNVvIZvvvmmxnJff/01AAMHDsRqNW+USbgCgUDFvHx/tGPHDnbv3g1Uvh7l13/QoEFVEn9QtrLwTz/9VO05y6/l4sWLKSwsDDvO8jkOo9WjUBKAQgjTWHu6ibu3B47JKagpNrAoKE4Na58YXFd1xH19ZxRn85vjSlEUnPFnEJP8V2yu4ShqDKChqLHY3KOITbkLR+wpTR2maCUSVQd3xA7hImdv0rU4bKhYUemgxTDV2ZN74oaSprmjUneMauWmmMHMcPWjpyUBh2LBqqi0s8ZypqMbf4s9ga6W+KjUbVVsnO2+mnPc19LN0h87TjQsJKhtGGGfxJVx99LdWv3kzy2ZoigMOd3J2X+NofcIG85YBVUDZ6xCn5E2zrkrlmMnOapdlU6IxmYfNorYv/wf9jHjUOITQNNQXC6sg48j5s+34Dp3GkqYq0IKIURT6NjbRkJaeL83PGkaHXtH9wFcbb3OgIo55Hy+3+ciLE+olS8wcSTDMPjHP/4RVt2PP/54tfU//fTTlJSU4HA4mDz595EX48ePp1OnThiGwa233hr2qsXnn38+AK+99lpFIu1I27Zt47XXXgPgggsuCOuc0fDII49Um1h79NFHAWjXrl2lhULi48u+E2/evLna4/71r39RUFBQbV3nnnsubreboqIi7rnnnrBjLF81OtxenpFqHcvsCSGaDTXWguOUZBynJKNpGh6Ph9zc3IrJYZszi60jFttFTR2GOArYFI3h9rYMtzf+XHeaonKsLYVjbSl4PB40TSMUCtW4apqZFEWlm7Uf3az9ol5Xc9Omo4UxF8rXLtH8ackpOM84B+cZ5zR1KEIIETFFVTh5RjwfPpZDsJbcm8UGE2bER31k0p///GeKioq44IILGD16dMXw1+zsbJ588smK3nyTJv0+JdHUqVP57rvv+PTTT/nHP/7B9ddfj9vtZufOndx5552sXLkyrLp3797NWWedxbPPPkt6ejqlpaW88MIL/O1vfwPg5ptvrjQc12Kx8OSTT3L22Wczb948zjjjDB588EEGDRoEQFFREZ999hlvvfUWH330UcVx1113Hc899xx79uxhwoQJvPTSS4wZMwYo64V4nMzZDAAAduNJREFUxRVXUFpaSufOnbn22mvrfzEbwOVy8e2333LFFVfw6KOPkpKSQn5+Pv/4xz948cUXAbj33nsr9fSbMGECjz32GOvWreOWW27h73//O3FxceTk5PDEE0/w0EMPkZSURHZ2dpX6EhMTefDBB7nlllv4z3/+Q0FBAffccw89evQAyhZPmTt3LkuWLOGVV16pOK5//7LRMvn5+XzwwQecc465n8XyCE8IIYQQQgghhBCtQmoXK2ffnlhjT0BPmsbZtyeS2iX6Q1EDgQBz5szhzDPPJCkpibi4OOLj42nTpg0PPvggUJYknDhxYsUxV1xxBSNGjMAwDO68807i4uLweDx06dKFTz75hHfffTesumfOnMmXX35Jly5d8Hg8xMXFccsttxAKhTjllFO4//77qxxTnjDUNI1PP/2UwYMH43K5KmI///zz+e677yodEx8fz7x580hJSWHz5s2MHTuWmJgY3G43GRkZbNu2jbS0ND7++GNiY8NfONJMycnJPPbYY7z66qukpaWRmJhIUlISjzzyCFC2UMvVV19d6ZiTTz6Zs88+G4CnnnqKhIQEEhMTSU5O5sEHH2TGjBmcfvrpNdZ58803c9dddwEwe/ZsevbsSWxsLB6Ph6SkJK644ooqydzu3buTkZEBlPUiTEhIID09nfT0dN5///0GXwdJAAohhBBCCCGEEKLVSO1i5eIHkphySwIDxznpdYKDgeOcTLklgYv+ntQoyT+Av/3tbzz55JOcccYZ9OzZE4DS0lLat2/P2WefzYIFC3jmmWcqHWOxWPjiiy+466676Nq1KxaLBZvNxtSpU1m+fDknnXRSWHWfffbZLFq0iNNPPx1N07BYLAwYMIB///vffPrpp9jt1c9/eN1117F+/XquueYaunfvjmEYBINBevfuzeWXX15tImrw4MH8+uuv3HnnnfTt27diyGy/fv246667WL9+PQMHDozk0pnuxhtvZP78+WRkZGAYBna7naFDh/Lqq68yc+bMaqdjeeedd3j00Ufp06cPVqsVwzAYMWIEs2fP5uWXX66zzocffpiffvqJ6dOn07lzZwKBAIqiMGDAAP785z/zwgsvVDnmww8/5MYbb6Rbt254vV527drFrl27KCoqavA1UIyWsl7xUSArKyvqdbS0IZnNRWMPk2stpL3Vj7S3yElbqx9pa/Uj7a1+pL1FTtpa/Uhbqx9pb/XTktpbmzZtmjqEOkWyYEJz0FQ92kR4Zs2axeWXX07nzp3ZuXNnU4fT5KQHoBBCCCGEEEIIIYQQrZgkAIUQQgghhBBCCCGEaMUkASiEEEIIIYQQQgghRCsmCUAhhBBCCCGEEEIIIVoxSQAKIYQQQgghhBBCiFblsssuwzAMWQDkfyQBKIQQQgghhBBCCCFEK2Zp6gCEEMJMumGwJStIZpGOokDHeI1OCRqKojR1aHUySkMENhRRoJeiua3Y+8Y1dUhh2xDIZpU/Ex8hklUXJ9k74lKtTR1Ws2YYBjtCBewPFWEAaZqLbloCagtoq6J+cg8EWf+9H2+RgTNGoX+GjYRU+SomhBBCCCGiT751CiFaBcMwWLrLz5ebfWSX6JX2dYjXmNzHQb+05pmQMkpDlH58CP9P+eDXKSnfoYL1mDicZ6WiJtqaMsQarfAd4l3vZkqMYKXtX/p20cOSwLWugdhUrYmia75+8R9mvncHB/TiStuTVSeTHOkcb0troshENGTvC/Lli8UUZhuVtm9Y7CcuWWXin1ySCBRCCCGEEFElQ4CFEK3CvF+9vL2mtEryD2Bvfojnfyxm2S5fE0RWO70kRNFTO/EvzgX/H2LXIbC6gMLHdhA63PxiX+jby6zSDVWSf+W2BPO4r3AZfj3UyJE1b4t8e3mpZH2V5B/AYb2U10p+4zPvzsYPTETF4d1BPvxHUZXkX7mCwzrvP1xE9r7q30dCCCGEEEKYQRKAQogW75f9fr7eWnuCzADeXlPKgYLmlYwqfecAob3eWssYBUGKX96DYVSfQGgKubqX90u31Fmu0AjwQsnaRoioZdgVLAjrun3q3cFvgZxGiEhE26f/Kcao+lyiEj0E85+umhAWQgghhBDCLJIAFEK0eN9uC693nG7Aou3NpyednhsgsDo/vLL7fAQ3N58EwYelW8MuuzmYh1eX3k1Q1msy3DTud749UY1FRN/WFT78peH9xX3FBrvW+qMckRBCCCGEOFpJAlAI0aLllOhsyw6/V9+KvX70ZtKTzr8qH+roGXSkwM/hJQsbw68R9E4zgG8lmUXA0FkdOBx2+d+CORTpkhBqydZ+E9nfb81XzecBhRBCCCGEaF0kASiEaNHyvBFk0ABvEHzNpDOakRdZIHpeIEqRRC5AZEOpD+ulUYqk5Sg2AgQjyPgaQL4hCcCWzFsU2f2ptDCy8kIIIYQQQoRLEoBCiBbNpikRH2NtLovS2iKM3dZ8btkqkcVuV5rLRW86tnp85NbnGNF8aJbI3idqhOWFEEIIIYQIl6WpAxBCiIZIi1WJsSkU+cMb1tslUcOiNo8f2ZbubnxfZEVQ3hXFaCKTpDrIjKBX3/G2tChG0zK4VCvtVDf7q1n9tzoexU6S6oxyVCKa2na3kH84/F6c7XvK1zIhhBBHt9jY2KYOQYhWS7oWCCFaNIuqMLyzLezyo7vYoxhNZCy93KjJYcZuVbCdkBDVeCJxqr1L2GVjFStdLfFRjKblGG1vH3bZkfZ2qErzSFaL+jl+iiP8wgoMPSOC8kIIIYQQQkRAEoBCiBbvxB522rjqvp11T9I4rr21ESIKj6IqOM9LI5zRtM4zUlHdzad30BB7KqlqeD0Spzl7RzmalmOYLY3OWt1PttNUF2PtHRohIhFNjhiV3iPDS/L3G23D5pCvZUIIIYQQIjrkm6YQosWLsancOCqGdnE139L6pFi4ZlgMWjMZ/lvO2jcW1xUda57fTwXHlFRsGYmNG1gY/hozhLRakoAKcJGzNwNtbRovqGbOqmhc5z6G7lpCjWU6arFcHzMIp9J8Er6i/sZMc9F9SO0PHnoNszLy/OYzxF8IIYQQQrQ+8utCCNEqJLpU/poRy/qDAZbu8pNZpKMq0CFBY3S6nW5JGkozHU5pGxSHpbsL/095BFYXoJQYqC4LzoEJGEOcqInhD3FuTDZV4//iTmC1P5MF3h0c1kvRKVu4YpA1mTOd3YhRm2fsTcmtWrkpZhCbg7n84N/P/lAxBgapqpuR9rb0tSTJ0N9WZvxlbgaeGGTZR14O7wgSCoGmQUpXC8PPdpDUXr6OCSGEEEKI6JJvnEKIVkNTFY5pZ+OYdi0v6aTGWHCc2AbHiW3weDxomkYoFCI3N7epQ6vTYFsKg20pTR1Gi6IoCr2sifSyNr+enSI62nS0MPnGmKYOQwghhBBCHKUkASiEEEIIIYQQQogmV1hY2NQhRERWLRYticwBKIQQQgghhBBCCCFEK/b/27vz+Kjqe//j7zN7MtkT9iUsKsouCgIiKKhVlLrVulZrpWrVWm172/5a6167XLvY1mu1rQvVXrdeqtZdVhFQKwIiiyKEHZKQScgymfX8/qCMCUkmM2G2TF7Px4PHI8z5zjmfOfOdMzPv+Z7vIQAEAAAAAAAAshgBIAAAAAAAAJDFCAABAAAAAACALEYACAAAAAAAAGQxAkAAAAAAAAAgixEAAgAAAAAAAFmMABAAAAAAAADIYrZ0FwAAQE8UMMP6OFCtXaEGmZL6WnM13t5LDsOa7tKQJDV7Qtr+cUC+JlNOt6EhY+wq6svzDQAAgOQjAAQAIIVM09QS/y693lyhBjPQatnzxmc63TlIZzjLZTGMNFWIRKvdF9KyZ73a/Wmw1e3vv9isASNsOuWyHBWUEQQCAAAgeTgFGACAFHq5eYte8H7WJvyTJK8Z1MvNW/Ws91OZppmG6pBotXtDevE3DW3Cv0N2bQrqxV83qK4qlOLKAAAA0JMQAAIAkCKfBjx607e903bv+ndrdaAqBRUhmUzT1IInmuRrjB7meutNLXqyKUVVAQAAoCciAAQAIEUW+3fG3tYXe1tkpn1bQtq/M7aRfZUVIVVua3+UIAAAAHCkCAABAEgBvxnSusD+mNt/HqpTXdiXxIqQbJ+v8sfVfsuqtqeFAwAAAIlAAAgAQAo0mUGFFd+8fu3NE4juo7khvufbWx9OUiUAACBdTNPU3/72N51++unq1auX7Ha7SktLdeyxx+rKK6/U888/36q9YRgyDEOLFy/ucJ3ttbnxxhtlGIa+9KUvRa3n5ZdflmEYysnJ0YEDB47koaGb4SrAAACkgNOI/yqvLnFl2O7M7ozvSs52F1d+BgAgUcywKf/GevlW18lsDMpw2+QcXyjHsfkyLKl7z7366qv1t7/9LfL/goICNTY2qqamRps2bdLixYt18cUXH/F2rrjiCj388MNasGCB9u3bpz59+rTb7umnn5YkzZkzRwUFBUe8XXQfjAAEACAFcgybhlpj/5DV25KjEosriRUh2QYeF9/vrIOOsyepEgAAepbA1kbtv3O9an+7Wd5FVWp+3yPvoirV/naz9t+5XoGtjSmp45133tHf/vY3WSwW/frXv1Ztba3q6urk9Xq1b98+Pfvsszr77LMTsq2pU6dqyJAhCoVCevbZZ9tt09DQoJdeeknSwcAQPQsBIAAAKXKKc0BcbQ2DEWHd2ZCxdrmLYnsO80oMDRrFiRkAABypwNZG1TzwmUJ7259LObTXp5oHPktJCLhixQpJ0hlnnKHvfve7KiwslHTwFN7evXvrq1/9qv785z8nZFuGYejyyy+X9MUov8PNnz9fXq9XJSUlmj17dkK2i+6DABAAgBQ50d5Ho2wlnbYbZi3UNEfsYSEyk8Vq6JTLcmV08mnLsEjTL8+VJYWnIwEAkI3MsKm6xyokfyfz6vrDqnusQmY4vvl643XoFNuqqiqFw8mf6/fQqL73339fmzdvbrP8UDB48cUXy27nzIOehgAQAIAUsRiGrnWP1kR7+3OySNIYW5m+lTdW9s5SI3QLg0fZdeY33XK62w/3XHmGzrrBrYHH8iEcAIAj5d9Y3+HIv8OF9vrk31if1HpmzZolh8OhVatWacaMGZo3b5527tyZtO2NHDlS48ePl9R2FGBlZaUWLFggSbryyiuTVgMyF+eaAACQQg7DqqvdI/WlULmW+/doV6hBktTHkqupzv4aaM1Lc4VItPIxdl1xb4E+/9CvbR8H5WsKy5lr0ZBxdg2bYJfNzsg/AAASwbe6Lu72zpHJuxDG0UcfrT/96U+6+eabtWzZMi1btkySNHDgQJ155pm65pprNG3atIRu84orrtDq1av19NNP684774zc/uyzzyoYDKq8vFwnn3xyQreJ7oEAEACANOhrdevCnKPSXQZSxOYwNGKKUyOmONNdCgAAWctsDMbXvim+9l1xzTXX6JxzztFzzz2nRYsW6d1339XOnTv12GOP6bHHHtO3vvUt/c///E/Ctnf55Zfrhz/8oT777DN98MEHmjhxoiTp73//e2Q580z3TJxfBAAAAAAAuj3DHd8YJyM3NWOievfurZtvvln/+Mc/tHfvXq1evVpf+9rXJEkPP/ywXn311Uhbq9UqSWpubm53XXV10Uc59u/fX6eeeqqkL04D3rJli1auXCmJ0397MgJAAAAAAADQ7TnHFya1faKMGzdO8+bN05gxYyRJixcvjiwrLi6WpA7nCvzggw86Xf+hi4E8++yzCoVCkdF/48eP18iRI4+kdHRjBIAAAAAAAKDbcxybL2vf2KbbsPZ1ynFsflLr8fv9UZe7XC5Jks/3xYVLDoWCL774Ypv2pmnql7/8Zafbveiii+R0OrV3714tXLgwMhKQ0X89GwEgAAAAAADo9gyLocJvDJEcnUQdDosKvzFEhiW5c+HddNNNuuyyy/Tiiy+qpqYmcvv+/fv105/+NDKa7+yzz44su+SSSyRJr7zyin75y1+qsbFRklRRUaHLLrtMH374YafbLSws1LnnnitJ+tGPfqSNGzfKYrHosssuS9hjQ/dDAAgAAAAAALKCfahbJd8/usORgNa+TpV8/2jZh7qTXksgENAzzzyj888/X6WlpSooKFBhYaHKysp03333SToYEp511lmR+1x77bWaOnWqTNPUj370IxUUFKi4uFhDhw7Vyy+/rOeeey6mbR86DXjVqlWSpNNOO039+/dP8CNEd8JVgAEAAAAAQNawD3Wr9O6R8m+sl291ncymoIxcm5zjC+U4Lj9lV8H96U9/quOPP14LFy7Uxo0btWfPHnm9Xg0YMEAnnXSS5s6d22r0nyTZbDa98cYbuv/++/Xss89q586dcjgcuuSSS/TTn/5Uo0aNimnbs2fPVlFRkWprayV9EQii5zJM0zTTXQQOqq6uTvo2rFariouL5fF4FAqFkr69bFFcXCyr1apQKCSPx5PucroN+lvX0N/iR1/rGvpa19Dfuob+Fj/6WtfQ17qG/tY13am/lZWVpbuETtXX16e7hLjk5yd3DkEgkXrECMCqqiqtWLFCa9euVUVFhWpqamSz2dSrVy+NHz9ec+bMUd++faOuY8WKFXrttdf0+eefy+fzqaysTBMnTtTFF1+sgoKCFD0SAAAAAAAAID5ZHwBWVVVp7ty5ajnQMTc3V36/Xzt27NCOHTv0xhtv6NZbb9W0adPaXcef/vQnvfrqq5Iki8Uip9Op3bt368UXX9SSJUv0s5/9TIMGDUrJ4wEAAAAAAADikfUBYDgcliRNmDBBM2fO1Pjx41VQUKBQKKQNGzbo0UcfVUVFhX7zm99o4MCBGjJkSKv7v/HGG3r11VdlGIauuOIKnXfeeXI6ndq6dat+85vfaNu2bbrvvvv0xz/+UXa7PQ2PEEBLmz+u18vrmlVjsciQqX6mqQum5qnv4Jx0lwZkjMYdTXr31Rrt1G6FDEOlobBOGperAVOL010akDHC/rCaX6lUcF29TL8pI9ci5yklsk8tksXS+XX0GjxhffqeX3WVB0+lLB1o1TGTHHLlcQ0+AACQelk/B2BjY6P27dunYcOGtbvc4/HolltuUV1dnWbNmqXvfOc7kWWBQEBz586Vx+PROeeco+uvv77VfSsrK3XTTTfJ5/Pphhtu0OzZs4+oVuYAzFzdaW6PTJLK/lZf49d/v3lANU6rdPikvqapIb6gbrmwWA5H5v/uQX+LH8e22ASDQb3x571a0CtXflvrEMIwTY2qatbXzi6Ue1BumirsHuhvXdOdjm3eVyvle61Kau9TssOQe+4g2Ue2P+9TMGBq+fNebVrplxluvcxqk8bMdGriuS4Zls4noKevdU136muZhP7WNd2pvzEHYOIxByC6k6z/CdLtdncY/kkHD9gnnHCCJOnzzz9vtWzt2rXyeDwyDEMXXnhhm/v27t1b06dPlyQtXrw4cUUDiEtTQ0D3LGhQjcvWNvyTJMNQhcuuX/xfbcprAzLJPx/dq9f65bUJ/yTJNAyt652jPyxskLfKl4bqgMzgfXmffK92EP5Jkt9U48PbFdjU0GZROGTqrT83auPytuGfJIWC0uo3fXrnGa+y/Dd4AACQYbI+AIzFoYt4HP5L19q1ayVJgwYNUq9evdq97/HHHy9J2rRpk5qbm5NYJYCOzHulVl5754ezSpdNr72yPwUVAZnns1eqtLh/XqftdhY69PrzVSmoCMg84YagfG/EcEaGKTX9dUebmzcu92vH+mCnd4+1HQAAQKIQAEpat26dJKm8vLzV7Tt27Gj39pYOLTNNUzt37kxShQA64vcHtd4e+2m9SxqTWAyQwd7ZGYi57fulOfI3Ek6g5/HO3xtzW7MpLP+6L05VM01TnyyNffRsPG0BAACOVOZPhpVkK1eu1ObNmyVJs2bNarWspqZGklRSUtLh/Vsu62zOh6eeekp///vfO1x+2WWX6fLLL++05iNh/Of0yMLCQk49icOhyb4tFouKi5kkP1ap6G8rFu1VOIZ5lA5psFuU48yXKzdzD3/0t/hxbOvchuKamNvWO63avrhBE68cmsSKui/6W9d0h2Nb/cZP42pvrqxX8SmDJUmefQF59tTFfN+d64PKzyuSzd7xexh9rWu6Q1/LRPS3rqG/AeguMvcbcApUVVXpoYcekiSddNJJkbkADzl0Sq/T6exwHS2XNTU1Rd1eY2OjKisrO1ze1NQkq9Xaad2JEMvV69CWYRgpe46ySTL7W01dnKOUDEP1noDc+R2/rjMF/S1+HNs61hwlZGhPY32A/tcJ+lvXZPKxLexvZ+K+KMzGYOSxBLyxj7KVJNOUgn5DTlfn+4K+1jWZ3NcyGf2ta+hvADJdjw0AGxoadO+996qurk59+/bVLbfckvRtut1u9e7du8Plubm5Sb/ilmEYslgsCofD/LIXB4vFIsMwZJqmwuH4vhz0ZKnobyXFdskTx5cu01R+sT2jr25Hf4sfx7bOuQKmvI7YQ0B3fma/TtKJ/tY13eHYZnFYFPLG3u8Nty3yOrHnxLctw5BsDjPq64y+1jXdoa9lIvpb13Sn/kZACfRsPTIA9Hq9uvvuu1VRUaGSkhLdc8897V6+2+VySZJ8vo7naGm5LDc3N+p2r7zySl155ZUdLq+urk76peOtVquKi4tVV1fHF7s4FBcXy2q1KhwOJ/05yiap6G9HjbTIutlUKMbTgPMDYXl99fJm8NRL9Lf4cWzr3HE1zVrVN/r71CH5zSENPqOQ/tcB+lvXdIdjm+U4t0Ira2NvPyU/8lhMu6nifhZ59sQWAAwaaVN9Q/Rt0de6pjv0tUxEf+ua7tTfysrK0l0CgDTqceO7fT6f7rnnHm3atEmFhYW699571bdv33bbHprf79BcgO1puYw5H4DUs9lsOi4Q+wjAGe4kFgNksFMG22NuO8njlcPdI38jRA+Xc36fmNsauRbZR33xA7JhGBo1I/bpJeJpCwAAcKR6VADo8/l077336pNPPlFeXp7uueceDRo0qMP2h5Zt3769wzaHlhmGoYEDBya2YAAx+fqcEuUEOh9x0ac5qLPOKU1BRUDmOXp2L522u6HTdoNqfTrr4l4pqAjIPJY8m5xnx9D/DSl37uA2Nx87xaHBozoPz4872aGBxxGyAwCA1OkxAWAgEND999+vtWvXKjc3V3fddZeGDo1+dcOxY8dKOhjyVVdXt9vmo48+kiSNGDEicsowgNRy5dp05xl5KmsOHpxV/XCmqWHegH54YVHKawMyyXnX9dXsvQ1yBtsG5oZpauy+Jn37rELllDEyCT1Xzjm95Ty3d8efkh2G3DcPlv2YtkPKLVZDZ8x167hpDhnt3N9qlyac5dS0S3IiV1wFAABIhR7x02MwGNQvfvELffTRR3K5XLrjjjt0zDHHdHq/sWPHqri4WB6PR/Pnz9c3v/nNVsurqqq0dOlSSdKpp56ajNIBxCivyKG7Li3Tlg0NenmNV/sNQ4ak/grrgmkF6j2AgB6w2WyafcNAzdjt1cqXa7RdhsKSSsOmTprgVr8L+qe7RCAj5JzVS86ZpWp+rVLBdQ0y/WFZcq1yTC+Rc0r0KV+sdkOnXJqrCWe59Ol7ftVVhiTDUNlAq46eZJczt8f8/g4AcWtvbn4AiZH1AWAoFNIDDzygDz74QA6HQ7fffrtGjhwZ033tdrsuv/xyPfTQQ/rXv/6l4uJizZkzR06nU1u3btVvf/tbNTc3q1+/fjrjjDOS/EgAxGLYcXn6znF56S4DyGju/jmadf2AyMTloVAo4ycuB1LN4rAo97y+0nldu7+7yKLjv8SPTwAAIDNkfQC4YcMGLV++XJJkmqYeeOCBqO3nzZvX6v9f+tKXtHXrVr366quaN2+enn76aTmdTjU1NUmSioqKdPvtt8tuj31ydQAAAAAAACBVsj4ANFvMBxYIBFRbWxv3Om644QaNGzdOr776qrZs2RIZ9Tdp0iR95StfUWFhYQIrBgAAAAAAABIn6wPAMWPG6KWXXjri9UyZMkVTpkxJQEUAAAAAAABA6jALMQAAAAAAAJDFCAABAAAAAACALEYACAAAAAAAAGQxAkAAAAAAAAAgixEAAgAAAAAAAFmMABAAAAAAAADIYrZ0FwAA6LnC4bA2rm7Qys0+ecKSVdKQHItOmZSn0n7OdJcXVXNjSFsW7Jf5SYOsvrBCLouM0fkaPqtEzhxrusuLyvfvWjXP36fa+qAkyXBYZZ9cKOcFvWW1Znbt3VX4QFDef+5VcEODzIApw26RbVSecs7vI0te5x/H1q+tV/VCjwpq/JKk+kKbCqcXa+zEwmSX3mOFm0IKvFerwIYGmb6wLHlW2U8olH1svgwbv6EDAIDuhQAQAJAW1bub9eelDdrlskkOe+T2zaa0YGWTphv1unBOiazWzPui/emiGuW/tFf9A2brBTu92r+gWk1f6aejTi5KS23RhLwh1d/1mdQYanW72RySf3GN/EtqlHvDYDlG5aepwuzkfWmffG9Wt7rNbA4rsLJWgZW1cs7upZzZvdu9b31DUOv+sF3H7fKqf8sFNT5pa6P+/Wq1ht40SKVljuQ9gB7It8Ij7/N7JP8Xr/GQpMCaehlFNrmvHSTb0Nz0FQgAABCnzPtWBQDIenX7/XrwncaD4V87TMPQEtn07D9rUlxZ5z57x6Oyf+xRzuHh33/kBsIqfmaXtqysTW1hnQiFQqr/6adtwr9WTKnp4e0Kbm9KXWFZzvtKZZvw73C+V6vkfaOqze2BYEif/nqbjtvl7fC+R1U1a89vK9TYGDziWnGQb4VH3qd3twr/WjJrg2r4wzYFd3T8vAAAAGQaAkAAQMq9vKhOHmfnp5out9r0+ScNKagoNgF/WDn/3Nvpm6fVlKz/t1ehUDgldcWi+YV9UnNs9TQ+vD3J1fQMYX9YvtfbBnvt8b1SqXCw9fOz4p/7NbyqudP7DqwL6P3nKrtUI1oLN4UOjvzrjD8s77MxtAMAAMgQBIAAgJRqqg9qlRH7PHNLPsmcUTZblnqU54stRCtsCmnL8rokVxS7QBwjEs36kEIef/KK6SGa/7VPan8QWVvhgyMBWypeHXv/Gbz+gALBKKM7EZPAe7Udjvw7XKjCq+D2zDk+AQAAREMACABIqc83Nskfx7x+n2bQW5VvfXyjEb3rMmf0ojo4Zbkjvrf3J6mQniMY5+jVwLr6yN+1noAG1cYewpZ6Q9r2eeejBRFdYGN8z1lwQwa9xgEAAKLInG9VAIAeoTnGEXSH+K1GkiqJn8Uf5ym98bbPIGHmlDtiZpzPv9nitdHQEP9oPm9j9+1vmcKM8TT5SPs4j2cAAADpQgAIAEipgvzYT/+VJHcwvpFryRTObf+iJR1yx/dYM4mVq8oeMSM3vuff0qK/FJfYFIoz+y4qtXfeCFFZ8uN7jRtxtgcAAEgXAkAAQEoNH+lWvj/20U3jnZkTABacVBhX+9KpRckppCviDCMdZ5YlqZCew3lySVztHTNKI3+73TZt7pMT8323Fzs0qNwV1/bQln1CQeyNDckxPo72AAAAaUQACABIKZvdomm5sbW1hk2dMjEvuQXFYfDxeaoujG2U1b5ShwaMzJzac+b0jrmtpZ9TVkf3Hb2YKezTiiR7jMP4nIacJxW1uslySuwBYt0JRZ22QefsY/NlFMU2qs8+rkCWYkZdAgCA7oEAEACQcmeeWaRjmgNR2ximqa8WG+o9IHNGNVksFhVcO1BNjuhvnw1Oi0qvHZiiqmLjnFYiy+AY9qXNkPu7Q5NfUA9gsVjk/uYgqbMM0JDc1w1uc/PEGUVaPbLzEWYfD3Fr6pz4RhuifYbNIve1g6ROXuOWXg7lXNIvRVUBAAAcOQJAAEDK2R1W3XB+iU4JB2UPtZ1Ev9QX1DV9LTr5tKLUF9eJ3sNyZbtliPb0aT9M293PpZxbh6hscOynb6ZKwQ+GyzrS3eFyo8Cq/J+PkDWH0X+JYh+ZL/fNg2Xktv+Ry3Bb5b5liOwj2h8tesr1/fXR5BLVtxNINdkNfTSuSFNvGySrlecsUWxDc5V32xBZh7TzGjYk+/EFyvvu0LjnCwQAAEgnwzTNzJlcqYerrq5O+jasVquKi4vl8XgUCsV/hcGeqri4WFarVaFQSB6PJ93ldBv0t67paf2toS6oDz84oJrGsKwWaWg/h0YenyerNfbfqNLV1/Z93qTK9+tkesMycq3qc1Kheg/NvODvcCF/SN6/75YqfDJNU7ZSpxwX95K1X+bXngm62t/86+rlf6dGZlNIRq5Vzhklso/Mj+m+3uaQ/v1GjUK7myVTsvRx6vgvlSg/r/uEUN3x2Bbc7lVwQ4NMX1hGvk2O8ak97Zf30a7pjn0tE9DfuqY79beyMub3BXqy7vOpEQCQlfIKbZpxevc8fbHP8Fz1GR7jhIYZxOqwKu/rg7rVl5Zs4BidL8fo2AK/w+W4rDrlvF4JrgidsQ3OkS0DR/MCAADEi1OAAQAAAAAAgCxGAAgAAAAAAABkMQJAAAAAAAAAIIsRAAIAAAAAAABZjAAQAAAAAAAAyGIEgAAAAAAAAEAWIwAEAAAAAAAAshgBIAAAAAAAAJDFCAABAAAAAACALGZLdwEAAHRHHm9Y71b49PGegLwBU7kOi8b1s2vqEIcKXZn7+5ppmtpSE9KyrT7tPNCokGmqV55NJ/a3aHx/u+xWI6nbD+70yv+OR8HNjVLQlFFkl2NioRwTC2U4rUnddqjSJ/8yjwIbGmT6wrLk22SfUCDH5CJZ3HwkQuKE/WE1v1qpwMpamU0hyZCMfJucM0rkOK1UFlvyjhFm2FRwU6P873oU2tUsmZKlj0OOqcWyj86X0clrPLC1Sd6ndilc6ZfMg7cZ+Va5Lugj56TipNUNAACSi0+7AADEaekWn1742Kuw+cVtNd6QdtaF9ManzbpkXI6mlDvTV2AH/EFTT37YpDV7Aq1ur6wP6pM90isbLLphilt98xMfxJkhU97n9sj/rqf1gv0BeT9vUvMrlXJ/c7Bsw3ITv23TVPOrVfK9XhUJNCQpVBNQaJtXza9VyX31QNnH5Cd82+h5glsa1fD7bVLQbHW7WRtU84uV8r1ZrbwfDpe1zJHwbYcbg2r88w6FNje1vr3ar+AnDbIMcCnvhsGyFNvbvX/Dn7cruKa+ze1mfUjeebvle6VK7juGy2pNblgPAAASL3OHKAAAkIFWbPPpubWtw7+WgmHp6Y+8+vdOf2oL60TYNPXXDxrbhH8tVTeF9ftlDfJ4wwnffrvhXwtmfUgND207OGIpwXxvVMv3Wuvwr5XmsBr/vF2BTxsTvm30LKFqvxoerGgT/rVkesOq//nnCjeHErptMxBW48Pb24R/LYV3NavhDxUKN7XdduNTu9oN/1rdf39AjT/7/IhrBQAAqUcACABAjPxBU/+3LraA6h8fexXsKCVMg0/2BfXJvmCn7Q74TL2+KbEhXHCnN2r4F+ELy/vivoRuO1wXUPOrlTE0lLzP75FpZs5zhu6n6W+7pFhyPV9Y3uf3JHTb/vdrFarwdtouXOmXb9H+VreFQiEFVtbGtJ1wZUD+zQ1dKREAAKQRASAAADH6cJdf3kBsAVG9z9Sa3R2Ptku1d7b6Ym77wY7YH2cs/EtjCP/+I7ihQaHqxI2e9C/3SDEOaAzv8Sm0pePRU0A0YX84rv4TWHUgodv3vxP768y/3CMz9MVrvPn5+IL35qd3x9UeAACkHwEgAAAx2lzd+Qi6Vu33x9c+meKp3R+SdtQmrvbg53GcWmtKoc8TF8IFo5wOmYj2wCHBjQ0dn2benoCp8IHEvM7M5pBCO2MfuWvWBRWu+iJoD62Pb0RfuCZzftwAAACxIQAEACBGgTinxgskdoqvIxJvLYms3YxzNKEZ747O0G2jZzGb4+87YW+CAsAujNht2dfNKHMWtn/nuDcHAADSjAAQAIAYFbnie9sschlJqiR+RTnx1VKUk7iPCJYiW5zt279CaUq2XZi4baNnsfaL/8rfluLEXAnYyLVK9vhe4y37ulEQ51V9bZlzbAMAALEhAAQAIEYTB8UXDk0clJgv94kQTy0DCizqX5C4jwiOiUUxtzXyrbId607LtmUzZD++IGHbRs9iG5QjIzf2142lt0MWR2JeZ4bVkOOEwpjb247Lk6Xgi3DcdWHfuLZnH8/rBACA7oYAEACAGA0qsunosthGlI3qY1Of/DhH1STRKUOcssf4rn/acKcMI3EjfBwTC2XkxbYvnNNLZNgS9/HENipPlj6xhZ+OSUWy5MU3YhBoyXFqacxtXXN6J3jbJVKML1vnaa3rdByTJ8Uxwtl1ab94SgMAABmAABAAgDhcfUKuyjoZ5dMnz6IrJ+SmqKLYFOda9PUTc2XpJCCYNsShkwYnduSi4bLK/c3BkjP6frONzZfzzF6J3bbFkPubg2V0EsZah+Yo56L4RkEBh8uZ3VvWozp/7dsnFcpxfOwj9mJhG5ijnEs6D+Zc5/SSfWRem9vz/2toTAFizuX9ZHVkzo8bAAAgNgSAAADEoSjHou/NyNNJgx06fKCa3SpNLXfou9PzlN9J2JUO4/o7dMvJeRpe2vbLe3GOoYvH5uiScTkJHf13iG14rvK/O1S249oGD0aeVa5zesl97SAZ1sRv29rXqbzvDTt4eu/hT4vLIufMUuV9e4iMDHzO0P3k3zpUjpOLpfYyMrsh59m95L5qYFK27ZxWIvf1g2Ud6GqzzNLHodyrBsh1dvsjD619XMq/8+iOR+vaDeXOHSjn1JJElgwAAFLEME2T63hliOrq6qRvw2q1qri4WB6PR6FQBl2eMsMVFxfLarUqFArJ4/Gku5xug/7WNfS3+KWrrzX4w9pYGZQ3YCrXbui43jblJmhOr2TbVRdStd8p0zBUlmtV/xyvLEkI/toTqvIr9HmTzEBYliK7bMe6ZcR6fvIRCtcGFPy0UaYvLCPPJvvIvLiDP45tXdPTjm3hYFiBdzwKbvdKhmQbkSf7xAJZLLH3t672NdM0FdrerNCuZsk0Ze3jlHV4bszhfqjKJ+8/9ip8ICgjxyLnzDI5RuXHvP1062l9LVE4tnVNd+pvZWVl6S4BQBox0Q0AAF2U57DoxIGZc6GPeAwotGp0cX6LLy3NKdu2tZdD1l7p2W+WIrsck4rSsm30LBabRc7TShX/tYGPnGEYspXnyFae06X7W3s5lXdDeYKrAgAA6dQ9hikAAAAAAAAA6BICQAAAAAAAACCLEQACAAAAAAAAWYwAEAAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALIYASAAAAAAAACQxQgAAQAAAAAAgCxGAAgAAAAAAABkMVu6CwAAdF/BQEi7Xt0h5/IGORsP3mYaUn25RQUX9lfxsKKo96+t9mvZynq93yjV2i2ymqbKAyGdPNCu408qkM3O71Tt2biuQZVv7tfQnU1y+8Py2Qxt6+2S7ZQSnXhKUdT7hrwhNf11h0KbGlVrfnG7pbddOV8bIPtQd9LqDobDen2TT8u2+tXgP7hxiyENLbbqgjE5GlKcvR9Ltm5s1JKPm7ReVnlthnKCpkYbIU0fm6shx0Tf53U7m7T18d3qX+WXPXxwvwUt0p5ihwZc3k+lI/JS8RC6JLilUd75+xSq8Eb6m6XALvu0IjnPKpPFkrzXeL0vrOUVfq3c7tf+prCsFmlosU3Thjo0rp9dVouRtG03Vvn0+QuVyt3apCJvUDKk/W67Ake7dfTFveXMtydt20dqd4VXS1Y1ak3QUKPdImfI1DGhkGYc69KIcfnpLq9DZthUcEODfEtrVPf5Rpn+kKzFTtlOyJfzlBJZijN3n6eT6Q/L/2Gd/O96FNrZrP2SrH2cckwpkuOkIhk51nSXCABIEMM0TbPzZkiF6urqpG/DarWquLhYHo9HoVAo6dvLFsXFxbJarQqFQvJ4POkup9ugv3VNd+lv3jqf6u7/TK7G9r9EmzJ14HS3ys8f2u7y9asO6LEtQTXb2g8AhjYHdP3Zxcor7DwU6kl9bdGTezTug5oOh/B/PNStyd8ZJLut7Ze2wNZGNf6mQoryzu+YWarcC/smpNaWGnxh3begPhL8tefMo5368qichG870eLpb+FwWP98qUYLo/zmeqY1qHPPKWk3DNvyVpUKXqqUrYPdFpa0b3qJjvtqv3geQko0/d8e+RfWdLjcKLAp/8fDZclLfPD7WXVQj77XKG+g/R03rMSq6ye75XYkPoDctaJW4ef3KN8fbnf5/lyriq4dGFNwm+pj26K3avR/DYZMo/3j+qRgUFdcUCKrNbN+nDH9YTU+vlPBj+vbb2A3lHv1QDnGF6S2sAwX9gTU8NA2hff62l1uFNmU961yWQe4UlxZ99JdPrdJUllZWbpLAJBGmfXuDQDoFkKhkGp/0XH4J0mGDBW83ahdS3a1Wbb9syb9eWvH4Z8kbXXZ9ehrHoVC7X+J7omWvlCp46OEf5I0Zmujlv9P230e8oY6Df8kyb9wv5rf6Ti06YpwOKyfL4we/knSm5/5tHRL+19Eu6s3XvdEDf8k6c2QTQverG1z+/5NDSqMEv5JBz/I9Vlaox3LE/ucHanmhdVRwz9JMg8EVf+LzxO+7d0HQnp4RUOH4Z8kbakJ6dH3GhUKJ/Z3cM/mRpnPdRz+SVJpU0h1f9kpb40/ods+Uu+9U6t/NFo6DP8k6X2bTS+8mFl9zTRNNf1tV8fhnyQFTDU9tkPBzxpTV1iGM30hNfyxosPwT5LM2uDBgLA2kMLKAADJQgAIAIjb7iV7lFPf+elzhgzZXm77a/grqxoViGEEyRaXXWvfj/Klrgfx+UIqX7E/prajP6vXjm3eVrc1/XVHp+HfIc3z98ZbXlTLKgKq88W28ZfWeztv1E00HQjqLW9sp5m+3iA1N7Ye4bX7qT2yxrDbLJKaXqrqQoXJ0/yvypjambVB+VYmdsTMaxub5Y9hsNzn+0P6eG9ig41t/6hUXqDzHy1KvCF99sy+hG77SIRCYb28O7YRhssMq6p3Nye5otiFKrwKfHSg84Zhyfty5uzzdPMtr1V4X+chtHkgKN/C2N57AACZjQAQABA3y8K6mNs6mw1VrvkiDKjZ59N6R+yn/L2zLbNGyaTLv9/yqNAX22hIqyl9/lrrL2yhTXGMfPGbCmxN3EiZtzfHHhY0B6W1u7PjOV+58oD8MZ4q6bNZ9N7KL0IMv9+v/rWx74feDUE1VGfG6Enfv2ulTkZ7tmr/RuKmQDnQHNaaPbGHeu9sTVxf89UH1GdP7AF23tbGjJmy4ON/N6jWGdtcb6Zh6J0PGpJcUex8y2IPkENbvArtypzwMl1M05R/WewjOf0rPDJjCLYBAJmNABAAEDfXgfhOm2v6+ItgY9tWX9RTzA63w8oE5JIU2BbfyLi8fYeFQXGe6ehfWRvfHaKo88a38USPykqXbXXxhTvbPF+0r9ngjWn03yGGpF1LMmPuqeC6+MKhsCdxz/eOupDiOat3myeYsG1Xr2tUTjD2jZd4Q/LVZkYAWLEvvudge5yv6WQKxXlsDMbZPis1h2Ma/XeI6Q0rXJUdP8wAQE9GAAgAiJsR73e/Fl+Kg3F8QZakcPIu1NmtGKH49pvlSOc2izJ/WryOoLt0a3E+ZQq3uC5bqDH+nRCKY9RdUsU7b2cCr0cX76bjfY6irisY/wipYIyjepMt3rkQMyO2/I94DxiJfNK7KbML+6Ar9wEAZBYCQABA3ILO+Npb+n9xBcFeveK74mdJF75UZyOz2B5X+8b8I7uyqm1Y7hHdvyWnLb4Ut39+doz6LHXG97hLXV+0Lx6ZG1dwakoqG+OOa3vJYukX3xVDDVfinu/S3Pg+2pbF2T6awiG5iudo5bUZyu0V3+s6Wcry4tsPpRn0ErWUxbcPLaWOJFXSfRi5Vhk5cTznhmSJ8z0IAJB5CAABAHFrHBd7Ahi2mOp/Wv/I/wcfnaN+zbGfdjepiLcqSRr1pVIF4tgVeScXt/q/JZ6gwZCc00pib9+JCf1j37bFkE47Kju+oE8eH3sgZ5imppyQF/l/bpFD+3NjT1nqHRb1Hl0QV33J4jy97OA5yTGyTyxM2Lb7F1g0qCj2/TZ5cOL6WuEgl3bFES7t65sjmz0zkrQTJhbIHsfwySkjcpJYTXwck4s7b/QfRpFNthGZEZSnk2ExZD+pKOb29rH5suQd2Y9KAID041sVACBu/S8crLAltvFJB8Y4Wn3JtVgsmtW/ky8S/zkl0B0IacqUzAg10q1Xb4c2DM3rvKGkbcUOjZ3Uum3OFQNi3pZtXH5ctXXmvFEuWWIMhMb1s8tmyY6PJ/3KczTaF9vcauMCQZX1bz1yLjS1KKZRgKak2tGx9Y1UsDgsso2KsR6r5Dq3d8K2bRiGzjg6th8o8hyGJpcnNmzOO7k4plGAAYvU7+yyhG77SOQV2jTFElsAWN4c0FGjEzdC+EjZx+fL0iu259E5q0yGlXklJMk5o1Syx7AvDMk5M3P6KgCg67LjEzYAIKWcbqcC1/RWuJPJAOv7SIO+MbzN7ZOnF2mmoowCNAy5gmFdN9KpvEJGHRxy4vUD9Hmv6KdXVrptKrthkKyHXTzFfpRbjtM6H9VnKbMrb+7gI6rzcLkOi+ZOyu10UFjffIuuOTFzRhYlwlVnF2tgJyNey5sDuvKctqOYRpzfVxXl0U8FNiVt7+PS2G8MOrJCEyx37qDOQxlDcl83WJYEngIsSRMGOHT2iOghYI5Nun6yW25HYj8KDz2zTLvGF0YNAYMWaf/0MvVJcNB+pC44p1jHNkcPrMuag5o7s0CWDArpDZtF7usHyyiI/l7hmFos56mJG9nc3Vl7OeT+xiAp2hQNhpRzST/ZhmdO4AsA6DrDNBM48zKOSHV1ddK3YbVaVVxcLI/Ho1Aoo6ZwzmjFxcWyWq0KhULyeDLjKovdAf2ta7pTf6vZ7FHTU7vlrjZltIh3gjZT9Sc4NfjyYW2CqJbeX1arhTuD2un64oubLWxqbDCos0/KU7/y2MKgntTXfL6Qlj+1V0M21Ku4+YvH2mQ39NnQPI2+vK9KyzoOXprfqVHz/+1te5EP4+DIv0SHfy1V1AQ1b1WTKhtaxyM2izRxoF2Xjc/JqGChI/H2t+bGkF5fUKuVzVKD44vXQ74/pCk5pr50erGcOR2/Tj5+fKeK19bLHQi3ClGbbIaqjnJr3M3lR/JwkiYcDsv71G4FVh1oc6EGSx+Hcq8eINvg5AULH+3ya8FmnypaXF3ZZpGO72/XWce61Ccveaffbv5XpfwratW/7otALSxpV6lDBTNLVT4jtiAq1ce2YCCsBW97tOyA5HF+sX9yAmFNtIU1e2ZRxv4oE64NqPm1Kvk/qJP8XxxjLP2ccs4slWNykYw4rkDfUwS3eeV7o0qBj+tbXbHJNsIt55llso/InNHFmao7fW4rK2M0J9CTEQBmEALAzNWd3tgzCf2ta7pjf2vc36T9H+6X2RySo3+Oeh9fFjX4O9yuz5tUvT8oq1UqH5qj/JL4JhvviX0tEAxp3QcN8tYGZc+16tgT8pQfxxxNgc2NMj5qkoKSY0S+whPiu3DDkahpCmvVLr98QVN9C6w6vp+tWwR/h3S1vwX8IW3d6FWTNyx3rkVDj82VzR77465YvF+1qxsk01TesW4ddXavrpSfcuFwWIGPDshZa5E1z67ciSWqt3hTtv299SHtbwzLapEGFlqV50xdX9u3rl51m5tkSCobnafio+Kbfy5dx7ZQKKyKjU2qbwgrx2VoyDG5UUPqTGJ6Q8rx2GQEJaPQpsYCP8FfDMK1AZn7Aspz58mb65dKMjPozUTd6XMbASDQsxEAZhACwMzVnd7YMwn9rWvob/Gjr3UNfa1r6G9dQ3+LH32ta+hrXUN/65ru1N8IAIGerfv83A4AAAAAAAAgbgSAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCLEQACAAAAAAAAWcyW7gIAAAB6igPNYdV6wyrKsajAFd/vsMFwWFUNYUlSrzyLbBZ+x41FMBBWQ21AVqtF7iKrLCncb2bYlNkYkiQZbqsMi5GybQMAALREAAgAAJBE4XBY/9rg07IKv5oCZuR2t8PQKUMdmj3CGTWU2nMgqGfXePX5/pDMFreXF1l18dgcDSnh41x7dm/1auGHDVolq/y2g/u31BfU1AJD008pVE5e8vZbuMYv35Ia+VfWfhEAFtnkPLlYjmklsuTznAEAgNTi0wcAAECSBMNh3ft2vfY3mW2WNfpNvb7Jp1W7AvrxzLx2R/R9uMuvJz5oUtt7S9tqQ3pgaYMuHpOjGcOdSai++3p/Wa2erjQVstlb3b7fadPLPmnFv2r17Rn5Ku2X+P0W+LRRjY9ul5rDrW43a4NqfqVKvmUe5d1ULmt/V8K3DQAA0BHOHQEAAEiS3yxtbDf8a6myIawHlzW2uX3PgWCH4V9Lz3/s1aaqwBFUmV0++7hBT1WaCkU53bbaZdP/LKmXvzmU0G2HKn3thn8tmXVBNTy0TeGGYEK3DQAAEA0BIAAAQBLsORDU9trYAqatNSFVNbRu++wab6fh3yEvrPXGWV32eu0Tr8IxzLW3z2XTByvqE7pt39vVUcO/Q8y6oPzLPAndNgAAQDQEgAAAAEnwz0+au9w+GA7r8/2xj07bUx9Wg6/z4CnbVe9u1qcue+cN/2P5vsSNnDR9Ifn/XRdze9+7HplmrBEvAADAkSEABAAASIK99fGdXrqnRfv9jeGYR/8dsmU/p5Tu3O6Pq/0emzVh2w5XBSR/7M+a6QnI9BLaAgCA1CAABAAASIJ4A7yWg8HCXRgYRpQU/z5X52cKx7FtRvMBAIDMRQAIAACQBL3c8Y0u6533xceyXnmWuLOpIcW2OO+Rffr2i/30X0nqFUhcbGotdUi22J81I98mw8VHcQAAkBp86gAAAEiCOSNdcbX/cov2NotF5cWxB4i93BYV5fCxrl95joY2xz6v35TSxO0zI8cq+/EFMbd3TC2SEcPFSgAAABKBT4oAAABJMKTYpj55sX3U6l9g0YDC1iP4vjI2J+ZtXTAqvrAxm33pKKeMGC6uUewLafLUwoRu23V6WUyjAI1cq5zTSxK6bQAAgGgIAAEAAJLk+9PzlO+IHggVOg19f3pem9uHFNv01RhCwLNGODW2v6PLNWab0ScW6KJ8M2oIWOgP6VuTcuWK8zTtzlgHuOT+xsCoIaCRY5H7hsGyFMZ3ujIAAMCRYLIYAACAJMlxWHT3mfl6Zo1XH+0KqOWUc3aLdMJAuy4dnyObpf3fZKcPc6pfgUXPr/Fqd33r+ep6uS26YJSL8K8dp55eogEfN2jheq8+sdsU/s+ptu5ASCfZTc2aVaDC0uTsN/vYAuX/YJh8C/bLv6pOCvwniHRZ5DipSM6ZpQfnCwQAAEghAkAAAIAkctgsuuoEt648PqwKT1h1zWEV51g0uMgiSwfBX0tHl9n141l2NfjD2rI/KJnSkBKbCriARFRHj8nT0WPy1FAXlKfSL6vdUO8BTtnsyd9v1v4u5X5tgHIu7quw5+CchJZShwwHzxkAAEgPAkAAAIAUsFgsGnYEF53Ic1g0th8jx+KVV2hTXmF6PvIaLqus/RJ7mjEAAEBX8DMkAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCLEQACAAAAAAAAWYwAEAAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALKYLd0FAACA1DP9YfkqGmSRIUuxPd3l9AimaSpc6ZfpDcnItcrSyyHDMGK/vzekULVfMiVLmUOWXGsSq80eu+qC2lEbkt0ijehjV54j9t+/zbCp8D6fTF9YRp5N1jJHXNtu9Ie1vyksQ1Ivt1Uue+zPd7qFqv0yG4IynBZZ+jhlWFJX+/69PtXuD8jhsKhvuVN2B30dAIAjRQAIAEAPEvYE1Px2tfzv1aquOXzwRkOyjc6Xa1apbEe501tgFjJDpvzLauRbWqPwPn/kdktfp5wzSuSYWizD2nG4Etrnk+/tavn/XScFzIM3Wg3Zx+fLeXqZbINykv0QuqWFm5v15qc+NfjNFrd6NbDQqsvH52hwcccfg01fWL7F++Vb5pHpCURut5bnyDmjRPaJhVHD2x21Qb31mU+rdwcU/s/m7VZp4kCHTj/aqd55mRlomaapwAd18i3er9D25sjtRoldzmnFcp5aKiOOADVeH62o06Jtfm1xffGjhHu1V5Mdpk6fUaj8In6sAACgqwgAAQDoIYI7vWr84zaZDaHWC0wp+HG9GtbVK+er/eQ8pSQ9BWYh0x9W46PbFdzY2GZZeK9P3mf3KLCuXu65g2TY2wYrgU8b1fjIdskXbr0gZCrw4QEF1tQr9+sD5RhfkKyH0C39+b1GrdkTaHfZzrqQ/ntJg66dlKvx/duO6As3BtX4x20K7Whusyy0zaumebvk2NSonCv6tzsqbtUuv578d5NCZuvbAyFp+Ta/Vu3y64bJeTqqLLM+hpthU01P7VLg/bq2y2oCan6pUoHVB+S+eUjCR5+Gw2HNf6lGi2STXK1Dvka7VQtMafUbdbpler5K+zkTum0AAHoK5gAEAKAHCDeF1Pg/29uGfy2Zkve5PQpsbEhdYVnO++yedsO/loKfNMj7wt42t4dr/Gp8tJ3wr9WdTTU9sVOhXW3Dqp7q1Y3eDsO/Q0xJf/2gSbXetvu26fGd7YZ/Lfnfq5Xvjao2t++oDbYb/rXUHJQeWdkgTzvbTqfm16raDf9aCm1vVtMTOxO+7WWL6g6Gf1Hsd9r0pyX1CgYya78BANBdEAACANAD+N+rlXkg2HlDU/K9VZ38gnqAcI1f/vdrY2rrX+FRuK51aOVbUiM1xxB2BE01L+A5O2ThZl9M7UxT+r+Pva1uC27zdhrYHuJbuF+mv/Xz8/ZmX9Tw7xBvUFq6JbY6U8H0heVbtD+mtsH1DQpu93beMEahUFhvV8cW6u1x2bT23/UJ2zYAAD0JASAAAD2Af7kn5rbBTY0HLzaBI+J/r/bgULNYhNUqLDTDpvwrajtsfrjAqgMyvVFGd/YQn+wNqDmGnPuQj/e2Dl3jeZ2Y3rACqw9E/t/kD2v1rugjD1tasc2vsBlrB0muwEcHYgub/8O/Ivb91JlNaxpU44z9lOLl2zg2AQDQFZk1+UgPZ7Umf0LoQ9tIxbayFfsudvS3I8e+iw19rXPhfXGONqoOytqHi0u0J9b+Fq6MPQySJLMyEFlnuDEosymOQC9oSnUhWfPiu0ptuiTrtbrVE18/D4Rb1xKujC9cMqu+eM5qfWZMo/8OafCb8octcke5qEaqjm1mVXyPO9yirx6pyv3xndJbZRhxbZv3hdjxXnrk2HcAMhkBYAYpLi5O2bYKCpgsvCusVmtKn6dsQX/rGvpb/OhrHauxGjLDsacT+QV5yqX/RdVZf/O79imeWMXpckZe8yFbQPGOsSosKpSjOPOv4pzMY5s7NywpvtNTW9bS5LArjgGEcuXmRO5/IOyTFH0OvcOVFBcp19F5YJDsY1s4tzauvWZ32BL2HDpd9VJj7K8Ui4yYt837aNfwXto19DcAmY4AMIN4PIk7naIjVqtVBQUFOnDggEIhThWKVUFBgaxWq0KhkA4cOND5HSCJ/tZV9Lf40dc6Zx2Qo2BFU2yNLZK3IChfCt6XuqNY+1uod3wzrYR6WyKfBUzTlKXYrrAntlGEhsuiBnuzDE/mnh6ZimPbsML4Xv8uW+vPX2Zfm/RJ7PcPln1xf2fYlNMq+WIsoTTXouaGOvmMtlcSPiRVx7ZAWcc1tMfsa0/Y59a+vQwptukHJUn9jXCn2+Z9tGt4L+2a7tTfCCiBno0AMIOk8o02FArxxt5F7Lf40d+6jv0WH/pax+wnF8UcANrH5MvMs7AvO9FZf7NNLJBe3Hvw9NzOOAxZTyhotT7HycVq/ldlTLXYTypS2GpK3eQ5S1bfKi+yKM9hqMEf22jXiYMcrWqxTy2K+YIqRqFNlpHuyP1txsH1LauILYSdNsShcDi201+TfWyzjsqVUWCL7UJBkuxTChNWT/kxTvVb3ag9rti+lpxyjCuubXMcix/vpV3HfgOQybgICAAAPYDjxEJZ+jk7b2g35DyrV/IL6gEseTY5Z5bG1NZ1epksua1PBXVMK5ZR1HkoYuRa5ZoV23Z6gvNHuWJqZ7dI5x3W1trHKftJRTHd33VObxnW1iPnTj/aqZwYcqziHEMnD8mc+RoNm0Wu2bG97h2Ti2TtHcOxJEYWi0XnDHXIiOGCKEc3B3TM2Mw/zR0AgExEAAgAQA9g2C3Ku7Fclr5Rvrg7DLnnDpJtEBf/SBTXub3lODn6KVeO6SXthq6WPJvybiqPGgIabqvc3xosS0nmhEnpNrncqTOPiR5Q2SzSbafkyWVr+1E499J+so/Nj3p/17m95Zza9nktc1v1rSl5yrV3fEptcY6hm6bmKTfKxT/SwTmtRK5zooeA9nH5yrmkX8K3Pf6kAl1cIFmizFM6pDmgb84ulsWSWfsNAIDuglOAAQDoISzFduX/1zD5V3rke8ej8N6DV0y15NlkP6lQjuklspYSJCWSYTGUc2k/2ccVyLe0RsH19VJYkkWyj86XY3qJbCPcMjqYB87az6X8/zdc/uUe+Zd5FN5/cE5Ao9Amx9RiOU8plqXAnsJH1D18eWSORvSyaf66Zu2s++KUPJtFGtfProvH5ijP2X6QZNgtyp07SIE19fK/U6PgZ42SKclmyH58gZzTS2QbmtvhtoeV2vSTWfl6Z6tPy7f5daD5YKhVlmvRtKEOTS13ZFz4d4jr7N6yjciTb2mNAqsPHDx93ZBsR7vlmF4i+9h8GZb45guM1fRZxRr6WZMWr2nUR4ZVfuvBfTSoOahpfWw66ZxS2eyZud8AAOgODNOMYbw9UqK6OrY5Z47EoatTeTwe5qiIQ3FxcWRy31RcrCVb0N+6hv4WP/pa1xTmFMhiWGTapdq62nSX020cSX8zQ6ZMX1iG09Lm9NFO72uaki98MIxyWToMDTNVuo5twXBYdV5TTpvRYegXjRkIywyYXX7OmoOSIclpU9zPWTqPbZG+ajdkpDh4C4XC8jaE5XAacrg6v0ry4Xgf7RreS7umO/W3srKydJcAII0YAQgAQA9lcVkjX1qQGobVkJEbf6Ah/Sc86kIY0tPZLBaVHsG0cYbdIqOLgywNw1BONx2geSR99UhZrRblFTLaDwCAROKdFQAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALIYASAAAAAAAACQxQgAAQAAAAAAgCxGAAgAAAAAAABkMQJAAAAAAAAAIIsRAAIAAAAAAABZzJbuAgAAAIBMZHpDCm71yvSFZMm3yTo0V4bVSHdZSBLTNBXa2azw/oAMqyHrIJcsRfZ0lwUAQEIQAAIAAAAthOuDan61Uv736iR/OHK7UWST85QSOU8vIwjMMv4PatX8drXCu3xf3GiR7GPy5Tqnt6z9XekrDgCABCAABAAAAP4j7Amo4XdbFd4faLPMrA2q+eVKBTc3yX3dIBl2ZtPJBt4X98n3VnXbBWEpsKZegQ2NyvvWYNmOdqe+OAAAEoRPLQAAAIAOngLa+Oft7YZ/LQU3NMj74r4UVYVk8v+7rv3wr1WjsBof3a5wfTA1RQEAkAQEgAAAAICk4GdNCm1vjqmtf7lH4aZQkitCMpmmKd/bnYR/h9p6w/Kv8CS5IgAAkocAEAAAAJDkXxlHwOM3FfioLnnFIOnCu30K7Ywt8JUk/3u1ySsGAIAkIwAEAAAAJIVrop/626Z9J6cKI7PxfAMAehICQAAAAECK+8q+hp0rAXdr8V7J2cbzDQDovggAAQAAAEnWoTnxtR+Sm6RKkArWQa64QkDbkPj6BwAAmYQAEAAAAJDknFosxZgHWcocso1wJ7cgJJUl3yb7+IKY2ztOKUliNQAAJBcBIAAAACDJUuKQc1Zp5w0NyXVBHxkWTgnt7lyze0k5nX8lsh3jln1MfgoqAgAgOQgAAQAAgP9wfbmPHNOjjPSyGsq5or8c42IfOYbMZe3jVN6N5TLyrB22sR3jVu7cQQS+AIBuzZbuAgAAAIBMYVgM5X61nxyTCuVbWqPghkaZvrAs+VbZJxTKMa1Y1lJHustEAtmG5ir/jqPlf69W/hUehfcHZFgNWYfkyHlKiWyj8gj/AADdHgEgAAAAcBjbkFzZuMhHj2HJtcp1Wqlcp8VwCjgAAN0QpwADAAAAAAAAWYwAEAAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALIYASAAAAAAAACQxQgAAQAAAAAAgCxGAAgAAAAAAABkMQJAAAAAAAAAIIsRAAIAAAAAAABZjAAQAAAAAAAAyGIEgAAAAAAAAEAWIwAEAAAAAAAAshgBIAAAAAAAAJDFCAABAAAAAACALEYACAAAAAAAAGQxAkAAAAAAAAAgixEAAgAAAAAAAFmMABAAAAAAAADIYgSAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCLEQACAAAAAAAAWYwAEAAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALIYASAAAAAAAACQxQgAAQAAAAAAgCxGAAgAAAAAAABkMQJAAAAAAAAAIIvZ0l0AAAAAovNU+7TyH9WyewKSTAXybTr+vF7qO9CV7tIAAADQDRAAAgAAZKhAIKC3H9qjcRUNmhI0Wy1r/rRebw7M1fRbBsjltKepQgAAAHQHnAIMAACQoZb8ZpembK5X7mHhnyS5QqYmbWvUB7/aoUAgkIbqAAAA0F0QAAIAAGSgt5/ZpxN3NHbabsw+r95+vDIFFQEAAKC7IgAEAADIQPkb6mNuO6Ci86AQAAAAPRcBIAAAQIbxVPt0VI0v5vaDDwS0YXXsgSEAAAB6FgJAAACADFO52y9r22n/oqrZ609OMQAAAOj2CAABAAAyTHGZI+775BZak1AJAAAAsgEBIAAAQIbp3d+pbYWxh4BVuTaNPtGdxIoAAADQnREAAgAAZKDdQ3Jjbrt5QI7sdnsSqwEAAEB3RgAIAACQgU67qrc2lTo7bbet0KGpV/dJQUUAAADorggAAQAAMpDLadextw3S2r45CnfQZmOZS/1uGqzCos6DQgAAAPRctnQXAAAAgPYVFjk1/fZh+mh5rfa/U6uixqAk6UCOVbkTCzT59NI0VwgAAIDugAAQAAAgwx0/tUiaWpTuMgAAANBNcQowAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCLEQACAAAAAAAAWYwAEAAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALIYASAAAAAAAACQxQgAAQAAAAAAgCxGAAgAAAAAAABkMQJAAAAAAAAAIIsRAAIAAAAAAABZjAAQAAAAAAAAyGIEgAAAAAAAAEAWIwAEAAAAAAAAshgBIAAAAAAAAJDFCAABAAAAAACALEYACAAAAAAAAGQxAkAAAAAAAAAgixEAAgAAAAAAAFmMABAAAAAAAADIYgSAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCLEQACAAAAAAAAWcwwTdNMdxFApnvqqafU2Ngot9utK6+8Mt3lIMvR35Aq9DWkEv0NqUJfQyrR3wB0FwSAQAxmz56tyspK9e7dW6+++mq6y0GWo78hVehrSCX6G1KFvoZUor8B6C44BRgAAAAAAADIYgSAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDFbugsAuoPLL79cjY2Ncrvd6S4FPQD9DalCX0Mq0d+QKvQ1pBL9DUB3YZimaaa7CAAAAAAAAADJwSnAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsxlWAgXZUVVVpxYoVWrt2rSoqKlRTUyObzaZevXpp/PjxmjNnjvr27ZvuMpElNm/erPfff1+fffaZdu/erQMHDsjn8yk/P1/Dhg3T9OnTNWPGDFks/GaD5Ljvvvv0/vvvS5JmzpypW2+9Nb0FISssWLBADz74YKftnnrqKRUUFKSgIvQEtbW1+te//qUPPvhAlZWVCgQCKi4u1tChQ3XSSSdp1qxZ6S4R3diXv/zlmNt+5zvfob8ByCgEgMBhqqqqNHfuXLW8QHZubq78fr927NihHTt26I033tCtt96qadOmpbFSZIs333xTr7/+euT/LpdLNptNHo9HH374oT788EO99dZbuv3225Wbm5vGSpGN3n333Uj4BySDxWKJGvAZhpHCapDN3nvvPf3ud79TY2OjJMnhcMhqtWrfvn3at2+fKioqCGRwRIqKiqIub25uVnNzsyTpqKOOSkFFABA7AkDgMOFwWJI0YcIEzZw5U+PHj1dBQYFCoZA2bNigRx99VBUVFfrNb36jgQMHasiQIektGN3eiBEjNGDAAI0cOVIDBgyIhHy1tbV666239PTTT2vdunV67LHHdPPNN6e5WmSTxsZG/fnPf5bb7VZxcbF27tyZ7pKQhcrKyvSXv/wl3WUgy61evVq//OUvFQwGddppp+miiy7S4MGDJUkNDQ3atGmTNm7cmOYq0d3Nmzcv6vI77rhDq1ev1lFHHaXy8vIUVQUAseF8MuAweXl5+u1vf6u77rpL06dPj4xasFqtGj16tO6++24VFhYqGAzqxRdfTHO1yAazZs3Seeedp6OPPrrVCL+ioiJdfPHF+spXviJJWrx4sYLBYLrKRBZ64oknVFNToyuvvLLTUQ0AkKm8Xq9+//vfKxgM6sILL9Rtt90WCf+kg5/tTjjhBF1xxRVprBLZrrq6WmvXrpUkRpoCyEgEgMBh3G63hg0b1uHy4uJinXDCCZKkzz//PFVloQc7+uijJUl+v1/19fVprgbZYv369XrzzTd19NFH6+yzz053OQDQZQsWLFB1dbVKS0sJ+ZA2CxcuVDgclt1u14wZM9JdDgC0QQAIdMGhUYGhUCjNlaAnOHTKksvlYpQWEiIQCOiPf/yjDMPQjTfeyAVmAHRrixcvliRNnTpVdrs9vcWgx1q0aJEkadKkScrLy0tzNQDQFnMAAl2wbt06SWJuDySNz+dTVVWVFi1apPnz50uSzjnnHCbLR0I8//zz2rlzp+bMmaPhw4enuxxkubq6Ot16663atWuXJKm0tFSjR4/Wueeeyzy6OGJ+v19btmyRJA0fPlw7d+7Us88+qzVr1qihoUHFxcUaM2aMLrzwwlanBQOJtGHDhsgx7vTTT09zNQDQPgJAIE4rV67U5s2bJTG/BxKroaFBl19+eZvbbTabzj33XF155ZVpqArZZseOHXrhhRdUUlLCqXJICZ/Pp61bt8rtdqu5uVm7d+/W7t279fbbb+vqq6/WBRdckO4S0Y1VVlZG5sfdvXu3Hn74Yfl8PjkcDjkcDlVVVWnhwoV65513dNttt2natGlprhjZaMGCBZKkkpISjR8/Pr3FAEAHCACBOFRVVemhhx6SJJ100kmRuQCBRLBYLJFTfJuamuT3+2UYhs4991xdcMEFslqt6S0Q3Z5pmnrooYcUDAY1d+7cVhedARKtpKREl112maZOnar+/fvLbrcrGAxq/fr1mjdvnj799FM9/vjjKikpYb4sdFlDQ0Pk7xdeeEGFhYX64Q9/qAkTJshisWjLli364x//qM2bN+t3v/udhg0bpv79+6exYmQbn8+nZcuWSZJOO+00Pq8ByFhM+gPEqKGhQffee6/q6urUt29f3XLLLekuCVkmNzdX8+bN07x58/T888/rz3/+s+bMmaOXX35ZN998s9avX5/uEtHNvfHGG1q/fr1OOOEERsEg6Y4//nhddtllKi8vj8zLZrPZNHbsWP385z/XiBEjJElPPvmkwuFwOktFN2aaZuTvcDisW2+9VSeeeGJkbtNhw4bp9ttvl8vlkt/v10svvZSuUpGlVqxYoaamJkmcHQQgsxEAAjHwer26++67VVFRoZKSEt1zzz3Kz89Pd1nIYoZhqE+fPpo7d66uueYa1dfX67//+7/l8/nSXRq6qZqaGj355JNyOBy6/vrr010Oeji73R6Z1qC6ujoyhxsQr5ycnMjfgwYN0vHHH9+mTUlJiaZPny5JWrNmTcpqQ89w6PTfESNGaODAgWmuBgA6RgAIdMLn8+mee+7Rpk2bVFhYqHvvvVd9+/ZNd1noQc466yzZ7Xbt379fH374YbrLQTc1b948NTY26rzzzlNhYaG8Xm+rf4dGYIVCoTa3AclwaASgJO3duzeNlaA7KykpifwdLXw5tKyqqirpNaHnqKqq0scffyyJ0X8AMh9zAAJR+Hw+3Xvvvfrkk0+Ul5ene+65R4MGDUp3WehhHA6H8vPzVVNToz179qS7HHRTlZWVkg5eAfj555/vsN2SJUu0ZMkSSYrMlwUAmaqgoEDFxcXyeDwxtTcMI8kVoSdZtGiRwuGwHA6HTjnllHSXAwBRMQIQ6EAgEND999+vtWvXKjc3V3fddZeGDh2a7rLQA3m9Xh04cEBS61OdAKA727RpU+TvPn36pLESdHeHrrq6c+fODtscWta7d+9UlIQe4tDpv5MnT5bb7U5zNQAQHSMAgXYEg0H94he/0EcffSSXy6U77rhDxxxzTLrLQhYKhUKyWCxRRyS8+OKLCgaDkqRRo0alqjRkmfvvvz/q8h//+Mdat26dZs6cqVtvvTU1RSFrmaYZ9bgWDAb19NNPS5JKS0s1fPjwVJWGLDRz5kwtWrRIO3bs0KpVqzRhwoRWy2tqarR06VJJ0oknnpiOEpGF1q9fHzkzg9N/AXQHjAAEDhMKhfTAAw/ogw8+kMPh0O23366RI0emuyxkqerqat1222168803W81LZJqmduzYoT/96U/63//9X0nSlClTVF5enq5SASBmlZWV+v73v6833nhD+/bti9weCoW0bt06/fjHP9bGjRslSVdffXXkiq1AV4wbN04nnHCCJOnBBx/Uhx9+GJnDdOvWrfrZz36m5uZm5efn67zzzktnqcgih0b/lZWVady4cWmuBgA6xwhA4DAbNmzQ8uXLJR0MYR544IGo7efNm5eKspDFtmzZoj/+8Y+SDs7353K51NzcLL/fH2kzceJE3XbbbekqEQDi9umnn+rTTz+V9MWxrampKTKi2Waz6eqrr9app56axiqRLb73ve/p9ttv15YtW3T33XfL4XDIZrOpqalJkpSXl6f/9//+X6uLhgBd5fP59O6770o6OAKVHzEAdAcEgMBhTNOM/B0IBFRbW5u+YpD1SkpK9IMf/EBr167Vp59+Ko/HowMHDshut2vAgAE65phjNGPGjDanMwFAJisqKtJ1112nDRs2aOvWraqrq1NjY6OcTqcGDRqkMWPG6Oyzz9aAAQPSXSqyRF5env77v/9br7zyipYuXapdu3YpGAxqwIABOuGEE3TBBReotLQ03WUiSyxfvjwSLs+cOTPN1QBAbAyzZdoBAAAAAAAAIKswVhkAAAAAAADIYgSAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCLEQACAAAAAAAAWYwAEAAAAAAAAMhiBIAAAAAAAABAFiMABAAAAAAAALIYASAAAAAAAACQxQgAAQAAAAAAgCxGAAgAAAAAAABkMQJAAAAAAAAAIIsRAAIAAAAAAABZjAAQAAAAAAAAyGIEgACADi1evFiGYcgwDN11113pLqfbueuuuyL7b/Hixekup1OnnnpqpF4g0brb6yEeQ4YMkWEYGjJkSLpLAQAAaJct3QUAQHfV1ZDE4/GoqKgoscWgy0499VQtWbKkze0Wi0X5+fkqLCxUWVmZxo0bp+OPP16zZ8/W8OHD01ApkBoVFRV64oknJB18fZx66qlprSfZWh4DFi1alJTHu3r1av3zn/+UJJ1//vkaP358wrcBAAAQDQEgAADtCIfDqqurU11dnbZv365Vq1bp8ccf13e+8x3NmDFDP/3pTzVz5sx0lwkkXEVFhe6+++7I/7M9AEyF1atXR/bpkCFDCAABAEDKEQACQALMnz8/5rZutzuJlSTWqaeeKtM0011Gytx7770aPXp05P9NTU2qra3Vli1b9N5772nFihUKhUJavHixlixZohtvvFEPPvigrFZru+u76667OHUa+I9sfj1UVFSkuwQAAICoCAABIAHOP//8dJeABJg2bVrU0U7btm3T/fffr0cffVSmaeqhhx5SOBzW//zP/6SuSAAAAACIExcBAQAgRuXl5XrkkUc0b968yG0PP/ywnn/++TRWBQAAAADREQACQAY4dGXMQ6PPmpub9fvf/15TpkxRaWmpcnJydNRRR+lb3/qWtm7dGtM6Gxsbdf/99+uEE05QYWGh8vPzNWrUKP3oRz/Srl27JElf//rXI9tu7xS2WK4CfPjVL8PhsJ544gmddtpp6tOnj1wulwYPHqyvfe1rWrt2bcz7ZO/evbrnnns0bdo09e3bVw6HQ2VlZZo6daruu+8+eTyemNeVaF/72td06623Rv5/9913KxwOt2kX61VPX3nlFV122WU66qij5Ha75XQ61a9fP40ZM0bnnXeeHnjgAe3cubPN/dp7fjZt2qRvf/vbGjFihNxut4qLizV58mT99re/lc/nO9KHrvr6ej3zzDO6/vrrNXHiRJWUlMhut6uoqEgjR47UN7/5Tb3//vtxrbOiokK33367pk6dqj59+sjhcCg/P1+jR4/W17/+db3wwgvy+/1R17F06VJdd911Ou6441RUVCSXy6VBgwbpoosu0j/+8Y+op7JXVFRE9uPXv/51SQf7309+8hONHj1aBQUFKisr0ymnnKLnnnuuzbrWrVunb37zmxoxYoRyc3NVWlqqc845J64r3R5pf2/vCs7z58/XOeecowEDBsjpdKp///666KKLtHTp0nbXcag/nXbaaZHb7r777sh6W/7ryimvnb0e2nseamtrdf/992vChAkqKiqS2+3WyJEj9V//9V+qrKyMu4Zk6egqwE888YQMw9A111wTue2aa65pd592JNF9IxwOa968eTrrrLM0cOBA2e32drff1eMSAADIUCYAoEskRf4lal0zZswwt2zZYo4ZM6bV+lv+c7vd5qJFi6Kub/369WZ5eXmH6ygtLTUXL15sXn311ZHbtm7d2mY9ixYtiiy/8847293Woe2Ul5eb1dXV5owZMzrcrs1mM//+9793uj8efPBBMzc3t8P1SDKLi4vN119/PYa9G13Lejvbry1VVlaaLpcrct933323TZs777wz6rqbmprMOXPmRH2ch/7ddNNNbe5/+PPzzDPPRN1vxx57rFlRURHTvmiPz+dr9Zij/bv++uvNQCAQdR8Gg0HzRz/6kWm32ztd3+9+97t21+HxeMxzzz230/tPnz7drKqqancdW7dujbS7+uqrzWXLlpm9e/fucF3XXXedGQ6HTdM0zUceecS02Wwdtn344Yej7gPTTEx/b/nceb1e8ytf+UrU9f3qV79qs46W/amzf+0dLzrT2evh8Ofhww8/NAcPHtxhDX369DE//vjjuOs4XFePAS21PA629Pjjj8e8T9uT6L5RU1NjTp8+Per2j/S4BAAAMhNzAAJABjlw4IDOOeccbdiwQWeeeabmzJmjPn36aM+ePXryySe1atUqNTY26tJLL9WGDRtUXFzcZh1VVVWaNWuW9uzZI0kaPHiwvvGNb2jEiBFqaGjQm2++qRdeeEEXXXRRQq9EGQwGddFFF2nJkiWaMmWKLrroIg0aNEg1NTV69tlntXjxYgWDQV177bWaNGmShg8f3u56br/9dv3sZz+TdPCCKV/5ylciIyFramq0YMEC/eMf/5DH49G5556rhQsX6pRTTknY44hVr169dOaZZ+qll16SdHD01NSpU+Nax09+8hO9/PLLkfVdcsklGjVqlEpLS9Xc3KytW7fq/fff16JFizpd14cffqhf/OIXCgQCuvzyyzVr1izl5OTok08+0WOPPaY9e/Zo48aNOu200/TRRx+psLAw7sccDofV3NysPn36aNasWRo3bpz69++vnJwceTwe/fvf/9Zzzz0nj8ejRx55RAUFBfrVr37V7rpM09Rll10WOX3aMAydffbZOuOMM9S/f3/5fD5t3rxZixcv1rJly9odwXfgwAGdfPLJWr9+vSTp6KOP1sUXX6zjjjtODodDW7Zs0f/+7/9q7dq1Wrp0qU4//XStXLlSLperw8e4fft2nX/++aqrq9PXv/51zZgxQy6XSx988IEefvhheb1ePfroo5oyZYoKCgp0/fXXq6ysTN/4xjc0btw4BYNBvfLKK3ruueckSbfccotOPfVUHXvsse1uLxn9/dprr9ULL7yg0aNH67LLLtPw4cPV2Niol19+Wf/85z8lST/84Q81ZcoUTZs2LXK/0aNHa/78+Vq3bp1++tOfSpIuueQSXXrppW220bt376g1HKkdO3Zo9uzZqqqq0kUXXaQzzjhDJSUlqqio0KOPPqrNmzdr3759uuSSS7R69WrZ7fak1tNVM2fO1Pz587Vw4UL94Q9/kCR9+9vfjukK4snoG1dccYWWLl2qUaNGRfpGfX29lixZEmmTyOMSAADIIOlOIAGgu1InIze6ui6bzWY+//zzbdoEAgHzrLPOirT79a9/3e66rrrqqkibmTNnmg0NDW3a/Otf/zIdDkenI3riGQF46N9vf/vbdtvNnTs30ubb3/52u21ee+010zAMU5I5efJkc+fOne22W7ZsmZmfn29KMocMGdLpSLNojmT0z89//vPIfc8///w2y6ONeAoGg2ZhYaEpyRw+fLhZU1PT4Xbq6urMVatWtbn98BFbubm57T4Gj8djTpkyJdLu+uuvb3c7nY0ADAaD5quvvmqGQqEOa62uro5sy2q1djji8Ne//nWrkVwrVqzocJ1btmwxP/zwwza3X3rppZF13HXXXWYwGGzTJhQKmd/73vci7X7yk5+0adNy5Jkks6SkxPz3v//dpt2iRYsi/XPIkCFmaWmpOXHiRHP//v1t2t5xxx2R9d14443tPq5E9vfDR95+97vfbfd5uvfeeyNt5syZ0+72Ynndd0U8IwAlmfn5+eaSJUvatKuvrzfHjx8fafePf/zjiOpK5gjAQ1qOBHz88cc7XV8y+8ZNN93U7mvFNBNzXAIAAJmJABAAuqjlF6pY/1199dWdruuOO+7ocJsbNmyItDv99NPbLN+7d2/kdMrCwkJz3759Ha7r9ttvT3gAeNVVV3W4PY/HEzl99Kijjmq3zYQJE0xJZq9evdoNVVp69NFHI9t95plnoraN5ki+/P/973+P3Pfkk09uszxa4LFnz57Isv/6r//qUu2HB4C///3vO2y7c+dOMy8vz5RkOp1Os7Kysk2bzgLAWH322WeR9dx3331tljc0NJilpaWRkDBa+NeRNWvWRLZx7bXXdtr+5JNPjrwumpubWy07PHh6+umnO1zP6aefHmnndDo7DDibmpoi+3vYsGHttklkf2/53M2YMSNyivLhgsGgOWDAAFOS6XK52g2MMiUAfOyxxzpc12uvvRZpN3fu3COqKxMDwGT1jQkTJkQN8BNxXAIAAJmJi4AAQAaxWCz6zne+0+HyY489VgMHDpR08MIDh3vllVcUCAQkHTzVK9ppet/+9rdltVqPsOLWvvvd73a4rKioSCeeeKIk6fPPP1dzc3Or5R9//LFWrVolSZo7d65KSkqibuvyyy+XzXZwJos33njjSMruspanYO/fvz+u++bm5kb+PvS4j0RRUZG++c1vdrh8wIABuuKKKyRJPp8vcopfMhx11FHq27evJGnlypVtlr/22muR/XXeeedp8uTJcW/jySefjPz9gx/8oNP2V111lSSprq5O7733XoftevfurUsuuaTD5S1PmZ0zZ47Ky8vbbZeTkxPp71u3bk1pf7/ttts6vKiE1WqNXOSjublZn3/+edR1pUtZWZm+9rWvdbj8tNNOi+yP9o6F3Vky+8ZNN90ki6Xjj/+JPi4BAIDMwRyAAJAA8+fPj6nd4MGDoy4fMWJEp1/2Bg4cqJ07d7Z75ccPPvgg8nfLK3m2p3fv3ho1alRcV+aNxu12a+zYsVHbHAovTdNUbW1tJCSS1OrKpKFQKDJXWTR5eXmqra2NzAGXamaLeemiXcWzPQUFBZo8ebJWrlypBQsW6Mtf/rJuvvlmnXrqqXI4HHHXMm3atKhz20nS6aefrkceeUSS9P777+sb3/hG3NuRpN27d+tvf/ubFixYoPXr18vj8aipqandtu1dJfSdd96J/H3eeed1qYZD/cXlcmn9+vWd9oFDV76WpPXr12v69OnttjvxxBOjBuMt++ykSZOibvNQ21T39ylTpkRdfuh1KCmtV9OOZuLEiZFQqz1Op1NlZWXau3dvxj6Grkpm3+hsjsBEH5cAAEDmIAAEgAQ4//zzE7KesrKyTts4nU5JB0dxHW737t2Rvzu6yEZLw4YNS1gAWFJS0mkIdqh2SW1GRFVUVET+7ujCER2pqamJq32itAweSktL477/Qw89pJkzZ6qurk4vv/yyXn75ZeXk5GjixImaOnWqZs6c2WqkUzRHH310XG1a9pV4PPLII/rud7/bYeB3uAMHDrS5rWUoOHLkyC7Vcai/NDc364ILLojrvtH6S2fPY8s+HE/bVPb3zo4j0erKFPEcCzP1MXRVMvtGy/C3I4k8LgEAgMzBKcAAkEGinZoVi8bGxsjfLU/l6ojb7T6i7bV0pLXX1tZ2+b5+v/+Itt1VLb+o9+rVK+77T5gwQWvWrNE111wTeS68Xq+WLl2qX/ziFzrzzDM1cOBA/e53v1M4HI66rliey5Zt6uvr4673+eef1w033BAJ/6ZMmaIf/ehHeuSRR/TMM89o/vz5kX+H9kcoFGqznpahYF5eXtx1SMnrL/H04yPp88ns70f6WswE2fAYuiqZfSMnJ6fTdSTyuAQAADIHP90BQBZpGfDEMkKrZWCYbi2DoJdeeklz5sxJYzWxWbFiReTvk046qUvrKC8v12OPPaaHH35Y7733nlasWKFly5Zp8eLFamho0L59+3TbbbdpzZo1evzxxztcTyzPZcs2+fn5cdf64x//WNLBeeTmz58f9TmKNh9hQUFB5O+Ghoa465C+OOWxpKQk7vkXM0F37O9IjUzoG4k6LgEAgMzRc39eBYAs1L9//8jfsUzuv2XLlmSWE5eWp6bt2LEjjZXEprKyUm+99Vbk/zNmzDii9TmdTk2fPl0//OEP9fLLL6uqqkqPPPKI7Ha7JOmJJ57Qhx9+2OH9N2/e3Ok2WrZp2VdisXXr1sj9zz///KihxIEDB6Keitjyue7q/I2H1lFbW9vlEDGdult/R+pkUt840uMSAADIHASAAJBFJk6cGPl70aJFUdtWVlbqk08+SXZJMWsZoL322mtprCQ2999/f2QexrFjx3Z5BGBHXC6XrrvuOt14442R21pePONw77zzTrvzQrb09ttvR/6Ot969e/dG/j7qqKOitn3jjTeinhrY8gIcL774Ylx1HHKov4TD4bRdBfpIZHJ/b3n6bcsL3aDr4tmnmdw34j0uAQCAzEEACABZZPbs2ZGJ2Z9++mlVVVV12PYPf/hDu/OzpcsJJ5yg0aNHS5JeeeUVvfvuu2muqGN/+9vf9OCDD0b+f+edd8Z9FeBYDR06NPJ3MBjssF1tba3+8pe/dLh8z549evrppyUdHNVz7rnnxlVHy9PLo4029Pv9uu+++6Ku6+yzz45c5OHFF1/UypUr46pFkq666qrI3/fcc0+3uxBEJvf3lqegZtI0Ad1ZPPs0k/vGIbEelwAAQOYgAASALNK3b19dfvnlkqS6ujpdeuml7X7ZfOWVV+K+umSyGYahX/ziF5IOjpA5//zzW41Ya8/u3bt11113JexKxp3Zvn27brjhhlbh080336wLL7ww7nV99NFHuvvuu7Vnz54O2zQ2NmrevHmR/48fPz7qOn/4wx9q6dKlbW4/cOCAvvrVr0Yu/HHNNdfEfdGSY489NhJivPTSS63mPzzE6/Xqyiuv7PT5yM3N1U9+8hNJBy8Scv7550cNAbdt26aPPvqo1W2TJk3SxRdfLElau3atzjvvvKiBt2maevfdd/X9738/am2pksn9vWW4s2rVqqRuq6eIZ5+ms28k47gEAAAyAxcBAYAE+Oc//xlz25NOOkn9+vVLWi0PPPCA3nrrLe3Zs0cLFy7UyJEj9Y1vfEPHHnus6uvr9eabb+qFF15QSUmJxo8frwULFkjKjKtunnPOObrnnnt0xx13qLq6WmeccYZOOeUUnXXWWRoyZIjsdrtqa2u1adMmLV++XCtXrpRpmjr99NMTsv1ly5a1ugKn1+tVXV2dtmzZopUrV2r58uWRUZOGYejmm2/W7373uy5tq66uTnfddZfuueceTZ06VVOnTtWIESNUUFCg2tpabdy4Uf/7v/+r3bt3S5ImT56smTNndri+c889V2+99ZZmzpypSy+9VLNmzVJOTo7Wr1+vv/71r5H1DB06VL/85S/jrtfhcOjGG2/Ur371KwUCAc2YMUNf//rXNWnSJLndbq1fv15PPvmkduzYoVmzZmnTpk3auXNnh+v7zne+o3fffVcvvPCC9u3bp6lTp2r27Nk644wz1K9fP/n9fm3ZskVLlizRkiVL9MADD+j4449vtY6//vWv+vTTT7VmzRq9+eabGjJkiC666CJNnjxZvXr1UiAQ0L59+7R27Vq9/fbb2rlzp4YPH64HHngg7sefDOnu7x0pLi7WhAkTtGrVKi1atEjXX3+9Tj/99FYXjpkxY0ZMV5Ttbv761792GrYdcvvtt8vlcsXUdsyYMerTp4/27dunp556SmVlZZo8eXKrq7WfddZZkb/T1TcSfVwCAAAZxAQAdImkLv2bP39+h+uaMWNGp9udMWNGpH1H1q9fbw4ePLjDGkpLS83FixebV1xxReS2mpqaNutZtGhRZPmdd97Z7rbKy8tNSWZ5eXmntV999dWR9W3durXDdk8++aRZXFwc0/7Mz883165d2+m2O9Jyf8byzzAM89RTTzUXLlzY6brvvPPOyP0WLVrUatnixYtj3ub06dPNysrKNus//Pl59tlnzdzc3A7XM2LEiKj7vbO+5fP5zLPOOitqrTNmzDCrq6tj6hfBYND87ne/a1qt1k73wYMPPtjuOurr682vfe1rpmEYMe3L9l5jW7dujSy/+uqrO6zXNE3z8ccfj7R9/PHHo7ZNZX+P5bhwSLR+ecjrr79u2my2DuuI9ni6ut14ngfTjO/YE028x4BD/zweT1y1/OUvf4m6vvakum8k4rgEAAAyEyMAASALHXfccVq/fr0efPBBvfDCC9q8ebNM09SgQYM0Z84c3XLLLRowYEDkNDObzaaCgoI0V/2Fq666ShdccIGefPJJvfHGG1qzZo2qq6sVDAZVWFioYcOGacKECZo1a5Zmz57dahRNolgsFuXl5amgoEC9evXS2LFjdcIJJ2j27NkaPnz4Ea9/xowZ+vjjj/XWW29pxYoV+uSTT7Rz5041NjbK5XJpwIABOvHEE3XppZdGveJuS1/96lc1btw4/eEPf9Cbb76pXbt2yW63a8SIEbrkkkt00003yel0drlmh8OhV155RU888YSefPJJrVmzRl6vV7169dKYMWN02WWX6corr4x5NKnVatWvf/1rXX/99frLX/6iBQsWqKKiQnV1dcrNzVV5ebkmTZqk8847T7Nnz253HXl5eZo3b55+9KMf6YknntCSJUu0detWeTweORwO9erVSyNGjNDUqVN19tlna9KkSV1+/MmSCf39cF/60pe0YsUK/f73v9fy5cu1Z88eNTU1JX272ezaa69VeXm5/vSnP+mDDz5QZWVlp3NXprpvJOO4BAAAMoNhmlzeDQB6onA4rL59+6qqqkrjxo3T6tWr010S4rR48WKddtppkg5eiOSuu+5Kb0EAAAAAMlL6J3wCAKTFs88+G7lowqEQCQAAAACQfQgAASALrVy5Uj6fr8Ply5Yt00033STp4Kmu1113XapKAwAAAACkGHMAAkAWuu+++7R8+XKdffbZOvHEE9W/f39J0q5du/T222/r9ddf16EZIH7wgx/ouOOOS2e5AAAAAIAkIgAEgCzl8Xj097//XX//+9/bXW4Yhr73ve/pZz/7WYorAwAAAACkEgEgAGShBx54QBMnTtSyZcu0bds27d+/XwcOHFB+fr4GDx6sGTNm6LrrrtOoUaPSXSoAAAAAIMm4CjAAAAAAAACQxbgICAAAAAAAAJDFCAABAAAAAACALEYACAAAAAAAAGQxAkAAAAAAAAAgixEAAgAAAAAAAFmMABAAAAAAAADIYgSAAAAAAAAAQBYjAAQAAAAAAACyGAEgAAAAAAAAkMUIAAEAAAAAAIAsRgAIAAAAAAAAZDECQAAAAAAAACCL/X8uKAiu8iLjBQAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "height": 480, + "width": 640 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "(ggplot(mpg) + \n", + " aes(x = 'displ', y = 'hwy', color = 'class') +\n", + " geom_point() + \n", + " ggtitle('Engine Displacement in Liters vs Highway MPG') +\n", + " xlab('Engine Displacement in Liters') +\n", + " ylab('Highway MPG'))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plotly.com" + }, + "data": [ + { + "hovertemplate": "Vehicle Class=compact
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "compact", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "compact", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 1.8, + 1.8, + 2.0, + 2.0, + 2.8, + 2.8, + 3.1, + 1.8, + 1.8, + 2.0, + 2.0, + 2.8, + 2.8, + 3.1, + 3.1, + 2.4, + 2.4, + 2.5, + 2.5, + 2.5, + 2.5, + 2.2, + 2.2, + 2.4, + 2.4, + 3.0, + 3.0, + 3.3, + 1.8, + 1.8, + 1.8, + 1.8, + 1.8, + 2.0, + 2.0, + 2.0, + 2.0, + 2.8, + 1.9, + 2.0, + 2.0, + 2.0, + 2.0, + 2.5, + 2.5, + 2.8, + 2.8 + ], + "xaxis": "x", + "y": [ + 29, + 29, + 31, + 30, + 26, + 26, + 27, + 26, + 25, + 28, + 27, + 25, + 25, + 25, + 25, + 29, + 27, + 25, + 27, + 25, + 27, + 27, + 29, + 31, + 31, + 26, + 26, + 27, + 30, + 33, + 35, + 37, + 35, + 29, + 26, + 29, + 29, + 24, + 44, + 29, + 26, + 29, + 29, + 29, + 29, + 23, + 24 + ], + "yaxis": "y" + }, + { + "hovertemplate": "Vehicle Class=midsize
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "midsize", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "midsize", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 2.8, + 3.1, + 4.2, + 2.4, + 2.4, + 3.1, + 3.5, + 3.6, + 2.4, + 2.4, + 2.4, + 2.4, + 2.5, + 2.5, + 3.3, + 2.5, + 2.5, + 3.5, + 3.5, + 3.0, + 3.0, + 3.5, + 3.1, + 3.8, + 3.8, + 3.8, + 5.3, + 2.2, + 2.2, + 2.4, + 2.4, + 3.0, + 3.0, + 3.5, + 1.8, + 1.8, + 2.0, + 2.0, + 2.8, + 2.8, + 3.6 + ], + "xaxis": "x", + "y": [ + 24, + 25, + 23, + 27, + 30, + 26, + 29, + 26, + 26, + 27, + 30, + 31, + 26, + 26, + 28, + 31, + 32, + 27, + 26, + 26, + 25, + 25, + 26, + 26, + 27, + 28, + 25, + 29, + 27, + 31, + 31, + 26, + 26, + 28, + 29, + 29, + 28, + 29, + 26, + 26, + 26 + ], + "yaxis": "y" + }, + { + "hovertemplate": "Vehicle Class=suv
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "suv", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "suv", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 5.3, + 5.3, + 5.3, + 5.7, + 6.0, + 5.3, + 5.3, + 5.7, + 6.5, + 3.9, + 4.7, + 4.7, + 4.7, + 5.2, + 5.7, + 5.9, + 4.6, + 5.4, + 5.4, + 4.0, + 4.0, + 4.0, + 4.0, + 4.6, + 5.0, + 3.0, + 3.7, + 4.0, + 4.7, + 4.7, + 4.7, + 5.7, + 6.1, + 4.0, + 4.2, + 4.4, + 4.6, + 5.4, + 5.4, + 5.4, + 4.0, + 4.0, + 4.6, + 5.0, + 3.3, + 3.3, + 4.0, + 5.6, + 2.5, + 2.5, + 2.5, + 2.5, + 2.5, + 2.5, + 2.7, + 2.7, + 3.4, + 3.4, + 4.0, + 4.7, + 4.7, + 5.7 + ], + "xaxis": "x", + "y": [ + 20, + 15, + 20, + 17, + 17, + 19, + 14, + 15, + 17, + 17, + 17, + 12, + 17, + 16, + 18, + 15, + 17, + 17, + 18, + 17, + 19, + 17, + 19, + 19, + 17, + 22, + 19, + 20, + 17, + 12, + 19, + 18, + 14, + 15, + 18, + 18, + 15, + 17, + 16, + 18, + 17, + 19, + 19, + 17, + 17, + 17, + 20, + 18, + 25, + 24, + 27, + 25, + 26, + 23, + 20, + 20, + 19, + 17, + 20, + 17, + 15, + 18 + ], + "yaxis": "y" + }, + { + "hovertemplate": "Vehicle Class=2seater
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "2seater", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "2seater", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 5.7, + 5.7, + 6.2, + 6.2, + 7.0 + ], + "xaxis": "x", + "y": [ + 26, + 23, + 26, + 25, + 24 + ], + "yaxis": "y" + }, + { + "hovertemplate": "Vehicle Class=minivan
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "minivan", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "minivan", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 2.4, + 3.0, + 3.3, + 3.3, + 3.3, + 3.3, + 3.3, + 3.8, + 3.8, + 3.8, + 4.0 + ], + "xaxis": "x", + "y": [ + 24, + 24, + 22, + 22, + 24, + 24, + 17, + 22, + 21, + 23, + 23 + ], + "yaxis": "y" + }, + { + "hovertemplate": "Vehicle Class=pickup
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "pickup", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "pickup", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 3.7, + 3.7, + 3.9, + 3.9, + 4.7, + 4.7, + 4.7, + 5.2, + 5.2, + 4.7, + 4.7, + 4.7, + 4.7, + 4.7, + 4.7, + 5.2, + 5.2, + 5.7, + 5.9, + 4.2, + 4.2, + 4.6, + 4.6, + 4.6, + 5.4, + 5.4, + 2.7, + 2.7, + 2.7, + 3.4, + 3.4, + 4.0, + 4.0 + ], + "xaxis": "x", + "y": [ + 19, + 18, + 17, + 17, + 19, + 19, + 12, + 17, + 15, + 16, + 12, + 17, + 17, + 16, + 12, + 15, + 16, + 17, + 15, + 17, + 17, + 16, + 16, + 17, + 15, + 17, + 20, + 20, + 22, + 17, + 19, + 18, + 20 + ], + "yaxis": "y" + }, + { + "hovertemplate": "Vehicle Class=subcompact
Engine Displacement in Liters=%{x}
Highway MPG=%{y}", + "legendgroup": "subcompact", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "subcompact", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 3.8, + 3.8, + 4.0, + 4.0, + 4.6, + 4.6, + 4.6, + 4.6, + 5.4, + 1.6, + 1.6, + 1.6, + 1.6, + 1.6, + 1.8, + 1.8, + 1.8, + 2.0, + 2.0, + 2.0, + 2.0, + 2.0, + 2.7, + 2.7, + 2.7, + 2.2, + 2.2, + 2.5, + 2.5, + 1.9, + 1.9, + 2.0, + 2.0, + 2.5, + 2.5 + ], + "xaxis": "x", + "y": [ + 26, + 25, + 26, + 24, + 21, + 22, + 23, + 22, + 20, + 33, + 32, + 32, + 29, + 32, + 34, + 36, + 36, + 29, + 26, + 29, + 28, + 27, + 24, + 24, + 24, + 26, + 26, + 26, + 26, + 44, + 41, + 29, + 26, + 28, + 29 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "title": { + "text": "Vehicle Class" + }, + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0.0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1.0, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Engine Displacement in Liters vs Highway MPG" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "Engine Displacement in Liters" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0.0, + 1.0 + ], + "title": { + "text": "Highway MPG" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.scatter(\n", + " mpg,\n", + " x='displ',\n", + " y='hwy',\n", + " color='class',\n", + " title='Engine Displacement in Liters vs Highway MPG',\n", + " labels={\n", + " 'displ': 'Engine Displacement in Liters',\n", + " 'hwy': 'Highway MPG',\n", + " 'class': 'Vehicle Class'\n", + " }\n", + ")\n", + "\n", + "fig.show()" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_sources/_notebook_build/_03_factor_analysis_demo.ipynb b/docs/_sources/_notebook_build/_03_factor_analysis_demo.ipynb new file mode 100644 index 0000000..b1ec86a --- /dev/null +++ b/docs/_sources/_notebook_build/_03_factor_analysis_demo.ipynb @@ -0,0 +1,3393 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Factor Analysis and Principal Component Analysis on Financial and Economic Time Series" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# If you're running this on Colab, make sure to install the following packages using pip.\n", + "# On you're own computer, I recommend using conda or mamba.\n", + "\n", + "# !pip install pandas-datareader\n", + "# !pip install yfinance\n", + "\n", + "# !conda install pandas-datareader\n", + "# !conda install yfinance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from matplotlib import pyplot as plt\n", + "\n", + "import yfinance as yf\n", + "import pandas_datareader as pdr\n", + "import sklearn.decomposition\n", + "import statsmodels.multivariate.pca" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Downloading macroeconomic and financial data from FRED" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "fred_series_long_names = {\n", + " 'BAMLH0A0HYM2': 'ICE BofA US High Yield Index Option-Adjusted Spread',\n", + " 'NASDAQCOM': 'NASDAQ Composite Index',\n", + " 'RIFSPPFAAD90NB': '90-Day AA Financial Commercial Paper Interest Rate',\n", + " 'TB3MS': '3-Month Treasury Bill Secondary Market Rate',\n", + " 'DGS10': 'Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity',\n", + " 'VIXCLS': 'CBOE Volatility Index: VIX',\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "fred_series_short_names = {\n", + " 'BAMLH0A0HYM2': 'High Yield Index OAS',\n", + " 'NASDAQCOM': 'NASDAQ',\n", + " 'RIFSPPFAAD90NB': '90-Day AA Fin CP',\n", + " 'TB3MS': '3-Month T-Bill',\n", + " 'DGS10': '10-Year Treasury',\n", + " 'VIXCLS': 'VIX',\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "start_date = pd.to_datetime('1980-01-01') \n", + "end_date = pd.to_datetime('today') " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "df = pdr.get_data_fred(fred_series_short_names.keys(), start=start_date, end=end_date)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, an aside about reading and writing data to disk." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv('fred_panel.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "dff = pd.read_csv('fred_panel.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 11872 entries, 0 to 11871\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 DATE 11872 non-null object \n", + " 1 BAMLH0A0HYM2 7197 non-null float64\n", + " 2 NASDAQCOM 11236 non-null float64\n", + " 3 RIFSPPFAAD90NB 6465 non-null float64\n", + " 4 TB3MS 534 non-null float64\n", + " 5 DGS10 11143 non-null float64\n", + " 6 VIXCLS 8722 non-null float64\n", + "dtypes: float64(6), object(1)\n", + "memory usage: 649.4+ KB\n" + ] + } + ], + "source": [ + "dff.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "dff = pd.read_csv('fred_panel.csv', parse_dates=['DATE'])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 11872 entries, 0 to 11871\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 DATE 11872 non-null datetime64[ns]\n", + " 1 BAMLH0A0HYM2 7197 non-null float64 \n", + " 2 NASDAQCOM 11236 non-null float64 \n", + " 3 RIFSPPFAAD90NB 6465 non-null float64 \n", + " 4 TB3MS 534 non-null float64 \n", + " 5 DGS10 11143 non-null float64 \n", + " 6 VIXCLS 8722 non-null float64 \n", + "dtypes: datetime64[ns](1), float64(6)\n", + "memory usage: 649.4 KB\n" + ] + } + ], + "source": [ + "dff.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "dff = dff.set_index('DATE')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_parquet('fred_panel.parquet')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_parquet('fred_panel.parquet')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "DatetimeIndex: 11872 entries, 1980-01-01 to 2024-07-25\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 BAMLH0A0HYM2 7197 non-null float64\n", + " 1 NASDAQCOM 11236 non-null float64\n", + " 2 RIFSPPFAAD90NB 6465 non-null float64\n", + " 3 TB3MS 534 non-null float64\n", + " 4 DGS10 11143 non-null float64\n", + " 5 VIXCLS 8722 non-null float64\n", + "dtypes: float64(6)\n", + "memory usage: 649.2 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
BAMLH0A0HYM2NASDAQCOMRIFSPPFAAD90NBTB3MSDGS10VIXCLS
DATE
1980-01-01NaNNaNNaN12.0NaNNaN
1980-01-02NaN148.17NaNNaN10.50NaN
1980-01-03NaN145.97NaNNaN10.60NaN
1980-01-04NaN148.02NaNNaN10.66NaN
1980-01-07NaN148.62NaNNaN10.63NaN
.....................
2024-07-193.0917726.94NaNNaN4.2516.52
2024-07-223.0518007.575.29NaN4.2614.91
2024-07-233.0217997.35NaNNaN4.2514.72
2024-07-243.1017342.41NaNNaN4.2818.04
2024-07-253.0817181.725.32NaN4.2718.46
\n", + "

11872 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " BAMLH0A0HYM2 NASDAQCOM RIFSPPFAAD90NB TB3MS DGS10 VIXCLS\n", + "DATE \n", + "1980-01-01 NaN NaN NaN 12.0 NaN NaN\n", + "1980-01-02 NaN 148.17 NaN NaN 10.50 NaN\n", + "1980-01-03 NaN 145.97 NaN NaN 10.60 NaN\n", + "1980-01-04 NaN 148.02 NaN NaN 10.66 NaN\n", + "1980-01-07 NaN 148.62 NaN NaN 10.63 NaN\n", + "... ... ... ... ... ... ...\n", + "2024-07-19 3.09 17726.94 NaN NaN 4.25 16.52\n", + "2024-07-22 3.05 18007.57 5.29 NaN 4.26 14.91\n", + "2024-07-23 3.02 17997.35 NaN NaN 4.25 14.72\n", + "2024-07-24 3.10 17342.41 NaN NaN 4.28 18.04\n", + "2024-07-25 3.08 17181.72 5.32 NaN 4.27 18.46\n", + "\n", + "[11872 rows x 6 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaning Data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
High Yield Index OASNASDAQ90-Day AA Fin CP3-Month T-Bill10-Year TreasuryVIX
DATE
1980-01-01NaNNaNNaN12.0NaNNaN
1980-01-02NaN148.17NaNNaN10.50NaN
1980-01-03NaN145.97NaNNaN10.60NaN
1980-01-04NaN148.02NaNNaN10.66NaN
1980-01-07NaN148.62NaNNaN10.63NaN
.....................
2024-07-193.0917726.94NaNNaN4.2516.52
2024-07-223.0518007.575.29NaN4.2614.91
2024-07-233.0217997.35NaNNaN4.2514.72
2024-07-243.1017342.41NaNNaN4.2818.04
2024-07-253.0817181.725.32NaN4.2718.46
\n", + "

11872 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " High Yield Index OAS NASDAQ 90-Day AA Fin CP 3-Month T-Bill \\\n", + "DATE \n", + "1980-01-01 NaN NaN NaN 12.0 \n", + "1980-01-02 NaN 148.17 NaN NaN \n", + "1980-01-03 NaN 145.97 NaN NaN \n", + "1980-01-04 NaN 148.02 NaN NaN \n", + "1980-01-07 NaN 148.62 NaN NaN \n", + "... ... ... ... ... \n", + "2024-07-19 3.09 17726.94 NaN NaN \n", + "2024-07-22 3.05 18007.57 5.29 NaN \n", + "2024-07-23 3.02 17997.35 NaN NaN \n", + "2024-07-24 3.10 17342.41 NaN NaN \n", + "2024-07-25 3.08 17181.72 5.32 NaN \n", + "\n", + " 10-Year Treasury VIX \n", + "DATE \n", + "1980-01-01 NaN NaN \n", + "1980-01-02 10.50 NaN \n", + "1980-01-03 10.60 NaN \n", + "1980-01-04 10.66 NaN \n", + "1980-01-07 10.63 NaN \n", + "... ... ... \n", + "2024-07-19 4.25 16.52 \n", + "2024-07-22 4.26 14.91 \n", + "2024-07-23 4.25 14.72 \n", + "2024-07-24 4.28 18.04 \n", + "2024-07-25 4.27 18.46 \n", + "\n", + "[11872 rows x 6 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = dff.rename(columns=fred_series_short_names)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Balanced panel? Mixed frequencies?" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DATE\n", + "1980-01-01 12.00\n", + "1980-02-01 12.86\n", + "1980-03-01 15.20\n", + "1980-04-01 13.20\n", + "1980-05-01 8.58\n", + " ... \n", + "2024-02-01 5.24\n", + "2024-03-01 5.24\n", + "2024-04-01 5.24\n", + "2024-05-01 5.25\n", + "2024-06-01 5.24\n", + "Name: 3-Month T-Bill, Length: 534, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['3-Month T-Bill'].dropna()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find a daily version of this series. See here: https://fred.stlouisfed.org/categories/22\n", + "\n", + "We will end up using this series: https://fred.stlouisfed.org/series/DTB3" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "fred_series_short_names = {\n", + " 'BAMLH0A0HYM2': 'High Yield Index OAS',\n", + " 'NASDAQCOM': 'NASDAQ',\n", + " 'RIFSPPFAAD90NB': '90-Day AA Fin CP',\n", + " 'DTB3': '3-Month T-Bill',\n", + " 'DGS10': '10-Year Treasury',\n", + " 'VIXCLS': 'VIX',\n", + "}\n", + "df = pdr.get_data_fred(fred_series_short_names.keys(), start=start_date, end=end_date)\n", + "df = df.rename(columns=fred_series_short_names)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
High Yield Index OASNASDAQ90-Day AA Fin CP3-Month T-Bill10-Year TreasuryVIX
DATE
1980-01-01NaNNaNNaNNaNNaNNaN
1980-01-02NaN148.17NaN12.1710.50NaN
1980-01-03NaN145.97NaN12.1010.60NaN
1980-01-04NaN148.02NaN12.1010.66NaN
1980-01-07NaN148.62NaN11.8610.63NaN
.....................
2024-07-193.0917726.94NaN5.204.2516.52
2024-07-223.0518007.575.295.194.2614.91
2024-07-233.0217997.35NaN5.184.2514.72
2024-07-243.1017342.41NaN5.184.2818.04
2024-07-253.0817181.725.325.174.2718.46
\n", + "

11721 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " High Yield Index OAS NASDAQ 90-Day AA Fin CP 3-Month T-Bill \\\n", + "DATE \n", + "1980-01-01 NaN NaN NaN NaN \n", + "1980-01-02 NaN 148.17 NaN 12.17 \n", + "1980-01-03 NaN 145.97 NaN 12.10 \n", + "1980-01-04 NaN 148.02 NaN 12.10 \n", + "1980-01-07 NaN 148.62 NaN 11.86 \n", + "... ... ... ... ... \n", + "2024-07-19 3.09 17726.94 NaN 5.20 \n", + "2024-07-22 3.05 18007.57 5.29 5.19 \n", + "2024-07-23 3.02 17997.35 NaN 5.18 \n", + "2024-07-24 3.10 17342.41 NaN 5.18 \n", + "2024-07-25 3.08 17181.72 5.32 5.17 \n", + "\n", + " 10-Year Treasury VIX \n", + "DATE \n", + "1980-01-01 NaN NaN \n", + "1980-01-02 10.50 NaN \n", + "1980-01-03 10.60 NaN \n", + "1980-01-04 10.66 NaN \n", + "1980-01-07 10.63 NaN \n", + "... ... ... \n", + "2024-07-19 4.25 16.52 \n", + "2024-07-22 4.26 14.91 \n", + "2024-07-23 4.25 14.72 \n", + "2024-07-24 4.28 18.04 \n", + "2024-07-25 4.27 18.46 \n", + "\n", + "[11721 rows x 6 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
High Yield Index OASNASDAQ90-Day AA Fin CP3-Month T-Bill10-Year TreasuryVIX
DATE
1997-01-023.061280.705.355.056.5421.14
1997-01-033.091310.685.355.046.5219.13
1997-01-063.101316.405.345.056.5419.89
1997-01-073.101327.735.335.026.5719.35
1997-01-083.071320.355.315.026.6020.24
.....................
2024-07-103.1718647.455.355.234.2812.85
2024-07-113.1818283.415.255.214.2012.92
2024-07-123.1918398.455.355.214.1812.46
2024-07-223.0518007.575.295.194.2614.91
2024-07-253.0817181.725.325.174.2718.46
\n", + "

6446 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " High Yield Index OAS NASDAQ 90-Day AA Fin CP 3-Month T-Bill \\\n", + "DATE \n", + "1997-01-02 3.06 1280.70 5.35 5.05 \n", + "1997-01-03 3.09 1310.68 5.35 5.04 \n", + "1997-01-06 3.10 1316.40 5.34 5.05 \n", + "1997-01-07 3.10 1327.73 5.33 5.02 \n", + "1997-01-08 3.07 1320.35 5.31 5.02 \n", + "... ... ... ... ... \n", + "2024-07-10 3.17 18647.45 5.35 5.23 \n", + "2024-07-11 3.18 18283.41 5.25 5.21 \n", + "2024-07-12 3.19 18398.45 5.35 5.21 \n", + "2024-07-22 3.05 18007.57 5.29 5.19 \n", + "2024-07-25 3.08 17181.72 5.32 5.17 \n", + "\n", + " 10-Year Treasury VIX \n", + "DATE \n", + "1997-01-02 6.54 21.14 \n", + "1997-01-03 6.52 19.13 \n", + "1997-01-06 6.54 19.89 \n", + "1997-01-07 6.57 19.35 \n", + "1997-01-08 6.60 20.24 \n", + "... ... ... \n", + "2024-07-10 4.28 12.85 \n", + "2024-07-11 4.20 12.92 \n", + "2024-07-12 4.18 12.46 \n", + "2024-07-22 4.26 14.91 \n", + "2024-07-25 4.27 18.46 \n", + "\n", + "[6446 rows x 6 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dropna()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Transforming and Normalizing the data\n", + "\n", + "What is transformation and normalization? Are these different things?\n", + "\n", + " - Why would one transform data? What is feature engineering?\n", + " - What is normalization?\n", + "\n", + "What does stationarity mean? See the the following plots. Some of these variable are stationary. Other are not? Why is this a problem?" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGVCAYAAAAc3eBlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNN0lEQVR4nOzdd1hT1xsH8G8IJOwpUxBxgqjUXdzWgbPaqnUhWlGrdVtntYqj1bq1tVp/MtxarVrrRtx7VNxbFAcgDggzCeT8/ohcCEkgQCAhvp/nyUPuuefe+x4w8nLuuefwGGMMhBBCCCEGxkjXARBCCCGElAZKcgghhBBikCjJIYQQQohBoiSHEEIIIQaJkhxCCCGEGCRKcgghhBBikCjJIYQQQohBoiSHEEIIIQbJWNcB6JJMJsPr169hZWUFHo+n63AIIYQQogHGGFJSUuDm5gYjI/X9NZ90kvP69Wt4eHjoOgxCCCGEFMOLFy/g7u6udv8nneRYWVkBkH+TrK2tdRwNIYQQQjQhEong4eHB/R5X55NOcnJuUVlbW1OSQwghhJQzhQ01oYHHhBBCCDFIlOQQQgghxCB90rerNCGTySCRSHQdBiE6YWJiAj6fr+swCCGkWCjJKYBEIkFMTAxkMpmuQyFEZ2xtbeHi4kLTLBBCyh1KctRgjCEuLg58Ph8eHh4FPodPiCFijCE9PR1v3rwBALi6uuo4IkIIKRpKctTIyspCeno63NzcYG5urutwCNEJMzMzAMCbN2/g5OREt64IIeUKdU+okZ2dDQAQCAQ6joQQ3cpJ8qVSqY4jIYSQoqEkpxA0DoF86ugzQAgpryjJIYQQQohBoiTnExUREQFbW9siHTN48GD06NFDq3EU9ZwnT54Ej8dDUlKS2jrFaVtxlNV1CCGEFA8lOQZGXdKQPzno06cPHj58WKqxzJs3D66urnj//r1C+Y0bNyAUCrF//36sXLkSERERpRqHKjweD3v37i3z6xbH+/fvMX78eHh6ekIgEMDNzQ1DhgxBbGysyvoLFiwAn8/H4sWLlfZlZ2dj4cKF8Pb2hpmZGezt7dGkSROsX7++tJtBCPmUpL8H9k8AXl3TaRiU5HyizMzM4OTkVKrXmD59Ojw8PDBq1CiuTCqVYtCgQQgMDETXrl1hY2NDvSEFeP/+PT7//HMcO3YMa9euxePHj7F9+3Y8fvwYjRo1wtOnT5WOCQsLw5QpUxAWFqa0b86cOVi+fDnmzZuHu3fv4sSJExg+fHiBPWOEEFJkBycDV8OA/32h0zAoyflEqbrVMn/+fDg5OcHKygpDhw7FtGnT8Nlnnykdu2TJEri6usLBwQGjRo1S+9SNsbExNm7ciL1792LXrl0AgJ9//hlJSUlYvnw5AOWeJ5lMhgULFsDLywtmZmbw8/Pjji2oLZUqVYK5uTm++uorvHv3TvNvBIBnz56Bx+Nh9+7daNOmDczNzeHn54cLFy4U+Tr//PMP6tevD1NTU1SpUgVz5sxBVlYWAGDu3Llwc3NTOK5Lly5o06aN2gknZ8yYgdevX+PYsWPo1KkTKlWqhJYtW+LIkSMwMTFRSCAB4NSpU8jIyMDcuXMhEolw/vx5hf379u3D999/j969e8PLywt+fn4IDg7GpEmTivQ9I4SQAr25q+sIAFCSozHGGNIlWTp5McZKvX1btmzBzz//jF9//RXXrl1DpUqVsGbNGqV6J06cwJMnT3DixAls2LABERERBd5u8vb2xoIFCzBy5EgcOXIECxYsQHh4uNpV3xcsWICNGzdi7dq1uHPnDiZMmIDAwECcOnVKZf1Lly4hODgYo0ePRnR0NNq0aYP58+cX63swY8YMTJo0CdHR0ahRowb69evHJSiaXOfMmTMICgrCuHHjcPfuXfz555+IiIjAzz//zJ2/cuXKGDp0KABg9erVOH/+PDZs2KByskmZTIbt27djwIABcHFxUdhnZmaG77//HkeOHFG4HRgaGop+/frBxMQE/fr1Q2hoqMJxLi4uOH78OBITE4v1PSKEEI3oSZJDkwFqKEOajVqzjujk2nfnBsBcoPmPav/+/bC0tFQoy5n3R53ffvsNwcHB+PbbbwEAs2bNwtGjR5GamqpQz87ODr///jv4fD68vb3RpUsXREVFYdiwYWrPPW7cOPzzzz/o3LkzxowZgzZt2qisJxaL8csvv+DYsWPw9/cHAFSpUgVnz57Fn3/+iVatWikds3LlSnTs2BFTpkwBANSoUQPnz5/H4cOHC2yvKpMmTUKXLl0AyG/r+Pr64vHjx/D29tboOnPmzMG0adMwaNAgLvZ58+ZhypQpmD17Nvh8PjZv3ozPPvsM06ZNw6pVq7B+/XpUqlRJZTyJiYlISkqCj4+Pyv0+Pj5gjOHx48do3LgxRCIRdu3axfVABQYGokWLFli5ciX372HZsmXo1asXXFxc4Ovri6ZNm6J79+7o1KlTkb9fhBCi76gnxwC1adMG0dHRCq/CBpY+ePAAjRs3VijLvw0Avr6+CrPeurq6ctP+q8Pj8TBjxgzIZDLMnDlTbb3Hjx8jPT0d7du3h6WlJffauHEjnjx5ovKYe/fuoUmTJgplOQlSUdWtW5d7n7OEQU7bNLnOjRs3MHfuXIXYhw0bhri4OKSnpwOQJz5LlizBr7/+ii+//BL9+/cvNC5Ne/K2bduGqlWrws/PDwDw2WefwdPTEzt27ODq1KpVC7dv38bFixcxZMgQvHnzBt26deN6lwghxJBQT46GzEz4uDs3QGfXLgoLCwtUq1ZNoezly5daicXExERhm8fjabSAqbGxscJXVXJ6jQ4cOICKFSsq7BMKhUUNtcjyti1nAryiLM6ampqKOXPm4Ouvv1baZ2pqyr0/ffo0+Hw+nj17hqysLLXfE0dHR9ja2uLevXsq99+7dw88Ho/7WYeGhuLOnTsK55PJZAgLC0NwcDBXZmRkhEaNGqFRo0YYP348Nm/ejIEDB2LGjBnw8vLSuL2EEKLvKMnREI/HK9Ito/KmZs2auHLlCoKCgriyK1eulGkMtWrVglAoRGxsrMpbU6r4+Pjg0qVLCmUXL17UemyaXKd+/fp48OCBUoKZ144dO7B7926cPHkS33zzDebNm4c5c+aorGtkZIRvvvkGW7Zswdy5cxXG5WRkZOCPP/5AQEAA7O3tcevWLVy9ehUnT56Evb09V+/9+/do3bo17t+/D29vb5XXqVWrFgAgLS2t4G8CIYRoqkpr4OlJXUdBSQ6RGzNmDIYNG4aGDRuiadOm2LFjB27evIkqVaqUWQxWVlaYNGkSJkyYAJlMhubNmyM5ORnnzp2DtbU1N9Ylr7Fjx6JZs2ZYsmQJunfvjiNHjhRrPE5hNLnOrFmz0LVrV1SqVAm9evWCkZERbty4gdu3b2P+/Pl4+fIlRo4ciV9//RXNmzdHeHg4unbtik6dOuHzzz9Xed1ffvkFUVFRaN++PRYtWoTatWsjJiYGM2fOhFQqxerVqwHIe3EaN26Mli1bKp2jUaNGCA0NxeLFi9GrVy80a9YMTZs2hYuLC2JiYjB9+nTUqFFDbRJECCFFll60p1xLC43JIQCAAQMGYPr06Zg0aRLq16+PmJgYDB48WOE2S1mYN28efvrpJyxYsAA+Pj7o2LEjDhw4oPY2yueff47//e9/WLlyJfz8/HD06NECx/0UlybXCQgIwP79+3H06FE0atQIn3/+OZYvXw5PT08wxjB48GA0btwYo0eP5uqPHDkSgYGBSgO8czg4OODixYto06YNvvvuO1StWhXffPMNqlatiitXrqBKlSqQSCTYvHkzevbsqfIcPXv2xMaNGyGVShEQEIB///0X3bp1Q40aNTBo0CB4e3vj6NGjBd5KJISQIin9h4I1wmNl8XyynhKJRLCxsUFycrLSI82ZmZmIiYmBl5dXmf+i1xft27eHi4sLNm3apOtQiA7RZ4EQUmR/NAXe3JG/D0nW+ukL+v2dF/3pRgAA6enpWLt2LQICAsDn87Ft2zYcO3YMkZGRug6NEEJIeZOZlPs+SwIYC3QSBiU5BIB8YPXBgwfx888/IzMzEzVr1sTff/+Ndu3a6To0Qggh5Y3oVe57mRQAJTlEh8zMzHDs2DFdh0EIIaS8k+WbfFaHo2Jo4DEhhBBCtCc7/3qGlOQQQgghxBDI8iU55akn5/Tp0+jWrRvc3NzA4/Gwd+9ehf08Hk/la/HixVydypUrK+1fuHChwnlu3ryJFi1awNTUFB4eHli0aJFSLDt37oS3tzdMTU1Rp04dHDx4sKjNIYQQQog2leeenLS0NPj5+XGTkOUXFxen8AoLCwOPx1Oaw2Pu3LkK9caMGcPtE4lE6NChAzw9PXHt2jUsXrwYISEhWLduHVfn/Pnz6NevH4KDg3H9+nX06NEDPXr0wO3bt4vaJEIIIYRoS/4kR4c9OUUeeNypU6cCVyzOO/U8APzzzz9o06aN0sy5VlZWSnVzbNmyBRKJBGFhYRAIBPD19UV0dDSWLVuG4cOHA8hdfXry5MkA5JPIRUZG4vfff8fatWuL2ixCCCGEaEP+21XlqSenKBISEnDgwAGFxQFzLFy4EA4ODqhXrx4WL16MrKwsbt+FCxfQsmVLCAS5j5wFBATgwYMH+PDhA1cn/+PNAQEBuHDhgtp4xGIxRCKRwosQQgghWpQtUdwuTz05RbFhwwZYWVkprco8duxY1K9fH/b29jh//jymT5+OuLg4LFu2DAAQHx+vNI2/s7Mzt8/Ozg7x8fFcWd468fHxauNZsGCB2sUQCSGEEKIF2VmF1ykjpZrkhIWFYcCAAUpTwU+cOJF7X7duXQgEAnz33XdYsGABhEJhqcUzffp0hWuLRCJ4eHiU2vUIIYSQT055frpKU2fOnMGDBw8wdOjQQus2adIEWVlZePbsGQD5uJ6EhASFOjnbOeN41NVRN84HAIRCIaytrRVehmbw4MEqn1bbu3cveDyeUn1vb28IhUKVPWAxMTHo378/3NzcYGpqCnd3d3Tv3h3379/n6uR9Qs7CwgLVq1fH4MGDce3aNZXxvXz5EgKBALVr11a5Pzs7G8uXL0edOnVgamoKOzs7dOrUCefOnSvKt4EQQoiuKN2ukukmDpRikhMaGooGDRrAz8+v0LrR0dEwMjKCk5MTAMDf3x+nT5+GVJqbDUZGRqJmzZqws7Pj6kRFRSmcJzIyEv7+/lpsRflkamqKX3/9lRu/pM7Zs2eRkZGBXr16YcOGDQr7pFIp2rdvj+TkZOzevRsPHjzAjh07UKdOHSQlJSnUDQ8PR1xcHO7cuYPVq1cjNTUVTZo0wcaNG5WuGRERgW+++QYikQiXLl1S2McYQ9++fTF37lyMGzcO9+7dw8mTJ+Hh4YHWrVsrTVdACCFED0kz8hXocB1wVkQpKSns+vXr7Pr16wwAW7ZsGbt+/Tp7/vw5Vyc5OZmZm5uzNWvWKB1//vx5tnz5chYdHc2ePHnCNm/ezBwdHVlQUBBXJykpiTk7O7OBAwey27dvs+3btzNzc3P2559/cnXOnTvHjI2N2ZIlS9i9e/fY7NmzmYmJCbt165bGbUlOTmYAWHJystK+jIwMdvfuXZaRkSEvkMkYE6fq5iWTadymQYMGsa5duzJvb282efJkrnzPnj0s/4978ODBbNq0aezQoUOsRo0aCvtyfr7Pnj0r8HoA2J49e5TKg4KCmJWVFXv//j1XJpPJWJUqVdjhw4fZ1KlT2bBhwxSO2b59OwPA9u3bp3S+r7/+mjk4OLDU1NQC4yHap/RZIISQgmzty9hs69yXKF7rlyjo93deRR6Tc/XqVbRp04bbzhnjMmjQIERERAAAtm/fDsYY+vXrp3S8UCjE9u3bERISArFYDC8vL0yYMEFhrIyNjQ2OHj2KUaNGoUGDBqhQoQJmzZrFPT4OAE2bNsXWrVsxc+ZM/Pjjj6hevTr27t2r9jZIiUnTgV/cSufchfnxNSCw0Lg6n8/HL7/8gv79+2Ps2LFwd3dXqpOSkoKdO3fi0qVL8Pb2RnJyMs6cOYMWLVoAABwdHWFkZIRdu3Zh/Pjx4PP5RQp5woQJ2LhxIyIjI/HNN98AAE6cOIH09HS0a9cOFStWRNOmTbF8+XJYWMjbtnXrVtSoUQPdunVTOt8PP/yA3bt3IzIyEj169ChSLIQQQspQRlLu+2rtAb6JzkIpcpLTunVrsEIGEQ0fPlwhIcmrfv36uHjxYqHXqVu3Ls6cOVNgnd69e6N3796FnutT9NVXX+Gzzz7D7NmzERoaqrR/+/btqF69Onx9fQEAffv2RWhoKJfkVKxYEatWrcKUKVMwZ84cNGzYEG3atMGAAQOU5jxSxdvbGwC4cVaA/BZm3759wefzUbt2bVSpUgU7d+7E4MGDAQAPHz6Ej4+PyvPllD98+FDj7wEhhBAdSH6Z+z5wl+7iAK1CrjkTc3mPiq6uXQy//vorvvjiC0yaNElpX1hYGAIDA7ntwMBAtGrVCr/99husrKwAAKNGjUJQUBBOnjyJixcvYufOnfjll1+wb98+tG/fvsBr5yTCOYOdk5KSsHv3bpw9e1bhmqGhoVySk/c4dfLOnUQIIUQPJcfqOgIOJTma4vGKdMtIH7Rs2RIBAQGYPn26QiJx9+5dXLx4EZcvX8bUqVO58uzsbGzfvh3Dhg3jyqysrNCtWzd069YN8+fPR0BAAObPn19oknPv3j0A4OY72rp1KzIzM9GkSROuDmMMMpkMDx8+RI0aNVC9enXuOHXnq1GjRtG+CYQQQj5ZtAq5gVu4cCH+/fdfhZmgQ0ND0bJlS9y4cQPR0dHca+LEiSpvbeXg8Xjw9vZGWlpaodddsWIFrK2tuVmpQ0ND8cMPPyhc78aNG2jRogXCwsIAAP369cOjR4/w77//Kp1v6dKlcHNzKzS5IoQQQnJQT46Bq1OnDgYMGIBVq1YBkD8avmnTJsydO1dpkPbQoUOxbNky3LlzB1KpFLNnz8bAgQNRq1YtCAQCnDp1CmFhYQq9P4D8VlR8fDzEYjEePnyIP//8E3v37sXGjRtha2uL6Oho/Pfff9iyZQs3VidHv379MHfuXMyfPx99+/bFX3/9hUGDBmHx4sVo27YtRCIRVq9ejf379+Pw4cMwMdHdADZCCCHlCyU5n4C5c+dix44dAIB9+/bh3bt3+Oqrr5Tq+fj4wMfHB6Ghofjxxx9RuXJlzJkzB8+ePQOPx+O2J0yYoHDct99+C0A+P0/FihXRvHlzXL58GfXr1wcg78WpVauWUoIDyAdIjx49GgcPHsSXX36JnTt3YsWKFVi+fDm+//57SCQS2Nvb4/r166hVq5a2vzWEEEIMGI8VNtLTgIlEItjY2CA5OVlp9uPMzEzExMTAy8tLaVkKUnb+++8/tGvXDsHBwVi8eLGuw/kk0WeBEFIkITbyr62nA62nlcolCvr9nReNySF6rX79+oiKioKFhQWePHmi63AIIYQUxvLj4tneXXQbB+h2FSkH6tWrh3r16uk6DEIIIZrIEsu/8ktvwW1NUU8OIYQQQkouWwocmgZkJsm3jXWf5FBPDiGEEEJKbksv4OnJ3G1j3Y/ho54cQgghhJRc3gQHAATFm61fmyjJIYQQQkjJqHpQW2hV9nHkQ0kOIYQQQkom7a2uI1CJkhxCCCGElIw0XdcRqERJDiGFCAkJwWeffabrMAghpOQeRQIvrmj/vFmZ2j+nFlCSY2BSUlIwfvx4eHp6wszMDE2bNsWVK4r/oBljmDVrFlxdXWFmZoZ27drh0aNHBZ43Z2mHnJeVlRV8fX0xatSoQo/VtoCAAPD5fKV25eft7Q2hUIj4+PhCzxkREaHQvpzX+vXrMWnSJERFRZU4bolEgkWLFsHPzw/m5uaoUKECmjVrhvDwcEilUgDA4MGDuWsLBAJUq1YNc+fORVZWVomvTwj5xCXFyp+ACm2n/XM/Oqr9c2oBJTkGZujQoYiMjMSmTZtw69YtdOjQAe3atcOrV6+4OosWLcKqVauwdu1aXLp0CRYWFggICEBmZuGZ+LFjxxAXF4cbN27gl19+wb179+Dn56eVJEATsbGxOH/+PEaPHs2tXq7K2bNnkZGRgV69emHDhg0andva2hpxcXEKrwEDBsDS0hIODg4lilsikSAgIAALFy7E8OHDcf78eVy+fBmjRo3Cb7/9hjt37nB1O3bsiLi4ODx69Ag//PADQkJCaEkLQkjJRc3Lfa/tFZ2OztTu+bSFfcKSk5MZAJacnKy0LyMjg929e5dlZGToILLiSU9PZ3w+n+3fv1+hvH79+mzGjBmMMcZkMhlzcXFhixcv5vYnJSUxoVDItm3bpvbcMTExDAC7fv26Qnl2djZr3bo18/T0ZFlZWYwxxh4/fsy+/PJL5uTkxCwsLFjDhg1ZZGQkd8ycOXOYr6+v0jX8/PzYzJkzC2xjSEgI69u3L7t37x6zsbFh6enpKusNHjyYTZs2jR06dIjVqFGjwHMyxlh4eDizsbFRuW/27NnMz8+P2x40aBDr3r07W7x4MXNxcWH29vbs+++/ZxKJRO35f/31V2ZkZMT+++8/pX0SiYSlpqYqnDuv9u3bs88//7zQNpSW8vhZIISoMNs693VgMmMyWemcO+dVigr6/Z0X9eRoiDGGdGm6Tl5Mw4w7KysL2dnZSosompmZ4ezZswCAmJgYxMfHo1273O5KGxsbNGnSBBcuXCjy98XIyAjjxo3D8+fPce3aNQBAamoqOnfujKioKFy/fh0dO3ZEt27dEBsbCwAYMmQI7t27p3C76fr167h58ya3orkqjDGEh4cjMDAQ3t7eqFatGnbt2qVULyUlBTt37kRgYCDat2+P5ORknDlzpshtK8iJEyfw5MkTnDhxAhs2bEBERAQiIiLU1t+yZQvatWuncnkKExMTWFhYqD3WzMwMEolEG2ETQojc5T8BsUjXUZQ6mvFYQxlZGWiytYlOrn2p/yWYmxQ+qZKVlRX8/f0xb948+Pj4wNnZGdu2bcOFCxdQrVo1AODGpzg7Oysc6+zsrNHYFVW8vb0ByMftNG7cGH5+fvDz8+P2z5s3D3v27MG+ffswevRouLu7IyAgAOHh4WjUqBEAIDw8HK1atUKVKlXUXufYsWNIT09HQEAAACAwMBChoaEYOHCgQr3t27ejevXq8PX1BQD07dsXoaGhaNGiRYHtSE5OhqWlJbdtaWmp9ntiZ2eH33//HXw+H97e3ujSpQuioqIwbNgwlfUfPXqE1q1bF3j9/BhjiIqKwpEjRzBmzJgiHUsIIYX6bxPQdLSuoyhV1JNjYDZt2gTGGCpWrAihUIhVq1ahX79+MDLS/EfdqVMnWFpawtLSkksUCpLT08Tj8QDIe3ImTZoEHx8f2NrawtLSEvfu3eN6cgBg2LBh2LZtGzIzMyGRSLB161YMGTKkwOuEhYWhT58+MDaW5+b9+vXDuXPnlFYnDwsLQ2BgILcdGBiInTt3IiUlpcDzW1lZITo6mnudP39ebV1fX1/w+Xxu29XVFW/evFFbX9PeOADYv38/LC0tYWpqik6dOqFPnz4ICQnR+HhCCNGInj72rU3Uk6MhM2MzXOp/SWfX1lTVqlVx6tQppKWlQSQSwdXVFX369OF6SFxcXAAACQkJcHV15Y5LSEjgHpNev349MjIyAMhvpRTm3r17AAAvLy8AwKRJkxAZGYklS5agWrVqMDMzQ69evRRuuXTr1g1CoRB79uyBQCCAVCpFr1691F7j/fv32LNnD6RSKdasWcOVZ2dnIywsDD///DMA4O7du7h48SIuX76MqVOnKtTbvn272p4WQH7rLafHqzD5vy88Hg8ymUxt/Ro1auD+/fsanbtNmzZYs2YNBAIB3NzcuKSOEEK0Spat6whKHf3vqSEej6fRLSN9YWFhAQsLC3z48AFHjhzBokWLAMgTERcXF0RFRXFJjUgkwqVLlzBy5EgAQMWKFTW+jkwmw6pVq+Dl5cWNNzl37hwGDx6Mr776CoC8Z+fZs2cKxxkbG2PQoEEIDw+HQCBA3759YWamPpnbsmUL3N3dsXfvXoXyo0ePYunSpZg7dy74fD5CQ0PRsmVLrF69WqFeeHg4QkNDC0xySlP//v3x448/4vr160rjcqRSKSQSCTcux8LCQuNkixBCis1NeYygoaEkx8AcOXIEjDHUrFkTjx8/xuTJk+Ht7c0N6OXxeBg/fjzmz5+P6tWrw8vLCz/99BPc3NzQo0ePQs//7t07xMfHIz09Hbdv38aKFStw+fJlHDhwgLt9U716dezevRvdunUDj8fDTz/9pLKXY+jQofDx8QEgT4wKEhoail69eqF27doK5R4eHpg+fToOHz6MDh06YNOmTZg7d65SvaFDh2LZsmW4c+eORrfgtG38+PE4cOAA2rZti3nz5qF58+awsrLC1atX8euvvyI0NJQmHCSElC2B+gceikTbj6NrESU5BiY5ORnTp0/Hy5cvYW9vj549e+Lnn39WuL0yZcoUpKWlYfjw4UhKSkLz5s1x+PBhpaeyVMl5Ksvc3Byenp5o06YN1q1bp9DzsGzZMgwZMgRNmzZFhQoVMHXqVIhEyqP4q1evjqZNm+L9+/do0kT9oO5r167hxo0b+N///qe0z8bGBm3btkVoaCgyMzPx7t07rgcpLx8fH/j4+CA0NBTLli0rtJ3aJhQKERkZieXLl+PPP//EpEmTYG5uDh8fH4wdO1YpKSOEEK2r0RF4eDh3m6m/xV4kqmY7rlBTO+cuIR4ryohIAyMSiWBjY4Pk5GRYW1sr7MvMzERMTAy8vLw0+uVPio4xhurVq+P777/HxIkTdR0OUYM+C4SUc6+jgXWtlMsH7gWqtin5+dPeAourKpY5+gCjLpb83GoU9Ps7L+rJITqRmJiI7du3Iz4+vsC5cQghhJRQwm3V5VrryRErl/H04+FtSnKITjg5OaFChQpYt24d7OzsdB0OIYQYrqRY1eXaupGTrWKyUqGlcpkOFDnVOn36NLp16wY3NzfweDylp13yLjCY8+rYsaNCnffv32PAgAGwtraGra0tgoODkZqaqlDn5s2baNGiBUxNTeHh4cE9HZTXzp074e3tDVNTU9SpUwcHDx4sanOIjjDGkJiYiP79++s6FEIIMWypaubwSi3eBLBKsqW57ys2ABy9ge6r1dcvQ0VOctLS0uDn56f0iG5eOQsM5ry2bdumsH/AgAG4c+cOIiMjsX//fpw+fRrDhw/n9otEInTo0AGenp64du0aFi9ejJCQEKxbt46rc/78efTr1w/BwcG4fv06evTogR49euD2bTXdcoQQQsinyNFbdfk/o7RzfnGeiVYbDgFGXQIqVNfOuUuoyLerOnXqhE6dOhVYRygUcpPO5Xfv3j0cPnwYV65cQcOGDQEAv/32Gzp37owlS5bAzc0NW7ZsgUQiQVhYGAQCAXx9fREdHY1ly5ZxydDKlSvRsWNHTJ48GYB86YDIyEj8/vvvWLt2bVGbRQghhBgmbY29UWdH7gzzqNundK9VRKUyMujkyZNwcnJCzZo1MXLkSLx7947bd+HCBdja2nIJDiB/LNnIyAiXLl3i6rRs2RICgYCrExAQgAcPHuDDhw9cnbyLTObUKWiRSbFYDJFIpPAihBBCDFq2ioHB2pTyOvc9v/BZ8suS1pOcjh07YuPGjYiKisKvv/6KU6dOoVOnTsjOlk8fHR8fDycnJ4VjjI2NYW9vzy2GGB8fr3IByZx9BdUpaJHJBQsWwMbGhnt5eHiUrLGEEEKIvlP19JO2pCSU3rm1QOtPV/Xt25d7X6dOHdStWxdVq1bFyZMn0bZtW21frkimT5+uMB+LSCSiRIcQQojhYgw4uaD0zp+ZXHrn1oJSf5C9SpUqqFChAh4/fgxAvkBk/tWas7Ky8P79e24cj4uLCxISFLPDnO3C6qgbCwTIxwpZW1srvAghhBCD9fRE6Z5fz1cyL/Uk5+XLl3j37h234rW/vz+SkpJw7do1rs7x48chk8m4qf39/f1x+vRpSKW5j6VFRkaiZs2a3Jwq/v7+iIqKUrhWZGQk/P39S7tJpBRFRETA1tZW12EAgMIUCc+ePQOPx0N0dDQA+bgzHo+HpKQkncVHCCGFOjRVuczp4/p9tXqU/PyGluSkpqYiOjqa+88+JiYG0dHRiI2NRWpqKiZPnoyLFy/i2bNniIqKQvfu3VGtWjUEBAQAkK8h1LFjRwwbNgyXL1/GuXPnMHr0aPTt2xdubm4A5Cs2CwQCBAcH486dO9ixYwdWrlypcKtp3LhxOHz4MJYuXYr79+8jJCQEV69exejRo7XwbSm/1qxZg7p163I9Vf7+/jh06FChx+XMaXTxouI03GKxGA4ODuDxeDh58qRWY61cuTJWrFhRonOEhIQozcuU/1XYMTY2NmjRogVOnTqlUC8uLq7QJwkJIUSvvX2oXBa0F+i6HPjyt5Kf30i/5xQucpJz9epV1KtXD/XqyZdonzhxIurVq4dZs2aBz+fj5s2b+PLLL1GjRg0EBwejQYMGOHPmDIRCIXeOLVu2wNvbG23btkXnzp3RvHlzhTlwbGxscPToUcTExKBBgwb44YcfMGvWLIW5dJo2bYqtW7di3bp18PPzw65du7B3795PfqFDd3d3LFy4ENeuXcPVq1fxxRdfoHv37rhz506hx3p4eCA8PFyhbM+ePbC01I+ZK1WZNGmSwpxM7u7umDt3rkKZKr6+vtz+CxcuoHr16ujatSuSk3PvL7u4uCj8uyWEkHIlRc2DOJZO8vlssjKBEwuA5JfFv4bCbMfKf1TqHPuEJScnMwAsOTlZaV9GRga7e/cuy8jI0EFk2mVnZ8fWr19fYB0AbObMmcza2pqlp6dz5e3bt2c//fQTA8BOnDjBld+8eZO1adOGmZqaMnt7ezZs2DCWkpLC7R80aBDr3r07W7x4MXNxcWH29vbs+++/ZxKJhDHGWKtWrRgAhRdjjIWHhzMbGxt2+PBh5u3tzSwsLFhAQAB7/fq1Rm319PRky5cvL7DO7NmzmZ+fn0LZixcvGAB2+fJlhe/Jnj17GGOMxcTEMADs+vXrjDHGTpw4wQCwDx8+aBRXeWZInwVCPinZWYzNtlZ+5QgNkG+v8Cv+NR4fzz3vHIcSh6ypgn5/56UfK2iVA4wxyNLTdfJixVxfJDs7G9u3b0daWppGY5UaNGiAypUr4++//wYAxMbG4vTp0xg4cKBCvbS0NAQEBMDOzg5XrlzBzp07cezYMaVbhSdOnMCTJ09w4sQJbNiwAREREYiIiAAA7N69W6nXJUd6ejqWLFmCTZs24fTp04iNjcWkSZOK9T3QhFgsRnh4OGxtbVGzZs1Suw4hhJQpdeNlorcCITZA7Md55T7EFP8asqzc90b84p+nlOj3zTQ9wjIy8KB+A51cu+Z/18AzN9e4/q1bt+Dv74/MzExYWlpiz549qFWrlkbHDhkyBGFhYQgMDERERAQ6d+4MR0dHhTpbt25FZmYmNm7cCAsLCwDA77//jm7duuHXX3/l5i+ys7PD77//Dj6fD29vb3Tp0gVRUVEYNmwY7O3twefzYWVlpfREnFQqxdq1a1G1alUAwOjRozF37lyN26+JW7ducbfh0tPTYWVlhR07dtATd4QQwyHNUF2e/k51eXHkvV0V8Iv2zqsl1JNjgGrWrIno6GhcunQJI0eOxKBBg3D37l0AwIgRI2Bpacm98gsMDMSFCxfw9OlTREREYMiQIUp17t27Bz8/Py7BAYBmzZpBJpPhwYMHXJmvry/4/NzM3tXVVWn6AFXMzc25BKcox6mirr0536Po6Ghcu3YNI0eORO/evXH16tViXYcQQvSOup6cvL0vRcUYcH0L8PLj/5U5i3PaeMjH+egZ6snREM/MDDX/u1Z4xVK6dlEIBAJUq1YNgPwW1JUrV7By5Ur8+eefmDt3boG3fhwcHNC1a1cEBwcjMzMTnTp1QkpKitr6BTExUZzem8fjQSYrfA0VVccV95aduvbm/R4BQL169bB3716sWLECmzdvLta1CCFEr0jUJDnSzOKf8/bfwD/fy99PiQHeyP+AhsASUPE0q65RkqMhHo9XpFtG+kQmk0Eslk/r7eTkpLSsRn5DhgxB586dMXXqVIWemBw+Pj6IiIhAWloa15tz7tw5GBkZFWlMi0Ag4Jb7KC2atDcHn89HRoaa7l1CCClv1N2uKkky8vRk7vv4W8CpX+XvE+8V/5yliG5XGZjp06fj9OnTePbsGW7duoXp06fj5MmTGDBggMbn6NixIxITE9WOgxkwYABMTU0xaNAg3L59GydOnMCYMWMwcOBApfXEClK5cmWcPn0ar169wtu3bzU+ThuysrIQHx+P+Ph4PHr0CPPnz8fdu3fRvXv3Mo2DEEJKTWqeR8j9+sm/VmkD8Erwqz87d5LeEp2njFBPjoF58+YNgoKCEBcXBxsbG9StWxdHjhxB+/btNT4Hj8dDhQoV1O43NzfHkSNHMG7cODRq1Ajm5ubo2bMnli1bVqRY586di++++w5Vq1aFWCwu9i2p4rhz5w43C3fOGKA1a9YgKCiozGIghBCte3ZWPm7mwUHg4h+55T3WAM3GA/ZVgPMri3/+rPLV281jZfmbRc+IRCLY2NggOTlZ6amazMxMxMTEwMvLC6ampjqKkBDdo88CIeVIiI2a8jwLaZ5ZCkTNVb+/IFt6A4+Oyt93WgQcmiJ/33wi0G520WItgYJ+f+el/31NhBBCCNGektxmyviQ+z4nwQH08skqgJIcQgghxLDxBfkKSjDwuKaa9fz4JqrLdYySHEIIIcQQZKuZ/6bjQsXtkjxdxVMzq7ERJTmEEEIIKS3SNNXlQivF7ZKsHH5Mzbgbvn4+x0RJDiGEEGII1PXkJL9Q3C7umJy4m+r3UU8OIYQQQkqNuuUaorflKyjm7apbO9XvMynazPxlhZIcQgghxBC8e6S63MZdcVvVmBxNZpORpKrfp4dLOgCU5BBCCCGG4dgc1eX1AvMVqEhIXlwq/PwVNF+2R19QkkMIIYQYgvdPVJfX7qm4rarXJU2DpXXM7Ioek45RkkMIIYQYgrzrSuWl0a0kDW5XGal5fFyPUZJjYE6fPo1u3brBzc0NPB4Pe/fuVarDGMOsWbPg6uoKMzMztGvXDo8eKd/LFYvF8PX1xfDhw5X2TZkyBV5eXkhJSSmNZiiIiIiQrwJfwOvZs2elHgchhOi1bIlm9VSOyZEVfpwmdfQMJTkGJi0tDX5+fli9erXaOosWLcKqVauwdu1aXLp0CRYWFggICEBmZqZCPaFQiI0bNyIiIgJHjhzhyi9evIjly5cjIiICVlZW+U9fIowxZGUpPiHQp08fxMXFcS9/f38MGzZMoczDw4OrL5Fo+EHXAalUzV9ahBBSUuom6svPppJymSYJjLqeIj1GSY6B6dSpE+bPn4+vvvpK5X7GGFasWIGZM2eie/fuqFu3LjZu3IjXr1+r7PVp0KABZsyYgeDgYCQlJSEzMxPffvstxowZg1atWuHs2bNo0aIFzMzM4OHhgbFjxyItLXdCqk2bNqFhw4awsrKCi4sL+vfvjzdv3nD7T548CR6Ph0OHDqFBgwYQCoU4e/asQgxmZmZwcXHhXgKBAObm5tz2tGnT0LNnT/z8889wc3NDzZrywXEvXrzAN998A1tbW9jb26N79+4KPT5XrlxB+/btUaFCBdjY2KBVq1b477//FL5XISEhqFSpEoRCIdzc3DB27Fhuv6qeMltbW0RERAAAnj17Bh6Phx07dqBVq1YwNTXFunXrYG1tjV27dikct3fvXlhYWJRJzxghxEA5VNWsXvX2Kgo1uKV1/rcihaMPKMnREGMMUnG2Tl7aXCg+JiYG8fHxaNeuHVdmY2ODJk2a4MKFCyqPmTFjBlxcXDB27FjMnDkTPB4Pv/zyC548eYKOHTuiZ8+euHnzJnbs2IGzZ89i9OjR3LFSqRTz5s3DjRs3sHfvXjx79gyDBw9Wusa0adOwcOFC3Lt3D3Xr1i1yu6KiovDgwQNERkZi//79kEqlCAgIgJWVFc6cOYNz587B0tISHTt25Hp6UlJSMGjQIJw9exYXL15E9erV0blzZy7R+Pvvv7F8+XL8+eefePToEfbu3Ys6deoUObZp06Zh3LhxuHfvHr7++mv07dsX4eHhCnXCw8PRq1cvrfeMEUI+IfEFTNaXl6rbVbYqenfyS7xXtHj0gH7Ow6yHsiQyrBt3SifXHr6yFUyE2hnwFR8fDwBwdnZWKHd2dub25WdsbIyNGzeiQYMGkMlkOHfuHExNTbFgwQIMGDAA48ePBwBUr14dq1atQqtWrbBmzRqYmppiyJDclWmrVKmCVatWoVGjRkhNTYWlpSW3b+7cuWjfXtVfF5qxsLDA+vXrIRDIF6LbvHkzZDIZ1q9fD97HD3R4eDhsbW1x8uRJdOjQAV988YXCOdatWwdbW1ucOnUKXbt2RWxsLFxcXNCuXTuYmJigUqVKaNy4cZFjGz9+PL7++mtue+jQoWjatCni4uLg6uqKN2/e4ODBgzh27Fix208IISXCZMCDw8DZ5cBXawD7KrqOSCuoJ4co6dSpEywtLWFpaQlfX18AQK1atdCzZ0+0b98eDRs2BADcuHEDERERXF1LS0sEBARAJpMhJiYGAHDt2jV069YNlSpVgpWVFVq1agUAiI2NVbhmzjmLq06dOlyCkxPb48ePYWVlxcVmb2+PzMxMPHkif8wyISEBw4YNQ/Xq1WFjYwNra2ukpqZysfXu3RsZGRmoUqUKhg0bhj179iiNF9JE/rY1btwYvr6+2LBhAwB5Qubp6YmWLVsWt/mEEFIysmxgWx/gxUVg93e6jkZrqCdHQ8YCIwxf2Upn19YWFxcXAPJf8K6urlx5QkICPvvsMwDA+vXrkZGRAQAwMcldj8TY2BjGxrn/ZFJTU/Hdd98pjFPJUalSJaSlpSEgIAABAQHYsmULHB0dERsbi4CAAKXBwRYWFiVqV/7jU1NT0aBBA2zZskWprqOjIwBg0KBBePfuHVauXAlPT08IhUL4+/tzsXl4eODBgwc4duwYIiMj8f3332Px4sU4deoUTExMwOPxlG4lqhpYrKptQ4cOxerVqzFt2jSEh4fj22+/5XqcCCGk1BmbAVkZudt5n8xKSyz8+PZzgchZ2o9LyyjJ0RCPx9PaLSNd8vLygouLC6KiorikRiQS4dKlSxg5ciQAoGLFihqdq379+rh79y6qVaumcv+tW7fw7t07LFy4kHv66erVqyVvhIax7dixA05OTrC2tlZZ59y5c/jjjz/QuXNnAPKBym/fKk6IZWZmhm7duqFbt24YNWoUvL29cevWLdSvXx+Ojo6Ii4vj6j569Ajp6ekaxRcYGIgpU6Zg1apVuHv3LgYNGlTMlhJCCABphurybw+pLv/6T+CvoNztg5Ny32vyB1ezceUiyaHbVQYmNTUV0dHRiI6OBiAfaBwdHc3dguHxeBg/fjzmz5+Pffv24datWwgKCoKbmxt69OhRpGtNnToV58+fx+jRoxEdHY1Hjx7hn3/+4QYeV6pUCQKBAL/99huePn2Kffv2Yd68edpsrloDBgxAhQoV0L17d5w5cwYxMTE4efIkxo4di5cvXwKQjyHatGkT7t27h0uXLmHAgAEwM8tdZC4iIgKhoaG4ffs2nj59is2bN8PMzAyenp4AgC+++AK///47rl+/jqtXr2LEiBEKPV8FsbOzw9dff43JkyejQ4cOcHd3L/wgQghR591j5bIpMYBnU9X1LV0UtxPv574v7GGXmp2LFpsOUZJjYK5evYp69eqhXr16AICJEyeiXr16mDUrN+OeMmUKxowZg+HDh3ODgA8fPgxTU9MiXatu3bo4deoUHj58iBYtWnDXcXNzAyC/LRQREYGdO3eiVq1aWLhwIZYsWaK9xhbA3Nwcp0+fRqVKlfD111/Dx8cHwcHByMzM5Hp2QkND8eHDB9SvXx8DBw7E2LFj4eTkxJ3D1tYW//vf/9CsWTPUrVsXx44dw7///gsHBwcAwNKlS+Hh4YEWLVqgf//+mDRpEszNzTWOMTg4GBKJRGFwNiGEFIuqeW7M7dXXNyrgRs6HGNXljj7yrw2DNY9Lx3hMm88nlzMikQg2NjZITk5WuqWRmZmJmJgYeHl5FfmXPyGa2LRpEyZMmIDXr18rDJrWN/RZIKQcOPwjcDHfJLAhyerri+KAZd7q96s6doEHIBYBgbuBam2BEBvNrlUKCvr9nVeRe3IKWjZAKpVi6tSpqFOnDiwsLODm5oagoCC8fv1a4RyVK1dWmpZ/4cKFCnVu3ryJFi1awNTUFB4eHli0aJFSLDt37oS3tzdMTU1Rp04dHDx4sKjNIaTMpaen48mTJ1i4cCG+++47vU5wCCHlhCariOdl7ap+H1+oulwskn9VdWtMTxU5ySlo2YD09HT8999/+Omnn/Dff/9h9+7dePDgAb788kulunPnzlWYln/MmDHcPpFIhA4dOsDT0xPXrl3D4sWLERISgnXr1nF1zp8/j379+iE4OBjXr19Hjx490KNHD9y+fbuoTSKkTC1atAje3t5wcXHB9OnTdR0OIcQQ1OyovXNliwve/+au9q5Vyor8dFWnTp3QqVMnlftsbGwQGRmpUPb777+jcePGiI2NRaVKuTMq5kzzr8qWLVsgkUgQFhYGgUAAX19fREdHY9myZdxikStXrkTHjh0xefJkAMC8efMQGRmJ33//HWvXri1qswgpMyEhIQgJCdF1GIQQQ3J8ftldy/jjAxp2lYEPzwB7DZeT0IFSH3icnJwMHo8HW1tbhfKFCxfCwcEB9erVw+LFixUmWbtw4QJatmyp0I0fEBCABw8e4MOHD1ydvEsT5NRRtzQBIF9VWyQSKbwIIYQQg9JnMzBS/e9CTtMxhdfJkXdxTpOPY/MCd8sHIQ/cXbT4ylCpzpOTmZmJqVOnol+/fgoDg8aOHYv69evD3t4e58+fx/Tp0xEXF4dly5YBkC894OXlpXCunGUI4uPjYWdnh/j4+CItTQAACxYswJw5c7TVPEIIIUT/+HTTrF6H+ZovuinNMwdYpY+PpTtUBbouK1psZazUkhypVIpvvvkGjDGsWbNGYd/EiRO593Xr1oVAIMB3332HBQsWQChUM+BJC6ZPn65wbZFIxE1SRwghhBA18k42qHIVc/1UKklOToLz/PlzHD9+vMDHuwCgSZMmyMrKwrNnz1CzZk24uLggISFBoU7Ods44HnV11I3zAQChUFiqSRQhhBCiUyYlWyJHrQ/Pct+XoyVotD4mJyfBefToEY4dO8ZNnFaQ6OhoGBkZcROx+fv74/Tp0wrrAEVGRqJmzZqws7Pj6kRFRSmcJzIyEv7+/lpsDSGEEFKO9ArVznlSPnYiyGSAJB0IC9DOectYkZOcgpYNkEql6NWrF65evYotW7YgOzsb8fHxiI+P5xY9vHDhAlasWIEbN27g6dOn2LJlCyZMmIDAwEAugenfvz8EAgGCg4Nx584d7NixAytXrlS41TRu3DgcPnwYS5cuxf379xESEoKrV69ySwoQQgghn4SEPI9021ZSX0+VtmrWn3p4WP41vCPwSwFz6ui5It+uunr1Ktq0acNt5yQegwYNQkhICPbt2wcA3OKPOU6cOIHWrVtDKBRi+/btCAkJgVgshpeXFyZMmKCQwNjY2ODo0aMYNWoUGjRogAoVKmDWrFnc4+MA0LRpU2zduhUzZ87Ejz/+iOrVq2Pv3r2oXbt2UZtECCGElF/2eR7UsatctGN5ahaezrklVdRJBvVMkZOc1q1bo6CVIApbJaJ+/fq4ePFiodepW7cuzpw5U2Cd3r17o3fv3oWe61PRrVs3SKVSHD58WGnfmTNn0LJlS9y4cQN+fn64fv06PvvsMxw8eBA9evTAxYsXUb9+fa7+0qVLsWDBAty+fbvAcU6EEEJ0JCUe2DcGqNsnt6ygNalUMVKX5BjG0paG0QoCQL7gY2RkJLfKdl7h4eFo2LCh0iDwzp07IygoCEFBQRCL5bNc3r17FzNnzsTq1aspwSGEEH114Afg0VHg7zwLZhqZFO0c6pIZSnKIvunatSu38ndeqamp2LlzJ4KDVa8cu3z5cqSmpmL27NnIysrCoEGD0K1bN/Tp00dlfUIIIXpA9Fq5zKiIv9ZfXVOzo/w8QVWQUp0M0JAwxpAlLmQ9j1JiLBSCp8Eje8bGxggKCkJERARmzJjBHbNz505kZ2ejX79+3IzReVlZWSEsLAwBAQGIiYnBixcvVN7yIoQQok8KHh6ikfR3qsvL0WPiBaEkR0NZYjFWDeqlk2uP3bALJqamGtUdMmQIFi9ejFOnTqF169YA5LeqevbsCRsbG5VJDgB88cUX6NWrF7Zv344dO3Zo9Og/IYQQHWIyLZxETTKj7naVracWrll26HaVgfH29kbTpk0RFhYGAHj8+DHOnDmj9lZVjlevXuHw4cMwNzcvdMA3IYQQPSDTRpKjjprkp+G3pXhN7aOeHA0ZC4UYu2GXzq5dFMHBwRgzZgxWr16N8PBwVK1aFa1atSrwmGHDhqFBgwaYMWMG2rdvj169ehV6DCGEEB2SpJT8HGoHHqtJcpqOLfk1yxAlORri8Xga3zLStW+++Qbjxo3D1q1bsXHjRowcObLAMT3r16/H2bNncevWLXh6emLkyJEYMmQIbt68CQuLUpoinBBCSMlIM0t+DnW/G3hGgKopYdQ9cq6n6HaVAbK0tESfPn241d0HDx6stu7z588xceJELFmyBJ6e8nutv/76K3g8HqZNm1ZGERNCCCkyWZYWTqImycmWAIkPFMv8y9+KApTkGKjg4GB8+PABAQEBcHNzU1mHMYbg4GD4+/srzCZtbm6OiIgIrFmzBqdOnSqrkAkhhBSFTFp4ncKo68nZ8x3w7zjFMmffkl+vjNHtKgPl7++vcvbpypUrK5QfO3ZM5fHNmzdHVpY2/koghBBSKrLz/R9dL7Do55Blq9/3It/qBIWsaKCPqCeHEEIIKY+y8o3JKepsx4D8tpTGKMkhhBBCSFlg2QVva6LFxMLrcOenJIcQQgghulCceXOqfqH9OPQIJTmEEEJIeeRcR3G7OD05RUI9OYQQQggpbYwBCbcUywoaRFwQv36a1TO1Kd75dYiSnEKoekKJkE+JrFSnjieEFMur/5TLiruW1Y1thdep2UX+KmfoEXI1TExMwOPxkJiYCEdHR41WASfEkDDGIJFIkJiYCCMjIwgEAl2HRAjJkfFeuaw0b1f121p65y5FlOSowefz4e7ujpcvX+LZs2e6DocQnTE3N0elSpVgZEQdv4ToDWMVywwV93aVAaMkpwCWlpaoXr06pFItzCpJSDnE5/NhbGxMPZmElAfmDrqOQO9QklMIPp8PPr98LUhGCCHEwEnTlcv8R5V9HHqO+p8JIYSQ8mb7AMVtGw+gQvXincu+asH7NX36Sg9RkkMIIYSUN/kX56zZufjncm+Y+97MXnm/baXin1vHKMkhhBBCyjuBRfGPzZvEGKkYnlGcNbH0BCU5hBBCSHlWsQHQbGzxj28+AWg4BAj6B7B2U96vKvEpJyjJIYQQQsqzYccBM7viHy+wALouB6q0BrosV94vSS3+uXWMkhxCCCGkPCnNWcht3JXLbv9detcrZZTkEEIIIeVJaU7MaaJiksEPz0rveqWMkhxCCCGkvKrRUbvnMynBAGY9REkOIYQQUp5I0oHaPQHn2kC/7do9N98YqBeoWOY/WrvXKENFTnJOnz6Nbt26wc3NDTweD3v37lXYzxjDrFmz4OrqCjMzM7Rr1w6PHj1SqPP+/XsMGDAA1tbWsLW1RXBwMFJTFQc23bx5Ey1atICpqSk8PDywaNEipVh27twJb29vmJqaok6dOjh48GBRm0MIIYSUL5nJ8nEyb+4CpbHkSvfVQEhy7rbv19q/RhkpcpKTlpYGPz8/rF69WuX+RYsWYdWqVVi7di0uXboECwsLBAQEIDMzk6szYMAA3LlzB5GRkdi/fz9Onz6N4cOHc/tFIhE6dOgAT09PXLt2DYsXL0ZISAjWrVvH1Tl//jz69euH4OBgXL9+HT169ECPHj1w+/btojaJEEIIKT+enpB/ZaU4ABkAAv8GOi8B3BuU7nVKEysBAGzPnj3ctkwmYy4uLmzx4sVcWVJSEhMKhWzbtm2MMcbu3r3LALArV65wdQ4dOsR4PB579eoVY4yxP/74g9nZ2TGxWMzVmTp1KqtZsya3/c0337AuXbooxNOkSRP23XffaRx/cnIyA8CSk5M1PoYQQgjRqfkujM22lr8+UZr+/tbqmJyYmBjEx8ejXbt2XJmNjQ2aNGmCCxcuAAAuXLgAW1tbNGyYO410u3btYGRkhEuXLnF1WrZsCYFAwNUJCAjAgwcP8OHDB65O3uvk1Mm5jipisRgikUjhRQghhJQrqhbnJCppNcmJj48HADg7OyuUOzs7c/vi4+Ph5OSksN/Y2Bj29vYKdVSdI+811NXJ2a/KggULYGNjw708PDyK2kRCCCGElBOf1NNV06dPR3JyMvd68eKFrkMihBBCCifLBtLf6zqKckerSY6LiwsAICEhQaE8ISGB2+fi4oI3b94o7M/KysL79+8V6qg6R95rqKuTs18VoVAIa2trhRchhBCi9zZ8CSzyAt7c13Uk5YpWkxwvLy+4uLggKiqKKxOJRLh06RL8/f0BAP7+/khKSsK1a9e4OsePH4dMJkOTJk24OqdPn4ZUmruUfGRkJGrWrAk7OzuuTt7r5NTJuQ4hhBBiMJ6flX89+Ytu4yhnipzkpKamIjo6GtHR0QDkg42jo6MRGxsLHo+H8ePHY/78+di3bx9u3bqFoKAguLm5oUePHgAAHx8fdOzYEcOGDcPly5dx7tw5jB49Gn379oWbm3z10/79+0MgECA4OBh37tzBjh07sHLlSkycOJGLY9y4cTh8+DCWLl2K+/fvIyQkBFevXsXo0eV30iJCCCGkQEYmuo6gfCnqY1snTpxgAJRegwYNYozJHyP/6aefmLOzMxMKhaxt27bswYMHCud49+4d69evH7O0tGTW1tbs22+/ZSkpKQp1bty4wZo3b86EQiGrWLEiW7hwoVIsf/31F6tRowYTCATM19eXHThwoEhtoUfICSGE6D1JRu4j4xfX5r6nR8gL/f3NY4wxHeZYOiUSiWBjY4Pk5GQan0MIIUQ/vbwGrP9C/r53BLBzsPy9sRkwU/0TxYZM09/fn9TTVYQQQki58+ZO7vssse7iKIcoySGEEEL02evo3PeStNz3A/eUeSjlDSU5hBBCiD67Gpr7/vX13PeVPi/7WMoZSnIIIYSQ8uL6ptz3pbECuYGhJIcQQggpL4Q2uo6gXKEkhxBCCCkvxMm6jqBcoSSHEEII0VeiOF1HUK5RkkMIIYToq2dndB1BuUZJDiGEEKKvbmzTdQTlGiU5hBBCiL4Sp+g6gnKNkhxCCCFEX7k31nUE5RolOYQQQoi+ysrQdQTlGiU5hBBCiD7KTAauhqne51y7bGMppyjJIYQQQvRR2lv1+xJul10c5RglOYQQQog+ykzSdQTlHiU5hBBCiD66vF79vm82qd9HOJTkEEIIIfroxtbc99XaK+6r0rpMQymvKMkhhBBC9F3dbxS3+QLdxFHOUJJDCCGE6IvUN8ClP4GMpNyyBoMBWZZiPSPjsoyq3KLvEiGEEKIvQjsAH2KAx8dyyzybA1f+p1jPiF+2cZVT1JNDCCGE6APG5AkOADw6mlteqYm8hycvHq/s4irHqCeHEEIIKQuSNIAvBPj5fvUyBsyxVX+cjQfAoz6J4qAkhxBCCCkLv7jJv1o6A5Me5panJhR8HI9HSU4x0XeNEEIIKUupCcC1DbnbmcmFH5M3yanbR/sxGShKcgghhJDSJpMpbrPs3PcX/yj8+LxJDo8GHWuKkhxCCCGktP0drLht4Zj7XqrBSuPOvrnv6ckqjVGSQwghhJS2O7sVt7PEue9v7ij8+IZDct9TkqMxSnIIIYSQ0nRmqXKZNF3+9d0Tzc6Rd4bjD89LHtMngpIcQgghpDRFzVUue3ZO/rWwQccdF8q/5h2T8/SEduL6BGg9yalcuTJ4PJ7Sa9SoUQCA1q1bK+0bMWKEwjliY2PRpUsXmJubw8nJCZMnT0ZWluKU1idPnkT9+vUhFApRrVo1REREaLsphBBCSMlkilSX5/TkFJTkjLoCfD5S/p4m/ysWrc+Tc+XKFWRn544av337Ntq3b4/evXtzZcOGDcPcubmZrbm5Ofc+OzsbXbp0gYuLC86fP4+4uDgEBQXBxMQEv/zyCwAgJiYGXbp0wYgRI7BlyxZERUVh6NChcHV1RUBAgLabRAghhBSN6DVw/GegahvV++/tk08C+CRKed93pwHnOoBR3ieq6MZLcWg9yXF0dFTYXrhwIapWrYpWrVpxZebm5nBxcVF5/NGjR3H37l0cO3YMzs7O+OyzzzBv3jxMnToVISEhEAgEWLt2Lby8vLB0qfw+p4+PD86ePYvly5dTkkMIIUS30t4By3zk76M3q6/34BBw/jflcgtHxQQHoCSnmEr1uyaRSLB582YMGTIEvDxdbVu2bEGFChVQu3ZtTJ8+Henp6dy+CxcuoE6dOnB2dubKAgICIBKJcOfOHa5Ou3btFK4VEBCACxcuFBiPWCyGSCRSeBFCCCFatbiKZvVUJTgAYGSiXEZJTrGU6rIOe/fuRVJSEgYPHsyV9e/fH56ennBzc8PNmzcxdepUPHjwALt3yx+vi4+PV0hwAHDb8fHxBdYRiUTIyMiAmZmZyngWLFiAOXPmaKt5hBBCSPHFnlddruoRcXpsvFhKNckJDQ1Fp06d4ObmxpUNHz6ce1+nTh24urqibdu2ePLkCapWrVqa4WD69OmYOHEity0SieDh4VGq1ySEEEIAAGP+A36rr3pf9Q65K4+rSmioJ6dYSu279vz5cxw7dgxDhw4tsF6TJk0AAI8fPwYAuLi4ICFBcbGynO2ccTzq6lhbW6vtxQEAoVAIa2trhRchhBCiNZJ01eU2lQCHqoCJuer9vcJy3/OFyvvT3ua+7zC/+PF9YkotyQkPD4eTkxO6dOlSYL3o6GgAgKurKwDA398ft27dwps3b7g6kZGRsLa2Rq1atbg6UVGKI9IjIyPh7++vxRYQQgghRSROUV3e9+MA5N4bVO8XWgFDjwPDjgMmpsr7syW5713qlCzGT0ipJDkymQzh4eEYNGgQjI1z74g9efIE8+bNw7Vr1/Ds2TPs27cPQUFBaNmyJerWrQsA6NChA2rVqoWBAwfixo0bOHLkCGbOnIlRo0ZBKJRntyNGjMDTp08xZcoU3L9/H3/88Qf++usvTJgwoTSaQwghhGgm/a3qcnMH+VdjFb00OdwbABUbqN6Xd8ZjJlNdhygplSTn2LFjiI2NxZAhQxTKBQIBjh07hg4dOsDb2xs//PADevbsiX///Zerw+fzsX//fvD5fPj7+yMwMBBBQUEK8+p4eXnhwIEDiIyMhJ+fH5YuXYr169fT4+OEEEJ0K+mF6nJTG/nX5+eKd968SY4sW309oqBUBh536NABjDGlcg8PD5w6darQ4z09PXHw4MEC67Ru3RrXr18vdoyEEEKI1knTVJcLLOVffb8GTv1a9PPmHYwsy1Jfjyig4dqEEEKItuwaoro8Z644x5rFO2/eZR2ypcU7xyeIkhxCCCFEGy79WXgdVWtQdVupwcnzHCejJEdTlOQQQggh2nBoiuryr/IlPw0GK257dy383A5555GjxTo1RUkOIYQQUlqcfAG3fBMAdlsJGOd5TNyiQuHnEVoBfv2ACjUB74KnZiG5SnXGY0IIIeSTIM1ULnNvDAyNVF1fYAFkqTimIF+tLXpcnzhKcgghhJCSevc4932tHkCbGYBtJfX109+VekiEkhxCCCGk5NY2y33fK4wW1NQTNCaHEEII0SZKcPQGJTmEEEJIccmygSMzcrdrddddLEQJJTmEEEJIcW3pBVz4PXe72yrNjnP9rFTCIYooySGEEEKK4+hM4MlxxTKhtWbH5qwk3uIH7cZEFFCSQwghhBTVrV3A+d8Uy2w9ASMNf63mLLhpRM//lCZKcgghhJCi+jtYuWzQv5ofb2Im/yrN0E48RCVKcgghhBBtKGhenPxMzOVfizohICkS6icjhBBCiiL9vXLZlBjVi2+q494IaPwd4NlUe3ERJZTkEEIIIUVxaKpymbl90c5Ro4P8RUoV3a4ihBBCisKrZe775hOBWSp6doheoJ4cQgghRBOSdOAXV8WyL2bSDMd6jHpyCCGEEE28uKhcRgmOXqMkhxBCCNEEY4rb3l11EwfRGCU5hBBCiCZS3yhuf9ZfN3EQjdGYHEIIIUQTe0fIvzp6A6Mu6TYWohHqySGEEEIKI07JfZ94X3dxkCKhJIcQQggpzLWI3Pf9/9JZGKRoKMkhhBBCCsKYfMXxHFXb6i4WUiSU5BBCCCEF2fqN4jafhrOWF/STIoQQQlRJfQMsqa5YxhfoJhZSLNSTQwgh5NORf64bdTJFygkOAATt0248pFRRkkMIIeTTkPEBWFEH2D8xt0xd0rPQQ3W5p7/24yKlRutJTkhICHg8nsLL29ub25+ZmYlRo0bBwcEBlpaW6NmzJxISEhTOERsbiy5dusDc3BxOTk6YPHkysrKyFOqcPHkS9evXh1AoRLVq1RAREaHtphBCCDEUsmzg18pA8gvgaiiQmgiE2ABzbOVfNTFgV2lGSEpBqfTk+Pr6Ii4ujnudPXuW2zdhwgT8+++/2LlzJ06dOoXXr1/j66+/5vZnZ2ejS5cukEgkOH/+PDZs2ICIiAjMmjWLqxMTE4MuXbqgTZs2iI6Oxvjx4zF06FAcOXKkNJpDCClNWWLg1X+ATKbrSIihurEDmGuvWLakmuL2zZ2579X9W/Rqpd24SKnjMabpDUrNhISEYO/evYiOjlbal5ycDEdHR2zduhW9evUCANy/fx8+Pj64cOECPv/8cxw6dAhdu3bF69ev4ezsDABYu3Ytpk6disTERAgEAkydOhUHDhzA7du3uXP37dsXSUlJOHz4sMaxikQi2NjYIDk5GdbW1iVrOCGkeLYPAO7vBwJ+AfxH6ToaYkhSEoClNTSrK7QGpr+Qv39xBQhtJ3/v3VX+7xMAQpK1HyMpFk1/f5dKT86jR4/g5uaGKlWqYMCAAYiNjQUAXLt2DVKpFO3atePqent7o1KlSrhw4QIA4MKFC6hTpw6X4ABAQEAARCIR7ty5w9XJe46cOjnnUEcsFkMkEim8CCE6lvML5MiPuo2DGJ7nZwuvk0NgCZxbJb91FZrn90ufzUC9gUCbGdqPj5Q6rSc5TZo0QUREBA4fPow1a9YgJiYGLVq0QEpKCuLj4yEQCGBra6twjLOzM+Lj4wEA8fHxCglOzv6cfQXVEYlEyMjIUBvbggULYGNjw708PNQMLCOEEFL+7RqieV1zByDyp3yFPIDHA7r/DrSaotXQSNnQ+jw5nTp14t7XrVsXTZo0gaenJ/766y+YmZlp+3JFMn36dEycmDuqXiQSUaJDCCGG5u1j4Pwq5XLPZsDzc2oOUjVyQ6ujOYgOlPoj5La2tqhRowYeP34MFxcXSCQSJCUlKdRJSEiAi4sLAMDFxUXpaauc7cLqWFtbF5hICYVCWFtbK7wIIYQYmN8bAP9tUCzrshT49iDQdKzqYxJuqy4n5VqpJzmpqal48uQJXF1d0aBBA5iYmCAqKorb/+DBA8TGxsLfXz73gL+/P27duoU3b95wdSIjI2FtbY1atWpxdfKeI6dOzjkIIYQQjlMtoNFQ+Xtevl97TUaoP87MrvRiImVC60nOpEmTcOrUKTx79gznz5/HV199BT6fj379+sHGxgbBwcGYOHEiTpw4gWvXruHbb7+Fv78/Pv/8cwBAhw4dUKtWLQwcOBA3btzAkSNHMHPmTIwaNQpCoRAAMGLECDx9+hRTpkzB/fv38ccff+Cvv/7ChAkTtN0cQggh5YEsG/jwHPhvo/I+v3657/kmivseHFJ/To8m2omN6IzWx+S8fPkS/fr1w7t37+Do6IjmzZvj4sWLcHR0BAAsX74cRkZG6NmzJ8RiMQICAvDHH39wx/P5fOzfvx8jR46Ev78/LCwsMGjQIMydO5er4+XlhQMHDmDChAlYuXIl3N3dsX79egQEBGi7OYSQ0iRJU9yWyQAjmoidFMOLS0B4J9X7XOrkvjc2Vd6X9Dx3u98OYFufjxs8rYZIyp7W58kpT2ieHEJ07N5+YMeA3O2ZiYAxLYBIiujBIeDEL0D8TdX7p70ATD/+H39uJRCZO7ksuq4A9o/P3Z76DLixXV5v0H6gQr5JA4le0PT3N61CTgjRnbwJDgBkiynJIUW3ra/q8rp9gI4LcxMcAKiUZ+ymc23gxWXFY8zsgM9Hysfq8Kgnp7yjJIcQoj9u7sgdIEpIQd4+AgQWgLWb6v1tZwEtflAu92gsX0mcLwAq1gfibgA3tirXowTHIFCSQwjRH6I4XUdAyoPUN8DvDeXv285WXcemgDnQquRZg8qjsfbiInqHRvgRQnSnQr51hbIlwIZuwBw74PZuSnqIMsaAJdVzt6PmqK5nxC+beIheoySHEKIbjAFvHyqWfYgBYk4DTAbs+hZ4dU03sRH9NcdW/b7pr3Lfm9mrr5df+49P7wYsKFZIRH/R7SpCiG7kT3AA+VwneT05Dvh0LZt4iP6LOa1+X6tpgNAS8GoFiF4Dnk01P2/TsYDPl4Bd5RKHSPQLJTmEEN1YrWIsRLZEcZtPT1qRPC7/T/2+Fh/XJQz6R95LWJT5lng8wN6rZLERvURJDiFEfzw+prgttNRNHET/MAbc26d+v7F8RnzwePRkFOHQmBxCSNnTdA5S6skhOX71VL/v6/VlFwcpV6gnhxBS9jT9S/vEz0CrKaUbCykfMpNz33ddAZg7AAJzQGgDeDTSWVhEv1GSQwghRL+9f6q43fBb3cRByh26XUUI0W8yma4jILq2ql7u+28LWDWckHwoySGE6Lf0d7qOgOjS7uGK20V5NJx88ijJIYSUPXFq7vteYYVU1nCQMjE8GUny9cwIKSZKcgghZS/mVO77Km0KrpuRVKqhED2Wf3XxwN26iYOUW5TkEEJ0IM/TVUIr5d0hyfKnZgBAml42IRH9EtoBiL2gWFatrW5iIeUWJTmEkLK3vV/ue76J6jrij48Mr2ul+bw6xDD8twl4cSl3u8lIYHaSzsIh5RclOYQQ/fchRtcRkLKUlqi47duDZjEmxUJJDiFEv5jaKpdJM8s8DKIjknTgSqhimbuKdc4I0QAlOYQQ3bGvKv/qnWel8ZaTlevJssomHqJbmSLgF1dA9DK3TGBZtMU2CcmD/uUQQsqepbP8a87j47035O47OkO5fv7VyYlhODYH2Dcmd8zVQg/F/b03ABNul31cxGDQsg6EkLIlk+WOuchJdvjG8qepxMmqj7kWAbg3LJPwSCn5dzxwLRwYsAuo3l5+W+rsMvm+/zaqPsazKWBmV2YhEsNDPTmEkLKV8QFgH5dqsKiQWz74X6ByC+Dbw8rHXN9UNrGR0nMtXP51Sy8gSyK/LVWQNjMAS6fSj4sYNOrJIYSUrbyLLeZ9fNzVDxi8P3e7YTBwNc8AVMboCZvyShSnuD3fseD6E+4ANu6lFw/5ZFBPDiGkbF35n2b1uixV3H73WPuxkLKxzFvzuuNvU4JDtIaSHEJI6WMMuLIeWOCh+VpE+XttorfQiuQ5ZDLg1i7gw3PdxpH4UL4OWYiN/LXUBwjvDMiyc+skv1R/vCq2HoXXIURDdLuKEFL6HkUCB34o2TnOLgeSXwE9NewJMmRz8wzGDVEzWLssbPwSSMlzKyrltfy1dyTw9Tp52b1/c/dbOAFpbxTPUfUL4Mlx+XtdtoUYJOrJIYSUvq29tXOeW39p5zzl1YfngDhFsezYHCDpRdnHEmKjmODkdXMHcP8AsPd74NKfueX1BijWGxoFfLVOPl9Sm5mlFyv5ZGk9yVmwYAEaNWoEKysrODk5oUePHnjw4IFCndatW4PH4ym8RowYoVAnNjYWXbp0gbm5OZycnDB58mRkZSlOCHby5EnUr18fQqEQ1apVQ0REhLabQwgpqfT3uo7AMNzYDqysCyzIN17l7DLgzFLVx5QW0evC62zvL7/FmLMkh6Uz0HRs7v6hx+XTAlg6AmP/A1qpmASSkBLSepJz6tQpjBo1ChcvXkRkZCSkUik6dOiAtLQ0hXrDhg1DXFwc91q0aBG3Lzs7G126dIFEIsH58+exYcMGREREYNasWVydmJgYdOnSBW3atEF0dDTGjx+PoUOH4siRI9puEiGkuC6uARZ5qd7Xamrhx3u10m485VXaO2DPd+r3Pz1ZZqEAAJb5FP0Yh+qAuT0w7gYw7ATg3kD7cRGSj9bH5Bw+rDjHRUREBJycnHDt2jW0bNmSKzc3N4eLi4vKcxw9ehR3797FsWPH4OzsjM8++wzz5s3D1KlTERISAoFAgLVr18LLywtLl8r/gvHx8cHZs2exfPlyBAQEaLtZhJCiYgw4PE31vm8PabYekcBCuzGVN9IMIOEOsL5twfVyekvePwUiZwHNJwAVtZBEiF4DZvaAiWlu2aavi3euoL3yr3aV5S9CykCpj8lJTpYPJLO3t1co37JlCypUqIDatWtj+vTpSE9P5/ZduHABderUgbOzM1cWEBAAkUiEO3fucHXatWuncM6AgABcuHBBbSxisRgikUjhRQgpBSE2wBxb9fs9m8pnOS5Mz/VaC6nceHoSWFFH/j382aXwBAcArD5OrLeqnnyg7/++yF0qobiit8l7bH7O/X8YjAFPonK3p78C+mwBRpwFpsQorkGWX945kQgpI6Wa5MhkMowfPx7NmjVD7dq1ufL+/ftj8+bNOHHiBKZPn45NmzYhMDCQ2x8fH6+Q4ADgtuPj4wusIxKJkJGRoTKeBQsWwMbGhnt5eNCjioSUuSptNK/7KfbkbOwOJMUWXq/jwtz3KXHyR8rzmmML/BVU/Dj25hknmSD/4xJH8q0rJrQEfLoCLnXkt6I+66/6XJ0WqS4npJSV6iPko0aNwu3bt3H27FmF8uHDh3Pv69SpA1dXV7Rt2xZPnjxB1apVSy2e6dOnY+LEidy2SCSiRIcQbbu+Wf2+rssB36/KLhZ9lJ0FGPGB5b6A6JW8B8T8Y0/3vjHqj5t4D3j7SP7YduPvgM9HAtFbgfib8v1/Bysfc/cfIP6WPAkpijf3FLfPLpf3ql1cnVvW4Wfl49StFt+kgPFEhJSiUuvJGT16NPbv348TJ07A3b3g2SubNGkCAHj8WD6jqYuLCxISEhTq5GznjONRV8fa2hpmZmYqryMUCmFtba3wIoRo2T+j1O9rOKTkCy6+jpaPC3n1X8nOU9Yyk4EtvYF5DvJeFtEreXnOwGzG1C9UCQDWbkCVVsCMeKDzx56RnFXcC/LgkOYxnl4sv032x+eK5bd2ystzmJgDTUcrH2/lplw2cI/m1ydEy7Se5DDGMHr0aOzZswfHjx+Hl5eaJyvyiI6OBgC4usrvK/v7++PWrVt48yZ30qjIyEhYW1ujVq1aXJ2oqCiF80RGRsLf319LLSGEaM23h4s/0VuFmorb61rJx4X8r03Jx52UttQ3QEo8kC0FFlYCHh1VXS9LAuzIvWUPRx/598ulrnx7Wp55cEzy/BFnYl54DCdU9Lioc3y+ZvVGX1Fd7tEIsPWUv7epBAw/JZ/sjxAd0frtqlGjRmHr1q34559/YGVlxY2hsbGxgZmZGZ48eYKtW7eic+fOcHBwwM2bNzFhwgS0bNkSdevKP9AdOnRArVq1MHDgQCxatAjx8fGYOXMmRo0aBaFQCAAYMWIEfv/9d0yZMgVDhgzB8ePH8ddff+HAgQPabhIhpCR+jAMEGvwyVqfLUuC/DfLehPwu/w9oMly5XFvS3gLPzwFu9dUvNyBJl6+oXaU1ELgHMPr4t+P7GGDVZ/L3joU8cp1/wcpRF+VfR5wp+Dhzh4L3ayrpBbCiduH1chS0ttT4myWPhxAt0XpPzpo1a5CcnIzWrVvD1dWVe+3YIV+vRiAQ4NixY+jQoQO8vb3xww8/oGfPnvj339ypv/l8Pvbv3w8+nw9/f38EBgYiKCgIc+fO5ep4eXnhwIEDiIyMhJ+fH5YuXYr169fT4+OE6JJEcT4s/PCgZAkOAHi1UP+U1aHJpdubs7iqfPDuitrq18365eOTTU9PAmEB8rWcEu7kJjgAkHhP+bj+Wpi92cRUuYcs/8KmhclIUp/geDYvVliE6Aut9+SwQv7D8fDwwKlTpwo9j6enJw4ePFhgndatW+P69etFio8QomWM5S6myePnlndZClipngtLq84uA1r8AFwNA/ZPAGr31GysSlHlrBf1xUzAoZp8AHX+MTQvLwMLKhZ8npmJgLFA/f6f3hY9tmHHgV1DgEH75T1OjYYCoQHAi489QjJZbg9TfqcXqz/vtwcUx+IAgFOtosdHiI7Q2lWEkOJLfgWsqAscnCLfzjunSv1B2r2WQ3XV5VFzgSyxPMEBgNt/y28hlYQoTvmXe47j84Gdg+XXLOhpKFWqtVdMcEblG9vSZkbx5pOp2EA+k3DeW2q9QnPfS9OUjwHk60pd+F2xbNwN+Via6R9XD8/bM+T7tXy9KULKCUpyCCFFl/xS/qj4zkFAcixw+U/lOtqe/O3dI/X7YvNNAvqLK/DyWvGu8zoaWOZdeL35ToXXcfUDZr0H6vaRzxw8IN+4Isca8jWccrTU4vpN1hUB3sf/4sWpquscmqJcZuUGuH0GCK3k242Gym+JhSQDvcNLfvuRkDJUqvPkEEIM1HJf5bKEu2UfR46N3ZXL1n8h73Vwb6j5eVLi5U9vFVWlpvJlC6K3AvvH55Z/d1r+9et16o91b1D8J88KwuMBRsZAtgSQqEhy/mypuP3Dg7K5vUhIGaKeHEJI0YR2UF2+Js/0DeNK4Qmb2j0Vt/M+Vq3O7iI+ebW0pnLZ0ONA+3kFHzfoX8BYCDT8NrdscMFjCstEtkT+NXKWYvnFtUDcjdzt705TgkMMEvXkEELUYwyImiN/lLr77/IniF5cKvw4O0/tx9J1hXy8DQBYugCmGkzm+f6JfNFK+yqF1/0l34BhW09gzH/yNbbcGwDNxsrPBZ7ik1Mz4hXX4SqNXpmSenAwd/CxTAYczrcCvKufbuIipJRRTw4hRL19o+VT+l/fBJxeovq2UFnJm9Skyuffgn2+ZWDyD+QF5ItWFiYpVvmWztAo5UVE7asA9nkmOB19VXFyPn324CAgzVS9/AMhBoqSHEKIahu6Ka5DdTzfLZvprwCBFeDXT7Hc58vSj635xyep/PMtIWHtKn/SqKhW5FvbaUoMYOmoui4gn+Bwwl2ggponvvTRjgHyp9/u7FYsn6bBYqCElFOU5BBClN3aBcScVr9/0H75CtQ/vgRa5bv1UZoLcH7+PWDlCvh/fHQ7/20ooZV8zpj8t4w+PFd/zvcxitu1uucumKmOwBywKWQ+nPJg8hPAVM2j8oQYAEpyCCHKCrul4dks971Rvls6pTEeJ0fHBfLVuC0+LmeQ85gzAHjleyrKOU/vzB8fB0W/fyqf/ybERj4XDqA4vqb7auCbAhbJLG8aDlG/r8N8wKJC2cVCiA5QkkMIUbRnpOL29xcVt6t+oTh7rkW+2zr5t7UtZ3ZlAJBl5b6v1k6x3sizue+lacCZpcCxkNyyZd7AP/lW0vbrr7Uw9UKTEer3NS7FNb8I0RP0dBUhn7oPz4CVH5+u6bIUuLE1d1+vMMDp44rYD48A7x7LJ4fLy8QUGH87d/0jgWWZhA0AsHbLfV+3T8F1o+Yql13flPt+1GX1Sx+UV44qHonPYSwsuzgI0RFKcgj5lGSKFJ9SWlQVSM+zVtKBHxTr552bpkYAADUL4Np6AAP+BrLFhY9n0SbbSvLrmtsDVs7K+3usAfaOVC5XpaCEgBBSLhnYny2EEJWkGfJxKAs9gNiLQNxN+XZ6AYtBFnW+l+rtAO8uJYuzOKq3AyrWV70v/5Nf6oy6rL149E2Lj4lrjzW5ZUIabEw+DdSTQ8in4Nc8c7uEqemNycu9UenFUpbyjt/Ja2Yi8Gtl+Vidjr8adi9O21mA/2h5b5epLXB0BtAztNDDCDEElOQQYsgu/w84OKngOt1XA/UCgZt/AbuHycs6Ly792MrKkKNAWL6lKIwFwIzXuolHF3JuIXp3lr8I+URQkkOIoUh6kTv4V1Ozk3J7O+p+A9Tprb73o7yq1ER+621tcyD+FtCQZvwl5FNBSQ4hhmBbP/m0/QWx9QSS8kyKN/2VckJjaAlOXsHHgJhTQOUWuo6EEFJGKMkhpLx7c7/gBMfKVb7QpMAcEKcAu4bIx2kIy/BRb31gYvrxCTFCyKeCkhxCyiuZDNjQFXh+LresXqB85l/Xz+QT5d3eBbSZmTv/i9AKGLBTJ+ESQkhZoySHEF2RyYDkF8BfQUBcNNB0LHB+lXxfk5FAp4W5de8fkM9xI7CQPwl04Afg2RnF89XqIR9EnJfzrNJsASGE6DUeY4zpOghdEYlEsLGxQXJyMqytrQs/gJDikGbKx4JUaQPwTeTrJz09oTzxXkm41QeGn9De+QghRI9p+vubenIIKYnEhx9XpHZX3scYMMe2dK/fYb58fSK+SelehxBCyiFKcggpjheXgdD2imVV2gBtfwL4AuD+QeDkL5qd69tDgCQdyEwCfL8C9n4P3NyuWKfeQPnCmLu+lW83HQO0DQH49BEmhBB16HYV3a4i6jAGZEsAJgNMzIBLfwKHpmjn3MNPygcHF/bIdnYWJTKEEJIP3a4i+o+x3F/yWWIg7oZ8bElJfqkzBjw+BthXAda3AzLe5+77fBQQ8LN8JW0TM+D0YuDZWaDrCsArz9wpMpl8htyXV4ofRw7fr4He4cU/nhIcQggpNurJoZ4c7UuKBQ5NA2LPAwJL4MtVgFs9wMxOs3EqzScA7ULk73MSIcbkSUn6O6DBYPncL0Z8gGcEnFkGnFlSspiDjwEeH9drWvkZ8CFGs+MmPQYsHYHURHlydepXIGgvEHMG8OkqbzMhhBCt0vT3NyU5hp7kZCYDD48Ctb+WJwTamtE2by+MJB248j8g0sAfV/buKl/Y0MRUPqmesRn1tBBCiA7Q7apPWeJD4MZW4Ozy3LLdQ+VfTcwBabr8fcUGQNA/8gnicjAmv3VkxJc/sZMpAhZVAWRSxWO1rWYXwM4TuPhHyc7jUB3oMA94cEjeg5Qj7S1wcLL88W3bSkDF+kDdvvLeoatqVmSekSBPaFTJ+z0jhBCil6gnRxc9OVliIGoucHOH/NHj7n8A0VuAC7/L99fpLV9fp+43QMJdIDlWPl6l6Vj5asLZUsDIOPc2TvIL4PB04P7+smtDQQYfBNwbAsZCefx3/wGyMoBzK3PrhCTLv8pk8nbk9AqF2Cifz6//x7bK5Ktjx5wGKvnLE5lzK4HP+slvccmy5clZUT09BWz8UrFswN9A9XZFPxchhJBS98ncrlq9ejUWL16M+Ph4+Pn54bfffkPjxo01OrbUkpyYM/Lp9gH5LQ6htbxnRRdc6gDNxgOPjgKpb4DE+0BKXMnP6/MlcG+f/H3j4fLHm90bARYVSnbeD8/ls/vyTeRJnqmKpIcQQsgn7ZNIcnbs2IGgoCCsXbsWTZo0wYoVK7Bz5048ePAATk5OhR5fKklO8itgeS3tnKu4Oi2Sr2EksFC9nzF5r8e7x8CbO8CDw8CtvwBHb6BCdflTSOIU4M4e4OFhoP8OwENN4iiT5a6LRD5ZTCYDT4f/Dhhj4BnyCurFxBjD+1cv8Or+XXg3bwWekRGMjU10+rMixSdKfAMjY2NY2tnrOhSd+ySSnCZNmqBRo0b4/Xf5bR6ZTAYPDw+MGTMG06ZNK/T40urJebd9OeJOnMLLVG+YsSRYmr6HqTADfJ4E2U6NkJBeGXGJQmTAHA54CycnKYwd3JCSmAqZWAorVxtI01KRGC/BWyN38Hg82BqL4Mh/Cb70PXjWzsh++xw8ZMPcUoZsZz+8TXMCmAwevhUgtBAgIykDAqERZDKG7CwZ+CZ8ZCRn4sWTdGSKARsrBp4RD9Z2JjC3MUVSYiZMhHwITXnIypAgIU4KcRYffGMjZGUxVKjAh2sNe27AsYmpMVLfpiM5MR2QyZAtzYapOR+OnjawcrMFAw/S1EwIbcxhZGKMzOQMpL5NQ8aHNJgIjVGhmiPA5yM9KQNGRkYQWgmRlSHBh+fvkcWMIHqXCTNzPpyq2EFoZYoscRbEonSY2ZiCZWUj/W0qMpLS8f5VCkwERrB1MYeplRACCyGyMrNgZmsGmQwQizJgbGaCd09e4dXrR8iUvYPQ3ALJHxLAZAx8E2O8S3gOa1sXCEwskJwUB+nHcUe2FSrCpbI3pGIxpJIMCM0sYGZhDTATvHgcjQ9vYlDBrTrcatSCVJwJJmMwMRXC0qECjIyMkSVhSIqPQ2ZqChikcK5aFZZ29khPSkJSwiu41fABj2cEPl+IN89jYGwsgJm1NV49uomYG+dRza8VYATYODnD3MIOkjQJ4p7ew9u4J7CvUAkVq1cHjABpZgYkmZmwcnCAidAUfCMTSDPT8frxI2RkJMPc1hpGJnwYGwuR8u49HN0rI+ltHGzsXMGk2bhxUX6b04hvDEsHZ6R9eCtvv7snpOlpMOLzIU5NQYbog8p/7xWq1MDbpw/Vfh4sKzghM0WELHEmAMDK1QPp794gWyLm6ggsrCBJS5Hvd64IgYUFUt++gTQtFbLsLKVz8gWmYLIsmNpWQPrbeACAsakFsjLT5OeztIGTTwMYybIRe+1UgZ9XK7fKSHn9DADg4dcYlg7OMLOyRbooGfdPyHsrBWYW8PBrDL6JEGnv3sJYYAKBuTnMbezx/lUseHw+BGam4JsIkC2VIPXdG1jYV4DA3AKStBTYuLghWwbEPb6PzKT3cK1WA5JMMd6/fA6WnQ2Xmt4w4hsjJTERFvYOEL2JQ2ZKChwrV0X8k3uw9/RC2ps3EKelwczODimJbyBOSYZMKuXaweMby7+3ifHIEmfAWGjKfc8L4uLbAJI0Ed4/e6S0z9rFHaL4l7nbzm6wda2I2OgrsHGuCGOhKQRmZpCIxbBwcILQVIhH546rvI5rLT9kpqVCaGGJ+Ls34FarLgRm5ngbGwO+QIjkV7GwrVQFLtVqwtLRGQKhEPeiDsGxSk0YCYWwdXGHhaUlHl48i5S38ajRpDnMbO0Q//gBTEwEcK5aA8ZCIcRpKZCIJXh+5xZeXb8AAPD+ojPEGemQpKWAB4Y3jx9Akp4G79YBeBZ9FZlJ7wAADtV8YOXkgoy38bCwc4BzdR+YCAUwMREi6e073Is6gFptO0EmlSDlbSLsKnrA3tUVUrEYWZkZMDGzgIzxEHs7Go/PHoMRnw9ZdjaqN/sCiU8fwtrFFc5VvfH6/l28un2N+95U/bwFTK1t8fLWdWSKklCjeWt8eP0SNZq2REaGBDFXzuNdzCNIMzMUvqfONWoh4eFdCC0sIU5LVdhXpVFTmFpaIjNFhLfPn8LM2hZWDhXwJuYJRIkJMLWyRmaKKM+5fCHNEsPYygIVXCojIyMFsZfPg8lkqNikMTIT30PGsmBt54hsGwFE4mSIX7yFwMwCQsaHUGYMu6pVkJj+BqmZIhhnG8Mi2xgubpXQvE8g+MbaHQJs8EmORCKBubk5du3ahR49enDlgwYNQlJSEv755x+lY8RiMcTi3P9YRSIRPDw8tJ7k/G/oPkiMLbV2PlJyYtEmsOxEXYdBCCGfnG6TF6NGQx+tnlPTJKfc9lm+ffsW2dnZcHZ2Vih3dnZGfHy8ymMWLFgAGxsb7uXh4VEqsRlDWnglUqaMjCvpOgSiF8rtf3mElBkjk5owMqmqdj/PqGjzf0nSUwuvVEo+qUfIp0+fjokTJ3LbOT052vbt+p6QicUwEgq5MplEAp6JSbHGDbDsbPD46p8aYtnZCk8o8Xg8MKkUPBP1izYWNoaBMSa/NSU/IVeXMQZkZ+eOw8k5x8e6LCsLTCb7uCSCDEyWDZaVDZlYAl62FLKsbBgJTGBkYQGekRFYlvxWhJFAABjLnxiTpaWBSSQAjyf/HvL58jEExsbyr3m+F5p+P2WyVuCBhyypFMYmqsckMJlMHr9EAplYDBmPB2NjY4U5gVh2Nlh6OjLiE5Cdlg6BtRVMKlQAmAzZYjF4PCMw8JCdIYYsNQU8WRbEySngmwhg7OKCTHEmTAWm8jEsAiGyxRJIklPAk2V/LOPDzMEOfJ4MPD4fPKEQPKH8MXaeLBuy7GxkSyQwNjeHkYUFwOMhKz0TjPFgZGIMWVY29+8h9UU8+AJTmDvbgG9mJh+HJZWAZ2wMnpE8RmlqBt6+e4s0lo10Y2MIzK0gzZYg490HmNvYwsjEGJCKYQYZ4hNTkJ6cBDtbS5jaOIDHM4IJE8PU0hLGAiEy3iRClJAISbYMWWIpTAQ8OHpXhqWdAzKSRRCnpsDEVAhjIz6y0sSAgA9TS3PwhUKAL0RWRiaEQiEEQlPwjIwgzcyAEZ8PyHhIfpOILCa/JSiTZiJbJoUkMx18YxO8j32JlNcJMLUSIlucDp6xAFYVXWFVoQIkGRlIfvUaJhbWsLB3QNq790h5/RripFQYm5nB2bcGbCzt8eruA2RIMmFXtSJ4JnxkvHuHtDdvkf7qLVhGNoydbWFV1RMmMgakpIKZmIBnaQ6xKBXi5HQwgTHMHCpAaGUJxuOBD4DHAL5AAL6xEfjGJsiSSPAhPhkwE8Ctiicys7IgE0thYSaAhZ09srOykPr2A4yFQrxLTkdmZgacHG2RZcxHWqYYZuBDaAyYCYwhTkyCOCMNWaliiCViGAt4cHSoAMYD3ie9gbHQBKY2tkgRvQXeJiM59j2yk/gQS9OR5ZYN2AthlW4MoYU5rN0rQpKejne3HiE7VQyZVAxepgw8b0dUaOwH/odMpL16AwYGGXjIjBdBliGBiY0JTGzMYOVREaL4BGQmvIfQ1hoyxiA15gFZMpik8ZD6JgWZQimE7pawqeAInhRIf54MWDKYmllC+iwNTMIgzc4CzGQwdTaHhbMTABnSnseDb24Mc3dXZL59i6zkDGTEf4CMJ4OdT2UYW1ki5UU8IMmCpbsTTEyFyExOgSQpDWlxSUCGMZgQyKphDL6ZBcwTZbBytoOptSVSXici7eUHZGeKgWwejC0t4FLdA1KpBBnSDEjFYgiE5jAy4UOSloGMpGTIJDKY2Joj0wHISs6AjZE1rN0qQGBuiQ/PXkGSLYZUYARZYibMbCxgVdERQktrQJqBtLcfYGptDXFaGrLTMgExD+L0LPBtBTCzt4ZUIgGfb4LsDDGYMQ8CRytIPoiQGp+MjCQxjI0ZsiyyIbQyBd5n4VXya8RYx0LGslFV5AlbiT2yMmUwkZlAapOCN1XSYW9RAYI3WXibnACRLBVWUjPYiW0BI0BkngILdwfwMmUQJyXDXmgHsYkRqlWtCzNrc4ilUmSKmoJnzIedux1gYYrspEwIZELAggepSRZkaVkwEvCQlgoYZ/AhtOUjw0gMIxM+jESZMOEJ4Fa5Mjyremr0/3RpKLdJToUKFcDn85GQkKBQnpCQABcXF5XHCIVCCPMkHqXJKN91jASCYp+roARH3f6CEhyg8OSAl/ex7vzlqu6t5iRYJWhnjpJ8r9Se8+Oj5SYF/Px5Rkby+AUC8C0LuN1oZweTihU1vraVmvfaYmyl+qzmro4FH2cHCAFYwkuj63gXVqGG+r/8SsqhkmupnRsAvNu3L7wSIaTcKbd9twKBAA0aNEBUVBRXJpPJEBUVBX9/fx1GRgghhBB9UG57cgBg4sSJGDRoEBo2bIjGjRtjxYoVSEtLw7fffqvr0AghhBCiY+U6yenTpw8SExMxa9YsxMfH47PPPsPhw4eVBiMTQggh5NNTbh8h14ZPYoFOQgghxMAY/CPkhBBCCCEFoSSHEEIIIQaJkhxCCCGEGCRKcgghhBBikCjJIYQQQohBoiSHEEIIIQaJkhxCCCGEGKRyPRlgSeVMESQSiXQcCSGEEEI0lfN7u7Cp/j7pJCclJQUASmUlckIIIYSUrpSUFNjY2Kjd/0nPeCyTyfD69WtYWVkVuip3UYhEInh4eODFixflfiZlQ2mLobQDMJy2GEo7AGqLPjKUdgCG0xZttoMxhpSUFLi5ucHISP3Im0+6J8fIyAju7u6ldn5ra+ty/Q8yL0Npi6G0AzCcthhKOwBqiz4ylHYAhtMWbbWjoB6cHDTwmBBCCCEGiZIcQgghhBgkSnJKgVAoxOzZsyEUCnUdSokZSlsMpR2A4bTFUNoBUFv0kaG0AzCctuiiHZ/0wGNCCCGEGC7qySGEEEKIQaIkhxBCCCEGiZIcQgghhBgkSnIIIYQQYpAoySGEEEKIQaIkp4TK88Npb968McjFSelnoh8yMjJ0HYJW3L59G2fOnNF1GFqRkpKi8Pkor5+V27dv4++//0Z2drauQykxQ/mcAPr5WaEkpwgkEgmWLFmCdevW4fLlywCg1TWvyopEIkH//v3RqlUrPHnyRNfhlAj9TPSPVCrFyJEj8fXXXyMoKAgXL14sl79MJRIJhg4dirp16+L48eO6DqdEpFIpvvvuO3Ts2BHdu3fHjh07AJS/z4pEIkFwcDDq1q2L69evF7hmkb4zlM8JoOefFUY0cuDAAWZvb8+aNGnCfH19mZOTE/vll190HVaRrVy5kpmZmbGmTZuy69ev6zqcEqGfif6Ji4tj9erVY02bNmWrV69mfn5+zM/Pj/3666+MMcays7N1HKFmfvvtN2ZhYcGaNm3KoqOjdR1OiXz48IE1b96cNW3alG3bto117NiRVa9enU2YMEHXoRXJqlWrmKWlpUH8TAzlc8KY/n9WKMnRUK9evdjIkSMZY4y9fv2ahYaGMh6Px8LDw5lYLNZxdJrp378/4/F4bM2aNVxZamqqDiMqGfqZ6J9du3YxX19f9vLlS8YYY0lJSSwkJISZmpqy27dvM8YYk8lkugyxUPfv32dmZmbsm2++4coeP37MEhMTy82/q7xOnjzJqlevzm7dusUYYywzM5OFh4czHo/HDh06pOPoNJOcnMzs7e3ZF198wZXdu3ePPX78mIlEIh1GVjyG8DlhrHx8VijJ0cCTJ0+Yu7s72759u0L54MGDWf369dnFixd1FFnRhIWFsapVq7KzZ8+y2NhYNmLECNavXz82ZswYduDAAcZY+fkL4unTp+X6ZyKVShljhvMzyYlxzZo1zM3NTWFfXFwca9euHWvWrJkuQiuyzMxMFhISwtzc3Ni9e/dY3759Wc2aNVn16tVZp06dWGRkpK5DLJK///6bmZmZKZTJZDIWGBjIateuzTIyMnQUWeHy/qIPCwtj9vb27OjRo6x3796satWqrFq1aqxx48YsLCxMh1FqzpA+J4yVj89K+b2hWYoiIyNx8+ZNyGQyAICXlxckEgk+fPgAIHeg2OLFixEXF4eDBw9CIpHoLF51ctqRMzjv22+/haenJwYMGIDGjRsjMTERbm5uuHbtGrp3747Tp0/r7T3uJ0+eKNyv9vT0LJc/k5x2GBsbAyjfP5N169Zh69atePz4MRcjn8+Hi4uLwuBDFxcXTJs2DVeuXEFkZCQA/RrwmtOOR48eAZCvrzN48GBYWFigVq1aMDc3x4oVKxASEgKJRIKpU6fiypUrOo5atZxxaTn/dwGAtbU1PDw88PfffwOQf+95PB5mz56Nx48fc+V5j9G1nHbk/XcyePBgVKtWDQEBAbC2tkZYWBhWrlyJOnXqYObMmfo3FuSjXbt24dixY4iLiyvXnxNAsS1A7mfF0tJSfz8rusyw9E14eDhzcXFhderUYVZWVuz777/nuhO/++475ufnx9WVSCSMMcZmzZrFKlWqxLKysnQRskqq2vH8+XPGGGMXLlxg9erVY9u3b+diFovFrF+/fqxOnTq6DFul0NBQVqlSJdagQQPWpEkTtmnTJi7u4cOHl5ufSf52bN68mWVmZjLGGDt//ny5+pkcPnyYOTo6ss8++4x5enqy6tWrs6VLlzLGGLt58ybz8fFhCxcuVOiujo+PZ19++SUbOHCgrsJWoqody5YtY4zJ/+Les2cPmzdvHktOTuaOuXz5Mvviiy/YqFGjdBW2Snv27GFubm7MwcGBxcTEMMZyewufPn3K2rZty0aMGMHdCs3OzmZSqZR9++23rGXLlroKW4mqduT9HF+5coVNmzaNvX37liuLiYlhPXr0YJ07dy7rcAu0ceNG5uTkxBo3bswcHR1Zs2bN2N9//80YY+y///5jtWrVKhefE8ZUt2X37t2MMfn/VXv37tXbzwolOR+tX7+eVatWjW3bto0lJiayLVu2MAsLC24g6N9//828vb3ZihUrGGOM+wX19OlTZm5uzq5cuaKr0BWoa8d///3H1Tl//rzCP0bGGLt48SIzNTVVqKdrK1asYNWqVWPbt29nZ8+eZbNnz2ZGRkbsjz/+YDKZjP3777+sRo0aev8zUdeO1atXczGfOXOmXPxMGJOPhRo+fDhjjLGHDx+yJUuWMB6Px/bt28cYY2zkyJGsUaNG7MSJEwrH9ezZkw0aNKiMo1UvfzsWL17MeDwe+/fffxljjKWlpSn9TBhjrFWrViw4OLhMYy3I5s2bWaNGjVjfvn1Z8+bN2Xfffcfty7ndM2/ePNa4cWO2adMmhWMnTpzI2rdvz1JSUso0ZlUKakcOmUymMtbAwEDWqVMnvRjPJpVK2YoVK5iPjw9bv349E4vF7Ny5cywoKIh16tSJpaenM8bkf6Q1btxYrz8nhbUl51anSCRS+XPRh8/KJ5/kyGQylpWVxfr376+UPVevXp1du3aNMSbPsMeOHcsqVarEXr9+zdXZu3cvq1SpErt3716Zxp1fYe1QN+o95x7xb7/9xipWrMgePXpU6rFqIi0tjbVv357Nnj2bMZb7n3XLli2Zu7s7O3z4MMvMzGRjxozR258JYwW3w9PTk/trKC99/JnkxP306VNma2vLDh8+rLC/f//+rHr16iwxMZElJCSwevXqsX79+nE9oYwx1rlzZ50/0aNJO7y9vdnTp09VHv/27VtWr149tmDBglKPtTA5PRwXL15k06ZNY8+fP2eLFi1iNWvW5H5x5vQSvH37ln311VesZcuW7P79+9w5AgMDdf4LVZN2FNQrm56ezr744gs2efLksgi3UElJSWzGjBls4cKFCuPpFi5cyJo1a8aSkpIYY7lPWOnj5yRHYW0pKDnWl8+Kft7sL0M8Hg98Ph/37t2DUChEQkICAGDs2LEwMjLCvn37cOHCBTg7O2PcuHFwd3dH165dsWPHDjx58gTbtm2Dr68vKleurNft2Lt3Ly5evIjMzEyF44yMjPDy5UscP34cvXr1QrVq1XQRvhJjY2Ncu3YNNWvWBACIxWIAgJOTE2QyGTZv3gypVIrRo0fDw8NDL38mQMHtkEql2LNnDxITExWO0aefyaNHj7gxHADg6uoKgUCA2NhYAODGPf3xxx949eoV1q9fDycnJ0ybNg0vX75Es2bNsGzZMgQFBeHq1av4+uuv9b4dsbGx3DiVHJmZmYiLi8OUKVMAAD179izD6BXltIXP5wMAmjRpgnnz5qFSpUro3LkzatasicWLFwMABAIBsrKy4ODggIkTJ8LCwgKff/45Jk+ejMDAQBw8eBC9e/cGUPbjP4rSDj6frxRfcnIyXrx4gdGjRyMuLg59+/Yt0/jzymkLANjY2KBXr16YNGkSjIyMuLFOHh4eSEtLg5mZGQD5GJwff/xRrz4nRW2LQCBQOl6fPisAPr0xOX/99RcbOnQoW7FiBbt58yZXvm3bNubh4cHat2/PHBwcmLe3N5s7dy5r06YNq1u3Llu4cCFjTN6jExAQwGrVqsXc3NxY06ZNuXvH+t4OPz8/9vPPPzPG5HNnbNu2jU2cOJE5ODiwjh07KvSG6ENb+vXrx7y9vbm/cjZv3szatGnDhg4dyqpVq8bVjY+PZx07dtTbn0lB7ahRowZ3S/TDhw9s+/btevEz2bFjB6tcuTKrWbMma9y4MQsNDWWMyR9vDwoKYgEBAVwvQc5YqOnTp7NKlSpx53j58iUbPnw4N14ibw+CvrejcuXK3Dm2b9/ORowYwRwcHFjr1q3ZkydPyrwdjKlvC2PKTyHVqlWLe+IoZ2wOY/JbujNmzGBBQUHs66+/1qufCWMFtyNvT8KhQ4fYyJEjuZ+Jrno787dl/fr1Cvvzxty/f382ePBgxhhTGIejD58Txorflry9bDt27NCLz0pen0yS8/btW9arVy/m4uLCRowYwZo3b84qVqzIwsPDuTrx8fFs0aJFrGXLlgpzLwwbNox99dVXLCEhgTHGWEZGBouLi1P4RVZWtNGOpKQk9vbtW7Z48WLWqlUrbixFWVPXlg0bNjDG5OMkqlSpwqpUqcLc3NyYubk5N3DP2NiYe8SaMfl/3vr2MylqO+Li4tiSJUt0+jNhjLGjR4+yypUrs9WrV7PDhw+ziRMnMmNjY7Zu3TrGGGMRERGsXr167M8//2SM5f4SvXLlCnN0dFQaC6WrR5RL2o7Lly8zxhi7c+cOmzdvHjty5IhO2sGY6raYmJiwdevWcWM8cuJ/+fIlCw4OZo0aNeJuJ+Sfs0RXg/K11Y5nz56x1atXs2PHjumkHYwV3Jacf/MymYzJZDKWkZHB6tatqzQmKi9dPsqvrbbcvHlT55+V/D6ZJGfnzp2scePGCvc+e/bsyapWrcr9wpFKpaxv375s/vz5jLHcD9TEiRNZ1apVuUFtupykSRvtyPnPRNeDDdW1xcvLi+3Zs4cxxtiLFy/YkSNH2IYNG7i/tN+8ecOqVKnCdu7cqYuwlZS0HX/99Rd3nC5/Jjn/rufMmcMaNGjAxckYY99//z2rV68eO3LkCBOJRGzAgAFKPWY7duxgbm5uasezlBVttUMf/gotrC0NGzZUOa5r//79rGHDhmz27Nnsxo0brGvXriw2NrbM4s5PW+3o0qWLTtvBWPHa8urVK1a5cmX28OFDxpj8Dx99GHejrbaMHz++7IIuok9mTM7WrVvh7u6OihUrIjU1FQDw5Zdf4unTp1i9ejUSEhJgbGyMd+/e4erVqwDk97MTEhLw8OFD9O3bFxYWFgB0u96LNtqRc0/Y0tJSZ+0A1Lfl2bNn+O233/DmzRu4u7ujXbt2CAoKgomJCQDgxIkTEAgEaN68uS7D55S0HS1atODOpcufSc6/67t376Jq1aowMTGBVCoFAMyfPx8WFhbYvHkz+Hw+Ro0aBSMjI/Tt2xfnz59HbGwsDh48iAYNGsDFxUVnbQC01w5XV1ddNgNA4W0xNTXFP//8g/j4eADg5sRq06YNGjdujLlz56JBgwaQSqVwcnLSTSOgvXZkZWXptB1A0dsCAMeOHYOHhwdcXV0xbtw41KpVC8+fP4dUKtXpXDjaaktsbKzO26KWrrOs0nDq1Cl2+PBhhXvRU6ZMYTVr1lSoN23aNNa2bVvWtGlTrsv6+PHjzMTEhDVt2pSNHDmSubu7s5YtW3LzzJQlQ2kHY8VrS85tBcbkvR737t1jv/32G3Nzc2M//vgjk0qlZd6rZijtYEzeRT1mzBi2fPlydunSJa583bp1zMrKirulkfPX3bp161i1atXY2bNnGWPyKd0bNGjAatasyZydnVm9evV0Mp7AUNrBWPHaUqNGDXby5EmubmpqKlu+fDnj8/msdevWOrmFayjtYKz4bcl5Mkwmk7HevXszOzs75uDgwHx9fXU2vYUhtUVTBpXkJCYmsqCgIMbj8Zifn59CF/STJ0+Yo6Mja9myJVu0aBHz9/dnXl5eLCoqivn5+bGZM2dydffs2cOmTp3K+vfvr3ArgdpRdCVpy08//cTVvXbtGuvRowfz8vIq8L42taNwr1+/Zl27dmVOTk5swIABrE6dOszGxob7T+/BgwesYsWKXNx5x3O4uLhwE+YxJr+9FhMTo5NlNAylHYyVvC3Lly/ntu/cucOaNGnCNm7cWKZtYMxw2sGY9tqSlpbGunbtqnIZmrJiSG0pKoNJcqRSKfvjjz9YQEAA27FjBzM3N2cLFizgJltjjLGzZ8+yoUOHsvr167PRo0ezxMRExhhjAwcOZD179tRV6AoMpR2Mab8tupoUz1DawZj8P6lBgwaxPn36KIydady4Mfe0hEgkYvPnz2dmZmbc+IecnqZWrVqxoUOHcsfpanyaobSDMe23RVcMpR2Mab8tV69eLcPoFRlSW4rDYJIcxuSTSeU8lTJnzhzm6OjIPZ6bV94sNSEhgdWuXZsbpKsPiyEaSjsY005b8t4a0hVDaQdj8plWc1afzokpJCSENWnSRGGyvGbNmrHPP/+cPXv2jDHG2PPnz5mPjw/bv3+/bgLPx1DawZjhtMVQ2sEYtYUx/WxLURlUkpP/rzE3Nzc2fPhw7jHqvPszMjKYRCJhf/zxB6tXr57O7veqYijtYMxw2mIo7WCMKTxBkZMM9+/fnw0bNkyh3suXL1m1atVY5cqVWa9evZibmxv74osvWHx8fJnGq46htIMxw2mLobSDMWqLvralqAwqycmR89f0X3/9xYyNjdnRo0cV9r98+ZL98ccfrGHDhsze3p5t3bpVF2EWylDawZjhtMVQ2pFfs2bNWEREBGNM/p9gzn+Ejx49Ytu3b2cTJkzg9uszQ2kHY4bTFkNpB2PUlvLIIJOcvPz9/Vm7du24ifzevHnDGGNs69atbMmSJboMrUgMpR2MGU5bDKUdT548Yc7Ozgr32vNPHlceGEo7GDOcthhKOxijtpRXBpvk5Nx3vH37NuPz+WzlypVs7NixrH79+uzWrVs6jk5zhtIOxgynLYbSjpxbbBs2bGBVq1blykNCQtiIESO45E3fGUo7GDOcthhKOxijtpR3Bpvk5NWoUSPG4/GYp6en0qrD5YmhtIMxw2mLIbRj1KhRbMqUKdzU7k5OTno1LbumDKUdjBlOWwylHYxRW8org05yHj9+zGrXrs3Mzc2VFhsrTwylHYwZTlsMpR0ZGRmsWrVqjMfjMaFQyC1EW94YSjsYM5y2GEo7GKO2lGfGup5xuTTx+Xz07NkTU6dO5ZYyKI8MpR2A4bTFUNphamqKypUro3379li2bBlMTU11HVKxGEo7AMNpi6G0A6C2lGc8xvRxsQlCSFnJzs4Gn8/XdRglZijtAAynLYbSDoDaUl5RkkMIIYQQg/TJrEJOCCGEkE8LJTmEEEIIMUiU5BBCCCHEIFGSQwghhBCDREkOIYQQQgwSJTmEEEIIMUiU5BBCCCHEIFGSQwjRS4MHDwaPxwOPx4OJiQmcnZ3Rvn17hIWFQSaTKdUPCAgAn8/HlStXAADPnj3jjlf3ioiIwMmTJ9Xuj4+PL+tmE0K0iJIcQoje6tixI+Li4vDs2TMcOnQIbdq0wbhx49C1a1dkZWVx9WJjY3H+/HmMHj0aYWFhAAAPDw/ExcVxrx9++AG+vr4KZX369OHO8eDBA4V9cXFxcHJyKvM2E0K0x6DXriKElG9CoRAuLi4AgIoVK6J+/fr4/PPP0bZtW0RERGDo0KEAgPDwcHTt2hUjR47E559/jmXLlsHMzIw7FgAsLS1hbGysUJaXk5MTbG1tS71NhJCyQz05hJBy5YsvvoCfnx92794NAGCMITw8HIGBgfD29ka1atWwa9cuHUdJCNEHlOQQQsodb29vPHv2DABw7NgxpKenIyAgAAAQGBiI0NDQIp/T3d0dlpaW3MvX11ebIRNCdIBuVxFCyh3GGHg8HgAgLCwMffr0gbGx/L+zfv36YfLkyXjy5AmqVq2q8TnPnDkDKysrbtvExES7QRNCyhwlOYSQcufevXvw8vLC+/fvsWfPHkilUqxZs4bbn52djbCwMPz8888an9PLy4vG5BBiYOh2FSGkXDl+/Dhu3bqFnj17YsuWLXB3d8eNGzcQ/f927RhFYSAKwPBbsBexsrBOI1jY2FtqaW3O4QmsbGxF8BhzA0v1FuoJtAjZbkFshF2IO3wfpBl4ZNL9zOR0+nnW63Xs9/uoqqrp7QINcpIDfKzH4xGXyyWqqorr9RoppVitVjGbzWKxWMRoNIr5fB6DweBprt/vx3K5jJRSTKfTt951u93ifr8/rXW7XddW8I+JHOBjpZSi1+tFq9WKTqcTw+EwNptNlGUZx+MxzudzbLfbl7l2ux2TySR2u93bkVMUxcva4XCI8Xj86+8AmvFV13Xd9CYAAP6af3IAgCyJHAAgSyIHAMiSyAEAsiRyAIAsiRwAIEsiBwDIksgBALIkcgCALIkcACBLIgcAyJLIAQCy9A2dHAJTzg0xswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "DatetimeIndex: 11721 entries, 1980-01-01 to 2024-07-25\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 High Yield Index OAS 7197 non-null float64\n", + " 1 NASDAQ 11236 non-null float64\n", + " 2 90-Day AA Fin CP 6465 non-null float64\n", + " 3 3-Month T-Bill 11143 non-null float64\n", + " 4 10-Year Treasury 11143 non-null float64\n", + " 5 VIX 8722 non-null float64\n", + "dtypes: float64(6)\n", + "memory usage: 641.0 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGVCAYAAABenpPyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC450lEQVR4nOydd1wT5x/HPxnsLchSQFQURMW9d1WctXVbtVpX67atdfxsrXVrrau1bsWttVXrqltx454gooKogCiyIZBxvz9iQi65Sy4hkASe9+vFi+Tuubsnl8s9n/s+38GjKIoCgUAgEAgEQinBN3UHCAQCgUAglC+I+CAQCAQCgVCqEPFBIBAIBAKhVCHig0AgEAgEQqlCxAeBQCAQCIRShYgPAoFAIBAIpQoRHwQCgUAgEEoVIj4IBAKBQCCUKkJTd0AdmUyGpKQkODk5gcfjmbo7BAKBQCAQOEBRFLKzs+Hr6ws+X7ttw+zER1JSEvz8/EzdDQKBQCAQCAbw6tUrVK5cWWsbsxMfTk5OAOSdd3Z2NnFvCAQCgUAgcCErKwt+fn7KcVwbZic+FFMtzs7ORHwQCAQCgWBhcHGZIA6nBAKBQCAQShUiPggEAoFAIJQqZjftwhWpVAqxWGzqbhAIJsHa2lqnNzmBQCCYKxYnPiiKQkpKCjIyMkzdFQLBZPD5fAQGBsLa2trUXSEQCAS9sTjxoRAenp6esLe3J7lACOUORS6c5ORk+Pv7k98AgUCwOCxKfEilUqXwcHd3N3V3CASTUbFiRSQlJUEikcDKysrU3SEQCAS9sKhJY4WPh729vYl7QiCYFsV0i1QqNXFPCAQCQX8sSnwoIGZmQnmH/AYIBIIlY5Hig0AgEAgEguVCxIeZERERAVdXV722GT58OD777DOj9kPffV64cAE8Hk9rFJIhn80QSus4BAKBQDAMIj5KCbbBXH3QHjBgAJ4+fVqifZk3bx58fHzw4cMH2vL79+/DxsYGR48exapVqxAREVGi/WCCx+Ph0KFDpX5cQ/jw4QOmTJmCgIAAWFtbw9fXFyNGjEBiYiJj+0WLFkEgEODXX3/VWCeVSrF48WIEBwfDzs4OFSpUQNOmTbFp06aS/hgEAqEYFIokuLgnFklx6abuikVBxIeZYWdnB09PzxI9xsyZM+Hn54fx48crl4nFYgwbNgxDhgxBjx494OLiQqwHWvjw4QOaNWuGM2fOYN26dXj27Bn27t2LZ8+eoXHjxnjx4oXGNlu2bMG0adOwZcsWjXW//PILVqxYgXnz5iE6Ohrnz5/HmDFjSD4bAsHMuXE0Hg8j3+Dgb3dN3RWLgogPM4NpymD+/Pnw9PSEk5MTRo0ahRkzZqBevXoa2y5btgw+Pj5wd3fH+PHjWTPACoVCbN++HYcOHcLff/8NAFiwYAEyMjKwYsUKAJqWGplMhkWLFiEwMBB2dnYICwtTbqvts/j7+8Pe3h6ff/450tLSuJ8IAAkJCeDxeDhw4ADat28Pe3t7hIWF4dq1a3of599//0WDBg1ga2uLqlWr4pdffoFEIgEAzJ07F76+vrTtunfvjvbt20MmkzH2bdasWUhKSsKZM2fQtWtX+Pv7o02bNjh58iSsrKxowg4AIiMjkZ+fj7lz5yIrKwtXr16lrT98+DDGjRuHfv36ITAwEGFhYRg5ciSmTp2q1zkjEAilS2Zqvqm7YJFYvPigKAp5hRKT/FEUVeKfb9euXViwYAGWLFmC27dvw9/fH2vXrtVod/78eTx//hznz5/Htm3bEBERoXXaJDg4GIsWLcLYsWNx8uRJLFq0CFu3bmWtJLxo0SJs374d69atw+PHj/Htt99iyJAhiIyMZGwfFRWFkSNHYsKECbh37x7at2+P+fPnG3QOZs2ahalTp+LevXuoUaMGBg0apBQOXI5z6dIlfPnll5g8eTKio6Oxfv16REREYMGCBcr9V6lSBaNGjQIArFmzBlevXsW2bdsYU5jLZDLs3bsXgwcPhre3N22dnZ0dxo0bh5MnT9KmtTZv3oxBgwbBysoKgwYNwubNm2nbeXt749y5c3j37p1B54hAIJiIUhgHyiIWlWSMiXyxFLVmnzTJsaPnhsPemvspPHr0KBwdHWnLdOVp+P333zFy5Eh89dVXAIDZs2fj1KlTyMnJobVzc3PDH3/8AYFAgODgYHTv3h1nz57F6NGjWfc9efJk/Pvvv+jWrRsmTpyI9u3bM7YrKCjAwoULcebMGTRv3hwAULVqVVy+fBnr169H27ZtNbZZtWoVunTpgmnTpgEAatSogatXr+LEiRNaPy8TU6dORffu3QHIpydCQ0Px7NkzBAcHczrOL7/8ghkzZmDYsGHKvs+bNw/Tpk3Dzz//DIFAgJ07d6JevXqYMWMGVq9ejU2bNsHf35+xP+/evUNGRgZCQkIY14eEhICiKDx79gxNmjRBVlYW/v77b6XFZsiQIWjdujVWrVqlvB6WL1+Ovn37wtvbG6GhoWjRogV69eqFrl276n2+CARC6UG0h2FYvOXDkmjfvj3u3btH+9PlUBgbG4smTZrQlqm/B4DQ0FAIBALlex8fH6SmpmrdN4/Hw6xZsyCTyfDjjz+ytnv27Bny8vLQqVMnODo6Kv+2b9+O58+fM24TExODpk2b0pYphIu+1K1bV/nax8cHAJSfjctx7t+/j7lz59L6Pnr0aCQnJyMvLw+AXJAsW7YMS5YswaeffoovvvhCZ7+4Wr727NmDatWqISwsDABQr149BAQEYN++fco2tWrVwqNHj3D9+nWMGDECqamp6Nmzp9IaQyAQzBMiPgzD4i0fdlYCRM8NN9mx9cHBwQHVq1enLXv9+rVR+qKeYpvH47H6K6giFApp/5lQWFmOHTuGSpUq0dbZ2Njo21W9Uf1siuRaXD6bgpycHPzyyy/o3bu3xjpbW1vl64sXL0IgECAhIQESiYT1nFSsWBGurq6IiYlhXB8TEwMej6f8rjdv3ozHjx/T9ieTybBlyxaMHDlSuYzP56Nx48Zo3LgxpkyZgp07d2Lo0KGYNWsWAgMDOX9egmVAyShIJDJYWet3HyGYG0R9GIJelg+pVIqffvpJ6XRYrVo1zJs3j/YESFEUZs+eDR8fH9jZ2aFjx46Ii4szescV8Hg82FsLTfJXGlkma9asiZs3b9KWqb8vaWrVqgUbGxskJiaievXqtD8/Pz/GbUJCQhAVFUVbdv36daP3jctxGjRogNjYWI2+V69eXenTsW/fPhw4cAAXLlxAYmIi5s2bx3pMPp+P/v37Y/fu3UhJSaGty8/Px59//onw8HBUqFABDx8+xK1bt3DhwgWaxevChQu4du0anjx5wnqcWrVqAQByc3P1OicEy+DQirvYMCkSuZkFpu4KoTgQ7WEQelk+lixZgrVr12Lbtm0IDQ3FrVu38NVXX8HFxQWTJk0CACxduhSrV6/Gtm3bEBgYiJ9++gnh4eGIjo6mPWUSuDFx4kSMHj0ajRo1QosWLbBv3z48ePAAVatWLbU+ODk5YerUqfj2228hk8nQqlUrZGZm4sqVK3B2dlb6UqgyadIktGzZEsuWLUOvXr1w8uRJg/w9dMHlOLNnz0aPHj3g7++Pvn37gs/n4/79+3j06BHmz5+P169fY+zYsViyZAlatWqFrVu3okePHujatSuaNWvGeNyFCxfi7Nmz6NSpE5YuXYratWsjPj4eP/74I8RiMdasWQNAbvVo0qQJ2rRpo7GPxo0bY/Pmzfj111/Rt29ftGzZEi1atIC3tzfi4+Mxc+ZM1KhRA8HBwUY/bwTTkxSXAQB4cfcd6rSrbNrOEAyGaA/D0MvycfXqVfTq1Qvdu3dHlSpV0LdvX3Tu3Bk3btwAILd6rFy5Ej/++CN69eqFunXrYvv27UhKSrKYxFHmxuDBgzFz5kxMnToVDRo0QHx8PIYPH17qQm7evHn46aefsGjRIoSEhKBLly44duwY63RAs2bNsHHjRqxatQphYWE4deqUVr8SQ+FynPDwcBw9ehSnTp1C48aN0axZM6xYsQIBAQGgKArDhw9HkyZNMGHCBGX7sWPHYsiQIRqOvQrc3d1x/fp1tG/fHl9//TWqVauG/v37o1q1arh58yaqVq2KwsJC7Ny5E3369GHcR58+fbB9+3aIxWKEh4fjyJEj6NmzJ2rUqIFhw4YhODgYp06d0jolRrBMKBkZssoMxOnDIHiUHvGiCxcuxIYNG3Dq1CnUqFED9+/fR+fOnbF8+XIMHjwYL168QLVq1XD37l1aHoq2bduiXr16WLVqlcY+CwoKUFBQZHbMysqCn58fMjMzNcI+RSIR4uPjERgYWK6tKJ06dYK3tzd27Nhh6q4QTAT5LVg21w4+w52T8ky4bQbWIJYPC+bflXfx+ok8u+n4dR1M3BvTkpWVBRcXF8bxWx29HqlmzJiBrKwsBAcHQyAQQCqVYsGCBRg8eDAAKOe/vby8aNt5eXlpzI0rWLRoEX755Rd9ulGuyMvLw7p16xAeHg6BQIA9e/bgzJkzOH36tKm7RiAQDEQhPAiE8ope0y5//fUXdu3ahd27d+POnTvYtm0bli1bhm3bthncgZkzZyIzM1P59+rVK4P3VRbh8Xg4fvw42rRpg4YNG+LIkSP4559/0LFjR1N3jUAgEAgEg9DL8vHDDz9gxowZGDhwIACgTp06ePnyJRYtWoRhw4Ypsz2+fftWmY9B8Z4pHTggD9UsjXBNS8XOzg5nzpwxdTcIBAKBwEBpZLoui+hl+cjLy9NINy0QCJQ5FwIDA+Ht7Y2zZ88q12dlZSEqKsrgBFMEAoFAIJgtRHsYhF6Wj549e2LBggXw9/dHaGgo7t69i+XLl2PEiBEA5FMEU6ZMwfz58xEUFKQMtfX19WUsJ08gEAgEgiVDDB+GoZf4+P333/HTTz9h3LhxSE1Nha+vL77++mvMnj1b2WbatGnIzc1VlgNv1aoVTpw4QTzyCQQCgUAgANBTfDg5OWHlypVYuXIlaxsej4e5c+di7ty5xe0bgUAgEAhmDfH5MAxSWI5AIBAIBEKpQsQHgUAgEAiGQgwfBkHEB8FimTNnDmsIN4FAIJQGZNbFMIj4KCWys7MxZcoUBAQEwM7ODi1atNCoTmtIReCEhATweDzln5OTE0JDQzF+/PgSrSbMhCILq66qu8HBwbCxsWHNeqtKREQE7fMp/jZt2oSpU6fSwroNpbCwEEuXLkVYWBjs7e3h4eGBli1bYuvWrRCLxQCA4cOHK49tbW2N6tWrY+7cuZBIJMU+PoFAsGSI+jAEIj5KiVGjRuH06dPYsWMHHj58iM6dO6Njx4548+aNso2iIvC6desQFRUFBwcHhIeHQyQS6dz/mTNnkJycjPv372PhwoWIiYlBWFiYUQZnLiQmJuLq1auYMGECtmzZwtru8uXLyM/PR9++fTlnxnV2dkZycjLtb/DgwXB0dIS7u3ux+l1YWIjw8HAsXrwYY8aMwdWrV3Hjxg2MHz8ev//+Ox4/fqxs26VLFyQnJyMuLg7ff/895syZg19//bVYxycQCJYNsXwYBhEfpUB+fj7++ecfLF26FG3atEH16tUxZ84cVK9eHWvXrgVQ/IrA7u7u8Pb2RtWqVdGrVy+cOXMGTZs2xciRIyGVSgEAz58/R69eveDl5QVHR0c0btyYlj117ty5qF27tsa+69Wrh59++knr8RVl6MeOHYs9e/YgPz+fsd3mzZvxxRdfYOjQoVpFiio8Hg/e3t60Pzs7O41pl+HDh+Ozzz7DsmXL4OPjA3d3d4wfP15pvWBi5cqVuHjxIs6ePYvx48ejXr16qFq1Kr744gtERUUhKChI2dbGxgbe3t4ICAjA2LFj0bFjRxw+fJjTZyAQCGWTt/FZpu6CRWL54oOigMJc0/xxlLwSiQRSqVQj14mdnR0uX74MAIiPj0dKSgqtZouLiwuaNm2Ka9eu6X1a+Hw+Jk+ejJcvX+L27dsAgJycHHTr1g1nz57F3bt30aVLF/Ts2ROJifIiVyNGjEBMTAxt2uTu3bt48OABvvrqK9ZjURSFrVu3YsiQIQgODkb16tXx999/a7TLzs7G/v37MWTIEHTq1AmZmZm4dOmS3p9NG+fPn8fz589x/vx5bNu2DREREYiIiGBtv2vXLnTs2BH169fXWGdlZQUHBwfWbe3s7FBYWGiMbhMIBEK5Qq88H2aJOA9Y6GuaY/8vCbBmH5wUODk5oXnz5pg3bx5CQkLg5eWFPXv24Nq1a6hevToAwyoC6yI4OBiA3C+kSZMmCAsLQ1hYmHL9vHnzcPDgQRw+fBgTJkxA5cqVER4ejq1bt6Jx48YA5BaNtm3bomrVqqzHOXPmDPLy8hAeHg4AGDJkCDZv3oyhQ4fS2u3duxdBQUEIDQ0FAAwcOBCbN29G69attX6OzMxMODo6Kt87OjqynhM3Nzf88ccfEAgECA4ORvfu3XH27FmMHj2asX1cXBzatWun9fjqUBSFs2fP4uTJk5g4caJe2xIIBAKhLFg+LIQdO3aAoihUqlQJNjY2WL16NQYNGqRRK0cbXbt2haOjIxwdHZUDuDYUyW94PB4AueVj6tSpCAkJgaurKxwdHRETE6O0fADA6NGjsWfPHohEIhQWFmL37t3K9PlsbNmyBQMGDIBQKNeygwYNwpUrV/D8+XONdkOGDFG+HzJkCPbv34/s7Gyt+3dycsK9e/eUf1evXmVtGxoaCoFAoHzv4+OD1NRU1vb6JAg6evQoHB0dYWtri65du2LAgAGYM2cO5+0JBAKBIMfyLR9W9nILhKmOzZFq1aohMjISubm5yMrKgo+PDwYMGKC0KHCpCLxp0yalL4WVlZXOY8bExACQF/wDgKlTp+L06dNYtmwZqlevDjs7O/Tt25c2ddCzZ0/Y2Njg4MGDsLa2hlgsRt++fVmP8eHDBxw8eBBisVjpvwIAUqkUW7ZswYIFCwAA0dHRuH79Om7cuIHp06fT2u3du5fVMgHIp5AUFiJdqJ8XHo+nLHzIRI0aNfDkyRNO+27fvj3Wrl0La2tr+Pr6KsUWgUAgEPTD8u+ePB6nqQ9zwcHBAQ4ODkhPT8fJkyexdOlSAPSKwAqxoagIPHbsWABApUqVOB9HJpNh9erVCAwMVPozXLlyBcOHD8fnn38OQG4JSUhIoG0nFAoxbNgwbN26FdbW1hg4cCDs7OxYj7Nr1y5UrlxZwyn21KlT+O233zB37lwIBAJs3rwZbdq0wZo1a2jttm7dis2bN2sVHyXJF198gf/973+4e/euht+HWCxGYWGh0u/DwcGBswgiEAgEAjuWLz4shJMnT4KiKNSsWRPPnj3DDz/8gODgYKUjZ3ErAqelpSElJQV5eXl49OgRVq5ciRs3buDYsWPKaYigoCAcOHAAPXv2BI/Hw08//cRoFRg1ahRCQkIAyAWLNjZv3oy+fftqRMn4+flh5syZOHHiBDp37owdO3YwRtOMGjUKy5cvx+PHjzlNJRmbKVOm4NixY/jkk08wb948tGrVCk5OTrh16xaWLFmCzZs3k0RmBAKBYGSI+CglMjMzMXPmTLx+/RoVKlRAnz59sGDBAto0QXEqAiuiZOzt7REQEID27dtjw4YNtCf15cuXY8SIEWjRogU8PDwwffp0ZGVphokFBQWhRYsW+PDhA5o2bcp6zNu3b+P+/fvYuHGjxjoXFxd88skn2Lx5M0QiEdLS0pQWF1VCQkIQEhKCzZs3Y/ny5To/p7GxsbHB6dOnsWLFCqxfvx5Tp06Fvb09QkJCMGnSJMbQYwKBQCAUDx5lZiX5srKy4OLigszMTDg7O9PWiUQixMfHIzAwkNOATDAMiqIQFBSEcePG4bvvvjN1dwgMkN+CZbPmm3PK120G1kCddpVN2BtCcVD9Lsev62DCnpgebeO3OsTyQaDx7t077N27FykpKVpzexAIBOPwMRiNQChXEPFBoOHp6QkPDw9s2LABbm5upu4OgVD2IeqDUA4h4oNAw8xm4QgEAoFQBiFJxggEAsGEEMMHoTxCxAeBQCCYEB5RH4RyCBEfBAKBQCAQShUiPggEAsGUEMMHoRxCxAeBQCAQCIRShYgPAoFAIBAIpQoRHwROREREwNXV1dTdACB30FMUsktISACPx8O9e/cAABcuXACPx0NGRobJ+kcg6APxNyWUR4j4KCXWrl2LunXrwtnZGc7OzmjevDn+++8/ndvxeDzweDxcv36dtrygoADu7u7g8Xi4cOGCUftapUoVrFy5slj7mDNnjrLvbH+6tnFxcUHr1q0RGRlJa5ecnIyuXbsWq38EgvlA1Aeh/EHERylRuXJlLF68GLdv38atW7fQoUMH9OrVC48fP9a5rZ+fH7Zu3UpbdvDgQTg6OpZUd4vN1KlTkZycrPyrXLky5s6dS1vGRGhoqHL9tWvXEBQUhB49eiAzM1PZxtvbGzY2NqX1UQiEEoVYPgjlESI+SomePXuiW7duCAoKQo0aNbBgwQI4OjpqWDSYGDZsGPbu3Yv8/Hzlsi1btmDYsGEabR8+fIgOHTrAzs4O7u7uGDNmDHJycpTrhw8fjs8++wzLli2Dj48P3N3dMX78eIjFYgBAu3bt8PLlS3z77beMFoqTJ08iJCQEjo6O6NKlC6uIcHR0hLe3t/JPIBDAycmJtowJoVCoXF+rVi3MnTsXOTk5ePr0qbKN6rQLgWDxEPFBKIdYvPigKAp54jyT/BmailwqlWLv3r3Izc1F8+bNdbZv2LAhqlSpgn/++QcAkJiYiIsXL2Lo0KG0drm5uQgPD4ebmxtu3ryJ/fv348yZM5gwYQKt3fnz5/H8+XOcP38e27ZtQ0REBCIiIgAABw4c0LBSKMjLy8OyZcuwY8cOXLx4EYmJiZg6dapB54ALBQUF2Lp1K1xdXVGzZs0SOw6BQCAQSheLr+2SL8lH091NTXLsqC+iYG9lz7n9w4cP0bx5c4hEIjg6OuLgwYOoVasWp21HjBiBLVu2YMiQIYiIiEC3bt1QsWJFWpvdu3dDJBJh+/btcHBwAAD88ccf6NmzJ5YsWQIvLy8AgJubG/744w8IBAIEBweje/fuOHv2LEaPHo0KFSrQrBSqiMVirFu3DtWqVQMATJgwAXPnzuX8+bnw8OFD5XRSXl4enJycsG/fPp3lmQkES4UYPgjlEYu3fFgSNWvWxL179xAVFYWxY8di2LBhiI6OBgB88803cHR0VP6pM2TIEFy7dg0vXrxAREQERowYodEmJiYGYWFhSuEBAC1btoRMJkNsbKxyWWhoKAQCgfK9j48PUlNTdfbf3t5eKTz02Y4Jts+rOEf37t3D7du3MXbsWPTr1w+3bt0y6DgEgrkhlcroC4jTB6EcYvGWDzuhHaK+iDLZsfXB2toa1atXByCfSrl58yZWrVqF9evXY+7cuVqnMNzd3dGjRw+MHDkSIpEIXbt2RXZ2tkH9trKyor3n8XiQyWQsrbVvZ+jUE9vnVT1HAFC/fn0cOnQIK1euxM6dOw06FoFgVpDC0QSC5YsPHo+n19SHOSGTyVBQUAAA8PT0hKenp9b2I0aMQLdu3TB9+nSa5UJBSEgIIiIikJubq7R+XLlyBXw+Xy+fCWtra0ilUj0+if5w+bwKBAIBzdmWQCAQCJaNxYsPS2HmzJno2rUr/P39kZ2djd27d+PChQs4efIk53106dIF7969Y/V/GDx4MH7++WcMGzYMc+bMwbt37zBx4kQMHTpU6e/BhSpVquDixYsYOHAgbGxs4OHhwXnb4iKRSJCSkgIAyM7Oxr59+xAdHY3p06eXWh8IhNKEzLoQyiNEfJQSqamp+PLLL5GcnAwXFxfUrVsXJ0+eRKdOnTjvg8fjaRUC9vb2OHnyJCZPnozGjRvD3t4effr0wfLly/Xq69y5c/H111+jWrVqKCgoMHhqxRAeP34MHx8fAEU+JmvXrsWXX35Zan0gEEqTB+dfo0YT5tBzAqGswqNKc2ThQFZWFlxcXJCZmanxhC8SiRAfH4/AwEDY2tqaqIcEgukhvwXLRSqRYd2EC8r3zhXtMHSe7pB7gnmy5ptzytfj13UwYU9Mj7bxWx0S7UIgEAgEAqFUIeKDQCAQShOzsjUTCKaBiA8CgUAoRSh19WFeM98EQqlAxAeBQCAQCIRShYgPAoFAKE2IoYNAIOKDQCAQCARC6ULEB4FAIJQixPBBIBDxQSAQCAQCoZQh4oNAIBBKE2L6IBCI+CAQCAQCwRjIpLqrgxPkEPFRSly8eBE9e/aEr68veDweDh06pNGGoijMnj0bPj4+sLOzQ8eOHREXF6fRrqCgAKGhoRgzZozGumnTpiEwMBDZ2dkl8TFoREREgMfjaf1LSEgo8X4QCJaEmVW0IBgRUa7E1F2wGIj4KCVyc3MRFhaGNWvWsLZZunQpVq9ejXXr1iEqKgoODg4IDw+HSCSitbOxscH27dsRERFBq4p7/fp1rFixAhEREXBycjJq/ymKgkRC/2ENGDAAycnJyr/mzZtj9OjRtGV+fn7K9oWFhUbtkzERi8Wm7gKBQCCUG4j4KCW6du2K+fPn4/PPP2dcT1EUVq5ciR9//BG9evVC3bp1sX37diQlJTFaSRo2bIhZs2Zh5MiRyMjIgEgkwldffYWJEyeibdu2uHz5Mlq3bg07Ozv4+flh0qRJyM3NVW6/Y8cONGrUCE5OTvD29sYXX3yB1NRU5foLFy6Ax+Phv//+Q8OGDWFjY4PLly/T+mBnZwdvb2/ln7W1Nezt7ZXvZ8yYgT59+mDBggXw9fVFzZo1AQCvXr1C//794erqigoVKqBXr140C8nNmzfRqVMneHh4wMXFBW3btsWdO3do52rOnDnw9/eHjY0NfH19MWnSJOV6JsuSq6srIiIiAAAJCQng8XjYt28f2rZtC1tbW2zYsAHOzs74+++/adsdOnQIDg4OpWJJIhAIhPKCxYsPiqIgy8szyZ8xzafx8fFISUlBx44dlctcXFzQtGlTXLt2jXGbWbNmwdvbG5MmTcKPP/4IHo+HhQsX4vnz5+jSpQv69OmDBw8eYN++fbh8+TImTJig3FYsFmPevHm4f/8+Dh06hISEBAwfPlzjGDNmzMDixYsRExODunXr6v25zp49i9jYWJw+fRpHjx6FWCxGeHg4nJyccOnSJVy5cgWOjo7o0qWL0jKSnZ2NYcOG4fLly7h+/TqCgoLQrVs3pQD4559/sGLFCqxfvx5xcXE4dOgQ6tSpo3ffZsyYgcmTJyMmJga9e/fGwIEDsXXrVlqbrVu3om/fvka3JBHKMWTWpcxCptS4IzR1B4oLlZ+P2AYNTXLsmndug2dvb5R9paSkAAC8vLxoy728vJTr1BEKhdi+fTsaNmwImUyGK1euwNbWFosWLcLgwYMxZcoUAEBQUBBWr16Ntm3bYu3atbC1tcWIESOU+6latSpWr16Nxo0bIycnB46Ojsp1c+fORadOnQz+XA4ODti0aROsra0BADt37oRMJsOmTZvA4/EAyAd4V1dXXLhwAZ07d0aHDvSy1Bs2bICrqysiIyPRo0cPJCYmwtvbGx07doSVlRX8/f3RpEkTvfs2ZcoU9O7dW/l+1KhRaNGiBZKTk+Hj44PU1FQcP34cZ86cMfjzEwi6IOMVoTxi8ZaP8kTXrl3h6OgIR0dHhIaGAgBq1aqFPn36oFOnTmjUqBEA4P79+4iIiFC2dXR0RHh4OGQyGeLj4wEAt2/fRs+ePeHv7w8nJye0bdsWAJCYmEg7pmKfhlKnTh2l8FD07dmzZ3ByclL2rUKFChCJRHj+/DkA4O3btxg9ejSCgoLg4uICZ2dn5OTkKPvWr18/5Ofno2rVqhg9ejQOHjyo4Y/CBfXP1qRJE4SGhmLbtm0A5EIpICAAbdq0MfTjEwgaqGsN8rRMKI9YvOWDZ2eHmndum+zYxsLb2xuAfOD18fFRLn/79i3q1asHANi0aRPy8/MBAFZWVso2QqEQQmHRV5mTk4Ovv/6a5gehwN/fH7m5uQgPD0d4eDh27dqFihUrIjExEeHh4RpOoQ4ODsX6XOrb5+TkoGHDhti1a5dG24oVKwIAhg0bhrS0NKxatQoBAQGwsbFB8+bNlX3z8/NDbGwszpw5g9OnT2PcuHH49ddfERkZCSsrK/B4PI0bOpNDKdNnGzVqFNasWYMZM2Zg69at+Oqrr5QWGgKhRCDag1AOsXzxweMZberDlAQGBsLb2xtnz55Vio2srCxERUVh7NixAIBKlSpx2leDBg0QHR2N6tWrM65/+PAh0tLSsHjxYmU0yq1bt4r/ITj2bd++ffD09ISzszNjmytXruDPP/9Et27dAMgdVN+/f09rY2dnh549e6Jnz54YP348goOD8fDhQzRo0AAVK1ZEcnKysm1cXBzy8vI49W/IkCGYNm0aVq9ejejoaAwbNszAT0ogsKAmjInhg1AeIdMupUROTg7u3buHe/fuAZA7mN67d085lcDj8TBlyhTMnz8fhw8fxsOHD/Hll1/C19cXn332mV7Hmj59Oq5evYoJEybg3r17iIuLw7///qt0OPX394e1tTV+//13vHjxAocPH8a8efOM+XFZGTx4MDw8PNCrVy9cunQJ8fHxuHDhAiZNmoTXr18DkPuo7NixAzExMYiKisLgwYNhp2JlioiIwObNm/Ho0SO8ePECO3fuhJ2dHQICAgAAHTp0wB9//IG7d+/i1q1b+Oabb2iWIm24ubmhd+/e+OGHH9C5c2dUrlzZ+CeBUK7REBtEfZQdyFfJGSI+Solbt26hfv36qF+/PgDgu+++Q/369TF79mxlm2nTpmHixIkYM2aM0vnzxIkTsLW11etYdevWRWRkJJ4+fYrWrVsrj+Pr6wtAPr0RERGB/fv3o1atWli8eDGWLVtmvA+rBXt7e1y8eBH+/v7o3bs3QkJCMHLkSIhEIqUlZPPmzUhPT0eDBg0wdOhQTJo0CZ6ensp9uLq6YuPGjWjZsiXq1q2LM2fO4MiRI3B3dwcA/Pbbb/Dz80Pr1q3xxRdfYOrUqbDXwzo2cuRIFBYW0pxyCYSSgoxXhPIIjzIzb6esrCy4uLggMzNTwywvEokQHx+PwMBAvQdkAoErO3bswLfffoukpCSas6w5QX4LlosoV4zN319Svrd3tsZXS1uZsEeE4rDmm3PK18MWtYSjm40Je2NatI3f6li8zweBYCzy8vKQnJyMxYsX4+uvvzZb4UEoW5jZ8x+BUCqQaRcC4SNLly5FcHAwvL29MXPmTFN3h1BWIVqjDEO+XK4Q8UEgfGTOnDkQi8U4e/YsLdEagVCSUKQQKqEcQsQHgUAglCIU1ENtydNyWYF8ldwh4oNAIBAIBCNAhCR39BYfb968wZAhQ+Du7g47OzvUqVOHlqCKoijMnj0bPj4+sLOzQ8eOHREXF2fUThMIBILFojY+UTIyYJUV+HySDZkreomP9PR0tGzZElZWVvjvv/8QHR2N3377DW5ubso2S5cuxerVq7Fu3TpERUXBwcEB4eHhEIlERu88gUAgWBrqD8dEehDKI3qF2i5ZsgR+fn60suOBgYHK1xRFYeXKlfjxxx/Rq1cvAMD27dvh5eWFQ4cOYeDAgUbqNoFAIJQNiKW+7EC+S+7oZfk4fPgwGjVqhH79+sHT0xP169fHxo0blevj4+ORkpKCjh07Kpe5uLigadOmuHbtGuM+CwoKkJWVRfsjEAiEcgOZdiGUQ/QSHy9evMDatWsRFBSEkydPYuzYsZg0aZKyBHlKSgoAwMvLi7adl5eXcp06ixYtgouLi/JPUeiMQCAQygNEepQdiMMpd/QSHzKZDA0aNMDChQtRv359jBkzBqNHj8a6desM7sDMmTORmZmp/Hv16pXB+zJXevbsiS5dujCuu3TpEng8Hh48eAAej6csPHf8+HFYW1vjzp07tPa//fYbPDw8WMUcgUAwb9QHKOJwWoYgXyVn9BIfPj4+qFWrFm1ZSEiIsjKrt7c3AODt27e0Nm/fvlWuU8fGxgbOzs60v7LGyJEjcfr0aWXVVlW2bt2KRo0aaXzubt264csvv8SXX36JgoICAEB0dDR+/PFHrFmzhvV8EggEy4KID0J5RC/x0bJlS8TGxtKWPX36VFnKPDAwEN7e3jh79qxyfVZWFqKiotC8eXMjdNcy6dGjh7KSrCo5OTnYv38/Ro4cybjdihUrkJOTg59//hkSiQTDhg1Dz549MWDAgFLoNYFAKA2Ipb7sQL5L7ugV7fLtt9+iRYsWWLhwIfr3748bN25gw4YN2LBhAwCAx+NhypQpmD9/PoKCghAYGIiffvoJvr6++Oyzz0qi/6AoCpJC0+QnFlrzwePpjusWCoX48ssvERERgVmzZim32b9/P6RSKQYNGoT09HSN7ZycnLBlyxaEh4cjPj4er169wokTJ4z+OQgEQilCBqgyDPlyuaKX+GjcuDEOHjyImTNnYu7cuQgMDMTKlSsxePBgZZtp06YhNzcXY8aMQUZGBlq1aoUTJ06UWNlvSaEMGyZHlsi+dTFmVVtY2Qg4tR0xYgR+/fVXREZGol27dgDkUy59+vSBi4sLo/gAgA4dOqBv377Yu3cv9u3bB3d3d2N1n0AgEAhGhFg+uKN3htMePXrg4cOHEIlEiImJwejRo2nreTwe5s6di5SUFIhEIpw5cwY1atQwWoctleDgYLRo0QJbtmwBADx79gyXLl1inXJR8ObNG5w4cQL29va4dOlSaXSVQCCUIGSAKsOQ75Yzelk+zBGhNR9jVrU12bH1YeTIkZg4cSLWrFmDrVu3olq1amjbVnvfR48ejYYNG2LWrFno1KkT+vbtq3MbAoFAIBDMGYsXHzwej/PUh6np378/Jk+ejN27d2P79u0YO3asVp+RTZs24fLly3j48CECAgIwduxYjBgxAg8ePICDg0Mp9pxAIBgP8nhcViF5PrhDqtqWIo6OjhgwYABmzpyJ5ORkDB8+nLXty5cv8d1332HZsmXKaKIlS5aAx+NhxowZpdRjAoFAIBCMDxEfpczIkSORnp6O8PBw+Pr6MrahKAojR45E8+bNMWbMGOVye3t7REREYO3atYiMNI2TLYFAKB5MD8eJj9NKvyMEo0MMH9yx+GkXS6N58+aMprkqVarQlp85c4Zx+1atWkEikZRY/wgEQulzdnsMvlrSytTdIBQXIj44QywfBAKBQCAYAYqoD84Q8UEgEAilCHFKLMOQr5YzRHwQCAQCgUAoVYj4IBAIhNKE6emYPDGXCYhRiztEfBAIBAKBYBSI+uCKRYoPmcw0heQIBHOB+A0QCOYH+Vlyx6JCba2trcHn85GUlISKFSvC2tqaU1VZAqEsQVEU3r17J8/ua2Vl6u4QCAQFRHxwxqLEB5/PR2BgIJKTk5GUlGTq7hAIJoPH46Fy5coQCCyjtAChCPJ0TCBYmPgA5NYPf39/SCQSSKVSU3eHQDAJVlZWRHhYLJrqg+iRsgGZDuWOxYkPAEpzMzE5EwgEAoFgeVikwymBQCBYKuThuOxCvlvuEPFBIBAIBIIxIOKDM0R8EAgEQmnCmGSMjFplAVLbhTtEfBAIBIKJyc8WY8035yApJE70Fg3RHpwh4oNAIBDMBDJ2EcoLRHwQCASCuUDUB6GcQMQHgUAglCLackGQPBGWDfn6uEPEB4FAIBAIxoCoD84Q8UEgEAgEghEg0oM7RHwQCARCKaL14ZiMXpYN+f44Q8QHgUAgmAlk7LJ0yDfIFSI+CAQCoTQh41OZhbh8cIeIDwKBQDAXyOhl2ZCvjzNEfBAIBEIpoi0FN9Eelg35+rhDxAeBQCCUJlpGqLQ3OaXXD4LxIeqRM0R8EAgEgpmQ/CzD1F0gFAMiPbhDxAeBQCCYCQKhwNRdIBQHoj44Q8QHgUAgmAk8cke2bIj44Ay51AkEAqEUIW4BZRdtzsQEOkR8EAgEQhmHoii8f50NqURm6q6UbYj24AwRHwQCgVCqsI9QPB6vRI74+FIS9s2/ieNrH5bI/glyiPbgDhEfBAKBUMZ5cO4VACDxcZqJe1LGIeqDM0R8EAgEQimizefD0c2m9DpCMDoUcejhDBEfBAKBUJooxieGGRYbB6uSOSQZEwlmBhEfBAKBUIpICqXyF0yCgKgEi0ZSSBx6uULEB4FAIJQid08nmroLhBLi1n8Jpu6CxUDEB4FAIJQi2R9ErOuI3cOyIbV5uEPEB4FQxhHliCGTkWHNXNAWTpuZms9pH6JcMd48TScOjgSLhYgPAqEM8yE5F5unXsKh5XdM3RXCR3h8dvERuTuW0z72zo3CoeV3EXfrrd7HFxdI9d6GwBGiBTlDxAeBUIY5tuY+ACD5WaaJe0JQwDfCXTc3sxAA8OLuO7233TA5ErkZBcXvBIFQDIj4IBDKKIUiCbLes/sXmJo3senYO/9GuZsn12b5KCnUp2ee300t9T4QCKoQ8UEglFHMPezv0Iq7SHudg73zbpi6K6VKcHMf4+3MYDN/6QsgAkEVIj4IBAKhFLG2FQIAPKs4m6wPJVRChkDgDBEfBEIZJT+70NRdIGhBaFWKt1/iCEkwM4j4IBDKKFGHX5j0+CQMlEAgsEHEB4FQRpGITefzkfYmBxHTr+DRxTcm64O5QkQZgUDEB4FQZsnLNF045bntMcjLKuSct6I8Ykq/C+LzQTA1RHwQCGWUnHTTiQ+SUbV0IGeZYKkQ8UEgEExOuRQrpWh9yE5Ty/dCTB8EE0PEB4FQRrEk14ItUy+Vn6ybJvheyqW4I5g1RHwQCGUUUzo2aiuexkRBngT3zr4qod6YK6azPhDDB8HUEPFBIJRVLOxhVyYx74ysxoKytC+GQCgBiPggEMoophzi3iVmm/DolgGxPhDKM0R8EAhlFUub5y8vg7ExvxYL+4oJBAVEfBAIZRSZJXmcQn8/EYLhkHNNMDXFEh+LFy8Gj8fDlClTlMtEIhHGjx8Pd3d3ODo6ok+fPnj79m1x+0kgEPTF0lwoysl4WFxNSItcKUPnjKIoZLzNA2VpFjs1Xsemm7oLFoHB4uPmzZtYv3496tatS1v+7bff4siRI9i/fz8iIyORlJSE3r17F7ujBAJBPyztFl6GxlFOsBkfZFLtqvHdSxV/GkO/ZDM82XdOvsSun6/j0l9xpu5Ksfh3xV1kvM0zdTfMHoPER05ODgYPHoyNGzfCzc1NuTwzMxObN2/G8uXL0aFDBzRs2BBbt27F1atXcf36daN1mkAg6MbiaoiQqQAAAKXDYlVWo2WuH5IXQnx44bWJe1J8MlLl4iPmajKe3U41cW/ME4PEx/jx49G9e3d07NiRtvz27dsQi8W05cHBwfD398e1a9cY91VQUICsrCzaH4FAMAIWNkaVO+nBIrZKQzQSnVfy5GYU4Nz2GJzc+MjUXTFLhPpusHfvXty5cwc3b97UWJeSkgJra2u4urrSlnt5eSElJYVxf4sWLcIvv/yibzcIBEIZg1de3N91iAt9pAfJXGqmUIAoT1z0lqKIk68aev3cX716hcmTJ2PXrl2wtbU1SgdmzpyJzMxM5d+rV+UtyyGBUP5gerovyJOYoCemgwfAxoHh+U+HnuCp2ogMtpKQgbCkUf2eLG0GtDTQS3zcvn0bqampaNCgAYRCIYRCISIjI7F69WoIhUJ4eXmhsLAQGRkZtO3evn0Lb29vxn3a2NjA2dmZ9kcgEMo4DDfjgvzyIT5UP3pBruZn1keEySwtoqmcQIFuybM4/6tSQC/x8cknn+Dhw4e4d++e8q9Ro0YYPHiw8rWVlRXOnj2r3CY2NhaJiYlo3ry50TtPIBAsE6ZbcbkzS6t8XNWPfuVv7tEeFFEflgH5mjTQy+fDyckJtWvXpi1zcHCAu7u7cvnIkSPx3XffoUKFCnB2dsbEiRPRvHlzNGvWzHi9JhAIZo2VrQBikZS9AcOTIJ9fTsQHg/JSPR06U9OrnCZDtQd5Ei9dymqEUnEwuovXihUr0KNHD/Tp0wdt2rSBt7c3Dhw4YOzDEAjlHoqiUCjibqIvzQGn7aCaAABHNxvmvjAsK2+GD4AHB1f5+fHwc1Quzf4g4rwHS0/IVZZRteQRraeJ3tEu6ly4cIH23tbWFmvWrMGaNWuKu2sCgaCF05sfI+5WKgb82BgelZ10b0Ch1PwMrW0FAAB7F2bxwag+yovlQ4XPv2+AR5GvUaddZez4UZ6OQCblPlIZLD7IYFjyqPoFE5GoQXkJbiMQyhxxt+TJiw6tuMupfWlaPpRPfWzHZFhcXiwfqqfEpaIdWvYNggOLhajk+kAGwxKFoujXMzndGhDxQSBYOEwRE0yU6nijU3toruCVM8uH6uBk6Cc39DvlC8rXuTYFqtMu5HxrQsQHgVBGUb/hmdXTLqPlo7zcoItn9qE3New7tbG3Mmg7SyfmahK2/e8K0pJySvQ4FEUX0znpBbh5LB55WYUlelxLgogPAqGsojYulab2UNx42QSPGckg02FCy0d5/QLObX+CnA8FOLctpsSPpXrt7513AzeOxOPE+oclflxLgYgPAqGMoj7wl6bTm2IwZR0cmR7+S6ozZgbjOTHwwxcamJitvId+SvVw6jXK8STymOjk55mlelxzhogPglnyNj4Lu+dcx8vHaabuisWifns1hc8H2xhHSo7T9YahU07pKQaex/KtPUrn8xt4jJz0Ahz87U6Zr4ZLxAfBLDny+z2kp+Th6O/3AQBJcRnY/r+reHHvnYl7ZjnU+8SP9r5ULR887eqDae5bJi0faSBjriQBAN4mmK6C94kNjyARa0kCV46JvpKEqMMvStwvhI3Lfz1FUlxGma+GS8QHwSxRr29xdls0sj+I8N86MmfKFZeKdvQFZhTtwkT0leSS6YuZkfJCLjrys8U6WpYs0ZfLx/lmhv3CfHItGbeOJyA9uRjWOcpwS2N+jmmvi9KCiA+CRZD9ocDUXbB4SjXPh/KYpXZIgp4U5pePQY4JLtdlcYKvZDIKZG5LO0R8EAhlFPUbbKlGu3y8c6cn50KUqznIMQkh1RTjBILJUFyaxRAfxRH6ZhUSX4IQ8UGwDMrJD7IkKdWbmsqN+/7ZV5qrGR4rHd1sS7JHZQZj5UMhPylmFOeFVwz18fZFFjm/OiDig2ARkN+x/mhYPkrQn/Pu6UTERqUo36uOj7eOJ2i0d6ygmU6cklFIT8nFvTOJxBmSUKJoFwZK9WEw98+9MvympbLdiQ0PkZWWb3hHzBgiPgiEMoq4gO60W1KWj/SUXFz95xnObI0uWqjr6ZyxrDyF3XOicOXvZ7hxON64nSzDJD/L0NnGzkkzo+mNI+QcM2Fqi4Xq7/T5nXc4vfmxCXtTchDxQSCUUa4fekF7X1LiQz0yCdD90MjUFdXoj7unE4vZq/LDsT8f6G5UblLXc4TDb6G4p8zQ35v6ZqmJ2cXriJlCxAfB7Dm95TGZdzEGpRpqq/3OzXRjfldGb7IlDZf8LUR6cEd5aZqJYJNJKMQ/eG/qbhgdIj4IZs/TG29N3YUygSFPYoUiCXLS9Q9z1nnf5tCVjFSSBdVomMc4ahl8/J0U95RdPfC8OIencWV/HAryJTi99TESHpYNIULEB4FQTjDE4XTz95ewbeYV5GboKUB0uXxwEEKHfruj3zEtnKafVlW+LhRxr9nCRVKWn4rB3OCkw4t5yhIMtVYwdI4CcP9MIp5GvcWxNRym2SwAIj4IhHJCoUiC53dTIS7gHkki+1iAS9+CWLrCFLnc/HMzy1f5cVXBoVUsGDAoEu3BHdM7nDIsk1HIfF+2ol6I+CAQygn7F93CifWPcH6HccuJf0jO1VjG03FnKS+JlPTBvVJRkrXnd41cVIyID70xJ2tRdpqoWHlHzBEiPgiEckbcLf0HNm1i4fyOJ/p3gmF3lWq46r+fMoRMpcz72Qg9BCKnVOFla+AqLtquZ6ooy5jRsLIVAACqN/TU2Zatb6p5dMoCRHwQCASjk6djyoQpQuPN04wS6o3pSHj4Hqc2PUJBnu46KlJJyWWBI9pDf4x5ypw95EUeXb3sdbYtL0ZBoak7QCAQLAA9b4jJL7T7iJSXG6zCOdDOyRqtB9TQ3ri8nBQzpyjUtiR2qp3Md/lIe51jxAObL8TyQSAQdPIhRdOv4+SmRzi0nB6RkvFWHh57/4xmPRdVypvPB1O0kH9oBdr7qvV1m+QBBisGl0GSmD7oaLv8jFDbRWOXHC/3ExseGu2Y5g4RHwRCOYRLYipVbh1L0Fj27FaqxlSJImLD1lEznTft+OVLezAO/q9i0mnvhdb02zHncFsO59LB2ZrbvsoJ2k+Zfj4fzh66CyJyvd4zUspPbhsiPgiEcsjTm8VL3KbLcmH90cHO0O0tFUpG4caRF3hyLZm10J7idePuVWjbCoT02/HJjcar6eFbzp159UHfaRdOzrwcrvdb/yVAIi7B6o9mBvH5IBDKIKIc7Q6Ome+KlzNA173U0c0G6dqe4sqY9kiJz0TMlWS4V3LATQYrkepA5lerAhIff4CTO/2JWV18JD5OgyhHjMx3+bC2E8DN26EEel5O4VLbheuujHA4caEUUf++0N6ojEHEB4FQBinI126yfxObDvQINGjfb56mI50ht4cqup4Gy5rl458lt7WuVz0f+kRyvor5gFObH6NSTTd89m19xjZl60yaHsXUR74OAa8PJRG+a+mQaReC2VHWBqbS4MIueq4NXZbgpLgMg491aPldRO55yrhO8dXp+g7L9VesHIgMHYkM2I7lfOfnlK8sslyQffSHevkozWj7zEyVWxqjLycZbZ+WDhEfBEIZoDhiwqh8HORkOqau9XV4tXRUdYY+2oMqYbuGIfV+ygKcxC/XU6+HktaV/4YrZeEBjYgPgvlh+b+rUocvUPspm8i8yxd8PLCum2N5+44ZxYfuL0kRTfQmNp21jUSPWj3qlIVBzCA4fOySFn5qB9MLfeozmStEfBAIZQD1PBKmSqfNF8qPq2tMM3rtEjOHx2j64LAhg4WIy1dbkC/Brf8SkJEq918opxKjzJLzQc8q02YIER8Es4PcKPVHlGs857hiofD5UBs01aNr0t5od1hV7q6MPJmrRv7oY/mIvpJs0PEu7XuKqH9fYN/8GwZtX9bhYtUozUJu+l7n6jlhLBHL/wSEskcZGXBMCZen4/vnXuHcjhilUCjIEyM3s3hPVGwOp+qVb7nebG+feFms/pgL2R9EyteKz16SximFD5Ck8KNTB/lJ0THhtAvn5HFaKAu3SCI+CIQyAl046B7ZLv8Vh5gryXgV8wGiXDE2fXcJEdOv6MwRog2ZVD7YqTucqltCVCu4AuwDcWpClsF9MSf4fB4khVI8vvQGOekfvycSdlkuucgQKZb1Xr+8O2XBIkjEB8HssPyflWm4/V+RlUCfp+ojv9/H5u8vKd+/e5UNAJAU6u/UdnHvxxur2s1RwxKSRLeEsE1BSCVl42rg8YHrh1/gwq5YZKfJrSBMn1nhM0MoQmaqyCiOh9VXB6hmvlWgtFBxpQz8LIj4IBDKCFKxilgoxhim8KSPf/Be723fxsstFXo/mLH1tww84QFyoZHA4Xw26BxgpOOpL2E+j+Yeanvt4HNs+vYiMt8Zt+YJl8vK3C49G/uinKDE8kEglASW/7syCUazEhhhNxo3R137ZBEfbr5lI6U4j8/TGMx4fM0PHdzcR+e+uOyHK+Y6iCn6defkS4gLpLh5NMHYB9DZhKv1UGHJ0gepRH/VZ22nKj703tzsIOKDQCgjqDrIGSXU1og3OENvlhX9nIzXCRPC40HjJDB9Qy4V7Vj3QckoxikISkYhTkehQMWh7dWq25qr+Ij69wVSXxb5+xjbOdcY9ViKw7oJF/BaNXcLp9p0FONrS4WID4JJkUllOPbnA9w8Fl+00PJ/V6bBqGKBeaDjvL3ag52NHXsZqQE/NoGMxWrDKyN3KD6fpznFoeeAum/BDeyafY0xO+ypzY8hNaQiqpn+1m6feIlL+1QcM4th3WHEDD73hZ1PdDdSgZbbwwz6X1zKyE+bYKnEP3iPhAfvceNIvO7GhFLh/rlXiJhxBekp3HJxMEO/O9o4sIsPj8qOGssqB7vJ92LmPglckU+7qEf46Degpr3JRdZ7EbLSmCMjEqP1r0Vizk/QKS9KzvJhTOycrAAArfoFGbwPfXOKmPP3xhUiPggmJe11jsayUk1rTNAgKS4DeZmFtOgZfdFw+dBDRHgFOiv9GMrCTRaQR/do+GoYOKCynUtRrpb8EYpjqx1TsS+KonBxTyweXXxjWKdKGGNn7C2Jq0p9Sksv9Px4iu8tN7PAfBIM6gkRHwSTcvNYgqm7UGZQHdxMPWhriA+W/lRv6Kmx7G18lnKwKUsF6DTOgYHjKW2Kkg2Og7WiT0lPM/Aw8g0id8ca1ikOZL7LN3igNLrlw4jhLhSLsNMHfT8fRVEoFEkQMf0KLUzekiDig2B+lJ3xpsR4z2AxAoCEB+8RuSdWWT3TZOZqtRt3ekouzu2IUdYaYWmmhM/Xvt4S0bR8GPblqOdIKdqflmPr2KfEgOgLfchKy8fOn64ZPFCaqlaRXuh5rRbn0k5PyaNlzZVKLW9+kogPglnj4EI3ZQqtyCWbm1nAXLODonDszwd4FPkGfy28afTjpsRncm6rPtCe2/4EMVeScWT1PZoFgCmRWdNeVZWhiGXJ8pGfpVZO3QTjqfohX8V8AAAIhEW/q5I45ykvuF87jHzseMLD93j5SH/fFnU4GT4476w4PQEy3uYh461+eUzObI2GQKWStUHOxiaG3QuMQDARqr/l3Ez6Dbs4OQ3KCh9YirLxBJrnhifgwcHZ2ihVMJPjMuEd6MKpbX52IePyrPciWhSN6tObgqh/X8Ar0BlA2RIf6pjD0/yHZPmgp9oTCsbXRcUt0sbj81CQL8GxNQ8AAF+vbguhtcDwHXK4rArzudVgUfioGeKrJpXKsOvn63pvVxYgj5EEi4KIDyAvi1lI8BkGM5mEQvio2sY5MMdTH30lCQV57DduVUHB9gRqbSvQut7SsHW00lhWktpDfdf3TicC0BTzVjYMA3hJnHQOn9WzirPWzVXFgCFJulRhEgqiHDGuHXyufJ/4+APXnRlMcSwWqhZE9arRlgARHwTzQ8uPuazkfSgOd0+/Yl7BIsycPdgTV5UE53doz1+gGq3Blv/Dyka+3GR1PfSAy0Do5mWvsYxNfPhU52Zd0tyh/ptUqeMOQB5eraBEtAcHpWXHINAUWKtfJ8VUbgW5EmUZAQU7frqGOyeLUUW5lC/VjNQiwVGcYpCmgtzKCRYFn1g+kPaG2dk0L4PZImI0wWakm6uqoAht7cvYRvDRt8cSpl0MKcAHgHUAbdS1iuGdUe5bv+bx94vqzpgqUkrbYQPDPGjvjXEX+HflXdp7XdMsUokMyc8yzMa58+SGR8rX6lWiLQEiPghmg8LpStvNj0y7sJMYzWwmNpZvwYt7qUbZDxdBwbOgaBcu1yTT52DbqjR9QRgtSyY659qcyXk8tSRtRjhFiiKIXIncE4sDy+7g8l9xtOXGCLU1BFWLmyVYCNUh4oNgNhz47Q5Ob32sdXAyByc9S8NYp8yxgq1Rnopp1V1Z+sa3oDwfXJ461U38ALtoMTQXhqObLad2ngFF9XKYzm96inEryALcrkFrO3YH0lcxH0wegh9zJRkA8ChSLRHbx99ERT8npaO0gtJ6WKKI5YNAMJz8rEI8jXqLZ7eLnrDVp1lMOe1y7M8HOPjbHdb01uaKsQRbg/AAowwAZ7fFKF9Xa6CZZKxeJ3+l/4qppgDysgpx/+wrTnPpsddTdLZhmioTi5inayr6G1ZM78bhF8rX2r7zfjMbK4/BJJye3tD9efSGwyWobaBOS8qhWY/M6SFEafjg89B3eiP6Ol3iuQSmMi0FIj4IZsfbBBVzqNo9JvuDyGQx7cnPM5AUlwFJoenmfAvyDHgqNtJ9WiqWsYqBSjVdDdqnFUO4ZMs+1ZW+s6aq7XLszwe4vD8OJzc90tnWUEtFLkvUkqFPy8nPM3Hn5Et8SM7VaWmQfPwN5annHikhVENtL+59yijGdH/uomuveHWHjMzHbumth6jyXUiCiA+C2aEwbwJgHDijrySVXmdUUKb8NqEjwn/rdQ+G6hjL9HvzWDyj74KNvRBdv65jlGMoMHVtl9SPAvj1k3QdLdkdgA2F6yDm6GajsezawefY80uUzp2kJ8sHb12RSUZDpTsPL7zG3nmaSfL0uUq1hXKXNupXqHpiRO0bG+f6NnU5BUMg4oNg1tRs6q2xrLSe1tRR3s9N+Dt/E6t7MFTHWBbq3MxCxpscJaNgY88eJskF/scEaQrRYUm1Xcyxj2zfuX9ohdLtiB7oOov0aZcS7YqByDsl0CMLswVqBqNBxAfBrAlpoRmKeet4Qul3xIJRnx+v4Otg0H7SXucw3iwLWXwXACDgYx4JJjz8HJWvP/++AbwCndH7hwYAVC0fgLhQipirSYi5moQ7p15a5FMeE2yOqo5uNsoy7drISWfPWqv6lb+49075mun3pA1JoRRRh18g9aV+kSHa+mMwqqfLnNTHx+tR0SWBVTEyrxqIrUPxxL8pIOKDYNaYVV4PXtGAaFGonUK2wmRcYHvKZxsIO48IZe+WygDiXdUFfac3UqZvV4TaymQUrv79DOe2P8G57U9w7cBzvHmaYVjnSwoDB0ImfxcA4Av4GLaoJb5Z084offpv3UOmxZy4feIlbh1PwP5FtwzvCwsSsX75UVRFJw/ya+7AstuIu/XWyD2TU6Wuh+5GgIbJRiDkdpKz3otwZPU9/TrFgo295VVKIeKDYNbwGeqVmIqinpSO+lDcbJ9cT8blv+OQ/Nyw4lzGjAx4HcM87XN2WzTLwdn3lZOuWddFgSLnw9OoFDy6SA9tzE5j386S8KvFPgUiEPJphcP0JY2l6jHTtcBUX0cBW/VkfWE67tUDz+kLtP2sGNZd+TsOyc8ycWrT4+J1rpgou/bxI/L1+N5SX2brbFOtfkX9O2UBEPFBMGv0ER/x99/h9NbHKBSVkDOaIgKjFLTHi3vvsHX6FbyOTceLu+9w/8wrvH+l+0alTpW6Hka1UOdmFlk4wj7xU75mc8zUJnzys9mjRJ7dkU8VMFlUtIkWS+NG/Ae8TCvFyA2Gr0NbhlajXTsM+4m7qZ/Fgva74xkY+aUHnD+72v1ANVSaySlY735wuAcy3ZPMfXqSiA+CWaOP+Di+9iGeRr1VFtEyNsqelMBvWpQrxrPbqUpT9H/rHiI/qxCHV91Tpr6+uPep3vvl8TQFgKFhsep9qNfRn0MHDDuOtgFRNdT6+d1UJD4ufol1UxCXko3+66+h7a8XSu2YTJFPxhyj9BnwNAZ3XduqO5waQRkZsyaK4nemWjKA029EB1wSiGWpFZY7seER/l58CzIzSQXPBBEfBLOGi/hQt3Tkl1SRpRIMtT2y+h5ObnxEq6oJGC+SIqhRUTKvnhPrIaCOu0Y2Rn2xstXtWGfo8JCXyR7RpKh+mpdViBPrH+HI7/fN9imvZd/qrOsevzFsGk2VbuPq6tWe6fsw1rkrzJdg+6yrOL9LM3yX0QKmp3ig1EwfxjDKvH/Nbk1UrXejDfVsHQJh0bBq61B8XwzVSsRsDtyqhQEB4PmdVKS+zOY0rWMqiPggmDW65k9jo1KwccpF3D6RoFymba78VcwHvLj7jnW9NkrSwV5xk3h6Q3/nOe+qWkqRf3zSrdawSHwIhHz0GB+GziPZnUG5wFaRlnb8EjhpiuqnqmXETak9BFoEsn8td9a8DzwO4k0XgVydIpUHlf+zVakge247XSwIVRxh9fn+YqNSkPOhANGXuOXhydcjZL4wX6IpkoxwafGF7PcKl4ocq0GrJRlzcC2aahEbISGhqgOrC0uF6oDazKJE36mt0kQv8bFo0SI0btwYTk5O8PT0xGeffYbY2FhaG5FIhPHjx8Pd3R2Ojo7o06cP3r413xNAMG/Yol0U1o6zEXJHx+uHilJLi7V40R9edQ//rX9I813gjBF9PmRSGRIfp6FARyVNLrTsF8S6TttUkTPLjUwfnHXdoHmAvT5Jlz4S1NiLdZ3io9w7UzS9VmKWDw4DnL0r+7w+j09/clUlT+U6LU7/g5tp5sJhQ5GdV3W6ITWBHkbrXqkoBFqfAV5rQUgO+9F2BhIepuHJNeOnfddmWcx8l8/tPqHmcWpjJ8SAH5vgizlNjTIl2KBLgOah1FD9Lat+D68NyAtUWuglPiIjIzF+/Hhcv34dp0+fhlgsRufOnZGbW+Qw9e233+LIkSPYv38/IiMjkZSUhN69exu944TyAVt2zlyW8vEAWJ+8VH+U+s71yqQy5HyQH9MY6d3vnk7Ekd/v498V9LLeohwxUuL1M8drNUAb4elQW60RnaHQPMOmjlJesJ8Dxf4kKsXaSirRF5cn/0o1XA3afn2kimBmmdfnEkL5yfBaOtso4DKY3j2dCPFHnxum3uekF+DawefKGkeK6qpaU+Eb4Tp8qvoUzzPOTnVdN5JCGe6dScTxtQ9oy4+vfaDclmkPHpUd4ebtAL+Q4id186nuqrONaoVbc0x6x4Re4uPEiRMYPnw4QkNDERYWhoiICCQmJuL27dsAgMzMTGzevBnLly9Hhw4d0LBhQ2zduhVXr17F9evXS+QDEMonBXkSvLj7TqsV4l1iNt4lFs15qrZ9m6Bf0iTVhFBSIzhxKaZX3iVmIyOVXkX0nyW39dqXlQ27+d4Y0x4dvgzRsn/t2/J5PPhyuHmq4xfsxrpOOdipLCsxwweH0yfUklRKW2r7YJ8iUZfPYq37fGoD3R3QA4VYbPppIGub1IQs3DgSz7r++NoHuHPyJf5dcRcJD99j3YQLeBT5uvjWJx2bq59KY8zo6fRxpShc+fuZhv9H/P33eHH/HW0nTP2p3kizcKK+qO6X7TPnqIRLm6oekr4Uy+cjM1P+dFKhglzd3b59G2KxGB07dlS2CQ4Ohr+/P65du8a4j4KCAmRlZdH+CAQFQpZUxf8svY3/1j9kXAfIExj9tfAm/lp4U/kUVxzLB8X6xjBUB6UDy+4Ua19anXI/rnL1tte5n67fMNdncfNh37bhR5NwtQaeqNFEc6qEx+eh3eBgNOnJPtgx0bgHe3upRPMLOL35cYkUG+Mi3gydbshWcZQuYBEf7r6OGLaohc4+cEVx3TXqpv37SH6WwbpOIeiz3otwcqO81lDkHu2RWLoG+Rf33iHmarL2Rion00iGj2JVnY06rCbQGPpj52iN0SvaYPAvzfTvnGK3KvcKzwBm/66bxxKw5ptzAACZmTpfq2Ow+JDJZJgyZQpatmyJ2rVrAwBSUlJgbW0NV1dXWlsvLy+kpDDP1y1atAguLi7KPz8/P8Z2hPKHs4ctrO2EqNXKFzX1mNcGQEs8pCxdrvJEoHcJaiP/nlWnK/RxvNMXxVHcfR3RY0IYBvzYhLUtmye9tnt8zWY+GDKvGTqPCqWZflWxdbRC4+76iQ9HN1vWdUzTXvH332P3nCi9jsEFJvFAURQeX3rDaXpMm+Xj9sui+fj3OezXANu5MCSHhN4Zg/Xy+dC2Uvu2qllYWbvCo78xhiuzrvuANmFZ+NFfS9etwdpOCD7HrKdM8FU+OBcfEtWcO+aUhV4dg8XH+PHj8ejRI+zdu7dYHZg5cyYyMzOVf69evdK9EaHM4OrF/lRdwVfu+NZ+SDA66jGvDTCHyaneSPSdFzW2Q6MxM7dq25dq3ZWA2u7wqOzI2pbtKV/X079LRXvw+Tw4urILBmNycuMjPL+Tyrgu5moyPiQb0QLCMFgnRn/AhV2xRdNjWi4NrtNecan6h0Rq88Vhg6fnHf/5HR2RYSqfT9tvxBi/H41zaYSRVfe0C4eVymgX9v7YOVlzqtfDiMpuuRStO72FOeOrTCozq7wfBomPCRMm4OjRozh//jwqV66sXO7t7Y3CwkJkZGTQ2r99+xbe3sxPrjY2NnB2dqb9EcoP2p481H/LzT+vVqxj0atimvaRwBg1a2o29UZQYy84ubMP+tqevDXasjXluItG3avQ+jZ6RRvOx9aXExseMQrIc9tj5CXljQTTOfnwhi5utI1P2gb7ym5FEQruDvpbMQy5hvXZRj0HRua7PM1Gqj+qErb2q55LY/18dT2EFBohGg2Q1/GpwVChmws8Hg/WH8Oy2wysobUtRVGM34NMRmH7/65i+6xr+lt9Swi9xAdFUZgwYQIOHjyIc+fOITCQbkpt2LAhrKyscPbsWeWy2NhYJCYmonnz5sbpMaFMoY8FokF4gO5GTMf4eINUffpSrajKbScGHZoVfUQBGx2/qoXOI0ONJqRU9zPgxyao6O+EysFu4PF4nBKSqVbWfPM0HdZqeUCMkWpalVLx6me8katEFlAUTm16xLq5NpGpOgjsvP4SU/behZjlyVSfcFptcDVAvI3Pwr75N2nLdv50Hc/vqlmcVLWHtp0b46tSu86N4nCq4xq69V8C+7YA0t5wr30T3MyHc1t1Rq9si/HrOmh1blZ0SqwSBaZIeJafXYjczELkZhSgILdk09JzRa/0a+PHj8fu3bvx77//wsnJSenH4eLiAjs7O7i4uGDkyJH47rvvUKFCBTg7O2PixIlo3rw5mjUz3OGGUHYpzbAw2kOaEV0+8rMLkZdVCBt7K84DbHHN0N3H0zNb8vk8xicafetfDJzdBJICGTwqO6LfzEbK5Z9OroeNUy5y3o+Hn+aUQPVGXkZNff8mLsNo+2JDXCBFyotMeFd1US5TjXxKT8lT5s5gQsRyoxda8SGlip6qTzyW30tbVPNA/8aafm+OTNYtgwbf4l13D8+/pr2XcAw713a952vxdylpbHSUos/RUnSPooC/lxZFpukSQ65exc+rAwCffVsfh9RC9Iv6RD/Pwc3lgkf1PpuekovE6A+wsRNyr9xbAuhl+Vi7di0yMzPRrl07+Pj4KP/27dunbLNixQr06NEDffr0QZs2beDt7Y0DBw4YveOEsoE28WGsJ/rUl/KQW9Vj6S16tJiXo68kYe+8G7i4l55wTxsZbxlM2HqgntFQNSKl41dF/jHJz/TLGeLu66i0cvB4POV3YG3L7Tml7aAaqN7QE7Va+Wqse6tn/hKdlJJuVc/xoHop6JpDt3OkJ1izcRCi4/AQfPFLMzBt+iGPeSBm+iWkq/i2DJlXSpZlLT9JbSGebNoj5UUmZAzRS0yoPrFTlFz0FxddDwG6nhFUc83oEoM6rRYMNFRJMKagUk32MHT170DhD6YaIRZzJRlntkbjyj/P9O6PMdHL8sHlac3W1hZr1qzBmjVrDO4UofygVQMYaV73+J/yweOrpa2KjsuhWJMq2i59RfRF/P33kEllepXUNhgKtPPTsm8QDq+6J19VCtakkJbMJuTabSujdtvKjOv0FVyfDAvBnZMvkZ5SPKGmL6q5YQDtT/fiAuZ1oa194VnFGTZqtT3qtK2Mmh/N70whkWzXWSxD2n3V88KWwp3r/rnD/qOkOXRTFKeHB1GuWKvPkio+1V2R8EDuSH549T36wG8gr2PSwYP2AZ2VEgxpbd67GryrusCbZbpTYMVnjPoqLKD7qCi6qFqoMStNbs0xdSQMqe1CMClaLR9GPpbqU6oxB2jV0vBcazkYOx+TaibF0gjzbzuopt7bCNTqaFRrUFFr++DmPvhijmHTteoPSoUiCU5veYwX93TX9clRy56r7Xyy5RZp+0VN1GrpCx6PR7NEqSJhMH3EvWWOeslJYzf/A/R6LCUJ1+y+CsGvhOUc6mPdVPWfMYbwACBPlrbyHp5GMaeC0Haf0Cw1Y7w7lkDAh291V9YHmU9YEv9tmXqZvuBjJ1XD4J05ir2ShogPgknR+uM29rFUdsg2F68gP7uQPk2jZQR6dPFNsfumL0z9UaTirlTTtUSO6eJZNGdtiMNs/c708uKBYdrFhwJ3LeHBbKib8u+eTsTTG2855ZOQqecrUTvXquMlmwVNdVB1r+SgsZ6iKOQWag6gB+4yX0uMPh9qqProcEGoJTMuG1rT3qucioSHaWrrij+9WpJRGi/uMVew1WYh1fgNGPFpSbXwHxNVG1RElboeCG6h3YlVcdpVP4e9y0e/NFNH/Jn06GZIYlYiVt9ZjQxRhnLZB9EHyCwlZ62FoRjg63fy11j35mm6xjJjHAsALu5lz8iY/DwTW364jGOqT28q96AkLdkfDemLPvSb2Qjf/N6OMYpi2KKWGLaoBZzduTu2KW5eXKJZMlOLqsgaMt+uatruPCoUNbQUj1Ol77SG6DO9oV7HkqgJCH0SuakPONosH4Ui3aGYqoNr7baVAAAFEhmkelwD4aN0VyAWi3RbA6rWKxJ8VtbGvf2rCwyFWMjNLGBNQKfnAYq/DxbY7jWeVdh/F9qqGRcXbYUV5cfmo/u4umjQWfO+qYriO1G1WCmWmXraRS+fj/LAgKMDkCPOQVx6HH7/5HdEvorEhHMTAAAPh+l+aiLoh+L+G9qmEqztBLSUxQW5xomxV8A1wuTheXmiu5ePip7eVDe9dTwBDbsGQGgl0Chwx/X3XJDH/bO5V3bEgFmNIS6QanX8tLIRaK3zwkSbATVQuaYba0luNhxc9A+btXO0Rr1O/rC2FSCoETfhAcinFLwDXeBZxVmjAisbkkIpbFRCffUx76s7kWq7bq4deM55v0DR1NPbLO3TKOp4Bjhj/LoOyhTaTKhG5LChGg7tG+SqO4mYPqidpmNr7qNVvyCtmWef3kzhHPbuZIQqzGyw/R69Ap1Zy9Jb2wmB9KLfvzEHc655gLRFWgFFDqgSMyw8RywfauSI5XHbF15fAACl8CCUDEPmNsOXC1vAqYINAuqUbNgXZydThruIeiG69RMj8eZpOiJmXDFG11gJDPNA93F1PyYaMv6zgpWNADWbetMGJTYadatSrGPZO1ujZZ/qeqdaV8BW54eJxxffIO5W0aCh+mSrmjwrN7NAd9bHYj60q04XKDJUTtrDHCqpC5/q7AKDS/ZLVdp9EWxQH9hQF2mJjz/o9LF5GvWW8/zqs9vMWW2NBdP1dfmvONb2pgxTVaBr+lNx7alaPhSRL8ZKoGYoRHwQTIqDiw2cKtiCL+DDo5L+c/v6oD4PDch/gOrRDUxoONABuLRPezEtNk5oKYinTrexdeFUwTwcxLyr6X6yLkl89Dj+zWMJOLWpqNicqtlfEX6c+jILEdOvsOZMUFDcnCyqT5oKy8f91+y+EyKWInOq2xsDW0crvc6pLtJeaybcys3QPd3F1ZfDKDWQtIzV+vqUUOoPMyaYx9Bl6VQI67zMIgvNwwvyXC056QWM25QW5VJ8PE57jANxB4xer4NQPIyR9VMbVxni2iNmXMFfC28iMZq5YJM2x1QmS4quK6owX4Lnd41o6mZB4XyqrXaOvvgFu6FhlwB05uB/UBLU7aB/0ck3TzMA0Adthb9P9OUkALpzoRT3LmHvXDRFxcWcfkel4Jw6oa0rFbM3dHT5FugDk7hncrZVx5j1RmKvJyPmahIK8sRIe5ODS/ueIk9FtGitv6LDyVMd9cKCXO5eddrq/v4GzW7KuQ/OHtofTBT3qKsH9ZseLA3KnfgQy8QYeHQgfr76My68uqC1bXxmPNpVbqd8XyeiNkb+LxQxwSHIOnmqRPtJKHneJWYrUxGzCYLN319CLEsYHtOTEtt8atqbHNw8Fg8xQ4RDSdB7akPUbOatkQm1OPAFfDT7rJpe/hrGxNZB/2knhbmZqfhetkr4qmq1UI1vUA/1weNpWmgc3WzQY0IY+kzj5jSbpcWJVVd4sr6onpfqjTyNum8AsLHXPaBnvdPP/0Ubl/6Kw7ntT5CbWYi9827gwfnXOLc9Rrlem3FCMW3VbWwdTsfSEK0c1Eezz6qhXkd2Ee0b5IoKvroFm/KQOqwtMimFu6cTOTkjlzblTnxserBJ+fppunaz+aeHPsXdd0Um2RpvgKkH5DezN5MnozDReKmiCXJUvfGLQ/jo2jrb3FVJ9R19KYm1XeRu5sylTEKDLQ/C3nk3cONIPCKml6yPiIIKvg7oOLwWXD2NZ/kwNXwBH6NXGlasTlfit6z3+VrXc2XMqrb4/PsGGssDarszOoS62Fnh9Ldt0MDfFbYfBz83LQN2cbL+MlVVVZ2OMpWoPLz6ntH2pXjS/2tBUV0aVcdxl4rMTqvOFe2U2zq4GrcGkSrWdkK07BvEul41nN0YyKQUo8XXHCh34uPP+38qX3P5IWcWFKnbgZH0gSVt02bjdYwAADTVXxzzPpenZF815z3Vp19VxCwJjZimXUrLslFesbYV6sxtoIriaZbJ8qH6pJrxTrv44DpFK7QWcJo+VAiNLcMbIcjLCQfGtYToo3A9fJ9dCANAjaZykTBwdhNOfVIwfEkrjWWvnxRN8WTrSGRmCNqq+pYESgdLltBe9WKHCjwqOSp/zyU9/Quw564x5Ng9JoSxrou5qv1aMiXlTnzYCormyB6803Qi1EbtRE0Ho4QhQ/B64kRQhfJ5RUomAyUlA5ChqA4Shj6J1W5bCRV8HXX+kO2c6Smpj/x+X6/jMDlsmUsYW1mGLbsjEy4fwzOFDDktVPOW3D/zSut+VNsaAxc7uRXCRqjpMLgrSrtFtdNXoRj7Z3u4+2oOYH2mN4S9szWafkqPKGo3uCajv4nqssAwD7Tqx/5UbgjGqs/EFV0ZWNki3t6/zlb6hvD5PIQZ4F/ENTwWAFqrnGfVHEdObvo7l2sLk1fNvmxulDvx0bdGX+XryNeROtvXfEXhlx0SNI/RvKgz9u1D/q3byD59Bk//WApZXh6e1ArFk9DakBWY1pPYUuF6r6rdthK6fsM8N9tmQA3YO1ujgo/2udMT6zVLoV/cE1ssp3WSi868yEjNQ+TuWORlad6EM9WsHa+efJAPXgzjk4yW7Zb5WPpEJRV+fDK3YYhe6deQuTaOKmwDnXegC75a2gqNugXSpg9YHVVVLnahtYBzVWau6FtDqaRhi2zLeq9i9eEBtgxTVDrR474htBbA3sUavkGuaNS9inK5Nn+Qska5SzIm4LGHJjGZVuftlFsxQl5rH1VEB46goOOnyvfv162D5+TJBvay/FKjqTeiDsezpggf+FMTvH+dgxpNvNifqj4urhzshrQ3muF/2ngY+aZYEQCpL7PgWMGmRHJyEPRHWyZbdQ6vvIeQFj7wDXLVWMdFkLLVcGFCIT6sVcTHmDZVseHiC7g5cCsSpwv3Sg4aSfDU4atoH5lUhtxM45a3P7lRU+DrQ+sBQbi0jz3XhirGsjry+Ty4GTFKjAmvQGd8pTIN9s3v7cAX8krdUmRKyp3lQ8BnFx/nX503eL/W77OQ0H+A8n1BzBOD96WAEouRd+cuKLH5ms6MjbO7HUavbINek+szrnev5IiaTb2VP1LVpwZ1DDUhFycE++y2GGycchGx15M5tR+2qGW5etoxF56wfD8xV5OREq+ZRZXLEzyTaGGjgEF82H58rS3Phz60GxyM4BY+Wn2nmvSsqnzN4/E0pqfcSzj3ji7qtNNtBQKAU5sfI13Pqsls8Hg8OLM4pmqjONWsBVb8Uhcewc28S/V46pQ78SGjZBBKmG8ku2J20d5biZnbiTlksM65cAGUpHgZ5J537YaXX3yBJ3XqIvPw4WLty5KwthVydrxq1K0Kek9tgF7fMosVQ3h2q/iZFM9sk4f3FeSJcftEAms7Rzcb0xdZsEAG/9IM7YcEo0lPw7Klno2IYV33mKFQ4BWViAF9Mq0yIZNRkHx8Slf1+bCxkr82lvhwqmCLT74M0eo75eplj4ZdA1Cvox8cXG00kpi1H2LcLKj6ENbRj/OAHHfzLTL0EB/a8o/w+DAouYs+Ph/mQGk41mqj3NmG+fuPY+dhKeYP5CMhiF406EbKDTR+KsMP/8hwqzoPjZ5pXoGvv+qEcy/P4stzuif3s8+eg3N4Z4P7Kn79Wvk6adp0uHz6qZbW5ROBgA+f6q6gKApV61eEnZO1eZguKfn88l8Lb+psyhaZY0g11/KCq5c9XL3sQVEUJIUyCK35uHEkXveGBvIq+oPytZ1T8aZFClWSaqlaPhT+HwXGKMKmB816VVO+Vk+z72SC8uueAU5oNzi42OdZGwIr9idIs7h/lAKm/pjlTnx0+VceejR7jwxj5mh+/B/+kf/wmYQHALxqHQR+wllOxxK/MbzUOpPDKiWTgccvd8YqTvB4PHT9mltyoNKCi/AAgFotffHyURqsrAWwdbRCq35BSHj4HlVKuNZNWYDH46H55/LB0yvQGae3REOUU9LTlMXzLVAVF9YqpnpbI1s+DKFSDVfl62GLWuqd9dMYpL7MRkV/J+V7Vy97vawaTBSKJLQibNoq+vL4PNi7lJzwMRtMrD7KnfhQJTCFfhNpHKv7icPHpzqsXhVtd6IBD3va8iGQAVtWSXG3Kg/1X8jX8x24Z6pTp+CZZmKYd6tWo+KUyeVGmRuDUctbY9N3l0zdDa3YOVmj91R69suQFr4m6o3l4l/LHa36VscZLVMqxqC4VRkKVcSHlUpouSL89uRj5iqqpYHQWoBW/YJAUZTRI18MxaWiHSfx8d869ppJm767RHNItdLiEM7j6V+1ueck9lwbpUFICx/EXOXmZ6ZAV1hySVOuHqOlWXRHsqA4+gX9wwHmL+NmEA98Fxf4zJ+H9n7tsblz0WmL8ech35aHHHse+s8UYtEAAe5Xkd9QUn7+2eCcHwl9+mosS1u/HtmnTxu0v/KKjb2V0bKmEsyfoCYl50QX/+A9bh1PKHY1ULG0yNlU9UHCVSWz6bts04Xqh33ih3od/XU3LCVa9S9+7hH1SBhrWy3TLh99ITwDnFjbqCMohrOpMTDEMZitbERpUa7EB9+JfjHZ5XG7iRxvxEON69fg2rcvbIW2CA5pqVz3zEfTChGWUHShZ58+o3c/s06cZF33ZtJkksRMT/StVkmwXPh8XomVOj/+5wNEHX6BK39rWiUbhHMfrJXiQ23AylPJjvs63TiRG+ZKlTrurE6f6gm+XD3tMX5dB4xf14E2HVMc2DKdAkU+H51GcM+w7GBiK1HtdpXQqFsVfD61AUJa+MAr0Fn3Riam3IiPhMwE1N1OL7LV6aZYGVYpSWeuJHkxlIfoAHr8dXpBBvrPFKL/TCHeuWqfAhFFR7Ouez1pMmKCQ5B55AgoqRSURAKKovBmyhRlG+9ffkHFb7+lbff+z7XK14UvXxY7qqasw1bPgVA26fpNHQxb1KLY+9FVrlxBo25V0Pzz6pz3q5h2sVJL+V7FvWgwNqXlozTgC/noM70R47oKWiJRGNPkG4A2XxbFrZ6tIjRTHiB7Z9P6iAgEfDT9tCp8q7uiw5chmkUMeUCXr3XXuypNyo34EPAFsClUM71JgEJZIQri4hDXXPNm9WrVZGzv64ZzAy7Qlrf0banRVpU13YtOa9qGDaztsk/JK+Mm/TANT0Jr40ntOngSUpSoyMrXF24D+sPj6zGosnePcvn7NWtQ+PIlYoJD8Dy8C57UrqMxpUQoomHXAHj4OaJFn+oYtqgFAsMMfzL2UasHUxy0mX4JhsPn8+BoQJpqjf1wHOhqNNEvKZ0i2sVKzfJR07voqT7+fa5e+yxJOo3UTJ6maoFoN7gmbV3rAUGw1eGoKimUwcpagLBPNHPcVGvAXl3XWOGsVjZCvfKyqMI0jWtuVWN5PB7tOxq3pj2EahE+HYdzL1NQEpQb8eFu6456L+jiQywACqQFePnVCNpyQVgoPH/4AZ3Dv8GVQVfgYUcfrKwEmj+srlW6Kl9H1uXrzAXCJXFYtdOnlK/t6tWjrXse3oX2PvPgQZ37K6/YOVpjwKwmqN/JH45utgYnTqrdtpKGY2hxMGZuEoLxKeA4Lcv2hMyG+GPCMnXxAQCtqsvvNSITOwOqUqMx3Y+m/6zGtPwqoa0r4cuFLTB0fnN89l191G3vh+afVVPfDQ3vqvJpgVb9gtBjQpgyFXyDcH/YaJkScfU2TuZRKxs+a/Va1YRyCqHRfmgwuo2riyY9A1GtAV18NOwSoCxgaE50H1cXYR39MGReM/D4PI0Hp+JkcjYG5nfGSgg7oR1Eapaxp5WAQmkhpO/f05Z7RmyE+0i6IKHtS0A343vae2Jxm8W0ZW90PCE/ZbC0qFLhq6/AE9AVjOeM6azt3y5azLqOQEe1kJM+PLnO7qDVeoD+TnGeAeY/L1sa5BZI8OB1RrEyyzLhH1qhWNv7hbjp9B8Zv66D3tFnCp8PprouoZXk10S2yLyyGqtOXVb0c0JAbXd0HhWKL+Y0BSBPaObsYYdKNdwAgDFUtXKwGwbNborWA4LQoEuAcnlAbXcMX9wS36xpp3P6qoXa+n4zmadudCG0EaBue+bsqTYqeXe6flMH49d1QK2Wvgis64HG3QPB4/FQ5+O21rYCNPusmkZ+FHPAwdUGrfoGwaWiXLBZ2wrRd0YjfDqlHsav61CsjKzGoNyIDx6Ph7GP6eGLoYlyy4c6jjbanZocrelPziNqjwCfx4e9sEiVv+hRFHpV8Pw5RNHReLdmDajCQlAUBVkOc80RgYcHXPv1g9f0aRrrKnz5pdZ+SXPMx1RrzljbCQ2a/5QUMJtWW/SpjholGGVR1unx+2V8+scVrDrLrYYHV/xCiic+PhlWq0TmyRU+H0KGaR27j6bxTZfj8eqD+TidfjJcPvWimPbg8XgIauQFN29m/wyhtabpt8OXIajg64C67f0Yo0O4RIyoTudUb+gJF0/DLCFCKwG8q8qL8Kny5cIWGtMTTDTrVRUt+1bHgB+bAJDnZpFagGO7VxVn+AUX73dhLMqN+ACACo9eaywTvXpJe//dKAGEfO3pT9SL0zXykqvvqMFRGF9vPADgv/QryvUvuvdAfO8+eP/7H3hSN4zm1+HYoQMC//0X1U6fQsiTGNS4fAk+8+bS9i+jZFh1ZxUmnp8Ez9+W0vviUfRklnX0KOL79oMs37jlv8si1ep7ot/MRno9Obl9NPl2Hkn3gg/rUFnDe97OxA5oloTCv2HjxRdG3a+bjwPNchH2iZ9G+KQ2R0EHVxsIBOzmeUMpkMhFrC3DIGensqz1UsNrTRkbn2ou+HRSPQye24xTe/Voi/qd/PWq+quNcX+2R/9ZjdFpZChs7IQGRTcp/D1Uv3+BFZ9zH61thajX0R/OHnbIFolRZ85JfLbmiu4NCUrKTZIxaXZRKWVhxYqQvHsHACjsO1q5fNi3Ari5s5SeViGrkO7cGehSNP+55t4aAIAdx+KQ7iO+gm3NGlrbrLqzClsebQEAXGzxCT6LiYY0IwPiN0mwqx2KmGC541DKnDkAgNj6DQAANW5EQeBMTPtsKKY9+s1shBd33yH9bR5e3JVfF51G1sLNowm05EbpKfLXQY29ENTYC6JcMWzshUqz+8hlrbF5qjyh2ZC5zbBt5lUU5kvQ9Zs68AupAHGBFFunXS7Nj2hR5BYa12kvINQdAaHuoGQUpBIZhNYCUBSFP8cWDer1Ovnj6j+aobMjl7VWvu41pR52z4kyWr8U/hy2Qk3xYc0wFWMu+NXi/sRspWb5aPKpYTV4mODxeajoVyQiOwwNxpYfuP+u6rSrTBMd4aNrI3J3rNYCfNq49jwNYimFh28yDdq+vGK+V7qRUU11XmX/X0UrVOos5NvyIKV03wCzC7Np760FKhdylXAAQCKHvFb2jRvDvhH7k/ej94+wK2aXUngAwOyrs+XVJ93cYFdb+4/laZOmujvBAWlmJl59MxbZZ7mllbc0PAOc0eyzauj0VS04e9iiUbcqqNHYG4N/oT/lqT8B2zpY0eb7bR2tMH5dB4z9sz2sbYUY/Esz9JpSD4FhHrCyEdBueE17VUVZplAiw6htN7H8NHtJ+wevMxDy0wnaMonU+I6WPD5POQ2g7p+hPu/fZ3pD9J/VmGbeZ5taMBRF+nQbBifFWj5l52FBNZqiJLMy2zpa6RWFFneLnkG2ekNPjFjWqtjTdAT9KDfiw9rPD5X//BM+ixfBypt9fr5uxbqs6xQoBAYTY+qOAQDk2fLw+lPtJn3/7dsYl0tlUiy5sQSDjg3C4huajqSHnh2ivbeqxG6tMYYfSFz7Dsi5cAGvx08o9r7MGaG1AEPnt0DTT5mFAdeMh4p5cXtna1QOrkC78XYeFYqgRp6MIYZliSvP3+NMTCpWn41DaraIsc2nf1xBvlodk8in70qjewDkkQwCIV85jVbR3wnegS60p2oF3cdp3hcMHU/f58j9zPgMO2ha1R1j2sivPysBz+hOuKVJ1QaesLEXwtbRqkQT/fF4PPSe2hDj13Xg1J6p9k9xxJHlfkOmpdxMu/AdHODUoT3r+h+Hyp+MFrVepHNf1V2LPK6/rEV3AvW0K4pR39SmEPuWyutMyAoLIX33DpRUitRff4XrwIHIKMjA3dS7aO/XnnbxL7u1DDtjdrIe/1ziOXxW/TPle/cxY5Dy88+MbZ82aoSa9++Bb2PYvLVMJAKVZ7jjm+TdO4iePoVD48bgWVu2H0StlsWvtxLUyEtrifOywoeconnHJgvOImFxd07b5Rl56oWJsX+2R9a7fLh4yiM4qoR54MuFLbQmFWNKfKVPYjFVFh5/AoBdaH3XqQY2XHwBsZRCdoEEzrbmF0nBBStrAUYtb1Oqx6wc7IbXT5gTRpYUqrJFIpVBaOIoEkuh3IgPdc71r44OfxXN9T6tzIOQL4SNQPcgzePxcHvIbcRnxqOGG91fQzUHSEf/jsrXfGtr8D9aKCr//jsA4KsTX+HW21sAgKgvomAntEOBtIBReMxoMgOnEk7hTuod2AroTlGuvT9H+s6dkOXmwve3ZbCvX1/pBwIAsWH1EPLEsGJbr8eNp73PuXgRjm3kNxRKJkPy7NlwaNoM79evQ+Gz56iydw+s/PzwISICuVevQfT4MQDAuWcPVPr1V4P6YC4E1HE3dRfMipVnnuJmwgcMbVYFXWrTrYmv1NKDy2QULUEUW2RAZn7Jh5jy+Txabg4rawGsKmiPcHB2t8Pn3zeAuEAKUa4YPtVc4OxRMplzba0EsLcWIK9QiqvP0jTOLYGdbmPrYsPkyFI9puqD4/ucQni7GMextqxTbiXag9a+mDuIjzwPR/w1QW52nd9yPuftrQXWqFmhpoa5TtX/w8ma3UxfZ1sdpfAAgLOJZ1F3e1003tWY1o4HHv7o8AcGhwzGw/fyqo3/JfxHb2NlhapHDqP6ubOwry9PXOU5jR6qmzJ3HufPBkAZEpz/4AFt+asxXyP5p58AAO/X/InMv/9B0g8/oPDZcwBAwsBBiGvZCmkbNymFBwBkHTmK9+vWaz1m/r17ePPd9xCnpECWm4uXw4YjYcgQSDNN78jVuEcgqSasQsL7XKw8E4crz9Lwzc7byMwXY3dUIjLy5BaPVx/oEVfqYqTDbxcY9/vjoUc48ci0Ba/Y8A1yRUBtd9Rs6l1iwkOBwgL0zc7bSM/l6L3OgX9uv8bkvXeVETdlDSsbAcav62CU9PpcUb0rrIt8XmrHtXTKrfi4mnQVj6rwMXy0CH87xQIAHK0My3ypihXfCgHO8gQ66iG7UpkU0WnROJuo6bj5v8v/01h2Y/ANPBj2AG392gIAhtQaQlu//+l+1NlWB+kiTTOj+4ivaO/Td+/m/BlyIiPxpG4Ykmf+jzEfScb+v5F3+zber1nDeZ8A8G7lSsblsvx8ZB45ioSBg5B1/DietWuP2IaNkBcVhfxbt/G0aTNOGWFLgoE/NUHrAUFo1K2KSY5vrmy+HE97H/bLKfzv4EN8/9d9AMDsnrVwZEJRDgV1i8bLtCIx8mJhN9q6b3beVoqYsoC6lUehYfs1ZE5ypc7V52lG68v3++/j33tJ+OvmK6PtsyTZfDkeHZZdwNssZr8hNhzdbNH/f40xbFELjbB3Q6Na2JCp+OVki0idLa6UW/HBRLY4W3cjDlR1kTuM7X+6H0/Tn+JVlvyHPvPyTAw4OgBTzk/RuY+t4VthJ6Q/XbWr3E75elrkNMy9Js8H0mYf87yqS+/etPeUVArx27eQ5bI7oVIUhVdffwMAyDx0iLXdy8FDWNepIlMzFqTfu0V7T0mliK3fAEk//KB1P0/qaDr8yUQiyApKtgCXeyVH1G3vZ7SaEmUF1eycjQLclK/PPknFd/vuISkjH3UqF0UgrNAS9cLn89AzjO5PU2/uaYt2tlQwIuImqv3vOB6phGEqPlYwx8iW9BIQYqkWUrhu3tFovHifqxS1+lDR3wmObrYYsbQVRq1og3F/tseYVW2N7nMlVknH7l/BOOnfywNEfKhQyVF3jg8uPE2X32ij06LR53AfdDvYDc13N8d/8f9ptF3zCd160KpSK/zb61808taMlFH1R1GfemG6UfsuXABfFT+L3KtX8axtOzxTqwujSvoOZkfXCl99xbhcgXVAACoMG6Z8P3KyAP1nCjFwhhCjJhXNp6cMHIqY4BDEBIcg58oVJPTrr3W/qsQEhyAmtDZigkPwpE5dxNarj9iwejT/FkLpsPtGovL1rZd0y9uBu2/QddUlVJlxTLnsfOw7VJlxDP3WXQVFUQj0kDtwDmsutxL+2ldTXC4+8aQkul6qnHuSCkCexRWQT3so0CZnv2lbVBvl+MNko/dLdcA0V1Qr+15+9l5LS93Y2AnB4/M4VyrWh0Jp0RRWJTdSQZsrRHyoUK9iPaPs503OG41lOWLN6Yu1HdeiTeU2WNtxLQKcA3C893Gs7bgWVV2ZQz2ru7F71/95/0/G5S49eyhfvxotDwOWvn8PWSHz09TbhQs1lgUeOgiv6dMYnVZr3rmNkCcxqHbyBLxmzkDa2Y3oP1OIbPuiW2uWA/Nt9tXIURBFR9OWXehLL0jlt34dfaOPP3T1aZjU35YzHqOkoShKKaZigkOQwNEiZOlIDBy8biak421WATwc5abwBh+tJrZWAuz/pjmt7aWnxRtwzI1Tj1Pw/f6iJ/gRrdgTb00Lr4m6Hy1HV5+nIa+w+OZ81XDXdZHPNabOzI35x6J1NzIDxJKi8zp1v/4WmvJKuRUfC1ot0FhW2g6FrSq1Uv4/+vlR+Dlpz/1gI7DBvaH3GNetu78OYil3v4jcq1cR26gxnjZvAVEsu0m82ulTsA0OVr6vebto2qTymj/At6ebGXfF7KK9n9V0FqK+iMJPQ7Q/cRxvxEP/mUL8GfQSA6cL8NUUAQ7+2RfWrZpr3U5B2saNiAkOQf4juZPrhx07lYJA2+czBFUrk2qqfADIv30byR8zzZZVjj5IUpaF10VVD80Q1XfZBXj+Tj71V61ikZ9VZbWnxujkLIueehGp5TAZs+O28vX49tqrvvL5PLjaF/kq1Jp9EsmZxSubEJ9Gn26ddzTarB1PVf2CzBn138KdxNIN9bVUyq34cLVxpb2f2WRmqRxXyBNicoPJ2Ntjr0HbC/jsg/jlN5dxKuEUUnJTEPkqEgujFiKnMAd2TRprtH39zVjIcnIgTU9HfK9eyD57FvG9+yjXuw0ZgpAnMbD2owsivoMDQp7EIORJDJw++US5PEOUgdGnRuPym6I0x5cHXsbA4IGwt7LHuu8vYPIYed9TXDX7HtGp6HPJ+Dzk2vGw59UhNNzZEK7XT0FYkZ4y1rHjJ6h+MRJOnTrSlif07YuY4BC8XVAkLuN79ULGP/+wnjd9eD3lWzwJqaUUNkxk7N2H3KgbRjmeOTJh911O7cIqu+DUt21w43+fYETLoqf8/bdf4cPHCI6qFYvEiY+LHf74oj5+7F50Xl+nW2adoiyRGMFq2VtV+a5TTZ37+HNwA9r7yXvv0d6nZIo4W0REYik++U0zBHXmgYfK11IZVaLJwPRBLJUhOqmojEWIGWd+FauJj95/XjVRTyyLcpvnI19Cv6l9EfJFiR2rsXdjPH7/GCvarUCLSsUPAfO080Rqvnwu+daQW2i0U+4fMun8JI22e57sgWtTCht0jIXq2UudwzsrX7/IfIHvL3yPMXXHoGtgV41tKYpC632tactmN58NF5sih0MPOw8cm3IXm1v8gfWPN0Mi5KFCFgW7QuCNh9zi9Hn1z3Hw2UGN/Xf+txswCrjT8wqo3FwI3CpA4CgftCr//juSfvwRmX9rFxfJs36EXf36sKlaFZK0NIDPh9DNTes26sQ2bgJZNrNTssekiXi/+nfl+8Rhw+A1cwbND4YNSXo6EvoPgOcPU2Ht7w/rwECNpHAFcXGwDggwq0RtTapUgKezDY4+oPsk/NYvDH1UIjk8nW0xu2ctbLkiN/Nvv1ZUzNHemn4L6lFX7ng6/5h8iu+3U7FYObB+ifS/JNmh8hmZEHBwYHa0ESI81AsnH8vTgd9M+ID1kc/Rq14lrIt8joirCQCALcMboUOwdidKNoffA3feYHn/epDKKPT4/TKEfB7+Hd/S5A7W0/9+QLMoxCRn4deTT/BDeLCWrUyDuvjwcjZuIcKySrkVH+FVwjE1cmqJH0fIE2JL+BbdDfXgbH/9aqxkOOp/I7FTqTkz8OhA5EvyMe3iNEbxse7+Oo1lqhlYFVjxrfBNs2/xTbNv8SbnDYQ8IXIlubAX2sPbQZ5IaW5LeQTPmFNjcC35Gm37r65Pws5umg6xvvPnQ5KaityLl7R+phfdusN3yWIkTZ+hXFYj6joELtzqQrAJD9dBA1Fx3DhUHDeOZg15u2gxXPv3B9+O3Qkt+ec5yNi3DwDwZtJk5fLgGPl8N1VYiNiwesrlbkOHwnuWZli2NqKTspAtEqNpVW5J0mT5+XjRoydcen+OiuM/JpmTFAJCa1rY6MLedeBXwQ7ta3qidZAHPJ21J1eq4eWIp281fZ+0ceheErrW8UF4qGUl2nrxjj2iLOp/n7CuU2dp3zAI+A9w/GEKKApY9N8TnI9NxfUXH5RtRkTIp0Kj54ZriDkFH7TkCknLKUC+WIqYZLmlISkzH5XdTBO1kZknxp8XnuHAXU2/uTXnn5up+KBbi0jECzfK7bRLSXJxwEWEVwnH8c+P4+6X3EzUxWF9J+3JuwBgSV/5V/1+zKcoOFDknOrarx+tncvnnyP48SOl/0uBtEDDSqRARskw/MRwmrPrti7b8HDYQ1jxtaeEruRYCV4OXqjqUlUpPFTZ0HkDTvShm63vv7uPQinzTdR/wwYERz+mLQt5EoPgx49oy1SFBwB5DhEOfgWqhQkVOLRsiYCdO+Cjktq+5j369x3Xpq1yioaS0ufX3y5eohQe6jwJqYUnIbVowgMA0nfsQPrevRr7YqNQIkO31ZcwYMN1JHKcQ4+t3wDiN2/w/vc/8GHbdnn/a4dBNssVgrmuSLD9Agm2X6D6n5Vg8+YG+jSsrFN4AMB/k+kh4dtGNGFtG+BedAP/WsVXwlJw1BJV4eHI/cnYxc4Ky/vXoy1TFR6qrDwTx7qfGl7sCQ/XX3yBKJV9zjn8mLVtSbP4RAzWX3zBun7a3/e1hm2bgkIJ3fJxMyEdbzIsc7qwNOFRZubRlZWVBRcXF2RmZsK5hMvB19lWR/n64bCHWlqaP4rPMrH+RNSrWA/eDt7wd/YHRVHoc6QP4tLpN6bbXU5D6FYBfBUzvjQnVzmdob5fBarnaVHUIux+UpS8bHKDyRhVZ5TRPpOCQ88O4acrPzH2QR2F5cG5Z09U+nUpAEDy4QPiWrTUegz/LZuRe+06XAf0h3VlevInSibDk1pFiYkqr/kDjq1ba50CYfMHCX78CDyBADmRkcp8KsWhyj9/wy6UPWnS5bj3GLJZXg5+UBN/LOpdR6ONTCSCNCsL0rQ0vF+7DtmnTjHuy8pBApfuaZBYAf84OWKnixMOv06G57exgCOHMs4fufY8DRQotKjmwdrmwesMfPrHFeX7Zf3C0Lt+JZNPB3Dlu333cODuGwS422NShyBalAvXOjcKxFIZgmZphukzsXJAPTSr6q6R4nv56adYfTYOQ5sFoGttb/i62qHdsgus+9kxsglaB3H/To1Fs4VnkaKSUKx2JWeIxDI8S6VbzI5NaoVQX+6VbEuSJSeeYO0FemZTB2sBHs9lT2lQVtFn/CaWDwDNfbhFVJgzD4c9xP0v72NM3TFo4tME/s7+AOQRPJPqa/qC9Lw0jCY8ACDPWoYXmS8w+tRoLIpahGtJ1zS2q7OtDupsq4O/n/5NEx4ASkR4AMCn1T7V6AObZq754D5CnsQohQcACCtUgP+WzbR2QdfoTmGJI0YibeNGPO/YCel79gAAJO/fI23zFrz/cy2trdMnnzAKD4lMggfvHkAsE8Ol16ca6wHgSWhtpO/ZoyE8qp1kd04EAKeuXWBdVTMEO6GP3MFWlsds5l9+Olb5OjOfbjUSv32LmOAQxNarj2dt2iL+896swgMAxLlCvP/LC7++98Gt906QSHj4ztMDWK2fT0bzau5ahQcA1PSmP6lP3X8fVf93XK/jmIpnqdnKaYMRLQPRp2FlrB4kP0ddDJg+stKjUNmUfffQcsk5jeU5HzNvOtoK0aK6B6p4OODbjjU02ikYuvkGEtPy8PvZOGUV3pLmwJ3XNOEBANPCg3Hmu7Yaba8+M17W1+Ii/mj5aFGtaFoz14gFEv+69Qr7b1lGRlp9KNeWj7upd7H98XZMbTzVaAnGzBGKolB3u2YSpyEhQzC9yXS8ynqFbge7MWzJnTtD7tCK6hkbdQsMAPSq1gsh7iHoX6O/zmNTFIX8O3fwcvAQuPTqBd8li5Fz6ZIy94k6HuPG4f2fmrlTat67C76t5hTD4huLaWHG7pkU1v7J7QYUHP0YPH7RAJMweAjyb8unGmxr14b4VSKqtn8KgY0MT/Zxr6wb8iSGluhLwbYRTdC2RkWdydnuVgPq6yhVMXC6AF8XAOO+eQSZSASelRV4AuMkclK12ih4/Es4HGzM21VN9Zz/1KMWRmrJ58GVf26/pllPFDxb0BVSikLNH+niVdW68vvZOPz2carih/CaGN9eni+IoigEzqQLOgGfx1j0T19rDRsfcgux8dIL9G1YmRZmDYDxWlUcd+2F51iilnQuflE3s6i39PO/j7Dt2kt0re2N/1TqEh2e0BICPq9YFprMPDHC5sofCGLmdoGdtZbfVmEeIM4Dst4AXrUBcT7AFwJWpVfoTp/xu1yLj/LEspvLsC16m8Zye6E98iTFi6e//+V98Hkla0R7l/cOHfZ3YF3fxLsJNnXepNfNiKIojTwdumBKtBaTFoP+RzUztdoUUqiTQOFJZR68MoBF2zTFSMDu3bBvoGk5EMXGQnr+Dzh4y5D5YBfsZRQEkJsqRelC8IUUnh/jlibas08WGkrXwxH5EIqk6PPsAvpVEoCK1HxCVtB/phACKYU9S3ULqOljgX+HnsaTFp2Uy+zq10eVPXLLGEVRgFSKvFu3kDhcnim3+sVIWHl66tx3em4h6s87TVsWO78LbITGz1Spwa0tkP7zHQRf7QO8QgGXyoBUAqRGAwIroGIwUJAFWNkDJ/8H3NgAAKgi2gVF/tJ1QxoapSotRVE4HS2PelHNF6IYnDddeqGMEAKA/ya3Voanqg7qs7qFYHSbIgvahdhUDN96EwAQHuqFX/uFoe4cTevXpWnt4ffRkZKiKDx8k4nqno6sDq5sjN99B8c+RkeNbh2IWd3lv7+cAglq/3yS1nZY8wD80qu28r2qiAKAoxNboXYl40+9rDn/DL+ejMXW4Y3RPlj3NTrzwEPsuZGIfg0rY79KBlsF56e2U2b01ZcX73LQ4WOI9P+6BeP3s88QMaIJGgbQI/XEkkLcXOaHsIIC/FjRHWcc7NExNw8Ds7Lh59sEPjnvkZL2FPaUDGkCAaqIJeB/fRHwCTOoX2wQ8UHQQEbJ8DLrJao4V8HmR5ux6s4qzttGdInA8BPDGded6XsGXg7GrZWgjatJV/H16a8Z1xnqc0JRFCCRQJqRgWfhXUDlMYuxmvfvaYTAAsxWGTb+WkTPy/D06GJEPI7As4xn9H26BuFhRhwa5Ytwy479ycWmkMKO37QLBIGtFDU+kw9cMXs1LSeOlfJh4yKBfcVCtGguv9lSH0WcQEpBxpe/F0oo7P6Vuzm58h+/wy4sDHGtmWsP8eztEXxHtzNpy8XnaA58a75ogO51fTj3Qx+kOTl43qkTpOkZymXVe76FlYMUFOSS4oy9HQ45OeK31HeQvbNCwpmKtHb/Sltgslgeuv5kXhfYWhlXKKmKCVWLxITdd2hhz1+1rIJ2NT0xbEtRnP2cnrUwvCXdEpNXKIGQz4f1x3o952NT8dVHQaLKwXEtUN/fDQuPx2DDxRcI9nbCiSnM3y0T919loNeaK7Rliv4HzTpOixpZPag+Otfy0jh3i45rOqSObVcN07sYJwpGIpWhuop/DReLz7hdt3H8YQomfxKETZdeME65GGqx67fuKm4maCYtU/RrytyFcHfbgL+cGRyKKaqoiiED7fILsXJMtNbcUfpCxAdBJ2wDZljFMPg6+KKxT2M08W6CAOcAiKViNNhZlPDI1M65WYVZaLmH2YF0aqOpGBaqO7eGNlSnI2xq1kTVfw+xtlU/j4c/O4xKjpWQL8nHohuLcOwF3ZTMl1HgUQCPAiRC45iMQ1/K8PNuGZ75ACcb8JFSgYd5O7iJBNsKhbDrmo7vPT3wwFZTWGXHLMDm4fVQ2TMfNdxqKC1Lha9f43nHThrtDYHJmqROlRnHwKdkkPH4qOJuj/NT2yn7Ik5OxrP2cqtYwM4dsG+kWRcJkBcx1DUlFBtWB7IC5sRdO9vz8cERmHREhufe8vc/76FHOgQPSIJMzIPA+uNt9ac0QGDcaSKJVIad11+iax0feKlFGTFNXahyc1ZHVHTSHm2TJRKj6YKzyBdzu4ZGtw7EzK4hWp2B49/noj2Lg+uSPnUw/Z+ie8qzBV0hZPFzycwXI+wXTcvM84XdOOVO4QKTuKMoitWqqmjfMcQLS/rUQcP5ZzTaqFqiuJKaJUKThcxpFRpUcsBElzP4tfBvvLKiTzmrWiwnfCNAqhv7ebk26BocrYtfzV0BER8Enfx681dsj94OAGjh2wJrO65Fcm4yq+/L3Gtz8TzjOVZ3WE1LHmZqMkQZGHtmLB6lFYXUFlccFb5+jcIXL8CztoZDs2aMbSQyCervoE+XRA6IRAXbCozt/4v/D/mSfPx89WfG9SVB3Rcy/LhPexr0/jPZB8ac59+DKqzI+vTH5DPi+VVPpG49olc/g65chtCdPQcJJZXiSajc/L6ifn/IeDw8rt4I1+b2wIrTT9FlYi9a+8p//A6njkWZbymJBE9qy0Xi3V+34ZO2dZWD9tNmzSHNyNCrv1wI7p8EHh/At4/l0zWlRG6BBKFq0xcA8GXzAMxVmcLgQrZIDCGfj5DZ2p2hAeCTYE9sHq6ZSVnBvpuJNIHBRo+6PvjjiwZa2ySm5aHNr+dpy05/2wZBWsKJ9UFdfKRkitD7zyvKystDmgUop6BU29sI+Yid3xWPkzLRffVl2j4NsdYxCcmhglOYZxWB/3m444gT81TO/u0VQb0psoD1nynE3Kr9EDx6j3LZioG26D90MTpWC9erT7og4oNQ7hh1ahSikuXOiT82/REDggeUyHGepj/FytsrcekNPaHZN2HfYHy98Tq3v5Z0DZPPT1bmTqloVxFL2ixBY2/5jTsqOQqjTo3ClvAtGHFyBEIqhGBpm6Xwc/JDvR31AADDQ4ejvmd9TD4/GWs+WYNGXo1wJvEMmvk0w94ne7Hx4Ub5wSgKfy1mfnqd+I0Ab1meiHKeTQUllkejbPqyETrWYp5Wy3/0GLcPb4LNXyfgKAJe+8vQqV9lUCNOKcWCOnwHB9S8fUtDuLgNHYr827fh0utTuA0aRIsmYnOMlYGHHSHhGBaje3BU5WC97vj8nnYLwZZOfJyvy0PvqzJ8fs2wW6S1kwRV/9oKXmArUBSFrOPHYRtSC9aBVUrUUXLM9ls49dE/REHU/z7RsJJwJeJKPOYc0V3kLTzUC21qVEQVdwe0rC6/fiiKwolHKRi76w6nY2mzeqhSIJHSnGz9K9jjxJTWsBEKimUBWXH6KVadLUpLsODz2njwKhP7GKJNzn7fFtUqOipFwrJ+Yej7MbOvWCpDbEq2spoxoJ/TbkqmCM0WaVo9YguHYprAG+dr8UGpfc6cmIXoHReJUY/p17bbkCFI36mZnNG1f3/4zP2Fc5+4QMQHodyRWZCJVntbKd8382mG68nX8VOzn9C/pqYzqCHIKBnCtms6aAn5Qtwdql8yuTxxHuytSjYT4qLjMai6ug/qJtB/4r99zkdUMPMNfl+PfahkH4QCsZRT4jCAPvV0+HUSAmelaeRWCTzwD2xr0Z17dUXbAIDrgAGsidhKiouhPPzxqQB/9/wbNSvUROpvy5G2cSNjW7GNEMMmUbAvADat1hR6nu3d4LbqAmLr0q8boZs9JOl5CDx0kFa4kaIo5Jy/ANuaNSD09VWKFJlIBFl+PvgODsg5dw6gKDh31cw2DMgL9zVeIDf9Wwv4ODCuhVEcM6UyCtVUwp35PICtFIzCyfLRm0zaAKxgXq9Q/PQvPZnZgs9rY3DTAM79Sc0WYfiWm4hOztJYd+a7tnC2E2LUtluY2TUE3i62yMwXo56fKwD2aRRd01baYHKAVd1fA39XHBinPd8QALxMy0XbXy9oLK+a9QZrzq0AADzy5+Gfljz8vEeGg8152ODzC0Y8PId+cZrbaSPo2lW9y0xog4gPQrlk/9P9mHttLuO6gTUHYlazWcXa//cXvsepl/T55oOfHkR1t+rF2m9JMXX/fdx6sAqLjl3DsSZ8/NucLjgCXQKxo+sOOFg5QMg33C/hZMJJWqmCqWnp+LLzaqBmTzypIw/xDn74ADy1uekPO3fh7fz5Bh9Xnc96LMSho/qlngeAzZ34GHlaPj21e24bzOuvO2OwKicepeCH253glU6h/0UZWkfrd0sNunoFwgry6Tr1OkVV9u6BXb16jELNseMn8PvjD43lMpEIyf+bBY8J42EdGGhUK8uluHcYuvkGFveug4FN5LmEHr7ORM8/NAUGG9dnfgJvF1skpuXB28VW6ehqCHFvs9FpxUXO7YM8HRGnkrCsbY2KyC2QYHn/enidkYcvNkZp2Vo7575vi6pq4cN/336NqSoh0lU9HLDv6+aMfjdP32bDzkqA1kvPa6zrGeaLcb8Yv/4YF38rfSDig1AueZb+DJ8f/px1/V89/kKIewhklAyF0kLYCGw435g7/NUB7/LfKd/v7b4XIe4hJR5ibCjRSVnotvoSrNwuw9brCMDjIaJLBBp6NSyR4zE5ME+u0AAjemxlPUf6hjq7DhqI/Pv34b1rLzZ/OgIdX6mUqG/3LV64yv2Vvn5wCJ+9kA+GdmvWQ3LzBv57noXf3Jviv0NykfTaXV7Q8GowD9dqFfUvO2YR4hZ0g5WAr5Fn5J+xzdEwQNOn5997b/Dj/aJsluoRTbpQDTvmYg1SRb020dOmzSDNzKS1ce7eHZV+W6bXfvXl9st09Fmru5or12kVfVgf+RyL/nuiu6EeXJ7eHv3WXUNypkh344+w1db55LcLeK5W6+fH7iGo7++KoZtvYFTrqviyeQAaMTiq+melYKNLAgLHf62Xg3evnotQO+0FFlwtstgJ9h5CgYc36lR20epAWxyI+CCUW+Zem4v9T/ezrl/VfhUmny8q4HZpwCWlA+3n/36Or2p/hcpOldHQq6FyQHW3dUeaqCij4uCQwZjRhF4jpiS49jwNO6+/xJSOQVqd6d5k5OPa8zR8Xr8SBHwelp+Kxepz8tBdnlUaHKv/CgC4M/SOzpo7hsIWAj2/QhP06rmZYQs5qqnr/TZugJWvL1Lmz0fetesabVWf0jLzxbhy/yUCh/cEVb8RnNasR2U3O2Tmi7H5cjx+P/dMY/uGvFhss52L5lX8NNblvRwFaV41KPJzaOPRL+FwVAmbXHYyFttS+irfC6QU5m2XonoKfTv3b76GW//+eNaBXliu0soVsGvQADw+H3Gt6NWhueC/bRvsGzUEZDKlpYkJ10EDaXWIjAlFURA9jcNrFy90WslsBbk3uxNc7UumKnOWSMyYn0QbToW5cC3IwSsnL/ApGY79O025LujxYwgFfBy6+wZT9t3DmDZV8b9ucmF4Oe49/CrYaUyNaPPp6Lg8UiNFvC7sxSL8c+xHvbYBgF9GLkftkABEXE1ApYwkiPlCJDl4aITdFif/CBtEfBAIH1H3BTEGpZFULSY5C11XaVbpXdqnLkQSKb5sXgUH7rzGd39pZr1UpVpFBxyZ1AR8Hh+2wpLNdHgz5SbGnxmHfGnR0+KArGz8ODFB731RFIUndcMAsRgAUGHECHhN+4Hz9qO23cSZmFQAgA0KccJpFD6tzJwdtpZkKSa3a2yQyf3y9PZoteQ8nEI0xWhgMoUlER/9QHgUQtZ+BTz8C/lxL5F0zQ2F2fpPdVX97zj49vZ41rYdbbn7qJHIPHoMkpQU5g0V2x8/BhuGNP36QslkeP/HH3j/51rY1q4N0aOiaDO/9evAd3bGQ6k9Bvz9DNU9HRlTpBubbJEYfB5PmU8jWyQGj8fDwTuv8dO/j2Et5MMj4y02n1nCaX/+ERGwb9qE1UKgGnWjM/sogM2X4zHvqG7HXQCokJ+JXSfnMa6L+ISP4Wc1o9gqjBwBrx+KfiOvPuQxTuGoYqzMtQqI+CAQVFD3STCUQcGD8L+m+vsUGEJSRj5aLGbPQMqFNV80QPvginpnoTQGn24NQzxfhpFSe0wZYdg8uiw/HxkHDkD8Jgme33+nV9p2mYxC1f8dxyjBMdwLOItYG80n7sh+11HBvujJj6IohP58EnkqSaIu/tAe/u726Lv2Km691Ez2pEBg9wIVA05jVuvR+N/lomtEIKVw9+UrxlxPTAnfFATHRANSKdJ37ULWfydgW7s2PMaNVfqG5Fy6jFejR7NvH/0Yudeu4dVIetI921q1EHjgH5atuJF36xZeDhmq1zYufXrDJjAQFUaMoJUSUCATiRjLFuiCkkqRNHMmsv47Ad9FiyD9kAa3IUMYj6Eacq0vlcZ2gvPEFQBbQq68D/Kstzbaw33j3+diZMRNgAe8UJuKUeW/xL3AnVsayz84Ag0uX4edbdFUm2IIZxJJFEWhQCJD8E/MEWHGToJHxAeBwECrva2QWSCfD/+p2U+Yf30+KBRd/gKeAJ2rdMZ/8UUZDu8OvYtvTn+DrMIs7Om+x6jZAHXx6kMeOq2IhEisPVcHE2sHN0DXOiWTBZQL3+9sjVPSDADAzb7nYeugvZCc0cn7APHSQDQI9GdcfXXQVThZMw8Uf918hWn/PMCZ79qgumdRm7dZIjRlSfoEFPkzHIw7iNlXZyuXn3z1Br4SzUgYNvFRPfICrLx0Zw0Wp6TgWbv2jOsUU1RUYSGSZ/+MzEOHlOsEbm5wHzUK7iNHgJJKEdeuHYTuHgg8eICTH4C+filMeM6YDtfevcGztaVFAtmEhMBj9Ci8+e57AID7mDHw/O5bxn2o5n8xFmu68zH+GPPvLaVtHtpXtwamPqVPYRTmAgt9Ab4V8NM7rVlFVSmQSGHF54PP5yl9MHIKJLCzEuBpLWZfqC+/5+Pm6MeM6/QhPbcQbg7GnwIj4oNAYOHI8yPwsvdCE58mpu4KJyiKQuMFZ9GsagVa6mxVFLVOKIrCm4x8uNhZwcm25Ir8caHrnjZ4XSi3FNQVFWDXwPOASyVAJmV/ejQWr29h+1+f4Vd3egjhyna/o0WlprAT2hm867xCCWrNlifxqunlhNi32QCASq52uDKjqPbQ6jurlflWKkilOPXqDQ44OqKpSIRAsQQ8ABkv7JB8g97HyuvWwqldO879kRUWaoTxBl26CGHFirRlsQ0bQZbL/qQNAPaNGiFg5w6N5ZREgvi+/VDw5AkqrVqFN5MnM2wNVD16BBn79+PDtu2c+8+VqseOwsrbGzwbG/CEcktezpUrGpYdrvi1TQPPSgZrZwnmVKyAw272StEQfkumjH5SJ8cWiByWh/Evc0CF/w64V4WtMAH8wx/9nWa+AWyKlzE0ZcFCpO+Qfw9CBwq/fSLA+KMy3K/Kw6A95yBwKn6toJKCiA8CoYyi6qWuPsdtTlx9cwVfn/mGtqxmQaHG9MeOpBQkCYVwk0oRNuBv2AdyrxWigVQMZCVh35YWmO9Bj0r559N/UMONvYS8vii+h8dJmdh74xXmfUZ/An/0/hEGHRvEun3frGz873Umnv1bNJCEXD4CeOgftk1RFLKOHoP49Su49usHoYemlSn9r7+QMpubs6l9o0bIu6Vp8lfHpW8f+GoJlZZmZwM8PnKvXGEVLIbgMW4cXPv1VabU15eML9IxJqCi7oYAAlMojDwpRY0k7e2qdk2FjYsEmP1Bq7jOPHoMmQf+gcfYsbCrVw88KyvICgpAFRTIrVDNW9DaUwPfY0Cg/Brp6lgNS/sc4tRvU0HEB4FAMDnjTo3GpWTNqBU2vCUSnO5/HnDwBBjm7LWRmXwPt3Z0wRQvzUHl9pDbsBaUTJQFGxRFoe529sgTALjw8jWsEqxRmCOER60c4LsYwJndD6S4GGO6RJXgmGi9wjUl6emgCgs1nGUBwKFFc3iMG0fzJeFZWYH66HCsC+U0k0QCSipFzrlzsK5aDbkXL0KckgLP7yfg8cogfFFJu9VgbPBQjGs6jbaMa0h4yDg7YBJ7JtfEESOQe/UabZlLr17I/Pdf1m1Uyx9EfRFV4okJiwsRHwQCwSwYf3osLiZxT0CloHphIZ5bWWH6h3TU8++A0G4fqzBLxUBBNmDnCth9tG6Ic1FnbwvG/ZiyCGJ2YTZa7GHuFwAIKApRL1/BRnEHnpEIqDgSGhtKJsPLIUNBiURw6tQRmf8ehpWvL/w2rEfynDm05GZM2ISEoCBGPsirJkbTl5SFC5G+XT6t4PvbMjg0a8Za24eLYArYuQP2DRrIBWvue+DJUVBHJuO+jTW8JFJ4SKVoWsUPYhah9G3Db9EnqI/WmlWUWIy3v/6q7DcT0k8yUXsNs4nEECfdgA7v0bRpkVi6MfhGsaYMSwMiPggEgtlAURR+ujQDTdxqoWftLwHIU9VfT7qKuIxnyC/IxJ+P2HOBGMKJPifg6+BbojVUuKCafC24QjCepT+DhCpKQjY2PRPjMj4mBfvmMuBtWDSGMXi3ejXe/7lW+d5z6vcQv02Fx9djGKdyDIWiKEAmA/h8Tt8PVVgInrW1hn8Lz8YK1bYvh9XBPsplBTygURVmJ2NVdnTdgXqe9fTuu0IM7WnDx8GWfLjkUtiokla/yr694NnZwbZGDb2T6KlSfWASzVl6Y9j3aFZvuEH7Kk3MQnysWbMGv/76K1JSUhAWFobff/8dTZrodvIj4oNAKH8wZUg1hD5BfTCnxRyj7MsYqH6uq4Ouwl5orywQCAC1CwqwJ0mlCJxPPaD3RiAvDQhozr7jwlzg7WPAxhnwDGZvZ6nIZMC2nsDLy4CrP+AeBKQngEp7DlG6FewqyKdjnllZIcFKiLdCARa767bETA4bj5FhXxtVlOo7naWYInr766/4sHkLALlosQsLk/sS/eKKta7O+NPNVbnN3aF3i1UCobTQZ/wukU+zb98+fPfdd1i3bh2aNm2KlStXIjw8HLGxsfD8mEaYQCAQFCimR0QSEawF1hBJRMiX5KPdX+047+Nsv7PwtDev+4uztTOyCrMQUiGEMbT3kY0N7ttYY4ivN35IS0fflPvg/dkEdopnwpFnAFc/gPdxSgEUsFY+lVMIwAofc7L23QqIMgFbFxTmvIV15SaAZwiQnSz3I7GyA7LfAmubAw2HA62+BRbJK7DCowZQrQNQpRXwzyigRjjQfCLw9ARkvvXAl0kAcT7gFSoXAdYf/Q6kYnluC8V/AKAoeqgpRcn/1H14KEq+T6GN/LNJREB+BnB9DSCwRt7l5Yi1tsIPfr54KwS6Zd3DGxsh7leVWwNGZ2Rio6vuKSpvB2+k5KbA1cYVlwZqJu0rbWrcKMp54/XDD7SkYCjMBfIzMMDXC9E2RbVf5jafYxHCQ19KxPLRtGlTNG7cGH98LHokk8ng5+eHiRMnYsYM7WmpieWDQCCokpKbAm+HorlviqKQJ8kDn8c3+znwG8k38PfTvzGtyTR42MmnLoxl5TEEHkVhcFY2rtvZ4rmVFaiPQqGeqAD3bDWLnaljL5OBDyCHz4e9TIbgwkLcUUsONjwjC1kCPg44yUNOP8vOgS1F4QOfj5dWVsqIp0piyf/bu/Pwmu78D+Dvm3sjG6UyichCIiEIIkJoGGobS/Nr1TKINHikltqmZixdpigdihL14BklaNVWynQh1moZUqFq6VCEiFQSyQwSqSRX7vv3R5575EpEEnHPzfF5PU8ej7v5vJ2cez/3fL/nexBz5w4OODvDQCLHzg4nnZ58Fd6YljGYFDLJakNur70XhLe3PnotnjET9LhV60EtY2/dgVthIf5Z5zncNBjgYjIh9xETrBd49UGfHguqvOanRdVhl4KCAjg7O2Pbtm3o16+fcvvw4cNx+/Zt/Ouhmb35+fnIz8+3KN7Hx0eaDyGEJqnZfGhRa7fWaO7aHFHNo+Dm5PbULyPwsHk/zsPGCxstbtORSmNXWb6Of8DXg8teHt3WqDrskpWVhcLCQtR7aIW+evXq4cKFklcenDdvHmbPnl3VZQghhE365E+f4MPjH+LybcuL3/nV9sPVO1eVv4fX74CjjzhV+f8aRSAx4wTSc8u+losW/DD4B1y8dREFhQVo5toMro6uuG+6j7NZZ9HKrZXqQxJjg8eWaD6etPE48qfPULt+6yd6DVtX5Uc+bty4AS8vLxw9ehQvvPBgwtS0adPw/fff48cfLa/zIEc+hBDPKpJIzk6GX22/Mh+Ta8xFzRoVXzkz15gLg50BdwvuwtWp6HRWE02w09nBxKKhAh10MNEEvZ1eWTzt4T8fx0QTdNAhx5gDZ4Pzg4aARRcwKP4aGbkZcHN2g53OTnn923m3UcexDu7k3ynzlFdbZTQZYdAZyvy/Kp7t4f/XgsICGOwM0EGn+hlaT0LVIx9/+MMfoNfrkZGRYXF7RkYGPDxKLvDi4OAAB4fHjzUKIYTW6HS6MhsP82Mq03gAgIt90YXzHJwevMear8hc/MrMep1e+bdK+/NxzK/1XI2HPnB0Ojz8CvVc6hW7u+jeOo51AKBaNh4AYG/3+MsZFM/28P+rtRfBswVVfl3wGjVqIDQ0FAcOPLgAk8lkwoEDByyOhAghhBDi2fRUBsumTJmC4cOHo23btggLC0NsbCxyc3MxcuTIp/HPCSGEEKIaeSrNx+DBg5GZmYn33nsP6enpaN26NeLj40tMQhVCCCHEs0eWVxdCCCHEE6vI53eVz/kQQgghhCiLNB9CCCGEsCppPoQQQghhVdJ8CCGEEMKqpPkQQgghhFVJ8yGEEEIIq5LmQwghhBBWpe7lAEthXnYkOztb5UqEEEIIUV7mz+3yLB9mc81HTk4OAMDHx0flSoQQQghRUTk5Oahdu+yLBNrcCqcmkwk3btxArVq1qvzSwtnZ2fDx8cH169er9eqpWskBSBZbpJUcgHayaCUHIFlsUVXlIImcnBx4enrCzq7sWR02d+TDzs4O3t7eT/XfeO6556r1L4qZVnIAksUWaSUHoJ0sWskBSBZbVBU5HnfEw0wmnAohhBDCqqT5EEIIIYRVPVPNh4ODA2bOnAkHBwe1S3kiWskBSBZbpJUcgHayaCUHIFlskRo5bG7CqRBCCCG07Zk68iGEEEII9UnzIYQQQgirkuZDCCGEEFYlzYcQQgghrEqaDyGEEEJYlSabj+p+As/Nmzc1d2E92Sa24d69e2qXUGXOnTuHw4cPq11GlcjJybHYR6rr/nLu3Dls374dhYWFapfyxLSyr9jqflLtm4+CggIsWrQIq1atwvHjxwGgyq8JYy0FBQWIjIxEly5dkJSUpHY5lSbbxPYYjUaMGzcO/fv3R3R0NBISEqrtB1xBQQFiYmLQqlUrHDx4UO1ynojRaMSYMWPQu3dvvPLKK9iyZQuA6re/FBQUYNSoUWjVqhVOnTr12Ot62DKt7Cs2v5+wGvv2229Zt25dtm/fnkFBQXR3d+c//vEPtcuqlKVLl9LJyYnh4eE8deqU2uVUmmwT25OWlsaQkBCGh4dz+fLlDA4OZnBwMD/88EOSZGFhocoVlt+yZcvo4uLC8PBw/vzzz2qX80Ru3brFTp06MTw8nJs2bWLv3r3ZuHFjvvnmm2qXViEff/wxa9asqYltopV9pTrsJ9W6+Rg4cCDHjRtHkrxx4wbXrFlDnU7HtWvXMj8/X+Xqyi8yMpI6nY4rV65Ubrt7966KFVWebBPbs23bNgYFBTE1NZUkefv2bc6aNYuOjo48d+4cSdJkMqlZYrlcuHCBTk5O/POf/6zcdvnyZWZmZlar3y2zQ4cOsXHjxjx79ixJMi8vj2vXrqVOp+Pu3btVrq587ty5w7p167Jbt27KbefPn+fly5eZnZ2tYmWVo4V9pbrsJ9W2+UhKSqK3tzc3b95scfuIESPYpk0bJiQkqFRZxcXFxdHf359HjhxhSkoKx44dy6FDh3LixIn89ttvSVaPjvvKlSvVfpsYjUaS2tgm5vpWrlxJT09Pi/vS0tLYo0cPduzYUY3SKiUvL4+zZs2ip6cnz58/zyFDhjAwMJCNGzdmnz59uG/fPrVLrJDt27fTycnJ4jaTycSoqCi2aNGC9+7dU6myxyv+ARwXF8e6dety7969HDRoEP39/RkQEMCwsDDGxcWpWGX5aWlfqS77SbUZmNu3bx/OnDkDk8kEAPDz80NBQQFu3boF4MHkoIULFyItLQ27du1CQUGBavWWxZzFPClr5MiRaNiwIYYNG4awsDBkZmbC09MTJ0+exCuvvIIffvjBJsdQk5KSLMZCGzZsWG23iTmLwWAAUH23yapVq7Bx40ZcvnxZqU+v18PDw8Ni0pmHhwdmzJiBxMRE7Nu3D4DtTXI0Z7l06RKAoutPjBgxAi4uLmjevDmcnZ0RGxuLWbNmoaCgANOnT0diYqLKVZfOPPfJ/P4FFF2+3MfHB9u3bwdQ9P+v0+kwc+ZMXL58Wbm9+HPUZs5R/HdlxIgRCAgIQK9evfDcc88hLi4OS5cuRcuWLfHuu+/a5nwDANu2bcP+/fuRlpZWrfeV4jmAB/tJzZo1bXs/UbPzKY+1a9fSw8ODLVu2ZK1atfjGG28oh8TGjBnD4OBg5bEFBQUkyffee48NGjTg/fv31Sj5kUrLcu3aNZLksWPHGBISws2bNyt15+fnc+jQoWzZsqWaZZewZs0aNmjQgKGhoWzfvj0/++wzpebRo0dXq23ycJYNGzYwLy+PJHn06NFqs03i4+Pp5ubG1q1bs2HDhmzcuDE/+ugjkuSZM2fYrFkzzp8/3+Kwa3p6Ol9++WW+9tprapVdqtKyLF68mGTRN9QdO3Zwzpw5vHPnjvKc48ePs1u3bhw/frxaZZdqx44d9PT0pKurK69evUrywdG1K1eusHv37hw7dqwypFdYWEij0ciRI0eyc+fOapVdQmk5iu/LiYmJnDFjBrOyspTbrl69yn79+rFv377WLrdMn376Kd3d3RkWFkY3Nzd27NiR27dvJ0n+9NNPbN68ebXYV0rL8eWXX5Isep/auXOnTe8nNt18rF69mgEBAdy0aRMzMzP5+eef08XFRZn8t337djZt2pSxsbEkqXxoXLlyhc7OzkxMTFSr9BIeleWnn35SHnP06FGLXxSSTEhIoKOjo8Xj1BQbG8uAgABu3ryZR44c4cyZM2lnZ8cVK1bQZDLx66+/ZpMmTarFNnlUluXLlyt1Hz582Oa3CVk012b06NEkyYsXL3LRokXU6XT86quvSJLjxo1ju3bt+N1331k8b8CAARw+fLiVqy3bw1kWLlxInU7Hr7/+miSZm5tbYpuQZJcuXThq1Cir1lqWDRs2sF27dhwyZAg7derEMWPGKPeZhy3mzJnDsLAwfvbZZxbPnTJlCnv27MmcnByr1lyasnKYmUymUmuNiopinz59bGK+lNFoZGxsLJs1a8bVq1czPz+f//73vxkdHc0+ffrw999/J1n0BSosLMxm95XH5TAP12VnZ5e6TWxlP7HJ5sNkMvH+/fuMjIws0Wk2btyYJ0+eJFnUjU6aNIkNGjTgjRs3lMfs3LmTDRo04Pnz561ad2kel+VRM5HNY5DLli2jl5cXL1269NRrfZzc3Fz27NmTM2fOJPngDbRz58709vZmfHw88/LyOHHiRJveJmTZWRo2bKh8gyjO1raJueYrV66wTp06jI+Pt7g/MjKSjRs3ZmZmJjMyMhgSEsKhQ4cqRw5Jsm/fvjZxdkV5sjRt2pRXrlwp9flZWVkMCQnhvHnznnqtj2M+IpCQkMAZM2bw2rVrXLBgAQMDA5UPNPO36qysLL766qvs3LkzL1y4oLxGVFSU6h905clR1pHM33//nd26dePUqVOtUe5j3b59m++88w7nz59vMV9r/vz57NixI2/fvk3ywRkvtrqvPC5HWQ2rLe0ntjdojaJz3PV6Pc6fPw8HBwdkZGQAACZNmgQ7Ozt89dVXOHbsGOrVq4fJkyfD29sbERER2LJlC5KSkrBp0yYEBQXB19dX3SB4fJadO3ciISEBeXl5Fs+zs7NDamoqDh48iIEDByIgIECN8i0YDAacPHkSgYGBAID8/HwAgLu7O0wmEzZs2ACj0YgJEybAx8fHZrcJUHYWo9GIHTt2IDMz0+I5trJNLl26pMwPAID69eujRo0aSElJAQBlXs2KFSvw22+/YfXq1XB3d8eMGTOQmpqKjh07YvHixYiOjsaJEyfQv39/VXJUNEtKSooyD8IsLy8PaWlpmDZtGgBgwIABVqzekjmLXq8HALRv3x5z5sxBgwYN0LdvXwQGBmLhwoUAgBo1auD+/ftwdXXFlClT4OLigg4dOmDq1KmIiorCrl27MGjQIADWn19QkRx6vb5EfXfu3MH169cxYcIEpKWlYciQIVatvzhzFgCoXbs2Bg4ciL/97W+ws7NT5tL4+PggNzcXTk5OAIrmeLz99ts2ta9UJEeNGjVKPN+W9hOFen3PA1u3bmVMTAxjY2N55swZ5fZNmzbRx8eHPXv2pKurK5s2bcr333+fXbt2ZatWrTh//nySRUdAevXqxebNm9PT05Ph4eHKuGR1yBIcHMwPPviAZNG5/5s2beKUKVPo6urK3r17WxxBUDvH0KFD2bRpU+UbwYYNG9i1a1fGxMQwICBAeWx6ejp79+5t09ukrCxNmjRRhvdu3brFzZs3q75NtmzZQl9fXwYGBjIsLIxr1qwhWXQKcHR0NHv16qV8ozbPtXnrrbfYoEED5TVSU1M5evRoZSy++Ldta6psFl9fX+U1Nm/ezLFjx9LV1ZUvvvgik5KSrB+Ej85CljwrpHnz5soZIOa5H2TR8OQ777zD6Oho9u/fX5XtUtkcxb997969m+PGjVO2iVpHBx/Osnr1aov7i9ccGRnJESNGkKTFPA9b2Fcqm6P4EaktW7bYxH7yMFWbj6ysLA4cOJAeHh4cO3YsO3XqRC8vL65du1Z5THp6OhcsWMDOnTtbnDf++uuv89VXX2VGRgZJ8t69e0xLS7P4cLGmqshy+/ZtZmVlceHChezSpYsyXm8LOdavX0+yaAy+UaNGbNSoET09Pens7KxM1jIYDMppqGTRG6otbpOKZklLS+OiRYtU2yYkuXfvXvr6+nL58uWMj4/nlClTaDAYuGrVKpLkunXrGBISwn/+858kH3ywJSYm0s3NrcRcGzVP43zSLMePHydJ/vLLL5wzZw737NmjThCWnsXe3p6rVq1S5hCY609NTeWoUaPYrl075dD4w+suqDUhu6pyJCcnc/ny5dy/f78qOciys5h/700mE00mE+/du8dWrVqVmHNTnFr7SlXlOHPmjOr7SWlUbT6++OILhoWFWYyrDRgwgP7+/sqHgNFo5JAhQzh37lySD37Jp0yZQn9/f2Uik9oLv1RFFvNOruYks0fl8PPz444dO0iS169f5549e7h+/XrlW+nNmzfZqFEjfvHFF2qUXaonzbJ161bleWptE/Pv9ezZsxkaGqrUSJJvvPEGQ0JCuGfPHmZnZ3PYsGEljjBt2bKFnp6ej5wrYU1VlcUWvrk9Lkvbtm1LnTf0zTffsG3btpw5cyZPnz7NiIgIpqSkWK3uh1VVjpdeeknVHGTlsvz222/09fXlxYsXSRZ9IVF7XkdV5fjLX/5ivaIrQdU5Hxs3boS3tze8vLxw9+5dAMDLL7+MK1euYPny5cjIyIDBYMB///tfnDhxAkDRWGlGRgYuXryIIUOGwMXFBYD610KoiizmMceaNWvaXI7k5GQsW7YMN2/ehLe3N3r06IHo6GjY29sDAL777jvUqFEDnTp1Uq32hz1plj/+8Y/Ka6m1Tcy/1//5z3/g7+8Pe3t7GI1GAMDcuXPh4uKCDRs2QK/XY/z48bCzs8OQIUNw9OhRpKSkYNeuXQgNDYWHh4cq9RdXVVnq16+vZgwAj8/i6OiIf/3rX0hPTwcAZU2frl27IiwsDO+//z5CQ0NhNBrh7u6uTghUXY779++rmgOoeBYA2L9/P3x8fFC/fn1MnjwZzZs3x7Vr12A0GlVby6OqcqSkpKia47Gs1eV8//33jI+PtxjnnDZtGgMDAy0eN2PGDHbv3p3h4eHKYdeDBw/S3t6e4eHhHDduHL29vdm5c2dljQxr00qWyuQwHxoni44QnD9/nsuWLaOnpyfffvttGo1GVY5CaSXL3r17OXHiRC5ZsoQ//vijcvuqVatYq1Yt5bC8+dvQqlWrGBAQwCNHjpAsWlo5NDSUgYGBrFevHkNCQlSb1/GsZ2nSpAkPHTqkPPbu3btcsmQJ9Xo9X3zxRVWGI7WSg6x8FvOZOiaTiYMGDeLzzz9PV1dXBgUFqbIUgFZyVNRTbz4yMzMZHR1NnU7H4OBgi8OoSUlJdHNzY+fOnblgwQK+8MIL9PPz44EDBxgcHMx3331XeeyOHTs4ffp0RkZGWhwOtyatZHmSHH//+9+Vx548eZL9+vWjn59fmWOmT5NWsty4cYMRERF0d3fnsGHD2LJlS9auXVt5M/r111/p5eWl1Fx8roCHh4eyCBdZNER09epV1ZazlyxFPDw8uGTJEuXvv/zyC9u3b89PP/3UqhlI7eQgqy5Lbm4uIyIiSr0khOR4+p5q82E0GrlixQr26tWLW7ZsobOzM+fNm6cs4ESSR44cYUxMDNu0acMJEyYwMzOTJPnaa69xwIABT7O8CtFKlqrOoeZCW1rJkpuby+HDh3Pw4MEWczPCwsKU2evZ2dmcO3cunZyclLF181GZLl26MCYmRnmemvOfJMujs6hFKznIqs9y4sQJK1b/gFZyPImnfuQjISFBOUNg9uzZdHNzK/Xy5MW7uoyMDLZo0UKZmGkrF/DSSpaqyFF8eENNWskyevRo5Uqm5npmzZrF9u3bWyzA1bFjR3bo0IHJyckkyWvXrrFZs2b85ptv1Cm8FJLF9rJoJQepnSxayVFZT735ePibi6enJ0ePHq2calr8/nv37rGgoIArVqxgSEiIamOJj6KVLFrJQWonS/EZ7eYGNTIykq+//rrF41JTUxkQEEBfX18OHDiQnp6e7NatG9PT061ab1kki+1l0UoOUjtZtJKjsqw24dT8zXPr1q00GAzcu3evxf2pqalcsWIF27Zty7p163Ljxo3WKq3CtJJFKzlIbWUx69ixI9etW0ey6M3J/AZ16dIlbt68mW+++aZyv62TLLZHKzlI7WTRSo7yUGWdjxdeeIE9evRQFgi7efMmSXLjxo1ctGiRGiVVmlayaCUHqY0sSUlJrFevnsVY7sMLUlUXksX2aCUHqZ0sWslRXlZtPszjWufOnaNer+fSpUs5adIktmnThmfPnrVmKU9MK1m0koPURhbzMNH69evp7++v3D5r1iyOHTtWaaiqA8lie7SSg9ROFq3kqCjVVjht164ddTodGzZsWOIKltWNVrJoJQdZ/bOMHz+e06ZNU5ZYdnd3t7nlkctLstgereQgtZNFKznKy+rNx+XLl9miRQs6OzuXuEhOdaOVLFrJQWojy7179xgQEECdTkcHBwflAorVkWSxPVrJQWoni1ZyVITB2iuq6vV6DBgwANOnT1eWE6+utJJFKzkAbWRxdHSEr68vevbsicWLF8PR0VHtkipNstgereQAtJNFKzkqQkfa6sLvQjy7CgsLodfr1S6jSkgW26OVHIB2smglR3lJ8yGEEEIIq1L1qrZCCCGEePZI8yGEEEIIq5LmQwghhBBWJc2HEEIIIaxKmg8hhBBCWJU0H0IIIYSwKmk+hBBCCGFV0nwIISpkxIgR0Ol00Ol0sLe3R7169dCzZ0/ExcXBZDKVeHyvXr2g1+uRmJgIAEhOTlae/6ifdevW4dChQ4+8Pz093dqxhRBVSJoPIUSF9e7dG2lpaUhOTsbu3bvRtWtXTJ48GREREbh//77yuJSUFBw9ehQTJkxAXFwcAMDHxwdpaWnKz1//+lcEBQVZ3DZ48GDlNX799VeL+9LS0uDu7m71zEKIqmP1a7sIIao/BwcHeHh4AAC8vLzQpk0bdOjQAd27d8e6desQExMDAFi7di0iIiIwbtw4dOjQAYsXL4aTk5PyXACoWbMmDAaDxW3Fubu7o06dOk89kxDCeuTIhxCiSnTr1g3BwcH48ssvAQAksXbtWkRFRaFp06YICAjAtm3bVK5SCGELpPkQQlSZpk2bIjk5GQCwf/9+/P777+jVqxcAICoqCmvWrKnwa3p7e6NmzZrKT1BQUFWWLIRQgQy7CCGqDEnodDoAQFxcHAYPHgyDoehtZujQoZg6dSqSkpLg7+9f7tc8fPgwatWqpfzd3t6+aosWQlidNB9CiCpz/vx5+Pn54X//+x927NgBo9GIlStXKvcXFhYiLi4OH3zwQblf08/PT+Z8CKExMuwihKgSBw8exNmzZzFgwAB8/vnn8Pb2xunTp/Hzzz8rPx999BHWrVuHwsJCtcsVQqhIjnwIISosPz8f6enpKCwsREZGBuLj4zFv3jxEREQgOjoaoaGhGDhwIFq0aGHxPB8fH7z11luIj4/HSy+9VK5/6+bNm8jLy7O4zdXVVYZfhKjGpPkQQlRYfHw86tevD4PBgOeffx7BwcH4+OOPMXz4cJw6dQqnT5/GJ598UuJ5tWvXRvfu3bFmzZpyNx+BgYElbjt27Bg6dOjwxDmEEOrQkaTaRQghhBDi2SFzPoQQQghhVdJ8CCGEEMKqpPkQQgghhFVJ8yGEEEIIq5LmQwghhBBWJc2HEEIIIaxKmg8hhBBCWJU0H0IIIYSwKmk+hBBCCGFV0nwIIYQQwqqk+RBCCCGEVUnzIYQQQgir+n9oV61Q+Nx2uAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.drop(columns=['NASDAQ']).plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try some transformations like those used in the OFR Financial Stress Index: https://www.financialresearch.gov/financial-stress-index/files/indicators/index.html" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
High Yield Index OASNASDAQ90-Day AA Fin CP3-Month T-Bill10-Year TreasuryVIX
DATE
1980-01-01NaNNaNNaNNaNNaNNaN
1980-01-02NaNNaNNaNNaNNaNNaN
1980-01-03NaNNaNNaNNaNNaNNaN
1980-01-04NaNNaNNaNNaNNaNNaN
1980-01-07NaNNaNNaNNaNNaNNaN
.....................
2024-07-19NaNNaNNaNNaNNaNNaN
2024-07-22NaNNaNNaNNaNNaNNaN
2024-07-23NaNNaNNaNNaNNaNNaN
2024-07-24NaNNaNNaNNaNNaNNaN
2024-07-25NaNNaNNaNNaNNaNNaN
\n", + "

11721 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " High Yield Index OAS NASDAQ 90-Day AA Fin CP 3-Month T-Bill \\\n", + "DATE \n", + "1980-01-01 NaN NaN NaN NaN \n", + "1980-01-02 NaN NaN NaN NaN \n", + "1980-01-03 NaN NaN NaN NaN \n", + "1980-01-04 NaN NaN NaN NaN \n", + "1980-01-07 NaN NaN NaN NaN \n", + "... ... ... ... ... \n", + "2024-07-19 NaN NaN NaN NaN \n", + "2024-07-22 NaN NaN NaN NaN \n", + "2024-07-23 NaN NaN NaN NaN \n", + "2024-07-24 NaN NaN NaN NaN \n", + "2024-07-25 NaN NaN NaN NaN \n", + "\n", + " 10-Year Treasury VIX \n", + "DATE \n", + "1980-01-01 NaN NaN \n", + "1980-01-02 NaN NaN \n", + "1980-01-03 NaN NaN \n", + "1980-01-04 NaN NaN \n", + "1980-01-07 NaN NaN \n", + "... ... ... \n", + "2024-07-19 NaN NaN \n", + "2024-07-22 NaN NaN \n", + "2024-07-23 NaN NaN \n", + "2024-07-24 NaN NaN \n", + "2024-07-25 NaN NaN \n", + "\n", + "[11721 rows x 6 columns]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfn = pd.DataFrame().reindex_like(df)\n", + "dfn" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DATE\n", + "1980-01-01 NaN\n", + "1980-01-02 NaN\n", + "1980-01-03 NaN\n", + "1980-01-04 NaN\n", + "1980-01-07 NaN\n", + " ..\n", + "2024-07-19 NaN\n", + "2024-07-22 NaN\n", + "2024-07-23 NaN\n", + "2024-07-24 NaN\n", + "2024-07-25 NaN\n", + "Name: NASDAQ, Length: 11721, dtype: float64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['NASDAQ'].rolling(250).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "df = df.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DATE\n", + "1997-01-02 NaN\n", + "1997-01-03 NaN\n", + "1997-01-06 NaN\n", + "1997-01-07 NaN\n", + "1997-01-08 NaN\n", + " ... \n", + "2024-07-10 13475.45092\n", + "2024-07-11 13504.37800\n", + "2024-07-12 13535.02176\n", + "2024-07-22 13564.74956\n", + "2024-07-25 13590.21472\n", + "Name: NASDAQ, Length: 6446, dtype: float64" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['NASDAQ'].rolling(250).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# 'High Yield Index OAS': Leave as is\n", + "dfn['High Yield Index OAS'] = df['High Yield Index OAS']\n", + "dfn['CP - Treasury Spread, 3m'] = df['90-Day AA Fin CP'] - df['10-Year Treasury']\n", + "# 'NASDAQ': # We're using something different, but still apply rolling mean transformation\n", + "dfn['NASDAQ'] = df['NASDAQ'] - df['NASDAQ'].rolling(250).mean()\n", + "dfn['10-Year Treasury'] = df['10-Year Treasury'] - df['10-Year Treasury'].rolling(250).mean()\n", + "# 'VIX': Leave as is\n", + "dfn['VIX'] = df['VIX']" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "dfn = dfn.drop(columns=['90-Day AA Fin CP', '3-Month T-Bill'])\n", + "dfn = dfn.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "DatetimeIndex: 6197 entries, 1998-01-05 to 2024-07-25\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 High Yield Index OAS 6197 non-null float64\n", + " 1 NASDAQ 6197 non-null float64\n", + " 2 10-Year Treasury 6197 non-null float64\n", + " 3 VIX 6197 non-null float64\n", + " 4 CP - Treasury Spread, 3m 6197 non-null float64\n", + "dtypes: float64(5)\n", + "memory usage: 290.5 KB\n" + ] + } + ], + "source": [ + "dfn.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We finished with our transformations. Now, let's normalize. First, why is it important?" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGVCAYAAAD69CshAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJd0lEQVR4nO3dd3wT5R8H8M8l3RuwUMooZbZsKKtsECyrMhXZo6AiGxFBlC0gU1AEkVEQ+IEgIkugoCBb9l5lr7Lb0p0mz++Pa5K7rCZtdr/v1wty48ndk2ty+eaZHGOMgRBCCCHEiUlsnQFCCCGEEEujgIcQQgghTo8CHkIIIYQ4PQp4CCGEEOL0KOAhhBBCiNOjgIcQQgghTo8CHkIIIYQ4PQp4CCGEEOL0XGydAXugUCjw5MkT+Pr6guM4W2eHEEIIIUZgjOHt27cIDg6GRGK4DIcCHgBPnjxBqVKlbJ0NQgghhOTBw4cPUbJkSYNpKOAB4OvrC4C/YH5+fjbODSGEEEKMkZycjFKlSqm+xw2hgAdQVWP5+flRwEMIIYQ4GGOao1CjZUIIIYQ4PQp4CCGEEOL0KOAhhBBCiNOjNjxGYowhOzsbcrnc1lkhpECRSqVwcXGhISMIIflCAY8RsrKy8PTpU6Slpdk6K4QUSF5eXihevDjc3NxsnRVCiIOigCcXCoUCd+/ehVQqRXBwMNzc3OiXJiFWwhhDVlYWXrx4gbt376JChQq5Di5GCCG6UMCTi6ysLCgUCpQqVQpeXl62zg4hBY6npydcXV1x//59ZGVlwcPDw9ZZIoQ4IPqpZCT6VUmI7dDnjxCSX3QXIYQQQojTo4CHIDY2FgEBASY9p3///ujUqZNZ82HqMQ8ePAiO45CYmKg3TV5eW15Y6zyEEELyhgIeJ6YvgNAMFLp3746bN29aNC/Tp09H8eLF8fr1a9H2CxcuwN3dHTt37sSiRYsQGxtr0XzownEctm3bZvXz5sXr168xatQohISEwM3NDcHBwRg4cCAePHigM/2sWbMglUoxd+5crX1yuRyzZ89GWFgYPD09UbhwYdSvXx8rVqyw9MsghBQk13YAx5fYOhcU8BC+UWjRokUteo4JEyagVKlSGDp0qGqbTCZDv3790Lt3b3To0AH+/v5USmLA69ev0aBBA+zfvx/Lli1DfHw8Nm7ciPj4eNStWxd37tzRes6qVaswbtw4rFq1Smvf1KlTsXDhQkyfPh1Xr17FP//8g48//thgiRkhhJhsU29g71fA0ws2zQYFPERndcyMGTNQtGhR+Pr6YtCgQRg/fjxq1qyp9dx58+ahePHiKFKkCIYOHQqZTKbzHC4uLli7di22bduGLVu2AAC+/fZbJCYmYuHChQC0S6QUCgVmzZqF0NBQeHp6okaNGqrnGnotpUuXhpeXFzp37oxXr14ZfyEA3Lt3DxzHYevWrWjRogW8vLxQo0YNHD9+3OTz/Pnnn6hduzY8PDxQtmxZTJ06FdnZ2QCAadOmITg4WPS89u3bo0WLFlAoFDrzNnHiRDx58gT79+9H27ZtUbp0aTRt2hR79+6Fq6urKJgEgEOHDiE9PR3Tpk1DcnIyjh07Jtq/fft2fPbZZ/jggw8QGhqKGjVqICYmBmPHjjXpmhFCiFHSXueexoIo4MkDxhjSsrJt8o8xZvHXt379enz77bf47rvvcObMGZQuXRpLly7VSvfPP//g9u3b+Oeff7BmzRrExsYarJIKCwvDrFmzMGTIEOzduxezZs3C6tWr9c5QP2vWLKxduxbLli3DlStXMHr0aPTu3RuHDh3Smf7kyZOIiYnBsGHDcP78ebRo0QIzZszI0zWYOHEixo4di/Pnz6NixYro0aOHKlgx5jyHDx9G3759MXLkSFy9ehU///wzYmNj8e2336qOX6ZMGQwaNAgAsGTJEhw7dgxr1qzR2SNJoVBg48aN6NWrF4KCgkT7PD098dlnn2Hv3r2iKsOVK1eiR48ecHV1RY8ePbBy5UrR84KCgvD333/jxYsXebpGhBBiEoltR8KhcXjyIF0mR+VJe21y7qvTouDlZvyfbefOnfDx8RFty216jB9++AExMTEYMGAAAGDSpEnYt28fUlJSROkKFSqEH3/8EVKpFGFhYWjfvj0OHDiAwYMH6z32yJEj8eeff6Jdu3YYPnw4WrRooTNdZmYmZs6cif379yMyMhIAULZsWRw5cgQ///wzmjVrpvWcRYsWoU2bNhg3bhwAoGLFijh27Bj27Nlj8PXqMnbsWLRv3x4AX/VTpUoVxMfHIywszKjzTJ06FePHj0e/fv1UeZ8+fTrGjRuHyZMnQyqVYt26dahZsybGjx+PxYsXY8WKFShdurTO/Lx48QKJiYkIDw/XuT88PByMMcTHx6NevXpITk7Gli1bVCVTvXv3RpMmTbBo0SLV+2HBggXo1q0bgoKCUKVKFTRs2BAdO3ZE27ZtTb5ehBCik7DE2sYBD5XwOLkWLVrg/Pnzon+5NUq9ceMG6tWrJ9qmuQ4AVapUgVQqVa0XL14cz58/N3hsjuMwceJEKBQKfP3113rTxcfHIy0tDa1bt4aPj4/q39q1a3H79m2dz7l27Rrq168v2qYMlkxVvXp11XLx4sUBQPXajDnPhQsXMG3aNFHeBw8eLJqipGzZspg3bx6+++47vP/+++jZs2eu+TK2hO9///sfypUrhxo1agAAatasiZCQEGzatEmVpnLlyrh8+TJOnDiBgQMH4vnz54iOjlaVOhFCSL4pBM0cqITH8Xi6SnF1WpTNzm0Kb29vlC9fXrTt0aNHZsmLq6uraJ3jOL3tT4RcXFxEj7ooS5N27dqFEiVKiPa5u7ubmlWTCV+bcioRY16bUkpKCqZOnYouXbpo7ROOFPzvv/9CKpXi3r17yM7O1ntNAgMDERAQgGvXruncf+3aNXAcp/pbr1y5EleuXBEdT6FQYNWqVYiJiVFtk0gkqFu3LurWrYtRo0Zh3bp16NOnDyZOnIjQ0FCjXy8hhOgkFwQ8Ugp4HA7HcSZVKzmaSpUq4dSpU+jbt69q26lTp6yah8qVK8Pd3R0PHjzQWX2lS3h4OE6ePCnaduLECbPnzZjz1K5dGzdu3NAKNoU2bdqErVu34uDBg/jwww8xffp0TJ06VWdaiUSCDz/8EOvXr8e0adNE7XjS09Px008/ISoqCoULF8alS5dw+vRpHDx4EIULF1ale/36NZo3b47r168jLCxM53kqV64MAEhNTTV8EQghxBiiEh5X/emswHm/tUmeDR8+HIMHD0adOnXQsGFDbNq0CRcvXkTZsmWtlgdfX1+MHTsWo0ePhkKhQOPGjZGUlISjR4/Cz89P1TZGaMSIEWjUqBHmzZuHjh07Yu/evXlqv5MbY84zadIkdOjQAaVLl0a3bt0gkUhw4cIFXL58GTNmzMCjR48wZMgQfPfdd2jcuDFWr16NDh06oG3btmjQoIHO886cORMHDhxA69atMWfOHFStWhV3797F119/DZlMhiVL+HEuVq5ciXr16qFp06Zax6hbty5WrlyJuXPnolu3bmjUqBEaNmyIoKAg3L17FxMmTEDFihX1BkSEEGISebZ6WWJaDYW5URseoqVXr16YMGECxo4di9q1a+Pu3bvo37+/1SdtnD59Or755hvMmjUL4eHhaNOmDXbt2qW3qqVBgwb45ZdfsGjRItSoUQP79u0z2E4or4w5T1RUFHbu3Il9+/ahbt26aNCgARYuXIiQkBAwxtC/f3/Uq1cPw4YNU6UfMmQIevfurdU4XKlIkSI4ceIEWrRogU8++QTlypXDhx9+iHLlyuHUqVMoW7YssrKysG7dOnTt2lXnMbp27Yq1a9dCJpMhKioKO3bsQHR0NCpWrIh+/fohLCwM+/btM1jdSAghRpNnqZet0MvYEI5Zo5+znUtOToa/vz+SkpK0ukhnZGTg7t27CA0NLdCzNLdu3RpBQUH49ddfbZ0VUgDR55AQB/XmHrCI7zyBIceAYlXMenhD39+a6Gcc0ZKWloZly5YhKioKUqkU//vf/7B//37ExcXZOmuEEEIcibBKK9W2Y35RlRbRwnEcdu/ejaZNmyIiIgI7duzA77//jlatWtk6a4QQQhyJsNHy6dW2yweohIfo4Onpif3799s6G4QQQhydsA2PIlt/OiugEh5CCCGEWIawSitnTDNboYCHEEIIIZYhrNKqaNtpayjgIYQQQohlCEdaZsaPVm8JFPAQQgghxDKEbXiyM2yXD1DAQwghhBBLEZbwUMBDCCGEEKfDGPC/7up1CngIIYQQ4nSE1VkAkJ1pm3zkoICHEEIIIeanGeDI0m2TjxwU8Dix/v37g+M4zJ49W7R927Zt4HSMhxAWFgZ3d3ckJCRo7bt79y569uyJ4OBgeHh4oGTJkujYsSOuX7+uSsNxnOqft7c3KlSogP79++PMmTM68/fo0SO4ubmhatWqOvfL5XIsXLgQ1apVg4eHBwoVKoS2bdvi6NGjplwGQgghtkAlPMSaPDw88N133+HNmzcG0x05cgTp6eno1q0b1qxZI9onk8nQunVrJCUlYevWrbhx4wY2bdqEatWqITExUZR29erVePr0Ka5cuYIlS5YgJSUF9evXx9q1a7XOGRsbiw8//BDJyck4efKkaB9jDB999BGmTZuGkSNH4tq1azh48CBKlSqF5s2bY9u2bXm6HoQQQqxEM8CxcRsemloiLxgDZGm2Oberl0mjVbZq1Qrx8fGYNWsW5syZozfdypUr0bNnTzRr1gwjR47El19+qdp35coV3L59GwcOHEBISAgAICQkBI0aNdI6TkBAAIKCggAAZcqUwXvvvYd+/fph2LBhiI6ORqFChQDwAc3q1avx008/oWTJkli5ciXq16+vOs5vv/2GLVu2YPv27YiOjlZtX758OV69eoVBgwahdevW8Pb2NvpaEEIIsaK0l+J1G5fwUMCTF7I0YGawbc791RPAzfgvealUipkzZ6Jnz54YMWIESpYsqZXm7du32Lx5M06ePImwsDAkJSXh8OHDaNKkCQAgMDAQEokEW7ZswahRoyCVSk3K8ujRo7F27VrExcXhww8/BAD8888/SEtLQ6tWrVCiRAk0bNgQCxcuVAUwGzZsQMWKFUXBjtLnn3+OrVu3Ii4uDp06dTIpL4QQQqxErjF3Vja14SEW1rlzZ9SsWROTJ0/WuX/jxo2oUKECqlSpAqlUio8++ggrV65U7S9RogQWL16MSZMmoVChQmjZsiWmT5+OO3fuGHX+sLAwAMC9e/dU21auXImPPvoIUqkUVatWRdmyZbF582bV/ps3byI8PFzn8ZTbb968adT5CSGE2IHsrNzTWBCV8OSFqxdf0mKrc+fBd999h5YtW2Ls2LFa+1atWoXevXur1nv37o1mzZrhhx9+gK+vLwBg6NCh6Nu3Lw4ePIgTJ05g8+bNmDlzJrZv347WrVsbPDdjDABUDaUTExOxdetWHDlyRHTOlStXon///lrP08fNzc3wiyaEEGI7WlNJGL6nWxoFPHnBcSZVK9mDpk2bIioqChMmTBAFFVevXsWJEyfw33//idrtyOVybNy4EYMHD1Zt8/X1RXR0NKKjozFjxgxERUVhxowZuQY8165dAwCEhoYC4KurMjIyRG12GGNQKBS4efMmKlasiAoVKqiep+94FStWNO0iEEIIsR4m11inubSIlcyePRs7duzA8ePHVdtWrlyJpk2b4sKFCzh//rzq35gxY0TVWpo4jkNYWBhSU1NzPe/3338PPz8/tGrVSnXOzz//XHS+CxcuoEmTJli1ahUAoEePHrh16xZ27Nihdbz58+cjODg410CLEEKIDWkGOLmU2lsalfAUINWqVUOvXr2wePFiAHx3819//RXTpk3TGgtn0KBBWLBgAa5cuQKZTIbJkyejT58+qFy5Mtzc3HDo0CGsWrVKVCoE8NVVCQkJyMzMxM2bN/Hzzz9j27ZtWLt2LQICAnD+/HmcPXsW69evV7XtUerRowemTZuGGTNm4KOPPsJvv/2Gfv36Ye7cuXj33XeRnJyMJUuWYOfOndizZw9cXV0te8EIIYTknUKjhIeqtIg1TZs2DZs2bQIAbN++Ha9evULnzp210oWHhyM8PBwrV67EV199hTJlymDq1Km4d+8eOI5TrY8ePVr0vAEDBgDgx/8pUaIEGjdujP/++w+1a9cGwJfuVK5cWSvYAfjG1cOGDcPu3bvx/vvvY/Pmzfj++++xcOFCfPbZZ8jKykLhwoVx7tw5VK5c2dyXhhBCiDnZWQkPx3JrGVoAJCcnw9/fH0lJSfDz8xPty8jIwN27dxEaGgoPDw8b5ZAAwNmzZ9GqVSvExMRg7ty5ts4OsSL6HBLigG7/Dfwq+EFdtjnQ90+znsLQ97cmasNDHEbt2rVx4MABeHt74/bt27bODiGEEEO0Snhs22iZqrSIQ6lVqxZq1apl62wQQgjJjWYFko0rlKiEhxBCCCHmp9Vo2bYo4CGEEEKI+dlZo2WrBTyzZ88Gx3EYNWqUaltGRgaGDh2KIkWKwMfHB127dsWzZ89Ez3vw4AHat28PLy8vFC1aFF988QWys8Xzcxw8eBC1a9eGu7s7ypcvj9jYWCu8IkIIIYToVRAHHjx16hR+/vlnVK9eXbR99OjR2LFjBzZv3oxDhw7hyZMn6NKli2q/XC5H+/btkZWVhWPHjmHNmjWIjY3FpEmTVGnu3r2L9u3bo0WLFjh//jxGjRqFQYMGYe/evdZ4aYQQQgjR5chCjQ1OXsKTkpKCXr164ZdffkGhQoVU25OSkrBy5UosWLAALVu2REREBFavXo1jx47hxIkTAIB9+/bh6tWrWLduHWrWrIm2bdti+vTpWLJkCbKy+EnIli1bhtDQUMyfPx/h4eEYNmwYunXrhoULNS80IYQQQqzm8RnxurNXaQ0dOhTt27dXTSugdObMGchkMtH2sLAwlC5dWjX1wfHjx1GtWjUUK1ZMlSYqKgrJycm4cuWKKo3msaOiokTTJxBCCCHE1px4pOWNGzfi7NmzOHXqlNa+hIQEuLm5ISAgQLS9WLFiSEhIUKURBjvK/cp9htIkJycjPT0dnp6eWufOzMxEZmamaj05Odn0F0cIIYTkx9tngCwVKFzW1jmxDmct4Xn48CFGjhyJ9evX293IqLNmzYK/v7/qX6lSpWydJYv4999/ER0djeDgYHAch23btmmlYYxh0qRJKF68ODw9PdGqVSvcunVLK11mZiaqVKmCjz/+WGvfuHHjEBoairdv31riZYjExsaC4ziD/+7du2fxfBBCSL6tbAUsrgUkPrR1TswvO1N7m7M2Wj5z5gyeP3+O2rVrw8XFBS4uLjh06BAWL14MFxcXFCtWDFlZWUhMTBQ979mzZwgKCgIABAUFafXaUq7nlsbPz09n6Q4ATJgwAUlJSap/Dx864ZsNQGpqKmrUqIElS5boTTNnzhwsXrwYy5Ytw8mTJ+Ht7Y2oqChkZGSI0rm7u2Pt2rWIjY0VNQg/ceIEFi5ciNjYWPj6+po1/4wxrR553bt3x9OnT1X/IiMjMXjwYNE2YQCrbOtlj2Qyma2zQAixFcaAxAf88qHZts2LJaQn6tjopCU87777Li5duoTz58+r/tWpUwe9evVSLbu6uuLAgQOq59y4cQMPHjxAZGQkACAyMhKXLl3C8+fPVWni4uLg5+enmjwyMjJSdAxlGuUxdHF3d4efn5/onzNq27YtZsyYoXNyUIAPKL7//nt8/fXX6NixI6pXr461a9fiyZMnOkuDIiIiMHHiRMTExCAxMREZGRkYMGAAhg8fjmbNmuHIkSNo0qQJPD09UapUKYwYMQKpqamq5//666+oU6cOfH19ERQUhJ49e4r+tgcPHgTHcfjrr78QEREBd3d3HDlyRJQHT09PBAUFqf65ubnBy8tLtT5+/Hh07doV3377LYKDg1GpUiUAfInjhx9+iICAABQuXBgdO3YUlQSdOnUKrVu3xjvvvAN/f380a9YMZ8+eFV2rKVOmoHTp0nB3d0dwcDBGjBih2q+rBC0gIEA1RIJy0tVNmzahWbNm8PDwwPLly+Hn54ctW7aInrdt2zZ4e3tbpcSMEGIjwhKQqztslw9LyU4XrHD8g42rtCzWhsfX1xdVq1YVbfP29kaRIkVU22NiYjBmzBgULlwYfn5+GD58OCIjI9GgQQMAwHvvvYfKlSujT58+mDNnDhISEvD1119j6NChcHd3BwB8+umn+PHHHzFu3DgMHDgQf//9N3777Tfs2rXLUi8NjDGki/6Y1uPp4gmO48xyrLt37yIhIUHU6Nvf3x/169fH8ePH8dFHH2k9Z+LEidixYwdGjBiBokWLguM4zJw5E7dv30abNm0wY8YMrFq1Ci9evMCwYcMwbNgwrF69GgBfojF9+nRUqlQJz58/x5gxY9C/f3/s3r1bdI7x48dj3rx5KFu2rKhnn7EOHDgAPz8/xMXFqc4bFRWFyMhIHD58GC4uLpgxYwbatGmDixcvws3NDW/fvkW/fv3www8/gDGG+fPno127drh16xZ8fX3x+++/Y+HChdi4cSOqVKmChIQEXLhwweS8jR8/HvPnz0etWrXg4eGBCxcuYPXq1ejWrZsqjXLd3CVmhBA7IktTL9fqbbt8WIrOUZadNOAxxsKFCyGRSNC1a1dkZmYiKioKP/30k2q/VCrFzp07MWTIEERGRsLb2xv9+vXDtGnTVGlCQ0Oxa9cujB49GosWLULJkiWxYsUKREVFWSzf6dnpqL+hvsWOb8jJnifh5epllmMpG37ravSt3KfJxcUFa9euRUREBBQKBY4ePQoPDw/MmjULvXr1Ug0sWaFCBSxevBjNmjXD0qVL4eHhgYEDB6qOU7ZsWSxevBh169ZFSkoKfHx8VPumTZuG1q1b5/l1eXt7Y8WKFXBzcwMArFu3DgqFAitWrFAFi6tXr0ZAQAAOHjyI9957Dy1bthQdY/ny5QgICMChQ4fQoUMHPHjwAEFBQWjVqhVcXV1RunRp1KtXz+S8jRo1SjTW1KBBg9CwYUM8ffoUxYsXx/Pnz7F7927s378/z6+fEOIAsgXNBlzcbZcPSzmzWr3McXzpTkGaPPTgwYOidQ8PDyxZssRgG5OQkBCtEgBNzZs3x7lz58yRRaKhbdu2OHz4MAD+b3HlyhVUrlwZXbt2RWJiIurUqQMAuHDhAi5evIj169ernssYg0KhwN27dxEeHo4zZ85gypQpuHDhAt68eQOFgn/zP3jwQFVFCUB1zLyqVq2aKthR5i0+Pl6rxCQjI0M16/qzZ8/w9ddf4+DBg3j+/DnkcjnS0tLw4AFfx/7BBx/g+++/R9myZdGmTRu0a9cO0dHRcHEx7SOk+drq1auHKlWqYM2aNRg/fjzWrVuHkJAQNG3aNC8vnRDiKBSC9omaIxI7gyt/am9z1iotZ+bp4omTPU/a7Nzmomz4/ezZMxQvXly1/dmzZ6hZsyYAYMWKFUhP56vvXF1dVWmUDdGVUlJS8Mknn4jatSiVLl0aqampiIqKQlRUFNavX4/AwEA8ePAAUVFRWg2Lvb298/W6NJ+fkpKCiIgIUTCmFBgYCADo168fXr16hUWLFiEkJATu7u6IjIxU5a1UqVK4ceMG9u/fj7i4OHz22WeYO3cuDh06BFdXV3AcB6bxYdbVKFnXaxs0aBCWLFmC8ePHY/Xq1RgwYIDZqi0JIXZKGPDY2SSbefbyFnD3X6B2X402PEoU8DgcjuPMVq1kS6GhoQgKCsKBAwdUAU5ycjJOnjyJIUOGAABKlChh1LFq166Nq1evonz58jr3X7p0Ca9evcLs2bNVvahOnz6d/xdhZN42bdqEokWL6m2gfvToUfz0009o164dAL6R88uXL0VpPD09ER0djejoaAwdOhRhYWG4dOkSateujcDAQDx9+lSV9tatW0hLS4MxevfujXHjxmHx4sW4evUq+vXrl8dXSghxGMIgx8ZVPWbzY04J9rl1gNc7QOoLfl3qzgdAto13aLZ0Z5aSkqLqIQfwjZTPnz+vqqZRTuY6Y8YMbN++HZcuXULfvn0RHByMTp06mXSuL7/8EseOHcOwYcNw/vx53Lp1C3/++SeGDRsGgC/lcXNzww8//IA7d+5g+/btmD59ujlfrl69evXCO++8g44dO+Lw4cO4e/cuDh48iBEjRuDRo0cA+DZHv/76K65du4aTJ0+iV69eomENYmNjsXLlSly+fBl37tzBunXr4OnpiZCQEABAy5Yt8eOPP+LcuXM4ffo0Pv30U1GJmCGFChVCly5d8MUXX+C9995DyZIlzX8RCCH2RRjwOEsJj9KTs0DJCPW6m7Jk20m7pRPbO336NGrVqoVatWoBAMaMGYNatWqJJl8dN24chg8fjo8//ljVgHjPnj0mDxZZvXp1HDp0CDdv3kSTJk1U5wkODgbAVx3FxsZi8+bNqFy5MmbPno158+aZ78Ua4OXlhX///RelS5dGly5dEB4ejpiYGGRkZKhKfFauXIk3b96gdu3a6NOnj6oXmlJAQAB++eUXNGrUCNWrV8f+/fuxY8cOFClSBAAwf/58lCpVCk2aNEHPnj0xduxYeHkZXwoYExODrKwsUcNuQogTu7lHveyMbXhu7lMvu+d0SrFxSRbHNBseFEDJycnw9/dHUlKSVpVHRkYG7t69i9DQULsbMZo4j19//RWjR4/GkydPRA2uCY8+h8TpTPFXL0cMAKK/t1lWzEb4moTqDwFOLgUCw4GhJ8x6SkPf35qohIcQG0pLS8Pt27cxe/ZsfPLJJxTsEFIQOWMJj1Kl9kBYu5wVqtIipMCaM2cOwsLCEBQUhAkTJtg6O4QQW1A4QaNlfZVFFd8DOInhNFZCAQ8hNjRlyhTIZDIcOHBANPgiIaQAcYYSHrmeeQulblBPLVGABh4khBBCiAZn6KWVlap7u8QV8AsGGgwFfAKtmycNFPAQQgghtuQMJTz6Ah6pK1A4FGgz07r50YGqtAghhBBrSnkhXnfmEh7OfsIM+8kJIYQQUhD89YV43ZlLeB6fsW4+DKCAhxBCCLGmV7fF687QS0umJ+Cx9XwSAhTwEEIIIdYkkYrXnbmE552K1s2HARTwEEIIIdak2a7FmdvwVO5o3XwYQAGPk4qOjkabNm107jt8+DA4jsPFixfBcZxqctHdu3fDzc0NZ8+eFaWfP38+3nnnHSQkJFg624QQ4vwyksXrCplt8mFOentpuVs3HwZQwOOkYmJiEBcXp5oNXGj16tWoU6eO1rwj7dq1Q9++fdG3b19kZmYCAK5evYqvv/4aS5YsQVBQkFXyTgghTu3VLfH6nYOAPNsmWTEbZcBTtRvg4qneLnW1TX50oIDHSXXo0EE1Q7lQSkoKNm/ejJiYGJ3PW7hwIVJSUjB58mRkZ2ejX79+iI6ORvfu3a2Qa0IIcSKpr4CNvYAbgpnRH57Snfb5FevkyVKUAY+bl7jKjuNskx8daODBPGCMgaWn2+TcnKcnOCPeQC4uLujbty9iY2MxceJE1XM2b94MuVyOHj164M2bN1rP8/X1xapVqxAVFYW7d+/i4cOH2LNnj1Y6QgghuYj7Bri+k/83JYnftrKV7rR2NF5Nnih7abn5ABL7DC3sM1d2jqWn40btCJucu9LZM+C8vIxKO3DgQMydOxeHDh1C8+bNAfDVWV27doW/v7/OgAcAWrZsiW7dumHjxo3YtGkTihQpYq7sE0JIwZH0UHubd1Eg9bn2dkcPeFQlPN7avdDshINfYWJIWFgYGjZsiFWrVgEA4uPjcfjwYb3VWUqPHz/Gnj174OXlhcOHD1sjq4QQ4nx09b6q/7H+tJqNmR0FY8DTi/yyqxeV8DgTztMTlc7aZvRIztMz90QCMTExGD58OJYsWYLVq1ejXLlyaNasmcHnDB48GBEREZg4cSJat26Nbt265focQgghGuS6el/paZLwcxP+8fMbgK+DdRD5dx7w8AS/7OajuwTLDlDAkwccxxldrWRrH374IUaOHIkNGzZg7dq1GDJkiME2QCtWrMCRI0dw6dIlhISEYMiQIRg4cCAuXrwIb29vK+acEEIcnEJHz6vLWw0/Z34ldXsfR/HPDPWym/1+T1CVlpPz8fFB9+7dMWHCBDx9+hT9+/fXm/b+/fsYM2YM5s2bh5CQEADAd999B47jMH78eCvlmBBCnISu8XUcvTdWbtzstzCAAp4CICYmBm/evEFUVBSCg4N1pmGMISYmBpGRkfj4Y3Uds5eXF2JjY7F06VIcOnTIWlkmhBDH5wwjKJvKzcfWOdCLqrQKgMjISDCmPYFbmTJlRNv379+v8/mNGzdGdraDD4pFCCHWplml5QyThOaGqrQIIYSQAkaz0XK2xvhtLb62Xl6sxZWqtAghhJCCRbNKSzjfVMl6QKD9zCRuNnZcpUUBDyGEEGIJmo2WM9+ql/10t6d0eFSlRQghhBQwmlVawhIe70Dr5sVaKOAhhBBCChhho+XTq4HXt9XrEf0B5oSNmO044KFeWoQQQoglCNvw7BylXvYrCQRVBbIzrJ4li5NIgfKtgfg4W+dEC5XwEEIIIZaga6RlAAgoxT+WrGO9vFhTSENb50AnCngIIYQQS9A10jJguCeTZ2H+MSMJyEwxf56sIbCSrXOgE1VpEUIIIZagr4THUDsXqRuQ8gKYV55fH30F8C9p/rxZUqV2QPsFQHAtW+dEhEp4CCEAgNjYWAQEBNg6G4Q4P0MlPIps4N5h9frCKpbPj7lxHFA3BihR29Y5EaGAx8klJCRg+PDhKFu2LNzd3VGqVClER0fjwIEDqjRlypThZ4DnOHh7e6N27drYvHlzns958OBB1fH0/Tt48KAZXp39SktLw4QJE1CuXDl4eHggMDAQzZo1w59//mnrrJnV0qVLUb16dfj5+cHPzw+RkZH466+/bJ0tQuyboRIehQw4vcp6eSlAqErLid27dw+NGjVCQEAA5s6di2rVqkEmk2Hv3r0YOnQorl+/rko7bdo0DB48GMnJyZg/fz66d++OEiVKoGFD0xufNWzYEE+fPlWtjxw5EsnJyVi9erVqW+HChVXLWVlZcHNzy+OrtCyZTAZXV1eTn/fpp5/i5MmT+OGHH1C5cmW8evUKx44dw6tXr2ySH0spWbIkZs+ejQoVKoAxhjVr1qBjx444d+4cqlRxwF+mhFiDwYBHLi7hIWZDJTxO7LPPPgPHcfjvv//QtWtXVKxYEVWqVMGYMWNw4sQJUVpfX18EBQWhYsWKWLJkCTw9PbFjx448ndfNzQ1BQUGqf56ennB3d1etL1u2DPXq1cOKFSsQGhoKDw8PAEBiYiIGDRqEwMBA+Pn5oWXLlrhw4YLquLdv30bHjh1RrFgx+Pj4oG7duloTnv7000+oUKECPDw8UKxYMXTr1k21r0yZMvj+++9F6WvWrIkpU6ao1jmOw9KlS/H+++/D29sbM2bMQPny5TFv3jzR886fPw+O4xAfH6/zGmzfvh1fffUV2rVrhzJlyiAiIgLDhw/HwIEDRfmZPn06evToAW9vb5QoUQJLliwRHUczP99++y0A4M8//0Tt2rXh4eGBsmXLYurUqaIJXhcsWIBq1arB29sbpUqVwmeffYaUFHEDyNjYWJQuXRpeXl7o3LlznoKx6OhotGvXDhUqVEDFihXx7bffwsfHR/T+4jgOP//8Mzp06AAvLy+Eh4fj+PHjiI+PR/PmzeHt7Y2GDRvi9u3bBs5EiBORpenfJ5cBQdWsl5f8Ek5MXeE92+XDCBTw5AFjDLJMuU3+6Zr1XJfXr19jz549GDp0KLy9tX9NGGqr4eLiAldXV2RlZeX1EuUqPj4ev//+O7Zu3Yrz588DAD744AM8f/4cf/31F86cOYPatWvj3XffxevXrwEAKSkpaNeuHQ4cOIBz586hTZs2iI6OxoMHDwAAp0+fxogRIzBt2jTcuHEDe/bsQdOmTU3O25QpU9C5c2dcunQJMTExGDhwoKh0CgBWr16Npk2bonz58jqPERQUhN27d+Pt27c69yvNnTsXNWrUwLlz5zB+/HiMHDkScXHi8SuE+Rk4cCAOHz6Mvn37YuTIkbh69Sp+/vlnxMbGqoIhAJBIJFi8eDGuXLmCNWvW4O+//8a4ceNU+0+ePImYmBgMGzYM58+fR4sWLTBjxgxTL5WIXC7Hxo0bkZqaisjISNG+6dOno2/fvjh//jzCwsLQs2dPfPLJJ5gwYQJOnz4NxhiGDRuWr/MT4jBu7dO/T5ENhDazXl7yS9gwu/PPtsuHEahKKw+ysxRYPvKQTc798aJmcHWX5pouPj4ejDGEhYWZdPysrCzMnz8fSUlJaNmyZV6zadR51q5di8BAfnj1I0eO4L///sPz58/h7u4OAJg3bx62bduGLVu24OOPP0aNGjVQo0YN1TGmT5+OP/74A9u3b8ewYcPw4MEDeHt7o0OHDvD19UVISAhq1TK9l0DPnj0xYMAA1Xr//v0xadIk/Pfff6hXrx5kMhk2bNigVeojtHz5cvTq1QtFihRBjRo10LhxY3Tr1g2NGjUSpWvUqBHGjx8PAKhYsSKOHj2KhQsXonXr1nrzM3DgQIwfPx79+vUDAJQtWxbTp0/HuHHjMHnyZADAqFGjVOnLlCmDGTNm4NNPP8VPP/0EAFi0aBHatGmjCoIqVqyIY8eOYc+ePSZfr0uXLiEyMhIZGRnw8fHBH3/8gcqVK4vSDBgwAB9++CEA4Msvv0RkZCS++eYbREVFAeCrPYWvkRCn5u6rfx+Ti+fcAoAp/sB73wIN7fBHgXD6DKl9Nk1QohIeJ2VsSZDSl19+CR8fH3h5eeG7777D7Nmz0b59e51pq1SpAh8fH/j4+KBt27Z5yl9ISIgq2AGACxcuICUlBUWKFFEd28fHB3fv3lVVdaSkpGDs2LEIDw9HQEAAfHx8cO3aNVUJT+vWrRESEoKyZcuiT58+WL9+PdLSDBQd61GnjngwsODgYLRv3x6rVvENCXfs2IHMzEx88MEHeo/RtGlT3LlzBwcOHEC3bt1w5coVNGnSBNOnTxel0ywJiYyMxLVr1wzm58KFC5g2bZroOg0ePBhPnz5Vvd79+/fj3XffRYkSJeDr64s+ffrg1atXqv3Xrl1D/fr1DebFWJUqVcL58+dx8uRJDBkyBP369cPVq1dFaapXr65aLlasGACgWrVqom0ZGRlITk7OUx4IcSiuuUy/kJGkvW3fRMvkJb8eHFcvu3jYLh9GoBKePHBxk+DjRbYpcnRxMy5GrVChAjiOEzVMNuSLL75A//794ePjg2LFioHjOL1pd+/eDZmMj+o9PT2NOr4mzWq2lJQUFC9eXGfvLWX129ixYxEXF4d58+ahfPny8PT0RLdu3VRVb76+vjh79iwOHjyIffv2YdKkSZgyZQpOnTqFgIAASCQSrUBQ+ToM5Q0ABg0ahD59+mDhwoVYvXo1unfvDi8vL4Ov0dXVFU2aNEGTJk3w5ZdfYsaMGZg2bRq+/PJLkxpp67pWU6dORZcuXbTSenh44N69e+jQoQOGDBmCb7/9FoULF8aRI0cQExODrKysXPNtKjc3N1XVXkREBE6dOoVFixbh55/VxdvChtbK95aubQqFE84tRAomQz86pbl0PLi6zaxZsahD36mXpfYdUth37uwUx3FGVSvZUuHChREVFYUlS5ZgxIgRWl+aiYmJonY877zzjt72KJpCQkLMmVUAQO3atZGQkAAXFxeUKVNGZ5qjR4+if//+6Ny5MwD+i//evXuiNC4uLmjVqhVatWqFyZMnIyAgAH///Te6dOmCwMBAUe+x5ORk3L1716j8tWvXDt7e3li6dCn27NmDf//91+TXWLlyZWRnZyMjI0MV8Gg2Hj9x4gTCw8MNHqd27dq4ceOG3r/XmTNnoFAoMH/+fEgkfID822+/idKEh4fj5MmTWuc2B4VCgczMTLMcixCHpTlTulBeq34UCuDhCSC4NuBqB6UpGUlA0iNb58JoFPA4sSVLlqBRo0aoV68epk2bhurVqyM7OxtxcXFYunSpVtWJLbVq1QqRkZHo1KkT5syZg4oVK+LJkyfYtWsXOnfujDp16qBChQrYunUroqOjwXEcvvnmG1GJwM6dO3Hnzh00bdoUhQoVwu7du6FQKFCpEj/MecuWLREbG4vo6GgEBARg0qRJkEqNC1ylUin69++PCRMmoEKFCrlW/zRv3hw9evRAnTp1UKRIEVy9ehVfffUVWrRoAT8/P1W6o0ePYs6cOejUqRPi4uKwefNm7Nq1y+CxJ02ahA4dOqB06dLo1q0bJBIJLly4gMuXL6t6lclkMvzwww+Ijo7G0aNHsWzZMtExRowYgUaNGmHevHno2LEj9u7dm6f2OxMmTEDbtm1RunRpvH37Fhs2bMDBgwexd+9ek49FiFMx1BOr8ai8HfPWXuB/HwHFawKf2KYdqci/84Dkx/xykQq2zYsRqA2PEytbtizOnj2LFi1a4PPPP0fVqlXRunVrHDhwAEuXLrV19kQ4jsPu3bvRtGlTDBgwABUrVsRHH32E+/fvq9p8LFiwAIUKFULDhg0RHR2NqKgo1K6tHskzICAAW7duRcuWLREeHo5ly5bhf//7n2o8mAkTJqBZs2bo0KED2rdvj06dOqFcuXJG51FZJWRM49qoqCisWbMG7733HsLDwzF8+HBERUVplbR8/vnnOH36NGrVqoUZM2ZgwYIFqoa8ho69c+dO7Nu3D3Xr1kWDBg2wcOFCVclbjRo1sGDBAnz33XeoWrUq1q9fj1mzZomO0aBBA/zyyy9YtGgRatSogX379uHrr78Wpbl3716ug0Q+f/4cffv2RaVKlfDuu+/i1KlT2Lt3r6jRNSEFkixd/77iNfN2zLO/8o9Pz+ft+eZ2aqV6uXgN/ensBMdMbd3qhJKTk+Hv74+kpCTRr28AyMjIwN27d0XjxZCC6fDhw3j33Xfx8OFDVRCWH2XKlMGoUaNEParsyT///IMuXbrgzp07KFSokE3zQp9D4nCenAOWN9e97+sXgEtOtdYUf+OPWeE9dZf20VcB/xL5ymK+be4PXPmDX/YvBYy+bPUsGPr+1kQlPITkIjMzE48ePcKUKVPwwQcfmCXYcQS7d+/GV199ZfNghxCH9Ftf/ftya7Ssj1wwNtqh2Xk7hlkJOrcYKtGyE9SGh5Bc/O9//0NMTAxq1qyJtWvX2jo7VjN37lxbZ4EQx5X4QP8+A71gDcoWdAZgdtCjUTjoYF5fkxVRwENILvr374/+/fub/biaPcwIIQWcxJWfPFSpTgxwWtBORliKIrGDOfXsIegyAVVpEUIIIbYWGAYU1RiSokpn8bqw55c9jGosLOFxABTwEEIIIbbGSbSrhTTb+ry8qV6W28FYVxTwOCcaAZYQ26HPH3EouqaGyA1TAHJBAOHiAUgMtDp5p5Lp58iLJ+eBNe8Dj89q7xMFPNSGx+G5ublBIpHgyZMnCAwMhJubm8FpFwgh5sMYQ1ZWFl68eAGJRGLSlByE2My+b/Tv0zePlsRF3CiZkxoOePLa08tUq9vyVWm/tAC+eSWePkIht04ezIQCnlxIJBKEhobi6dOnePLkia2zQ0iB5OXlhdKlS6umyiDErukqDVHSnG+q01Lg72+BzsuAjb0E6VwNBzXWqk4Stht6dgkIrmX9PJgJBTxGcHNzQ+nSpZGdnQ253LEiWkIcnVQqhYuLC5WsEseRaaBKS3Oo35o9+X8AkHhfvI8zMPWNLYINzYbSwjyUiLBuXvKAAh4jcRwHV1dX0QzPhBBCiBZDY/BoRTx5ZIuAR7MrvDIPRcoDHX+0fn5MROXDhBBCiLUYPZsTg8HgyCbVSYL8HPuRnz4DALr8Ani/Y4P8mMaiAc+sWbNQt25d+Pr6omjRoujUqRNu3LghSpORkYGhQ4eiSJEi8PHxQdeuXfHs2TNRmgcPHqB9+/bw8vJC0aJF8cUXXyA7W/zHPnjwIGrXrg13d3eUL18esbGxlnxphBBCSB4YGfAI28roYouei8JGyvsmqpc9TJgPzIYsGvAcOnQIQ4cOxYkTJxAXFweZTIb33nsPqampqjSjR4/Gjh07sHnzZhw6dAhPnjxBly5dVPvlcjnat2+PrKwsHDt2DGvWrEFsbCwmTZqkSnP37l20b98eLVq0wPnz5zFq1CgMGjQIe/futeTLI4QQQkxjbAlP5+VAoTL699uihEffyMoSA22N7IhF2/Ds2bNHtB4bG4uiRYvizJkzaNq0KZKSkrBy5Ups2LABLVu2BACsXr0a4eHhOHHiBBo0aIB9+/bh6tWr2L9/P4oVK4aaNWti+vTp+PLLLzFlyhS4ublh2bJlCA0Nxfz58wEA4eHhOHLkCBYuXIioqChLvkRCCCFEzegqq1z45kxSPP4hMLuU9n5h7ylr0RfwGGpcbUes2oYnKYlvuV64cGEAwJkzZyCTydCqVStVmrCwMJQuXRrHjx8HABw/fhzVqlUTzVAdFRWF5ORkXLlyRZVGeAxlGuUxNGVmZiI5OVn0jxBCCMk3uSyXBCYGRB5+urcf/xFIe23asfLLwUt4rBbwKBQKjBo1Co0aNULVqlUBAAkJCXBzc0NAQIAobbFixZCQkKBKIwx2lPuV+wylSU5ORnq69pT1s2bNgr+/v+pfqVI6omdnxRhwbSfw4mbuaQkhhJgmO0O8XqqBeN1cJUAAcGWr+Y5lDCrhMc7QoUNx+fJlbNy40Vqn1GvChAlISkpS/Xv48KGts2Q9j04Bm3oBS+raOieEEOJ8NNvWaA0eaMaAh7NyR2t9wRqV8KgNGzYMO3fuxD///IOSJUuqtgcFBSErKwuJiYmi9M+ePUNQUJAqjWavLeV6bmn8/Pzg6emplR93d3f4+fmJ/hUYTy/YOgeEEOK85FnidRd38boxJTzeRY08mZUH47z2JyDTrjVxFBYNeBhjGDZsGP744w/8/fffCA0NFe2PiIiAq6srDhw4oNp248YNPHjwAJGRkQCAyMhIXLp0Cc+fP1eliYuLg5+fHypXrqxKIzyGMo3yGESARqslhBDL0WzDozlYnzlZo4THSzC+ztFFwKo2lj+nhVi0l9bQoUOxYcMG/Pnnn/D19VW1ufH394enpyf8/f0RExODMWPGoHDhwvDz88Pw4cMRGRmJBg34es/33nsPlStXRp8+fTBnzhwkJCTg66+/xtChQ+HuzkfOn376KX788UeMGzcOAwcOxN9//43ffvsNu3btsuTLc0wnl9s6B4QQ4rw0S3iY5nRERpTw6Gsro8kaP2A9/IC0l+r1p+fF+6t0cYhBBwELl/AsXboUSUlJaN68OYoXL676t2nTJlWahQsXokOHDujatSuaNm2KoKAgbN2qbogllUqxc+dOSKVSREZGonfv3ujbty+mTZumShMaGopdu3YhLi4ONWrUwPz587FixQrqkq7LS8HAj+ZsPEcIIUS7DU9exssxtuRm+3Ag5Xnu6fJDV/AlHPSw3TzLnt+MLFrCw4z4QvXw8MCSJUuwZMkSvWlCQkKwe/dug8dp3rw5zp07Z3IeCzS5DHBxyz0dIYQQ42hWaSk0SngKiZt26KTZCLhmb+D8Ot1pV7cFhp8xPn+m0jWic7qgO7zEcWaocpycEvO7vtPWOSCEEOcirNLq84e4hKRYVaD7r/qfW/0j/rHpF+LtkZ/pf86reNPzaApdJTynV6mXHaRLOkABT8ET/r56ecsA2+WDEEKckbKNi7s/UK6luIRnyFEgsJL+53b6CRh2BqgzUGMHp2cZgGehfGTWCMmPtLdlJKmXHaRLOkABT8Hj6mXrHBBCiPPaOZp/zMwJChqN5B/Do3N/rkQKvFNeuzGysE2P5j283sd5y6cxbuqZjzLzrXrZgUp4LNqGh9ghY1v/E0IIyb9KbYDRVwHf4nk/hijg8QBk6gm44W7BceSu7dC9XTiatMRxwggq4SloFLnN80IIIcQoWam5pwEA/xL5a9wrDHik7vrTmZNcBpzT097II0C9TFVaxG5d+cPWOSCEEMd3bQcwMxg48r3lzyWs4tIMMCxVav/otP59twUD/TrQYLYU8BQkmSm2zgEhhDiHTb35x/2TLX8uYQmPVoBhqfHUDBy3aLiFzmlZFPAUJAur2DoHhBBCTCUMcjQHJbRFu8wXOQPYlnas6Zso4ClIMhJtnQNCCCGmEgU5GiU8lhox381b/76XN/lHqWMNXEsBDyGEEJJXLh6WP4cw4HlzV7zPUiU8xkxvYY3XbkYU8BBCCCF55Rds+XMIx73RYqESHmPmAHOxUo8xM6GAhxBCCDFF+hv1sjWqdQyV4liqSktzDjBdqISH2B3GgN1faG/3esf6eSGEEEf3/Lp62diZzfPFQNdviwU8VMJDHNHF34D/lmtv9yps/bwQQogjYwxY3Ua9LvzSt1Tw4RlgID8WasNDAQ9xSDd2idfLNucfjSmyJIQQoiacDR0Ql5RnJlvmnAbbCVGVlrEo4CkIhDPbAkCZJvwjo4CHEEJMohnwCO+jF39TL7v7Wyc/tqzSkrpa5twWQgFPQSCsbwbUUbmCJhIlhBCTyDXmIxRWKSVcUi/H7LNOfixWpWXED2IHmikdoICnYEhJEK8r612NieAJIYSoCYMaQBxwKEt/Wk0FioZZ5vxSN6BkPWEGLHMeY74frNJg23wcK7fEPFw9+Ueq0iKEENPsHiteF1YpZWfyj5ZszNtuLuAqaDtjqRIeY74fKOAhdk9VpUUBDyGEmEQ5rYKS8D6qLOGx5Ng8UjdA4qJet0YbnoptdKdxoJnSAQp4Ciblr4+0l5b7sBBCiLmlvQaO/wSkvLB1TtSEJSzWKOEBNAIeC7fh8S8N1B2sOw2V8BC7J+xKeCvOdvkghBBT/FAb2DsBWN7c1jlRE7XhyQl4pBYMeIpVEQc8lm7D8055/WkcrITHJfckxOkIA57kx7bLByGEmEI5pUPyI9ucX1eJuKiEJ6dKy8UCVVpD/wMSHwLFa4hLViw9tYTEBQhtCrxTCXh5QyORYwU8VMLj7GQZ2ttEg0VRlRYhxAFpji9mq3MKG/c+v8Y/WqKEJ7ASUKEVvyws4blzyPznAtSzsic95gO4oSeB92aI01CVFrErwknulJS9tABqw0MIcUyzSwOHF1j3nE8vaG9TlvDIMoDMnIDozT3L5kMY8Dy7pD9dfvw7l398foV/5DhAojHQIAU8xK7I0rS3eRURrFDAQwhxUAemWvd8aa/4R59igEcAv6wMeM6uUafT7MllbnVjLHt8faQarWAcrA0PBTzO7tgP4vVK7cXDgVMJDyGEGCflGf/o4gF8EMsvK0esT09UpwttYtl8hDS07PH1oRIeYtfOrBav99ggfpPSWDyEEEfwMt7WOQAenuQfE++r76PKEh5h+57yraybL2tRaEyrQQEPsVuhTflHiWD+E5peghDiCJSNaI2RkQScidXdhjE/CoXyjxWi1PdRZcAjHHvH3de857UX13eJ1x0s4KFu6QVJ3+38o7DBGwU8hBBHkJVqeP+NPfwwG7J04MhCfmDVi78BA3ab5/yMARc38ctFw7VLeBzsyz9PavQEbv8t2OBYbXgo4Cko6g5WNzBzsBluCSEEF/6nf19GEvC/7trb7x813/lPr1SPW+buKwh4cpoFHJ5nvnPZA07Kv7aavdXbqnUDHp8GTi7LSeNYQZ5j5ZaYJkkwqGDJuupl4cRzAaWtlx9CCNH08hYwryLw8JT+NPJsILiW/v0XNpo/X5ou/6Fe5jj1D0dLTe2QG9/ilj1+cE3+May9ehvHAXVixOsOhAIeZ3Zhg3o5VWPuGWV7Hlt9WAkhBAB+rMP3flqpp6Fv8hNgehHg4Cz9x/hrnGXyJnT/iHr58VntKi1r67DQsseXpfOPbl7i7cJevhTwELtxaYtgRaP7ufLXCbXhIYTYSm7DYmRnAQvCrZMXU/iXVH/Z22poD+V4agEhljm+cgw3V0MBj2OFEI6VW2Ia/5KCFY1IXNlwmbqlE0KsiTH1fec7jS/rKf7AL++q1/+ebtwxK7bVv++1Cb279El7LV5vOFz9ZZ/0UD0Wj1Up7+kWCriUJTzCkfkBQCqcJ4xKeIi9ELbbCQwT75NQCQ8hxMrS3wBTA4BphfnpF3TNTfX4tHoSzmOLjTuuu4/+fYtrmphJHf6ZKV73DRYP73F5C6xOVcJkoeOrAh6NEh5rzNRuIRTwOIvEh+o3qFL8fvVyBc36cQv/OiCEEE0HBCU2WwxMj5CZDMRNNu6YCgWQpWMKHaHcurRrOvI9cEXQSPnUL+rlKl0AiURcnfPsimnHNwtLl/Aoq7QMlPA4WA0BBTzO4MUN4Puq4qJgAHiU0+uhwnvaz9Gsf1YogP1TNdr9EEKIGb24oV5+fFp/usW1gKPfG3fMe4eBG7sMpxFO+5CbZ1eA/ZOBzf3V28q15B+9igAf5IxeLwx47gkaNFuLKt6xQMAjl6lL/7UCHlft9A6CAh5HwBiw7TNgUx91RH12LXByOb988Tf+8bmeXxnh0drbVB/WnA/Lla3AkQXA7zaalI4QInZiGd+mZWE14M5B4NBc00sq7I1PoHHpMpONP+ba93NPk51heP/9Y0DiA375wQlBPlL4R+Vge6UaqPcJAx7NXrDWYMleYsJJp7WqtBw34KGBBx1B2mvg/Hp++cV14O1TYPtwfr1qV+C/X/Q/FwCSn+rfd20HULs/8PyaWbJKCDGD4z8Beyfwy0kPgLUd+eWUBKD9fNvlKz+eXxNXE5nK3R/o+wfwS0vTn2so4LmwEfjjE355ciKwa4x6X9orcfsgYUmScABXW/RWUgYelmiHqWwewUk0GimDr85Tom7pxOySHqqXZRnAuq7qdXkmkClo+CeXAa9u8+mUyjbTPqbyA3r7b9s0uCOEaJsdwpfqKIMdTadWWDc/5nTAyB5XurSYCHx+DfAsZPxzWk9TL8sMBDzKYAfgx/wR0gwmhAO1ir7sbdAWUtXT1hIBj6BLuqGghrqlE7NbLghYMhLF+/6eIV6fHwb8UFtc/y3sraUkfBPf/hu4Yab5ZggheZOeqP351iWvbTYY438Q2YIsXX87mzJNgJZf639uqQZAvY8BN2/Au6jx56zcEShSgV82VMIjHLH48Rnxvof/AWd/Va9HL1IvC7/sNTuMWIMlhxbR1yVdi2OV8FCVlr3TvLn9OVS8rqzqUkp7yT8qRyWVuou7T6oI3qiG5qghhFiHsCTXkOTHGmNsGenb4kB2OtB5OVCmMf9FL7HSb95/54rXK7YFbv7FL1frBngbaNsTs1e9bKj7udCnR4BCZQCXnGl0sg0EJAEhfDMBALjzj3jftk/F617vqJeF91VhL7E+24zLY35JlQGPBYJYYwMeqtIiZqXZeO+tgfY4usgzdW93sKJIQpwSY8DbZ0DCJWBZY+Oek5fShLfP1F/6f3wMLKwMbB9m+nHy4v4x4LCg3VGF94Aegh9Z/qWA8nqmlTBF/ZzgpHZfIKgav6ycNzBbz30QAB4KGim75PIFLwwARCU8OY3J3f2Aci2My29+WatKyxDPwuY/twXRt569y218ibwy1Ej52VXnb8T86AwwJQCIP2DrnBClxAd8+5XLW22dE+s58RMwv6LxwQ6gHoyPMWDzAGCfjuogWTqw/kPgxFJ+/YWOz7OwdDgj2XJTJKzWGAW5yy98yUDHJUDkML7Lt4s7UHcwEFRdnS4wDBhkwuczchgw4jzQQVDtpCzh0RckvowXrz85Z/gcLu7qZWHAo+wp5WZkCZQ5WDTgyaWE5/0fgdr9xBOLOgAKeOydLJ8Bj74uhLpugEpLI4GfGhj+VeQoMpKAUyvFQ8MzBqxoCYAB67rYLGtEw/c5v8q3DABe3OSX/53LB0FHjRxx1xGkvebbXTw5D+z9Sn+6r18A/qW1t59dyz++uMEPJ3HsB74r9RR/YMdIft/p1cCtvcCe8cD+KcC1nbrPMcUfmFMWmF1Kd+CUF28TgNXt+DG9UjS6a5dpAngG8Mu1egNR36qrRdrPAz49DIQ243tkDfgLKFnH+PNKXIDCoeJqOlWVlp42PJpNBB4cy/0cSrpKyd28c8+nuSjzwhTmn9oitxKe2n2A9xfraS5hv6gNj73L77gbFaPy/tz0N4BvUP7Ob2uzc74wlF1NS9UH3jVyBFdiHUmPgat/irf91hfo+6e6UX7cN0CjEcYdLyuNH27hj4+BDt8DdQbkL39v7vElJS2/Btx983+sRTVyTzfiPODiBpRtCpxbpzuNsIHzqpzP+ZlYoNl44NJm9b4jucyqnfaKfzz+Ix+A5BVjwK+d+DGDAOD+UaB4TXGaqkb8wOi9FWBycWmKMXR9+SqPoS/gMXZcIFX6Yob3G9vGyByEwZciG5C46U9rKmWvNmXA6CSohMfe/dwkf8/Pz6iYjj7Ima4eKQ9PArHtrJ8XopvyS1KzG3aJ2nxVj1DKc+OOGduOD3YAYOco/tfvb32BXzvnrUfLohrAyWXArDw0FNZ0c59x6QqH8o+NRuven/JCHeRoWhAGPDlret7y6+xadbCj9PS8erntXCDCiOBT6mJ6sKOPskpGV7d0eTYfGBsrtJk4qBJWAZbJuU/bokoLMH+1lrIhtOYYPA6OAh5np/nL2RSZb82XD2s6spAvqv/fR8alV7ZzINYlz+Ynknx5U3ufZu9DwLgvp9RX2u0wrm3nPwe3/+aHbDCFMQFSygvg8u/GpT3xk2nn9/DTvT0+zrTjGCs/XZx35FICV6K2ZXv16GpvohqcT8ePH2XJlrGKhmtsEAQ8yiogpwl4co7nYFVWuaGAx9oYAw7NAa5sU2/Lzsy9cfJ7eSxqzs+w47kNx26v9k/hH4WTpxqyZ7zFsmI3kh6LS7wykvn2MZqNNq1pS3/T0hcKMbw/OxOYW1Z7++Z+6uU390w75/Or4vUlDbTTbBkAbBkILKmf+/He3M09zXuCsbV8igINRwDNvgTCBVMobBuS+3HyQnitzM0jwDzH+ewE0EfHiM26qhtV0y/oaJBt6r0xw8B0F8ofh9ZswyMsvVcGKOZqeC5XBjzO1eqFAh5r2z4M+Odb9Y1FLgN+qMM3FNb8dSXsWVC1K1+v324eMOEx0MXAiKtjrquXa/bKe17lWXl/rq3c2JO35726bd582JOD3/HdkKfnjCHy+g7fSPXvGcCPEbbJ0/Xd2iU2jUZqp+st6LF1S08Ayxhwbj0wr6Lu/Zr+mcmPWGzMl8PpVeL1F9f466dav8lPXgkAr24Zd35NDXIazraeBoy7CzQcLt7/3nSgxVf8QHr5VasP35tJH1OqeEzlZaYuzEXD1ZN5Kulq3A2oS5QykrT3mRrwXNggXhcGcMofE9YMeISNphVyfjqSeRXVDf7zQ0EBD8mPe0f4ahZhA8S3z4CnF/i5ct7cE/ckAoBvBQ2GPQP4ev16g/mGcdU/AD4+pN4v/LLwFgyOFVwr73l2tIAnIxn4X3fj0wuvzQ+1gZd5/MKyR+lv+FKHKf7AwZnq7YzxM1Hb2rlftbe1nga0mS3eVqScevmknqrH+0eBPz8zbpRiADj0HbDr89xHF398RjvgAcRVvUs0RjF/elH/8fQNgdBmJvDlff4zbCgo0FW9UP9T7W2GRAzgGyZ3W82PV1NGTxtBxvihG7KNvAcY00vIw9/4fJpqsJ5rq2xDpGvm9fze39y81I2YlT1a89uo3RQcJ+iaLuPbwaU+B/Z8mf9jKwMeB54ZXRcKeKwlVsd4BfMrAv8tV68LBxnUvNHoai0fXBP46gnwyb98sbeS8E1qyhtWOViXkq2Goc8rXe0+AL5UrFYf4OvnQM/f+Gs14jwQo1Fi8GMdy417pM+r23kPtDKS+C+ay78DJ5fzX84XN/PF0d+V4bdrspdqSn3BhrtGm5VCZXI/1rMr4vXoRfwkkMppBfTZ2NPwfn2TVCpLBl7c0N63X0cPQIWcDzwNDYGg7KptSEgj7W3NTPxyK5lTole1C/D+D7q7VmckA7fi+KEbZgTyJQe50ZySQdPws+ZvD9JtNf/YcARf9adLwiX9z39lhurcYlX4R1tUaQG6x+Ixx+zpyjZPTtaGx7nKq+yVoWqWi5vUy3cPqX/RpiSI0+lr7OfmDRTP6eb6yb/qkUKjF/MNG6sb2XD3nYqAm8avE0cLeG7u1b297iD19asYJe6qXzoSeHBcvX56pXaVgi6M8QPlBZQ23BAzM4X/O1Rqp93zJCtV3Yh21CX+WE8v8qV+1T5QjxKry8XfgK2Dde87E6v/ebaY88cYRcrzj1W78KU1gHFVOAo58Nc48bZK7fi/SdvZ6ol2g2vpHlQuPVF3sGFoDKqX8XyVmK7u4rf/Fq/LZeqqxPzSNf2CRwDQawuwvhv/mc+t4bCm0Kb8fUcoOxPY8IF6fe8EIKI/X6Khz6P/1Mvh0UDCZXF7JWFJnblU7QKUbZ73qjLNEvVc6ficKwPGLGXAY8VGy0LC9oqPzdBDT/mDm7qlE5MZW82yU9AFNdnEKSQAPvAJzGnHENEP6L7O8JemEFNoF/E6WpWWcB6chsP5X/iNRhkOSIQzKgPGDb52fRffu2hRdcNjnCgUwKwSwOb+wK8av+7XdgJmBqvXv6/GlwL83IRv5/V7jOE86At2AOD+Ef37zm/Q3mapEXb1Ed6ci1YGhp4Chp3m14U9bVpNzf1YD//T3qY8hlcR9bZeWwAfHWNK6WrbAQApz8TrHQWlHOfW6h8bB1Bfz+xM8wU7gO73sUQCVGjND1IYodHguGhl8XphHQ26dbXn0TXvlHKwQ32EAyh2XweMOMd347Y0U4IduUZPptQXutPpk9uchID1S3iUJbbC7w7N6Yjyc1wKeEi+1PsYmKLnJisknDOrkxW6TSvkwOPT4m32Uv1hjEOCyQnbL+B7ugw/DbTO5UvTL1h7m6HxhxQKcVXIAQPHF84OLQxC7hzUnqRQ0/WdwJv7uvfF5WPgxH0TtbdNDQCWNrLOyNrybHWpCwAM3MsH6cIv88mJ/GdEORaN0OnV4vXnV7TTKH9lCxtcehUBWum4bvpGMlf++nf1AiY8Amr1AprnjBV0919xWt/i4pLUzLfA8+vADAMze/fYxHeZ7rhEfxpTuOSMl1I6Ur3t/R/56RqUBugoadb1g0hXF+c9X/JteozFcfY3saTmuEW6PgsAUL617u3VPtDeplklaM02PJakvBeYazwkO0EBjyW9vKUeLh8Ahv4HtJurPz0AvM4pBv4z55dXiTpAzVzaGpgD0zH+hr1Wf+jyj0ZXXmPp+tV/9ld+HqIza7T3TSukve3FTf4LUlhS8uYecPJncbop/nxxszFtIgD1NAFCCZd1N8DUZdQlPnAwJsB+djn3X/HmoNkrTGdXYo0vSmFj152j1IPbZabwjY+VGgzlezAqn1+sKtB4DF/Vw3G62wPpG4vlyAL+UZamzqOy2k1ToTJAE0E+7h8FfjLQRd3NF6jUBvjqMT+9gik+O8E37PYtzpeMaRI2xPcL5qdriNkP9N0O+OoZJbj9Ar7KStl+St9YPFe3aW9TKPipLZREbYrsLOAR/qAz1FZPX9DSUEd1oWbAY+0SHkuhEh77t2TJEpQpUwYeHh6oX78+/vtPR3G3NUmkfDsPJV2lCZr+yOl1oawTNnV29LzS1XhROZ6Noymko2RAH6mOZmx7vuTnIdoxwrhGzEvqAnNCgYOz+PWTy/nReZXdlYV+acEf2xi6SoEOafRi6rSU/9KcnKidNkBPV119jB3JOIciNRWpJ05CkWlCyZDmODjGlAL012jg/FtfYE45YJtGD6U2M8VD+3McX6qjrOoJ0DGOj/DzKaSrQbKnjmAXANrPV1clA/oHvFTOCN4yp9o0L7+ei4YDDYYAn18Xn1NJWDqjbHNTqi5Q1kD1Ut0YvqG3soODvoBHV5u+JXXF1cCl6qmX/UroP6et3T+qf59mV+yganwPumKVtdNyEiQ/8IAsNae6y2kCHirhsWubNm3CmDFjMHnyZJw9exY1atRAVFQUnj837SZuVu4a3TCFvxzazdNKzuRAdvx/UCS9UTe0F45DYlE6vniyUvJ1RJaVBZaH9iFMJkP2mzdgxk6IJxw8r2JbIKiqaSfsuER3g1BA3NVZWNVVsq5WUhz6jn/86wvjzlvtA74Uou+ffFVnlS7AwH3qkoQqnbWfIxwnpVI7vvSv4xLtwOGzk4bPrTmOCQDIjQ9cMuPjcSOiDh70748bNWriWlg4Xm/YgIefDkHi1j/wYOBAZN65I/77aw7c1mOjcSdz9QSTC76HM5KAtJfiaxFtxOSivsVFq7I0CRTpqWByOeTnd/CDCj7KKQV4kTOWVUvBl7m+4MxQYNlwBOBdlJ8FvOdvfFul+p/knte8ElZLupr45cvlfGlf+k33fmEV484xfImlZk8nYaPd1lOBim2Aj3S0G7O1Z5fVy96B4jmyJFJ1d33vQODjf7Xb+uV4uu44Hh8rjPgdxZCZ5KLd8cNROWkJj9P00lqwYAEGDx6MAQP4uVqWLVuGXbt2YdWqVRg/3jYj6TI3H7x94IGsty5wL+oGyfHjyH71GrInT8BkWXC57QWFjAPnVwRvzmUg623On+OPhgCC4VlMDsXZL5H98iVcAgPhXqkiOFdXuBYPhrRwIchfv0Hm7Xh4VKwIz1q1kXHlCrJfvQLn5oqMixeRfvkKio4ZA2mAP2RPE5B5/TqYXA6Jjzcy9xeBxIVB4sLgHiCDWzEFJDJ3cBJA4qKAPFOClCceyOo/ABJPT8ieJSD7+Qv4tmgOzxo1kH7pMhI38T3M/KKj4dO0CSReXsh+/RqKpCSw7Gy8XP4LWFoapIULI+CDD+BSpDAkmQngfAMB70Bw7m5wKVQITCaDIjMTLD0dGbdu4dXSZTqvp0+zZoBEguxnzyDx9YUiPR2uxYtDmnwDbmnecPWRg2sSA+7wYXDu7gADWLYMLCMDTKGAS5F3wEk4SLy9c8awkIBzc0dWShmwiF/gvrsrmJyDIpuDxFUBiQuD/NxJcMFVwXl6gUu6By5dAnAA12EF8ENNcBIGMA5MATAFB1nsGLikSsFJGTgJ4x97bAD7X0+AAXKZBEzOwdVbDq7rCj4gYAysRCQ4NzdAoQCrOQjZ2yYi4/wjcIEHwUkkcAsJgeTNFXBZHH/+omFAp5XgZDJAKgUnkUAu45Dy2AM+wRngfEoDaWlgMhkyb99BVvGv8OyHVfAOyoTEhcGjfFekHDwPWaoL/ELSkJ0hRer+3fDYkYTUo0ch9fdH4OhRcAkMhOLZXWQ9fwuJjy8kfn5gGRl4OlG7cfezadMBACkHDwIA7rRTD8Xg1aA+XPy9IbntDzfvbMjdSwC7rkGx6TQUqamAqws8q1UHJ5UgOS4OXrVqwb18eUj9/fF43DhkP1WXjhaqkAKPQjJkZ0jBFICLpwLSl8UgW7kKbmVD4VK4MGRPnwIKBd7+/Q+86teDR+WcX+csDPKEu0h+FICk21Jg+wIAC9Qv4oc+KNy3NzzueULqpoAkuSgkN26AZWVBdvww5Le8kP7aDWBAwLsRQNnmcHn6CkyWAC7wXchv/AuJlEGWJgUY4JH0FvJu+yDx9IQkLR2cVwmw1FTIX72C7MkTuJUuDYmPDxTp6VCkpUGRkgK3MmXAubtDnpQEiYcHsh48BAC4BhUD5+qq+gcXF3AcB0VWFrKfv4DUxxuKV8lIu+cJ9wAZXNMzkHbiBBRpaZAnv4V3w4bgXF0g9fcHOA5czqzismfPIPH0xJvTLnh1IRhuu9eiSLgn3P2ykZ0hQepTD6S9coXXi4OQHEuHV906cP93NQAJFNkcFNkSpD51h1/pdLjIpVC8fAn5mzeQBgQgI2QE3DxLQpqSAombG+DKlyKxtDTIU1LAubiAc/eAxNsLXE5AKU9KAufmBomn9lQRjDFcD+f/loGjRiH93DkU6tMHHlUqQ+rtjew3iZD6+wEKBRSZmeCyODz9LwBSDwUkUgbJ4sXg3D3geX4m3PwkkEgY4CIF67ICKbM+hFfRTHAJLyFvOhNP/5iAgB594H7uHMBxcC9fHpyLC5iCgXN1QcaVK0i8rQ4I7vxVFPirN3yaNUP6xYsI+OADuIWUhvzNG8ieP+fv1/Hx8KxZAx5VqiDxt82QPXkCl8BAuAQGonDvXmDZ2Ug9eRI+TZuBk0r4z4ZECqm/H9LPX4DLO0XgVqYM3mzYAEhd4PnAC4l3vKCQSeDiKYfUXYG3Dz2BjeFwrxwOrzp14FaiBOSpqUB2NmTPn0PxNgXSwoXgWjwYLkUDIfHwAOfhgaw7d8G5u8E1KAguD94Ar1whfZkG7tkzSNzdAakULDsb8levIE9O5u9L5StA4u7G/zjNzgaTy8HkcuUfCxIPDzAFA5gCKYf+hWfNGnAraYY56fKIY3n5CW5nsrKy4OXlhS1btqBTp06q7f369UNiYiL+/FM8n1RmZiYyBcXwycnJKFWqFJKSkuDnp2fumjw4v24T7v6mo2hcD2agzpsDA8cUfKp8/skYx4Ev0eHAOEBZusOgbGjI8bPECH7R8udkovPzjwqNRyZ41Nymq8SG01pmnL79+tJpH0P79eo7b17PqX0MU8+p4Ay3cuBUf2am8ajcr/k+EKfTfj5y2Z+34yd5uMA7KxsuitzOr+99q+8q6N7OdG42tb2IOY5t2jl1vyf0yf2cDIBCAkgV+vJt6DjGpzXt2IbPx8BfB0nOe0t5TfjXwkGqUL9H5BIOjOPgIleAgYNcysFFrus9ZGq+c57FhOmMvU6a5+fAwEEhdcu53ykApoCEKaC834k/R8r7oa7jCbfnD/+aJGCcRHW/Vz2Cv/EwSAT3eOu0t8qWpqPb6rGQmvF7Njk5Gf7+/kZ9fztFCc/Lly8hl8tRrJi4UV6xYsVw/fp1rfSzZs3C1KlGdHnNpxcVK+JJsJ6qEkKcyBtbZ4AQYvcU8ueQeBkYz8nCnCLgMdWECRMwZswY1bqyhMfcQksWw+GK51VRtOp/rWCawVWWBL/kmzlrfFkP41zxpgg/MJ0EEoABnOoomgfR3CJcVy7l/HzI+RnBwFD4+XGAY8h28URy4apwT0+Aa+YbuMoSwQC8LtYQ/K8CBo5x/LOU+ch55BgHsJzzMU7wg57jey4xDl4pD+Ga9ZbflnN+LucXTZbnO8jwCjb4o1b4w8dFlgJJdiqyPIvC/+U51WvK8ApCplew6nVq/q7SXmLK7KmuklfqQzBOChd5Otyy3vC/xyQu4BTZgp+EDC8LRYBjfMkV4wDX7GT4psaLjv+qUAQkCj6NguPgLkuEbyo/Z1eKZ1nIXPz5yyEBFKpfvRwYp0ChpPMa2eVU6xmewfz1YnyW+Hzw+xSuUuGfGEyi/EXHQZqdBokiG9lufvzRFAr4vr6YU3IIyNwKIdO/rOpc3i8v8q87R3qhcHi+4X9AZAVUgNQzAFJVK0B1/kQYIGcMCgUDl/YaLm8fQO7mhyz/UL7KUfl3yEmr/wcug3vKI7hlvlYfOMfbgMpgUlf1Fqbx1xa+/XOWPVMfwT3zpd6z8dcjAOm+ZfincjnveYUcrllJkLkH5DT0Z4J8M/i/Og8AyHbxRqZnMchcfQFwkCgUYByX80kCmEQ4D5ICTJJTusoYODkDBwaFVAJOwb+/WM65+L8zg0ShAKdg/H4JkO3qAnCANDsd/snXke3ihVTvilBIOUCi/ttwgossUTD+/SEBOAUQ8OoMmET8F3hbuBp8X18CwJDpFYwMn5Lwf/6f1vVUvhcTi9QGwOW87/gSHMbAl37IFZAo+CpcuYsUCqkELjI5pNnZqkMxjlO9bolCoTqHQiKBNFsOxnHI8nSFQipufirNlvOfMxcpODl/bRQuEvi8fQjPzCei0p43haqh0Bu+DQ/HOKR6BSPdMxhFXv8HcEC21BNvCtfISa28dkx9vcF/5hSuLgh8cTznQ5gFQIKk4k3BFJKc18y/cZjwSPoKTVXrOfdYGKfQC42hRPiriNfv1AE4/r2jut+r7vvqzKiui0bRUqHX5+Eqe4tE/8rIdC+SU3LFP09VUskASc61ZhIu533KKbPAl+TJFaqXxSQSuHu5g3OxXdhRIKu0NJlSJGYx948Bq9uKtzX9Qtxo0hKm+POPgeHA0BP88l9fAidz2tEM3AeUNmIWaGPPo8/kRP2NQoUY48eNAYAPYvlB/ZTG3jKtS7ohZ9cC2/WMuDxwL1Bax6zZwtfYeytQ/l3xfnk2EPcNUKo+UKWT4fMbul6jrwD+ZqwHP70qZ+AyDpiSqD8PRauIx70xpru7Uuor9UzmVboAH6w2PZ/PrwE/6bruJuRDaddY4NQvhtNwEmCyiWVXymtWoyfQ2QrjZ+ny+i4/erS+XmX66HrPTUniJ589OJPvuh69yPB7My9/C0sS3i+UBvylvteGvw90W8X3UFO+rsJl+YETjSG8FlJ34Bsrd5LR97fIz9/h9R31fHu67mN2xpTvb6fopeXm5oaIiAgcOKCeQE6hUODAgQOIjIw08Ew7ItXR/U84SaGlCYON4Nrq5eM/Wuf8x3LpZaNQ8B9u4c1LGOy8O9l8wQ7Az72lS/sFuoMdAGg1Rb0c0lB7v9QFaDMr92AH4GfN1qXNd+YNdgBB13umfs/pmjRS1yB/xsjOVAc7gOEpCgwxZ5ffpIe5p2nwmenHbTIW8CwMNLdNRwkAfG8qU4MdQ5QjV2dnGh6U0x7p+hElHF8sPFp7vkHNEZmNZS9d0iX5nPBzv6C5h5P10nKKgAcAxowZg19++QVr1qzBtWvXMGTIEKSmpqp6bdk9XZN8VvvQeucXjrEhHFFU30i05hY3CTgwXf/+C/8z/PwmYwzvN5WuG2Wp+vyvXH0ajeIHl/zitniKhLzQ94VlzPxSpkoXzCn0MKc7u6EpM0wl7D4OQOeYT8bwLwXU+8Q8nwtjBtVsbeD9qM+73/B//0Ihpj/X3nRdyT8qv/Rk6Xmb8sbePBIM2Kg5/Qage6RpYwjHgLKl/M5KL7z3UcBjn7p374558+Zh0qRJqFmzJs6fP489e/ZoNWS2W1I37W3GzKBsLq8EM3YL2xdYc/bww/P0fxFpTqZqDcLgpkpnIGaf4dmDOQ4IrAR4m2H+JI7jq5A0CeeHMhfhtAjruvLVAAdn5v48fYP2adKcs0jf/FW54Tig3Ryg6y/Al/f48W96bMr1aToZM22KJI+3x7w+z94ogwHl4HPZmcC/c2yXH3MRTg2ia8yuvAY8tpo4VFN+p/QQ1jbQwIP2a9iwYbh//z4yMzNx8uRJ1K9vhrYntuRuo/ZEQnn98Au9uq1eVg7opY/mdAxKB3QP/AUACAwzPU/GKCV4/zQZa5lzGDL4ABDSSL3ebp56ziRz0hyxd1Ub8Xr0It3PE06bYojmaOFVuuhOZwrPQvzUGZXa5J5Wl9yaLrbQM89SQaL8Eab8lZ+dAVwUBJj2cH/Ki/Bo/tFHz4/hPAc8dlKllZ8u5q9uAxcFA4JSCQ+xDB03YA87uKFUN0P1weZ+6uVaffS3jwGAG7u1t6Xqme8IAFw8gcH/5D1vhgir9oqUs8w5DHH1BD5azy8XrQzUMzBDujk9PKFervah/i8GYyU/US+/N8O4NkyWxnSNCSXQbJx18mHPlNXsyglGNSeX/fI+8NVTy/3gsBRl9b2+fOubWiM39lLCI6yiNtVKjYlTnayEp0B2S7dLnoW1t1nzzab5pVapPT/bt+a8MnmRcEm9XKUzULULcO5Xfn3kRWBRdfX+xzpmZNasEgH4Ifpf3gIqRhmuZsoPqSswNqereX7b5OSVZyHje7BZQtoroHiN3NPp889M4NJmfrnrSqBaN/PkK98cvnOq5SkDHmUVx4Nj4v0SCd8A3Rz3CGuK+4Z/fKhnrsXCZfJ2XGco4dGcTJdKeIhF+BYDPlxr+vw3+aXsidLnD/F2V0Exdn4Vr6lednHjb6SfneRnftach0iRzd+I7hwCljUBHp0Rt9/ptprvcvlOBSCsneWCHSWfQPP2/soLWwU7AN8jTGMOKpHceu0o5xcDzNtzKL+Es4or1RkIRA7juy0TdZXWIx2BgbBaUtkjrUYPy+fJnLI12gsO/pvvpv5BbN6Op2+WdUdGJTzEYip3BK7+CVz+3XrnbDOL706t+cZ2MWPAo7wRdFmh3lbUQDH4H58Cr3Pa/axoKS79skQvJQI0Hae7QWqrKeKAKzAceHFNvS7LMP6Xrb/5B/fMs3cnA6dWiLdJXIGob22TH3ukLLnR1ZGgoWCMqvBoYMw1wCfIOvmylBIRQPdf8/58uynhMSMnC3iohMfeNBrJP1a1YtG/rje1qiuqGQKe1JwRbX30TLOh+Wv79W3xurBO2tIlOgVVi6/4AdiEPjsJeOUEm9+85H/5DooTd3tVyKCXZhdmzcbRtuThB3x8COi8XL3NGbqS50ehUPG6MuDR1eZOs9G3X7Dz9E7LK3tpw2POEmEKeIhFFa8BjH8AdF2Re1pLMmcJT2rO6KPeegKePn8AbefmfpzyrfKfF6IbxwFVu4qDT+EAgVJXvv2Vu684ze2/9R9T2VYC4KuK7E1wTaBGd6Dvn3z+6lqpUbi9GrSfr1Z/dxLfuFw5royuqsj8jvViTZbscSd8X9tLwGOliUAdEQU89sjD37btNgB1G56j3wNvn+X9OPJsIC2nhEZfwONZCKj/ce7HausEY4DYO2F7K3038E7L1Ms39+g/lrKxMmDfVUVlm/P5s0SXf0fi/Q5fZdzkc3GVla5BUd8pb7185Zcle9wJG/naS5WWl44OMAQABTxEHxdBr6TfY/J+nPTXUM06p6snmtCQ44b321OjV2f17iR+cMM6MfpvnH6CRszmqPIk9k1XwOMMOnyf/2MIR4C3l5GWDXUyKOCo0TLRTVh3e+8wX2efl1InVQNsxs8lZUgxHcO8C9EvF8vzKgyMu2N8es2eLkpv7quXKVB1bPmdm8le1exl3uPZSwlPfoZcKN8KiN9vvqzYGSrhIbppjjuTlsfBrPaYOIliaQeZ7JXwyjbXvf3uIfVybiV3xL5p3gsaDLVNPszN3CVX1h5SRJ/cBtXURS4DXtzM23MdCAU8RDfN1vn5Gb3TFL2t2CWf5F2ldvyjvsarSY/Uy47UwJVo4zig4xL1urNUcZm7nWRuJdjWkpeg5dfOwJK66k4I7n7AJ4fNmy87QAEP0c1F41ddXodbN5Wrl3hdOfeW5gCFxLaUv/rlerqlCwccdPPSnYY4joqCOcsccYC99vMtfw7OTr5OTa3Rksv4ZgtCHRYCxavrTu/A7OQvROxOpsaM1szIgCflObDva+BlfO4TNOrCcUD17vxyz9/4iStL1qPJHO2NcroBzfmViHMSTh/hiNMN1B0ENJ+gXrfEAKZ2E/CYWMKT+EB7m617CVuInZTBEbujOT+OsR+inaOB6zuBYz/wA9cpmfILq8ty/p/SoDjjn0usQ9mFW3MU3qw08UjM+ZmHi9gPYcmrow7+KbynWWLMHEcNeHSxl9diZhTwEN00f8UZW6X1QNBAdVNv9XJAAR/F1tkovzwOzQaCqgHhHfj1te8Dj06p01lzxHBiOcIxinRNNeEIhG2PLFFKxdlJIGhqwKPr3u6kAY9zviqSf1olPEYEPIyJB+J6dUu9XK6lefJF7MPNverlTb34XnxLGoiDHYAfnZk4F2vO9WdOdwQ9By0S8NjJ16kszbT0ugIke3ktZuacr4rkn2axtaH2OLJ04J+ZwNQA3fvfqei4xeBEt+Qn4vXVbcVVWUq2nmmemJ81GgBbwu0D6mVXJw54kh6a2LZOx73dSbun28lfiNgdzQ+voXF45oeJe+VoennTPHki9kOzxO/Fdd3ppAV8ugZnMukN8OV9oHQDW+ckb5p+oV62xGCK9vSj7l8j5iZU0hXcvLqtvc0JUMBDdNOs0vp9kP60GYkWzQpxAFI9syo7aW+PAkkiATwDbJ2LvAsMUy/rGyE8P+zpvR5/IPc0StYacsQOUMBDdNNsgKfZTd0U1GDZ+cmpezqxc8JS66OLLHt8WzOlZFWRrb0tor/ZsmJP7OgvROyK9zu6t+dlbB3luDrEefTYaOscEGIaSwck9hTwaPaq29gLOLNGd1rNgMe3uNPOW2hHfyFiV0pEAM2+FG87vIBvmDzFXx346AuAhPXlmtNUEMdXqa2tc0CIaSwe8NhRGx5hG6Uza/ix0XaM0J1WM+Cxm0lQzY8CHqIbxwEtvhJvOzBVvazsfv7sivZzm4wFPAtrpyXOrUQEUJECIWKnLN2o2BYlPP13694uHHMo9bnhY2hOD0MBDyEalC37lzXS3tfya3GRKE0/4JzqDhavNxoJ9NwIfHEHqNETGLjPNvkiRBdnrNIq0wio3Vd7u7DTSW4DRWqW8Hjpac7gBCjgIXljKIjhOH62XaXgmhbPDrGBtt8BEPRM8SrCP3oXATovBUrXt0m2CNFJ2P3a2bulC4MvXY2ShTT3+wWbPz92ggIekjfyLN3bW0/jH4W9BKp9YPn8EOuTSIEi5dXrpRvaLi+E5EZ4z3KqkZZ1dIcXBV+5dJfXCnhK5DtH9ooCHmJYy290b39yDki4LN424hzQMKdhnHBgOldPy+SN2F7HH/kvj6iZ/DgthNgrYVuVOv3Nf3x7GodHGNDlli/NNjxOXMJDk4cSw/Q1OP57OlC8pnq9+kdA4bLq9dKR/IcusJJFs0dsrHQDYPxDcTdYQuyRsBq+5STzH9+euqUL782mlvD4O28JDwU8xDA3H93b39wDSgnaaDQeLd7v4QeMu0td0gsCCnaIIxBVaVngPWtP3dKF7ZVyK+HRbNTsxFVaFPAQwwz9ahF2fdQ1UJWbl/nzQwgheaFZdWNu9lTCI5ofK5eA5+/p4nX/UmbPjr2wo78QsUuGPsQKwYdKX0kQIYTYA30dLczFVgGPrhIcU0p4Up6plzv/DLg7772cAh5imKGGqMK6X2qYTAixZ9U/5B/LtzbfMSu2US/bU7d0XTOg61OjB/9Yqw9Q4yPL5MdOUMBDDBN+oDWVqK1etqceCoQQosk3CPjqKdBrs/mOKSzVsasqLUEvWeG9WddUQMq2R8JOJ07Kjv5CxC4FVdO/T/kBr9zJKlkhhJB8cfMy848zwbFsFfDoCmL0teHRmTYnOJI4f5NeCnhI3t0/xj9mJts2H4QQYmv2VMotDGxEJTxy7bTKpgn2VCVnIRTwkLy7uo1/vP23TbNBCCE2IQwmbNUtveFw7W36SngUugKenG321K3eQijgIYQQQvLLVlVa71TQ3iYMeB6eVC+/faojrbJKiwIeQgDPQob3V+5onXwQQoi9sqdGy8JS9wfH1cuH5minVVDAQ4jamOuG94e/b518EEKIvbKngOHRKSArVXu7rrGIqEqLEAHXXGYWLgCt+wkhxCB7KuEBtKeMAHQ3Wr75F//4NsGy+bEDdvYXIg6JAh5CSEEUHi1YsaNeWvoYGpDw1j7r5cNGKOAhpouaJV6ngIcQUhBV+xDwCABKNwSkDnAf1DUOj0vOKPmRn1k3LzbgAH8hYncKhYjXTRnGnBBCnIVEAnx5z77G4DFE1726aBjw5FyBmA+RSniI6Vw1ZkFPfmybfBBCiK05SrAD6A54qNEyIQZI3cTr/qVskw9CCCGGFRGM06NzaomcbY4UuOURVWkR4ww5BlzbCdT/RLvoMyTSNnkihBDCtyPKSNSzUxDk6Oo6TwMPEqKhWBWg+ZeAZwDfOK/fTvW+AlAUSgghdsursP59r+LVy9d3apfyKKu5CsB9nAIekjeFyghWdBSTEkIIsRI91VG6xuJ5dFq8rmrD4/zhgPO/QmIZ3oHqZWW3RkIIIdanr/2NciZ0oeycIOjOIeDN/QJVpUVteEjeuHoAn9/kfxU4wvgThBDirPSVzuhqpAwOSLgMrM2ZEkhZWl8ASnjom4rknW8xW+eAEEKI3oBHRzd0TgI8PKFez86ZX4va8BBCCCHErgWU1t7GGHS2r+Qk4gDp7ZOc7c7fLZ0CHkIIIcSRRS8CwjpobGS6q7Q0Ax6lAtCGhwIeQgghxJH5BQMfrRdv09l+BzkBj47gpgC04XH+V0gIIYQUOEx/Gx6dAxA6/5yIFPAQQgghzsDdT73M9FVpQXdpTlaqxbJlLyjgIYQQQpxBnQGCFT2NlsHprtJSDkDoxCjgIYQQQpyBq5d6eUE48OyKdhpOAmQma2+nKq28uXfvHmJiYhAaGgpPT0+UK1cOkydPRlZWlijdxYsX0aRJE3h4eKBUqVKYM2eO1rE2b96MsLAweHh4oFq1ati9e7doP2MMkyZNQvHixeHp6YlWrVrh1q1blnhZhBBCiP2Sy8TrO0boSMSAXWO0N3sGWCJHdsUiAc/169ehUCjw888/48qVK1i4cCGWLVuGr776SpUmOTkZ7733HkJCQnDmzBnMnTsXU6ZMwfLly1Vpjh07hh49eiAmJgbnzp1Dp06d0KlTJ1y+fFmVZs6cOVi8eDGWLVuGkydPwtvbG1FRUcjIyLDESyOEEELsk0Ij4El8oJ1GX0lO8Rrmz4+d4RjT13fNvObOnYulS5fizp07AIClS5di4sSJSEhIgJubGwBg/Pjx2LZtG65fvw4A6N69O1JTU7Fzp3pm7gYNGqBmzZpYtmwZGGMIDg7G559/jrFjxwIAkpKSUKxYMcTGxuKjjz4yKm/Jycnw9/dHUlIS/Pz8cn8CIYQQYm9uxQHruxlOM2APsLqNeFtII2DAbt3p7Zwp399Wa8OTlJSEwoXVU9gfP34cTZs2VQU7ABAVFYUbN27gzZs3qjStWrUSHScqKgrHjx8HANy9excJCQmiNP7+/qhfv74qjS6ZmZlITk4W/SOEEEIcWvlWuafJ1lH7UQDG4AGsFPDEx8fjhx9+wCeffKLalpCQgGLFxHMxKdcTEhIMphHuFz5PVxpdZs2aBX9/f9W/UqVK5fGVEUIIIXaC4wAXD8NpsjO1txWAUZYBEwOe8ePHg+M4g/+U1VFKjx8/Rps2bfDBBx9g8ODBZs18Xk2YMAFJSUmqfw8fPrR1lgghhBAzyGVOLJ0lPAUj4DFptvTPP/8c/fv3N5imbNmyquUnT56gRYsWaNiwoagxMgAEBQXh2bNnom3K9aCgIINphPuV24oXLy5KU7NmTb15dHd3h7u7u8HXQQghhDic3CYBLcBVWiYFPIGBgQgMDDQq7ePHj9GiRQtERERg9erVkEjEFzQyMhITJ06ETCaDq6srACAuLg6VKlVCoUKFVGkOHDiAUaNGqZ4XFxeHyMhIAEBoaCiCgoJw4MABVYCTnJyMkydPYsiQIaa8NEIIIcT56Qp4qEor7x4/fozmzZujdOnSmDdvHl68eIGEhARRu5qePXvCzc0NMTExuHLlCjZt2oRFixZhzBj1+AAjR47Enj17MH/+fFy/fh1TpkzB6dOnMWzYMAAAx3EYNWoUZsyYge3bt+PSpUvo27cvgoOD0alTJ0u8NEIIIcR+5VZao6sND1Vp5V1cXBzi4+MRHx+PkiVLivYpe8H7+/tj3759GDp0KCIiIvDOO+9g0qRJ+Pjjj1VpGzZsiA0bNuDrr7/GV199hQoVKmDbtm2oWrWqKs24ceOQmpqKjz/+GImJiWjcuDH27NkDD49cGm4RQgghzibXgEdXCU/BqNKy2jg89ozG4SGEEOIUZocAGYn691f/CLi4Ubytaleg2yqLZstS7HIcHkIIIYRYWG7tcTSDHQBw87FMXuwMBTyEEEKIs0h7Zfpz3H3Nnw87RAEPIYQQUpBJ3XJP4wQo4CGEEEIKstzG7nESFPAQQgghBRoFPIQQQghxBq5e+vcVkJGWC8arJIQQQgqyiAH6913+3Xr5sCEKeAghhBBnZ2hwwde3rZcPG6KAhxBCCHFmFd4DJBaZWMGhUMBDCCGEODPGKOABBTyEEEKIc8vOKDAThBpCAQ8hhBDizFy9DJfwFK1ivbzYEAU8hBBCiDNrO9vwHFudllgvLzZEAQ8hhBDizAqXNVzC41nYenmxIQp4CCGEEGdnqOu5Itt6+bAhCngIIYQQZ3fvqP592RnWy4cNUcBDCCGEODtDbXgUcuvlw4aoYz4hhBDi7HR1S68TAyQ9AopVtX5+bIACHkIIIcTZ6ZpaosMC6+fDhqhKixBCCHF2NNIyBTyEEEKI06OAhwIeQgghxOnR1BIU8BBCCCFOz1AvrQKCAh5CCCHE2RWQwQUNoYCHEEIIcRYf/U/39vD3rZsPO0QBDyGEEOIsvN/Rvb1MI+vmww5RwEMIIYQ4i+I1dW9nCqtmwx5RwEMIIYQ4Cxc3oO927e2Midcjh1knP3aEAh5CCCHEmQjH3PEszD9qlvC0nm69/NgJCngIIYQQZ8Jx6uXoRcqN4jS6pppwcgXvFRNCCCHOjBN8tbu4848latsmL3aEAh5CCCHEqQhKc6Su/CMNPEgBDyGEEOJUhCU8Unfb5cPOUMBDCCGEOBNhGx6pm+3yYWco4CGEEEKciiDgcREEPBED+Meila2bHTtB88UTQgghzkRfCU/UTKBUPaDCe9bPkx2ggIcQQghxJvoCHjcvoGZP6+fHTlCVFiGEEOJUqA2PLhTwEEIIIc7kyVn1MgU8KhTwEEIIIc4koLR6mcbfUaGAhxBCCHEm71RSL3P0Na9EV4IQQghxJsJSHY7Tn66AoYCHEEIIcSbCUh3GbJcPO0MBDyGEEOJMKODRicbhIYQQQpyJZ2EAHF+d5eFv69zYDQp4CCGEEGcidQG+egKA8csEAAU8hBBCiPNx87J1DuwOteEhhBBCiNOjgIcQQgghTo8CHkIIIYQ4PQp4CCGEEOL0KOAhhBBCiNOjgIcQQgghTo8CHkIIIYQ4PQp4CCGEEOL0KOAhhBBCiNOjgIcQQgghTo8CHkIIIYQ4PZpLCwBjDACQnJxs45wQQgghxFjK723l97ghFPAAePv2LQCgVKlSNs4JIYQQQkz19u1b+Pv7G0zDMWPCIienUCjw5MkT+Pr6guM4W2fHIpKTk1GqVCk8fPgQfn5+ts6OzdH1EKProUbXQoyuhxhdDzFbXw/GGN6+fYvg4GBIJIZb6VAJDwCJRIKSJUvaOhtW4efnRx9SAboeYnQ91OhaiNH1EKPrIWbL65FbyY4SNVomhBBCiNOjgIcQQgghTo8CngLC3d0dkydPhru7u62zYhfoeojR9VCjayFG10OMroeYI10ParRMCCGEEKdHJTyEEEIIcXoU8BBCCCHE6VHAQwghhBCnRwEPIYQQQpweBTyEEEIIcXoU8DiB9PR0W2fBrty/fx+PHj0CAMjlchvnxvZevHiBxMREKBQKAFA9FlQZGRm2zoLduHXrFubNm4cbN27YOit2ge6lYs52L6WAx4HJZDIMGTIEXbp0Qd++fXHixAmjZox1Zn/++SdCQ0MxbNgwAIBUKrVxjmxHJpPh008/RdOmTdGuXTsMHDgQcrk81/lmnFVWVhZGjx6NXr16oW/fvjh8+LCts2QzcrkcQ4cORbVq1XDt2jW8ePHC1lmyKbqXanPGe2nBvPM5gYSEBNSvXx8XL15EdHQ0Ll68iE8//RRz584FUHB/xf/333+oX78+Hj58iN9//x2Ac/wyMVV8fDzq1q2LGzdu4KeffkK7du1w/Phx1fujoNm2bRvKly+P8+fPo3nz5jh//jwmTJigeo8UNAsWLMCFCxdw6NAhrFy5Eo0bNwaAAvklT/dS3ZzxXkoBj4M6evQosrKy8Ntvv+Gzzz7DoUOH0LlzZ0yePBlXrlyBRCIpUDcv5U0pKSkJdevWRa1atbBo0SLIZDJIpdICdS0A4K+//oKPjw927NiBFi1aYNy4cQgJCTF6kj1ncvv2baxbtw4DBw7EP//8g+HDh+PAgQNwc3PDrVu3bJ09q2KMITU1FX/88Qf69++P+vXr4/jx41i+fDmOHDmC1NRUW2fR6uheKubM91IKeByM8s344sULvHnzBiVKlADAzxb7ySefoHHjxvjkk08AABzH2Syf1qa8KcXHx6N3797o3LkzXr16haVLlwLgi6wLAuX74+XLl0hISICPjw8A4NmzZ3jz5g28vb1x/fp1W2bRapQ35qysLFSvXh39+vUDwP9KDQwMhFQqxe3bt22ZRavjOA5PnjzBnTt30KZNG3z++efo2rUr1qxZg65du6Jz585ITk62dTatgu6lujnzvZQCHgewfPlybNiwAfHx8ar2F1KpFEFBQaJ2CEFBQRg/fjxOnTqFuLg4AM5ZRC28HkpyuRwcx0EqlSIzMxMNGjRA586dsXLlSvTu3RsLFixAZmamDXNtOcrrcevWLdX7o2bNmkhPT0ebNm3Qu3dvlCtXDu7u7vj+++/RsmVLrFq1CoBzvj/+++8/AOovtPDwcEyaNAmhoaEA+M9OVlYW0tLSEBkZabN8WoPmtQCAkiVLokiRIvj6669x//59HDhwANu3b8eBAwdw5swZzJgxwynfFwCwZcsW7N+/H0+fPqV7KcTXQ8mp76WM2K09e/awwMBAVrNmTRYSEsIqVKjA5s+fzxhj7OLFiyw8PJzNnj2bZWZmqp6TkJDA3n//fdanTx9bZdtidF2PhQsXqva/evWKBQUFqa7H6NGjmYeHB/P09GSnT5+2Ua4tx9D7Qy6XszNnzrC1a9eyChUqsC1btjDGGHvz5g379ttvWZEiRZhMJrNl9s3ujz/+YMHBwaxIkSLs7t27jDHGsrOzVfsVCoVq+e3bt6xChQrsxIkT1s6mVRi6Fq9fv2YxMTHM19eXdenShcnlciaXyxljjK1YsYL5+/uztLQ0W2XdItauXcuKFi3K6tWrxwIDA1mjRo3Y77//zhhj7OzZs6xy5coF6l6q63r88ccfqv2vX792ynsplfDYsRUrVqBz5844d+4c4uLi8Mknn2Ds2LHYsWMHqlWrhubNm+P333/HsWPHVM8pVqwYXF1dnbInjq7rMWbMGOzatQtyuRzZ2dlo0qQJtm7diurVq+PXX39Fq1atEBISovqF6+iN7oT0vT927twJAKhduzbevHmDQoUKoWvXrmCMISAgAE2aNEFGRobq178zWL9+PWbOnImmTZsiPDwcs2fPBiDuWSKsljh69ChSUlJQsWJF1bZnz55ZL8MWlNu1KFSoEN599124ubmpeu2xnNKLqlWrws3NDdeuXbNZ/s0pOzsbixYtwqxZszBz5kwcPnwY27ZtQ7ly5bBixQqkp6ejVq1aaNy4MbZu3er091JD12P58uWqkpv09HQ0a9bM+e6lto64iJjyV+idO3dYQEAA27Nnj2h/z549WYUKFdiLFy/Ys2fPWK1atViPHj3Yo0ePVGnatWvHRo8ebdV8W4ox1yMsLIw9fvyYPXr0iHEcx1xdXdnQoUPZmzdv2JUrV1ibNm1Y48aNbZF9szPmeoSHh7P4+HjGGGPfffcd69ChA0tKSlKlmTlzJmvatClLTU21XsYtRFlqceLECTZ+/Hh2//59NmfOHFapUiX2zz//iNIIffLJJ6xHjx6MMf4XfvPmzVnnzp1VJR2OyJhrofzFnpKSwkaNGsU4jmNxcXGqY8ybN4+1bt3aoa+DUGJiIps4cSKbPXu26DXNnj2bNWrUiCUmJjLGGHv69KnT30sZy/16vH37ljHG2IMHD5zyXkoBj524efOmqMg9PT2dFS1alC1fvpwxpr5RJSYmMi8vLzZr1izGGGObNm1iTZo0YSEhIWz+/PmsT58+rGjRouzw4cPWfxFmZMr18PT0VF2PDRs2sJMnT4qOtWzZMjZ37lymUChEx3Qkpr4/vvvuO8YYY2vWrGF169ZlrVu3Zlu2bGEDBw5kgYGBbNmyZdZ/EWakeT0YY6oqusuXL7P333+ftWvXTrVPmFYul7OOHTuyuXPnsmHDhjGJRML69u3LsrKyrJN5MzP1WigDozt37rC+ffsyb29v1qVLF9ajRw9WuHBh9vPPPzPGmNN8Vs6dO6d6zcov+fXr17OaNWuKqrA2b95cIO6lxl6PjRs3Ot29lAIeG9u0aRMrU6YMq1SpEqtXrx5buXIlY4z/Bda3b18WFRWlehMqb8gTJkxgpUuXVh3j0aNH7OOPP2adOnVi7dq1Y9evX7f+CzETc1wPJeUHUtcvfEdhjuuxbt061rRpU9a4cWOnfX8wJv6CXrVqFatcuTJbtWoVY4yJfs0qf71yHMcaNmzIrl69ar0XYEZ5vRaabbeWLVvGvvjiCzZgwACnem+sWLFCtF/4HujZsyfr378/Y4yJvuSd+V5q7PXQFfg7w72UMQp4bGrfvn2sTJkybMmSJWzPnj1szJgxzMXFRfWrPTY2ltWqVUv1i0t5ozp16hQLDAxkp06dEh0vPT3dui/AzPJ7PRy5MZ0u+b0ewl9nMpmMJSQkWP9FmJGu6+Hq6sqWL1+uamSrvAaPHj1iMTExrG7duqpieuUX2+XLl1n37t1FVTmOJr/XwlFLs/QxdD2U90VlqUR6ejqrXr06+/XXX/UezxnvpXm5Ho4e4GiigMcGlNHy1KlTWUREhOjm89lnn7FatWqxvXv3suTkZNarVy/WsGFDVU8LxvjIPTg4mN25c8faWbcIuh5idD3EcrsederUYVu3btV63s6dO1mdOnXY5MmT2YULF1j79u3ZgwcPrJZvSzDXtejQoYPDXwvG8nY9Hj9+zMqUKcNu3rzJGOOrfJylnQ5dD8Ocp/m5A1H2Frl69SrKlSsHV1dX1WBOM2bMgLe3N9atWwepVIqhQ4dCIpHgo48+wrFjx/DgwQPs3r0bERERCAoKsuXLMBu6HmJ0PcRyux4eHh74888/kZCQAEDde6RFixaoV68epk2bhoiICGRnZ6No0aK2eRFmYq5rIZPJHP5aAKZfDwDYv38/SpUqheLFi2PkyJGoXLky7t+/D5lM5vBj7dD1yIWtI66CYN++fWz48OFs4cKFomqG5cuXM19fX1WxoTIaX758OStfvjw7cuQIY4yx69evs4iICFapUiVWrFgxVqtWLYeuW6brIUbXQywv16NixYrs4MGDqrQpKSls4cKFTCqVsubNm7OLFy9a90WYCV0LsbxeD2UvNYVCwT744ANWqFAhVqRIEValShWtpgGOhK6HaSjgsaAnT56wDh06sKJFi7JevXqxatWqMX9/f9Ub88aNG6xEiRLsm2++YYyJG88FBQWxBQsWqNbfvn3L7t6969ADpdH1EKPrIZbf6yEchPLKlSusfv36bO3atVZ9DeZC10LMXNcjNTWVdejQgZUsWZJt3LjR6q/DXOh65A0FPBaSmprK+vXrx7p37y5qS1GvXj1Va/jk5GQ2Y8YM5unpqapPV9bBNmvWjA0aNEj1PEfsAihE10OMroeYua+HI6NrIWbu6+HonRvoeuQdteGxEC8vL7i7u6N///4IDQ1FdnY2AKBdu3a4du0aGGPw9fVFz549Ubt2bXz44Ye4f/8+OI7DgwcP8Pz5c3Tq1El1PEefvI6uhxhdDzFzXw9HRtdCzNzXIyIiwkavxDzoeuQdx5iztUqyHzKZDK6urgD4yfskEgl69eoFb29vLF++XJXu8ePHaN68ObKzs1GnTh0cO3YMYWFh2LBhA4oVK2ar7JsdXQ8xuh5idD3U6FqI0fUQo+uRNxTwWFnjxo0xePBg9OvXTzUniUQiQXx8PM6cOYOTJ0+iRo0a6Nevn41zah10PcToeojR9VCjayFG10OMrocRbFSVViDdvn2bFStWTFRnKmxMVtDQ9RCj6yFG10ONroUYXQ8xuh7GoTY8VsByCtGOHDkCHx8fVZ3p1KlTMXLkSDx//tyW2bM6uh5idD3E6Hqo0bUQo+shRtfDNC62zkBBoGxQ+t9//6Fr166Ii4vDxx9/jLS0NPz6669OMQCYKeh6iNH1EKProUbXQoyuhxhdDxPZsHSpQElPT2fly5dnHMcxd3d3Nnv2bFtnyaboeojR9RCj66FG10KMrocYXQ/jUaNlK2rdujUqVKiABQsWwMPDw9bZsTm6HmJ0PcToeqjRtRCj6yFG18M4FPBYkVwuh1QqtXU27AZdDzG6HmJ0PdToWojR9RCj62EcCngIIYQQ4vSolxYhhBBCnB4FPIQQQghxehTwEEIIIcTpUcBDCCGEEKdHAQ8hhBBCnB4FPIQQQghxehTwEEIIIcTpUcBDCLF7/fv3B8dx4DgOrq6uKFasGFq3bo1Vq1ZBoVBopY+KioJUKsWpU6cAAPfu3VM9X9+/2NhYHDx4UO/+hIQEa79sQogZUcBDCHEIbdq0wdOnT3Hv3j389ddfaNGiBUaOHIkOHTogOztble7Bgwc4duwYhg0bhlWrVgEASpUqhadPn6r+ff7556hSpYpoW/fu3VXHuHHjhmjf06dPaSJGQhwczZZOCHEI7u7uCAoKAgCUKFECtWvXRoMGDfDuu+8iNjYWgwYNAgCsXr0aHTp0wJAhQ9CgQQMsWLAAnp6equcCgI+PD1xcXETbhIoWLYqAgACLvyZCiPVQCQ8hxGG1bNkSNWrUwNatWwEAjDGsXr0avXv3RlhYGMqXL48tW7bYOJeEEHtAAQ8hxKGFhYXh3r17AID9+/cjLS0NUVFRAIDevXtj5cqVJh+zZMmS8PHxUf2rUqWKObNMCLEBqtIihDg0xhg4jgMArFq1Ct27d4eLC39r69GjB7744gvcvn0b5cqVM/qYhw8fhq+vr2rd1dXVvJkmhFgdBTyEEId27do1hIaG4vXr1/jjjz8gk8mwdOlS1X65XI5Vq1bh22+/NfqYoaGh1IaHECdDVVqEEIf1999/49KlS+jatSvWr1+PkiVL4sKFCzh//rzq3/z58xEbGwu5XG7r7BJCbIhKeAghDiEzMxMJCQmQy+V49uwZ9uzZg1mzZqFDhw7o27cvIiIi0K1bN1StWlX0vFKlSmHChAnYs2cP2rdvb9S5nj9/joyMDNG2IkWKUNUWIQ6MAh5CiEPYs2cPihcvDhcXFxQqVAg1atTA4sWL0a9fP5w7dw4XLlzAL7/8ovU8f39/vPvuu1i5cqXRAU+lSpW0th0/fhwNGjTI9+sghNgGxxhjts4EIYQQQoglURseQgghhDg9CngIIYQQ4vQo4CGEEEKI06OAhxBCCCFOjwIeQgghhDg9CngIIYQQ4vQo4CGEEEKI06OAhxBCCCFOjwIeQgghhDg9CngIIYQQ4vQo4CGEEEKI06OAhxBCCCFO7///NL+8aqOXEwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dfn.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, normalize each column,\n", + "$$\n", + "z = \\frac{x - \\bar x}{\\text{std}(x)}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "dfn = (dfn - dfn.mean()) / dfn.std()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGVCAYAAADDk5p6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6BUlEQVR4nOydd3wURRvHf3stvZJAEiAJvffeiyBKERGkS8dGFZFiQZoUQRB8EVS6IKJIExGk9w6hJdQkhBCSQHq7vu8fV3b3dvdKyOVCmO/nE7jbnd2du9udeeapFE3TNAgEAoFAIBBcgMTVHSAQCAQCgfDqQgQRAoFAIBAILoMIIgQCgUAgEFwGEUQIBAKBQCC4DCKIEAgEAoFAcBlEECEQCAQCgeAyiCBCIBAIBALBZRBBhEAgEAgEgsuQuboD1tDr9UhKSoKPjw8oinJ1dwgEAoFAINgBTdPIyclBWFgYJBLrOo8SLYgkJSWhYsWKru4GgUAgEAiEQvD48WNUqFDBapsSLYj4+PgAMHwQX19fF/eGQCAQCASCPWRnZ6NixYrmedwaJVoQMZljfH19iSBCIBAIBMJLhj1uFcRZlUAgEAgEgssgggiBQCAQCASXQQQRAoFAIBAILqNE+4gQCASCLWiahlarhU6nc3VXCIRXBqlUCplMViSpNYggQiAQXlrUajWePn2K/Px8V3eFQHjl8PT0RGhoKBQKxQudhwgiBALhpUSv1yMuLg5SqRRhYWFQKBQk8SGBUAzQNA21Wo1nz54hLi4O1apVs5m0zBpOE0R0Oh1mz56NLVu2IDk5GWFhYRgxYgS+/PJLMlgQCIQXRq1WQ6/Xo2LFivD09HR1dwiEVwoPDw/I5XI8evQIarUa7u7uhT6X0wSRxYsXY/Xq1di0aRPq1KmDy5cvY+TIkfDz88PEiROddVkCgfCK8SIrMQKBUHiK6tlzmiBy9uxZ9O7dGz169AAAREZGYtu2bbh48aKzLkkgEAgEAuElw2lLidatW+PIkSO4d+8eAOD69es4ffo03nzzTdFjVCoVsrOzOX8EAoHwKrJx40b4+/s7dMyIESPw9ttvF2k/HD3n8ePHQVEUMjMzRdsU5rMVhuK6DuHFcJogMmPGDAwcOBA1a9aEXC5Ho0aNMHnyZAwZMkT0mIULF8LPz8/8RwreEQiE0obYxG45gQ8YMMC8kHMW8+bNQ2hoKNLT0znbr1+/Djc3N+zbtw8rVqzAxo0bndoPISiKwu7duwt1rF6jgSY5GXqttmg7JUJ6ejomT56MiIgIKBQKhIWFYdSoUUhISBBsv3DhQkilUixZsoS3T6fTYdGiRahZsyY8PDwQGBiIFi1aYO3atc7+GC7DaYLIH3/8ga1bt+K3337D1atXsWnTJixduhSbNm0SPWbmzJnIysoy/z1+/NhZ3SMQCIQSjYeHB8qWLevUa8ycORMVK1bEuHHjzNs0Gg2GDx+OoUOHomfPnvDz83vptAqahARonz+H7tkzp18rPT0dLVu2xOHDh7FmzRo8ePAAv//+Ox48eIBmzZohNjaWd8z69esxbdo0rF+/nrdvzpw5WL58OebNm4fo6GgcO3YM77//vlUN08uO0wSRzz77zKwVqVevHt577z188sknWLhwoegxbm5u5gJ3pNAdgUB4lREyK8yfPx9ly5aFj48PxowZgxkzZqBhw4a8Y5cuXYrQ0FCUKVMG48aNg0ajEbyGTCbD5s2bsXv3buzYsQMA8M033yAzMxPLly8HwNfg6PV6LFy4EJUqVYKHhwcaNGhgPtbaZwkPD4enpyf69OmDtLQ0+78IAPHx8aAoCjt37kSnTp3g6emJBg0a4Ny5c4LXCahbFwMmTUKahaYHAPbs2YPGjRvD3d0dlStXxpw5c6A1ak7mzp2LsLAwTv969OiBTp06Qa/XC/btiy++QFJSEg4fPow333wT4eHhaN++PQ4ePAi5XM4R8gDgxIkTKCgowNy5c5GdnY2zZ89y9u/duxcff/wx3n33XVSqVAkNGjTA6NGjMXXqVIe+s5cJpwki+fn5PI9aqVQq+mMSCATCi0DTNPLVWpf80TTt9M+3detWfPPNN1i8eDGuXLmC8PBwrF69mtfu2LFjePjwIY4dO4ZNmzZh48aNVk0rNWvWxMKFC/HRRx/h4MGDWLhwITZs2CC6EFy4cCE2b96MNWvW4Pbt2/jkk08wdOhQnDhxQrD9hQsXMHr0aIwfPx5RUVHo1KkT5s+fX6jv4IsvvsDUqVMRFRWF6tWrY9CgQWYhgn2d83/+iQ7Nm2PxTz9xjj916hSGDRuGSZMmITo6Gj/99BM2btyIb775xnz+yMhIjBkzBgCwatUqnD17Fps2bRKMENHr9fj9998xZMgQhISEcPZ5eHjg448/xsGDBzmmr3Xr1mHQoEGQy+UYNGgQ1q1bxzkuJCQER48exbNi0OaUFJwWNdOrVy988803CA8PR506dXDt2jUsW7YMo0aNctYlCQTCK0yBRofasw665NrRc7vBU2H/cLpv3z54e3tzttlKUf/DDz9g9OjRGDlyJABg1qxZ+O+//5Cbm8tpFxAQgP/973+QSqWoWbMmevTogSNHjmDs2LGi5540aRL27NmD7t27Y8KECejUqZNgO5VKhQULFuDw4cNo1aoVAKBy5co4ffo0fvrpJ3To0IF3zIoVK/DGG29g2rRpAIDq1avj7NmzOHDggNXPK8TUqVPNkZhz5sxBnTp18ODBA9SsWZNznYJbt1AtMhLno6JwiKU1mTNnDmbMmIHhw4eb+z5v3jxMmzYNX3/9NaRSKbZs2YKGDRtixowZWLlyJdauXYvw8HDB/jx79gyZmZmoVauW4P5atWqBpmk8ePAAzZs3R3Z2Nnbs2GHW5AwdOhTt2rXDihUrzPfDsmXL0K9fP4SEhKBOnTpo3bo1evfubTXQ42XHaRqRH374Af369cPHH3+MWrVqYerUqfjggw8wb948Z12SQCAQXgo6deqEqKgozp8tZ8S7d++iefPmnG2W7wGgTp06kEql5vehoaFITU21em6KovDFF19Ar9fjyy+/FG334MED5Ofno2vXrvD29jb/bd68GQ8fPhQ8JiYmBi1atOBsMwkxjlK/fn3z69DQUAAwfzah67Ro0IDz/vr165g7dy6n72PHjuWUCahcuTKWLl2KxYsX46233sLgwYNt9stejdi2bdtQpUoVNDD2q2HDhoiIiMD27dvNbWrXro1bt27h/PnzGDVqFFJTU9GrVy+zlqY04jSNiI+PD77//nt8//33zroEgUAgmPGQSxE9t5vLru0IXl5eqFq1KmdbYmJikfRFLpdz3lMUZZdJXCaTcf4XwqR9+eeff1C+fHnOPjc3N0e76jDsz2bK0O2IuT83Nxdz5szBO++8w9vHzgx68uRJSKVSxMfHQ6vVin4nwcHB8Pf3R0xMjOD+mJgYUBRl/q3XrVuH27dvc86n1+uxfv16jB492rxNIpGgWbNmaNasGSZPnowtW7bgvffewxdffIFKlSrZ/XlfFkitGQKBUCqgKMoh88jLRo0aNXDp0iUMGzbMvO3SpUvF2ofatWvDzc0NCQkJgmYYIWrVqoULFy5wtp0/f77I+yZ0nYs3bnDeN27cGHfv3uUJgWy2b9+OnTt34vjx4+jfvz/mzZuHOXPmCLaVSCTo378/tm7dirlz53L8RAoKCvDjjz+iW7duCAwMxM2bN3H58mUcP34cgYGB5nbp6eno2LEj7ty5g5o1awpep3bt2gCAvLw861/CS0rpfWoJhFeUguvXUXD9BgLeG0rqOpUiJkyYgLFjx6Jp06Zo3bo1tm/fjhs3bqBy5crF1gcfHx9MnToVn3zyCfR6Pdq2bYusrCycOXMGvr6+Zt8LNhMnTkSbNm2wdOlS9O7dGwcPHiyUf4gt2NfpVqsWDp05g0OnTwMsJ9NZs2ahZ8+eCA8PR79+/SCRSHD9+nXcunUL8+fPR2JiIj766CMsXrwYbdu2xYYNG9CzZ0+8+eabaNmypeB1FyxYgCNHjqBr16749ttvUbduXcTFxeHLL7+ERqPBqlWrABi0Ic2bN0f79u1552jWrBnWrVuHJUuWoF+/fmjTpg1at26NkJAQxMXFYebMmahevbqooPKyQ4o0EAiljPgBA5GyYAFyjxxxdVcIRciQIUMwc+ZMTJ06FY0bN0ZcXBxGjBjxQsXGCsO8efPw1VdfYeHChahVqxbeeOMN/PPPP6Img5YtW+KXX37BihUr0KBBA/z3339W/VAKC/s6Lfr1w5Fz5zD9gw84bbp164Z9+/bhv//+Q7NmzdCyZUssX74cERERoGkaI0aMQPPmzTF+/Hhz+48++ghDhw7lOQWbKFOmDM6fP49OnTrhgw8+QJUqVdC/f39UqVIFly5dQuXKlaFWq7Flyxb07dtX8Bx9+/bF5s2bodFo0K1bN/z999/o1asXqlevjuHDh6NmzZr477//rJrNXmYoujjizgpJdnY2/Pz8kJWVRXKKEAh2ElPT4MFfdvp0lBk5wrWdcSJKpRJxcXGoVKlSsU/GJYWuXbsiJCQEv/76q6u7UqIouHXL/Nqjbl0X9qR0Y+0ZdGT+Lp3iFYFAgMTT09VdIBQh+fn5WLNmDbp16wapVIpt27bh8OHDOHTokKu7RiC8EEQQIRBKKRKPV1NLUFqhKAr79+/HN998A6VSiRo1auCvv/5Cly5dXN01AuGFIIIIgUAgvAR4eHjg8OHDru4GgVDkEGdVAoFAIBAILoMIIgQCgUAgEFwGEUQIBAKBQCC4DCKIEAgEAoFAcBlEECEQSislN0UQgUAgmCGCCIFAIBAIBJdBBBECgUAgEAgugwgiBAKBQCAQXAYRRAiEUkoJLiP1yjNixAhQFIVFixZxtu/evVuwYnLNmjXh5uaG5ORk3r64uDgMHjwYYWFhcHd3R4UKFdC7d2/cuXPH3IaiKPOfl5cXqlWrhhEjRuDKlSuC/UtMTIRCoUBdkTotOp0Oy5cvR7169eDu7o6AgAC8+eabOHPmjCNfA4EAgAgiBAKB4BLc3d2xePFiZGRkWG13+vRpFBQUoF+/fti0aRNnn0ajQdeuXZGVlYWdO3fi7t272L59O+rVq4fMzExO2w0bNuDp06e4ffs2Vq1ahdzcXLRo0QKbN2/mXXPjxo3o378/srOzceHCBc4+mqYxcOBAzJ07F5MmTUJMTAyOHz+OihUromPHjti9e3ehvg/CqwtJ8U4gEEoHNA1o8l1zbbknIKDJsEaXLl3w4MEDLFy4EN9++61ou3Xr1mHw4MHo0KEDJk2ahOnTp5v33b59Gw8fPsSRI0cQEREBAIiIiECbNm145/H390dISAgAIDIyEq+//jqGDx+O8ePHo1evXggICABgEDQ2bNiAH3/8ERUqVMC6devQokUL83n++OMP7NixA3v37kWvXr3M23/++WekpaVhzJgx6Nq1K7y8vBz6PgivLkQQIRBKERxzzKtmmdHkAwvCXHPtz5MAhWMTr1QqxYIFCzB48GBMnDgRFSpU4LXJycnBn3/+iQsXLqBmzZrIysrCqVOn0K5dOwBAcHAwJBIJduzYgcmTJ0MqlTrUh08++QSbN2/GoUOH0L9/fwDAsWPHkJ+fjy5duqB8+fJo3bo1li9fbhYsfvvtN1SvXp0jhJj49NNPsXPnThw6dAhvv/22Q30hvLoQ0wyBQCC4iD59+qBhw4b4+uuvBff//vvvqFatGurUqQOpVIqBAwdi3bp15v3ly5fHypUrMWvWLAQEBKBz586YN28eYmNj7bp+zZo1AQDx8fHmbevWrcPAgQMhlUpRt25dVK5cGX/++ad5/71791CrVi3B85m237t3z67rEwgA0YgQCKWLV9lBVe5p0Ey46tqFZPHixejcuTOmTp3K27d+/XoMHTrU/H7o0KHo0KEDfvjhB/j4+AAAxo0bh2HDhuH48eM4f/48/vzzTyxYsAB79+5F165drV7bpEEzOchmZmZi586dOH36NOea69atw4gRI3jHiaFQKKx/aAKBBRFECARC6YCiHDaPlATat2+Pbt26YebMmZzJPjo6GufPn8fFixc5fiE6nQ6///47xo4da97m4+ODXr16oVevXpg/fz66deuG+fPn2xREYmJiAACVKlUCYDC7KJVKjk8ITdPQ6/W4d+8eqlevjmrVqpmPEztf9erVHfsSCK80xDRDIJRWXmXtyEvGokWL8Pfff+PcuXPmbevWrUP79u1x/fp1REVFmf+mTJnCMc9YQlEUatasiby8PJvX/f777+Hr64suXbqYr/npp59yrnf9+nW0a9cO69evBwAMGjQI9+/fx99//80733fffYewsDCbAhCBwIZoRAiE0gQRPl5K6tWrhyFDhmDlypUADGG5v/76K+bOncvL5TFmzBgsW7YMt2/fhkajwddff4333nsPtWvXhkKhwIkTJ7B+/XqOFgUwmF2Sk5OhUqlw7949/PTTT9i9ezc2b94Mf39/REVF4erVq9i6davZd8TEoEGDMHfuXMyfPx8DBw7EH3/8geHDh2PJkiV47bXXkJ2djVWrVmHfvn04cOAA5HK5c78wQumCLsFkZWXRAOisrCxXd4VAeCnQa7V0dI2a5j9VXJyru+Q0CgoK6OjoaLqgoMDVXXGY4cOH07179+Zsi4uLoxUKBQ2A3rFjBy2RSOjk5GTB42vVqkV/8skn9LNnz+iJEyfSdevWpb29vWkfHx+6Xr169NKlS2mdTmduD0MMFQ2Adnd3p6tUqUIPHz6cvnLlirnN+PHj6dq1awte7+nTp7REIqH37NlD0zRNazQaesmSJXSdOnXMfQ4MDKRv3779gt9M0ZB/86b5j+A8rD2DjszfFE2X3CVUdnY2/Pz8kJWVBV9fX1d3h0Ao8dBaLe7UrWd+79G0CSK3bHFhj5yHUqlEXFwcKlWqBHd3d1d355Xm6tWr6NKlC0aPHo0lS5a4ujsouHXL/NpDJDss4cWx9gw6Mn8THxECoRSjz7XtJ0AgvCiNGzfGkSNH4OXlhYcPH7q6O4SXDOIjQiCUJkqugpNQymnUqBEaNWrk6m4QXkKIRoRAKM04mHacQCAQihsiiBAIpQlLjQiRQwgEQgmHCCIEQinmUVq+zSyYBAKB4EqIIEIglCL0BQWc9zlKLTLyNS7qDYFAINiGCCIEQikibf0GznuaopCUWSDSmkAgEFwPEUQIhFKENvkpb1tiBhFECARCyYUIIgRCKULIH4RoRAgEQkmGCCIEQmmCtnxL4QkRREoUJ0+eRK9evRAWFgaKorB7925eG5qmMWvWLISGhsLDwwNdunTB/fv3ee1UKhXq1KmD999/n7dv2rRpqFSpEnJycpzxMThs3LgRFEVZ/YuPj3d6PwgvJ0QQIRBKMRRoohEpYeTl5aFBgwZYtWqVaJtvv/0WK1euxJo1a3DhwgV4eXmhW7duUCqVnHZubm7YvHkzNm7ciIMHD5q3nz9/HsuXL8fGjRvh4+NTpP2naRparZazbcCAAXj69Kn5r1WrVhg7dixnW8WKFc3t1Wp1kfapKNFoiHN3ceNUQeTJkycYOnQoypQpAw8PD9SrVw+XL1925iUJhFcbC9NM9cxEohEpYbz55puYP38++vTpI7ifpml8//33+PLLL9G7d2/Ur18fmzdvRlJSkqD2pEmTJvjiiy8wevRoZGZmQqlUYuTIkZgwYQI6dOiA06dPo127dvDw8EDFihUxceJE5OUxqf9//fVXNG3aFD4+PggJCcHgwYORmppq3n/8+HFQFIV///0XTZo0gZubG06fPs3pg4eHB0JCQsx/CoUCnp6e5vczZsxA37598c033yAsLAw1atQAADx+/Bj9+/eHv78/AgMD0bt3b47m5NKlS+jatSuCgoLg5+eHDh064OrVq5zvavbs2QgPD4ebmxvCwsIwceJE837PevV435m/vz82btwIAIiPjwdFUdi+fTs6dOgAd3d3/Pzzz/D19cWOHTs4x+3evRteXl7FomF61XCaIJKRkYE2bdpALpfj33//RXR0NL777jsEBAQ465IEAkHARyQlWynQsPRB0zTyNfku+SvKXC1xcXFITk5Gly5dzNv8/PzQokULnDt3TvCYL774AiEhIZg4cSK+/PJLUBSFBQsW4OHDh3jjjTfQt29f3LhxA9u3b8fp06cxfvx487EajQbz5s3D9evXsXv3bsTHx2PEiBG8a8yYMQOLFi1CTEwM6tev7/DnOnLkCO7evYtDhw5h37590Gg06NatG3x8fHDq1CmcOXMG3t7eeOONN8wak5ycHAwfPhynT5/G+fPnUa1aNXTv3t0sDPz1119Yvnw5fvrpJ9y/fx+7d+9GvXr1rHVDkBkzZmDSpEmIiYnBO++8g4EDB2LDBm4E2oYNG9CvX78i1zARnFhrZvHixahYsSLnx6xUqZKzLkcgEETQ6F6NhGYF2gK0+K2FS659YfAFeMo9i+RcycnJAIBy5cpxtpcrV868zxKZTIbNmzejSZMm0Ov1OHPmDNzd3bFw4UIMGTIEkydPBgBUq1YNK1euRIcOHbB69Wq4u7tj1KhR5vNUrlwZK1euRLNmzZCbmwtvb2/zvrlz56Jr166F/lxeXl5Yu3YtFAoFAGDLli3Q6/VYu3YtKGMpgg0bNsDf3x/Hjx/H66+/js6dO3PO8fPPP8Pf3x8nTpxAz549kZCQgJCQEHTp0gVyuRzh4eFo3rw5p/quPUyePBnvvPOO+f2YMWPQunVrPH36FKGhoUhNTcX+/ftx+PDhQn9+gjhO04js3bsXTZs2xbvvvouyZcuiUaNG+OWXX6weo1KpkJ2dzfkjEAgvhkard3UXCEXMm2++CW9vb3h7e6NOnToAgNq1a6Nv377o2rUrmjZtCgC4fv06Nm7caG7r7e2Nbt26Qa/XIy4uDgBw5coV9OrVC+Hh4fDx8UGHDh0AAAkJCZxrms5ZWOrVq2cWQkx9e/DgAXx8fMx9CwwMhFKpNFfwTUlJwdixY1GtWjX4+fnB19cXubm55r69++67KCgoQOXKlTF27Fjs2rWL579iD5afrXnz5qhTpw42bdoEwCA0RUREoH379oX9+AQrOE0jEhsbi9WrV2PKlCn4/PPPcenSJUycOBEKhQLDhw8XPGbhwoWYM2eOs7pEIJR+BEwEGv2rIYh4yDxwYfAFl127qAgJCQFgmIRDQ0PN21NSUtCwYUMAwNq1a1FgzKIrl8vNbWQyGWQyZljPzc3FBx98wPGbMBEeHo68vDx069YN3bp1w9atWxEcHIyEhAR069aN51Dq5eX1Qp/L8vjc3Fw0adIEW7du5bUNDg4GAAwfPhxpaWlYsWIFIiIi4ObmhlatWpn7VrFiRdy9exeHDx/GoUOH8PHHH2PJkiU4sGoV5HI5KIrimc2EnFGFPtuYMWOwatUqzJgxAxs2bMDIkSPNmhtC0eI0QUSv16Np06ZYsGABAEOJ6Fu3bmHNmjWigsjMmTMxZcoU8/vs7GyOpzWBQLAFXxDRviKmGYqiisw84koqVaqEkJAQHDlyxCx4ZGdn48KFC/joo48AAOXLl7frXI0bN0Z0dDSqVq0quP/mzZtIS0vDokWLzGNtcQUUNG7cGNu3b0fZsmXh6+sr2ObMmTP48ccf0b17dwAG59bnz59z2nh4eKBXr17o1asXxo0bh5o1a+LW/ftoVLs2ggMC8PQpk+Tv/v37yM/Pt6t/Q4cOxbRp07By5UpER0eLzluEF8dpppnQ0FDUrl2bs61WrVo8dR8bNzc3+Pr6cv4IBIL9CDlNavU0KXxXgsjNzUVUVBSioqIAGJxTo6KizGMjRVGYPHky5s+fj7179+LmzZsYNmwYwsLC8Pbbbzt0renTp+Ps2bMYP348oqKicP/+fezZs8fsrBoeHg6FQoEffvgBsbGx2Lt3L+bNm1eUH1eUIUOGICgoCL1798apU6cQFxeH48ePY+LEiUhMTARg8Gn59ddfERMTgwsXLmDIkCHw8GC0Txs3bsS6detw69YtxMbGYsuWLfDw8EB4WBgAoEOLFvjf//6Ha9eu4fLly/jwww85GiRrBAQE4J133sFnn32G119/HRUqVCj6L4EAwImCSJs2bXD37l3Otnv37iEiIsJZlyQQCCJo9UQQKSlcvnwZjRo1QqNGjQAAU6ZMQaNGjTBr1ixzm2nTpmHChAl4//33zY6jBw4cgLu7u0PXql+/Pk6cOIF79+6hXbt25uuEGSfq4OBgbNy4EX/++Sdq166NRYsWYenSpUX3Ya3g6emJkydPIjw8HO+88w5q1aqF0aNHQ6lUmheh69atQ0ZGBho3boz33nsPEydORNmyZc3n8Pf3xy+//II2bdqgfv36OHz4MP7++2+U8fcHACycOhUVK1ZEu3btMHjwYEydOhWenvZrzUaPHg21Ws1x6CUUPRTtpKXSpUuX0Lp1a8yZMwf9+/fHxYsXMXbsWPz8888YMmSIXefIzs6Gn58fsrKyiHaEQLCDxE8+Qc6/Bzjb3nx7KWLmvgEPhdRFvXIOSqUScXFxqFSpksMTNKF0w46a8ahbt9Dn+fXXX/HJJ58gKSmJ42hLMGDtGXRk/naaRqRZs2bYtWsXtm3bhrp162LevHn4/vvv7RZCCARCIRBZVrwqDqsEQlGQn5+Phw8fYtGiRfjggw+IEOJknJpZtWfPnrh58yaUSiViYmIwduxYZ16OQCCIKDi1OhpXHmVg8u/XkPqKJDgjEArLt99+i5o1ayIkJAQzZ850dXdKPU6LmiEQCCUHrU6PvqvPAgAKNDr89N6L5YQgEEozs2fPxuzZs13djVcGUvSOQHgF0LCcVRPSSe0ZAoEAIO8ZoHJ97RwiiBAIpQkR0ww7u6qbjDz2BMIrjyoHyEoE0h64uidEECEQShM5//3H30jT0BJnVQKBwEarcnUPzBBBhEAo5UhAcwrfkYwiBAJBTHvqCoggQiCUciia5qZ5L0EDEIFAcBUlZxwgggiBUMqR0npOHpGSM/wQCASXQZcccy0RRAiEUo5Ur3tlCt8RCISXDyKIEAilHCmth1bHrH5uJGa5sDevNr169cIbb7whuO/UqVOgKAo3btwARVHmonj79++HQqHA1atXOe2/++47BAUFITk52dndJpRGSpCJlggiBEIpx2CaKTmDzqvM6NGjcejQIXN1WTYbNmxA06ZNeXU5unfvjmHDhmHYsGFQqQyRDtHR0fjyyy+xatUqhISEFEvfX1ZI5WkxSs73QgQRAqGUI7HQiBBcR8+ePc0Vb9nk5ubizz//xOjRowWPW758OXJzc/H1119Dq9Vi+PDh6NWrFwYMGFAMvSaUSkqQjwhJ8U4glHKkej0KNDpXd8Pp0DQNusA1WWMpDw9QFGWznUwmw7Bhw7Bx40Z88cUX5mP+/PNP6HQ6DBo0CBkZGbzjfHx8sH79enTr1g1xcXF4/PgxDhw4wGtHEICmATt+m1cODetZcfF3RAQRAqGUI6V1yFdzBRGdnoZUUroGZ7qgAHcbN3HJtWtcvQLK09OutqNGjcKSJUtw4sQJdOzYEYDBLNO3b1/4+fkJCiIA0LlzZ/Tr1w+///47tm/fjjJlyhRV9wmvJOyQfj1ASV3WE2KaIRBKOVJaj3yVlrMtR6lxUW8INWvWROvWrbF+/XoAwIMHD3Dq1ClRs4yJJ0+e4MCBA/D09MSpU6eKo6ulA+IjIozMnXntYjMN0YgQCKUcKa1HvoVpRqkpOfbhooLy8ECNq1dcdm1HGD16NCZMmIBVq1Zhw4YNqFKlCjp06GD1mLFjx6JJkyb44osv0LVrV/Tr18/mMQQQQUQMqZx5TQQRAoHgTKR6PfJVXEFEpS19PiMURdltHnE1/fv3x6RJk/Dbb79h8+bN+Oijj6z6mKxduxanT5/GzZs3ERERgY8++gijRo3CjRs34OXlVYw9fwkhgogwtIVpxoUQ0wyBUMqR0nqk5ig521Ta0qcReZnw9vbGgAEDMHPmTDx9+hQjRowQbfvo0SNMmTIFS5cuRUREBABg8eLFoCgKM2bMKKYev7yQ8F0BaBrIT2O9J4IIgUBwIlJah7MP0zjbLsalu6g3BBOjR49GRkYGunXrhrCwMME2NE1j9OjRaNWqFd5//33zdk9PT2zcuBGrV6/GiRMniqvLLydEEOGjygb0LL8xYpohEAjORELr4S7nesR/ufsWhraMcFGPCADQqlUrwdV6ZGQkZ/vhw4cFj2/bti20Wq3gPgILIojw0ViEubv4OyIaEQKhlCPV6/EgNdfV3SAQCCUFymLqJ6YZAoHgTKQlKIMigVDskPIGfCw1IEQQIRAIzkRIEBnUPNwFPSEQih+6BNVUKTHoVNz3tGuj6IggQiCUcqQCg4ybjDz6hFcE4iPCh51DBHD5d0RGIwKhlCPV8zUiOqKuJpRiKCnLOZsIIgJY5qwhggiBQHAibNOMKWcWSfFOKM1Q7uz05UQQsYmLvyIiiBAIpZxesWfw6ZVtkNB61A3zAwA8znBNlVoCodghgogAlt+Ja78jkkeEQCjlNHz+AABwMaQW8iM7AQAy89Wu7BKBUHwQQYRPCftKiEaEQHhF8NIozaneU3NU0BM/EcIrAEnxLkTJ+k6IIEIgvEIsfqc+ACBHqUWOkmTlJLwCvOSCyMaNG+Hv7+/qbjgVIogQCK8INCj4eyrM77UC0TSE4iE5ORkTJkxA5cqV4ebmhooVK6JXr144cuSIuU1kZKShojBFwcvLC40bN8aff/5Z6GseP37cfD6xv+PHjxfBpythsASR/Px8zJw5E1WqVIG7uzuCg4PRoUMH7Nmzx4UdLHpWr16N+vXrw9fXF76+vmjVqhX+/fdfpgFPOCM+IgQCwQkk1GmO8NsXze+rlvVCjRAfSCUUdHqahPC6iPj4eLRp0wb+/v5YsmQJ6tWrB41Gg4MHD2LcuHG4c+eOue3cuXMxduxYZGdn47vvvsOAAQNQvnx5tG7d2uHrtm7dGk+fPjW/nzRpErKzs7FhwwbztsDAQPNrtVoNhUKBkohGo4FcLrfdEOBMuh9++CEuXLiAH374AbVr10ZaWhrOnj2LtLQ0Kyco4v4UAxUqVMCiRYtQrVo10DSNTZs2oXfv3rh27Rrq1Knj6u7xIBoRAqGUUqN8AOf9mHaVIZVQkEoMMbxaIoi4hI8//hgUReHixYvo27cvqlevjjp16mDKlCk4f/48p62Pjw9CQkJQvXp1rFq1Ch4eHvj7778LdV2FQoGQkBDzn4eHB9zc3Mzv16xZg+bNm2Pt2rWoVKkS3I0hsJmZmRgzZgyCg4Ph6+uLzp074/r16+bzPnz4EL1790a5cuXg7e2NZs2a8Qr1/fjjj6hWrRrc3d1Rrlw59OvXz7wvMjIS33//Pad9w4YNMXv2bPN7iqKwevVqvPXWW/Dy8sL8+fNRtWpVLF26lHNcVFQUKIrCw/h4ZiNLENm7dy8+//xzdO/eHZGRkWjSpAkmTJiAUaNGcfozb948DBo0CF5eXihfvjxWrVrFuY5lf7755hsAwJ49e9C4cWO4u7ujcuXKmDNnDqcw4bJly1CvXj14eXmhYsWK+Pjjj5Gby60DtXHjRoSHh8PT0xN9+vQplJDUq1cvdO/eHdWqVUP16tXxzTffwNvbm7m/aD2o8o3x06870HPYRHiWq4xatWrh3LlzePDgATp27AgvLy+0bt0aDx8+dPj6jkIEEQKhlCJXCK/QZEZBpLRpRGiahkalc8mfvQ6R6enpOHDgAMaNGwcvLy/efmu+ADKZDHK5HGq18yKeHjx4gL/++gs7d+5EVFQUAODdd99Famoq/v33X1y5cgWNGzfGa6+9hvT0dABAbm4uunfvjiNHjuDatWt444030KtXLyQkJAAALl++jIkTJ2Lu3Lm4e/cuDhw4gPbt2zvct9mzZ6NPnz64efMmRo8ejVGjRnG0OQCwYcMGtG/fHpWCg5mNrN8mJCQE+/fvR05OjtVrLVmyBA0aNMC1a9cwY8YMTJo0CYcOHRLtz6hRo3Dq1CkMGzYMkyZNQnR0NH766Sds3LjRLKQAgEQiwcqVK3H79m1s2rQJR48exbRp08z7L1y4gNGjR2P8+PGIiopCp06dMH/+fIe/KzY6nQ6///478vLy0KpVK8PG/OcAgHnfr8Wwfj0RdfoQatasicGDB+ODDz7AzJkzcfnyZdA0jfHjx7/Q9e2BmGYIhFIKJ7skDKs4AKVWI6JV6/HzpBMuufb7KzpA7ia12e7BgwegaRo1a9Z06PxqtRrfffcdsrKy0Llz58J2067rbN68GcHGifz06dO4ePEiUlNT4ebmBgBYunQpdu/ejR07duD9999HgwYN0KBBA/M55s2bh127dmHv3r0YP348EhIS4OXlhZ49e8LHxwcRERFo1KiRw30bPHgwRo4caX4/YsQIzJo1CxcvXkTz5s2h0Wjw22+/8bQkbCHx559/xpAhQ1CmTBk0aNAAbdu2Rb9+/dCmTRvOMW3atMGMGTMAANWrV8eZM2ewfPlydO3aVbQ/o0aNwowZMzB8+HAAQOXKlTFv3jxMmzYNX3/9NQBg8uTJ5vaRkZGYP38+PvzwQ/z4448AgBUrVuCNN94wCyfVq1fH2bNnceDAAYe/r5s3b6JVq1ZQKpXw9vbGrl27ULt2bU6bkQPeQv+3Xge8y2H69Olo1aoVvvrqK3Tr1g2AwXzH/ozOgmhECITSikx4YmQ0IsRZtbhxNJR0+vTp8Pb2hqenJxYvXoxFixahR48egm3r1KkDb29veHt748033yxU/yIiIsxCCABcv34dubm5KFOmjPnc3t7eiIuLM6vsc3NzMXXqVNSqVQv+/v7w9vZGTEyMWSPStWtXREREoHLlynjvvfewdetW5OfnO9y3pk2bct6HhYWhR48eWL9+PQDg77//hkqlwrvvvss9kPWdt2/fHrGxsThy5Aj69euH27dvo127dpg3bx7nkFYtW3KOa9WqFWJiYqz25/r165g7dy7nexo7diyePn1q/ryHDx/Ga6+9hvLly8PHxwfvvfce0tLSzPtjYmLQokULbl9MWgwHqVGjBqKionDhwgV89NFHGD58OKKjowEtU/Cufq1q5tflypUDANSrV4+zTalUIjs7u1B9sBeiESEQSimUVPjxzsg3pHdPzVahalmf4uySU5EpJHh/RQeXXdseqlWrBoqiOA6p1vjss88wYsQIeHt7o1y5cmatlhD79++HRmP4bT08POw6vyWW5qLc3FyEhoYKRtOYzEhTp07FoUOHsHTpUlStWhUeHh7o16+f2YTk4+ODq1ev4vjx4/jvv/8wa9YszJ49G5cuXYK/vz8kEglPQDN9Dmt9A4AxY8bgvffew/Lly7FhwwYMGDAAnp6e4OQNtpD95HI52rVrh3bt2mH69OmYP38+5s6di+nTpzPOuXmpQHosUKaKQ9/VnDlz8M477/Dauru7Iz4+Hj179sRHH32Eb775BoGBgTh9+jRGjx4NtVoNT09P0WsVBoVCgapVqwIAmjRpgkuXLmHFihX46TtG6JK7ManwTfcW2+nWtE3v5EULEUQIhFIKJaIRMfHZjhs4M8N5av7ihqIou8wjriQwMBDdunXDqlWrMHHiRN5klpmZyfETCQoKMk8mtoiIiCjKrgIAGjdujOTkZMhkMkRGRgq2OXPmDEaMGIE+ffoAMEzI8WxnURj8W7p06YIuXbrg66+/hr+/P44ePYp33nkHwcHBnGie7OxsxMXF2dW/7t27w8vLC6tXr8aBAwdw8uRJfiMbWqjatWtDq9VCqVQaBBFaj/NXrgOqbECnBqQKnD9/HrVq1bJ6nsaNG+Pu3buiv9eVK1eg1+vx3XffQSIxCK5//PEHp02tWrVw4cIFzjZLB+bCotfroVKpAD27GrdJsCXhuwQCwRlYaESSFyyEPj8fQBkAwJNMUm/GFaxatQpt2rRB8+bNMXfuXNSvXx9arRaHDh3C6tWreSYAV9KlSxe0atUKb7/9Nr799ltUr14dSUlJ+Oeff9CnTx80bdoU1apVw86dO9GrVy9QFIWvvvqKs4Let28fYmNj0b59ewQEBGD//v3Q6/WoUaMGAKBz587YuHEjevXqBX9/f8yaNQtSqX0CpVQqxYgRIzBz5kxUq1ZNxIzBTLIdO3bEoEGD0LRpU5QpUwbR0dH4/PPP0alTJ/j6+prbn7l0Hd/+uBFvDxyOQyfO4c8//8Q///xjtS+zZs1Cz549ER4ejn79+kEikeD69eu4deuWOcpHo9Hghx9+QK9evXDmzBmsWbOGc46JEyeiTZs2WLp0KXr37o2DBw8Wyj9k5syZePPNNxEeHo6cnBz89ttvOH78OA4ePAiu0EFZfkUuodh8RBYtWgSKojjOOgQCoWhRhZQHAJxp24fnrErn5yNlwUIE52e4omsEI5UrV8bVq1fRqVMnfPrpp6hbty66du2KI0eOYPXq1a7uHgeKorB//360b98eI0eORPXq1TFw4EA8evTI7FOwbNkyBAQEoHXr1ujVqxe6deuGxo0bm8/h7++PnTt3onPnzqhVqxbWrFmDbdu2mfNZzJw5Ex06dEDPnj3Ro0cPvP3226hSRdwkYonJtCHmVMk2+3Tr1g2bNm3C66+/jlq1amHChAno1q2bhWaCwqcfDMXl6zFo1KId5s+fj2XLlpkdOMXo1q0b9u3bh//++w/NmjVDy5YtsXz5crOmqkGDBli2bBkWL16MunXrYuvWrVi4cCHnHC1btsQvv/yCFStWoEGDBvjvv//w5ZdfctrEx8fbTD6XmpqKYcOGoUaNGnjttddw6dIlHDx40OBsq8xifVRxU19xQtHFkIj/0qVL6N+/P3x9fdGpUydezLgY2dnZ8PPzQ1ZWFktaJRAIYkR1eA1uKUnY9t5XGO+WhLS163htJnWYiHsB4agQ4IHT019e04xSqURcXBwn5wXh1ePUqVN47bXX8PjxY7NwVHDrlnm/NCAAivLl7T5fZEQ4Jo/qj8ljhwCBVQD3kjX3HDt2DO+88w5iY2MREBBg+wBLkq4xr+VegCYP8CoL+Nn/HZmw9gw6Mn87XSOSm5uLIUOG4Jdffincl0YgEOzGtK6gKPBMMyY6VAsCALStGlRc3SIQihyVSoXExETMnj0b7777rlkI4fFCa+2SF+K+f/9+fP75547Np8osoEBAE0qVDB8Rpwsi48aNQ48ePdClSxebbVUqFbKzszl/BALBfijjoCuRSHimGRNVynoDAAo0OsH9BMLLwLZt2xAREYHMzEx8++234g1fRBApgQXzlixZgs8++8z+A2jaEAGUEQ/kpnL3lRDTjFOdVX///XdcvXoVly5dsqv9woULMWfOHGd2iUAo3Zg0IhKJaB4RN5kEgB4FaiKIEF5eRowYgREjRthu6KAwEX/zPJCbUrhOlURo1nOe/YS7jyoZ8SpO04g8fvwYkyZNwtatW+22386cORNZWVnmv8ePHzurewRC6cQ06FKUaB4RN6lhFUQ0IoRXAkcEEVpvIYQUj0ZEpVXhTtodZKmybDd2FGs5QCSmxUopDd+9cuUKUlNTOd7TOp0OJ0+exP/+9z+oVCpeiJabm5s5jTCBQCgEZtMMBUoqvM5wk8sAaKAkggjhFcCheAzLSbuYTDMPMx+CBo3EnET4ufkV7clpkedc4QNIjCKAiy1QThNEXnvtNdy8eZOzbeTIkahZsyamT59ud5w4gUCwH9OgK5FKRJ1V3bWGjJelRSPi7KyPhJcch4QJ18zItDOvqxd5zv0rAC8Yyl9Uz57TBBEfHx/UrVuXs83LywtlypThbScQCEWEcdB1k0tFnVW99u0AwvpY1di+DCgUCkgkEiQlJSE4OBgKhcJqCnTCq4OKdXNLtFrQSqV9B2rVgJYlFKhUgMTOY18ASkNBB4PAoLS3r/aiUnI/kwmlGtBoDPvUWsCB69I0DbVajWfPnkEikTCp8QtJyfBUIRAIRYJJI+Imk4o7q148A7zdB/oSGBHgCBKJBJUqVcLTp0+RlJTk6u4QShCaZ8/Mrym5HDKt1r4D9VogmzkWnjpAkVm0nRMgQ5kBpdYgCMgyi3haVucD+c/523MUBrONTgdIsoA0xwUgT09PhIeHm1PWF5ZiFUSsZYIjEAhFgHElqJBLRZ1VTbzkcggAg1YkPDwcWq0WOl3pMDURXpyHH48zv1ZUrYKKP/xg34FxJ4EznzLvO0wHarwr3r4I0Og1mLl/JvI1hgq8e/vsLdoL3NoJnFnA3z7mCOBeeH8UqVQKmUxWJFpIohEhEEoRJo2IQi4TLXqnL2Mo8/6ya0RMUBQFuVzOqRpKeLWRsIroSb297M+8u91C6NAXAE7O2rvi4go8zHtofn8t/RpahQnVzCkkqudArkAEqqcPoCgZGYmLrdYMgUAoBozChbtcCoj4iNDGyLTSIogQCNagNXaaZYTQv8CxdrIlZgvn/acnPhVpWUhUIolBZSUnQpUIIgRCacIoXMhk4qYZkyq1JMohtFYL1f37joVcEghWoDWawh9cDIKIJe7SItZSqHKEt0tKTuQqEUQIhFIEZRZEJKKmGRMlUSPyZMqniO31FjK2bXN1VwilBNpeR1XBg4vf78hT7lm0JxQSRHzCivYaLwgRRAiE0gSr1oyYacbURl/y5BDk/PcfACB93XoX94RQWrBbIyI0YR+eXaR9sQdPWRELIkpjttaWjAMvAisV7TVeECKIEAilCZNGRCIBJRM2zehbtDb8XwI1IgRCUSOoEYneAyyrAzy+yGxbWKH4OmUFb4V30Z7QJGD5sKoTS0pWnAoRRAiEUoSHyhACKJGKV9+lAgIBAPqSqBIxQRKTEYoIQY3IH8OA7ETg98HF2peE7AT02tULu+7vEm3jJfMq2ouanFW9gov2vEUIEUQIhFKCJjnZ/FpqJcW7aYrXlWSNCBFECC+ANCDA/Nqqj4hY+nM2RficzDs/D/HZ8Zh1dpZoGy9FEQsieWmG/z2DmG0ucMK1BhFECIRSgur+ffNrqUTcWdVNZpjkswo0JDqFUDph39caK/e5lJWaPLKdcJs5/sDsoilEZ8qeao0i1YjsmwJkJRhPXIbZ/uhM0V2jCCCCiJ3o1WrkX7r0YqFgBEIxIbNimtFuM+QtUGr0L1T4jtZqkblzF9SPBZIlvShEI0J4ESwFDzGtiNSYBE+vB+JPWT9ndBFnPBXBrSjze1xex7z2CCy68xYxRBCxk6dffolH7w1DyuJvXd0VAkEY1uBrrfounZMDP6MDm0ZXeI1Ixm/b8PTzz/Gw6+uFPoc18q9eRf7Vq045N6F0Y3lXiy4gTYJI3AnbJ/13+gv1yV4oOEkIf4F07s6GCCJ2kPrdMmTv/RsAkLFli43WpRe9Wo2CqCjQpKZHiUcmtZ5H5KMbewAAj9PzC32N/EuXCn2sLWilEo8GD8GjwUOgLyhw2nUIpRQLjYion4jEKIjkp9lxzuIZ92ieGFVEuPk457xFABFE7CDtl19c3QWXQ6vVuFu/AeIHDsLzn35ydXcIQrA1ItbyiAAIzTNU4xyy9oLTu1UY9Lm5zOuiLotOeOUQ14gYfUQ0dgjkOnXRdcgKTvPbkpbcWkxEECHYRdZexj6avmGj6zpCsAuZjAIlsz3wZBW8gM+TE/04aGMVYQCivi4Egij2akRM5ks1SxDp87NwW3XhtYfmftih7dDTeptt7EL38vgzEkHEBtr0dFd3oUSgy8m13YjgUmiOj4gMlEJcEKFKerQMMf8RXgRLQURMI2IyzbCzqoY1Em6rUxVBx2xTZIKI5uUxaRJBxAbPli93dReKHE1ysuPqv5I+cRE4yCQUKLlCdL+kKOzQztSIsO83cu8RHMVuQUQK5CQDmjxmGzsDqQsoMh+RYjIlFQVEELGBLjPT1V0oUjJ378aDjp2QPHuOYweSyaDkw/qNpFLJy60RYZlm2GYaAsEu7BVEEs4B39UAHhxhtrn7Ae7+zuubDYrMR4QIIqUHWlOyMtC9KM+Wfw8AyNy+3cEjS/jEReAglUogUYhrRKiS/nuyhY+SLjQRShy8O8ZWBd7kG4b/2001/N97Fb+NzP1Fu2UXehSVjwgRREoNeefOuboLRYuU/OSlFtboK5NJQcnFNSJBHgYnvZohLxDSV1xJx4ggQnAUezUilrj7Gv4vU4W/r9ZbBofVE98CSdcc7tL1Z9eRkp9is13RaUQEPnMDY22d8k2K5hpFBJmVbECrisdBqbigqEL+5BYPR87x40gYNRqap0+LoFeEooFlmpFIQFnRiHjKDfeBWvsSmD2IaYZQWIzCuNV6M2zcjIKIUFIxvRbY/xlw7Bvg547AY/vz6NzLuIeh+4ciOS/ZZlun+IjIPQ3/d18CvL0aGLKjaK5RRBBB5FVDUrif3FJKT/zwI+SdPeu4rwnBeVj4iEAmXurb5KyalFUAja5kT/R0Sa4STCiZGJ8Fk1aQoxGxpnEwaUSEFmx6DRDFSmi5rovd3bn9/LbovvLe5bmXKbLwXZYgovA2/O/mDTQcDHiWrHTvRBB51SisOl3k2SXhzSUHtlOnTCoBZeW39q5eDYCh3kyuspB+UMVWDoYIIgQHsSaIWPOdcDOmQRd6dnSF9xeUSsRz4TzJfQIA6FW5l+Ey9lQEFiBPk4e+e/ti5dWVhg1s04ybd6HOWVwQQeQVQ5OQ4OouEJwEWxCR2vAFcq9aFRLjWFvSNSLENENwGJMgojAJIiwhQmUlJ5I1jcgLOH9KKb4gcuLxCWQoM8zvawTWAAD8Hft3oa7xx90/cC/jHn65acwEzu5v+88Kdc7igggiBPsQy+tAqqSWGPQ6tkbERjZSvQ4mi0e+uoQnDyOCCMFRrGlE1FYEEbOPiAB6AefP67/b5Uydr+VnZd31YBfyWPlLqvlXM79mCyj2kqPO4W7QGv0bZe5Ag0EOn684IYIIwT5I5EKJR6dja0SsC4jKmDvm1/dTC5c1N+fAwUId5yhOq73xEkG+A8cwfVsSY1I/WmuvIGI0YQgtsFS5gF84d9uuD4ADM633haYx99xc3nYpJTULIoHugcjTMkJJhspxQURlmfk1/pThf8+gEr9gJIIIwU6YgZBdkKz4/AQItuBoRKxU3gWAvDNnzK993MWdWq1SXJPjKz4JJ06ajPh+79of+UEQMM2wBZE8oSOMGAc0IS1c0lUgS8C0fWG11a6o9cImHblUjlyNYSz1lntzfEM0hagTczLxpPk1TdPAaWNW8OxEh89V3BBBhEAoJehY9Vls+YgAQN3yBjV0ATHNlGhyDh6E8vZtFNy86equvDyYhDZTLh22EKfK4bc3Y7JXptl/LY8AIDMBuPiLYH0XtvmFjZSSIkuVBQDwc/PjRMto9Y4JnReeXkB8drz5/b3okhWeawsiiDiIrJxr6xC4DJFVKUVUIiUGPTtqRmL7d/GUGzQhBZqSLYiQFO8ER1A/fmx+LewjYkUj4hNm+N9KlAsPqQI4PAfYPxXY/RFvt5ggEuYdhtisWACAl9yLsy9LneVQGO/5p+c57xX/TGXetJ1i93lcBRFEHISykpuhNCNqoy7htsdXCbZphrIjX4y7wjDYlniNyKttmSE4SNrPP5tfm31E2FEzyizxg03PjSOJH/OeA7eMGojbu3i78zV8R1UACPYIxoqrKwAYBAl2IrMPDn2Ajw4bhJqHmQ/5jqgWmDQrZjQs83lQNZR0iCDiIMROyyUnMcnVXSAY0akYW7RQenefrl3hXreu+b2n3CCI5JdwjQiKKsET4ZVD0Edk73g7DnRggUVbPD+5z7hvNcLOsfPOz+O8V0i5mZDPJp3F7ee38faet9F9Z3erXXiQ+YDbJQUrb4hVn5iSARFEHIQIIlyycpWu7gLBCB0San5tKYhIg4IQ9u1iBE+cYN5W8+FVAMBXu2/hRmJmsfSxUBDTjAGiGbITRoigzFEzDo7bppTohUHLHRM33t5o12EdK3bkbTueeBwAkKnKtHqspcZaJ3m5NPdEEHGUV1UQETHN6Apbu4ZQ5OiNg266O5MLocL/foBX+3aovHsXJB4eHNt3w3P7za/f+h8TRVPSIKGrBIdgaTNM9ZbsLnpnIrhGkVwf4EazWEMuES9SWTmtAVZ9eBSrPjyK6DMGLfTVg4+w9evzyM9Wm5OhmdCzs7O+BOZzMosQ7ENkLtAJZAwkuAZTHhGV3M28zadLF4T//DNkQUEAAIrlxBqQ+phzfEKasC3b5RBBxEDJn09KBmxBxFz0ziiIWNOuVWgmvL33j/xtdfqIn8ci4sUep9N5bQxmmkjfSM52kxD++r1R5m3HfjXkADq36yEyU/Jx9eAjXr0amn65FsxEEHnFsFYa3ipiGpFCFtEjFD068yBrZcZi/V6KAq7t+MS9VCf0qgggphmCIxjHqnyPYBRIDb4SZo1I9hNe8+wEdzy76QO6zjvC57PUKPT83vr1C1GTxiSAdA7vzNnOc0IV4N7FZJ6wo3Mw/NfVkFnEUV4CNVdxk610PPkOoejRmXK2W71HxffpSmqVW6IRMUC+BrvRSt1xvsVsHMzpYPjaTCb1Xzrz2j45G4jnt32Qd/sxb58Bi2dGr7V+TwqlgreBXGpYIFrWpBFzdF314VHz64IcDS/vCM0pnFfy5ywiiBDsw8qD9/Ue8RLXhOLDnOLdyrijV/ITLpmwJwmaK6BLqoBUDLws/jG0VouM37dD9fChq7sCAFC5+Ztf6yVyRiOSJ6710zzPBmDIW6NNTwfqvGNI6V7jTW5DW9VxLbKitq/Q3mZ/ZZTBuVRi4XO3L3YfKmTa9lexzN6qL/myB4eSOfK8QuSqc3Hr+S1Xd8MOhAdEGsCua3x1J6H4MSc0s6IRoZUq8X0lddJ7lcN3S+pvYkHmn38iefZsxPbo6equADQNinXP6KTu3DwiYoepDALE4/c/wP3WbVBQ4xNg0nXAzcex61toJyr7VbZ5iMwY5SJUpTcio47VY32lyVBbVAbmPDHlG9u8vqtxqiCycOFCNGvWDD4+Pihbtizefvtt3L1715mXdD5FbJoZeXAkBv0zCEcTjtpu7EJ02cIJdXSUBG/WDSnm3hCE0OlMk5b4PaovENeIvEhiM6cKMa+yj8hLIogU3Cg56edpvQ56VnSYVuZu0IhkP7V+nNZw/+edPg0AyPhtm8GnSjAy0JpphiuImMwmMishtaZ9Uc+iePso2vo0naMLFhBEjGPA0L+AsEZWjy8JOFUQOXHiBMaNG4fz58/j0KFD0Gg0eP3115GXV/ITrBQVBdoCLLm0BNdSr/H26fQ63Ek3eECvvm69cJKrydiyRXA7TVFwkxHFWknAHo2INUe6+BeImnm2bFmhj7XJSzIZv9KUILOe8sYN6Clm0tdJ3Qx5RDLibBxpcZ/RIj5XChs5RlimmZRvl6DhmpMGLY2VBUKIl2ExdzbpLG+fhLYemUhDCuqBH2ebxngpuspr1vtaQnDq3XPgwAGMGDECderUQYMGDbBx40YkJCTgypUrzrxskeLbo8cLHb/m+hpsjt6MYf8O4+27mnrV/NokkDgb9qOm0b34SrNCzjPcSsp+4fMQXhyPH78DAIRmiGe79X2Ta+++8PlrmPSaIQX0izgdp/2yttDH2iJ+4CCkbdzotPOXaF4SIYwqQfmEaD0NWmIhiGg0KDKnzfoDgUbvie9nOaumr1+P8LOxqPic7/9holpANbhJ3QT3AbYFEQDwOVUTYVlVze836N7FquRd+PGjY0h7IuzwWpIo1rsnK8sQihQYGCi4X6VSITs7m/PnauQVK3A3OGiauZ9xX3SfSsfY6xuVLSb1GWtge/jsxW9QOa3Dg9RcKEt6mvBXANkTMa9/BokXt7hWOV93lPf3AADkq0puyF/qosXFfk2NToNtd7bhUfajYr+2GY4gUoKFkpIUxk/T0LMEEa3U3aARsUzFzj/QxnsjMgVQrSsw7pLw/odHjd1gjpfpgNZhrQWb+7Mca02XlemYdO8yPZNy4c0P6yG0Klf7YSIsmxFEIlM6mV8f+Lnk+yAW292j1+sxefJktGnTBnVZ9S7YLFy4EH5+fua/ihUrFlf3xLG8F+1UQZ5+chr9/+6P68+ui7Zha0HqBdUDMh87bA9X5WuQk164NOsx0UU3wD7LEXeCJJRs3OSGe1qjK8ETnQvYFL0JCy4sQM9dLnTA5AgiJTcUgipBphnAECljQid1g/rBA0Btw/RooX2y6fcUXF14+5kVxgtzBZ/6wfWxtftWeMg8ONtlFNd3pNvd0RhzcQn8CoLhpvGEnmLOU6lBEPp82hjlq3AXFADQNJHRdsr0jCCTmZKPpAeZSIl3/cJejGK7e8aNG4dbt27h999/F20zc+ZMZGVlmf8eP7a9wnM6FjejPSrILFUWPjr8EWLSY5CtFv/xTZUXAUD3/C7wfV3g0Fd2d01VoMXaKaew+fOz5rS/tmB/nJof97f7Wjb7on2FHQpfcuTGSURdBKa60sT6m+td3YWXhxJkmgHA9RGRuUP96BHipy/H82hv8YMstd0vKpezF5W0wTRTP7g+pjadymnGrqw7ufFkVMqoDwAYFPUlRl5eiOrPDRlfm7wbBoqiQFEU0pJFFp+0wbnVQ8v9nLuWXsWORZd5i9b8bDWUea7PA1Usd8/48eOxb98+HDt2DBUqVBBt5+bmBl9fX86fy7EQRLSptrNPPsx0PJZeG2/w1Ma5/9l9jCnVL/u1Xq1G+qZNovH8eiepd9VaPfQFBcjauxfajAynXKM0o9fTTB6QYsYsiBBhEgCQVpCGTGUmcjTWS68XB7SVdyWKEmaaodlRM0b/i4KYeDy74cuJBndY4dR1nu02pnNbaLdNobnvVn8XrUJbmbffSmNMJ4Huwm4LACB1Z14r84TNTG8FdESbOJEMsQAOb4g2v9aoddgw7TTWTT3l8lw9Tr17aJrG+PHjsWvXLhw9ehSVKlVy5uWcQsFNx8PSLFVv9pAEx+3zD6/yhaL0DRuRsnCRaDy/5Q9+5ZF9QgPdso3V/QUaHVIWLEDStOm436p1yc1JUQLRafVY/fExrBl3HLpiFgZonc4c9fSifj6ZO3cVRZdEUT14YLvRC5KQnYCOf3REu+3tONtddj+zr1uCnymqJAkiFgKAzsIRNP0ey6xh7SsV+r5tRcyI9INmCTkURaFROWGfQNpKhyg3Zt+AT4TnUk+VD+qmtBPcBwBJ9zORn60Gradx/1KK6aKFNu8XFU69e8aNG4ctW7bgt99+g4+PD5KTk5GcnIwCK7kMShKalBTknz/v8HHW4sUB8GK+AeCUp+PCixDKW9YFJ8vbfOzmy/ad+JqVdjSNZzkqZO37x7wpe+9e+85LQPyN5+bXGcmG0PYLe2Nxfo/zs1TSSiX8PQ329KyCF1PRPv3886LokiixPXs59fwAcCThiOD2Aq2LxqwSLHxwKEGCiOVkrmOrEgAo0xn/EfbXy4tDEPru7f09Yv7maERoCsjX5oPWaJBz9Ci8RG4nTaa4WkbCEkSCQhT4uFwfXAj/m9PGjVZYHsZDmafBjsWXORr1XcuuWjnC+Tj17lm9ejWysrLQsWNHhIaGmv+2b9/uzMsWGZqEBM57vZ12ULFqixnKDEw7OQ1ttrVBbFbsC/VNVcDVoNRtb6y+KLUuBFlKIul5fKFICEol7oxaNesJ0vK4+59+ab+vy6uOnuUkqtfRyMtS4fL+eFz59xFU+c6139IaDQI8DYOXvfcCUIKzsL4gCqnwQG7N14sAQFJyHWktBRGarZ5g38Yyi4KgQve4jUWmme1DgTRu3pI8dR6er16DxI/Hoc7cPzj79CoVNKmpKIgWL0rK1oiA1iNdKkFU2BHsrf0D0j0Mydoep3HNiTVb8ZNNpj3JReojbruIOmXs+ljOwummGaG/ESNGOPOyRYeUsTPGh3fDybZLkeMt7uNiQicSJtZ+e3v8G/cvlDol9sfuF2yT9cgdTyZ+DL1SXFV2/3IKdltIsFKF8ad0cDxolhzj2AEC+KrzoLEwKdAaDZ6vWfPC534lYP1miXcycGEPI6Q6Y74PnjLF/Dpt3Xr4uBsGV5VWb39umVIqiFhGMJhwmSDy0phmbOe6KC4sE4dpZVzTDK0HMMi4GGYLJfZkIA1ryH3fcKhoUzqdEUTa3dajx3vr8PzHHwEAnrHJnLaJEybgQfsOyDsnbvqh3Zh5JUeVhY9DgkFTNJL8HiDDw3C+sgXM/DRkTku8Nrw2Gr8RwTnPf2v5tcHaDRSJAComSo4+rQTCtnvGVn4Leqkb7lYbYFa56XJzocvil2kW04iwCfYI5m275O6GpHOByP7vGNJ//VXwOJqm8d/a23j+mJsD5GGK8b3NsYrbYO75dTb7ags9KEPop4Vt9tn3K0SOILCJjXpmfp36KAcxZ5lU1M7waA96f6z5ddovv8BTwUy+yVmutRW7GomIiSFbVQIEkZJMCTLNyMPDQbOEEUuNCHzKAzXeAGAxGnpY5udg7R1/GRi6ky+sWAomLJRxaebXb10Q/x3Xd1uPvJOnRPebkTOCyJobPyHajRGwct0yAQD+9xuYt/mXMwg1zXtUQvkaAVZP7eqClyXn7imJCJk5KAp5Z86A1utxr2kz3GvRkqe9sCzJLIQefGHlqyBGPaZLS+ftz35egLxMYRPJybuGySznwAGb17bElpNiao71yUkrkUKt04PWkaRmAJCXpYJaab/z8YPLjNNx5YZBnH1bZznuo+Qo1HPm+u2+PYZjd21Hhr00E6SD/O+acNRavrbw6e9fCCd+zxnKDJxMPAmdrWqy9lCCTDNu1atx3mstnFXpXOPY+vYawI2ZoCkLJxGO+TGoGlBVIF26lQSX2cfte3Ybl7WvKJ1OwowpT+//y9mnkonfn1K5BG9/0ggVagoLI0EVrYQ0FxNEELECJeOrG1UKPyTPm2/I1GdEm8xVs2n0tlexmcpM3rYc9sNsMQA9jknHr1+ew6aZ3FoEGRKDQPMiw8DjdOuD7Lx91s03aqkcSw7eBbTOy8xpj5apOGDH/AuRl6XCxuln8Mvkk5yQOK2dESkKdztt0EXIg46dIGVNRiM3iGSMZFNKBZF0JX8BUGIo4u986eWlGHdkHDbc3vDC57KcxF2KxddkGTVjNsc0HAR6PKvcSGFyoVg5xjJ8V4yCM+cAAHme5ay2M88r+emQW4yH7Eys5vY67jxUrSn//B6+Crzxfj27+ulMiCBiDQG7p9rNz1C3wMqgcDnZdiSK0ICnYz3MNOtGo2kae1dECZ9HYuiH0DBwIzGTv1Gg20qN9QcmNVuJRC/uSl3BCsWuluHcxHPHHx9H622tcfjRYadexxbNtzZH622tceSRcGQFAI7J7MhmgwC36sOj+GnCCZzYxq88bYqSMSGWS0SXk4PYt/vgmdHGXNR4aB3MjFtKBRExXOWcy3URKdo+7H1oiGxjJ1YsNCUpoVkit5YZz1kVrHHd2ndqz9ct8rlpGqDV9jl/Px5rMJVerz+Ot+9sBBMSb9K0Fxz6Ege9uL4kQfnlLY7bjTRlGmebdyC/ns2ob9vCL7hoIjZfhBJ095Q89MYqwQWsJDNBz65DFsSdlPOvcB1Hdz2wnU/h97v8DLNK9qqCpV24vD9e9DxSlUGgERJE3vrfGd42iYBmQam1vlq/l5LDO793J6aWwfgbzs0fMeHoBORp8vDJ8U+ceh1rPMx8aA7hnHx8MmefqkCLjdNPY9WHR7Hvf0xK/7vnkznx+bdOPOFNJo9juHlc9Frh0S9902ao7tzB85U/vMjHIBQS12nkbM+GWp0DTsbOoiRpRBK4457O0lmVJYhwzcki1XetISKIJJ0LQM7Ji7aPZ6F045tOboSewPnwPdhdZ4VZEOmXeY6zaAX4IctJvvd5goi8IlcwatOvKkoKRBCxQvrmzQCAcy2ZbHr5XqEARXGk3adffME5rm35toW6HvvmyvhtG9SZOchIzkNGsrjppPMjg6nG142v0pcI2H6Vbnyv7AK1dUFEp6dBWdzo1AvYhPM1+Zh/fj4uJdthAighzDg1g/OeLVCc2/UQeVnCqx9Ljcf2by4xiYQAXkZDrYh2SpfNd4oWQ9vCevI5ISQWg67Nic0FGgKFCxMisgf6s0lnsePejmK6MHNdQwVZy900Xlt2Au2/PQZtEQgjeZo8242EKGY5RDQLsTofck8tcr0ZDYHW0lmVPe1Zi0qySxARjhbKTnBcy0BZXO9+mSsARSOq/FEk+8aaTTMJAskvs9yfcd7rKR3OPOEKZNefX0eytyGSR6tQomGXcIf76CyIIGIFvUD13zyvUOgyMxHdkpu9jp2B1R5nVXvYs+Qifpt9gTNxsVHq8kHR4j4i/Pw8NOQavgrenoyalg+J5UqAsnPFmKnMRIvfWmD73e0YdXCUXcew2Xl/p8PHFAXsAoUA0G57O5xMPAkAyHkunuzq75Xcoodpibn4b91tZBuPuX+Z+9s+jhEw2WVmgi5wIJolzHaIuSW/HF7M+Q3zVdbvCWeJIdIAce9+RUSE6D5nE5UaBcBgd//g0AeYc24Objy7Uax9eLZsOW9bnlqHR2n5eJqlROoLFJ5cfHExvjrzFVr+1hJHE446fHxxZVbNy1Rh1YdHsWbccdy7mMxvoMoGQOFRxBvmTTqpG+d+peQs4YGlESmc6YuVA0hDIf2+JzQFhf0umOdPPzoaR6oZFsImZ1atXitaCfpi+D+c9xQk+OEaV3taoC3AoeobcKvcSdxp/18h++gciCBihbyzZwW331Y0w8l2y/A8sI55W/a/TLSKPc6qJsq4CyeSoQGkpokvM9pPqY87edfMAoKQHGC5yqXVao5TogmljbTiPu5ynkbEMlxvzK19Vs9hQsgk5Qhfn/3adVkuWWSpsvDVma+Q9CATCdGOOzjevWAYRFPiuMKukNB5o0N3KKOjedstSfAui9TgRrjr2dZu51gTvpp8BCoZR9x8lQbaZ8/ED3CSRkQWyk/AZEbqulwVJofO+5n3zdtuPS+G8uqs71l5m5//gV0fSPoCWsotMVuw+8FuAMCkY5McP0ExmWYOsWqlHFov8EyocvnbKAmnGq9XFV/o1WrknjwJfT5L21wYjciVTeaXqTd8kXLFH/GHgqwcwNC0XFMMrcXkIWEv9mQKqXkl6SE3aFdmnJohWglaK1XDI5SJ+NJK1KhTpg6njY7WIc8tC6cr/4XTeUdwMP6gXf0sDoggUggSK3QGANyo/zF0EoO3cgarqrAjgkhVv8rm12/kMmrRC834mUklUgpVGwaiY/m7kCTHQUvRkGsMD56bluZJ9JbCg5jzlNKGaaZfkwqgLBUiFnHn7zw8Cb0d+llb6e/tobgdB8X8AzLzM7FrKT81sncA3ynMkujTSdDbWWjqcuOpgpMQm3y1FhqJDLfqjEHKEwlun7RejdmjYUPeNvb9kj1zGu63ay8qjDsNYxckNWvxduUeOeLyjK7s8gwLLy50/gVtfF62NtORWkH5mqIOR+Y/+zRNIzlPQGshQMGNG9Cmpdls9+Qu16fqyoF4boOrmwTVdRyHVYpC6qJFePz+B3jy2TRWhy2PsuNeS2Y04XnJhrlAm2/fGLfhjQ2Y3nw60y3WOOMpY0zoltEvYgyijyLS7RK0/ieQ5fEMzUOac/ZbjmNTT3CrALsSIojYQC23HmP9uILBaZNmSdanEu1ITmPk2eOzmCGQMyTfi78yHP1dO9RP2gXJ1pWQvD8MAAU3leHB9NaCt2qmaD32RD1B5Ix/UHvWAVx4+Jx3TgCY9tcN3E0WD0uVSSi+RkTASUsi8OCqYrlpjgtTENDViGXKfePuWMHtvSY0xIjFXD8NqYz7feVmqPDknn0FB9Vu/jbbrDsVBwlLtZufY91jX+pnmbwJ8JAzfdQfN0QGpa0VSXjnLIHAeF7p2I8FdytvWRfIXhT2BGDJJ8c+wXv/vufU6/NwQBB5nmu/aeaXm7+I7ov0jbT7PGYETDPfXvoWXXd0tWlOzTt/AfH9ByBh1GiHL3t+N6tUhk4LnF0pKD5oZSxBRG/wwQMAVQwrNUFh7mnW5C7iLmI3bEGkT7U+qOpfFR/U/0B0/GFzJOEJPECjR8AC6EI3AuALHiUlBYIQRBCxwcWm1gt5aeRenPcXnl5wKPmRiqLM2gb2bRL8LIrXVuEug/IO46tAA5DqDROOr45C7OwlnPYSmsa3Bwwho/lqHd63UuCu2/cnkVWgwf2UHF5eEa2As6q9CYzyzp/jvC8KdWBxP1B30u7wtoVlVUV4Zm3ze09fJo7f008BLz+uVqT3J43w4aqOaDeASbZUlKW3rz3O5JjiJLZ+HwEzx+FPOiCyDHci1qtFJjcnCyIiwUOGycaJSFmzia/Cl1Ou/XCCa8PHhWCH3qc7kIXX0ueJjZfFmGYXFrdbrjoXW2K2AACWXVlm9dCM334DAKju8sPbAUCvp6Eq0CIvS/heNDuu3jeMLXqaf++zc4nQkICSC9R0sTRl23OPNxJP8e4oocmM9tFX4YtdvXdhfKPxNvvxVk4uyrJ8XRLlBo3MH/e49WzsEWhcRfFnT3rJ4EjSdmDpqWzz/BTzI2iDa+B6vTeRVqYur12n92rytk2/8htyvBjv8EfZgWDHFUhoGk8yCzjvrdFgjsGBKcTXHedmdjYnKdLpaQQXcKM2pN72ZeOzdGK7lnrNruOsYa1UtjMQ6vNb0RM470d+2xaPbqXB01cBdy/DIFerTShizhjStYdWMWggqjcPwantBj8Dk/nEveAZlAIp/8UoUOvgoWCFINI0jt5JxQDW72vTZC8gqEhAw0PBHRJolRpfnP4Cex/uxV9v/YXqAdVNF7W7v2wuJ1+GTCJDbVUZyENDQcmEhyCtjpPtgcHJvgimwfrvt/9GpF8k1t1ch3NPzwm2lRRD7gxrkxBN0xixgQkRzci3v2ihNSxrtdh1DOt3ic+Kx9dnv7b7WNpGIsR9P0TxwtzZaAp0kHpLAKPZLF7RjteGHTmTfvYpaI3QNS19RIC76Xeh1CnRILiBQHsAVbsAl41aQ0v7tQ1omuZ8bzKtwSG9drswTjtbCy9/i8Rph4w5Rix96YTuJZ1eB2kJqBNENCI2CMh8AACQSmiUUfCjaPQsnwdaq3U4FbSGoqAwrQK1bjwhxMNXgXFrOqN2G+PNaTFGSFj+KLRFSvpAT+57nlZDhORsJfJZfiP0c37K7wI7VeSq2BerMgwAQR5c56/iFkQsJ5yKGXyhEAAi6pZBcLiP+X2HgTXQbkB1jFjEmGlMQgrA1JhxRAgBgAX7uZlufzhquEfZpjGJ1PpkIpQJU5ebh1b3z8GP5fCnV6vMia/67u3rUD8tyVXnYuTBkfjf8iF42PV1JI4bz29kfBY0YlkpnSyImO4tudTwO0WniTsJ96nax6l9sUVmvoYTKTNth/1RPFIrdgRPubh5ShTWM/LhoQ9wNZXxncpS2Qg9t/GbWhNCADDlFNQGH7vn0mq8NmyNiF6s/ILFRJ2W/xz9/u6HofuHYtd9kVxJrL5T7r5W+8mDF45Nsf5lsCWISOwYDh9lP8LiS4v5XXDAn9GZvLKCiL11UdKMnsce7kDTwAe8/U/Kd4De+BBmbN8OpVaJdjf1GHxMJ7hqDM6kIdewcgOAkcPvpPNvio6Daljtn1zLOLjGh7/BSYrjbjEZ8UJwrcAuCa8RcJSkJBRCv5kveOy5EMZbO2OzcPE+R3DnlfEuXkHEO7Ucqjw3FLsqk1cePe58xNnfc4Lwakkql6B+pwrw8ueaaWwVoLLFr+eZEL4zD55j2aF7ALi/r+08L/z9qYsX4d3DG7DwzE/mbZoCEcG6EL+BqYJtrwuGgTX3xAnR82rEzFbO1ogYo8okxqGxbhBfO2miWARiK9+z5AW+ixOJAt+9EXcHtcAAOL9LUs4Tx4618hl1NiL6AODpg0zDi0OzEJPfGbFunXhteGneBbvB7YfbueuITDZsm3V2FuptqicaPgsA8Laeot0SvYpratIbtceW34Ytk8pGf9sC0Lgj/KytQNGlmnhRXklBRJeVhfsdOiJp+gzB/VnPCpB4J52jzqsaoYO3Qg3/jHu89qnBhklK8yQJJxJPYMI+Pd4+T2Ngfj2AplH1CY0xlQYjIoXGqtU6LN7A3Fiv5eXjpKfBgbNKGr/4kU8Zi0k4n6tuU1gkILpZZwzz5hlXk2HSiNgT3ZKZzwhF+Wr+zUrTNPz79gUEVOutku13KDwQdwDb7mzDzWc3RduwIxVM13Y2//x4A6s+PIpVHx7Fk9+l6Hp/BEKyK6HGM64neveFlRBRRzgEW4zwOoE223jlWY96MTFj+V4MiTkIT42SY3qzVftDKDlY3lmDCaJSNlP9l1bx7fL5mnxsjdlqV/8cx/AZDkWLFd5zriBiKkZp+v56Vekl2tZVOW1M6J30HKQXFKLeDut+s2eFbrMPSXl4npgjmkOJzeGNMbh68BE0ubk4mj1BsI3OHuFKQPj9dgNXCOCFz7LDq+9bEVIEyDnE9Tl6FPEmACD6FPfZt6URiVRzF7D9s5nAA5OgISZAEY2IC8k+cBC658+RtWeP4P4tX53Dnu+jcLLdd+ZtAUEKUBSFRtdXoM1ZrgNrdG1DYi5KKkGmKtO8vWtAKyxQ98SCzTq0mbMPze4ZbtoKxii1CI0Gn6VnQmp20ONPPpaVEVX37/PasMnxjTRL1CuPcp3EzDlHLCYpLwVfTWuyN+v1NOqc51f0lZctCwCQeLxYFMxnJz/DggsLMHj/YNE2qQXcSelC8oUXuqYtjmyOQfwNfoRRWHY11H/akbNt4SXHQzgpBXdgCU69iiAL52SvXHFBxI0VgfPzkSUYevcQhkfvRzmWw6wtjUiZ99+3q6+0gHPod5e/ww9XV9p1PBt7qryahMzrT4TV+UKFKIsS0/VNposgj6AiCTl/gQ6J7jL5f4VnJyMyKwltqjomEIuRqxHIxWGDx6wFmoOuEgBFIS2gJuLDu4Kmaeh1emybewHb51/CkU3CBTf7f9GM8/7croc4mzNc9BKWFXgFsVOwKwotgp6S4uxPp/H0QSbkFSqgQCSfFMA3TQPAm6xUD80tqr8rWJ9DrVNbLeQYk269oGlx8UoKIvDwwI267+N5YB2kxGdDq9GZE0CJlW8v264RaK0OFAA3dRb8sh7y2lAWk7L7vcdoeCUTAOD1JB314rkT0LS0DHjSNNyMN06VZP6kXpiqlokV+KrJz7rVMPsQ0BSFMsZCS5BKcXvuG1gztAmnvUkQyVFp0fC5wGd1N/bVThOXPQhpOoRs9M6Mf6dpGnfOPhXc56PkDhY3Qo6LOjJa42YqNxFWjft/IDCDiWIISzqN6g/+RAjr3HqWDV5lVFfrWCu4KllJoFiPs62oGam3F86OsKP8uMDvezapcLlFTKsvdlCD2GqvbbVgHKrYlLedcrNjQikkap3arAZnP3dNyjYRO8T52jkr50/JVkKi1+Gno0ux+tgyIL9ocoPEZ8c7fMxvscyizlIQEQoHXnl1JdZcX2N+f73BBMRWfhuPo9OhVtoeU4Ir+vC23Sp4U7S9ZeE7yl1IQ2Lfb/nXvb+YNz5WEvBZIaVsE8RV6oGdS68iO6wBbtT70Lyvx7j6nLZft+I7/vZmCSKWkzhbVNfROqy0smj44NAHiM18cT++F+WVFEROR3ngeVAD3Kj/MXYsuoydS65i3aencHLbXSTHCq/EgsL9kH+RWYmXS73CayP194dUx8qOd+kmaA1jVqiZSEHpFoCYGkMxUPYu2hjTdlc0eo37451CfZ5W57jJz+5X7cdr83HHKvh9bAtDv6QS+PUxONpJPA2OaR1rBKNjDcZpMtsokInVoaEUhtW3vogGP0B4pZFkRTPgDJRWQiBrPWtpfh0VegRnK4k4sNmA0jGPXZm0W1BoclA+6TS6jqqFnjXuo+a9bVBoclHp0b/mdiqFP+ccqdlKTt4IpUwBysEojrtNy9pso1LxfxM9rRcds3WZmVA95AuuAEsQYW2bfGwyt5Fx5/2UXPyvId85NjnXearkDbc2mF+znTndZOLCz8VkxwqbOYyFIJL9H5OaW6PTY8A9Jh17eop9JhW28Le953ZMaMQ3Z/xx9w/eNqvdZAmXlqaZ+Ox4TuRZtjobv9z8BauiViEuKw4ZNOMzlZGcD41IeQGTFuT1MQYftAo17fe14gkidoTvsmkZw/j9nXrCyhNVvjGSX/sCA+q2Ej1WCLWC8es459kdeV5MpExQBa4WvJwX3/ckjBVpVMZiscD+/vW03rpfC+DSYqImXklBJDGZu1p8lpADrVqPmyee8GqDAEDbM4bsd6r7jLOq1CI0SiPzQNrqNVj2C3NT6GtVMdvdASCmxhCcbTUfT0Nbwf9UW7PkOihbOJlYRPw/gtst8VClIzCdqznQWCQOoygKEQGGbZREAsoYa24qpOUul2LjyOboWT8UAMwFtCz9Q8qMHQuPJk0QMFjclCKvUAG/V+9sV9/ZCKmEizsB2sW/42w3AnA/WDwniy28ahm+20Tfe2hwczUAg/+O/NuJ8HRj7h8PVvVMvVTBOUdmgQZJrNBspVTByUtiTaAykaJJh9bGCKAz3h+do/SY/ocO+oICJOUliXpqxPXth9gePQUzslr6+gDAscfHuBuMk0F8ej7UUv5ksf6081Zv/4tiUmSzI6VG1+Um2jrQlzFVFrez35OJTPp1TXY2ht1h8vLk6+xb0bOdHyv4VMD79flmOlO6d7vQ67m1XAS6MezfYebX7O/swtMLOKVnNLin/7yPC3uFf+Pgij4Yt6YzqjU1TMwdhwhHrwmhtRAmhWrjWNNuTdlt8Ptr/IDmOfp+q0tGdJ5jDrpSnXjyOYnU9rQcpNXhO/+meCPyDQz74CZQhqmky46e09E65KjFk1UCQEq+bT8cZ/NKCiKdW9k3eLQ/9Sk6HR8HhXGClFdgiomVfXaVY56Ji+wJ7bNnCGVFmtH1uWmqk0O5UnPy83DEHgiGLIk/4IYkn0eil0DyL5HiUg1vrELtaGZFl+MTYX79SRdD7gfzcyaRQGJUTdJKJWhWqKRcKoHELQm/P55hSM5moREp8/5YRG7dAqm3eNKjcl98jkoDDNqdAk9GhWrLR6DbX92QoeSG6i26uMjqMUXFvYx7eOuv3rh1ghlQhsxtidu1jgi2T/MqvKZG7gOsbzYd/9T+kbNdeesW9BZCqbtRGLH0+ldqdMhhmRH1lISzoLu8P95mP66mXoVA7icOUqNw8+G/ejR5SOPiDwY1sZgfgOaJ4fsTypJpdoyzdk2TH5PI7sPRxTNosk0zvqzV69etvkZ5VmXXQiX/cgBrk6PXMe74YKNOoRl2OK1J89MwuCGnzc3nN/HF6S/sMz2pc+DOzjBq4xC2IPLNhW94+++e56eFH7O8PW+bPaUUTNgTNQMayNxpXcvpZ1QAmyLAAMdzR6UEN8a96gNF99sKvQcAb5rG6zf2YUmHJfD08Af7oerACmi48ewGEnISOMd+0oSrAXF12QTgFRVEQoNsh4Q16FIRCm83UGDMF4HDGKleqtei8TXGGTTTrwp0EjnHlh9wybpj6V/aFcjJC0DC8SBI9YxDXGT8v6h951dQ4PeTKiPu1BSSehkyYx4TvXGAaVO1DAa3MJZ7ppmIAIkXM4DSBcyNm6tPhlfllUhSRePDQx8iNYfrCCX14dtmLZH6+8PT0/DgUyzhw5aHdoG2AO23t8ev0UzIb2Hs1YXh5xs/o96F7pxt/mU9ccp/L9a0nCRyVOGQUBKoZUrQQiO2xWrItHKyLGWu1Oix6xojNEkp/oCitVFDCAAkNh4FiYUPR9wx+4obCqHW2064pdIa+kyLSSs0zfGNMZG5cxcSxoyFLsf66s9eFBJGA8VO+OTnZkhMZ/J7cHq2SpE5Il+tReivqznb1HZm6mU7L7oZJ2ih6KC9D/fi5nPxaDamM2kIYj3nYlEzsVmxeJzzmLMg8VbZZ15x8+A7DFuWTWDjnZvIeW9pmhGEpvH0c4FM2uxoNOPL3+8wtcUczR11u471VPY2syLDKHaI5IJppGKeswlHJ/ASm3WvxB3nSkLq91dSEKHFkiWxaNuvGrw7GKTwoHHGGGwLx1H2u1yfijjbci4usVLC57DsuWKcbmNIMvNl7c/M2yKNvgFCt2NWm9esns808d+pMQQAsHVMSwT7GFcDps9NUQbHWuPnMfl50Ho9zj9jwjK1tNaco8IRKLkCcqPpR69lBh2VFXUkm28vfSu4fWSdkQCsJ2NylPxsNWiaxsH4gwjLZhIh1evArHpBAb+0+NT89p3PmuD7jt8X+prerPpFlndi9j6Lct7G1SPNmgwpWo8CjY4jiLSrFsSbtPKzbU/8tlavUgvhpmEcNw+OI4gV72ILUE8zCwTbsLmdxPfjevr558g7fRrPVq0qXN8shGR2Lg2llhHGTT5LJgH5nkA4vxDa58/xfPVqaFLEwpLFEP6ue648zdum1+ntKqRo+h1klMwcEdSvej9semMTr61dgtap75DA8rkQu6d67+6N7ju7479HzLgYml1ZuLGRmi1D8PGPfOd7W0gsfs8XiZoRGoefFxii6tjaJaWA20lhsCZgcSjLMk2lcRe9Col4ZyzN3Vra9blEXklBxB7n6LR1AsW+bEiOGoUv8rxCoWKpctl4FIiXVY/80JBESqbNh8T48Le7ze9oeoH1gUGjMGgs1MaVGxuTPwglkxm0IsYon8cfj4M2PR3xAwbily03OA63t57ws8lyEDAVUXI5knIM15LqdebCXEI+Ao7QoKwhcZi1JFOOEH/jOTZMO43jW++iTRzXMbJm61DOe51EC9XYKIxb0xmhVfzMfQEcV22yV6T7m3GHOW0K1/RgDrlmDYcVcp9Bq9PjveaMqdBTLhWssWGNcp7lbA4AloIIACi0hQjRhLCzKsAdCM0TKUUJhqNWyn7KMxeyeRAlXK/EZt+sVDgt48H04+2qb3P2LbiwAJnKTJvnT5w0Gc9WrMRjU7TaCxL7PI+3jQKNXdeecO5Hmpe9kzErRPpFmrdJKAkal2uMsfUK0b+bOxDIcpi0dRcuvbzU/NpDI65h7TKiFl4bUdtqKHqVxiIO1xb3raVGRJclFJQgfFMPrsn3h9t2x1A0b/FFJlupg4+fKDl7+Plp/tf5f4j0jUTr0NbYmGQcI6wIG1IRx/W3qrxl1uqZsCes3tm8ooIIjfAErraifBAzSfrkPELqkqXIv3jJsMGkLhcYlOvd+pm3TSkSE06JOLalBdSE1lj1U2ahRlOncfNZuDuoDNDnMQOWPtfg6yIx1okxaUKUN2/i0XvDoLx5E37ZakSwFm1uWutaDKE8IpRcBh8vwwpEQtNIzjKsKE0akcI6oJo0IY6oEvW0XtQkdN7oFBd9Ogn1krk2aHaqdhP+rCq43nJvs0MjO521PbBVuRobKSrMaflZ2rgR0f8iKUuJypeZiAlar4cmn/tb2RKQ2BOsI0j1hUsrZjLNWA7YbCHAtIsG8MMgfnjx9MtbOVl/LXmUnFmInlkXkst6lsWvb/6KPb338AZxwL7ImYIrhig71T0HNYwOCLkUTePTP69j0C/nAQDJ87/B3cZNoH78mNMuz5gEUci/pWVoS857u7SYWiXSWPldTKaZMFYkiBAeah+0fiScJr/LyNqo0TJUcB+bTkNroH1HNUaVHY5eAbMBAPUV53nlLHRWIp9MZPwhHCk0opZ4fhK26aqoBJGnX3KjIGmNBs3T/LC31y781GU1mpiSDEa0Zhq9zvW1kYhM7T0r9+RtK+6SGUK8moIIaFSN3YMOJydjzPyGGPhVc7SunQ2J8aGre2stAECbbHCakhhzZvh07co7k3fuY942y/BZGoBG5mWux2CZnTXbtzKU7oZsmzoJNzriZnIU571OsFgTQ8XHjHMlDaDgpiFnRc7Ro0hbb3BmNTkUslGzQi7Zq125DWlZaLKjFAr0bGTwS5HSenN0h2mwl1uR5MUYW2+seeK/+fwmjiYctXGEgQabG6Dxr41x6/kt3j6x6reZb10FRVFIzOHamVuEtDC/dpe5mwWiEQdG2NUXE2xnPZmtxYjxGjRrhfPEKwjPclQIvcOEROqzsngOebbkNRklQ77CehshpA6alE8mnkSPnT2w8dZGAIDeYoWbnM84J5bPMwjeNCgEevE7J6P1+HirFcGvkI53bP8VNwE1fsOyDVHZnzEjNC7LCEmfnviUZ4cvMhwRRIz/n481aNwytmwBrdEgbS1Xu2vSQAk9h3KLSCXViUU4GncQDzOFQ7JN1ZDZY0adAsN3Oa6RcFpxE63uh3Pe+2THo2ufshi3pjNqtLAvP4ebpxz17gyAhyQb4W7XMW5WIGoq+M+6TuoGGhTUch8klu+AbJ9wXhttknD+oDIq8fGK/bvrnZT0N2XhQsQPHITUpd8B7MVsa1bYdevxwJtM9XWxgoy1AmsJbnc1r6YgYvSVkOo1kEKPMuW9IZcCHU9NQefj4+Ch4sbjm/IiyMPCILVwFpUIaDmyLRL4PAp/Hafafot8T0PYWcVEbsiiVFdgdmAymVZMeEm52gO12rrDZ+U4xplQbxRqVLFxSPx4nF0+K2x0qrLwLvsn089AgdTkAv42Eg8P+HobNSKgMXvPTUz5Iwp30w3hz2yPcyHYmSxllOF1t8hu5tcAMOnYJJthaWw+PPwhb1t6El+9DQD7Evfi4tOLeGv3W5ztdYLqCLZ3FLaGptdF6xMNZRJEWI9qgcwNK4/chyqH6b9OQBCxhVQixdZOtocAuZbbR0cFkXFHxiEhJwG30wyp/y0H7FlnZgEANElMJFKP+sKr4bOhBrMc22E1/yojkAml6RaDpmmzjZ+tEVnaYanYIWYstXo/Xf9JpOUL4oAgIhfRuFqaZ0yLB6HJiv2MAcCVlGuYdHIq3t7zNv/EN3cA88rAUpc06k4zTL48GzUk9fnHGOlxUY++Z7ifrenVJQiMPSVyhAiW44+Hv2F9b/G9qdwCcKzj/3C6zSLcq9Yfl5tMh0rB124JYdJmAUDrMEYL8Sz/me2Cfg5SxviMpCxhhIqM3wxmoPSNGwF2SQ93i/7LGfOTkGnmyLtH4O/uD8D50V6O8koKIjTLgZLW66F58gTJX/Oz15nQJCWBpmn8cOQ+cny5k7HEisZAJ1EguWxTxFbuzdmu0GRjdOAQ83vLirtspBb6vrhU65OvhLWySw+ogdyTJ6FOcKwGgkm1KnVLhYcnk58kaNzH/MYCA6XE3R2UlFHVxqZkY+fVJ1h6abld12evSH2MgpmUkkJi4Y/yzIrPDQAkZDNhawHGYoAZyXk49cc9q46cuW4ZmHZyGkdg2NFrh119twdH6juYIqdUbn5I968BGpRZ7ZxfwHwGSi7HsyDuwG/LNCOTyHCoke1l3JSd3MFeqi+cj4i5Xxbvrz8z5O7RpjF5U0JEVEWtnxpWu5mskvdPPv2U1UI4qobXB5rG0stL0e73djiZeBKnnzDOnx0rdrR5/P0MrnPgulvrOOd4EWiaxoWnF3Ay8aSoGVIo4bK71vCdmJ3TTeezEET0rOg5SyydUzewCqppclhhtQnngb8Mi6c8i+fysnQ0lJoAHF4snvNl+BGBiEAAtM66lFtw8yayDx1iNjyN4jZw9wdoimeaEeJR+Os22wDcLKweLF+TXE0umoQwWXeLwsBR/b4hGid93Xoohcx4psrYUjfAMs8Oa9wUEjLLejL+NNZ8olzBqymIsIUHvR6Jk61nlqOkUtx6ko3vDt3Dw2zuqoNd/daSxxU6ILr2SP75aD0opQo+xox3KlbF3PJPuCsCXSp3si0osO7wyR5abtb7EOmbN/NWDUIFz9i8cZmVV4T1cWkhbYyARoTy8OAIIlLj952WZ5/6mh06aTJjyCQyXrSMrYmWnQq+S0QXAMDeFVG4cTQRG6YJTxp3gg3Zc9NYycQACPoGFBarSbAsBvVMf0MOmPvV+iOq4UTE1HzP7MB6rEIjczvVw4d4XLEL51jT15ORnIejv8Yg6xn3+7+eeh2gKKT4W+9vk4d8jciLaKHFbOnsbJdB0fzMxWySs1lh5ax7sErWE6RkKwWOYEjNT0X9zfWxOXozaND46sxX9oWpsijvU563zaTZeVE23d6EMf+Nwbgj47A/dr9gm0ExfO2mh9GfS6XhChO0VlgQ4fgRaJTA6rYISxBP1Jf1G8vkvL6b+WW+hBIVTLvfHYIOD1k5M2iDbwgA3Kv2Lv8AGxGN8e/2x5MJE6G8a5ykf7XwMfHwZy5kg8QKHXG04yokNRlktZ3UlxHG2Ca8xZcWo9qNDEzZqYOnkn5hH5G2Z6bDg+XITqsExnq1cb5RCGg0WIKJpUakjIXfoqXAWVT3bmF5JQURdv0M1cOHUN60MQhJJMgzZhi1dq9Vivvb/Do+/HXEVn5bsJ1eIkfs/nLMytaTSeFrkohN3L3EJC0qUOvskvQ5aLXIO8PNcqmOs549tF00DUpP45NdOizcyHxXsrLBvLaCPiISiTkFPMD4mWhYAqC1QmIKVhZRkz1bKpE6LIgI5SDJzeA736W+ewZrWk3C1kZzcaLKNqvnBABarbYrBFwMkyDiVSDQfxvnTQ5pAXedGn6qHHwSxZjNhKrkmm6VAz/fQsyZp9jz/TXObtOgWi7T/r4D9plmMhVeoLXCApdeZNShWJWcpcbvIfSb+fDryy99MPgXptyCkpX910+dj3sp1rWGr/3JDYFPV6ZzVO724Gl0LmdTVPkY1hp91AAIFheccfJzvHdHXBDJVmo5pRlSlb64dZLvF8bRiCyOAFJuouy+T3ntTOQ+MxZI28HNg3Haw0N0XAxPb45aqa1QM6UlFFoPfHh+BYZfmY9rDSZA5c439dLWvkOW47xZyysUsaTMRsQjw7jpV9m2P9odn7bI8hVfnLEXVRpWEcgzT86g+8830PIujXdP6QV9RLJ9wpHvwR83hVBYZJY2Zb/moDa2UXjz97EccnMsqrL3rsrVylveqyaTjat4JQUR7/ZMhMTj0WNstqckFLTGkFZKYPLLU36Ferd+RqVHTOpnS3MMG73JDmtxM7gpM3gP9InEk8Duj6F9fAXT/7oheH1bZGx1vGR744c0Wt2h4ckSyn3feIPfkDXZBH38ESK2/QbAsLqljQ+wm1ENqM1hHKW+acPPqGgiJT8F/8X/h+cFz83OYHKJXNQBSwy2vZumaTy+I1yLg3Y39C/HPU04yRgYE5E+Lw/3WrXGo/eG4Y+eBi97X5FwbTFM/giVkwunzO334ASnxogYJm94ky9MTpqwpuBEXceWclIdzEKO2LThr87Dnbr1AABhadzcI6IrRwlbi2asv9S3L8K++QZBH38EALgTYHAyzCpgVvl5Su6Kf8I2rsBlDzNOzXCovZCjZ5baPn8BfV4e8s6dExfUbAg0/7AWPGxasQrB1ZrFjEXn6A448dtdJBrvf0HTjNa6FgkAzni6A6eXA7e4Zsr5QYxAIeQECgAdYwdh1CUmS3JGADc9e6NrRrOtNdPM+dXi+xQ+wFSjuSzvOcpk3EHPlPGI6MA1U9VtHoAOJyfzDr/SeCpOtl2C9IAavH3sRYdMJLO1fx54q1SVwg+Xm0zH+RazxfttBbYAZMYkiLgJCCIs04ySpbkZUGMAxjXkOg5bmh+FChMWJ6+kICIPsx5WxoOS4IHRN0PIIezXjlm4F3zD7tPpjSq0bD9uMh+Vu8FEs6EL87PUTtQDUVuRvvYd7L2eBKmNBEPene2v8SIN5peXNuElMC4JPhgsgidOhGcjxlwAY7SRm3Hi1asMmp+25dvCW0iiZ/HpiU+x/ArjU+Kr8OWZR2yFneVomJWxm9QNe7+P4rWhoceuB9bTOgOMc1fe+fPQ5+Wh4MoV82dwxOcDALbEbDFc+wVUuX0e2uHUZ6ec42giJgnNGnMp4OceE6F3Fw7Jzj74H77/WYeFm1g1mCw+d7B5xcgSVgK5qmSTk3jNjAQoLOzb7jLuCXOUWvx6XtwvylKI8JHbzhZsRp0PzPaD7C7fZGJv3ZmEDz5AwshReP6TsINrYVNuf9AukrdNzxLG93wfBXWBlm+asVO7t6hMIHB4tqGPxr97BW0x4OZ4SPUGYTzDaEp0lIAsYx0vttk8J8VgekmKMrw/bOHHx9JOYMBmwNvoA1FgEAjd9Tlw1+VhbNlBaOS1CzL3G1ijLoBUr0Hn4+PQ4sIczum0Mk9ENZiIRxYmTrYGXUoJa3I9VPzHTUgTUn7FCs77dqcN5mO/rIeQhVhECkmFNCLWTDNM+zCWlr1vtb4cLTMAzGk9B/VZPmURvhH88xUjr6Qg4jAUhdl/G5w2q2cmCu5Pd2As87RRZCjHA4g13kd1UgwPQVkqEwAgszFoUHI5ZG4GgYEdyiuEey3xUC5HIyME+2J08jI50YEyfBYvuZdd2VGT8xjnOE+5Jyr5cdWnjqRWvp8pnG6fsvEIDK45GNfeY1bYNGtQMk1ojgoi5nMVUhB5YEXbxsaeLJuF6YeE5axKA9jvEYmAMcKaxWfGgTec5epkKYiYfke2hkDZnhsqz/ZPqpxlMDNEJ2WjzaKjKBCoEPzVbn4Ip4km5Zpw3rMFVlEurwf+GgssMETzTErPtH2MCAWXDf4vmX/9JbifXfzRIadgC22CTiLH8Q7cie+XT04i97rhvjVrGLdy0w388zgJq5KFM8Aq9V7Q0RSGh5bFmJCyOJT1KQJyqyFc+w1oALGV3xI8zl4odl6i76oDD48CP3dgJmA2apYpQ8lE4pm/Mgpw0+ZAIVGitc9myLzP41x8hrkd2x+DzcMqfThpFNjPfLWAakKHoHEs30dEIrBotFwEy7UF6HhiAhpfW4by33GjtdTxAiZ0k7OqkCDCYmX7pQjzCsMbkW+gZiC/OGCAewAWtFtgfk8EkZcAaaD95aat0SjqezS+tgyeItEeoU8NxZN884HKRlnF/5lF7RHjzV3uiy8Ez0HJZKhuLO8u14g70gJA6Lx5ovvsFUTC16+DvHx5hK/nZ6KVepg0IqZiZ3qUf06j6Z8xyE9LQd/TevQ7pUftMrUFz23pYGUJW1ABgCe5T8yplwGgfQXGBHfo0SEI8TAwyuo1Qr1Cuf4sAoKIVq8tlH9A/eAGNttExv/L25YQ/rpdyo5Dj8TDtdmr7kONDfdYVCUK67vaHhJUj0YgMsVwvJQG/DzkcPMQruWheZ7G2+ah4PpX5KlzEf3FFPz+OeO8KImM5LRhZ9cMLsgEAHRfeQpPMgsc8ptKXvU/VNlxye72AID4M8C+T4CbTMKrSK0W/z7m+12I5hMRCnOxA4eOsojgi60kLBRkH/aEXEMbTDMZj4CH3AVLuFaL9gV8lWhAfjmsS92M/dmTcM3dHRctfvMCj7KgC1F+ofml+ebXXi1aCDeK5zqXU9lJQAZromYn92J9awotI6DoLKY7Ca1Fo/AMCMH222MLIhW8Kwg1B8AXsCnWmGDOjCyhULmRQVNSLuWSsR96UADca3IFhsSPx0H7zGKusOYjwnqmawTVxcF+B7GkwxLB6CgACPEKgbfcG/5u/jbHWmdDBBE78GzSVHSf3MuwGquRaLgJvC0qHbIJyLwPf1bFXkuqxO4BYEihzSb7MfPA+ysMPxklE37gKZkMMA7atMgNaMoHIi9XDjEiz5XUzqy/Xq1bo+qRw/BqzXf2k3kaBJHmoR7Gh0SP79bq0OBwLJ598j0GnNKj/2k9vqg9STA8tl6wwccgUMCpDWAyRAKG3CRv/PUGOv3B1KVg13SxZH/Nn3AmcidOVWYmlw8b8HONWDrVssMLfd18QRkHmHSR1ZUQVf0NJbsr+Vex2bZS/D+C26ObcG2+OgHn3+13touel23WehxMYfQkKRb2l+BAUwkON7Q+/XmoKXz4D9NGLpXAu3074etk8/0mPC1yGIQ/A6i//kWLWwbNWbqbDxSWpdBZ97JZw2ZEImLKyLDIwKpXKpHxwyr0PqmCX64DqobLAuUeAHgIaJxEv3OBPmqTniL7773AbD/D39PrQEq0xXH2d9My9PVpSHPRtluX6lA56hmwQjzXBwBI9BL4F5QFaGDA9c8BSJBQ0EGwba6NTKpieOcJJxLj8KdF9OG/04CfO7JOwk71Thn/pSHXMILIAV0z3mmbDG2GWrX4z46SPebYabqyTC/AFkT0Rv8nSiJB7DWDcOGbzQhSfm+/zQkTNsHJkQOwTDNCggirn0JmHQvcpG74r99/ONTvkKiwUlwQQcQOfF7vivL+wjZwidwwUpjUco2jvrf7vM0uL+S8VxgnVstEfk/OGB6K8zNfQ6tg406JFB6N+SmwaZ2OdVPZ/nkXDBAWaGQWz15BG9urd15fjPkLJlV3w68H52PwtTvmHCWNnjCSvlQH1AisgQVtF3CON4VUcjKasuL42QnNHmXxfQL2xzF2fL8CZqAqU94bCQHRuBl6Ako5I8yMrDMSu3vv5pyDXXkVAMcuLZfIzRP63XThGieWSddomjZnbC3rJVIng4XYaj/Fh6tFuludH4JYoBF3QLT0Q8jxpEAbBdg0H+uDUtmCTMi0zEC34J16cKsmrLK2pFqBH6pe46r95RaCt56SQMEr/MX0aco1bipuH42wFmLO37ehMU7O0UnZuBLPaGcshX0TXSOMJqGMeCB6L7D/M+CWsAnFT6/nCUHnkw3p1ZH33K4J7Mln05k3P7UHVrfi7HdUI3L1K8akpbUiiANA5w1R3A3D9gK9uKacEZcXYmDUF6iUzhVYPNQ+CM7lOqbeqlsEdXRM36fawuxqod3Nf2ZHSmDKkLMJAOL05XCV5vuv0AUF6Di2KTofH4f2p6aYt9+s+77Zx4NtMszev9/suG6JzkIrSrFMM2ZNEWvCTw9gTONlp08T9MF7MmkS64SUdWfVQkS++Ch8OAUeXQURRGwg8fQERVHQigwqwQ0NN/rx+oavUqZT4VYQsypSqLLgpspA1Yf8QkZiWRPFUgUH7R2D/IuGuhbalBSEb9yAyvu5K+bsffvw5K5B3RgX+abwiVifRaUQvphlPql/JLeFz2UFU5hwyvz5CFJmYeA1YT8NpsAI9/s4Gb0fZbJpjrTOXsmzY+HZNTGE1OPtYxm1f7/Pm/D2A4a07ZbpvR9kPOC8ZyfDY/Ph4Q959UqOJhxF622tsek2U9U0S5UFpc4gIATZIYjYAw0gOaQlb7s150lrjr5i4bUmPDVK+KiZ77thRX9bXTTz9cWK/OtRlu8pyK1oROxld1QSxv92FTRNo/vKUxi61nZNmJF1RhpyaqxoAPzxHnCRX0sK3ganQhmAc48S8X0KI1SfeXIGSLwMLKkC7JtkONf13/nncAK0VodALwVuzradqCvXK4wv5VTuADQeDrT7FHhnLQLzQqHQGSapbve4IbvDr8xH35viob6WjPs6CH2mNMKYZe0wemlb8/ZGFgs3s4C8wHqdmfS7VoQs1q0tN2ZxvkoLC8qywEBIPD0h8fWFzKKuztWGxvxSrPEy/8IFbOthCPEPyuI+QwqLCZ1jmhEQRHTs9vZoXSQS686q5RsDbT8BevFDvks6RBCxhUSCPJUWKdmGm3Rih0nc3UbTDDsE8kFZxjzT7MpitDn3JcIFHEe98xgbc8XHrAJmImOu8jRj88/YuhUShQJulflltDNTjKsJsXBXkRA0ThOL50JDFU2OBMFrHfwKyHiE6hYr3Q3f67B6lQ4eOcwE35ylbmav6tmJhlr+1hKp+dxVt0zPrKB2PhBe4UooCYI8uJFEGSquDZnWiU/uTbY0wZxzc8z9+uS4YSBjVxs1OSK6S915dT3EqFDT+u+VHijsYxOUx5/0TVgTRCx/e0saPOcKZzKjJsVUTNEaAVr+zW0p+NCgeKYZoSqyZZCFStRT6K3oDQ7eTsH1RJN5iPnMEpGPn3F3H/BNOeGdANBhBjD1LrQqCRKOB0L7yA35ltVhzxongqubDefa9YH4+QTgVLJ1xDRj9BHxcZfDX2ddcLvY7AvuODPE+ExQFPDaLKD+u5jlY18mZLsIrY+w6gFw85TD3VuBejd/Qv2bqxFg4USuS7ffxCmG2R+Dgtk0k00zE3dUUFXza1mwQesh8eZP7KYK5paLj4o+FdHiXkUs3MLVCPHNG+yQdWPBTqWwlpKdNE0UicS6jwhFQVV5ODQVRRagJZhXVhAJ/sR6NlUzUikmb48yv70fUBF9ezBOnjqp4ebTygx29lGTpBijZB4uNyu5BSgY4ufLPzmBqg+ZyfFsLQo/9LIYiPUWaUdYWSjDN2+CI9gKwwUAhUV9EVur5Bfi6U1gRX0o7jGOmR5K5vqBiYydd05rJuSOPZmytRF6Wo8/7nKFmuBcw6RcpXEwVkWtEu2KpZpyRJ0R3AYWK5dgixC9Hfd24HHOY3M/LDn39BwAQKlTIstGzR0TNZv7oXoL/uRIA7hdawSu1xcuLlYnuY3oOa2FiLprrM9+zVLucN7Ljc9AtRPH4VatqtAhAIDV2TSQcI63XejesjTN0CruAL710iqc14/DMbdP4VaL6+i0fyLXX+XtVQYncIks07yNooHKfnwhvt7Rb0X7j0ZDgU4zAQDP7oQiL9kdT84Gor6SufciPUOA6D3i5xDAUnHlayPNOe94SgoaFHSZmeZto7z9OW16B/AzZ+Z6GbPD1usPRPLvFbEKrkVBcNoNBKXxI5s0T54YwnYdIcjC5OLJLCZkqkwAQA4Y0/qVcsZcIawFmangnSlggA3HPAJAr6XRKG0qrjSeyo2usaplNIy5mhxGW1sldrf5NTursBgURRk0bAAgYE7RpKQgtnt3PGgv7MNTknG6ILJq1SpERkbC3d0dLVq0wMWLttWjxYFvj+52taMkEhyKZh6MMD93+IKxV2pZS5YcTwq5nhSq6rLRRzkB7U5Ps3n+gKwHqHH/D86aLteTwqm63J/m7o5QJJ5iHKjYSdm8mnOd0toNYNSQuZ4CKk471NydArmq/sIIIvII4eRGvO4Yx10p6zl+5xxrMGb1N9gzGO9UM2Ta5GhELMwiP91gcjSUy4mEBIaBwLeMh03H0jODzmB+m/mY3Wo26gdb1G+xWB0JFY8yDUhC2WM33Npgfh1qp3Ofr783WrzFnzSfhLVDSjm+A54JCS0ucFqL8omu6GCCM+O9IfHyQoSV5HkBOcnQqvg3kqVpplxBBk8joreI4gh8EocHe0OgKZDALYu7qq4d5ou/PmqNNpKbmCjdCQpaADp4hDHCaZhnCPa8vYeTJM9br0eAnY6JOk/m94jQavFBhmHBEZ+fDJWDVqSnl/zNr497eCBewUxKtk6lpyQ43+JrHOv4P9xbuxe7vruKpPuZkD5lvq/a0RtRwe0megdwy8vfqf6+4UXfXwA51wdOmadB9Bk7nEgB7Ki3hLetwQ1xYd8aqUuWgj7JnI+mecFAZvQaymDNfc1CyGIXzTRqRAa0rYOl7zZA43B/7KrSHmljJ6OKhVkbAGre/Y1THZ0W+AWiDjEV19UszYTcIseIPJCVUNGoEVEpWc7uApmfbWIa5wS0qcrbjpvPSwpOFUS2b9+OKVOm4Ouvv8bVq1fRoEEDdOvWDampwjHqxYkswM6QXJagMbFzVSRlKVGOYtT1X2uH8c8NGv5eqVbr0DgKrafAHpaCPhRX9/qXZcIj9ULqf+PE/iSXH35oPsc1bsGqxg8cN81oHolHELGJUPPNHb3PM9+7pcrT5Bi68tpKrLhqcK6zllOkzy1G++XpZ9vJzVfhi95Ve6Nv9b78nRaj4uh6o3lNTL4ZbB8NU8XhftWZnA1ls+1b+fn4eMC3jAdGftsWPqyorLQy9aweF1gQimePhXNkWKtcnBTo2EyqYaXelvr6otadGMF2UgB6NXfIWZWcKmiKdFdw23k24TtmA8DDfWWR+5Tx6znX/Gus+vAoyp4+gs98vkPFwH/hXetL+NT6AjJ3JgfQpIYTAXBX/QqaRso1Xzw6WoajfVTnSJGd4A66NWtl7Mc1e9VWM4LwHz4OJBUCkP2IeV4nhNiXDtyEyi0ASmPo5bVGnyDpfiZ2fXeV0ybdWPq9gtstyChGQFG5C1/rr28vY92nwgnzDlbnRxCleSXxtgWmx8A71/B9D5olEpIrgvops1B4cjYAd/8MgyZPwnOpu/tXKB7+U5YnRJmgKEBqrI5bLrgc+jWpAB93OXQSKZI79oAsPMJcPFFe3qAdogB0mslo1CxTv9MALuxlxsZzLech3Zgl1s0tCDfqjEViWDvQACSs4oOmKJy4OMbEyL7tt19KwNMs67W4aI0GtEkQEVjk0CJmn5cBpwoiy5Ytw9ixYzFy5EjUrl0ba9asgaenJ9avX+/My9oF5cmvFSHYriDdXM3y9ToGJ7XN8sXm/efATwomp2mecbfWwCQEDxVIkW7BbfuUCLxQL9PnoTw8UL46I2SpFP78Y411YOacNZg5/mxreCT+bcI8GpIn3Emyjn0yBQff7vZpnUyaENF8EDSgjImBPt8gbJjKyQPA2ptrcSThCL4685XwsRbUblO4EENzVyw0Ir2r9EaLUO5Aq9VreRqatTcM9UNMq6bu0kBg3xTYg7u74f7z9FWg7m2mDklamTq8tuWfnOC8/+Mb4ZwZlr4vbFICKSx7W4Krle0TSDYcnmxXO+RT0ORxB9BaarWgH4S/B1dg9GrfHu71+IIXrZOYnaoK3MugwFhhdO+pQLwXFoK5QUx+BPZ15JQxBwzNCIvpUinS73ojP9UNOU/9gI4zAZ8wPPynHJ6cDUTuTUaQscyX8ZClWj/s5YFUlvlzrZ8d9v8PToHuy53kw9JonkMkAAw4wdyDOqltwdqDlbeob8gI82u5iq8Z1Gn0SI4VNhmubf4Z4srcwInKjPNtlttz0NAjzJ+ZROve+hkUaDS9shhjx2sQGOZgyXmWj0zOY4OQkRnrJRjKrMmVQfvsOXdjCBPhJzWaZuBu+A283Q33X45Sg3Wn49Bw7iEcuPUUFX5YCbcaNVBhzWrskzDmmYSK3LpEKWX5ju5RDSYgx6s8LkWMwvPghrhXfSCehrZGgjejVb7WYCI0Mg9cviKs3pn+1020WmijbANNI3lvPPJSFIDA765XCtSbeklwmiCiVqtx5coVdOnCpMuVSCTo0qULzp3j24kBQKVSITs7m/PnLOyPm6bxLMfwA7vLJZha4zl8FfnwLKeCZ7AKae78h0z23l4gmD9JBA0biOrvWFd3Znsy/VreW/znoSwcTiO3/Aqv1q0QsXkzpHIJfCKNzlECGhGJl6HPplX6jrYSTB0txcYu4tfL8nI8aqHcV1/a1S6rhaHOR5hIREqj384irs87eNizp+D+yccm87a5a7wRmBfGSWMMAE81wlogSxMM0h4CSgH/HguNCEVRqGFRnyKvIAP/xTOOxe4qGvKHD7H60nf4/qLBB0GWmWAeWJOE06QwsCY1mVjCLCP2qnuVxtoiYhluz9eSYFF/CVb1sD1E3EwWr9jKhj7px9sWoNMLCiKWPiIURSHCii9UYlg7nGs51+r12deRUVIgL82waBAg9aYP0HEG8Cmj3Sm4FsU0YB9XtjY65DO/y1V3d7wWXh6JMik0AFYE+lvtFwAgtD7iKjJaH598Gt//rMOX2/mayL5nmWtrpcLaADblkxjtRqfIcghLOm28RiIwYAunbex1frJFypiESys1CNcx5c6hxjQaPRZUQeQHOpwbfA6VgxkNm0+uwXQhofVQ1O3GO59Nch3zEVElcNvTboxGSmLUiMDNIIh4yg33+28XEvDNfsNv++GWq3CvXRuV9+yGT8eOeJL7BLSxipJlGY4cH+EMpA+rvI18BSP03qkxBO561vhBSZAaalszJLdI5GdJ5tV0JBwL4plmaLUaTz//nHn/AkU5XYHTBJHnz59Dp9OhXDmuk125cuWQnJwseMzChQvh5+dn/qtYUdzrv7igKBpuMDyAngoZ+stOgKKA8I5pCO+cJhhiUDa4NuhuXKe33IE70WV7DtJsFBdi28vFch0A4ExOAOBeuzbC16+HR726AIDbGbeM5+Or8Lzbch3TaIpCQlkmj4QQP/dUQCdmrBXBXvPXk5tqJDx+F/qx0Yh6LwqX+3FXBmWSDd+xyaHMTU2jyX095FoRDQqAEZe/Qf8b0xGh4zqy7Xkg7EjYJoz1nSReAf7XFFhaHch9ZnBQPb4IOLVMMHrDMtfIpwdGIX83Yzpb+ZMOXb4+in+PbIDa+B3LwCzw9BRwuar4d892Lvapz0/XzGlrZwYsk49IGQ8rGRUpCpn2LGZVdi4YUvlCsVQPRKTaGRpixcn6XvWBvG3sPBe1UlqjQhazOEiPuQosqYzmAhlEAUCTI3Svs/rJFkRe+xrVBe6LNyuWR7odjuHma7JKBYRYKCvEgmBMZhcxOp6YwKvqajKZpAfUh74GV7j/by3Xz6B8dX98/GMnvPkBVxvVpfJriAyMwODag+Ct8EZ5v3x45yQgOPWqaOp0u0kRqYYupjC1zPVj+m0oGlKlUfNnzLFxKMYgtNxP5X4nb644hee5KsSkxWDn/Z3m0g9qi4KWGgGfMEA4ck3ymOuC4FaBcaJ9IpIx0rKAoygWzqoZ27nO+RApqFhSKVFRMzNnzkRWVpb57/Hjx7YPKix6Hco2FI9oMUMB42S7AQBh/h4I9jaoxCjK+Cfl+yb4Knx5lTWPqWrhQZoKLTK5adX9Bw5A2RlMUiO2vfyqlclJ6mV9htBJDNfXs2yJz5YuR+LAhfAeaZgkbRWNY/PET4u397xdZKXO2bj9uRV5Z87g6dezIZVI4eZl3U7+8T96TN+hx/zNtgWjwAfc7KUF2gI09jMIJ34sFfCYemMMWpDZfsDazoYQJa0SWFoVmBsAHF8IHJkD+g6/2JnMQth7LpNiHqsiqb/RVahRLPN9++n0TAVbCmj6wMpvwcqSWGbEcNFmZVMvI9fO3ESm314hsa7aTyjLvwclFmbNFxlEMmv+iPa37LsPKYkEBe6BgsK1EH1vfop+1z/Dh+dWoEPsAHSK+wDpxqJsta4uRUG6HHOeCE+aOkFNEeu7YAsiRgGiXT5fW6UcXMgcIhZfu2WSQxPxkdbNnxLW89pC+T8AhuJuJtQFzDiVcJufjr/R6/bVIKEooPmVxagXLZyF1hG0uYaFn07Nyh+kF5VD+M73QtoAo2mmfTXhsSXmaTb+ufEU/ff15+1TKfyglbojzzOEk6+n0/Hx4h8CfG20Jpaxb5fXSbG3kiEbdUwko41VC/jLCWLhF6NJ5M6VYpWdSypOE0SCgoIglUqRksJVm6WkpCDEssqgETc3N/j6+nL+nELyLeDg55C5c29YWahAvyhggPQ4qpU1eEdT7Kqbk27AqxLjHa5M7omCJwMR/TSHWxkSTGlyGhLcLMOo+0Jnz0ZB7/7YUbUD1FIJ/mxr+EmaFCiR4yksiPh0bmf28xBDbxREblYxfCY9JcHNfQrcS/bFzhXiBcGONBC+ZoECiM+O5xTksgeFj/0PhNYeJ+bUO2h1xzAkVRLR4HqoGdWsxz3GJ+RQtQ3Q03pczTJ4xbOnGoVUAfwgnOiMjT4uyvxaFRsHmqYFo2OEULOaVX8Ag4oVtovOseusWMtgWuPe7zhfwz4TmkmgtNX3LF8pUhpyNZMmXx0TKVIpsKE7MzmrhB1hhURYzdMUVHxmnyCS/CgX51rOw+XGU+1qDwBB+dzQ3qiGk0CDAp2sQPx/wcj6Owi/PzFoaCWsH6KAcrNaNJBmC+QVmgMyD6RZJmEDEC2xX4vIFvJrJ3CvrXW8hAsCMphsv99p+iEFJuGYuc79SylY9eFRXPw7Fse2cMOyI+sHoWJtW3ZDEw4kPLFB8iWDCU/PUgOlxfhA336O8AFlGK1n3vkLyPzjTwAW8onRNDPxNfHwcnb7DHdmcDnTegFOtvsOF5ozfmhlU6/a1D6qLLQpMbW4i4jVDd7BW70WYUpDJuDhXkXrGi4zFoJI+qbNnPfs+jgvA04TRBQKBZo0aYIjR5hEXnq9HkeOHEGrVq2sHFkMPD4PXFgDnwrcFUzExo0IrpfN2a5TSlCOykR1SSJQkMH4DfRYBgRwVwuajLbQZjdEzx9O81aNbGa3HImvWo1Gz7cW43muCm0XH8O6ur0wcEQHPC3DqO4BYNgUgREoX9zR0PxZ0g0mGoWsM+5WG4jTrRkH26zUAtAig6xSRL4xDYT2ljoHAOi0oKT2D1C0VgtNig378I+27ay1U4TzZzwMisJvd34zv5eyV7X/fQV7BtP0e0y4Xmz37ni+ejWScvlRA0KwBZEqh5j7g6YYh2EhKHZEEA00vbJYsJ1cW4AnZRwTRNjhq5Fqrlq4c8XOOD3wNGo3s27nv+OmAB6dAaJ+A278CaxoiOD6fHON0GCTc/oMgoTklly+r8L9i4Z7I9eHKxipFHzfE2tcaPYFchINA7lOJUVNlR4zb72FXleZ1fCJ8g2RVcD9PtJ++YV5w753fMoBn95BtBs3Ky8ATDspHsJPA8j0qwKt1A3/3nyK1Fwmym7Ica7YpqcALesLfBrSElcaCTs7j/2+PVpJt6Pubaa/63VvgpKavmjmRCd/Nwjll/6JR24G4+z40aqO6PFxfUhYQrA5/b2TUefKoKIAqjM3LDcvRiTKj2WmSBgxQriNu+EeqRIsnnSPHTJ+oOYvou0AoPp9g6arzm1xDVBcpV5WzwEAGouaMPMqdkXUWyNtHge59WALezUiWfv+QcIHHyDdSth9ceBU08yUKVPwyy+/YNOmTYiJicFHH32EvLw8jBxpxxftTDwMvgu8xaBEgqA6uQiux4yMeuPTX5e+b9CkmKjd2+olLniLh7/kyz1wuVwt6CRSNJ1/2LxdmcPkA5EZBzqlG4Xt7bg/U97lG1avbTieUQs+Kd8OWosbV5mv4aUvB4B75YUnMpPvimU0iFXO/wjPYMPgRkltT5Dq2Fg86NAR6VvEHworebjMNEu0L7OgF1sYM2XDFKP/r7zEUwDwfOUPUOvEvdXZidkqPBdP6W8ZMhtczzCRS+R6UAWMcKYvyIevQGFFjUSFye9LkW1ngIIpBwtbEBmfkYlP0xght1/1fvBR+ECbYVvwBQDs+RjYOQbIf46g2rmQedoeDNUx0YLbaWUWts29gH3z94Je0RjIS0NmirCmJboWP4TeGvleoVBKDFqzfPcgrEn5Exk5ryFUzRRuVEnl+HjrVSw/dE/wHHknLcJbPfwd6gMAxEV2x9VGUxBb6S18cvgLjNp8WrwxxXVHi6n5HrL8GLNjw6iVaHxtGWpmz4dieWVUztkDOcux+cC0buiTOw/vntIh28d6aF7NliGQCGh3xBybAYg+mCanSWsJ9CzRUhT6lg8FbeGQT4st8m2dW6oA5AZhhaIoRM0SFqg0Oj3qBRl8YbI8hCukmzDVBSv77KrVdo6ilLlhpqQO9HWsFyMUC1k2Y6cgoo6PR96Jk1DdFym/UUw4VRAZMGAAli5dilmzZqFhw4aIiorCgQMHeA6sxQ7L4ajSAtYgptMBE69ByA3io6zlwCljqu4aPQCvIF6bMzM6m1+P3MSPJOhQ3UaOAD2zomJ780dZhFFGdrUIVysEGqWOkxa9h9Eee66msMCQb1x0mKIt7OLQVyhbPwdlG2Sh8v5/8VMf2x7+gKE2jRh6gRTh9pCm4A/yGQoRh4qv0oAvU4HZWYa/rzOB2m8h3+s1weZ6kaJoABDGckF446rIYE0BQRYKhKA6uYh8/Rmq9koxFGAzoogwaOHq3F6HoGdRUGl24W7wRfzRYDGSytjrqgrojep5iqLQyrMCAnU6tCtQYnjFrmhSrgmq+ldFuwqGfApZO8Q/nzXKt8os1HEAcGrvc6Qn5eFRojeUac+AJZXx+A7zJT0LYkI0MwIYB96ad7agUtw+m+c/V+EjAIYJXQgJrce52DSsOGJ7gH7y2TSo7t+36W9jSXxkDwBAYoWOcPe7CJmPYaFTXqTUvLXBOjDzLvyzHiJGl4yBZdyRYLHSLuMjxdiDerx7mkZlG9+PMk/YYbKSXyXB7YC4oJGxZSvSN/+K++3bQxUbK9jGEj0FPJLLAQvBR0zeEDVDmIYKN66JxN9TgahZXbFiYENM6MyYalRaPXzdbLsDtLjIRGdRACLjmYzQoUn8zKyFYWT5njgbaTAV53j44H/1+3D2P8o0fGbl3bt4+AZ/4WW3acYYgEBZOvwWM053Vh0/fjwePXoElUqFCxcuoEULx5LbOIVyRu95v3C49WZUp78/2Yd6f/fG9Rb8JFUAgNjjhv9D6gruDvC0nqZ3/YhmiF/UA/GLemBub3547y/vMSYrCkALo0d/Miv4xM1PAzc/29Ju6jtnre4316MxMiY1CTfiEvBWoLAkThsNqCorq3+mMQ1sNHjjS+Q0ygzpC0VEBO4HOqBNETu1WEVAABQtQUg2PwMpADSI1aJeHFfCbBnZhd+w2usG59D/t3fe4VFUXx//bsumV1IgnSQkdEjovQoCUlVEELBQFH1RUX9g74BSVBQQAbGAoggoCogoIEiVDtJ7KCGQSvru3vePye7M7MxsCUk25XyeJ092Z+7M3r07c+fcU7UCNXvpdzdp5E0Aehsrsjb1pNd7uHe46L3GBATmSs/hEVgCjRvjKrma25bWcwlNP4Bmx7/Aztgt2BK/HLnupY6GDhYn+fo4Z1M2mAxYGNYbmy9fhWejIVA98CWW9V2GNYPWOHQeM+d1Ul8Tz1mnEbFggVPnMXN0L399MqZCvlE89sLqqB6CukL1buyCQWtf4M33TcCphAeR4ys2r5pKH35mJ0+VA87ZOevW4eLIUVg7eK3dtmZyvcTXgNoEqHWc1MpK/CXtbf2qZ/15vzUVA47r9VjqJx4vg4G/97zzbacQuHhU6rQKAGMaj8HQhKH4vPfnsvvlyFy5Emnvvw9j+i3ceOcd+wcAFgHCOqtp5mnHTKDW5zE7qgrx93TDoBbhmHJPIoYlc4LfvosZItNzWIp0oRJ74Td45YvNx/Uv/oq2e99B17+fQ8PTK+Cb7ZjAZYubnoF4p8UIBO45gBcefA/n/MXC6TPLOa34tRdeRPHFi5LjlYpzStqZywloa7ggUiXxjwT+7xDw5A6oNBpELlkMvznv48Oz3A32RLE0MkKEIKojIYBzHrw39l54uokn472h3ErtsjeXZEkjsLcObC5OrHX+/X7oGMdrigbcycOCGzcxN2oQ8gT3Q1G2Y4XSjJ62NRc3L4nV3OrS2/69A3zaY58eXeE/fDjeHsFfJofTDyufNP0UkHGB86W5uB3FAP72cEd+yqMwmoy4HKLC/P5q/P1oS/gNHuzQ97DGVGwliAiEgJTUPhh8fDLkyPGNRpzV/Du1zVQ82OBB/HhVsKPxUOXPvp0qu/2pLOXoqwcaisNKJydPxob7fhFti7kJ0W98LEoF0ZrUJF6havT8JHPKKh27o5FQ269ypoUL2RegzjgPHQCEyDvKOVLL6C1BlJAFjwAcS5T6TdjjULz43jiQNxRfpi+TtNvd9k3cDkiyJDFrcYgzr8Vc2iBpK8fV8K5gavH9ZE5YpSkVQHQOhqybcnLgWyD+LYJyGEIyFXyxrMKmQ3Oj0fZmCjRGHS7fFgv7eR4hMHhG4kpEd5yJGwKDRvyAzPDgIybMcqh1Ub+bv6516HvYwkvnhbc6vIUO9TpIdypcdgZhqgYHa+iklg5NgVXUSYZCkUi1u7xm0/JruNv2Idp+hjPD/H48zZKiYGqbqbhvFG8qj72wDs2PfIbYS/LPBq/8G9CUaphbHPkMKkU7knOk5RYhs8iEQqsEZlm5xcguKIGpQCGvkI3inHLtarxGpMoSGGu5QL07dsTNVgK1o0pls3gXIvkL9Ewmp7ptG8atfIWajtnJI5A58gkYPvwEx98SO/z5e7ph59Qe+HNKV1yc0R9qtUqk2q1fYoAOQK+gZvK1YezYRRkYvm/xnmjbLc9UXPc5BwAwGpQnhfr33kRQw1zUjd2Lum+9iWMx/GXyzm6ZVY3RAGSnAp+1AT5pAWRcQJEKSImNwqSwEDx3fIElBfvWZmqkd22EejOmw2/kKJvfQY4rf4sncI3ga7RKFWeuFaajDkk/iIe3ib9zHY86eK39a0h6SGB6aDZc8bNZnHyoZLjBiMMXLmNRD2l9DY2Viry+X33c/OhjSbt8Pf8bZ3oD0+r3ByJLQwWvC3yC7qTb1AqViYPfcP895PO+eLVpg4RdO5F09IiiAHlA4WGQXaQspCmxvr3Yh+Fw/kDFtoebP2N57VHIPVB0hgJ02c47ckZe+ROt/50OlQOO1unBLQBwgkhUzg08elxcj+R8unLU2LXu/PWnYgwLPjPi04VG+OZJ71XrRGQDTk1B67T2GLd3FtwN/D4GYE/bN3C08VScib8fVyJ74e/Os0XHZnvwGqGGV0p9f4S+tJEFyL8tjkire53XmManhKDj/fx85+7t2GJHhMJ8ZMoTlLkQzGMqnfTBd640aPFgHNcuL0JcR0mtV+gXYygxlmDq9qnWO7h/dswtN3N5wa+k9MEc5hkGNw8tEi+tRUTqVsRc2oigDHl/Jmu0xkJ03/Z/6K95DYnuWxw6RomrmQXILTSgUCsWRJreuIDX1h5DSar84shYLG9es8aiEZHxCapMaq8gYoW1yYEJpPfbVk5T1nUmAGB/2n4AwOj2MRbzy5G5D6LDa1PQv3tzeOmlqut6/h4iL26NWoOO4R3RyL8BYs0JkmRS+f7o44WtZ39V1E4UG4vxy7lfkOVxE0tac6anLPebWNVsFm55cReudWiicOLS+xkQ0jwXmrxzvDlKiav7gXeCgLm8AMYW90CPSF71vPP6buSV8BOSW+l3qvPISNvnlvtuueJx9CwC5i0wYOE86UPmQtARBI3ORuLp7xCRuk2y34wxqAXS67yP4kePiCpySvBVTg+vfmAZ2kd2wYutXhRvt1pptK3bFhkyJQ42JfOTtJsB2KPJ5qK7AOCAQCNxYRuYTHYrHycrtsoiyEhpjTYgACqdDmpP8QPUYGcG0ag1lgeMozS6WYZsnADCBvA+WlpjERqdWIaoy5sQf241fO6kotUBaXE2a26V+p5E6oyYd241Bp8X+xb1mL0NRqWwXqMR4d7h8HHzwcBoPlHYtB+kq+MTNhxsW6bzYeTCnB9yuBXnIMODN92FZXH/ffP5PmoD/CyZQs0knVqOuqe+xKe+Bej5WCO06BWF4a+2RsMOdTF2pnLV5vJCGyTVoJ0s1e4N28nww3QDLv4hTj4ol0wQAIqKSjDv4Dz8dt6qiJ0N04yQQC9+jr2Vxy2YzGHtzXrHosHZH+0WH5SjTskZ9PSz4wRfytR7k/D9+HaS7U8u55xhb1t9h8CCHPxyWNlUdTtHufaWiNriI1JdsBZETALV1uf+Vqo9T+4mEmYazS52fuUnx4KeC/B9r0V8jovSqIafOnC3wuoOKrxdJwjP7HwZo9bLaxT23uArHJdoi7Cw/WR83/I9QMVgKi11ax2+q3ijfT0InwdIbxALX/SQbDIAyLHKKClcGQ+oz03S2roylYGd5P4dJoRmAQU+MupiAPpgIPzaDqhLa4p0OyJ9YF9/403c+vRTnOtjvxaQIo05Z7JAD36C9dJ5SSrL6tTyq7piHd/QoxjQW6U4x63SCKefHpcNiU4ose9/o9VrsHXFKZz5VyFE2lPqgG1N4GjxA1SUQO0egQbOn/O9UKvUiJNPpKyIb1GIcweUEjJFHM4alrYP8ed/tlzbPndS0fSYY/4NbaP94XZJauuPz0rF9vvlHVwBYO2gtdjy4Ba83ZF3aHT2+6fcamF5nenfQLkhgI47pyHPQ3w9/DDdgAd2CLepse+mOLpDBcAt/xoK1MC1LM6MWyfCBz1GNxSF7JphJSUoPHVKOfrFgaiY4iuCaC+Z9lFWaYQCPlkpeu/5xx7Z855MzcCKE9JIO4sCxo5pxsOinTHgagEXJWUWRILGPWHzWDm8OrSG1sMIz+Di0j5I5xxdvFjon9g1Du3qB+Hc+/Ja1xIrs1RELjdYTCX/CM/PV54PhI6sFl8S8hGpGliHpa4szevwVzMVvvPzkTWBCgtmPd3CdpY9R1GpVFAJ1XBXuJvvp45qTBujkYTyymEr+6l5ZWQtiOTZSO/e4YA4ffDVO1fx1bR/8NnEv3CtWOpXYJQxJV3IuWB53SiIS4es1uuh8bM9Sdij43/c9ziVKNWuNApqhHtjxR7lT/0mHZvcjRstrwsO2/CBcQB3gf3e180XBSaxr46tBGLmnp2pB2i1JVyuGjOfpgAXOY/8iE4ZyPICPhzKXQt1DQb0uWN/BWQoMuL431clabwtCBLtKeFmVQvDKJi/clqNBp49BrSdCEzkfFCU8s4EKuR7yLDz4FWiT+Qxh0oKBN86AjcZc1H98+LVtzErS/b4eVs/Quh/+xXPr9foodfoYShRNgNl+tkw+5ZSouUi+441GWeznQqAUc0vVOTIYyYcy5D+5mZn0C4fbkFBsREmE8M7qw7gSLdeuPqiOP/Jtf9NxYVBg5H59deS85jPZg9ziQYhaq0JvlEFePExDZpeKltStJ/W/oNv3svHFx9bjbnZYUZve46JK01W6R7OZ8E136caHx802LcXSUccnxciZ7+L+PvSoNaZv494zl7tVQS/jvLCtkatwk9PdpDUWvKD2CQYnZsGMKboTF1UJC+I3Jw9B6datUZxadZyRhqRqoVEEIm6iief0uDzftwQ7XGXOt0JJ9loK+/7u8Jq1Ty1zVQYtCqcqyetByMndCitugGAld6czATUF9gRi0fL12CRY+eR/ZbkR2sy3pfsl3PTMof9hniKb8CYVT8iaMIEmSMcw7cA2N5RmuDLL8QDKweshLtW3ndBiczvV9pvZM0bWZaXws97s/2bkvooaoUVDAA8O0GDr3uosaaDGlfvXAWaPiBusIxbLbmFFmP8MxrsS1RjTlo6Nly5hmuWqJUyZris2wIIUA7PFBK5hK8AnObPb994YSPnCH7vTMsq9IVtL2BvA+lDUhchH6J6rLHtBy8AJLa1svUwI+Jefka+sQyNToidb5NOfoNAQRbSW4GNUXLNyQgNc1dKzQclJdK7wFT62x9s+Zzd8+xs/7bDqeyNGhVyPZQFkeKjxbIqT5NgwdDw9Y1YtP08TvyyCW5p15Czbh3ODx2GgmOcAJOznnPSTJs+w6E+2cNUKqhF97yF8A6ZuBRadr+nJ0r9ePysZXEHTTMfDGsGwASdL58nylsnMJn7+EDl5ga1j7zp0qsDH+3o3b07VGo1xLe5eI4+pzMhrq4PPnuYK3K4YXJn0f6U6ACs/z/xtsPu46ET5OWJzk3DkHN/K36nv0/Iq+Fuf/EFWEEBzvW+h9tAPiJVC7mw1Nt+KkvYapbVA8XETHh1B19d1s2BctwOI1TDxXUXrbKtyS2WJnn66QzvfKnXcAKU+QHISk0zJmYVX+HmBXQSTJD1uyt+ZtYfNiIh2kyAUcaHxizoWT+I3SIjEfLcswj/6CPlc9rApNKiRDBpmBkwqblMa/vc2brV6WMKT/NJr8zjDQCJgYlw04rHylSsrDK9EajCr23VFjPNo1sn46nQYIlo8U6dQIveuVVhETQArmgde2jJMvkIMGGbvFO0DB7N+bGdO5i/L6wrWptNl0ejxdtVej38H7QSsgAEPvaoJPGemRDdGTyUNB8T53VDr0cbISJ1q+CEGsw7OA8A4BYfJ3u86HOyTqHJ8cVotX8memydhHo3dsO9kPezONLsKbAi6XzgkWK/BID5uGIrjUh6nebY1nkOLkXKhIzLYNS446gdbUj73a/DEMYJPkY7M7mcf3N0HXH2uxkbTopCZov++w9XnpCaJvKLDWCM4c1fjmPx9lLzlRMJywDeiZXXGgAbk8sujMjhqGnGz4vBt+Erom1mra2QyPlSZ3TPNm1QKEwGplHDSgqBBuJr4e1BjdEqJhD9m9XFxRn90bCuVFCKD/HGvU3EAndUj9uo05if78cfW6f4nTYcljqxmmSuadKIVDHs5cfwtXIG3H1tNzZf5rKiqlVqh+uNOIRaA4Q0Btx8gNiuNkMyC2TKwv9+8XfL6wnNJuCvB/5Cw9IqneZEVke3pIIxczp5FZdRsMfrwOCFwKR9wNBFip/JBGGssfpSu+2L57jkX/0+gHGiVFI3VxZVys7o27cPXhn0quw+W1yIkSbzeXJ+d/iF2M4lEWocLLvd6GgWUWEfBvHnEl4HnjpPRPvFiNqK0oTb4d+0f7Hd0wNFVg/4NT684OVZqhF7IcPJfgsvKRnB0RYab2/Eb9uKU1+9hGxvvm/WETJm0+UfyVx2YN9+/RD97TdIOnwIaqtaSUHjxiHkRbGjr5DGCZkIGv0BNDpuyjJaCf5fHOXGNcrB8Q1JPyjKUKu1StRXnCWTxdWB0urMwD2kC4rED5+jTcaDqXU4FydOTJVyYJbiuW4H8fmKgjMPIzRtr2i/R+FtlPTikrzZq1d0R+Z28IEBD7cVRygZrJy1jVlZaP7WJtG2Rq//jqNXs7Fs50W8+9sJrl22YxWYs35ajdTJz4IVcfOBUBD5rls5P47Mp7YTNTPv4DzRHFuY1h+PLNmLQiutlmfr1iJNXtCTE1Fv1ofQ+vtbtunj42GtforR88ktM1r5Y3T7GIe6/0KfRLjr1Hi8E6epdPM2ok4T+ezC1gQV5uDb3Zcs7w23biFthow2q9RHREU+IlUDuQe6aL9Z5V6Hs2GnCZLa2DKFlJmJO4D/XQQ0OlHEiaRfdvrt7eaNYM9giyDgW8SHv/Y98BlCcqOxtPs8rpS9Wg20GAEENwC8xSaUt9P5JEfu7vwKQK8q7ZtXHZzPOo8CQwGMVjH0g49NRtbHdTH633c4k4MCw4Y4561vUqlxKVrqYJqzdi3OdOiI/AMHFVXsZ09z4dY7zkiz1B5NzcaWhctx7bXXFT31lWhapyn6xPTBqIaj4KH1kKwU8/6RJpobMlS+ZogZ4ePPWiR1K90QOYbzc7H3QDITf4tb3WsZsx0ppIAuNBRb8g6Jtn184GNL2QBDsRE5tzlduUmtwk+d1AifMxuerVrJni9kyvMSjUpXXz4ZmrrNGCCQ92G5Xpd3Ts5w4xwxGWPQldEBWm11zZpksqQWnjwp2WZNytubcM/cv/Hnqj8c+lxfge9U+NXtiu2Sz81HJ8NniL3ArYLVpQsnt9JwN3uFA+VMN8Vnz+GdQU3QKZ53UjbJmA6ta+4AwLGrvOBhNDFkLFsm2n8uSD6N/PVXXkHu7/xCSa3lru5tl1LxbbqTXr12yDxbqvGxY5rZd2Of6L3hThJ2nL2F+VvPSdpGfr4QPr17I3btGoRMngxdSAgi5s+37K8zYYJEI9LDb57ldWi0cmSaNXHB3jj0+j14bQCvnXFQaYmp/y7Hq2uPodhgAjMYcKZTZ2R9J60EzUo1tCpdBTzDnKDWCyJ5JXmYf2g+5uyfY7NdUc9XgCbDgIe+AwDcLuQfzBUiiKjVlvLvtpxP7Qkig+K4mjgfdPkAAOBmFC+Nhh57HiqlFUMb3nfDw/xAZUBuzj2W7SXQA/d9jD3X92DQz4Pw8G8Pi6KJvIr8EJbLPUA8S3xtPilHtHHOz+ZypLhmRMqdNZjwUSdcf/llGDMzkTZ9Os72kKZlNxl8AKhwcNu/+OHl2ZL99326A2EfvYvsH39E1k+rLduLL1yQtLVGq9ZiVtdZ+F+b/8nuLzggjl4471sX9YJtayRKnuYnypU+YjOU6vUM4H+XBLltHFOR9zrLRb/Mzyv7SijCR+rnseHCBhiKjdi6/BR+eP0gQnKVf1O/+4cBALy7dpXd38SXfzDrrbIW65BleX3Z80sAwI6rOxTvlYj589Hw5Al4dZCPrgIgyj1iklFVM6XkUQLUzIQzN++g1UIu306xzht5nvIlLbxzL0MFoOGJrxB96XcknP1Btp3GUACVCvAOL0L05U1oeXAuOv8zFb5tE6Ar/b3z7bhCKSXcZbdvYdmjfL4OrYMJ3DYe54WGZ74TX9Mlag3ea/mwQ+cxP1gDTSY0cFLot0fxnVLtpB2NiPCaMeZHgxVzCSvXHb6GEYt248BlXtuoj4tDxLxP4J7ElxVwi4xEw5MnELTvIN7adA6Xb4sdS93UhRgc8CqYz58IDbYdjm2Nu0y+FUfRmgz4tXM/nGzSVHb/zdlzYLzDaVjUPhVU6d5Bar0gMunPSVhwmF95aRUcxIq8g4H7lwJ1OI/3jw/wSakqRBARkFmorHa3J4h4ltrcA91LQ45VUm9+ldKKuN8HwOvcZ7uVCiIR2YmiJgamR2Hzh7D+AufMdjbrrOjG9hFoYADA3aB8I6rVKvg+xqXX15SqQJUcxADgjlVNDlX+LWQs4FcncnZ+AChM5SJs3Cc8giePrhXtS7WqIXTtJL8qyvhKOcPotkXf4UqGTOSKHdv5wmaDoVd74YMuH2Bm55mYnCzNDGvw5EOCZwZZRYaoNaKCa9af5m6jrFNSUTHaj9tls3+2eKSRNIw196sQfP5/23BqD/eg6n9iouLx9d59Fw327kHEQpk08CoAL51HuwGRSGgVgugm4uuouANvBjpTWqjxqT+fQvOv5X2DLA6FNrQ/WmMR1KW+TI46ilozbd83lte53hHY0XEm9rR5XbbtDe1cXAsA6qbtRdyFX6BmJrTb85akXUj6QSA0EV4zDkHNTAjIPgv3yDCEvzjWUpPKOpOqkFs2FuHn7u0HrUZtEUZ0DlbX/vs0XxRu/VGxJmPogPdw3SvI+hB5yjk3n5DQlqXXiB0fkdOZvI+Xuzf/XS7cysOu87cxdL7tchlmHli4C1/tuoQPNkoTn4Xrj0OjvwRf98rTPKz7ZSoaZl5S3H/7iy9gyuEEEY2v45qaiqDWCyLmRGRmhCG5QnZdU56wdQqph8sLc/ExOY7dOqa4T4jZSVROEFDZmg3UasDNG5rSCc+3UPygvlTUCl2+7IHVZ3jNgXAMQ+6IVbQx7rZDRMNfegFJJ/5Dg81/oOHJE4j8fCE0/v6oO2O6xIfgZkiy5XVo2j74/ncItz/n80QwBcfQFiEtFT//QIhY0FJ//41CSzEhc95Glw/LkEWRMeg0Ktwbey/61e8Hf72/pInBZABGcQ7IHhobjsKAJWGdmTqdGdoOlB9zjxIfwM25FZqQMK8wzO4q1ij5FYkLO+qNnojMlE8dDwAaX1+JSQYAAuLcADdPpAxIwD1PNJHktihOyEam+zXkRp3AbV/bTzP3xo0tacBNhbYFd1Op70met3LyOls0vX0B2tKH+f7kFxTbdfrnf/ipoxHuVkoAz4KbkrZRV/5E8dlzUPnXQ+zPP6PO00+j/tq1gFZvEUSsqzcLqZMLjNsor+kw3bkDZjQiKpC7DtxkUoN3iHNQqCjFoNY6bENw1NRgL3GeHIU+pQsiO6YZISWmIvRvKjXvMcZQUGwUvTdY+Q1eKjVF/npRvrMqMJSUR+JBG4R/LM3abAtjbqlGxJsEkSqFULthuMPnNNggqLBorf69XSBfJKq8aBUqb1cHgCPpRxT3CTE7iab6Scua2wopBQA8/ANyS1eSehlBpvs5sRr2VsEtqE1cexUTn7tFYDLsIXwweSYnI2HXTvgPHoygxx9D5BeL4N2jB+L/+lN0TFpoa+vTyBaDAoC0i1fRIPOy7L56pjxMHypWZS6cvQI5hfbVxoxBqhWxoxHRm0qgE4TOyaVENzADEN8LeDMbXoKEaXLkut/G6iYCM6POhNjm8onK3HT2o0DscU/MPRgcPxgAECdIxCWk/8mJiPRxziG2MNO2icCgLcbKljPh1keq9VoucHoMnzsHMd9/Z3lffOasQ59/pOmTlgJ4znAmbigG5qqRFpwMk4KmNOHsKriV3IFBDfzZQvok9ssW+yZ4CvzR3BMbIPjpSVB7eAA6D4uP0Namtp/oETamqPP3DURsoAfeGtgY4+tKr/OvH2sjeu9TmiU6NvsaOnvffSFLEQqqHWuLrs8998i2M1OsBW6Gl87TdvKICOkc3hnvD5WaMhq8ugENX9+IF348jP2XMhE7bT3iX9mA+Vsdu54Arp5Xm1jb968iAudstZvyb+3eWFpM1RbGHG6+IY1IFeP5FN5OXJzRCcYCLlV5t8huMJqMmP3vbGy6JPYit3bOLG9UKhVGJI2Q3WfdFyXMwsbRulul57enH43piF0e3IoyOlN6oUdliUPdfpy1F+P3zEV0RhPoTOIVvP6y/eydkv4JBBPvzp0ROf8zmPzFK+86txwTyADg0f824O1dS2T3tbp0CCPaiLU4Xb94B+t632/3vDpjCTp/sAVHUrMc7ou7oRjh/rzfTt9YqfOt0OdGMbOlgFg1/yDLM+XhTpa8iSrsjFR4KwvmSKHoTHlbNAA8lPiQ4j45fGVyjwi5fodLjuXrJl3t/tJWhU0tVQid8T58771X5IgnawZS4EQSZ3piAPYlv4h9yS9J2gQLsrleCe+GK5E9Ece8cLyxfAXv7lsnITKV05wZNMDpcOn3bHrsC9RJP4SI1L/QbdtkqJT8fiLaWDQi1vmFnKH4/Hnk79+Pnj9+DL/fVkn2a61yTKyf3BmBBdmYv2UOXv72ZQDAyQDunllbv1NpXo6ykTBQPuuvtY9LxCcfi/LZWPPseA0+CC41Yzqh9ZvZZSb8PKQCZImR68Cq/akYtoA31Xyw8RQGzNuOmKm/SY6xJibQHf6eTqZ52PA/4OtBgMBkVn/+y4rNdaHOZSU2pnPO+mpf8hFxCZuO38D+S1LfiyDWiX/D1DDmc3kJon2iseXKFiw7vgwvblMOM6womgU7f3P3r9/f8tqs6TFoSvB1ymvihg74N/ZPfABhOfURdkea9OqOm3gcw3NKKxKfGgc3g9iLzuOQvDe9s2xdcUr0PvH0dwotpXQ4swt+xcqRSHIkp/OapN9i2su2eWs3V0Pmt/EvYVWHeznTkB3B4ba7n2jiC/cOl7QRJs4TCr3dI+VzvZjT+APAkuNfgBnl+1A3134mVUfQqrQIyY1Grl552T2qkXMFDrd72p7YT2RwYaOhMo6gTK3C4r4aBA4eItmnr+/4d04LbY1snxiktXsEub4xyPWNRo4Pf/0WufkirU4yjK9x5sAzCdLcKNYIxQWmVuFYtAoZfla5dUpy0ez4F2hw9idLaQJZ9N7Q9ONNYz6vPwFNQAB8+/dH4GOP4Zsejk/vl0ePQe6GjbL7MlasEL2PDPTE8j58josFI5ORWVqn6JJvGIYkS69hR9G6m+Ddx7a2w4ycSc9MkQ5oZvYRs6HZsvax83HjvsfFGf1xYbp8unVrhBFEtmgXaz/zr4jsVGDPQq7el1kL/+hGaFrxi6IG/+5D0Dg+34xS9MuKRNv5azQ2fPEqg1opiGw/k47x3+zHsAX/SPY9+c0RFF4fguLMdgh1a4zmEdzFY2TGMlUSLS/6RPfBsIRh+Cgt3X7jUiY24x0FdWc3W17nu+VgRQu+iq5RnEJBlsgWYxFQIO/5qDPqEZAfhvq3W4h0qDn6WwhHOWacFXDtTJbl9UDdz3ip/dhyO3fmd7aFmtMBkbh30IdI++xb0faW6WeQlHERg89vR+OMi7g8c5aoroM1Xyf1wYmgGJFXPiDO6gjwOVgAsVnwtXZWAmUpRsHy0ag2QqWpQI9AAKpcNww99jxSrioXq8u9ZTtPj5kCLWezvlVaSfds5lmJf1Z+Sb4lDNzZ/D3OhinuT3kR/7nztZYuR3BRWDk+Ufinw3Rs/T0b27Yb8Fc3abIra8xl4oUYNSrMmFof4XNtR+0poRdUTHbv1B4Ndu1E+OxZCH3pRaxrWz7Te9rb4orbhSdPIiqQT4Z2b9O6aH+Dy8D6Ur/G0GnUmNLbwVT9U06Jaxx1fxV133wTJk9+AZPlBWxpJr2GTQ2UhcpcDyDanFTORrKuH07JRyoBnKCzdKyyWdxZfPVOmvr+ek+6LSgOand3xK5Zjdg1q6Hx9kbIlOcR/Oxk1PvwA8VT/ZjQHef86mFDdFvZ/SuOSdMYVCa1UhCZsYHLB6DSyUWjqFGS1RaeOQ9g59Re6BTPqbpMzMTlhXAROo0Ob3Z4Ez3zxRJ8mJe0tKlZ+yHM8onvHsKya7zaM8fjFoo1nARiKLCvEokMbgSNSX7S1xs9MeToc7jn9KOIu93Csr3AJxu+Jucc3RwlP5uf1CPnfYxvP3wUP8Z3K5dz33jrbZv73Q1FWD2pIzomScd+yn4+Vj9/+Te4NGaM7Dk8dvyL75K48OPUTPFvqrGaOA0mA05mnESJqUSUEC7YU2yeCtBzD6WOgmvEoC6Gpw+vDvbWSJ0h75YrO+1rl5a/7lh0jppx38+o4gS4Ib8Mwfg/xuN8Fl+Abv4hPjLqdOZpuMnk/FA8v6cngiYqlxRo3NS2M/DN0FbI8wjBhRjHVsstDvM5JFI8jsq20ag08Olru+Ci/wPypkF3jwBMzsjCxMxs1PFzXNvo27+//UYKXBg8RORlWvgfHyUS5MfNkc/0TEDiwQOSYyX4hAF1Bdpe/0hoAwIQ8jif0XVzCxV+HiA16RZ72RAqVSoUm/towwcuqyjL8lpufu+RFIqT7/TFxRn9sXtaT6t9ThZntJGGQRa5JJvmoIOGDeHekHcCrzNxIvzuuw8A0GAvXxww6InHEblkMSLrBeHp7s/jk5byWrtVh8o3h4uz1EpB5MeJnGpdpZbzoOcu3o3PdgHAPxTOZJ2RPCCqAjfypBeQedVs7YSaYhXOag7ltaX9FdLpongyzNfxKkk3E7eCSUznHdtCb8VBmylOI10eXDomNQGE+Lpj3KNlKx/vLL0u/4vkqADZUNCIPPHKwnhL2tfIJYvxxXb+wfrpw+IoHusH64LDC/DAugeQ/E0y0guUNWKrBq7CjJu38GhODg7U+wP/hfyDbPd0BF9fgQ4+y9AqcDbOeThYHtwJmlzvIrt9U4OllteOZgA3CyImqzDzcwIHzq/+48Ooc4tzZdNx2yLk2WeRdEIcYuk78D40PHkCYSn2TTd72r6BbP8Eu+1SDsxCYOZJdP37ObTb8xaaPXs/Ah9/TNJOrVZDpVIh8chhRMyfD882beDZWuy/E/qygl+A3hdPZOdgUlY2YCeiykz4Rx8pFh0sC9deEWREFggoag8HF26pfOZR6Lhj/AYNsmz6sZMauapCGGdOBQAElqadLzAUYPYQ8T14IRT4qie3rcTcFRsmHGFpDi+d/FxlzuUR5ucuSru+ZEwriTDyZDcbJQYcDI22YFAWRGyh8fVFxGefou777yPkhRfg3bEjfpzYHslR/pg7vDk2NBJXTN847Bl8ZjUHVTblmJe8+uDppkWzxgdxwSRf4KxZhB9CfbkHq1ktvO/GPjycJJ+kp4kgFXNl8NmNm1jr440/vDgnrN/O/4ap26fimZbPYHyz8RY/Ak1+BvDPPGDnPNnzmEpXnU6WiQAAuI9OxVfHF2LM/ndF260dV1Ul3E1coi6yOK7m5xTD09f+Kjb1VCa8/fXwDxU7m/36KV8JMzyRV037htcVpLmSEjptarkU7br6OFeTRyNI7ewIQ/u/C5+SfOxq3wGadXw1VGtPeuu6RdtSt0nOVd9P+sAM8QxB/zxO0Ngb/Su/Y8NLaOkFvFknELnXuyP0ToxT/VaiuNCAL56VpvM/U+dfHIvYhgydvOOhEsYSE7QmbpVbrBZPwkqJyu5vcD983XzR5ydeCPXSeWFA/QE2P8vavyD8A06tndAqFFf+y8Dpvbb7brBR/yll/4fQGgvhlc8tEjSmYjRZvQz62FiEvPACYDDiF+MBAJyfS34J95up3dzg06M7fHpwvj/G3FwUnT4Nj+RkZX8IgWnG/BA3E+sXi7cePoc3VvBjF7fpd7hFRTnk9GyLWwt4p9+iEycsr3M2bYLfwIGW914dOyLvn38Q+vprEhMPfwKBj0WpMOAWEYEG+/YiR1MC9mNXFBgKMCJrFjBNizndmqE3uPtiT5Ia5tzDAaNG4aO2l7HzGudMWuxAbLDQ2Xlut7l22y8YlQLGmOX3WDpW6vD9fz0SAGktUGD/l8B9H9n9DAtlFEQAwKenWHvj7+mG1U9xmavZj5/gzrZtMOUXwKtjBzR0oGp1RVMrNSIAFIUQAFj9JJ998VQG7xSpFF3yZoc3y61fjtCloBCPCGo7TN3OrRTmHZwnmrDVCzooCiEAL4jAaP+GLS4QS/MfnfkQBW6O1T0AgL/ieX+KA5uUk+yY2ffbBfw89yCWv7EbhXeUQ2f7jOOjeHR1paYSIb6CCdIaR1eIma074/HHuPo2ag8PxP+52c4RPAU6d9z0DETcy+uRmc99pyc6xUJvVedBb2Nla67y/ExLx6vNAkCWWo2ffLyxK3qtaPvFo2W3De/fIP87pvqdRprHZZRoxD4RhXnKv+P+jRex8JmtUEENo8qIOoH+ov3mWiC/nv9VtD0pMAn1BDk/OtTrgO3Dt+OVtuIiZnIEPMwtLDzb8nZzjVaN3o81RlKHsqWK7771afjlXrQIIQAQOGY09LGck7dKpULotKkIfHC4Zb9S2QONjw88U1JsOmUiMBbo8SrQdyagF/sWNa3TFMej1aKig25RUZZ+hLwwxenvZyZ/927Z7SWp4u8SsWA+YteuQcAIPurP/6HhiPx8IeI2/W59OKDlhXCNjw+8rL4TADy/9XlsurgJM/Zyi4pnx2tw7aEuCH52Mj7o8gGC3DlzcIkDgoj5HP56f7QIaWG3PWDbSRYAPNxsaM7zMxz6DAA2TTN3g0qjgU+PHvAb0B/aKiCEALVYEFFiyZhWonA1obpOmNbdjEalQWJgomR7hRGmHCIJiCMs7BmSfIq5lfidG/ZzZKRdcMwzXImrgvwlJUX2w533ruPTqZ8/rGyO8PDmJy636GjU+/BDRC5ZbKkQ+1mzIXhn5Puov349d9NZVVGOXrEcwc89h+DJ/yd//lZ8rg2Vuzvaf/053LT89aELDy9T5eB1h7kaOCnR0onAlgOmuRKzp0KVWiU6R3NZaPP02VjUlg85/e0zx8OerfEOkBeYLAKuimF/OP+wYSb5Vfjhv65g91reVKVhGlHEFwCYSgvOTds+zWaf1Co1dBqd3YcFAIS+8jKil3+LyM8XSvfFOBbO2LgLHyEy5IVkSaht1NIlCJ0m7XO5+pt1eRFoJ81geyaTqwn1zsMaJPyzA4mHD4n2B44ejbozppdfPwCEzxYX8VO7ucE9KUn0e2iDg+HdtatFKELKWMXzKd0LU7bxQtS1IBXSH+oOjbc3/PR+uC+O85UosZOWQLhoq+PhfFqBMnHHCS2hnEakPIurViFIEBEwtvGj6NlQHBnSJYK3f8slLjv4yMEK75eI0guxSZF8IqH//c3XOFE7qH49vtq+lF4iyCr4b4R8mJ8tirWFFudYfwfqLQhNN/nZ4huyXoI/AKB5T2mSLL/7BsC7Y0fErPweif/9h2c/fRnLXx0MfX1uRdrwuDgTrT4hAXUmjIfawwP6BmJP/8glixH2Gpee27N1ayT+u0/2Aefbtw/qzbRv8nnjPqkvQ5ifVMUvTDltjdnsplSKQI58qz6b1OWT90atEI1zIZAXbq778r4dRoP89bjjhzOSbdYVp21VoBbiTLkFlUYDz5QUS9ZVIQ3aiOeBB19ujQnzpDVxugxPwKSFPfDU/O6oF+8v8eVQqm1TGY7v45uNt7zWBgVBrRcLjio3N/gPHgxo+Wsp+jtxqK4zuDdqBH2cso9E1NIl8H/wQQRZax+Fq/wr4grDdpMtliL03zNfA/Y0IoWCissVnQvKgvD6LM4DjvwAFCiU8JATRO4iE3JVhgSRUg4+chBTWkmroL7clp9YhGGUZhxZeZUrPTjHMB2AIIP05tl8mTcVSDQidRrg/Zvyqvg7mbZjePf9xmsostxtR16cDzwsev9NMvcwPxvEedEbS/vNTEzRVh1Ql9dE7fmF/+z0y7mW0N3QWNurVrVahfgQb5u/kdqL/5yor5bBI4XXgHh37Aj3xAZI+u84or/5Giqt8sPfb9AgRa2KmUc7xuLjh1qItsWFSFXPtjBrvBQdp0dyCanqF3PXapOiIktWXCXOH0rHoc3ymWZtYZLJT3I07G8YBCYZYSZfo0Hq56H0+1s/GCpCELGFm7v4tw4M94JWp0G7wWLfHHWp9lRVmlAscPQjlmJ+ekFhNGsqw/G9Z1RPzO02F+uHrrfZLu63XxH68jQkHjwAz5Zld1oURs/I4dWhA+q+/ZbonuMOFKRF0Jctn0X/WEHOpNKSG8V2puZCQd6Cu/WZcRjh777hJWD1OGCV1IEZgFQQaeFcLp7qRK0VRMyJa8woqQDdte6WvA72CsxVCvG9gMncg15nZ3KW/LjdX8F9deVXaIYS26Flt67wFSWFviHpXlckbYX+IDf77UGenptojOoSy2cxxrBq5r/44f19MAnqLxiNJhQXGmBU6M/qWXxtIC8/x6IErEnYtRPuzZohesVyUcE/bUAAYpZ/i4hP5yFmJR+Gq1gU0Io6Tz6puE/didOs3dNI7MfibBEsiyOyUpKmBC4keEgu93vFFhss9VOU2LDwKP5ZdRY3Lzlnfsuz0lSpJpzCP7E/iRupGAo1XHivSabOxr5fpRWND9fdYjHFmJF7UNzfQBrSWp51nx56nYsA8w7QQ1MqcDRow/9+TbtJqw8DQN133kH0ihWI/la5TlFlzCUqlQq9onvZTa/vFh2NwNGjLVEu9dfbFlzKnTuChU0Zfr/F9ywWmSod1YgIf4NnU551+nNtEt/bfpuDpfPkub/k9xusFodO1MypbtRMg5MDFJQ4PhGYV9RyGhGX4MM50t2wsUIHYClUB4Crt9BoELD+RSBEqopWst8DwJEtYmHjqi+/yt0fvgl9T3PprPN02fBoVgiDuhipfqcQoKmDRglxWF2qbTWYBZFiE4ryDbh5iRNocm4Vwj/UEyajCQsnbZV8fmI7fvI3FPMPKA+fsj10tAEBiP1B2VnZp5ftLIS2iNu4ARnLV8CjSWPooqKQs24d/IYOg0cTzqnWw02D7S91x7e7L2HKPc77FpnTvdtM5BUUD3UJZ4s2qQDjpN3A2vvsnjsvqwiIBrZ9dwr52cXoO6GJTW2StbOqm1b+9zBHwpiFXWZiuHYmC3WifLDvt4uS9rti1qIba4gfT/9o2SanOu8bI829UZ6VsIPqeePJz7pZtB4A4BPojpBoH9y8lItOD8TLHqdSqeCZbFuzkFWYVW79LG/cYmPg2aYN8vfutd9YgD5BfjzsIsxyXAbNhLX5xhz+bi9qRvgM6BnV00bLMvDwD8DbMo6gzuQS0VrN017B8u1qALVWEFGqsitHbjH3wFx5SvnhValoHdMEiNbMHZ/h4ukNRfAwuaFArUaGx3UEFnBCDTMBhXdKsOSF7dDo1Jg4r5vl0O0reRs+g0mUp/pi4BH82nABMjyvIV+XgyeaPQEcBX5tOB+tw1qjTx2+rH2Rlrvxi/JLcO4Avwoyq+xzbsmbh8wfZx09o9ZUPYWeW0wMwl7hzXlyqu7IQE9M66dckdYW5uvWpu18wnaoP+X8XUwATDJtd8SsQqeL9yM4ygfpl7nrOzejCKtm/mtxTN7983mc2nUdTbqGo1U/aWp/IQ+/2Ra/3JZqxwBAy7gHw5ZvTuLBl1vjxK7r2PLNSUlYthATM+HtXXxiuWJjMfJKxInT2taVZol0txFWWxbkrrEHpt19jR4PXcX7iJQVlUqFqK+WcW8MBpzt1RuGtDQEjBwJn549cPkx+To6Xp2Uq4TbxCj0d7t7QcSsFbPrI1JqmqnrVbYIKdudUrg/TU74osR1B9L50GgE2r4HqzNVbyYnyg3LjxvVHmhb6lVfJx4br3ARG0JfDpOJ4acPObOHscSE7HROaLC26//WkIswsISYqoBU/5PId8sBVNwDw7L9TirUgkvMbJq5lXpH5F+w/Ycz+GziX1j+hnxIoKl0lZSZJk7G5e5V++Tom/mcAKdomgEAN0+oSlXVJo9AWaE7252LRDILIQCwfeVpUXTUgY2XkJddLPLRkSO5TzQCwrzspltPv5yLzyb+hcN/cgJLVppycrWZ+2aK3puYCe1WtFNozYUzR/pEYkJz5aypVYl7Y+51dRdsolKpuD+dDvF/bkbsz2sR+uor8OrQAUHjxkETGAhdVBQilyyGz7194dm6NYLGj7N/YjmEJgiZSrnjmto+r/W9YNaI2NJfLzu2DCN+40KKKzVjtjNOsdZCSwAJIjWKSnNMqgr0mQ48tpF3Amv6AAJL7e+Hwv+0NGMmJnowFBdyDy/rUNssD+5BWCQX4w6xJ/r1vOsilXrdHM6j/taVO7h+jndQu3pKwWu8lBulbY0l/LnaD42D3rP81PDVDXsPfU1HThNliuko8bcAAN+7tDcL76EDv3MmGkfNIhnXpCnhhWGwcry3R6buhoDxzcZj/dD1lReGeZfoNDqEeDiZItxFqLRauCcmWsx0IVOeR4Od/yB+0+/w7tgREXPnIvqbr8uek8Ig0Ig0lhYq/L9k207gShqRrV6e2CkTEQUAs/fzxQKTQ5Md7end44xpxtoVgDQiNYuNF50PP5WjZYhr0+La4unMLO5F+6fEO1qPAx7mbO8GTTFy3bjQ3UvHxaHJdzI5QcNQLBZE8tycK/wX4cM79HkX8RPVmX324+kT23K+IWaTzfmDfD6R5HsqpphedcGmRgSAutSebFKpZP0r8k3OVR+2RqjR8gvhVpTWGWGdof2QOLTqF4OVzcs3r0VVZmyTsQCAwfGDXdoPlyPUiGjkBezN92/GwDj5hIRKGhEAmFDXvrD3QqsXHOhkOeGMaebSTvF7d6m2qKZQKwWReQf5bKMhniH4rKf9ypnWdI3oivc7yeXxrTwmZioLBQnFCopJjRZowJfZNpeM3/PzeVGzW1dywRjDtbNZlm11nr4FppKX6O+rfx/CvcNFuQsALlGQOQR6T/Q6xf7KYX7AAdwK/Og2+QyUNQ1H/BzshX+aV4kmZpJNj17InIvasI6oEZrs2tzHrdQu5zgfAmxG76FF24H1kenp2uJblclDiQ/h237f4q0Ob7m6K65FQbsqJNQrFO91ek/WN8raodpZh2WlGjMVgjOmmfST/OvojuXflypE7TOyA7iSyzvVLb5nMWL9nFd5fdrz0/LsUplwt6Hm0zpofvIrkldlFxcYMP/JLaJtKhv39/hm4xHjFwOAcyLcc30PekVx0SfJIZzq86aX/dTuZiZ8wiWPMmdYzc+RT+BWE9GqtYCd+cpHZzvfglAQkTOj3fSQdyxVIvN6HkKieXOOUCMSl8ytOuUSsVmHycsx6DnnNYtT20x1+piqhk6jQ/Pg5q7uhuuJbAuc2QR4BNpt6qZ2E+X/AKQaEXsh3Luv875ozeo0s9GyAnC2Ai/A+Ybcv9R+u2pMrdSIxPnx2f/uRp3sUvwiobUha9xtuqRDm6UPKrNAIYdwpfJJ908ws/NMvNORK3JlnihKNPZXPgCg1amhddNAK6jZsOx//zh0bE3AXLDNX++v2MbbzXYiNKEgsvSYdBIzapwLRd+8jPPeNxpNWD1rP9Yv4LOnqtXK0QlJgUno9Wgj6L20aNZdPu9GSLTzSaxGNhzp9DFEFWXQfKDT88C4P+02ldN2WDub2tOILDjEF+x7u+PbNlpWADL+Wor4l5qfh34B+Niuo1XdqZWCyORkPqTUuuR6tWHI5zjtpnzDaRkDer1Zbh/X5aEGiA+Ix3315fNRCAURT50n+tXvZ3lYFpv4SBpHkEvdLmTYSyk291d3prSaghmdZ2DxPYsV29hzVhUKIluubJHsD9ArOxY+taC77PbPJv6FhZO24vrZbFw/y5sFzarxZsHS1aWX1guJbcPw+KzOiGocJHte6yym9hBWTCVqAN7BQK83gEBpRWlr5K57a6Hc3uJSGEVWIaG7tnDGNGPWnlRCFl5XUysFEaFNsNpqRLyCcUWnPIGrAMBGFdcxjcY49XFNunJRDU2D5Yvu2VqFhHk5Js0/PqszOg9PsCuIBNarRJuuC3DXuqN//f4I9ix7AiOhICLHJz0+UTxWpVKhRe8opz9zTGPpNeWr97Wc8/Y1Pjtv6/4xAAA3d+cn2c97f+70MUTNILNIGmFnznxtxp5GJDGATyTobPHIu8YZZ1VzAdMaWuhOSK0URIQVassiiPSL7Vee3SkbhVmYmKmckrtQpQJO/qa4f0qrKfhp4E9oc1+MZdvAyS0U25tXvXIapKdbPI0QT2Xv9ED3QHw/4Hv8MvgXyb6J87ph0LMt8ODLreHurUOz7pHw8OE/o9dYaeIvja52XLZKWg9Prf3J02wOUyrm1bROU5EzsDUdh8Vj0sIe6P2YtFCfEnoZwVdoXgoV+Jg06xGJiZ92wxNzuojaz+k2x+7nNA5q7HCfiJqP9Rxub05Xlapmn2r+lM12d81YmfnXqfBdEkRqNH6CpDmOmGasHeOeS3mu3PvkNF51EGQUP2SSC3knLoNKBTQcoHi4SqVCg4AGaNIlAq36xWDUO+0Q2TDQbj4Ha0ewfrH9MKH5BLvF/xoHNUasX6xEsNDo1IhICkRwlLyfQIO2Um2KpgpmVK0IPDTygoIjYeP2BBGNWoPsm9LIGXdv8e97t7laekfzNTfqNfCHX4gHwhv4Q++phUarthSLMxPlY18TU+mFJokqi1xiOHsaEbOpuDzrEskSKc38ixwumaQodwoAFMosKmuRIFLzv6EMjYIaYWqbqfBx83GoCmbTOmJzhNzKr9IJrA9dVDvAxEeifHYjHe1jOLNGCcDVlrGDh48b2g7kbbMdhsbh+N9cmGzXhxNx7UwWWvTiTSVN6jQRHW/PV8GahDZhyLpZgH/XX0TH++3XprB+6Dw+u4xppKshShPlS21esnus+bo2mozw1nnjTskdO0dwePmLr22dHdNJ8x5iM1qvqF7YfHkznmrxFLpEdBFpL1QqFUa93d6hfhCEPZICk/BB1w8k2+0tLs3ZnyvcP1Au18+a8UDz4YBVuQJJpV2Ar0pcC3xEKkQQuXjxIt555x389ddfuHHjBurVq4dRo0bhlVdegZub630yVCqVU173+QZxKurKKOHtCJqGA4HjfE4Ub0HIbmyJwaaPiBJu7lpMWtjD8r6JlYakvl99NAxsiBMZXBSFzZonMqjVKrQdWF8k/DiDu1ftzaZqJtQz1G4brYq7tY3MiBFJI/DF0S8kbcIb+OPq6SwAQP9JzbDvt4voOVqssdJ72p4irIXJud3n4k7xHbtRPUpUmcKSRJUk1i8WF7K5kP6TGSdl28gJ8IfTD2PfjX04n3Ue6y9w1YUr3D/QVtVu6/QK1lo+xngzjsnxumjVlQoRRE6ePAmTyYTPP/8c8fHxOHbsGMaNG4e8vDzMmjWrIj6yQmkQ0ED03jzJuxqtjMS9JvU6bmg1aFBSopil8G5pE9bGIojYy/BJlD+OjLlZWDaYDIpaqzb31cea2QcQ1TgQMU3rIKapNKdMUD2xQFG/ZbAow621aQWwH1psi0ZBjvukELUPR5LmyZlmRq0fJdkW4F7GlPTlgSTPk9V9JCwEWIULJJYXFfKk6tu3L/r25Ut0169fH6dOncKCBQuqpSAS6C5OtOOsFqAyiS8pQXxJ6aqygiT+47ePW15XhiDSZ1wT/P7FMfSfVMnJh6oojpjDhD4i+SXyxeXqJfhj7IyO8PC1fZ20HxKHXWvOIeXeaLQbFIdda87iwO+Xy5T/wx5qlRp6jV6xltHwxOHl/plE9UHo86R0LVhrRIwKkSqRPraj8yoWOxoRYZ8dSPRW3am0pX12djYCA20PaFFREYqK+AkoJ0c5KsSVVAkfEQAhbnZqDziZ6thRruddt7yuDDNVfEoI4lN62G9YS3BE+DMLK0aTEV/995ViO2ufEDmS+0QjuQ9f26fdoDhEN6mDOpFl13zYoo5HHVy9w6fz/7DLhzicfhj3xNxT+ZkwiSrL7YLbstutfT/khNpGQY1EYbyVjl3TjEAQqSKuABVJpSztz549i3nz5mHCBNsluqdPnw4/Pz/LX2SkKyVWZaqK174uzCqnh49Vcp4KMs0IBTEyzVQ+jlx/9qJm7urz1SrUS/B3OhGZozyU+JDofcOghvhfm/+hZUjLKuOfRbiezZc3y263vkbkSg+sHLDStdeSvTBeoV9ILZhjnRJEpk6dCpVKZfPv5EmxA9HVq1fRt29fPPDAAxg3bpzN80+bNg3Z2dmWvytXnKuHURlUqayOwVYS/bi/KuVjhYLIsVvHKuUzaytvtn8TzYObY0TSCKeOE/qIWBPjG1MeXaswrMuyV2VTKFG5OFK7yHpx9MiGR0TvN98vL8BULlYakVyrYo/CVPAUvitmypQpGDt2rM029evz0RDXrl1D9+7d0aFDByxatMju+fV6PfT6qmH2UKJrRFdXd0FEQkACzmSeQbeIboBvPaDBvcDpDRX6mUJB5HJu2SuuEvYZ1mAYhjUYhkJDIc5knkGv6F4OHSeMmhGy5cEt8LNn0nMx0b7RovekdSPMDIwbiOUnlgMAXmz1omwbW4Lrjod2iPJIuYw0qwXc/HbAm4Jq6iLTTM0XxJ0SRIKDgxEc7Fja6atXr6J79+5ISUnBl19+CXUNGUxmLcm6mM97fY4NFzZgUHxpzpAGfSpcEEkMTMSh9EMAoOgISZQv7lp3fNn3S4fbC/OICKnjIV9tuSph/aAgjQhh5tnkZ6FVaRHoEYhHGj1i/wArqoQQAgAX/pbfbigCzvzBa7triRBeITqfq1evolu3boiOjsasWbOQns6H+4WF1ewqgpVNsGcwRjcezW9IHs3ZH6M7VNhnjms6DitPrQQASUluompg1iIIC3xVV1SOVkskajzuWne80PoFV3fj7pHLugoAexcBm14FAmK597XEJ6pCBJE//vgDZ8+exdmzZxERIS79zSTx09WLqqYRkaDWAK0fr9CP8Hf3t7xOCEio0M8iyoZFI8KMCPMKw428GxjfbLyLe1U2lAr3EYQztApt5eou8Cg9B3d8xP3P5JK2ifKJ1GAqROc5duxYMMZk/6o7NClyPiLdI7lS8Yt62/f9ISofs4+IwWRAtA/nc1Hfr2zZbF2NIw6KBGEPl1Rar9tcYYfCs7AWOKbKUTu/9d1Q/WWpcsFWGXnC9Qh9RMzmGWfrAlUV7iZTK0GYKYtPyV0zZh2Qug/4dph4u9KCtpaYYqwhLzAnqfKmGYKA2EfEHMJbXQURgigrwgR47eu6oOCiux8QLxPppmQdqCXOqdbQzOQkZJohqgPCzKpmQcReeXSCqGl0CO+AvJI8BHoEVq1keIoakdqpGyBBxElIECGqA2aNCAOz1AaqKsUaCaKy0Kl1WDNoTdXSZO/9AvBUKHdSS0PVa+e3vgsqImU2QZQ3Hlppxc4qtSK0w+TkyQCAF1rVgFBNwqWoVKqqlYtm/QvA9SPS7UW5QMb5yu9PFYCWSE5CgghRHdBr9NCoNKLrtTr5iDzR9AkMjh9cLRKwEYTT/PORdNuBryu9G1WFKiQmVg9IECGqAyqVCp46T9G26iSIANUjCyxRtakyKSNCm9hvY5BJDtn1f+XflyoICSJOYp0ymyCqKl46L9F7clYlCBdx70z7bUwy/ofVbPFQVkgQcRJyViWqC15asSDir/d3TUcIwkVUGSdVrbv9NjKVsmuL82rt+JblQLh3OACgZ1RPF/eEIBzDWiMS4B7gop4QRG3HgXpJeenSbbVEI1I7vmU58H3/73H01lF0qFdxxeQIojyx9hFx1ziwKiOIGkSVqYXlSN1G7xDpNhJECCH+7v7oHNHZ1d0gCIex1oioVFTFlqgd/Hjfj/jv9n/oEdnD1V3hcMTEopepqVSNQu7vBhJECKKGYi2IEERtISkwCUmBSa7uBo8jmo07aWU7rgZAPiIEUUPx1Hrab0QQRMXjSA2Zfz6WbqslBR9JECGIGgppRAiiilBWzYa7b/n2o4pCgghB1FCsnVUJgnARZfX1cCTstwZAgghB1FAogRlBVBHKmg+E8ogQBFGdEaZ0Xz90vQt7QhC1nLKaZmpJpBsJIgRRQ9EIHOQifSJd2BOCqOXYMs14Binvy88o/75UQUgQIYgaSnUrckcQNRalezGiDeBbT/m4c39VTH+qGCSIEEQNhQQRgqgiKIXvDpgD3DiqfFxJQcX0p4pBgghB1FB6RvWEl84LXSK6uLorBFG7USs8ao3Fto+zpS2pQdCSiSBqKH56P2wbvg1uajdXd4UgajdK2kl7Go+QRuXflyoIaUQIogaj1+ipxgxBuBol00xEG9sRNU0fqJj+VDFIECEIgiCIikRJ2NC6ASaD8nGa2mG0IEGEIAiCICqSWlJFt6yQIEIQBEEQFUktyZBaVmqH3ocgCIIgXIWzflqedYDEeyumL1UQEkQIgiAIoiox5VSt8Q8ByDRDEARBEFWLWiSEACSIEARBEAThQkgQIQiCIAjCZZAgQhAEQRCEyyBBhCAIgiAqmjoNXN2DKgsJIgRBEARR0bQYabWhNKQ3oY94c1izSulOVYIEEYIgCIKoaNpPAvwi+fea0mKUzCRtV8sgQYQgCIIgKhqNTqwVuedd7r+1INJseOX1qYpAgghBEARBVAZCoaPZg9z/4CRxm1pYLbvCBZGioiK0aNECKpUKhw4dquiPIwiCIIiqibGYf63z4P53n+aavlQhKlwQeemll1CvXr2K/hiCIAiCqNoIBRGzj4jexzV9qUJUqCCyYcMGbNq0CbNmzarIjyEIgiCIqo9QEJEzwUS2q7y+VCEqLKF9Wloaxo0bh7Vr18LT09OhY4qKilBUVGR5n5OTU1HdIwiCIIjKxVAkvz08Bbi6H2j9eOX2p4pQIRoRxhjGjh2LiRMnolWrVg4fN336dPj5+Vn+IiMj7R9EEARBENUBY4n89jG/AuO3AU0fqNz+VBGcEkSmTp0KlUpl8+/kyZOYN28ecnNzMW2ac04406ZNQ3Z2tuXvypUrTh1PEARBEFWWggz57W6eQL0WtTJiBgBUjDHmaOP09HTcvn3bZpv69evjwQcfxLp166ASDKrRaIRGo8HIkSPx1VdfOfR5OTk58PPzQ3Z2Nnx9fR3tJkEQBEFUPd70E7zOdl0/KgFnnt9O+YgEBwcjODjYbrtPPvkE7777ruX9tWvX0KdPH6xcuRJt27Z15iMJgiAIgqjBVIizalRUlOi9t7c3ACAuLg4REREV8ZEEQRAEUbVpOQo4+K2re1HloMyqBEEQBFEZqDSu7kGVpMLCd4XExMTACVcUgiAIgqh5qGjtLweNCkEQBEFUBq2f4P7H9XRtP6oYlaIRIQiCIIhaT1gT4KULgLu/q3tSpSBBhCAIgiAqC89AV/egykGmGYIgCIIgXAYJIgRBEARBuAwSRAiCIAiCcBkkiBAEQRAE4TJIECEIgiAIwmWQIEIQBEEQhMsgQYQgCIIgCJdBgghBEARBEC6DBBGCIAiCIFwGCSIEQRAEQbgMEkQIgiAIgnAZVbrWDGMMAJCTk+PinhAEQRAE4Sjm57b5OW6LKi2I5ObmAgAiIyNd3BOCIAiCIJwlNzcXfn5+NtuomCPiioswmUy4du0afHx8oFKpXN2dcicnJweRkZG4cuUKfH19Xd0dl0PjIYbGQwyNhxgaDzE0HmJcPR6MMeTm5qJevXpQq217gVRpjYharUZERISru1Hh+Pr60o0jgMZDDI2HGBoPMTQeYmg8xLhyPOxpQsyQsypBEARBEC6DBBGCIAiCIFwGCSIuRK/X44033oBer3d1V6oENB5iaDzE0HiIofEQQ+MhpjqNR5V2ViUIgiAIomZDGhGCIAiCIFwGCSIEQRAEQbgMEkQIgiAIgnAZJIgQBEEQBOEySBAhCIIgCMJlkCBSgRQUFLi6C1WKS5cuITU1FQBgNBpd3BvXkp6ejqysLJhMJgCw/K+tFBYWuroLVYozZ85g1qxZOHXqlKu7UiWguVRMTZtLSRCpAEpKSvDkk09i6NChGD16NHbv3u1QBcKazM8//4zY2Fg8/fTTAACNRuPiHrmGkpISTJw4EV26dEG/fv3w2GOPwWg02q3FUFMpLi7Gc889h5EjR2L06NHYvn27q7vkUoxGIyZNmoSmTZvixIkTSE9Pd3WXXArNpVJq4lxaO2e/CuTGjRto27Ytjhw5gvvuuw9HjhzBxIkT8eGHHwKovSvfvXv3om3btrhy5Qp++uknADVDkneGs2fPonXr1jh16hTmz5+Pfv36YdeuXZZro7axdu1axMfH49ChQ+jWrRsOHTqEadOmWa6P2sicOXNw+PBhbNu2DUuWLEGnTp0AOFZKvaZBc6k8NXEuJUGknPnnn39QXFyMH374AU899RS2bduGIUOG4I033sDx48ehVqtr1aRiniyys7PRunVrtGzZEh9//DFKSkqg0Whq1Vhs2LAB3t7eWLduHbp3746XXnoJ0dHRDheGqkmcO3cO3377LR577DFs2bIFzzzzDP7880+4ubnhzJkzru5epcMYQ15eHtasWYOxY8eibdu22LVrFxYtWoQdO3YgLy/P1V2sdGguFVOT51ISRMoJ80WSnp6OzMxMhIeHA+CqD06YMAGdOnXChAkTAAAqlcpl/axszJPF2bNnMWrUKAwZMgS3b9/GggULAHCq15qO+dq4desWbty4AW9vbwBAWloaMjMz4eXlhZMnT7qyi5WGebIsLi5Gs2bNMGbMGADcii44OBgajQbnzp1zZRddgkqlwrVr13D+/Hn07dsXU6ZMwbBhw/DVV19h2LBhGDJkCHJyclzdzUqB5lJ5avJcSoLIXbBo0SKsWLECZ8+etdj4NRoNwsLCRLbusLAwTJ06Ffv27cMff/wBoGaqWoXjYcZoNEKlUkGj0aCoqAjt2rXDkCFDsGTJEowaNQpz5sxBUVGRC3tdMZjH4syZM5Zro0WLFigoKEDfvn0xatQoxMXFQa/X46OPPkKPHj2wdOlSADXz2ti7dy8A/iHTsGFDvP7664iNjQXA3TfFxcXIz89H+/btXdbPysJ6PAAgIiICQUFBePXVV3Hp0iX8+eef+OWXX/Dnn39i//79ePfdd2vktQEAq1atwubNm3H9+nWaSyEeDzM1ei5lhNNs3LiRBQcHsxYtWrDo6GiWkJDAZs+ezRhj7MiRI6xhw4ZsxowZrKioyHLMjRs32MCBA9kjjzziqm5XGHLjMXfuXMv+27dvs7CwMMt4PPfcc8zd3Z15eHiwf//910W9rhhsXRtGo5Ht37+fff311ywhIYGtWrWKMcZYZmYme++991hQUBArKSlxZffLnTVr1rB69eqxoKAgduHCBcYYYwaDwbLfZDJZXufm5rKEhAS2e/fuyu5mpWFrPDIyMtjjjz/OfHx82NChQ5nRaGRGo5ExxtjixYuZn58fy8/Pd1XXK4Svv/6ahYSEsDZt2rDg4GDWsWNH9tNPPzHGGDtw4ABr1KhRrZpL5cZjzZo1lv0ZGRk1ci4ljUgZWLx4MYYMGYKDBw/ijz/+wIQJE/DCCy9g3bp1aNq0Kbp164affvoJO3futBwTGhoKnU5XI6Mj5Mbj+eefx2+//Qaj0QiDwYDOnTtj9erVaNasGb755hv06tUL0dHRlhVhdXe2MqN0bfz6668AgOTkZGRmZiIgIADDhg0DYwz+/v7o3LkzCgsLLSvlmsDy5cvx/vvvo0uXLmjYsCFmzJgBQOzlL1St//PPP7hz5w4aNGhg2ZaWllZ5Ha5g7I1HQEAAevbsCTc3N0skFStd7Tdp0gRubm44ceKEy/pfnhgMBnz88ceYPn063n//fWzfvh1r165FXFwcFi9ejIKCArRs2RKdOnXC6tWra/xcams8Fi1aZNF0FBQUoGvXrjVvLnW1JFRdMK/czp8/z/z9/dnGjRtF+x9++GGWkJDA0tPTWVpaGmvZsiUbMWIES01NtbTp168fe+655yq13xWFI+ORlJTErl69ylJTU5lKpWI6nY5NmjSJZWZmsuPHj7O+ffuyTp06uaL75YojY9GwYUN29uxZxhhjM2fOZAMGDGDZ2dmWNu+//z7r0qULy8vLq7yOVxDmFf7u3bvZ1KlT2aVLl9gHH3zAEhMT2ZYtW0RthEyYMIGNGDGCMcathrt168aGDBli0QpUVxwZD/MK986dO+zZZ59lKpWK/fHHH5ZzzJo1i/Xu3bvaj4WZrKws9sorr7AZM2aIvtOMGTNYx44dWVZWFmOMsevXr9f4uZQx++ORm5vLGGPs8uXLNXIuJUHEDqdPnxapjwsKClhISAhbtGgRY4yfQLKyspinpyebPn06Y4yxlStXss6dO7Po6Gg2e/Zs9sgjj7CQkBC2ffv2yv8S5Ygz4+Hh4WEZjxUrVrA9e/aIzrVw4UL24YcfMpPJJDpndcHZa2PmzJmMMca++uor1rp1a9a7d2+2atUq9thjj7Hg4GC2cOHCyv8S5Yj1eDDGLKamY8eOsYEDB7J+/fpZ9gnbGo1GNmjQIPbhhx+yp59+mqnVajZ69GhWXFxcOZ2vAJwdD7PAcv78eTZ69Gjm5eXFhg4dykaMGMECAwPZ559/zhhj1fJeYUw6HgcPHrR8Z/PDd/ny5axFixYiU8yPP/5YK+ZSR8fj+++/r3FzKQkiCqxcuZLFxMSwxMRE1qZNG7ZkyRLGGLdiGT16NOvTp4/l4jBPltOmTWNRUVGWc6SmprLx48ezwYMHs379+rGTJ09W/hcpJ8pjPMyYbxS5VXF1oDzG4ttvv2VdunRhnTp1qrHXBmPih+bSpUtZo0aN2NKlSxljTLTyM6/0VCoV69ChA/vvv/8q7wuUM2UdD2v/oIULF7IXX3yRPfroozXq+li8eLFov/A6ePjhh9nYsWMZY0z08K3Jc6mj4yEnlFf3udQMCSIybNq0icXExLDPPvuMbdy4kT3//PNMq9VaVrrLli1jLVu2tKxQzBPIvn37WHBwMNu3b5/ofAUFBZX7BcqZux2P6uxEZc3djoVwJVNSUsJu3LhR+V+iHJEbD51OxxYtWmRxrDSPQWpqKnv88cdZ69atLapm88Pm2LFjbPjw4SJzRHXkbsejOmuA5LA1HuZ50byKLygoYM2aNWPffPON4vlq4lxalvGo7oKHNSSICDBLl2+99RZLSUkRTQpPPfUUa9myJfv9999ZTk4OGzlyJOvQoYPF850xTtKtV68eO3/+fGV3vUKg8eChsRBjbzxatWrFVq9eLTnu119/Za1atWJvvPEGO3z4MOvfvz+7fPlypfW7oiiv8RgwYECtHY+rV6+ymJgYdvr0acYYZ7qoKX4gNB62qTlux+WA2YP/v//+Q1xcHHQ6nSVJzLvvvgsvLy98++230Gg0mDRpEtRqNR566CHs3LkTly9fxvr165GSkoKwsDBXfo1yg8aDh8ZCjL3xcHd3x88//4wbN24A4D35u3fvjjZt2uDtt99GSkoKDAYDQkJCXPMlypHyGo+SkpJaOR4AsHnzZkRGRqJu3bqYPHkyGjVqhEuXLqGkpKTa5wqh8bCDqyUhV7Jp0yb2zDPPsLlz54pU5osWLWI+Pj4W9ZdZel20aBGLj49nO3bsYIwxdvLkSZaSksISExNZaGgoa9myZbW2XdJ48NBYiCnLeDRo0IBt3brV0vbOnTts7ty5TKPRsG7durEjR45U7pcoR2g8xJR1PMxRQyaTiT3wwAMsICCABQUFscaNG0tM3NUJGg/nqJWCyLVr19iAAQNYSEgIGzlyJGvatCnz8/OzXDCnTp1i4eHh7LXXXmOMiZ2mwsLC2Jw5cyzvc3Nz2YULF6p1EiYaDx4aCzF3Ox7CxHbHjx9nbdu2ZV9//XWlfofyhMZDTHmNR15eHhswYACLiIhg33//faV/j/KCxqNs1DpBJC8vj40ZM4YNHz5cZK9v06aNxTs5JyeHvfvuu8zDw8NirzXb+Lp27cqeeOIJy3HVMVRKCI0HD42FmPIej+oOjYeY8h6P6u7UTuNRdmqdj4inpyf0ej3Gjh2L2NhYGAwGAEC/fv1w4sQJMMbg4+ODhx9+GMnJyXjwwQdx6dIlqFQqXL58GTdv3sTgwYMt56vuRZdoPHhoLMSU93hUd2g8xJT3eKSkpLjom5QPNB5lR8VYTfN6sU9JSQl0Oh0AruiUWq3GyJEj4eXlhUWLFlnaXb16Fd26dYPBYECrVq2wc+dOJCUlYcWKFQgNDXVV98sdGg8eGgsxNB5iaDzE0HiIofEoG7VSEJGjU6dOGDduHMaMGWPJ2a9Wq3H27Fns378fe/bsQfPmzS1ly2s6NB48NBZiaDzE0HiIofEQQ+PhAC4yCVUpzp07x0JDQ0U2OaETUW2DxoOHxkIMjYcYGg8xNB5iaDwco9b5iAhhpcqgHTt2wNvb22KTe+uttzB58mTcvHnTld2rdGg8eGgsxNB4iKHxEEPjIYbGwzm0ru6AKzE7E+7duxfDhg3DH3/8gfHjxyM/Px/ffPNNjUgs5Aw0Hjw0FmJoPMTQeIih8RBD4+EkLtTGVAkKCgpYfHw8U6lUTK/XsxkzZri6Sy6FxoOHxkIMjYcYGg8xNB5iaDwch5xVAfTu3RsJCQmYM2cO3N3dXd0dl0PjwUNjIYbGQwyNhxgaDzE0Ho5Bggi4ug8ajcbV3agy0Hjw0FiIofEQQ+MhhsZDDI2HY5AgQhAEQRCEy6jVUTMEQRAEQbgWEkQIgiAIgnAZJIgQBEEQBOEySBAhCIIgCMJlkCBCEARBEITLIEGEIAiCIAiXQYIIQRAEQRAugwQRgiDKxNixY6FSqaBSqaDT6RAaGorevXtj6dKllnLnQvr06QONRoN9+/YBAC5evGg5Xulv2bJl2Lp1q+L+GzduVPbXJgiinCFBhCCIMtO3b19cv34dFy9exIYNG9C9e3dMnjwZAwYMgMFgsLS7fPkydu7ciaeffhpLly4FAERGRuL69euWvylTpqBx48aibcOHD7ec49SpU6J9169fp+JhBFEDqNXVdwmCuDv0ej3CwsIAAOHh4UhOTka7du3Qs2dPLFu2DE888QQA4Msvv8SAAQPw5JNPol27dpgzZw48PDwsxwKAt7c3tFqtaJuQkJAQ+Pv7V/h3IgiiciGNCEEQ5UqPHj3QvHlzrF69GgDAGMOXX36JUaNGISkpCfHx8Vi1apWLe0kQRFWBBBGCIMqdpKQkXLx4EQCwefNm5Ofno0+fPgCAUaNGYcmSJU6fMyIiAt7e3pa/xo0bl2eXCYJwEWSaIQii3GGMQaVSAQCWLl2K4cOHQ6vlppsRI0bgxRdfxLlz5xAXF+fwObdv3w4fHx/Le51OV76dJgjCJZAgQhBEuXPixAnExsYiIyMDa9asQUlJCRYsWGDZbzQasXTpUrz33nsOnzM2NpZ8RAiiBkKmGYIgypW//voLR48exbBhw7B8+XJERETg8OHDOHTokOVv9uzZWLZsGYxGo6u7SxCEiyGNCEEQZaaoqAg3btyA0WhEWloaNm7ciOnTp2PAgAEYPXo0UlJScP/996NJkyai4yIjIzFt2jRs3LgR/fv3d+izbt68icLCQtG2oKAgMtEQRDWHBBGCIMrMxo0bUbduXWi1WgQEBKB58+b45JNPMGbMGBw8eBCHDx/GF198ITnOz88PPXv2xJIlSxwWRBITEyXbdu3ahXbt2t319yAIwnWoGGPM1Z0gCIIgCKJ2Qj4iBEEQBEG4DBJECIIgCIJwGSSIEARBEAThMkgQIQiCIAjCZZAgQhAEQRCEyyBBhCAIgiAIl0GCCEEQBEEQLoMEEYIgCIIgXAYJIgRBEARBuAwSRAiCIAiCcBkkiBAEQRAE4TJIECEIgiAIwmX8P2EMvfW4xKUCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dfn.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "def pca(dfn, module='scikitlearn'):\n", + " if module == 'statsmodels':\n", + " _pc1, _loadings, projection, rsquare, _, _, _ = statsmodels.multivariate.pca.pca(dfn,\n", + " ncomp=1, standardize=True, demean=True, normalize=True, gls=False,\n", + " weights=None, method='svd')\n", + " _loadings = _loadings['comp_0']\n", + " loadings = np.std(_pc1) * _loadings\n", + " pc1 = _pc1 / np.std(_pc1)\n", + " pc1 = pc1.rename(columns={'comp_0':'PC1'})['PC1']\n", + "\n", + " elif module == 'scikitlearn':\n", + " pca = sklearn.decomposition.PCA(n_components=1)\n", + " _pc1 = pd.Series(pca.fit_transform(dfn)[:,0], index=dfn.index, name='PC1')\n", + " _loadings = pca.components_.T * np.sqrt(pca.explained_variance_)\n", + " _loadings = pd.Series(_loadings[:,0], index=dfn.columns)\n", + "\n", + " loadings = np.std(_pc1) * _loadings\n", + " pc1 = _pc1 / np.std(_pc1)\n", + " pc1.name = 'PC1'\n", + " else:\n", + " raise ValueError\n", + "\n", + "\n", + "\n", + " loadings.name = \"loadings\"\n", + "\n", + " return pc1, loadings\n", + "\n", + "def stacked_plot(df, filename=None):\n", + " \"\"\"\n", + " df=category_contributions\n", + " # category_contributions.sum(axis=1).plot()\n", + " \"\"\"\n", + "\n", + " df_pos = df[df >= 0]\n", + " df_neg = df[df < 0]\n", + "\n", + " alpha = .3\n", + " linewidth = .5\n", + "\n", + " ax = df_pos.plot.area(alpha=alpha, linewidth=linewidth, legend=False)\n", + " pc1 = df.sum(axis=1)\n", + " pc1.name = 'pc1'\n", + " pc1.plot(color=\"Black\", label='pc1', linewidth=1)\n", + "\n", + "\n", + " plt.legend()\n", + " ax.set_prop_cycle(None)\n", + " df_neg.plot.area(alpha=alpha, ax=ax, linewidth=linewidth, legend=False, ylim=(-3,3))\n", + " # recompute the ax.dataLim\n", + " ax.relim()\n", + " # update ax.viewLim using the new dataLim\n", + " ax.autoscale()\n", + " # ax.set_ylabel('Standard Deviations')\n", + " # ax.set_ylim(-3,4)\n", + " # ax.set_ylim(-30,30)\n", + "\n", + " if not (filename is None):\n", + " filename = Path(filename)\n", + " figure = plt.gcf() # get current figure\n", + " figure.set_size_inches(8, 6)\n", + " plt.savefig(filename, dpi=300)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "pc1, loadings = pca(dfn, module='scikitlearn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGWCAYAAABFB+jUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABueElEQVR4nO3dd3gU1foH8O+mQ0hCkVAjXXqTKiCCgCDYEL2oIKBe8Cpe69Ur92fDBipiuzaUoqKi1y5KVZp0kd4DBEIJoSYhpOf8/khmMzM7Mzu72d2Z3f1+noeHbD+ZzM68c8573uMQQggQERERWSDC6gYQERFR+GIgQkRERJZhIEJERESWYSBCRERElmEgQkRERJZhIEJERESWYSBCRERElmEgQkRERJZhIEJERESWibK6AUZKS0tx/PhxJCQkwOFwWN0cIiIiMkEIgZycHNSvXx8REW76PIQfHT16VIwaNUrUrFlTxMXFiXbt2omNGzeafn16eroAwH/8x3/8x3/8x39B+C89Pd3tud5vPSLnzp1D79690b9/fyxYsAC1a9fG/v37UaNGDdPvkZCQAABIT09HYmKiv5pKREREPpSdnY2UlBTnedyI3wKRV155BSkpKZg9e7bzviZNmnj0HtJwTGJiIgMRIiKiIGMmrcJvyao//fQTunbtiltvvRXJycno3LkzPvroI8PXFBQUIDs7W/GPiIiIQpffApGDBw/i/fffR4sWLbBo0SLcd999ePDBB/HJJ5/ovmbKlClISkpy/ktJSfFX84iIiMgGHEII4Y83jomJQdeuXbFmzRrnfQ8++CA2btyItWvXar6moKAABQUFztvSGFNWVhaHZoiIiIJEdnY2kpKSTJ2//dYjUq9ePbRp00ZxX+vWrXHkyBHd18TGxjrzQZgXQkREFPr8Foj07t0be/fuVdy3b98+NGrUyF8fSUREREHGb4HII488gnXr1uHll19GamoqvvjiC8yYMQMTJ07010cSERFRkPFbINKtWzd8//33+PLLL9GuXTu88MILePPNNzFq1Ch/fSQREREFGb8lq/qCJ8kuREREZA+2SFYlIiIicoeBCBEREVmGgQhRCBJC4N1lqVix75TVTSEiMuS3tWaIyDqzVqfhtUVl0+fTpg6zuDVERPrYI0IUgl6Yv8vqJhARmcJAhIiIiCzDQISIiIgsw0CEKMQVl5Ra3QQiIl0MRIhCXCEDESKyMQYiRCGuoIiBCBHZFwMRohBXUMxAhIjsi4EIUYgrKC6xuglERLoYiBCFOPaIEJGdMRAhCnHMESEiO2MgQhTiODRDRHbGQIQoxBVyaIaIbIyBCFGIY44IEdkZAxGiEMehGSKyMwYiRCGOPSJEZGcMRIhCHGfNEJGdMRAhCnEcmiEiO2MgQhTiODRDRHbGQIQoxBw4dUFxm4EIEdkZAxGiEDPg9RWK2wxEiMjOGIgQhTjmiBCRnTEQIQpxnDVDRHbGQIQoxHFohojsjIEIUYjj0AwR2RkDEaIQxx4RIrIzBiJEIY45IkRkZwxEiEJcYQkDESKyLwYiRCGuoIg5IkRkXwxEiEIcc0SIyM4YiBCFOAYiRGRnDESIQhyn7xKRnTEQIQpxnDVDRHbGQIQohAghXO7jrBkisjMGIkQhrqTUNTghIrILBiJEIUSjQwRncwuRmpkT+MYQEZnAQIQohOj1fQycvhKpmRcC2hYiIjMYiBCFEK0cEcnGtLMBbAkRkTkMRIiIiMgyDESIQohRWqojYK0gIjKPgQhRCDEYmSEisiUGIkRERGQZBiJEIUQYDs4QEdkPAxGiEOJuaCYnvygwDSEiMomBCFGYePK77Wj/3GIs35tpdVOIiJwYiBCFmXGzN1rdBCIiJwYiRCHEzKyZ5IRY/zeEiMgkBiJEISQzJ9/qJhAReYSBCFEIefu3VLfPKeZqvERkIwxEiEJIcWmp1U0gsgWjdZfIXhiIEIUQM8delnqnUPfH/tPo/MISLNyRYXVTyAQGIkREFFJGz1yP8xeL8I+5m6xuCpnAQISIiIgsw0CEKIQ4OO5CREGGgQhRCDGTI5IQF+X/hhARmcRAhCjMXNu+ntVNICJyYiBCFELMDM1w4TsishMGIkQhxMzQzNx1R/zfECIikwIWiEydOhUOhwMPP/xwoD6SiIiIbC4ggcjGjRvx4YcfokOHDoH4OCIiIgoSfg9ELly4gFGjRuGjjz5CjRo1/P1xREREFET8HohMnDgRw4YNw8CBA90+t6CgANnZ2Yp/ROR7JVz4johswq8FBebNm4e//voLGzduNPX8KVOmYPLkyf5sElHYiImMQGGJ9iJ4RSWliIyIDHCLiIhc+a1HJD09HQ899BA+//xzxMXFmXrNpEmTkJWV5fyXnp7ur+YRhST59N2qsZG4/NLqms8rZo8IEdmE3wKRTZs2ITMzE5dffjmioqIQFRWFFStW4O2330ZUVBRKSkpcXhMbG4vExETFPyIyTz59t2Z8DN4b1UXzeRfyiwPUIiIiY34LRAYMGIDt27djy5Ytzn9du3bFqFGjsGXLFkRGsluYyJ/eG3U56iZp90ZOW7w3wK0hItLmtxyRhIQEtGvXTnFffHw8atWq5XI/EfmGfGimVV39HsVlezID0BoiIvdYWZUoDEVFcpleIrKHgC7DuXz58kB+HBHpiI7kNQgR2QOPRkRhKIaBCBHZBI9GRGFoUNs6VjeBiAgAAxGikLJ010lTz4uL4qw1IrIHBiJEISS30LU+jxYhWNCMQldsFE9twYR/LaIwxMKqFMoKirWXNiB7YiBCFIZK2CNCRDbBQIQojHRrXAMAUMpAhIhsgoEIURhpUL0KAOWaNEREVmIgQhRG6iaVBSIlTBIhIptgIEIURqQ6ZhyaISK7YCBCFOIiHPKfy26UskeEiGyCgQhRiJv79x6olxSHmWO7YveJHADAJ2sPW9wqIqIyAV30jogCr1ezS7B20gAAwN8//dPi1hARKbFHhCiMPD2sDQDA4XDzRCKiAGEgQhRGmtaOBwC0rZ9ocUuIiMowECEKI1KyagkrYBORTTAQIQojkeVTaPZkZFvcEiKiMgxEiEJQrfgYzfulQmZCABcLiwPZJCIiTQxEiEJIl0Zla8m8NLyd5uO5BcWyn0sC0iYiKwkW77M9BiJEIUQ66EboTIuRL4/OmTMUDhiH2B8DEaIQIhVMdehEGXlFFb0gXG+GwgH3cvtjIEIUQip6RLQfb55czfnzqZyCQDSJyFIcmrE/BiJEIUQ65OoNu3RrXNP58/M/7/J/g4iI3GAgQhRCpFV19YZm5A6cuuDv5hBZjv0h9sdAhCiESL3QesmqcmdyC/3cGiLrcWTG/hiIEIUQZ7Kqtc0gsg3BPhHbYyBCFELcTd8lCjfsEbE/BiJEIUQ4p+9a2w4iIrMYiBCFkIpkVYsbQmQT7BGxPwYiRCHEOX2XWSJEAIBCLjVtewxEiEJIqZuCZkThpqCYayrZHQMRolDipsQ7UbgpKGKPiN0xECGvZOcX4ZdtJ5BfxKsNO2GPCJGSfKFHsicGIuSVez/dhIlf/IXJLBNuK+4WvSMKNxyasT8GIuSVtQfPAAC+/euoxS0hOal4k1EcUjUmEgDQsEaVQDSJyFLsEbE/BiJUKVEcA7CV0vJjrlFBs7dv6wwAqFUtNhBNIrIUc0Tsj4EIVUokhwBsyeivElkePJaWssAChT4OzdgfAxGqlMhIBiJ2UmqixLv0UCkrPVEY4NCM/TEQoUphj4i9mCnx7uwRYRxCYYCBiP0xEKFKiWSOiK2YKfEu9ZZwaIbCQQFLDNgeAxGqFCar2otz+q5BlogzEOHQDIUB9ojYHwMRqhTmiNhNeY6IwTdbih1LGIhQGGAgYn8MRMi0Xcez8e9vtmFPRrbzPuaI2IvUI2KUrCoNpzEOoXDAWTP2F2V1Ayh4DH17FQDgqz/Tnfedu1hkVXNIg5ByRAyeI1VdLWGOCIUB1hGxP/aIhJn8ohJ8tjYN6Wcv+uT9irnEtq2YKfEewem7FOJ6Navl/JlDM/bHQCTMvLl0P57+cSeGvLnSJ+8XFx3pk/ch3xAmZs0Ey9DMt5uO4ptNXEKAPLfmwBnnzxyasT8OzYSZ1amnAQC5hZ59OfN0nh8bxVjWToSJHJGIIBiauVBQjMf+txUAMKRdXVSL5aGKvMMeEfvjWSTMeDvb9ptN6Zr3R3D6rq2UmsgRkXqxLhYWB6BF3pG3rYgnEqoE5ojYHwORcOPlLBe9qwoWNLMXqY/DqEckqUo0ACCnoNi2Rc3kw0ZGvwuROxyasT8GImHG13EDTxH2UVoqcLF8CM3o3B0fW9YjIgSQlWfPWU9MpCVf4dCM/TEQCTObj5z36fvZ9II6LK07VJGgZxSIRMmqnU1dsMefTfKaPH+FQQlVBgMR+2MgQqboTQe1c8JjuCmUHXCNhjPkZfnlNWHspFR27mAgQpXBtWbsj4EIVUoR64jYhvx0bbjoXRDk9RTLIhHGulQZ7BGxPwYiVCn8kttTsCd4cmiGfIXHKPtjIEKVYtdkx3AX3GEIUMxAhHyEs2bsj4EIUaiQna+NSrwHA2WPiIUNoaDHOiL2x0CEKETIew6CPA5xTkMGYNtaJxQcODRjfwxEyJQgP6+FhVAqAvb4N1udP3NkhiqDQzP2x0AkzLSqm+DV63gusL8S2Rk7CCbGGDp8pmJ1aOaIUGWwR8T+GIiEGfmVcmpmjoUtIV8T8qEZk31YjWtV9VdzfIaBCFVGYXGp4rtB9sNAJMzI14Z58Zfdpl9ndFpLP3vR4FEKFHkqhcPNN/uxQZcBALLz7bXw3bI9mbj5vdWK+5giQpXFXhF7YyASxpbvPeWT9xk7a4NP3ocqR5Gs6ua5m9PPAwDO5hb6r0FeuGvORvylWoaAV7NUWQxE7M2vgciUKVPQrVs3JCQkIDk5GTfddBP27t3rz48kN6SVVyWr9psLRoxyHw+ezq1Mk8hHSj1IVt2bETzDcuwRocpiwqq9+TUQWbFiBSZOnIh169ZhyZIlKCoqwjXXXIPcXJ64rKI+P905k70ZoUJ4MH3339e28nNrfIfrGVFlsZaIvUX5880XLlyouD1nzhwkJydj06ZN6Nu3rz8/mnR4m/inPq91aVQDmw6fc94+eOoCmtauVomWUWUVl8hnzRhHIp1TqgMA4qLtPzrLZFWqLA7N2FtAj0JZWVkAgJo1a2o+XlBQgOzsbMU/8kxBcQneX34Au09obztvry7VlTqLVe/Dk4X15H/bKDfzd2PLA5CCIJhRYPPmURDg0Iy9BSwQKS0txcMPP4zevXujXbt2ms+ZMmUKkpKSnP9SUlIC1byQMX/rCbyycA+ufWuV5uPe9nKrL7C3lic7SmIiI717Y/IZeR2RSHeBSFTZ30sIoKjE3md6BrlUWewRsbeABSITJ07Ejh07MG/ePN3nTJo0CVlZWc5/6enpgWpe0MorLMGKfaecEf9j/9tq+Hxvy2W7OxfwZGG95skVQ2Pu1pqJjar46tv9apH7FlUWc0Tsza85IpIHHngA8+fPx8qVK9GwYUPd58XGxiI2NjYQTQoZD87bjCW7TmLMFY3w/I3aPU1yJV4e1NVDOvWT4nA8K995mycL60mdII1MFCmTByL5RaVIiPNXqyqPuapUWfk2D7bDnV97RIQQeOCBB/D999/j999/R5MmTfz5cWGnsLgUS3adBAB8uvawqdd42yMyf9txxe2h7euhY8OkivflycJyR8/lAVAmrepxOBzOYMTuPSKcNUOeqhkfAwBIiC271maPiL35NRCZOHEi5s6diy+++AIJCQnIyMhARkYG8vLy/PmxYWPxrgzDx4tLXL983h7T1UWmjp7Lw+y7usvu4cnCag/N2wIAOHbe3PerIhDx7iCdV1iCl3/djU2Hz3r1erOKS3kSIc9ICdix0WW5UHYPtsOdXwOR999/H1lZWejXrx/q1avn/PfVV1/582P9Iv3sRTz74w5kyIYjrObuSlHrUW+vLhvWqKK4vTsjGzXjY5xXHrxoDT7SQXrCp39iwqd/ejx75t1lqZix8iBGvL/WH81zMtPDQyQn7TFx0ZULtikw/JojYvdpgZ648tVlAIBP1h5G2tRhFremjLuZEVp5G97mckjd/s7PLk+GlJrAHBH/Ki0VmLHqILo0qoFujbWnv3tKOkgfOJWLA6dykZlTgDqJ5pNFUjMv+KQd7uQXleD4+TzUr17F/ZOJZOKcPSIMROzM/tWMSJe6aJU68NOKDXwVMFSUdS9rg9R7viX9PK57ZxXaP7sIC7af8MlnEfDj1mOYumAPbv3Ad70P6WeVwaWnu4a76q2+Mn3JPvSa+jt+3HIsMB9IQU/al53Dj0UcmrEzBiJBTH0eUA+7aAUdvk78k3pEDp6+gM/XH8ZN767GjmPZyCkoxn2f/+XTzwpn+04GpvfBjvaUr4vzwvxdFreEgoV0UcYekeAQkOm75B/qK9J1B5VJg1oxh7dxSJt6idglq9Y6uG0dAEBmTgEA4IEvNnv3xmRKUQAOpPZPCg1QFwwFPeaIBBf2iAQ15YE5K69IcduoR2RY+3oAgCrR5iqiqt9LXjyL/E9dUt8fPF2RN1BDM1Z9HgWx8q9LXBRnzQQDBiJBTP3lqlddmWgoNC4CpIBiUJuyHg13Ca/q15E1CjWmYvua3ZNBT5X3vhG5U9EjUh6IsI6IrTEQCWINaygraH65/ojituasmfIr66oxZV/Q/KISU7ObpAvyauUFgkZ2vdTj9pL3/DE0Uy9JGbhymiyFioo6IhyaCQYMREw4c8GeV2KZ2cqaJv/bdFRxW3Nopvy+xCrRAMq6/M18SaUAZubYrtg5eTAuLS8jPqxDPc8bTh7ztjS/kfYNkhS3Pe11cTBng2wujgXNggIDERO6vLjU6ia4yLpY5HZWytqDZ1zuk841Us8GAOQWFLv9POlEGBXpQLzsteopxOQnAeis0KrEa4h/erIp6etS2erBFBgMRDzUu3ktq5sAANiX6T6xUD2TRQiB/PL59HHRkc5E1dwC91cLZ3MLAbgGHpEGJyPGKMGlyMOhmZhIHj7InqQOROaIBAceSTwUzD0AFwtLcKG896NuUpxs/NQ4EDmXW4ic/LLXqX9/o+3RgjNrbE09dFfk4fTdaKMolMhCorxPRJo1s3T3SVM9v2QNBiIeWrX/tNVN0FQ7Idbtc+RTQKMjHYiKKPvzu7sS/kaWe6KeZWM0rZSrpvrOhjTfLyynTjvxNCE2WtYj8vWf6Z4P7Xjo8kur+/X9g5UQIqSW0/CFih6Rin109upDFrWG3GEgEqTUxx1TByLZUyIcDucVrbtCVi/9utv5s7oD5Ketx3Vfd4FXID6jXuvHF5LKE5Ylng7NyIPSJ77Z5lz9118Y17oSQmDUx+tx8/trnAnl5Dp9FwCy83k8sisGIkFKHTyYOQbJu+IjHA5EOQMR8wcws3VHgIrEWLKnaFWOh6eVVT9de1hx+xc/ry20Jf08irhTKeQWlmDNgTPYfOQ8TmTbZ2Vwy2n0iLDXyL4YiAQp9dWsmYJjykAEiC4fmvGkfkSkBzkyJbYvGW5/n607jNtm+G6hOzn1PlMYBDMLth/LsroJAVdUUoq8Qu08LvnwpyffzXAh7xFhh5F9ca0ZN46dV3aJy6e92omZbln5UxzyHhEPrjKrxJgrCQ8Epix5qHv6hx0u9xWXlCLKBzNW1H+eYPh7BXOyuLeuenUZjmflY9fzg1E1Rnn8kV/lR/Cy0klKVpWm7wKery5NgcNd142pC/Yobtsl70H9pTIz/ikdtKTRFWeyqgcnoNgoZSASE6W/CzFZ1T98VRNB3SNSUFSCtQfOWDq7oGNKdQDA+CubaD4ejlf9x7PKhlx2n3Cdsi//joVjkKZH2rVjFT0iPB7ZFQMRN9ak2nOWjDcneekl0gEr2gc9IlqHPml2w0Wd7mSqHKkWjJ5/D2ll6n3u7q082X+w4iBu/2gdxs7a4HXbKiumfJ/sfGkNzcd51a/kj4q7ocCZrCq7cGJRM/vi19qNHJv0gKh5cwCSuiulQETq3nc3W0K6SgVch6a0yoKPv7Kp8+ffdp/0uJ1k7MOVBzXvb3pJPACgSyPtk7ha+4ZJ2PLMINzQsT4AIKM82fHPw+d80ErvSLu13rV9eF/1u35P5fldvOKvIPX+ypNVOavIvhiIuGHXw97Hq7RPRkYOn7kIoCJ4iIowN31XKkz2t64NXR675XLX++Ql4O/55E+P20nGZugEIqWqoTczqleN8ej57uw6no0FlZg9I50qHA7gpeHtXB7fn3nB6/cORYqeUZ5nnaRNIR86ZqBmXwxE3NC6ArND7sOv2zM8fs1jX29V3Jamb7qbNSMVNPv6z6Mujz17Q1u8dVsnxX1VPUhoJd+RdkuHh70GP2zRrwXjqVs/WIP7Pv8LS3d51xNWkXzpwJXNa7s8/uCXm13uCxda51F5grH1RyX7kLaVvNwAh7Hsi4GIG1rH9GCY5qgmhEBmjrLOgDRrZveJbK/ft1psFG7s1ADXtqvrvE+d2U+B4U2PCODbNWNyy/OC3l9xwKvXy3tEzFQLDnfyKfJ2uECyG/kK0dw+9sVAxAvukgWt1L1JTbw8vL3ivsLiUlz71iqXXBBpaObDlQeRk1/k9r2Htq+r+9gQRSDCHhF/Gtk1RfN+6YLP0zyK/ww1l9zqiU1e5pnIc0Q8mSoequTTc7VOo/IeESZjupIH5cEwPT1cMRBxQ+ugnu9mkbhAu6xOxeJysVERuKRajPP2/pM5WH3gNPZkGE/9k1bX1dKjSU0AwLD29XWfIx9/ZSDiX0lVozXvl05anuZzxtuoNs6W9POGj9eMjzF8PNS4G02QD6vqFT0LN8raKhVfBiar2hcDETe0DupFxfbaoRvVinf+HBsVgQOncp231x48g9M5BZqvy8qr6AUxKpC1/lDZgmtG5d3l28ROJ7ZQpJfTo56ebZa61DsArDlg7bT1TUeUPSqNalUFAHRrbG5GUKhwd6R5ddFe5892u0Cyijx4k38X2CNiXwxE3NA6pHu6XLovFRSX4KuNR5y3Y6MiFFNq1x44gxs7VfRcTFu0F49/s03zvf46ct7t58mLWxn1mlwsrHhelWj2iPiTvPdp1f5TuGfORpzIynPe72mPSIRGgHnHR+tNDdf5i9QLJ5H28XBbasZofZSsi0VYue+U83Y+e0QAAH/Iaj/JC+AxR8S+GIi4obXr/rD5WMDbIXn391T8+9vtztst6lRTJKHmFpaguqzr3uyKk6WlAq8u3IN//W+r4uAnzzQ3muYrrycSEeHAIwMvM/W55Lk5a9Kcf6M7Z27Ab3sy8cyPO51XfJ72iBTp5BbIe8wCpWntst69eFXCs5TPtDTM6tIYnTrVs0DybJy7Fkg/y1YEdzBHJCgwEHFDa1zxnd9TLWhJmZl/HFLcjo6MwOrUMy73mdE8uSK35Oi5PLy3/AC+2XTUORQDqAomGXyRh7avh/pJcXhwQAsAQNv6iabaQN6Ryn5LMrPznT1WnvaIyHuz5Fanng74iqXOhFtVL4080fpIeT0cuZPZ+Vi+NzPkVliV/zrqX03dkcUTbRn5/i/fjzypIE2BxUDEDbt9t3NV3a9aUy+j3MzfTNDI4bj9o3XOn2+bUfGz/MtrdKBrWKMq1kwagEcHlfWEHDqdq/tcMsfopKqeQn72YsWwmadJiyk1q2re/+9vt+PbvwLb+6deD0kiH46S/66SAa+vwLjZG7Fwh+f1dexMGPSJqHusOPTgSj5MbOUaSmSMgYgbWgeCWjbK3Nc6+LgraCXVDzFz4SxfEC85Mc50u66VTfUNtavUQDE6sagfkw9lGCUVa7nqMtfCYZLvN7sWsQPc/03bN0jyqA2Sil9L+TvI9+kCjSEIaTHKRTtDLBAx2Mxz1x1W3C7iFb8L+Xdh69EsTPpuu24PIFmHgYgbnWTrrEhu6eJa1twqm46cw0djunr0GimHwEwuQYmsS3xY+3qmP0OeQMsrNe8Y9UCpy1XLp2e3re9ZEGAUuOoV73MXW+7yskhexXpIyvvlN/MN6mWYzYkKFsqhGeVGj1StAMjvWRl5ETP1rv3lhiP4YLl3xfbIfxiIuHFF00tc7pN6FOzgp4l9MKhNHY9eI10lxEa7//NLM4QS46I8utKWr/HgblE90ma0NobRScfTHhEjhTp/O3d/UW9PilI+tFFwZDT0FGonY6OhGXUelrulGsKR1l6Ufi4v4O0gYwxE3JAfCKRCXXb6wreul+Dxa6Q6H+N6NdZ9jpSYKv2uZhNgJfLna63QS+4Z9YgE6oSr3yPi389Xx1IXZOP7Rl3robawmaJHRPWYPNgHmKyqRSug5VCx/TAQcUPaZ0f3vBRjy0/cdvrC6139SkmjWu67qhkAOJd/13LgVNkqp9K4s6e9QPKE2WBcm8cOtGYp1U8qy9MpFSIglTQLdYpkmfkGrNp/yv2TVJy1UFTXsolVKob6HlUt3qhol32+mj5h9OuoT6jZFtZ9sSsHgPv6NbO6GU55hSV45KstWLjD+xWqQxEDETcq1gJ1OE+uVk4Du6SaciEwKeKffVc31IyPwcyxZfkiLevq95Tc2rUsx8WommpsVFnvz4rygkkns7Wrs+pxOBzOGT1MovOOVsArTUcsKRU4es51Gquv6Z0IzZzw75y5weOrT3VRtievbYWrLquNz+/paer1RkMZwcho+6m/VlMX7PFza4KPwwH0alZLcV8g95D0sxex/2RF/tZHqw7i+83H8I+5fwWwFfbHQMQd2YFR6n2wskfkb121E2X7t0zGpqcGYkDrsnwRoym8ZpaJl04Ir8lKSHsqurwXhYGId7SGX6R9sFQIzFh50OXxnk1rutxXKTq7utkT/u4TrmscGX6cqkz9P65qhk/u7o6kqtGoa2LWloVFj/1CvpXVMcm+k55t23DkgMOl0nMg84iufHUZBr2xEufKa/ycUNX/oTIMRNyo6BGpyHuwMkdE6qnQ4vBhOeNSIfDxKtcTnSekMezdJ3IsqdIZ7DQDEYfUIwLkaMwQ8bSqqjsHT+di3cEzLveb7ejwtDnSr6z1Onnwo9dTEGpTM+W/5nvLU7H9aJbz9lu/7begRfan3nfUqzgHaqhYvo+mn7uI0lKBLzdULM9xIotJsxIGIm44lyV3OJxXo/nFJfh9z0lL1+JwR2/hOXk1VQBY8Xg/zeetP3QWL/6yu1JtkAK3f8zdhD5Tf6/Ue4WTi4XFmLfhCDKyXa+e5EMzN3V2zfHxNkieN6En+rXUriciL3DnKXVCpXv6ZerlHWvyGC0184Lz562yE3VIkP2eq/afxvX//cP8S4XAeY3ib3aTV1iCH7cc80tbHQ7Xta8C1UMrDyJLSgX6vKI8Bj5mkOsUbhiIuCHPwpeGO37cchx3z/kT7Z9bjJ9k6xoEgtmk0RpVXYuuRTiAabd2VNwnX7lX7sjZyucfyKcH5xQU433O3zflhfm78OR323Hze2tcHpN6REqF0DxZ16tuvuicXM+mtTDnru6mn2+2R8TTSqdGPSJ1Eivyo+S9RY9+vcWjzwgmlcl5efnX3ej0/BKvkoYD6fXFe/HQvC0YO2uDX96/qmrdokCVE5CfOwRcl2VYc8C1pzFcMRBxwzk041BOIZQ8+OVmnL7gWSKnkU/XpmHkh2t1e1vMJv9pTevd9+K1mgXaojWCG/XVydWtkk19rpx6GOmVhUymM0Pr5N20djxu65bi7BEpLhWaqyFfDNAKrOoTZOdLq2s+L7FKtOb9uu+rU+IdAF4Z0cH5s6Lku8Gq0MGuMrOAPlpVti7V2zYfwllYXg3XV71Z8iBWq0ckUEMz8kUJ7VN5yp4YiLjhHJqBA8v2ZGo+R2us3lvP/LgT6w+dxcerDmk+Lu9V7Na4hu77qBNS+7esrTtLRusK4aiq6I9RGXA9WgmznMPvnd8evQpTR3TAodNlwxBHzl7EdxrrwCzZVbnVaW/vnmLqefI/Y5t6ifhqwhWaz0uM0x4i1KNX4h2oWJkXUPaI+Dovxk588W3xfHgssOonVfHbezvgQFyM8vcvsGBoxswEgXBm7z3UBqQrP4cDGNntUs3n+CMRU2+BpsKSsivenk1r4tO7exi+x7Xt6uLyS6tj34vXYrbJbvc+zcsqyapLZcd6cTDTGotlcTP3tE4+0oEsv6hs+z39ww5c3kg/EPXWU8Pa6D72x/7TWL4306WNDkfZyS5t6jAceHmo4jVnLhRi2Z5MZGrku2gpNegRkQcc8lwYHxaStR1PAvcEnaDP7jOJqnkYrLojL6bocLguDBqoHhFPiuutOXAaryzcE7YzDBmIuOPsEQFqVNXuZn7y220+/1i9SS/SiahTSg2XbHC190d3wXf393Z7RfTQgBYAgLFXNHIGHBdUQ0Nx0cafpUWr4NZhjSXcSclfM1LMiI+NwuODW7rcn5VXhNEz12Pc7I3ILyrRPUFGRjiw+/khztvPz9+Fu+ZsxJWvLjPXANX0XfV7y99X9RJbKy0V2JuRo1mkzognz9Z7b7tXm/V1j5b6okndGxGok728187db3jHR+vx/vIDmLcx3b+NsikGIm5Iu1JEhEP3wC9fcMx3n6t98Cgor3QZZ2KdGLMeGtACCx++Es9c39Z5NaEOIrzpEend3HWdngmf/uldI8OIuoetv85sFvlUQF/SqtYrn2p4sbDE8ASpFSAXmLwKVRc0U7RLdue3f1WsChwMwe30Jfsw+M2VeOGXXe6fLONJDFGi82SbxyGKIdw/085W+v0urVlV870ll+vkM/maPC40+ycIRJFCO2Ig4oZ05edAYBdv0zt4SD0iRvVEPBUR4UCruomIjKiYoqzO8HbX+6Llf5tcl5BPC4KTht10b1JL8/7zF12HBEdcXvmVodM1ZkxtOXLe+XNhcali/zQqnqenwE3peK2r5AjV5wRTbZr/LksFAMxenebR6/R6nv7v++3On6Uih3qdLXavNhspS5bf7YOLOmlV4gGtkjVzM9TVqS8WFiMzx/eFxuR/u9936+duyYN8b75LoYCBiBvOfckR2Aqhegcg6crSlz0icnq9Pglxns1+IN+R90Yl6NSHkVyl03viia//dO0eflVWYbewuFRxiVcz3nWquJFNh8+h5VML8doi5SwqIYRHs36e+2knAKBlHc8XfrRalkYQqUUvhPh8fUVvWHJC+fpDukMzHjUt4OQ9Xb7ovpF61fRKHagLBQ54fQW6v/SbzwuMyT/n7d9TdZ83d91h58+5BYGZ9WY3DETccNY1gCOwgYjO/dIiZEbrxFSG3iJ6ns5+ACpyT6hy5Dk+7obTr2lTp9Kf996oLi73yafIFpaUKK6yn7+xnUfv/2L58MS7y5R1ZQ6dznX+bKYy8Pebj6GopBTtGiQp7tfrbbGLKb/uRsfnF2PUx+uwNf284XPNnJelE25xqdC8gLH7TDX5MccXy2fI1wfTov4Mqez6ir2+rbdi9lfZJpu2PGdNmk/bECwYiLhxPq/sAOxwAIUGQzO+/rLrvZ20c0f6aTqY3vt6k9kurVZMlSPvETHKtdg5ebBXScVq9ZKMi6LlFymHZupXd51+2ahWVZf7JHp7blSErOfH5P72vz+Polg1LaTlUwvx7jL9K1CrfVi+RtDq1DO48d3Vhs81M6wi787/dbtrDRrb94jI2u+Tiz1p5pXO2U0vyPX16sXbj5039TxfDrMHKwYibki1GlannjbMeF/gYQVJd/Qy3aU2+KlDRLNoG+DdlyVMhzt9Tt4j8kD/5prPqZMYq1vW31PNalczfLywpFQ5fVfjOdIq0J6Qn3RrqcbxJfde1VRx+2R2vubJqzKLNdqJuR6Riv1jo0ayp+17RBzyQMQXQzNl/+v1iMxZk6Y5hdfXAdtPW8xV3V5qkD8SLhiIGNgrS5zadjQLwy9voPvc9RoLg1WG3pfit/Kiaqcv+Kea5GKdglhmr1DlqleNwb1XNcWDsiGalJr+K14UquQ9Itd1dF1fBgAWP3KVzz6vSkwkdkwejF8e7KP5eGZ2vuLkptWJ1jxZP29DK4Hws3WHMX/bCQDG+9paVVlsIQQKi+19onVndepp3cfM/GbyHhGtYSm7bx35RZcvanw4902DC6E1B1y3ua+vmyxcGzXohG0gcvhMrtuuOHXvQGJctG4p60/WHta833vGe/FnPv88Y9FedsFMurY1Hh10Ga5sUTaVN/0sV5w0olXIzl1v1LRbOyLJw1Lq7lSLjULtBO1eiePn81UFzbQP4W3qJZr6rLTTuXj6hx3OXgy9PCXA9UT19u+pQXFFaTSSOurj9bqPmcn5kH83C8pn1clnFNm9joh82rEvhma0Zl71bq6ceaa1j/l6tDvbi1ldo3tqF80MdWEZiKSfvYirXluOq9wUWdKqnRGo6VXuqiF28UNVTQDo6qf3XbVf/6qPKny+3jXAlA/NaC1z769ZI9JsDLWSUmFqyKCqzpRv9TdIfUFgVODqX9e4FlsLBt4W7dLazuoch/yiil6Q7zYfw+kLBfhOVmfF5nGIYshba7FOuR82H8P0xXsNh5tKNTpEPru7hyKR29sLK0+s2Oc++VUIofh+B6JddhSWv/Wmw+cAAOcuFhnu0PLEwP8MbQUgcOtaaCWpHT9f0ZvwyCD/zEhRz0DwFXfTTqmMVte0/ODUqq5rL4PZFZl9pbhUKJY+0NNRY4FFwPU7pD74Gn3HBvpgVpAVfJmnoc6jmLVauS5V1xeXKrZhmmw2kh3Jfx29fUby8Fdb8PbvqdiYdk73Oc7aT7LdKCLCgdt7VPQ2aJ3w9XJK/Gnn8WxFb6YVbbCDsAxE5MW5jKYJyud3SzMDjLqNfWmZxlSyDNl6HYl+qutxSxdlQaw7ezbCF+ON17Qx483bOlX6PcJBpEaqv3yf09r/An0VNX3JXsXSB3ru79dM8371r6hegiAULwq9TYTUil/U6zXlF5WisWqWknyb5gZoRWZvyXtEzAZsZlZcVge0WrPB5J9txbp0D3+1xdRU9VAXgl959+Q7u15ZZEB7vD5QgcipnAKX+/JlBxR/taNtfeUV9ws3tUOvZq6l2j3Vo2nFGO35i2UHESG06x6EEyEE3l2WimXli8lpnYTVw4ENaygTfqMD3CNSVFLRX2e0qqjezBf1vqs+YWjt+3Jm82FOmlxoz860ekbVeRSREQ4kJypPsv6a3u8P3pyIjWrFOJcJUN0v700sKa+5ckSjirAvmK1lk5p5AcVhutCdXJgGIhU/G30JtB4J5JLj36pKpMuvbPy1rLS/3reabGgm7cxFCCFw+0frcPtH68I6GFm2NxOvLdqLu2ZvBOB+sTcAuF41c8Zfxe2MmJiYoEv9O6r//u7OS8M7689ekwumEvB6tL4a6t6AJ4e0woZDymm76nL4dia/GDR7JHj8f/oLjcqrYatdVqdsanpxaSme+XEn+k1b7nzMl8e+G/9rXB9GTl5gze6Jxf4SnoGI7GejQGSJbCqrNHZnpkvQVx7731bF7byiwHSxPnh1Wa2KRQ/39cv7T1u0F+cuFmHdwbNYd/Cs7lTkDYfO4pfyKZ2h6vj5iqv2Z37coRmIqHNA1BVrfT1jxoydx8uqQbqrhClvq/RdU/fweHpBfFfvxqaep3VaKS4pDaql1rU2zRPfKE/CbRu45g39S3XssDPl0Iy516iHp+SM1iuShj5LSgU+kw29+5onC6HKlzVQF+cLF+EZiMh2dk//7tuPZbl/kg/JA6X/+65ioasaVf138nn0mpZImzoMLev6ZzZG82TjglmSv324FhO/+AupmRf80g67+XTtYc2reHU3e1x0JD4e0xUNqlfB27d3VvQ2+dprt3TQvP+eT8ytoiwf6ruQXzbUqe7hyfGwomUDjUquQNk0Zjl5kLRoZwbmbzuO/q8vR++pvwdNd7hWb+EWVVn4mMgIjOoRvNM+5T0ivsiX0BuaAYCj5UMxaw641n2yQx9ScZgWHwnLQKTUZI6Ip/Ir2WOxTqMo2hfrD0MIgcU7M5Ajy1nx1xCKP11RnidSLykOGw5V/K5a4+DyA1J6CC+Nrf4zauV7aOUDDWxTB6ufvBo36BQ485XESva29G5ekV8kXe2pr1Q/WnXQo/eMiozAsPb1XO4foSo4KH3Pc/KLcO9nm/DAF5uRfjYPmTkFOOkmD8UuzBydoiMjUCfRuCy/ncm/67ka09M95Rw21DhESsfQ95cfcHnMDofUQK7wbidhH4iY7QqTzgWtDHoJ5layq2/b0fMu9+06kY1lezMx4bNNlXpvO1hbHmhNWbAHM/+omHKoFQu+vriiRLcNjg9+oz4payV4RuktmhEA6hktnoqPjXJ+d4qdyxMof2dvitxprfirDs5X7DuFc7mFmLM6zeW5Rss12ImZ/KnK/o185fCZXK8WHJQHIjn5roFIYXEpTl9wDRzdbRtPp8La4TgTTMOGvmSPPTjA5FGn2aGZXuVXdvP/2QftdWptvPjLbo+7meW0vlf7Tl7A3XPMdYMHE3kdAK0v33uyK5ZAJggHmnrYRWtbRAZ4VoxcrA8SYaUTpfS7qQMRrdlp7sRFa7frqwk9nT+/unAvXpi/Cwc16mgES06gmXbaoQjWuoNncNVry3HTu2s8fq08ENHqVb7unVXo+uJSHDmj7Bn9ZE2a5tIaUoDiafxuh9j0p63HceBUeAxFy1m/B1ugRBZ9mB2akRICoyIjDOtqfL7+iPft0miLVHxNLljPy3rFitytLxGoKdNWUP8ttQ7EgarmqyVW54TviegIKRDR7hHRChTcvqfOybdH01qK4a3vNh9TrBklCZbZCWZaGRMZoVvFVsvBUxfw0i+73E6T9oRUyXX3iWyPXyufZq2Vu7PvZNmJefEu5cKiz/28CyNnrEO6agpuRUDh2ffGLvvEiPc9D+aCnd8DkXfffReNGzdGXFwcevTogQ0bNvj7I91S9oi47nz5RSU4o9EVKJFfoT9/Y1vFY95c3UlKTI4Pqmt9BAv1GL7EaGl7IHgDLzPUvT0v/7rH5TlWBmIxkZVfolya9SOdZHyRkKgORObeU3FxoB5n36VxcrTLSUeiN8wgtfMSnZosQNn2HXF5Q8ToBGfqQPbGd1fjo1WH8OjXW7xrrAZvh4cuFBQjTdbTYTQLSy/4PKzqKTHKETFil33i/MXgn3buKb8GIl999RUeffRRPPvss/jrr7/QsWNHDB48GJmZmf78WLe6Na7p/Flrx+/zyu/o8uJS3dfLd/C+LWorDhLv/J6KVfvdrzGgxd1USMmX43u6f5INxUVrn9TcBSLqy8K8whIs35vp1Xi03ZjpPrayR6RGfOVnZ0knEGnK5XzVlOxLqhmvL6JFfuIb3LYO+rTwrOieXU46Eq2v/prU087eHKNdIDLCgRrxMdgxebDm4yWqwoFSHsbmI+e9bq+atwHrsXPK/CCjablmh6Ck5HdPvzZ2GJqRFJeUOgs/hgO/BiLTp0/H+PHjcdddd6FNmzb44IMPULVqVcyaNcufH+tWy7oJzqEWraszdV0Lo5kJ1eKiXBKp7py5AYt3Zui8Qp/ZxNkEP5V397f4GO1ppgVuZhsVqf5GT3y7DeNmb/SoaJBdmcl/sbJHpGENZelwdSlxMzLLhwBSMy9oVjttkaxMAO/epKbLc9Tkwy+LdipX371Zp+dNzmZxiEtu0MFTF3DHx+vx0LwtAMoufvQWpJR6QvR6JYTw/2yM6Cjv9lH1LLEtquDITLKuetZdxaJ3rm0y+irZKTht/n8L0On5JS7DTqHKb4FIYWEhNm3ahIEDB1Z8WEQEBg4ciLVr12q+pqCgANnZ2Yp//iLVaxj61ird50ir76qHQqrGROFf11yGRwddpttlOuGzTdiT4Vn7Q30OuV7hLXc9Iuockp+3HgfgWdEguzJTIM/KWTMAFDUqrrqsttfv89C8Lejx8m8u96sD8A9Gd3H7XnmF+vuMmboqvpy27wvq3tBDqryZCIcDjw92XXl467PXmKqiqtV76MvwVm9YyB31deDiXSdxTvadUFbBNjmzQGPRO8lX916h35YAdoloTT/X8t7yA1i2JxPdXlqKlSZW8w1WfjvCnT59GiUlJahTR7laZp06dZCRod1bMGXKFCQlJTn/paSk+Kt5TmYq9Gnt0A9c3QIPDjBeATfttGzss6QUz/20E4sMekrMDs0Eq+o6Rdi0ApHbu18qezz4h2D0TP55l9vnWByHYN7GdOfPwzr4tm5JSalwWUk1Mc59IHE2Vz+Hy0wgYregX52kqbUej1avhjq418sf00wI92Ek4u3MNq0ej5M5Fb1mZqpgq9/CqLJqk0viddsSqMNv2tRhpkvwZ+cV4a45G3EqpwBjZlmfX+kvtpo1M2nSJGRlZTn/paenu3+RH0lfXm+nx8n3te/+OoY5a9JwbyXrgQR6gTNf0usR2X4sC68t2oNsxdTniqNCQVF4zq0f2LoOrutQD7FRlU8YrQz5CSClpnZVUyOt6+knV2vV3jGzdo58leJmtZUnFzNF2Oy24qk6yNAajrtgIhH+x4m9NWf1aQX7vjySeDt8+NZv+13uk/9ttqRXBKl6F2rqIRWjIRa94WH15/qb2d6d6zqY6zkJdn4LRC655BJERkbi5Enl+O3JkydRt25dzdfExsYiMTFR8S/QtHbGeDdXWG10DrTyAkunDGbhSLrojAFLRnZNwY8T+7h9H7tK0ukRefu3/Xh32QE89f0O533yA/O3fx3Veln580I3SPl4bFf8947LrW6GQr0kzwORUzn6q+A++9NOr9pRJ7FiSPTDO5VDOQkmelQuFpbg6R924Pc9J90+NxC2HT2PaYv2OmfdqfMbIiKUv7OeqMgIdGhYveJ2eYBQUFyKg6cuYIdsiQpfVmf2Jg4pKil1SVwGgA9XVFTaHfF+xTC+XqCgToI3mjWjV3+m7HWBC0Ru7Wqut3+llxMfgo3fApGYmBh06dIFv/1WMSZcWlqK3377DVdcoT9OFyjymQhCCDz9ww58sOKA5onN3fjnJ3d317xf3t1q5orhj9TTzp9H93RdO+KVWzqgTZBO3QWABDcB3U/luR+ActtprQshCdRCgOGsQ0PtAn5mqRNefWFsr8ZoWScBwzrUQ3NVsquZmhqzVh/CZ+sOB6RY4DkTeUD3fPIn/rssFW+X9xB8v/mY4vEIhwOdLzW+UJFUi43Ckkf6YtUT/Z29kAt2nMDVr6/Ade/84WHrzfEmqGnxfws075cfB+T0LjrUs8qMhmaM2umrDhEzuSYdZcGikVDIgzPDr0Mzjz76KD766CN88skn2L17N+677z7k5ubirrvu8ufHmiLPzB87eyM+W3cYUxfscZmTDpSVijZSO0H7SkW+O5qZgvmFrBjaize1D9ppunocDgf+dc1lpp6r7ob9cMUB51TGga2TnffnF4ZmICLPkbHaLV0aAtAuq25GZRJc9cRFR2LRI33xrkaPURWdaeJy8iqdS3adxCsL93iUrJiVV4T7P9+kWKFbbdmeTPzzy834Ycsx3eeoSTlk6l7API39/L93dNZ9nxZ1EpBSs6oz4f7VhXtdnuPL+jyeDs14mshf9hnapyv1scJo0TsjlU1gFkJg29HzijXB1Kbc3B6A+R4kX06xtjP/LdsJYOTIkTh16hSeeeYZZGRkoFOnTli4cKFLAqsVJt/QFoPeWAkAimzkwW+udHmuUUKrJCYqwiUhTB6Ry7+o249mob2Jq8wrmtVCQmyU4Y4dbB64ugWmLd7n9nnqZMIpC/ZgyoI9SJs6DFVk47yvLtqLbzaVHbS3P3dN0E5tVvtywxHnQctqo3s0QlKVaM2hw5Z13K/QfHefJpq5AGprJ12NqtGVPyTpXfVGRTicJy35TJ3xn5b1inRokIRrTc5meGPJPvy6PQO/bs9A2tRhLo8LIXDXnI0AgAXbXYcfJLFREYr8Db1gL1OjCup1JhKHjZIifZkj4unQzFGD9YX03kuvR8RlyMaigmY/bT2Oh+ZtQdPa+gmxjcqnv2vto63qJoRND4ia35NVH3jgARw+fBgFBQVYv349evTQL48eSM1qm1uKHnBdD0SLtLKs4nWyb5S8R+T6/5rvHrXT3HZ/k2pUFBSXGM6Uka9SLAUhgGt3tprdFjrbeTzL/ZNsICLCgRs7NXAOsfzjqmbOx94xuCqX6CUpq9VLqqKbR+SJqy6rjR4atUjkdTa08g22HjX/98jI0s97AZQXL0az4dRJpH/5+Ar46Dn9E75vc0SUQ93u1Kuuv1qw3gwcvYqj6gDFaGjGSGWPD9Kx6OAp/SULpDZpDR++NNweFx5WsNWsmUAyO30KABKruL9K04qCIyOAo+cuYtqivTjnZdlevWqkoahKTBS+3piOlk8txLK92sNhJ7PzPV4jo7C4FJ2fX4ym//kVSw260gMtK0hLOT8yqAVioyLQs2lNtEg2F9BPvqGt+yf5SFx0pGa9iNnjujl/1goO8otKsCb1tCK41aMuoqVmZlLEwwO1p/+nZgZm0TNf9ojIgxozs0+MYhW9ZONZqw9p3q/+vNKKimYeqex1iplrRikQ0ZqJ2dyDi+NQE7aBCAD0bOq+giMAtKzrPkH0oQEtXKYRLtpxEqM+Xo//LkvF9CXuhyNu7FTW1Tq4bcXQ1Wu3dgAAzWJGweradtqzpnafyMYT324zfK3WIoASvSuaa99a6QwE//6pfVYyNhpXt/M07dioSOx98VrMm3CF6avqO3s2Mnx8aHvtfcJXXrixLXo0reUcXtKqIxIZ4cAdH6/Hv/631W1vlbuTlpkqyQ/0b645i2PNgdMazy4jFZeT8nbsQr67msm1eM5gtlRdD2dmqYNKZ/0nDyORyk7fdRecAvrDToPb1vFJb2CwCutA5P5+zU0977Zu7qdaVa8ag98e66e476s/0zWTX3Xfo7wL+zLZuPvVrepg+3PXYGJ/c20NBmOuaOz1a+///C/dx6YscF0wDgAOGHSVWinKINjwZOgwGEREOPDaLR10H5/+t05+++zbu6fgzvJ9ThoizdAoNS8/SbzzW6riMfVJyt251sxJLTLCgXyNGjnP/Kh/kn72+rb4cnxPvDS8ndv3B4AnhuhfwPgyWVXew2ymN+hPjQsKaXry7hPZKCgu0VyJV4s6qHS36N1HY7pq3i8fUvImKDHTI6IXuL850v0QZygL60DETOGjOomxHhU0e2WEuXE+rXFU6UpCPbYZKgmYkiua1cIf/+6Pu3o39un7ul08z2aMxrBDMTWoelX9WTf+GIL8z9BWaFU3AS/cWHHSNgr+PlpV0fW/bG/FwpzP/rgDXV9cgkxFPRTlCt5vLd2P5bLXyK/S9aYTe5OjERMVgSua1TJd5M7oYsvbsuxaFEMzXu68Fwsq8sJaPrUQzXWm96qpe5/cLXp3datkzfulP9nUBXvQ4blFiplVZpgbmtG+v4qJKeehLKwDkVompiOaSVSVG97ZXJepVsAtXQBYuchZoDSsURXLdfJAwoXR37lXc9fk52AX6FWEJ/RthoUP91VUajVb2l3+t/lk7WGcu1iE2avTnPfJTzq/78nEG0v3Ydzsjc775FfUFw2mmL94k7meDX/QWyTPG/LjZImX5fOb1/GuF1Cvt0pvaEbveycFUB+sOIDcwhK8+Zv74XTF55oamgn9Y7s3wjsQMbH8+HE32fFqMVEReMDEMIrWGLKU4xAOgQgANDVY98EbUo5NsDA6KD0xuFUAWxIYdtiv1x86a+p5Wi2VBx/yU87Wo+ddnvvp2jRTn9O+gblicVoFDivL26UrtMj/tNn5Rfgz7azHs1Cqm5xdpeY6NKO/6J3ag1c3x7hejQEo6ziVvY9n7fAkWZWUwjoQqWqw7kBlbJeVUdbz+bojLvfpDc2EqtEGCYw9mtRUrPqq5bN7lBVtzR44AlnK2Rt1EmNDsqtWLxAZ2DpwdYXM9gIM1agnIu/RkU+rf+f3inwSab2kd5cdcHl9g+oVSZhfTSgrVmj279wpxVxVVS3vjdJeJsCXgYjcla8uwy0frDU1+0jO299RPgxWUiqw92RZLQ4zQ18REQ7MWZOm+ZineSJmnu2uSe6W+QjVJS3COhDxF3eVWAHg+fm7kH62YgyyoLjEWVjNT8cH2+nXsjZev7Wj5mPrD53FP682Xt24T/NLFLfNHjgW7QzsFN7s/CLsP+laqEivRszJbM+mJwcL+Yn8qWGtseChK/HQgBZ45/bAJep98XdzdYyiNQIWRUKmzq7W4bnFLlfWkvYNkvDB6Mux5smr0aO87lCL5Gq4u3cTTLq2FTpfWl23PTdVordvSNu6mosVav2O3tLaHJ5UlAWAsb2MZ1bpeeqH7c6fn/lxB9YdLOv1MnM5JxUY0+JpDSd3tWUA9xeZ027tiG6Na+BlnZois1cfQmpm6BU9C5NTnr5fHvT9InJ9TZa0/nlb2ZoKmTn56Dh5sbN64vHzng0HBSuHw4ERXRpi6zPX4N9DXIci6ibpFz3a9fxglyse+dVCTr5+jY5HvtrieWNlluw6ia3p500//+ppyzHojZXYpurCl5/MhslW2Uw0sWhbMGpYs+Kg36fFJWhdLxGPDLosoL0/7UwOhUh/q1xZVeMjZypmX600uNj4z/fbNe8/mZOPIe3qob6sZ8ThcOCZ69vg3qua4ZUR2rOKOjRMMrUisZ6ICAdWPXG1S6JkjA+niGudsz0dijNKZjZSKoDBb6zEF+uP4HNZEGh0zv/k7u6Y2L8ZbujYQPc5nnacHjnrmtzaKaW64rZOlXqnJpfE43//6IU7elyqOYX/5V/3YOB01+rfwS7sA5G29ZOQNnUY3hhZdmXer2Vt/PX0IGeVT298MNrciqk/by0r/fzl+nTFNL7cECrpbkZS1Wjc16+Z7irGWqRhtaWPXoV2DcpeJ/WIvLV0P9o/txiLy9ftUMsrKsHCHdqPuZOamYPxn/6JG99dbfo1py+ULXq2QpWcK7X30ppV0UyWL5MfZLN/zIqWnZga1fRtfpBZZmfn7DhWthZKVl5FQPvDFu3F2MxyV2H2Mp1y+b4KF3558ErFba2y8d7SStQM5Dope0/muASARr0PV11WG48PboXICIdLsCCpbFXruolxihlb7tqkVuRl0m8wCvtARDK8c0OseqI/Zo3thprxMZWaTlg1Jgo1TBSn2X0iG68v3ovN6co59eG63oDW2irN3VTubJ5cDeN6NQEAFJWf2N9YWpbt/n8/7NB93T/mbvKqjWmnPZvSJ+e6XHnFNMM+LSp60dRrFoWK5MQ4/L1PE0zs3ywocmCOnc8zLLzlqUQvp+HHu1m12qzWqkDfkxpH7midsy94cEHVvbF+ccm46AivCt6ZPeXLa63Il5aobIGzyAiHSw+IvE1S+YJQKlbpLQYiMik1qzrHgSu7DoPZku7v/J7qMo012GZ/+ErHlOq4u3dZUPHIwLJVevOLXKc+VlcFedIKo+ruciknId4mJ70vNypzB6TjXITDoVgNOpQ9dV0bPG7xjKBVT/R3+5wujWpg0PQVWOzDJQHMDFVIPbNywzvrDx94qrefpoVX9tp9bnnuTjWNoCsqIgKPXeP5ydrsIVzeSyFfPqKyJd+jIx0uPSDyNYievb4t9rwwJKSKVXqLgYgOK7OT/2aikmuoempYayx6uC/+eXXZl1PrSuupYW0Ut+W9Jq8srKiuKvUsSIXOtBL+tAIdX7pYWHFVqF4MS+r69WTdI6q8lJpVceDloYbPKS4VhvU/vFEnUT/nSTK8c0PFVN1buzT0aTn3z//eEzdfXhbYaJWXN2I426ySwxjSbKZHB13m8liEw3VYa/Zd3fDuHcZD4GYvJpUL9kH2s2e/UxVVj2eVmCiXQEQ93BJOa4kZYSCiQ1oPRb1+jLf0ygpr8bYLNxRERDjQsm6C8+T81m2dUL1qNKbd2hGHpgzF2klXuxyY5V/m95dXTJs8k1uIlftOOaf3jVC9btfxbLR5ZiGe/3kXdhzL8kvwuf+k/gJmpbKhGQosd70TJWbqlJv09u2dMbB1HUzs38z9k1F2pSzp0+ISn66SC8CZGO7JEOCna9PQZNKvePnX3ZqP+zObITu/2GXadf+WyejVzLh3x5vNJh+a8TRHRP158TGRLt/t+garDoez0EzP94EHrm6O5snV0Fs1RdRbg9oErlZCKOnauCY2Pz3IeTCup7EgVhODwmhjZm1w/qwulf/wV5tRKspW9Zy1+hBa10vEgoeuVL+FgqcHN6OS4tK5Tn3VZHYxRvIfKVlV7qrLauPwmVzMXp2GqjGRpnpMJvRtihs61scNHc0Pt0ZHRuCjMV2x4dAZXNfB98O00lBmqQCKS0pNzciR1r+ZsfIg/jO0tcvjvirNo7fYY4LGkI27PCOzi97J8/nOlCeWA4CnuaLqT6sSE6kIIm/p0hDJCeYDkXYNEjX3w1DEHhEdsVGRuLFTA1xSLdZn7/nDxN4BLd4UKsxcEf5nqPu8A3VJf3VBp90nst1Wg/R03DjKYL5eqbMCZNnvN/mGtrikWgyeu6Gt7mvId74YX5aX8LnJ2iIr9p3CVa8tx5w1aaaHbR4aYFwLR8+gNnXwf8Pa+KUarbx3oVCjF3DFvlPY62HCvK+KBI7o0lCz2qzD4XDJnXM3rGH2oqGFbLbSyBnrnD+b/Z3mrjuMZXszXY5T8TFRisDK04UstfJlJJVNpLUbBiJ+cr3GFVCnlOr4eKz5IRoyz93USACIjXYNPNTcLZwn785evjdT0ZWrxehiUz00M7ZXY2z8v4FoVdf8NGbyXq9mlyBt6jCf9XpeUi3G5crdVzNefEm+2J16eGb/yRyMnbUBg9/0rFaFr06LVWOi8PM/+2DSta4XFs9c1wY3daqPL8f3NPVenqwTphX8yIdm1h08g880yvbvOJaFp37Ygbtmb3TpEYmLjlBc7Pyy3bPp30aVb/2d2xZoDET8xCjBrK6JpDXyjJkuz0iHA/tfutZ5W+ui4vQF49oK8sBj3OyNmPzzLuPPNOgRkY5z8qteX+cDkDk7Jg/GtFs7YsszgyrxLg68ONy6RezMkg/FTF+iXNgtTTal96OVB3H+YiHUTmTludxn1HlwNrcQv+856dFVfNfGrqXOa1WLxZu3dcYVbnJDJJ58lbRWSF6degbP/FhWAuC2Gevw9I87sSb1tOI5x89XbAv150VEOBTBRGqmfr6YFqMVlhmIkClG8+LnTTAX0ZN5LetqF4OSS6oSjejICMWaH2qvLtoLoOzKcP421ysYdY+JVM5bb0jHaMVZ9dAMWadabBRu6dLQ4+qeHWXFsO4tzwcJJp+uPay4LZ9J89Kvu/HY11tdXnPFlN8BlBX3k8qaG4UYN727GnfP+RNz1x02eJaS2XXApBlAWjwZ1tIbBlFvH3X11A9WVCTHq7/HEQ6HovfJ09Er+bBOS1Wxu1AreshAxE/kiVQNayhPfEbrG5B36levgmevb6P7eGJclPNK8BKDVZd/3loWfAx6YyUe+GKzS3XWAo0rkVX7T6Hpf37FtPIgxsi53IorzIo6Im5fRjY1+Ya22PviEPwwsTfu6dMEDofDOUOuRxDWhlFfhf+2J1PzeZk5+Rg4fSV6TvkNgH4+xZhZG5wn78/Xawci0uq3cmZnrDw9TP8770kV03pezmb5S1Y9Vv09Pn4+D9FR2gslmiGf1q/uYc/z8dRyqzEQ8aNJ17ZCG42ZGLwC9o87DVbzXTNpgPNnT1ZdXrZXeSDWyiG5c2bZzJz/Lkt1W03ygS//cv68v3zxqnBZbTlY1DNY40jNgbKTd6eU6s4Tx6A2dbD00b745O7uxi+2IbMnSzPDDLFREYoig/tkU9mlRfheuKkdnhrmOgtHXu5+ms7CmABQIz4GqS9dqxnMe1KfR2s2nhZPQok1B84ohmaKPUwwlS+JoJ6+zKEZMu3eq5rh14eudJk2CgArHu8X+AaFOPnYtzppUN71qjUerKewWHnwyMk3DjR2n8hG4yd/QeMnf4EQwqU7dnXqGQBl4+avLizrQZH3kpD13rrNdTXgb+/rpflcvZNL8+SEoCxW5e1sDK34xSjxW3p+2/qJmtOHoyMj8Me/++P9UZfjZjeVZaMiIzTX6fEkWdVoCNXs7JlcjV4K+ft6OjQjryarboO7JPlgw0DEInqJSNew3kilLP9Xv7IaDP83UPc5uYX6wUTTS+LR6fnFztuKAkelAv9dlmr4+bd+sNb589oDZzQXAztzoQB//2Sj83ZOmC1yaHfqcvvz/9kHXRrVwPbnrsFldZRTMM8GaRA5484uACpqiki8LeqntZ8bPr/86UahQsMaVXFt+3qmejbUPQYAcKHA3DIbAJB+Tn/dnY1pFWuBGQUTWgXi5L3f6jwPd1Jkq1Vf276e4jH5IqmhgIGIRYp1KjdGa3yhyLzGl8RjUJs6hsWO/pQdWNQOns7Fedk6QRsOnXX+/NcR/ddpycwp0DxwdX/5N8XY8gU3vSwUeNJyALufH4J25VM7E+KiMela5TBC/5a1XV4bDKTfST0Us0tjSruZJFOzV/vzNhzByex8521fDVNrDW/OWHnQ9OuNhppOVXKV4sFtyy4uv/RiksLmpwdh1RP9UScxDmlThznzDTk0Qz6hVyjt9m6Xat5Pnpv/zz6okxiL/1NVgnzztk6K21ufucblylAiXyrd06vfcxcLNa8T1d3feSF2UAkFb97WGWlTh7kEtOpaNGaqktqRNGxUVCJw6wdrUFoqkJmd7xwulHtKYxXrOavTnD8v35tpuj/kye+2o8fLv+FY+bRXT4ZJjWTKghuJu2FUudu76x935bNvpJ6f7PwiPDRvs6n3/vDOrkibOgw14z2bkQWU5cDIe0bqV5cCEfaIkA/ERUcq8kRioyKw7F/90KeFb4orUdlV37pJAzC+b1PF/T2aVNQh+OvpQUiqGm04nv1V+aq5nixrDgCTf96Fr/9M9+g1ZG/xskTnnx/oY2FLKkc+TXdj2jn8kXoaB0/nGrxCSb4q8bjZG70u8W5UPdQTkRql4bWKoum5ulWy7mNaeR7v/LYfP27xrECZL0gBJHtEyGfkEXKdxDjDNVPIO1pdv7UTYvHGyI54f9Tlzr/Bh+Vj5lr+/e12AN4tCy5fhI+CX7sGSRjavi7u7dsU7Ru6VuMMFnGqHLUxszZg3oYjXr+fp1NTJdXifBOItK3n+re4zaCXQ01rQoFEnnQs/ZYns90P19yrugDyhbjyntt8JquSr8inkZopyEW+M7xzQ0UC2OC2dZ0rLmvJztdOfHtqWGv89thVbj/PaCi8vgfTRclakREOvDeqCyZpLPwWTLQSQH+oxBX+ayZq6Gip4qOZRer1mXZMHuzxrCWteiaAcjhu+9HzAIxn2Uj6Xub7/CHpd9KrI5JbUOyXVcT9jYGIhSIjHJhyc3u0qpuAyVzozHLv3nG57mNHz+ZpTuMrKRWmFrOqanBQvL5TcFXjJPIVT6bYGqmbFKeY7eTNkM8z12kXR5PndH3951EA5qq2+mPBQmlNrXMapfdz8ovQ9tlFGPD6Cp9/rr8xELHY7d0vxcKH+zqTkMg6EREOpE0dhl3PD3apZDj07VXaM2DKD34fjNYf2gHKkhoTdLqhR/fQL8RGZCdG1Yu94UnRMXf6VHLxQr22aC3fYCZJ2UyviacalM+aOXbOdb2fzeUz8dRl6IMBAxEilaoxUZh2a0eXYKREIxLpVL7WyJB2dbHsX/0wrldj3NSpvku1yKy8Ivz1tPaCanozqIj86b5+zTx+jdHsErnbuqV4/N6VdVv3FCRVicbt3X372ervfX5RCXYdz3L7On9U0JbWyTp23jUQ8UcPTKAwECHS8cqIDorbuRqzZuQHmyaXxOO5G9rizds6ay7hHR0Zga80agkY1Twh8pdHB12G90fpD0dqiYuOxAs3uh9G1psO70/JCXH486mBmHJzB/dP9sBLv+xW3B47awO2HnUfiPij+qlRj4i8lkpxkOWJMBAh0hEZ4cD1stVUXyw/IEnl442uvFrU0c4b6dFUuYS5VmBCFAjRkREuFTvV3r3jclyh2mfvvKIxDk0ZikNThuquNqxV6TQQtC4AKmtPRo7i9npZkUMjRiUBvNWwvEckIzvfJSlV3iNSVOLlfGqLMBAhMvCfoa61CPq2rI1NTw3Ey8Pb675OffDWm5odG4TrkVBoUSdpvifrJenWuAbeGNkJVzStpciDcjgccDgcLrNVJN2b1NK83+708rjsQio3UCpce2jlMZhWuXk7YyBCZEBrVc4zFwpQq1qs4Riww+HAmyM7ASgrrLT00YopvlLJZyI7uLtPExyaMhTXd6yPsVc0wtD29bDqif5Y8NCVSE6MQ92kOHw5oSeGaExv16oW+t6oyzGwdTIGGBQJs6uvJlxR6fcY0CoZV7a4BFdWMnlWi3z4xah0S0FJcNUZsXf4R2QDzWrH48CpiqqTyQnm6n7c1LkBbtJYOfShAZdh0c6yypTt6if6ppFEleBwOPDO7RWrDsvLinvi9u4pGFo+3DNzXDc0fvIXl+eM7nkp5q474lXJc3+rEa9f2AwAoiMdboc9XhzeTvMCxhfk1z7qInLylcLZI0IUYsZc0VhxW706q6fa1E/E44Nb4o2RHYN2rRIiibwq8fxtJxSPXX5pdQBA9arReOu2Tri2XV38Z2hrbH56ENY8eXUgm2mKvMikFjO5F+7eozLKhsTKfpbPKj6RlYf7Pt/kvB1sOSLsESFyY3TPRnj2p53O276YJjexf/NKvweRHQxuWzFk00pVIfrb+3rhyNmLuLRmVTgcDtzYqayHsKr9OkMAlBUM69P8EvyRetrr94j38yw4qSNE3iNyxZTfFc9hjwhRiFEHHgdP6S8ZThTO/tZVOZPM4XCgUa14v9TU8JcbK1npOFC9nDe/twYlpQI5GstPMBAhCkGv39rR+fNdvZtY2BIi+1nxeD+8ObITRlze0P2TbW73iRz3T7KBY+fz8MyPO9D+ucUujxUyWZUo9Izo0hBXtrgEcJhPViUKF41qxaNRrdBYPVyrcKFdfb5ee8VkeeJqMGCPCJFJyYlxDEKIQtzANt5Pr+/f0vcr7nqjkJVViYiIgtMgk4HI8n/1w/x/9sHeF4c476segCzcCX2bun0Oc0SIiIiCWK3yGidGE+QS4qLQrkESYqMiMeXm9mjfIAmTNCox+1pSFeNaJ0DwBSLMESEiIpL5/bF+yMzJx71zN+GgrJihnHw9ndu7X2p6ZeLK2nfSfTKteh0au2MgQkREJJNUNRpJVaN1gxAAqGLROlE/bjnu9jnB1iPCoRkiIiIP2bkqckFJKXYez8L6g2esboop9t2SREREpDD7rm5un1NYXIphb/+BkTPWISMrPwCtqhwGIkRERBoS4iqyF7Y9dw1mju2KKtGRigUCA61/S/1VjS+rUw0A8ML8Xc77Dp/RH16yCwYiREREGl4d0cH5c2JcNAa0roMdkwfj+o6VKwPvL1oL7gVDTREGIkRERBqubV8PM8d2xaon+jvv88Wil5Wl1yOzJf28y33BkLjKWTNEREQ6BrT2vtKqvwz0oE0XgqBkPXtEiIiIgkhctPapu0H1Ki73PTRvCzamnfV3kyqFgQgREVEQcTi0h4f6Xqa91s2//rfVn82pNAYiREREQaZhDdfej8cHt9R87rncQn83p1IYiBAREQWZHk1qOX+OinBgYOs6qBmvvehedr6980SYrEpERBRkWtdLcP6878VrIY3W3NYtBbtPZGPr0Sy377E1/Ty2Hj2Py+okoGfTWm6f7y8MRIiIiILM37qlYMexLNzSJQURsinFU8trn3y76Sgec5MbsnzvKbyxdB/u6HEpAxEiIiIyLzEuGm/epl/htWNKktv3KBUCABCpk/waKMwRISIiCjGxUe5XB5YCEatrtDEQISIiCjFx0cpAJK+wxOU5zkDE4kiEgQgREVGIqRqjDETO5BYgNTMHL87fhfyisqBEWoYmIhSHZtLS0nDPPfegSZMmqFKlCpo1a4Znn30WhYX2nstMREQUCuJjo3B/v2bO22dzCzFw+kp8/MchtHp6IQBASDkiFveI+CVZdc+ePSgtLcWHH36I5s2bY8eOHRg/fjxyc3Mxbdo0f3wkERERyTwxpBVW7DuFncez8ev2DJfHpaEZiztE/BOIDBkyBEOGDHHebtq0Kfbu3Yv333+fgQgREVGASEXOPlhxwOUxuwzNBGz6blZWFmrWrGn4nIKCAhQUFDhvZ2dn+7tZREREIauWTrVVIMym76ampuKdd97Bvffea/i8KVOmICkpyfkvJSUlEM0jIiIKSTXjY3UfC8rpu08++SQcDofhvz179ihec+zYMQwZMgS33norxo8fb/j+kyZNQlZWlvNfenq6578RERERuWWX6bseDc089thjGDdunOFzmjZt6vz5+PHj6N+/P3r16oUZM2a4ff/Y2FjExupHb0RERGRedn6Ry33tGyThQkFxcOaI1K5dG7Vr1zb13GPHjqF///7o0qULZs+ejYgIliwhIiIKpJHdUvDNpqOK+7Yfy0Ln5xejb4uy83lQDc2YdezYMfTr1w+XXnoppk2bhlOnTiEjIwMZGa7Th4iIiMg/ujWuiU4p1V3uLyoR+G1PJoAgG5oxa8mSJUhNTUVqaioaNmyoeEwqoEJERET+17hWVWxJP6/7uNVDM37pERk3bhyEEJr/iIiIKHCSqkQbPh7FtWaIiIjIXx4c0AJXt0rGB6Mv13zcXaDibwEraEZERESBV6taLGaN66b7ePWq+kXPAoE9IkRERGEiMc61/8HqHhEGIkRERGFi6ogOLvdVr8pAhIiIiAJgaPt6iI+JVNzHHhEiIiIKmK3PXqO4zUCEiIiIAiYqMgLNk6s5b8dFRxo82/8YiBAREYWZmvHWzpSRYyBCREQUZmIi7XP6t09LiIiIKCD6t0q2uglODESIiIjCzPUd6gEALqtTzc0z/Y+VVYmIiMJMcmIctj57DarGWJuoCjAQISIiCktWT9uVcGiGiIiILMNAhIiIiCzDQISIiIgsw0CEiIiILMNAhIiIiCzDQISIiIgsw0CEiIiILMNAhIiIiCzDQISIiIgsw0CEiIiILMNAhIiIiCxj67VmhBAAgOzsbItbQkRERGZJ523pPG7E1oFITk4OACAlJcXilhAREZGncnJykJSUZPgchzATrliktLQUx48fR0JCAhwOh9XN8bns7GykpKQgPT0diYmJVjfHctweStweStweStweStweSlZvDyEEcnJyUL9+fUREGGeB2LpHJCIiAg0bNrS6GX6XmJjIL44Mt4cSt4cSt4cSt4cSt4eSldvDXU+IhMmqREREZBkGIkRERGQZBiIWio2NxbPPPovY2Firm2IL3B5K3B5K3B5K3B5K3B5KwbQ9bJ2sSkRERKGNPSJERERkGQYiREREZBkGIkRERGQZBiJERERkGQYiREREZBkGIn6Ul5dndRNs5fDhwzh69CgAoKSkxOLWWOvUqVM4f/48SktLAcD5f7jKz8+3uglkYzyWKoXasZSBiB8UFRXhvvvuw80334wxY8Zg3bp1plYgDGU//vgjmjRpggceeAAAEBkZaXGLrFFUVIR//OMf6Nu3L4YOHYq7774bJSUlbtdiCFWFhYV45JFHMGrUKIwZMwarVq2yukm2sH//fkybNg179+61uimW4rHUVSgeS8Pz6OdHGRkZ6NGjB7Zt24brr78e27Ztwz/+8Q+89tprAML3ynfDhg3o0aMH0tPT8e233wIIjUjeE6mpqejWrRv27t2L9957D0OHDsXatWud+0a4+eGHH9C8eXNs2bIF/fr1w5YtWzBp0iTn/hGOSkpKMHHiRLRv3x67d+/GqVOnrG6SZXgs1RaKx1IGIj62evVqFBYW4uuvv8b999+PFStWYPjw4Xj22Wexc+dOREREhFVELx0ssrKy0K1bN3Tu3BlvvfUWioqKEBkZGVbbYsGCBahWrRp+/vln9O/fH0888QQaNWpkemGoUHLgwAHMnTsXd999N5YtW4Z//vOf+O233xATE4P9+/db3TzLTJ8+HVu3bsWKFSswc+ZM9OnTBwDC6nsi4bFUKZSPpQxEfETaSU6dOoVz586hQYMGAMpWH7z33nvRp08f3HvvvQAAh8NhWTsDTTpYpKamYvTo0Rg+fDjOnDmD999/H0BZ12uok/aN06dPIyMjA9WqVQMAnDx5EufOnUN8fDz27NljZRMDRjpYFhYWokOHDhg7diyAsiu62rVrIzIyEgcOHLCyiZYQQiA3Nxfff/89xo0bhx49emDt2rWYMWMG/vjjD+Tm5lrdxIDhsVRbKB9LGYhUwowZM/DFF18gNTXVOcYfGRmJunXrKsa669atiyeffBIbN27EkiVLAITmFY58e0hKSkrgcDgQGRmJgoIC9OzZE8OHD8fMmTMxevRoTJ8+HQUFBRa22j+kbbF//37nvtGpUyfk5eVhyJAhGD16NJo1a4bY2Fi8+eabuPrqqzFr1iwAoblvbNiwAUDFSaZ169Z45pln0KRJEwBl35vCwkJcvHgRV1xxhWXttIrD4cDx48dx8OBBDBkyBI899hhGjBiBTz75BCNGjMDw4cORnZ1tdTP95ptvvsHSpUtx4sQJHkuh3B6SkD6WCvLYwoULRe3atUWnTp1Eo0aNRIsWLcTrr78uhBBi27ZtonXr1mLq1KmioKDA+ZqMjAxxww03iDvvvNOqZvuN1vZ44403nI+fOXNG1K1b17k9HnnkEREXFyeqVKki/vzzT4ta7R9G+0ZJSYnYtGmT+PTTT0WLFi3EN998I4QQ4ty5c+Kll14StWrVEkVFRVY23+e+//57Ub9+fVGrVi1x6NAhIYQQxcXFzsdLS0udP+fk5IgWLVqIdevWBbqZAbd+/XohRNk+Ibl48aJo06aNGDt2rBgxYoTYtWuXOH36tNi+fbuoUaOGePzxxxXbKxR8+umnIjk5WXTv3l3Url1b9O7dW3z77bdCCCH++usv0aZNm7A6lmptj++//975+NmzZ0PyWMpAxAu33HKLmDBhghBCiH379olp06YJh8MhfvrpJyGEEPfdd5/o1q2bWLZsmeJ1I0aMEGPHjg1wa/1Pb3vMnz9fFBcXi5MnT4pbb71VfPnll6J9+/bikksuEdddd51o1aqV2LBhgxBCeXIKZnrb4ueff3aedN566y3RvXt3IUTFiXjlypUiPj5erF692pqG+8HcuXNFt27dxG233Sb69Okj7r33XsPnL1y4UNSrV0+cPXvWeV9GRoa/mxlQRoHZ2bNnxT333CMSEhLEzTffLEpKSpz7zMcffyySkpLExYsXrWq6TxUVFYk333xTtG7dWnz88ceioKBArF69WowZM0Zce+21zt9zwoQJonv37iF/LHW3PfLz84UQQhw7dkyMHDky5I6lHJoxSZR3/x06dAhLly7FzTffDABo0aIFHnvsMdx+++147LHHcPr0aTz33HMoLi7GjBkzcOzYMed75OXloWbNmpa039fMbI9//etfOHnyJIqKivDNN99gzJgx6Nu3L/bv349XXnkFjRs3xqOPPgoguKegmdkWTzzxBA4dOgSgrGZGcnIysrOznWPcf/zxB7p06YJOnTpZ8jv4kpTB37x5cwwYMACvvPIKbrjhBixfvhzLly9XPEfu+++/R79+/VCjRg1s3rwZ/fv3x3333RcysyM+//xzvPzyy+jbty9at26NqVOnAqjY92vUqIEBAwYgJibGOaVb2rfatWuHmJgY7N6927L2+1Jubi5OnTqFsWPH4q677kJMTAx69eqFNm3aIDs7G4WFhQCAyZMno6ioKKSPpYD77SHlf5SUlODrr78OvWOptXGQ/e3bt0/RHZqXlyeSk5PFjBkzhBDC2UV2/vx5UbVqVTFlyhQhhBBfffWVuPLKK0WjRo3E66+/Lu68806RnJwsVq1aFfhfwoc82R5VqlRxbo8vvvjC2R0t+eCDD8Rrr70mSktLg7LL2dN945VXXhFCCPHJJ5+Ibt26iUGDBolvvvlG3H333aJ27drigw8+CPwv4UPq7SGEcA417dixQ9xwww1i6NChzsfkzy0pKRE33nijeO2118QDDzwgIiIixJgxY0RhYWFgGu9H0hXqunXrxJNPPikOHz4sXn31VdGyZUvnlb60r1y4cEE8/PDDwuFwiCVLljjfY9q0aWLQoEGKoZxgo94/Nm/e7Nw20u/1+eefi06dOimGYv73v/+FxbHU7PaYN29eyB1LGYjo+Oqrr0Tjxo1Fy5YtRffu3cXMmTOFEGUHijFjxojBgwc7dw7pYDlp0iRx6aWXOt/j6NGjYsKECeKmm24SQ4cOFXv27An8L+IjvtgeEumLEoxdiEL4ZlvMnTtX9O3bV/Tp0ydk9w0hlMHGrFmzRJs2bcSsWbOEEMr8iCNHjgiHwyEcDofo1auX2LVrV+B+AT/xNDCTvg8HDx4UY8aMEfHx8eLmm28Wt99+u6hZs6b48MMPhRAi6E406v3j448/Vjwu3w/uuOMOMW7cOCGEUJx8Q/lYanZ7aAXlwX4slTAQ0bB48WLRuHFj8e6774qFCxeKRx99VERFRTmvdOfMmSM6d+7sPDBIB5eNGzeK2rVri40bNyreLy8vL7C/gI9VdnsEcxKVWmW3hfxKpqioKOhzILS2R3R0tJgxY4ZznF/aBkePHhX33HOP6Natm8jJyRFCVJxsduzYIUaOHKnoBQhW3gZm6kTlDz74QDz++OPirrvuCtoTr9H+IR0Xpav4vLw80aFDB/HZZ5/pvl8oHku92R7BHnioMRCRkQ4SkydPFl26dFFEoPfff7/o3LmzWLRokcjOzhajRo0SvXr1ciacCVF2AKpfv744ePBgoJvuF9weFbgtlNxtj65du4rvvvvO5XXz588XXbt2Fc8++6zYunWrGDZsmDhy5EjA2u1vlQ3MQmEoSgjv9o9jx46Jxo0bi3379gkhynqUHnnkkcA12o+4PYwxWVVGShzctWsXmjVrhujoaGeS0Isvvoj4+HjMnTsXkZGRmDhxIiIiInDbbbdhzZo1OHLkCH799Vd06dIFdevWtfLX8BlujwrcFkrutkdcXBx+/PFHZGRkAKhITu3fvz+6d++O559/Hl26dEFxcTGSk5Ot+SV8SJQnla5duxa1atXC+PHjMXjwYLz++usYP348ZsyYgYULFwIAoqKiAAANGjTA8OHDIYTAtGnTsG3bNtx8881IT0+37PfwFU/3DwBYunQpUlJSUK9ePTz00ENo06YNDh8+jKKioqCvFcLt4Ya1cZC1Fi9eLP75z3+KN954Q9FlPmPGDJGQkODs/pKi1xkzZojmzZuLP/74QwghxJ49e0SXLl1Ey5YtRZ06dUTnzp2DtgtVCG4POW4LJW+2x2WXXSaWL1/ufO6FCxfEG2+8ISIjI0W/fv3Etm3bAvtLBMDIkSPF3/72NyFExbY4e/as6NOnjxg7dqw4ceKEEKKiaz03N1fcf//9wuFwiKioKDF48GDnVM1g4u3+ISXrlpaWiltvvVXUqFFD1KpVS7Rt29ZliDuYcHt4JiwDkePHj4vrrrtOJCcni1GjRon27duLpKQk5w6zd+9e0aBBA/H0008LIZRJU3Xr1hXTp0933s7JyRGHDh0K6iJM3B4VuC2UKrs95IXtdu7cKXr06CE+/fTTgP4O/sDArIyv9o/c3Fxx3XXXiYYNG4p58+YF/PfwFW4P74RdIJKbmyvGjh0rRo4cqRiv7969uzM7OTs7W7z44ouiSpUqzvFraYzvqquuEn//+9+drwu2DHY1bo8K3BZKvt4eoYCBWQVf7x/BntTO7eG9sMsRqVq1KmJjYzFu3Dg0adIExcXFAIChQ4di9+7dEEIgISEBd9xxBy6//HL87W9/w+HDh+FwOHDkyBFkZmbipptucr5fsC+6xO1RgdtCydfbI9hdvHgRkyZNQnx8PNatW4e5c+di27ZtaNmypXPhsXr16uG+++7DtGnTkJ6ejpiYGOd4fsuWLbFz507n+7Vp0wbr1q3DnXfeacnvU1m+3j+6dOli0W/iG9welWBhEGQZecayNGf7jjvuEOPHj1c87+jRo6J58+aicePG4pZbbhH169cXV199ddBPuVTj9qjAbaHE7aE0YcIEsWDBAiFExeyX5557TvTo0cN5ZXvw4EHRu3dv0bNnT5GWliaEEOLw4cOidevWYv78+dY03E+4fyhxe3jHIUSopd96p0+fPhg/fjzGjh3rLCkdERGB1NRUbNq0CevXr0fHjh2dy5aHOm6PCtwWSuG8PYqKihAdHQ2gbCXhiIgIjBo1CvHx8ZgxY4bzeceOHUO/fv1QXFyMrl27Ys2aNWjVqhW++OIL1KlTx6rmB0Q47x9auD1MsDoSsoMDBw6IOnXqKMbk5GO74YbbowK3hRK3h6vevXuLOXPmCCGEYqG6/fv3i3nz5olHHnnE+Xio4/6hxO1hTtjliMiJ8s6gP/74A9WqVXOOyU2ePBkPPfQQMjMzrWxewHF7VOC2UOL20Hbw4EGkpqaiXbt2AMqudKXcgObNm2PkyJGYPn16yF/tcv9Q4vbwTJTVDbCSlEy4YcMGjBgxAkuWLMGECRNw8eJFfPbZZyFRaMkT3B4VuC2UuD2UhBBwOByaJ5qMjAxMnjw5rLYJ9w8lbg8PWdgbYwt5eXmiefPmwuFwiNjYWDF16lSrm2Qpbo8K3BZK3B6uJk6cKJ544glnaffk5GSxaNEiq5tlCe4fStwe5jFZFcCgQYPQokULTJ8+HXFxcVY3x3LcHhW4LZS4PSrk5+ejffv2OHDgAGJiYjB58mT8+9//trpZluL+ocTtYQ4DEZStgxEZGWl1M2yD26MCt4USt4cSTzRK3D+UuD3MYSBCROQlnmiIKo+BCBEREVkmrKfvEhERkbUYiBAREZFlGIgQERGRZRiIEBERkWUYiBAREZFlGIgQERGRZRiIEBERkWUYiBCRV8aNGweHwwGHw4Ho6GjUqVMHgwYNwqxZs1BaWury/MGDByMyMhIbN24EAKSlpTlfr/dvzpw5WL58ue7jGRkZgf61icjHGIgQkdeGDBmCEydOIC0tDQsWLED//v3x0EMP4brrrkNxcbHzeUeOHMGaNWvwwAMPYNasWQCAlJQUnDhxwvnvscceQ9u2bRX3jRw50vkee/fuVTx24sQJrmJKFAKirG4AEQWv2NhY1K1bFwDQoEEDXH755ejZsycGDBiAOXPm4O9//zsAYPbs2bjuuutw3333oWfPnpg+fTqqVKnifC0AVKtWDVFRUYr75JKTk1G9enW//05EFFjsESEin7r66qvRsWNHfPfddwAAIQRmz56N0aNHo1WrVmjevDm++eYbi1tJRHbBQISIfK5Vq1ZIS0sDACxduhQXL17E4MGDAQCjR4/GzJkzPX7Phg0bolq1as5/bdu29WWTicgiHJohIp8TQsDhcAAAZs2ahZEjRyIqquxwc/vtt+Pxxx/HgQMH0KxZM9PvuWrVKiQkJDhvR0dH+7bRRGQJBiJE5HO7d+9GkyZNcPbsWXz//fcoKirC+++/73y8pKQEs2bNwksvvWT6PZs0acIcEaIQxKEZIvKp33//Hdu3b8eIESPw+eefo2HDhti6dSu2bNni/Pf6669jzpw5KCkpsbq5RGQx9ogQkdcKCgqQkZGBkpISnDx5EgsXLsSUKVNw3XXXYcyYMejSpQtuueUWtGvXTvG6lJQUTJo0CQsXLsSwYcNMfVZmZiby8/MV99WqVYtDNERBjoEIEXlt4cKFqFevHqKiolCjRg107NgRb7/9NsaOHYvNmzdj69at+Oijj1xel5SUhAEDBmDmzJmmA5GWLVu63Ld27Vr07Nmz0r8HEVnHIYQQVjeCiIiIwhNzRIiIiMgyDESIiIjIMgxEiIiIyDIMRIiIiMgyDESIiIjIMgxEiIiIyDIMRIiIiMgyDESIiIjIMgxEiIiIyDIMRIiIiMgyDESIiIjIMv8PpPYWYhCY/6gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pc1.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGVCAYAAAA2bRHKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wV1dmAnzNz2/alF+kKAhYUKzYkYrARe4sGjKj5LFFjjEpiLFjQWEg0Bk1E0NiNxtiCBcUOsYEKiJSFpeyybN+7t83MOd8fc+/dvdvYXbbBnuf3u8qdOTPzzuzcM++8VSilFBqNRqPRaDS7CEZnC6DRaDQajUbTErTyotFoNBqNZpdCKy8ajUaj0Wh2KbTyotFoNBqNZpdCKy8ajUaj0Wh2KbTyotFoNBqNZpdCKy8ajUaj0Wh2KbTyotFoNBqNZpfC09kCtDVSSrZu3UpWVhZCiM4WR6PRaDQaTTNQSlFVVcXAgQMxjKZtK7ud8rJ161YGDx7c2WJoNBqNRqNpBZs2bWLQoEFNjtntlJesrCzAPfns7OxOlkaj0Wg0Gk1zqKysZPDgwcnneFPsdspLwlWUnZ2tlReNRqPRaHYxmhPyoQN2NRqNRqPR7FJo5UWj0Wg0Gs0uhVZeNBqNRqPR7FLsdjEvGo1GsyOUUti2jeM4nS2KRtOt8Hq9mKa50/vRyotGo+lWxGIxCgoKCIVCnS2KRtPtEEIwaNAgMjMzd2o/WnnRaDTdBikleXl5mKbJwIED8fl8upilRtNBKKXYvn07mzdvZuTIkTtlgdHKi0aj6TbEYjGklAwePJj09PTOFkej6Xb06dOHDRs2YFnWTikvOmBXo9F0O3ZUelyj0bQPbWXp1L9gjUaj0Wg0uxRaedFoNJrdhAULFpCbm9uibS666CJOO+20NpWjpftcvHgxQgjKy8sbHdOac2sNHXUczc6hY140Go0G+HxtMaWhWIccq2e6jwl79W72+Isuuojy8nJeffXVlOWLFy9m0qRJlJWVkZuby7nnnstJJ53UxtKmcscdd/C3v/2NFStW0LNnz+Ty5cuXc+ihh/Lyyy/zl7/8BaVUu8rREEII/v3vf7e5MtYelJaWMmvWLP79739TUFBA7969OeGEE7jtttsYMmRIvfGzZ8/m5ptv5p577uF3v/tdyjrHcbjvvvtYsGABGzduJC0tjZEjR3LppZdyySWXdNQpdSja8qLRaIiGLPK+3U5F3tbOFqXTKA3F8HvMDvm0l5KUlpZG375922XfCWbOnMngwYO58sork8ssy2L69OlceOGFnHLKKeTk5GjrRROUlpZy+OGH89577/Hoo4+ydu1ann/+edauXcshhxzC+vXr623zxBNPcMMNN/DEE0/UW3f77bczZ84c7rjjDlauXMkHH3zAZZdd1qQla1dHKy8ajQbHVmzLq+S7pz5m7XsrO1scTStpyOVx55130rdvX7Kysrjkkku46aabOOCAA+pte//99zNgwAB69erFlVdeiWVZDR7D4/Hw1FNP8eqrr/Kvf/0LgLvuuovy8nLmzJkD1HcbSSmZPXs2w4cPJy0tjXHjxiW3bepchgwZQnp6OqeffjolJSXNvxDAhg0bEELwyiuvMGnSJNLT0xk3bhyff/55i4/zn//8h/HjxxMIBBgxYgS33347tm0DMGvWLAYOHJiy3cknn8ykSZOQUjYo2x/+8Ae2bt3Ke++9x4knnsiQIUM45phjePvtt/F6vSmKIcCHH35IOBxm1qxZVFZW8tlnn6Wsf+2117jiiis4++yzGT58OOPGjWPGjBlcf/31LbpmuxKtVl4++ugjpk6dysCBAxFCpJgzLcvixhtvZL/99iMjI4OBAwcybdo0tm5t+q3utttuQwiR8hk9enRrRdRoNM1ECFAKlGXh6OJtuw3PPPMMd911F/feey9fffUVQ4YMYe7cufXGffDBB6xbt44PPviAJ598kgULFrBgwYJG9zt69Ghmz57N5Zdfzttvv83s2bOZP38+2dnZDY6fPXs2Tz31FI8++igrVqzgN7/5DRdeeCEffvhhg+OXLl3KjBkzuOqqq1i2bBmTJk3izjvvbNU1+MMf/sD111/PsmXLGDVqFOeff35S8WjOcT7++GOmTZvGNddcw8qVK3nsscdYsGABd911V3L/w4YNS7pnHnnkET777DOefPLJBrPapJQ8//zzXHDBBfTv3z9lXVpaGldccQVvv/02paWlyeXz5s3j/PPPx+v1cv755zNv3ryU7fr378/777/P9u3bW3WNdkVarbxUV1czbtw4HnnkkXrrQqEQX3/9NX/84x/5+uuveeWVV1i9ejU/+9nPdrjfffbZh4KCguTnk08+aa2IGo2muQgAN0ZB0fGxCpod88Ybb5CZmZnyOfHEE5vc5uGHH2bGjBn88pe/ZNSoUdxyyy3st99+9cb16NGDv/71r4wePZpTTjmFk08+mUWLFjW572uuuYZ9992Xk046icsvv5xJkyY1OC4ajXL33XfzxBNPMGXKFEaMGMFFF13EhRdeyGOPPdbgNn/5y1844YQTuOGGGxg1ahRXX301U6ZMaVKexrj++us5+eSTGTVqFLfffjsbN25k7dq1zT7O7bffzk033cT06dMZMWIExx9/PHfccUdSdtM0efrpp1m0aBE33XQTv/vd73jkkUcajFsB2L59O+Xl5YwZM6bB9WPGjEEplZSxsrKSf/3rX1x44YUAXHjhhbz44osEg8HkNg8++CDbt2+nf//+7L///vzf//0f//3vf1t1vXYVWq28nHjiidx5552cfvrp9dbl5OTw7rvvcs4557D33ntz+OGH89e//pWvvvqK/Pz8Jvfr8Xjo379/8tO7d/OD2jQaTesQCLTO0rWZNGkSy5YtS/k8/vjjTW6zevVqDj300JRldb+D+9JYu2DYgAEDKCoqanLfQgj+8Ic/IKXk5ptvbnTc2rVrCYVCHH/88SmK11NPPcW6desa3GbVqlUcdthhKcsmTJjQpDyNsf/++yf/PWDAAIDkuTXnOMuXL2fWrFkpsl966aUpLSZGjBjB/fffz7333svPfvYzfv7zn+9QruYGND/33HPsueeejBs3DoADDjiAoUOH8sILLyTHjB07lu+//54lS5Zw8cUXU1RUxNSpU3fbYF3owGyjiooKhBA7DOJas2YNAwcOJBAIMGHCBGbPnt2oBguuVh+NRpPfKysr20pkjab7UFt30UpMlyQjI4O99torZdnmzZvbZN9erzfluxCi0XiN2ng8npT/N0TCQvDmm2+yxx57pKzz+/0tFbXF1D63RIG05pxbgmAwyO23384ZZ5xRb10gEEj++6OPPsI0TTZs2IBt241ekz59+pCbm8uqVasaXL9q1SqEEMm/9bx581ixYkXK/qSUPPHEE8yYMSO5zDAMDjnkEA455BCuvfZann76aX7xi1/whz/8geHDhzf7fHcVOiRgNxKJcOONN3L++ec36hMFOOyww1iwYAELFy5k7ty55OXlcfTRR1NVVdXoNrNnzyYnJyf5GTx4cHucgkazWyMEWmnZDdl777354osvUpbV/d7ejB07Fr/fT35+PnvttVfKp7H5esyYMSxdujRl2ZIlS9pctuYcZ/z48axevbqe7HvttVcypuWFF17glVdeYfHixeTn53PHHXc0ekzDMDjnnHN49tlnKSwsTFkXDof529/+xpQpU+jZsyffffcdX375JYsXL06xuC1evJjPP/+cH374odHjjB07FnBDPHZH2t3yYlkW55xzDkqpBgPFalPbf7v//vtz2GGHMXToUF588cUUDbM2M2fO5Lrrrkt+r6ys1AqMRtNClJQ4q5aDkljBcGeLo2kjfv3rX3PppZdy8MEHc8QRR/DCCy/w7bffMmLEiA6TISsri+uvv57f/OY3SCk56qijqKio4NNPPyU7O5vp06fX2+bqq6/myCOP5P777+fUU0/l7bffZuHChW0uW3OOc8stt3DKKacwZMgQzjrrLAzDYPny5Xz//ffceeedbN68mcsvv5x7772Xo446ivnz53PKKadw4okncvjhhzd43LvvvptFixZx/PHH86c//Yl9992XvLw8br75ZizLSsaSzps3j0MPPZRjjjmm3j4OOeQQ5s2bx3333cdZZ53FkUceyRFHHEH//v3Jy8tj5syZjBo1ardNemlXy0tCcdm4cSPvvvtuk1aXhsjNzWXUqFHJwKWG8Pv9ZGdnp3w0Gk0LcRyc8nKkZWEVtywlVdN1ueCCC5g5cybXX38948ePJy8vj4suuijF3dER3HHHHfzxj39k9uzZjBkzhhNOOIE333yzUXfG4Ycfzj/+8Q/+8pe/MG7cON55550m42paS3OOM2XKFN544w3eeecdDjnkEA4//HDmzJnD0KFDUUpx0UUXceihh3LVVVclx19++eVceOGFKUG1tenVqxdLlixh0qRJ/OpXv2LPPffknHPOYc899+SLL75gxIgRxGIxnn76ac4888wG93HmmWfy1FNPYVkWU6ZM4fXXX2fq1KmMGjWK6dOnM3r0aN55550mXXq7MkK1QRnEhqoaJhSXNWvW8MEHH9CnT58W7zcYDDJkyBBuu+02rr766mZtU1lZSU5ODhUVFVqR0WiaSaSsiiV3v4AhDDL75zD+uoYnzF2dSCRCXl4ew4cPr/cA78oVdtuS448/nv79+/PPf/6zU46v6d409RtsyfO71SpZMBhMsYjk5eWxbNkyevbsyYABAzjrrLP4+uuveeONN3AcJ+nb69mzJz6fD4DjjjuO008/PamxXn/99UydOpWhQ4eydetWbr31VkzT5Pzzz2+tmBqNphkoRwIKjOZnQexudJYy0Z6EQiEeffRRpkyZgmmaPPfcc7z33nu8++67nS2aRrNTtFp5+fLLL1Py+hNxJ9OnT+e2227jtddeA6hXyfGDDz7g2GOPBWDdunUUFxcn123evJnzzz+fkpIS+vTpw1FHHcWSJUtaZbXRaDQtQ6h4ynQLMjE0XRshBG+99RZ33XUXkUiEvffem5dffpnJkyd3tmgazU7RauXl2GOPbfINrTlvbxs2bEj5/vzzz7dWHI1G00Z0U8PLbklaWhrvvfdeZ4uh0bQ5ureRRqNJRWnLi0aj6dpo5UWj0aRYW5R2G2k0mi6OVl40Gk0ShVZeNBpN10crLxqNBqhlfdExLxqNpoujlReNRkONxqK05UWj0XR5tPKi0WhS0ZYXjUbTxdHKi0ajqUEBUiIdbX3RaDRdl92z6YFGo2kR0ZCd/LdSCiklhtnN3m3yPoZQ8Y7HtQXpvWH40R1zLI1mN6SbzU4ajaYhireEar44CmV3Q8tLqBg8gY75tEJJuuiiixBCcM8996Qsf/XVVxFC1Bs/evRo/H5/sjVLbfLy8vj5z3/OwIEDCQQCDBo0iFNPPZUffvghOUYIkfxkZGQwcuRILrroIr766qsG5du8eTM+n4999923wfWO4zBnzhz2228/AoEAPXr04MQTT+TTTz9tyWXQaACtvGg0GkDJmkAXpWS815GmqxEIBLj33nspKytrctwnn3xCOBzmrLPO4sknn0xZZ1kWxx9/PBUVFbzyyiusXr2aF154gf3224/y8vKUsfPnz6egoIAVK1bwyCOPEAwGOeyww3jqqafqHXPBggWcc845VFZWsnTp0pR1SinOO+88Zs2axTXXXMOqVatYvHgxgwcP5thjj+XVV19t1fXQdF+020ij0fDD2hV8+O1HnDp+kus20spLl2Ty5MmsXbuW2bNn86c//anRcfPmzePnP/85EydO5JprruHGG29MrluxYgXr1q1j0aJFDB06FIChQ4dy5JFH1ttPbm4u/fv3B2DYsGH89Kc/Zfr06Vx11VVMnTqVHj16AK5yMn/+fP72t78xaNAg5s2bx2GHHZbcz4svvsi//vUvXnvtNaZOnZpc/ve//52SkhIuueQSjj/+eDIyMnbuAmm6DdryotFoOOvS03jwvacBtPLShTFNk7vvvpuHH36YzZs3NzimqqqKl156iQsvvDBpYfn444+T6/v06YNhGPzrX//CcZwWy/Cb3/yGqqqqlM7UH3zwAaFQiMmTJ3PhhRfy/PPPU11dnVz/7LPPMmrUqBTFJcFvf/tbSkpKdKdrTYvQyotGo0HW7mcklXYbdWFOP/10DjjgAG699dYG1z///POMHDmSffbZB9M0Oe+885g3b15y/R577MFDDz3ELbfcQo8ePfjJT37CHXfcwfr165t1/NGjRwOpjXXnzZvHeeedh2ma7LvvvowYMYKXXnopuf7HH39kzJgxDe4vsfzHH39s1vE1GtDKi0ajATxm3IOslKu86EJ1XZp7772XJ598klWrVtVb98QTT3DhhRcmv1944YW89NJLVFVVJZddeeWVFBYW8swzzzBhwgReeukl9tlnn2ZZP1S8FHMiSLi8vJxXXnml3jFrK0y1t2sMn8+3w2NrNAm08qLRaPB4vEC8t5GSSFtXquvKHHPMMUyZMoWZM2emLF+5ciVLlizhhhtuwOPx4PF4OPzwwwmFQjz//PMpY7Oyspg6dSp33XUXy5cv5+ijj+bOO+/c4bETCtPw4cMB1yUUiUQ47LDDkse88cYb+eSTT5LWlJEjRzaoaNXe36hRo1p2ETTdGq28aDQavJ4ay4uSrgKj6drcc889vP7663z++efJZfPmzeOYY45h+fLlLFu2LPm57rrr6llCaiOEYPTo0SlxKo3x5z//mezsbCZPnpw85m9/+9uU4yWUoSeeeAKA888/nzVr1vD666/X298DDzzAwIEDOf7441t6CTTdGJ1tpNFokm4j17SvkN2xzssuxn777ccFF1zAQw89BLgp0P/85z+ZNWtWvVorl1xyCQ8++CArVqzAsixuvfVWfvGLXzB27Fh8Ph8ffvghTzzxREpWErguocLCQqLRKD/++COPPfYYr776Kk899RS5ubksW7aMr7/+mmeeeSYZC5Pg/PPPZ9asWdx5552cd955vPjii0yfPp377ruP4447jsrKSh555BHeeOMNFi5ciNfrbd8Lptmt0MqLRqPBjP/fsi2M7hqwm967YyvstgGzZs3ihRdeAOC1116jpKSE008/vd64MWPGMGbMGObNm8fvf/97hg0bxu23386GDRsQQiS//+Y3v0nZ7pe//CXg1pfZY489OOqoo/jf//7H+PHjAdfqMnbs2HqKC7iBxVdddRVvvfUWP/vZz3jppZf485//zJw5c7jiiiuIxWL07NmTb775hrFjx7bJ9dB0H4TaURTVLkZlZSU5OTlUVFSQnZ3d2eJoNLsE/Xv1ZVvpdt6++mECUjL212fTe9SAzharzYlEIuTl5TF8+HACgUBni9Ot+frrr5k8eTIzZszgvvvu62xxNB1EU7/Bljy/dcyLRqMhWVxexYN25W71TqPpgowfP55FixaRkZHBunXrOlsczS6GdhtpNJpk2qtUCqVTpTUdxIEHHsiBBx7Y2WJodkG05UWj0SDithelJErRPRszajSaXQZtedFoNDUohVAgtdtIo9F0YbTlRaPRJINe3CJ1SisvGo2mS6OVF41Gk3QbyWSdl5Y37NNodnUi1ZZuSrqLoJUXjUaTJJDtx+f3auVF0y1RSmFF9b2/K6CVF41Gk8w2QggCPdO7Z5E6jUazy6CVF41Gw+btBYD75ikE2vKi0Wi6NDrbSKPRJHGVF9EtA3b/V/A/yqJlHXKsHv4eHDrg0GaP/+ijj7jvvvv46quvKCgo4N///jennXZayhilFLfeeiv/+Mc/KC8v58gjj2Tu3LmMHDkyZVw0GmX8+PEceeSR/P3vf09Zd8MNN/DSSy/x7bffkpWV1erzaw4LFixIth9ojLy8PIYNG9aucmh2TbTlRaPRJFFIhBDdss5LWbQMv+nvkE9LlaTq6mrGjRvHI4880uiYP/3pTzz00EM8+uijLF26lIyMDKZMmUIkEkkZ5/f7eeqpp1iwYAFvv/12cvmSJUuYM2cOCxYsaHPFRSmFbdspy84991wKCgqSnwkTJnDppZemLBs8eHByfCwWa1OZ2hLLsjpbhG6HVl40Gk0SpQTCEDrmpYtx4okncueddzbYdBFc5eDPf/4zN998M6eeeir7778/Tz31FFu3buXVV1+tN/6ggw7iD3/4AzNmzKC8vJxIJMIvf/lLfv3rXzNx4kQ++eQTjj76aNLS0hg8eDBXX3011dXVye3/+c9/cvDBB5OVlUX//v35+c9/TlFRUXL94sWLEULw3//+l4MOOgi/388nn3ySIkNaWhr9+/dPfnw+H+np6cnvN910E2eeeSZ33XUXAwcOZO+99wZg06ZNnHPOOeTm5tKzZ09OPfVUNmzYkNzvF198wfHHH0/v3r3Jyclh4sSJfP311ynX6rbbbmPIkCH4/X4GDhzI1VdfnVwfyPDVu2a5ubksWLAAINnM8oUXXmDixIkEAgH+/ve/k52dzb/+9a+U7V599VUyMjKoqqpq8O+maT2tVl4++ugjpk6dysCBAxFC1PtjK6W45ZZbGDBgAGlpaUyePJk1a9bscL+PPPIIw4YNIxAIcNhhh/G///2vtSJqNJoWopSrtOj2ALsWeXl5FBYWMnny5OSynJwcDjvsMD7//PMGt/nDH/5A//79ufrqq7n55psRQnD33Xezbt06TjjhBM4880y+/fZbXnjhBT755BOuuuqq5LaWZXHHHXewfPlyXn31VTZs2MBFF11U7xg33XQT99xzD6tWrWL//fdv8XktWrSI1atX8+677/LGG29gWRZTpkwhKyuLjz/+mE8//ZTMzExOOOGEpGWmqqqK6dOn88knn7BkyRJGjhzJSSedlFQgXn75ZebMmcNjjz3GmjVrePXVV9lvv/1aLNtNN93ENddcw6pVqzjjjDM477zzmD9/fsqY+fPnc9ZZZ7W7C6470uqYl4QZ8+KLL+aMM86otz5hwnzyyScZPnw4f/zjH5kyZQorV65stJvrCy+8wHXXXcejjz7KYYcdxp///GemTJnC6tWr6du3b2tF1Wg0zUQBQigcHbC7S1FYWAhAv379Upb369cvua4uHo+Hp556ioMOOggpJZ9++imBQIDZs2dzwQUXcO211wIwcuRIHnroISZOnMjcuXMJBAJcfPHFyf2MGDGChx56iEMOOYRgMEhmZmZy3axZszj++ONbfV4ZGRk8/vjj+Hw+AJ5++mmklDz++OPJDLn58+eTm5vL4sWL+elPf8pPfvKTlH38/e9/Jzc3lw8//JBTTjmF/Px8+vfvz+TJk/F6vQwZMoRDD21+/FGCa6+9NuXZd8kll3DEEUdQUFDAgAEDKCoq4q233uK9995r9flrGqfVlpemzJgtNWEmePDBB7n00kv55S9/ydixY3n00UdJT0/niSeeaK2YGo2mBSilMAwDlFZedjdOPPFEMjMzyczMZJ999gFg7NixnHnmmRx//PEcfPDBACxfvpwFCxYkx2ZmZjJlyhSklOTl5QHw1VdfMXXqVIYMGUJWVhYTJ04EID8/P+WYiX22lv322y+puCRkW7t2LVlZWUnZevbsSSQSSXam3rZtG5deeikjR44kJyeH7OxsgsFgUrazzz6bcDjMiBEjuPTSS/n3v/9dLx6nOdQ9t0MPPZR99tmHJ598EnAVraFDh3LMMce09vQ1TdAu2UY7MmGed9559baJxWJ89dVXzJw5M7nMMAwmT57cqNkT3Mj5aDSa/F5ZWdlGZ6HRdD8UCmGCsrTbaFeif//+gPvgHjBgQHL5tm3bOOCAAwB4/PHHCYfDAHi93uQYj8eDx1PzKAgGg/zqV79KiQNJMGTIEKqrq5kyZQpTpkzhmWeeoU+fPuTn5zNlypR6QbUZGRk7dV51tw8Ggxx00EE888wz9cb26dMHgOnTp1NSUsJf/vIXhg4dit/vZ8KECUnZBg8ezOrVq3nvvfd49913ueKKK7jvvvv48MMPAbfmkVKp2XYNBeQ2dG6XXHIJjzzyCDfddBPz58/nl7/8ZU0NJU2b0i7KS2tMmMXFxTiO0+A2P/zwQ6PHmj17NrfffvtOSqzRaABCMoohDKRs+ZuopvMYPnw4/fv3Z9GiRUllpbKykqVLl3L55ZcDsMceezRrX+PHj2flypXstddeDa7/7rvvKCkp4Z577klmA3355Zc7fxLNlO2FF16gb9++ZGdnNzjm008/5W9/+xsnnXQS4Ab4FhcXp4xJS0tj6tSpTJ06lSuvvJLRo0fz3XffMWbUvvTp3YeCgoLk2DVr1hAKhZol34UXXsgNN9zAQw89xMqVK5k+fXorz1SzI3b5bKOZM2dSUVGR/GzatKmzRdJodlnOnXMT321eD6r71XnpygSDQZYtW8ayZcsA17q9bNmypCtECMG1117LnXfeyWuvvcZ3333HtGnTGDhwYL16MDvixhtv5LPPPuOqq65i2bJlrFmzhv/85z/JgN0hQ4bg8/l4+OGHWb9+Pa+99hp33HFHW55uo1xwwQX07t2bU089lY8//pi8vDwWL17M1VdfzebNmwE3Ruef//wnq1atYunSpVxwwQWkpaUl97FgwQLmzZvH999/z/r163n66adJS0tj6NChAEyceCx//etf+eabb/jyyy/5v//7vxRLVVP06NGDM844g9/97nf89Kc/ZdCgQW1/ETRAOykvtU2Ytdm2bVtyXV169+6NaZot2gbcmgXZ2dkpH41G03rWFG5GOTrmpSvx5ZdfcuCBB3LggQcCcN1113HggQdyyy23JMfccMMN/PrXv+ayyy5LBs8uXLiw0QSJxth///358MMP+fHHHzn66KOTxxk4cCDgumcWLFjASy+9xNixY7nnnnu4//772+5kmyA9PZ2PPvqIIUOGcMYZZzBmzBhmzJhBJBJJzv3z5s2jrKyM8ePH84tf/IKrr746JeEjNzeXf/zjHxx55JHsv//+vPfee7z++uv06tULgHtm/4nBgwdz9NFH8/Of/5zrr7+e9PT0Zss4Y8YMYrFYSlCzpu0Rqq5zrzU7ESKl4qNSioEDB3L99dfz29/+FnBNmH379mXBggUNxrwAHHbYYRx66KE8/PDDAEgpGTJkCFdddRU33XRTs2SprKwkJyeHiooKrchoNM2ktl9+1nkXc/qU89n3oslNbLFrEolEyMvLY/jw4fUe6l25wq6mYwgHYyipSM/2t3of//znP/nNb37D1q1bU4KNNS5N/QZb8vxudcxLMBhk7dq1ye8JM2bPnj0ZMmRI0oQ5cuTIZKp0XRPmcccdx+mnn540R1533XVMnz6dgw8+mEMPPZQ///nPVFdX77CEtEajaTscpbql20grExqA1pY4CoVCFBQUcM899/CrX/1KKy7tTKuVly+//JJJkyYlv1933XWAG+m9YMECbrjhBqqrq7nssssoLy/nqKOOqmfCXLduXUog1bnnnsv27du55ZZbKCws5IADDmDhwoX1gng1Gk37oVBIqd1Gmm5KKxX3P/3pT9x1110cc8wxKVmzmvahTdxGXQntNtJoWk5tt9HN50zj7Mnnsv+lJ3WiRO1DUyZrjSYcjOFYkswe+t5oL9rKbbTLZxtpNJq2xZYSnN3qnUajaT66LMsugVZeNBpNClJJlNTKi6YbokBo7WWXQCsvGo0mBQOQts2Kp97HsR3WvPIJsepIZ4ul0XQIWm3fNdDKi0ajSUGYBtKyKV6xgcIv17J16Y+sf+fbzhZLo2l/BGj1ZddAKy8ajSYFgUBJCUphVYdBSpzqYGeLpdFoNEm08qLRaFIQgpqXTyFASsxa5dU1mt0abXjZJdDKi0ajSUVQU+tCKRQg/K2vOKrR7DLoQPVdhnbpKq3RaHZdhKhxGwHdptpucMkSnLLyDjmW2SOXzMMPb/b4qVOnYlkWCxcurLfu448/5phjjmH58uWMGzeOb775hgMOOIC33nqL0047jSVLljB+/Pjk+AceeIDZs2fz/fffN9k3rjsiw2GUoR+LuwL6r6TRaFIQopZBtpsoLgBOWTlGB1mYWqokzZgxgzPPPJPNmzfX61Q8f/58Dj744HpFvU466SSmTZvGtGnT+Oqrr/D7/axcuZKbb76ZBQsWaMWlAZRUKNXK/gCaDkW7jTQaTQpC4FpeEnTTXkddiVNOOSXZzbk2wWCQl156iRkzZjS43Zw5cwgGg9x6663Yts306dOZOnUq5557bgdIvQui7/NdBq28aDSaFL7fkJecxCvytnWyNBoAj8fDtGnTWLBgAbU7urz00ks4jsP555/f4HZZWVk88cQTPPDAA1xwwQVs2rSJuXPndpTYuyRC16jbJdDKi0bTzbFtO+X7K59+GM+4UFihmLtQz+idzsUXX8y6dev48MMPk8vmz5/PmWeeSU5OTqPb/eQnP+Gss87ixRdf5KGHHqJXr14dIe4uzW7W8m+3RCsvGk0359lnn623rK7bKNAjswMl0jTE6NGjOeKII3jiiScAWLt2LR9//HGjLqMEW7ZsYeHChaSnp/Pxxx93hKgaTbujlReNppsTi8XqLYtUht1/dLOMo67OjBkzePnll6mqqmL+/PnsueeeTJw4scltLr30Ug466CDeeOMN5s6dm2K50aSi7/JdB628aDTdHNM06y9UiY8O1u1KnHPOORiGwbPPPstTTz3FxRdfjGjCpff444/zySefMG/ePCZNmsTll1/OxRdfTHV1dQdKvYuhb/ddAq28aDTdHMOoPw3EQ15cvUXVcSNpOo3MzEzOPfdcZs6cSUFBARdddFGjYzdu3Mh1113H/fffz9ChQwG49957EUJw0003dZDEux4KpRWYXQCtvGg03ZwGLS+4k3gicFEbX7oOM2bMoKysjClTpjBw4MAGxyilmDFjBhMmTOCyyy5LLk9PT2fBggXafaTZ5dFF6jSabk5DlhcXhRWVgIJuYHkxe+R2aIXd1jJhwoQGs2GGDRuWsvy9995rcPujjjqqXoaZJhVFvMG0psuilReNppvTmOXFdRu5fqPKDduAfTpSrA6nJeX6NRpN56LdRhpNN6fRgE+l3EZ1CqrXb+pYoTSazkL7SHcJtPKi0XRzGrW8JEhkHWk03QF9q+8SaOVFo+nmGKKBaSBR3iUe66Irjmq6DQKtrO8CaOVFo+nmNGh5iU/gMhwCpJ7MNd2CpmrmaLoWWnnRaLo5jWcbuSgFSmrlRaPRdB208qLRdHOMBivsusG6SrqV6uyo1fGCaTSdga5Rt0uglReNRtMAcfO5IdwaL44kUhHqXJE0Go0mjlZeNJpuTlOl/43MLDzpAVCSjR+u6kCpNJpORJteGkU6Eul0ftFKrbxoNN0c2ZDyIgAUylEIA1AKRedPWBpNe7K76CwLFiwgNze3Xfbt2JJIdee7kXWFXY2mm9NQGrQg3tsoEkYIgZISsZsXTN+8uoxwVaxDjpWW5WPQ3j1atE1hYSF33XUXb775Jlu2bKFv374ccMABXHvttRx33HGA2yJg48aNgNvHaO+992bmzJmcffbZrZJz8eLFTJo0qckxH3zwAccee2yr9r8rEAqFuOOOO3jxxRfZsmULWVlZjB07luuuu45TTz21s8VrM+bOncvcuXPZsGEDAPvssw+33HILJ554Ysq4rpJ4qJUXjaab4zRkeVHKzZCOxbCdeH+j3ZxwVQyPbwcF+9rwWC1hw4YNHHnkkeTm5nLfffex3377YVkWb7/9NldeeSU//PBDcuysWbO49NJLqays5IEHHuDcc89ljz324IgjjmixnEcccQQFBQXJ79dccw2VlZXMnz8/uaxnz57Jf8diMXw+X4uP0xFYloXX6216kHK7GtV+QP/f//0fS5cu5eGHH2bs2LGUlJTw2WefUVJS0v7ydCCDBg3innvuYeTIkSilePLJJzn11FP55ptv2GefrtcaRLuNNJpuTkOWF1Wz0n2gS4XoQhNtd+OKK65ACMH//vc/zjzzTEaNGsU+++zDddddx5IlS1LGZmVl0b9/f0aNGsUjjzxCWloar7/+equO6/P56N+/f/KTlpaG3+9Pfn/00Uc59NBDefzxxxk+fDiBQACA8vJyLrnkEvr06UN2djY/+clPWL58eXK/69at49RTT6Vfv35kZmZyyCGH1Gsk+be//Y2RI0cSCATo168fZ511VnLdsGHD+POf/5wy/oADDuC2225LfhdCMHfuXH72s5+RkZHBnXfeyV577cX999+fst2yZcsQQrB27dpaDUhrfhOvvfYav//97znppJMYNmwYBx10EL/+9a+5+OKLU+S54447OP/888nIyGCPPfbgkUceSTlOXXnuuusuAP7zn/8wfvx4AoEAI0aM4Pbbb09pnPnggw+y3377kZGRweDBg7niiisIBoMp+16wYAFDhgwhPT2d008/vVWK1dSpUznppJMYOXIko0aN4q677iIzMzPl/hJC8I/H/86Z55xOeno6Y8aM4fPPP2ft2rUce+yxZGRkcMQRR7Bu3boWH7+laOVFo+nmqAaD7xSu6UWSPag3vqw0PAFtqO0MSktLWbhwIVdeeSUZGRn11jcV2+DxePB6vcRi7ecOW7t2LS+//DKvvPIKy5YtA+Dss8+mqKiI//73v3z11VeMHz+e4447jtLSUgCCwSAnnXQSixYt4ptvvuGEE05g6tSp5OfnA/Dll19y9dVXM2vWLFavXs3ChQs55phjWizbbbfdxumnn853333HjBkzuPjii1OsRgDz58/nmGOOYa+99oovSVXm+/fvz1tvvUVVVVWTx7rvvvsYN24c33zzDTfddBPXXHMN7777bqPyXHzxxXz88cdMmzaNa665hpUrV/LYY4+xYMGCpGIDbh2mhx56iBUrVvDkk0/y/vvvc8MNNyTXL126lBkzZnDVVVexbNkyJk2axJ133tnia1Ubx3F4/vnnqa6uZsKECSnrZs++m5+fdwHLli1j9OjR/PznP+dXv/oVM2fO5Msvv0QpxVVXXbVTx28Wqh0ZOnSo25K2zueKK65ocPz8+fPrjfX7/S06ZkVFhQJURUVFW5yCRrPb8+ILL9b73X1w7d/U+1f8Rb1/zVz17UP/Ul/NmqfWLvq+s0XdacLhsFq5cqUKh8P11v34RaFav3x7h3x+/KKw2TIvXbpUAeqVV17Z4dihQ4eqOXPmKKWUikaj6u6771aAeuONN5p9vKaYPn26OvXUU5Pfb731VuX1elVRUVFy2ccff6yys7NVJBJJ2XbPPfdUjz32WKP73meffdTDDz+slFLq5ZdfVtnZ2aqysrLBsbXPM8G4cePUrbfemvwOqGuvvTZlzJYtW5Rpmmrp0qVKKaVisZjq3bu3WrBggVJKqcpN21XF5lJlRe3kNh9++KEaNGiQ8nq96uCDD1bXXnut+uSTT+rJc8IJJ6QsO/fcc9WJJ57YpDzHHXecuvvuu1OW/fOf/1QDBgxo8LyVUuqll15SvXr1Sn4///zz1UknnVTv2Dk5OY3uozG+/fZblZGRoUzTVDk5OerNN99MWQ+om26cqaor3L/t559/rgA1b9685JjnnntOBQKBRo/R1G+wJc/vdrW8fPHFFxQUFCQ/CS20qeCx7OzslG0SwWcajaZ9aChVOruHn4CqTkbnCahlUtd0JKqFEZI33ngjmZmZpKenc++993LPPfdw8sknNzh2n332ITMzk8zMzHqBmc1l6NCh9OnTJ/l9+fLlBINBevXqldx3ZmYmeXl5SXdCMBjk+uuvZ8yYMeTm5pKZmcmqVauSlpfjjz+eoUOHMmLECH7xi1/wzDPPEAq1vM7QwQcfnPJ94MCBnHzyyTzxxBMAvP7660Sj0TrPpNTrfcwxx7B+/XoWLVrEWWedxYoVKzj66KO54447UsbVtVBMmDCBVatSywvUlWf58uXMmjUr5TpdeumlFBQUJM/3vffe47jjjmOPPfYgKyuLX/ziF5SUlCTXr1q1isMOO6xJWZrL3nvvzbJly1i6dCmXX34506dPZ+XKlSlj9t1nv+S/+/XrB8B++6Uui0QiVFZWtkqG5tKuduDaNzTAPffcw5577snEiRMb3UYIQf/+/dtTLI1GU4uGajaMmDCUje+WEom4AYxCCN2csZMYOXIkQoiUoNym+N3vfsdFF11EZmYm/fr1a7Jfz1tvvYVluWmvaWlprZKvrisrGAwyYMAAFi9eXG9swsV1/fXX8+6773L//fez1157kZaWxllnnZV0b2VlZfH111+zePFi3nnnHW655RZuu+02vvjiC3JzczEMo979mDiPpmQDuOSSS/jFL37BnDlzmD9/Pueeey7p6ek1A6SsF57u9Xo5+uijOfroo7nxxhu58847mTVrFjfeeGOLApQbula33347Z5xxRr2xgUCADRs2cMopp3D55Zdz11130bNnTz755BNmzJhBLBZLlbsN8Pl8SffZQQcdxBdffMFf/vIXHnvsseQYr9eLik8ZiXurduBxYlmDJRjakA5zYsdiMZ5++mmuu+66Jn9MwWCQoUOHIqVk/Pjx3H333U1GOkejUaLRaPJ7e2t7Gs3uRkNKiWkaeL0CQjJZbFeXeekcevbsyZQpU3jkkUe4+uqr6z0Ay8vLU+JeevfuXSt+o2mGDh3alqICMH78eAoLC/F4PAwbNqzBMZ9++ikXXXQRp59+OuDO+4kU3QQej4fJkyczefJkbr31VnJzc3n//fc544wz6NOnT0oWVGVlJXl5ec2S76STTiIjI4O5c+eycOFCPvroo5T1QskdJteNHTsW27aJRCJJ5aVu4PSSJUsYM2ZMk/sZP348q1evbvTv9dVXXyGl5IEHHkj2IHvxxRdTxowZM4alS5fWO3ZbIKVMeb6CO19Ip/NfZDpMeXn11VcpLy/noosuanTM3nvvzRNPPMH+++9PRUUF999/P0cccQQrVqxg0KBBDW4ze/Zsbr/99naSWqPZ/WkwVRrwG1GU9GKaAkcI3ZyxE3nkkUc48sgjOfTQQ5k1axb7778/tm3z7rvvMnfu3Hruic5k8uTJTJgwgdNOO40//elPjBo1iq1bt/Lmm29y+umnc/DBBzNy5EheeeUVpk6dihCCP/7xjylv6m+88Qbr16/nmGOOoUePHrz11ltIKdl7770B+MlPfsKCBQuYOnUqubm53HLLLQ13R28A0zS56KKLmDlzJiNHjqzvYokXaExw7LHHcv7553PwwQfTq1cvVq5cye9//3smTZpEdnZ2ctynn37Kn/70J0477TTeffddXnrpJd58880mZbnllls45ZRTGDJkCGeddRaGYbB8+XK+//77ZHaUZVk8/PDDTJ06lU8//ZRHH300ZR9XX301Rx55JPfffz+nnnoqb7/9NgsXLmzWtajNzJkzOfHEExkyZAhVVVU8++yzLF68mLfffrveWNUFSid0WLbRvHnzOPHEExk4cGCjYyZMmMC0adM44IADmDhxIq+88gp9+vRJMVnVZebMmVRUVCQ/mzZtag/xNZrdltoxL/uOGOEuUwoDBdLBMN3ydEpp00tnMWLECL7++msmTZrEb3/7W/bdd1+OP/54Fi1axNy5cztbvBSEELz11lscc8wx/PKXv2TUqFGcd955bNy4MRkj8eCDD9KjRw+OOOIIpk6dypQpUxg/fnxyH7m5ubzyyiv85Cc/YcyYMTz66KM899xzSSv8zJkzmThxIqeccgonn3wyp512GnvuuWezZUy4XX75y182cAJmSp2XKVOm8OSTT/LTn/6UMWPG8Otf/5opU6bUs4D89re/5csvv+TAAw/kzjvv5MEHH2TKlClNyjFlyhTeeOMN3nnnHQ455BAOP/xw5syZk7SIjRs3jgcffJB7772Xfffdl2eeeYbZs2en7OPwww/nH//4B3/5y18YN24c77zzDjfffHPKmA0bNiCEaNCVl6CoqIhp06ax9957c9xxx/HFF1/w9ttvc/zxxzc4vrPdyEJ1gAQbN25kxIgRvPLKKy2uSHj22Wfj8Xh47rnnmjW+srKSnJwcKioqUrRijUbTME8+sYCLZriT+CPX/44r77+PsnfepfzjpawvSmeP8cOp2FBE2j6j2e+ClqerdiUikQh5eXkpNUkSdPUKu5q24+OPP+a4445j06ZNSYUKoGpzMSDw987B14LSAMOGDePaa6/l2muvbXth24APPviAM844g/Xr19OjR+vvu1jEJha2UQoyc/0Io+VVt5v6Dbbk+d0hbqP58+fTt2/fRiPeG8NxHL777jtOOumkdpJMo9HUtrwkTO8JV1JmzzQCmR5KpcIqLOwU+ToKrUzs/kSjUbZv385tt93G2WefnaK4uLgB6l3AK9KmvPXWW/z+97/fKcUFUlsDxK9Up9HuyouUkvnz5zN9+nQ8ntTDTZs2jT322CNpBps1axaHH344e+21F+Xl5dx3331s3LiRSy65pL3F1Gi6LbVjDcx4UKDtOAB403z07J/B5m8UQmcbaXZxnnvuOWbMmMEBBxzAU0891ei4rhDT0Zbcd999bbav5DSgOld9aXfl5b333iM/Pz+llHKC/Pz8ZAQ1QFlZGZdeeimFhYX06NGDgw46iM8++4yxY8e2t5gaTbdF1lJKPHHLi+044KlJfxy4dy8qqjum749G015cdNFFTSaNuKgWW17qZkrtjiip3KB9pRCG6PQGje2uvPz0pz9tNLCnbvDQnDlzmDNnTnuLpNFoaiGlk/y3p5bbKHfCQWSG3RgQ00D3NtJ0D3Y/r1GbYFsOtuVAE6VOOhLd20ij6ebUToFOuI0cx8E0DfyZ8YA6Q4DONtJoui0q3jzE4zNAdL7lRSsvGk03R9ZWXuoE7CYQQiBV13jj0mjalUSHLw3gWlwarpbbuRdJt4nVaLo5teu3pMS8aDSabo9tSVRUYZpG0trSFV5jtPKi0XRzEm9Vr955r+seomHlRWmFRrO709n5v12YmsB+QWdbXUC7jTQajVSYhsER++5XK2A3VVGpKq6mMm/3rvOi0STo7OqxXQXHlkk3mnLcLKyuobpo5UWj6fY4joMQbhCeadYE7KaMsSRIpSd1TTdA3+MJrJiDHXNQ8exxpVztpU77p05BKy8aTTdHKYXAnZCSlhcnNUDP9BqgJNLRGUe7KldffTUHHXQQfr+fAw44oLPF6dpo/cUlGcyvupw3TSsvGk03R0qJIQwwRDLbqG7MS9+RffBn+lBaedmlufjiizn33HM7W4wuS2FlMRtLCrSFEddlZFvu713KrldzWCsvGk03RymZNAWbRsPKixCCaLVN1dayTpBQA3Dsscdy1VVXcdVVV5GTk0Pv3r354x//mHzQRqNRbrzxRgYPHozf72evvfZi3rx5ye0feughrrzySkbEO4dr6lMRriZidUxzzq6OY0vXXaRAOa7r2Jfm6So16nS2kUbT3ZGORMRnJE8jdV4QAqRN0Xf59Bjet6NF1MR58sknmTFjBv/73//48ssvueyyyxgyZAiXXnop06ZN4/PPP+ehhx5i3Lhx5OXlUVxc3Nki7zLYtl3zpauZGToBV3FRybkB6FKZWFp50Wi6OVIpDCEQgCUtoCHLizuZOZWVnSBh+xMKhfjhhx869JijR48mPT29RdsMHjyYOXPmIIRg77335rvvvmPOnDlMnDiRF198kXfffZfJkycDaAtLC6n9kO56TpJOIB6lK0xR09Oo9upOE8xFKy8aTTcnHIwBAgxBuVUBgGVZKWNEXHuR9u5Z6+WHH37goIMO6tBjfvXVV4wfP75F2xx++OEpD9kJEybwwAMP8M0332CaJhMnTmxrMbsnnf1k7gIIITC9BqbHIBa2MTy1oky6gAVGKy8aTTfHsiRCGG79BuHO2hXlBcAB9cdWBjtUto5i9OjRfPXVVx1+zLYiEAi02b400OmNe7oACjDMLqClNIJWXjSabo5ynOSLlMKNdSkt2ZIyRsTrv9Bgj5Ndn/T09BZbQTqDpUuXpnxfsmQJI0eOZNy4cUgp+fDDD5NuI03L0BlGdanbC6DO9enk66WzjTSabo5CuanSgGO4E1JJVUOBnkqb0zuZ/Px8rrvuOlavXs1zzz3Hww8/zDXXXMOwYcOYPn06F198Ma+++ip5eXksXryYF198Mbnt2rVrWbZsGYWFhYTDYZYtW8ayZcuIxXR2TV20HkOjfYy2FuSzbdumDpenLtryotF0c6QjkzPUqrLlAFTKaP2BSiG09tKpTJs2jXA4zKGHHoppmlxzzTVcdtllAMydO5ff//73XHHFFZSUlDBkyBB+//vfJ7e95JJL+PDDD5PfDzzwQADy8vIYNmxYh55Hl0drL26wbjy+qvblKClzyyUM7gyZaqGVF42mm6OUShapi1a7E1M43tsoGovxrw8+4NxJx7lWF6kn9c7E6/Xy5z//mblz59ZbFwgEePDBB3nwwQcb3Hbx4sXtLN3uQ6IUvugqRU06GJUo8BI/f6/fQNXzGHfutdHKi0bTzZFSJqehnt5cAGzlLulz4gkApPn8DCE3GROj0exu7KyxJRa18frMDlV4oiEL02vg8Zptu2OV2mDb9HS9CJOuJ5FGo+lQlIpnGwmRnHidOq9Z1ZFwZ4im0XQgtbSXVmgyVthxuzB3IEqBFW378gXJ8+jChidtedFoujm1rMPEuwPUU14CPl8HS6Wpi3b7aGpjW66yJIy21TCUUkTDbrVhTxvvuy3RlheNppsjpWt5ATDik5VdJyU6PVFHZDdNldZo6tFC40tHR4NZUcetfNvGKEW77Let0cqLRtPNkUrWsw7b8clrUF+3j1FWejpDD9oDkZ7RwdJpNJ1AqwJgOumB38LD2pZENqWcKJVije2qaOVFo+nmKKkwDDfbKGF5kUphx6IcMHIk4DZq9PraOCiwE5HagqSpS0rIS8u7G6lQGNWRMS8q/mmhpI7lEAlaOx7YTgEvbVUMUMe8aDTdnJTJRLjpobZSWHYkufiHb9/lwMmX7fL1L3w+H4ZhsHXrVvr06YPP5+u26bCaVGoX64vGonginqQy37ztI8hqgV90TKuGaCyGYymEIzAizf9dRiMWUiqMSMOKlmNLYjELQwlMJ/X8baem83YkGsFRLXuhUUqxfft2hBB4vd4WbVsXrbxoNN0doTAQNWmRpomjFJYVTj7YrVgMhNjVdRcMw2D48OEUFBSwdevWzhZH04WwbZviYreytOEYBCoDLVJsI2VBzIAfb9rOPZSbixWxcRyFYQp8geY/ymPxYFxfWsPbSKncRoymqKe8RcJVlJS7zVsD/g2tSqEWQjBo0CBMc+csuVp50Wi6OV6/IDlHKYVhGq7byI7x+iefACBFXLnZxZUXcK0vQ4YMwbZtHGf37JKtaTmPPz6P+++/D4C//eYRjpo+sdlKgZKKL17+N30O35fhRw1vTzGTrPlyG8FtIXL6pjF8TP9mbaOkYtn7m/D6DPY+ZlCDY6rLo6z4ZCs9+qeTllWTZRiNVPLb31xDfkERAAtfWcSwkXu0WG6v17vTigto5UWj6fa42UY13w3DwJGSH9avTy5zEjEi9cts7pIkzNY7a7rW7D6sW7eOjRs3AhAqD+Hz+gkEmnd/KKmQVREMR3RYh29lGThRQUVBDCciyMj173Abx5FgGdi2wO/3Jy1LocoYW9eUsddB/Yh5FDJmYAovpqg5/21rPufjJV8kv6/5YRWjx+/Z9ifWTHTArkbTzUmWQRcCqVy30ZaCMk64aVZyTEwpMHYLw4tGs0OsWLRFN3uyGm0H+lWVcl08jq0o3lzVvG2km0lkW5LizcFkSrR0FNvzq3Ac6cbASZV8oSkpLSZmxfjXfxem7Ku8ZHubnk9L0ZYXjaab47YHcGcqgcI0TSrKUyvqOolJeVcPetFomoFtW7Qk38jtBQQd3T1DOYDRfEmVrKnjUrC2nEi1xeDRPdm+qQppK5yYdMdQkyt9yKQxHHPIkXz0xacp+4pUVbftybQQbXnRaLo5SioMEQ/OUyruNkqdDovsUGJ0xwuo0XQAtbPuLCvaMg+pUiDcVhsdSVLmZv4slVQIoVBKYUUd8leUJtfZtsS2JNs3VbmW2Fr7rKu4AISDWnnRdCPy3/8GO9KcGgOajkIq6aZHOxYgME0PkXAsZUzMcDA9JsrWAa6a3ZPayottWS2qR9JSJaItiH63HBmJuBaTZtaXkVKR0yeNQKYXOyaxog7Scbd1HIkdcwhXxfAGPIgdaAe2Hd3ZU9gp2lV5ue2225LN3hKf0aNHN7nNSy+9xOjRowkEAuy333689dZb7Sliu5O4MTQu+Z/8yNr/ft3ZYmhqkYh5saSrmBimSVFhRcqYkqoQwhAdW4RLo+kkbNnCF6yk8tJxvw+7OoKzbRuOLUnPbl7vsUTMSzRoIZVCSsny9zchHYkhBMWbq8js4Se7Txr+9IaDlWf+chIAlm03uL6jaHfLyz777ENBQUHy80k89bIhPvvsM84//3xmzJjBN998w2mnncZpp53G999/395ithtrvy6iqjSy44HdBaVQlra8dCWk48a82MpGKIHpqR8K9/Z7PwIK5XTuhKXRtBu1LC2OFWuRHhKqDvHf7z7p0JgwYYBZshV76+ZmF8PduracYFmUSNiGeOxLsMwNTrYsh+2bg0hHNVlNOzM7HXCtU51JuysvHo+H/v37Jz+9e/dudOxf/vIXTjjhBH73u98xZswY7rjjDsaPH89f//rX9haz3YiGbMoKO9c32Nksf/S/lOe7xZ9kKISMdq65UZNKKBwiYsWwlXSVF7PhOH7LjuiQF81ui6ztNrJjLYpfmXXHLO7973zWbcprD9HIf+8rqraWpi5Ubn8AUVnarN9lovhcLOKQiMf1BTxuxpIjMQ2DWMimfFu4SWUoPSMNcIOaO5N2V17WrFnDwIEDGTFiBBdccAH5+fmNjv3888+ZPHlyyrIpU6bw+eefN7pNNBqlsrIy5aPpOjhRi6rCMgr/twZIROXrJ2BX4pmXX2BLWRGOdBDQqPJiO+Hdps6LRtMUlm21qIF64rkTjbXPi1nx6gLWv576HFSJvkY+f7MMLxu/K6a6PIYQ7jxsx9wTVBKcmMTwGiCgYnsYIeD3s65jxLg+9faTneXWk4lZu3HMy2GHHcaCBQtYuHAhc+fOJS8vj6OPPpqqqoZz0gsLC+nXr1/Ksn79+lFYWNjoMWbPnk1OTk7yM3jw4DY9h50lXBnDjnWtIEfHkW6xog5g0/vLkOEIdbqedcixNS1jq11CwDIxvQ37z7dsWI5Sug+QZvekdoCu49gtat5pGPFHaTs1/BRCgEx9jqjk8ZqXKu3YEttyyOwZQEmwLSdZyyUWcTBNgbRV0uL0/Mv/bHA/PnsbE/cbQL+ePVt9Pm1BuyovJ554ImeffTb7778/U6ZM4a233qK8vJwXX3yxzY4xc+ZMKioqkp9Nmza12b7bAum0vDtpe7M9v4pv39/cIceSlh1vfOpeBcPnx8zM7JBja1rGjyU/EMlNa9TyUp6/iVBZCNvScS+a3Q9VS/GwHatFNVuMuBZQ9sMGNi9Z3daiAfWNnl5DEhARBM335kpHEcjw4kt33UUq7j6KhiwMw3CL1inq9XTKSqupGpzt93L1qfuzz5577dwJ7SQdmiqdm5vLqFGjWLt2bYPr+/fvz7Zt21KWbdu2jf79G+/b4Pf7yc7OTvl0FaKheKGjrmZpV65sxZuDzd6kbNVGnNY+tFIsLV1NldMkKN62DsNyGu07snTLNrBifHHncy16K9VodglSYl7czst12fBtMVa0viVdxC0vdsyi5Nt1bS+bEFBHHoEk3YjgNZx66xpDOjIZ66Lip2GYAivmIDwCpVSDhvGqcE3SSbbXwBQgOzl4v0OVl2AwyLp16xgwYECD6ydMmMCiRYtSlr377rtMmDChI8RrUxxLsnppoRvR3dUe2HFVPVwV2+HQBBs++J4VT76388fWLqMux/j9DmBYnwHErDAxw2ww2wgg0CMDgFg4hh1q/r2j0ewK1HUbNaQQVJaE2bahot7yhNtIKdlsRaIlGA10RZWWRCiJQOI4Oz6mMETNuGRBPYXHa+DYyn0sxAsFN/bM+stvzyDQw4vX9OE4u3HA7vXXX8+HH37Ihg0b+Oyzzzj99NMxTZPzzz8fgGnTpjFz5szk+GuuuYaFCxfywAMP8MMPP3Dbbbfx5ZdfctVVV7WnmO1GqDKWCAjvcrRUoVJSoaxWPrAStskkOm6iK9G7Zy969s7FxCDYLxfDaNjy4vEYuNq4DrrW7H7UzjayHKtxHaSB5Qm3kVSy3YLaVR2BEsfypvsIV+1YkXDrNKmk5SiQ4cWxcbvIxy0yQoDpEVSHGo5LPfiso7H3GI3P60N0skuhXZWXzZs3c/7557P33ntzzjnn0KtXL5YsWUKfPm4Ec35+PgUFBcnxRxxxBM8++yx///vfGTduHP/617949dVX2XfffdtTzPYjPscLs2s9rBN9bFqkwLTEsVqL5HwgBEVf/QiOo3WXLoZCoQyJbSgC3rRG3UaVkZD795QqZaLvSkjbwQ7pukqalpNSYdexcKyGEy0auvUTMSKyI4s4KjCUJGYZFK4rb9Z4qVSy+JxhCpRyGzFKR5HTNx1/hpfBY3tRGXT35/fWscIqSW6gJwJRT5nqaNq1MePzzz/f5PrFixfXW3b22Wdz9tlnt5NEnYPoik9r1XK5Wn+zulpc8arNyE6uyqipTyJQUSEImP5G3UYRj9v7SKG6pDURoHRVPqtf+Zwjb/15Z4ui2YVxHBvZSIxfQ20DjHgtfSVlvaygNqNWnFlNOwKFKVzlQ0mFMHYwp8c36zski1BljFgkhB1XuLwBkwF75gJQXlEOwO/OPp4Jv7qQkydeEN9eJjvQq06Oe9O9jdqLRF+rLvaGWl0RparU7Rjckt4dogGfa4tIuI0UXe6adHeUVIi4KuvD26jbqFo57gTahf9+ynZwIroIoqbl1H45c6SNY9e/zxO3vpQKu5ZlJuE2cqRExtr+Ba3ee2NyHnXdPVKqBgOMUxA1rjGPzyS7dxqDxvQgM9eP++pSo/iUV7gF8dLTvJi+2m0CFAYibmnajS0vGhU3OnSdyT5cZVG8pRopaTBqvjGqiyrJ7JXWuoPGf2hu2nTXuRYaF6kkEjel3cDA4224p4mF0/XjXZRC6HtM0wrqu40aiCOJxzAGyyKs+WIbB50wDAARt7wUO6U47WFdrpP4oXC97wIIeG2CzdAlqsujKEdRFayCkEPPHr2IRsPEZASvL7URY1l5GQAZPXojTJOX/vcSoWAIRSFCmK7Vo5MLVmrlpZ1RKAyzKxm43IePdCRGC2JxlLMTUfRx5aViawVIqdNsuxhKKQwUPWw/mel98foaLlJnK8jonUYo1MWVgy4unqbrYzsWymponlJIJTE9BtGwjeNIqsuiVJW61r6wHSYaDbeDRCp1/lUKw+tBAV7TISPH3+SLoRV13B5GwBnTfkr+5jzWL9/OiWdNZNOWjaz5altKbZfy8lK8Hg9DR4/B178niaY+auNWTIO4FUe7jXZLwlVWchI1utpVVq6ZscWTfCvfuBWKijWbkNWheC1qrbx0JaRSeIQX05tDj+En4W2kwu7CRd+jlAOOYttXP3awlM2jK1k5NbsWqanSTjIWpN44BwxDIG1JuNKiMK+SSLVrpZHSRihFJBRs88aFte9sOyYRBggFIp7f7MQan1eVUkhbktM3nfzNNf2XNm3ZCIDpSX1IlZWXkpmWhmdgahVdT3UxConH63MP3ol0tcfqbsP2jZXJm61ka/OLwXUEKvmflm3U6oBdpbDCFtJxYyZ0TELXQkmJIQwCPrdnSV230W/vnANA0fZKpHJASTYs/IpYVXu8Ye4c7j2qtBKj2SlsaSMbsLzIaBTHkSjlVqsVhvv7Ecp9lEZ8YZSUfLDgJV7908NtKFHqy6aUboAuwq3PEqqM8s17+UQjjbisEplGGQ07W1789zPJf7+96E0e/vsDgMLw17zIGFaEkvL1FFbms9fYwQQOSm+D82o9WnlpJxIZGQowu5DbyG3G5bqNWoZqlY9Txd1UyokHekoIbdza4v1o2o9YTIISJNoW1bW8HDRhIpnZOYw/eGi8toR7L2z4fH0nSLsj3Bm+s9M4NbsetbtI246FY9tUbA+z9uui5P0UWrac0KZCtq4tQxFv/1LrVnMMi+pYkJK8LURiO6/cr/33Zyy59+X4T67W/FvL4iKkjW1JpKP45u2Nje4ru2cAi1CD6z75fHHy32++8x8ATMPACNTMBVnF6zCBvXL3xDBNRM9WxkC2EV3nqbqbUTupxpfedUKLlFQk6ijtMK2u7ratcPekbBOPjldO12pU2d2xopabDRa/H+rGvAjDoN/AQQhDUb59o1tC3Hagk8uD1yYWTH1QaMuLpsXUumVs6eDY7ktecX4Va78uAkBGYzgVlVQUhUFBcX6VW28lHi/ipRAhJY50CFeG+OQf/9opkaoKyogWu5k/tRVylah+Kh2sTfk4wSBKgWMrnAYsRgowPAb3PXxHcpmUkuysHADCkZrfT1WVW0E4NzMLkVbLCmtH8CjI9PeIV+PVMS+7J+2YEhwJWq2enNNzfCipkAqqK1vovmmD81E7437StAvJv0d8Aq7rNhJCYJhmvGlblftHdGRS2ekKLJu7kE1LEj3TunhGlKZLkpptZKNsByHcfj9VxTUPd7eeCjiOJLtvGuVFIZJmS+XgVNjJ4m+loZKdksmJ2QjHwVAqxfKiFAjczDrTjqKqq93ikbZbBDR/VUmKEiNtiWEIKqtqWhtYtpUM0k1RXoJudd30tACmv6Yho2FH8ODG+wghOv03ppWXdqS9qpBu+L6Y9d8UtXJr98eIkg36dBvDm5XeOqVD4mY3xWIkHyr6wdKlUG7FwqQy4qnjNhIITMNEKoXoEQ+6lrJLZfVEg2GqC9wHhdDJ0ppWMHDAwOS/LcdOZkVKRxGNOEhHJvv+GEohg0GMRLG2ctc6YgMFohS/8COlTOo0O4M7XUrCMaPWshp3lUCC14dEYXpNUFBeGGLzmrLkeMd2Za+sqkwus22LcNh1I3229COunfl/AEkFJz0QQKTVzAXV1UV4lULE1YbOLr6qlZf2wvWQtAuO1bxGXI2RUEJakrEsDIFqxQklYmtUouMX4ElvOJtF0zlIGW/KljB9N1DnxTA9ePw5WDEnHv7kdGElVCvImpZz9JFHATCoVx9s6aAcRdm2kFsAzlHE4sGwypYQDSF/+BYrGkWWl+GJVgPgKIVSkpAVBFTDtWJaQNI9pBSODfkrXQVdScA0UX0GEeiZjdcrkkkViZfm4o01/Ykc2411/GzpR8ll+00YTsyKkRZwA29fe+tlACoqywEIeL2kF/+QfOG0ohV4qSlo2W4PuGailZd2QuHeRG7Z5jbcr1LJPkPRUMt/GLGwHS8XIFLMpFt+LKN4c+NZUbWVjxbJm0inS2wvJdXbq3BsHffSVVBKIQSoZMyLP2W96TExPSaGN5NIekKxUXWabTYf2RF/e627aFqMe9N4PR4c6STf7tw5XMYDdOPfMUBKKtYWIgs2Y8Qf5PP+vZK3vlmKI9yqK5bcOeUlUlQGUsV/ajJZWFQ6EuEP0H/cILIG5CTldByZfDmNRezkHG9bslE7Sc+evVK+l5a5ClJ2moeS9YuoXPEKQkl8hh+PVHhNP12hQZ1WXtqLhMIsoaywuu12KxXfLfueqoogP3xeyPZNDXf/bIyybdWgIKtnAH9aTSBxNGQ32Oo9SWsVsETsT6InDoBUlPxY2ModatoaqWTc8uJ+rx3zcvMDj5HToxem6UEpA9sT15ylIqN3ZquOt+aVT/n2mY93XvDGULS+oKKm25KwZntNT9xt5JDTJ821WggRD8xVRKOK6vIoQjp40v2keWxsVTN3vv/dN/Fnu9r55IR4XQshAFljyd7yYzko+NxaSVn19rj8EtM0UFIRyPQiHRXPLgU75rBxU16Dh8jNzq05nFI4cZmz0gJ4FfgrtuAEi7B96VSn98Bj+lwrre5ttPuSMPnJBnpktJZwdZTzf30Cd91/K9UVUdZ+uY3izc1XYKTt1sCwok4yxsG2HKxo05kjCkWwsJJYsGUde5MtkZQC2yYRIW969a3XVVBRN3Bbxasp1nYbTTzhVAB69u7L1vwtSJ9ixFF74fGKVlterHAUe/v2nZS6YeyIRSuNhJpuTmmhG//h93uxHAcStVTAffmKG71tS+JYNqZwkq2+lKpRUkJRd44UCIytFnZs511HSoGKRUG5SkpFUYhYeQWhsnLWFa3EnVchVBUjUm3Fa8DUWOftmOTkC45pcP+1K+uWxWN3ALLSvfgAP7B5/SIs08thI3+GMAyE6PzIMv0EaUdUvIptWwbu5q12a6RsLtxIRUUZR5wxkjdf/2+ztnUsiWPLeHXdmrgAaSvKChvO/08S/xGvevq9lgmcKC8c19Rzh/UBIFy2g+NpOgwlHTdTOt6QMRGw26f/HskxoeogWzbkc+cT79JzYBaBHlk4rZ6U22/aK/ou331p0C0oNC0lPh/6/X43VTpmuwqLiMeYKBBCIaTCKNyIgaRkS5BQJLXDctS2QAly9u6Hx/BQvqG49TLFLS5WTOKPlGOXuxYeKRVGegb+rDR8hje+zHUZlW9z51bTaxAKxoBEzEvDOLW6YG8rKqBnbg8AJh8wGp9SmMoNUEap5BzhyxpI/0CvBvfXUWjlpZ1I6AbKtmEngmvrEg7FH/rRGL+bfRkAF11xLh991LQZfvumKipLwlSWRFBOPMOktt9SuW8UTaOIlTbhWmqAaHmIGh8a9BqSi5KKqo0FLdqPpv2QUiGkxON10yITRer2GrNvckzJdtfN92O+azGJhS02vv5ZB0vaBFJSsXI9kcpw8i1Zo2kJCSuLz+PBchyqqxzXipFYH7+plHLwVxchlMIp3o5fhbB9dTuxK4SCpvoNtUAy7LJyBBIrWB0PR5A4DvGXQwPDgKyeaaRl+1BAaUEIj9ckWu1a1JvqOB0J14Q1VFW7VvyfHX4A/nQfHhReFJnSRkgbU7ihBllpvRiTPawNzq31aOWlvYjHu5C3Chluu5iXDRs3APDF6i9YsWZZcvkn7y9pcruKohCr/7ctHnir8KV5U4seoagua6Lui3DjHKqLW9bqoLqkioTiArXMsG2o0Gl2FonARphuxcyE8vL5B283uVVrihZCQmVu27+/isWIVYXcwosJW76my1NdEcWOda3gfa/HE6/zIgkXFCELC9xy/PGO5UoqhHQwlI2RnoGoLqNCpVpXXFePGx8mBFSUtNL64vO7+0oUALDj1vzibWws+4pwVSkF3iqys2x69EvHF/BSVRohFrHx+k2sSP1re9/Mm3jm5j+SmeHGrP107J6k+d0g/W0FWygtL6NXdiYmDqZUxAK5DJQSUb4R0YUa9XUdSXYzEvUAlGVhRloWVFuXaNjGttyb8OobLmu9TFKiJPQekkVGTv105SbruEhoTQqqE7FAuoWNegztRWaveElpbdbvMkilEEJheNy/Td0idQDRcN1S5/F4rtY22WyLAhh1pEHKZOXP9qqxpGlbtm+s4scvtnW2GCn4PG7Mi1ISVR0iq2glQjlYYQfTcF2SIhDAckwsZWI4DjapSoJCYVdFiOG6Vt964O989/r7LZLDsex4nCDEmynhyHjig+2gVJRQRQkgKC7Ox5vmQRhu1pHHa2J6jZpYxlpzu8dQxCybg8cfDsCoQX2Zc/EFAPy4egUAfXMyETiYKDK96ZiYWN7ObQdQF628tBvug14kglV3guL8KlZ+7Ma6FG5rOEvHaEb/pIQYpkfEx6uEpHFxG5dTeM2k1aa6qAWuI2EAEqUkIpAW716qOr20tKaGZLEr01Vo6xapA8jIyq6zRMTfQlvT74q2Nry4+1XEY6t2oIhruhZdRNFMSOHzetw6L1IiAWHHiHy/gnXfbEcot1hddaiaH4o2IG0J/fdAeGyy4qX0M9P84BM4XkGQEAhBKBwiL29Ni2WSluVeH8PEkDYIQVVJBCMjAyvNA4Zy3wPi7wKJyre+NBMBROJuo1itejMyFkWailCwIn6+Jp50N87lyZcWAOD3eTEMB0+ffeiXMRBpejAz+7dY/vZEKy/tSa242J2ZTIUpdhiPIoSRrAjZqDjxareJX2ntOWNHGRqGIeJFDhT5i5Y1S26ArD1ya/opJdIGpe7625Uoqy4nZggMw/VnV5TVL2mek9sTgH32TJ3AZBOBgJ2BMISrGOvba5cgtm0bsmrnLNNtRUIR93q9WI4Njkw2lFXBSqLVYRy7GhGNMOs/87ny33/GsqJsirzDuvwycjJ8HHvwUPbaozfIhCLhWi0VUFHSigy7RJE6w8DIzEJ5fESCFlJCNN0LhsL2gCncR7lhgBVxyMoNYFuSssJqYlGbaKwmJCDN5wfl0MN0g3k9HkHA5/72gyE3LMBrGhjCYUDPvdij514YjoPf27ldpOuilZd2JpHY01Iz9vb8KoJlbsrdO++9xYofljc5/v4/z8Y06waN1UG5hfNUPFa3nvGjCRGFx6h5ZW7B27ZVK7XaCQbdDtumSfGydTtUtjQdQ0l1JZ9/8yNKuPdPj169642R8ZvFqNXPSDkSJ9aa5ozxCbktqd12orairOnS2Nu2EV21orPFSCERsKukxN62DdPtcYKM2myt+pSq8i2s2+5awreu/paqTZtYlVfJ5uJqHFO52TtC4fF6EQqWvvkWCkWkIuS6glqKVFTKKqThxAvkube6x5RIA2yDZCyKwrW2GKZAGALpKL7/aAuxaCy5u4F9eqOQnHfkYdx5ySV4vSbSiaUc0uP1gindgnRCYCiJ0cXUha4lzW6GkhITh1jUbabYEipLw2xa5ebc//LyC5h27alNji+Oa/XRcOM/DjeFlHieUe1Mo5oaBo1vLBA+n6sAtSDOIVRYmuyDI+IPF1+6D+U42NUtbAypaVeMeMrlYROPr7cu8VaaqAkh3OCSVgfttgcyWZdDIS2tvGhaRyLmhXhnaUPaCCmRjkLKMNK26ZfpulH9sprvN9VYKr0ek5gZxeztI2dsH/zSixO1ky+OtZWIHSJrlPwSq5TtwS1u7KOKW66FwjYEstaLgBVxiEVtDK9BerYPKd1EjO++/zY5RiiFwsHjMeiX4eBIsO3UmLaAT+CYCq/pA2FgKNnask7thlZe2olAwMBY8y1C2q7JcFsL65rI+ml2zVGAGlUshBvIZXgEhhnP94grE5XFEddPml4/ULNmx4rsAVnxB1bz3x6U45CR60ayG173zd4wBTjSzQzRdB3iNRwSCsr4CTVFrZxEqXRTUOJUIoRA2g6lee1TbK5VKEWsLIhhgqNjXnYJErWwugauIF6vW2EXKYkEeiCkDaYZb24oyTS348R/K9Ivuf/tb5J78HgMHKk4+FCTyOrXiRgWVeXFcculYsX739c7apMW6KS1WyGQBCttSgtCrjVfKhyPIC0UQ5a47h7DEDgxCcKdZ/1pHhxbctPt1yR36USqQDkIEVdiMnLqWV6G5NjYPguvxw/CIGqHKK3uWoHVWnlpL5TCCUdQ0SjStlv8+6zdNTRB+fYQ+4wc1+R2hXlljezQNYD40z1k5PhTzCzB8ih2vHFXo/Kg6Dkw21V4WvC27fGZmFlZYAh8vdygsKweAZCy68xZuzFlhdVUltTNFGoYTy2f9t2PPccf7n8s+T1heZGG4t1lL4FwO0tXbWhFmwdFAz7LtkFaMUyP0aUsQppdg8TLnM/jwbIdRLjajemqbWUUCkPZ4HEfnRXhlSn78HpMbCduaTYUyoliKyf5Ipq/5ot6x/3mr29Qtr6oEaFcK7mwBAIbaSs3nKCqHJTCNsARgnjIC70GZZLZM4BhCIQQKKmwLcm2Yreu1nVXXE/Ftm3IcBmRmINC4vGYSJH6QprV28Ia6MUTt7wo5XR6F+m6aOWlvRCCNBHBJyyUdDN8WkJ1MIhdpyNpdUWUSKzp8vxbtmxtdJ2UMlUhSgTuSokqL0VFG963jNfNMEwRN1m2QHnJzSW3d7zRX/wS9B3ZG2/A0P1nOoCq0gj539UPwG0I4alJhTzkqElkxyttApxwxs/dMabCikUJ28F46n0r3DPxQMb2wXWKqi4WSKzZdfB64gG7pUU41a7ibwhFRpYBhoMhbVdBAULFNeX07/q/n/Duh+vYsKGSWCyGL8d1i0spwSgBBbGIwWf//g+bVv0AwJdvv0OoqIKCb/PqyaGUJNCvJ/7cNFAKTyyKHQyilEIWFxFxIM3woUYNxTRd5cP0GPQfkZO0nsbCNlm5NY1WA+Et8Zgc4gXuXLVK1vEJeUyjpm2AMNzhndxFui5aeWlH/EYMj7DwCJu0TDf9NBa2KW5GM8UDjt2L3/5uWsqydWvXsG7j6uT3xy49p952ldUNP6j8GW6jLhkvDqekony768qSjkJt34b14w9NypR087RA6RBCYUUtkArbiptlA17MjIzkGDsUYfmjbxEq6RpZB7sqtTPaqivi/YokqCZ+5bWzvgxP427Dn5x8OvsfcjgoqLKqqcpaD44DLQxAtCPReM+YdpgIa6XMSR2wu2vQBbMOfV4Plm0TIOymKgM+EUMpyZvL1hONxpIB7KFasSKXTbuUWLxj+qv//ZJMASiJSBek9RmKAoLbt7D+s+/54i23zcr373xGdbgCu6jhInbCEPFnh8IKBBChIEpBJkFUPNqlpwrg2daYS0fgTa9pwBvwepDCASQikInpAUPIZJ+7PjlZPHTFxeCBNF9WQgiEdNsEdCW08tJORH9cDYnKskomg6qiYZu132xvVqrwoi8/pry8PPl9ytlHJf9924Un4/fWzy5SRsMPBY/XcF1Z8TdS23Lbq8fCtYsgNSKTjIf4xjVxGWte0FmqpUdCiiVJJTOwVvzzA8rXbWXz0vXN2q+mYdYv257sYL56aSGhyhiO03S12ZT7UHgaHQfg8XiRUuIIQUFmEIXCibQs6DpSXEnpD5va3a0jdQXnXYJalaY6HU/cOu41PUjlZg0l7qNMM8TqjV/zz49W86/vlifnrpBVo7z07pmT/Pc9f30Xr4KSvTaSM1TS//SDiPdjJ2ZHcOKNHB3psFVuayKD033hVErh+H2YXhMlFdKKEhCemlqPqmFlfcDIXKoi7gut3x9g1KCBqLiLyAmXAG7VYAyY+6dL+eMFJ9M3Ow3DAJ+ZsJgbmKDdRt0FGe9BJHBLSaf8PpupwXpMD7Nuu6ve8unHHsHA3rkoAceNGJOyzrIaCepVbi0YJMjCLahtW5C2wrYlkWrbNUXScKE6tzy1ctOlAdnchnxxZcifneYGINu13tJr1b6JBiOuZSbUdm0UuiNWzKFkSxAlFbGQ7QYY7sBK5sTfFKf+ZH8Ms2nlJS0jg2jUQQpwTBA+L9HKlgWiCyPelLFdXIYJy0s7WXY07UTXUF5Mnzu/+eIVpqO2QjkOqkefuOLhznsRyyJklwNQ6qQ+QjPjhepOOWkUPiUxjCjKY2MYhlueQsn4e2LN/Wk4NHi/lq7YiIy5c7OSEhVvfaEciaEUQkZRAlTAB0hkA1bQ9GwfMccNB3j67y+TmdMXT689ccvvxV9kAybRNB85vXLw+wxC4TIwweeprbworbx0F2pSjxVC1VVewIrW15Qri8Ns+K44GX3u83jZsC6/3jifaWB7BY5p8vtJx6Wss+2GzfgK6Dcii4xcH1SWE/p8CYE0g2i1RVWp+/YgKssankekQoBboyVxcs1AxS+CL82HknZqLraA8tWb4/sHJR1Kvstj9ZvfNLgvTSrVFVGqKxuweiSMfYl3WstC2o27UBL3S4/sdIRRv7JubbKyexKOOijD9ZGnZZhUb25dtlG7VFiulaEX3LiNvLf+hx1tbefrXZtoWRUb3vmqs8XYMUoRie2gPlUHkbh3/D73d+CX5TgxB6PfADJ7prmBuriZdzHbtT4/+t/PU/aRke7GjaUZCgwPGILMcQcgDCNZikgi8RoeyopcV4+Dk9LZOcG2bzdglVXiDXhAShxDIKSDsh0Mv4+QcJBA9dC+OGkZjSZS2PHsUI/pwbEd+g7p7Z6tcM83nJVOpL/jyhjIQBJFGAq/WRMrMyxnBF1FyUyglZd2wIo58fgOVVPfRMHmVaVEgm6X0qINlfW2k1JRsK6cULX7Nuvz+Pj3Gy/WGxfNzSCWLYn5TSyROjlbdsOTtYoH3Gb3cTNKhFCEt2yjYnsYGYsho1GEFW3w9nQrlqp4zItCtcAkL4jHykhFICv+YzDcwN+1/1lK/udr3UlDKbAdok0EHGtqqNweZs3/6vu5k9dSuSnP0bXrCH/duEJoxZUXjyF2aHkJpKVheLJwPALHA+GqcqTjENxW3jLhVTvWYYkr1sUr8tn04fesfePL9jlOFydaVkX+ouXEqpqXadZZVFRXUV3cNdLtE1Znv8+1nti2hXIkAgO7rIzo96sAkMphS1HD8Xk/OWQfAFb+WMKAHvtiGB4M00OvLV+QpjbFg2PdY3363GuouPu8tvJixxwqikIgFVUqRHmsHCfNIT2jFJSDdGxkTk+86UH8eMAj8HotGsvfdOK/8S2rP6C6eBukxZVFJcnYYxDSsDE8MnkNBArDEARqBfCnD5vI/v0PbuWVbR+08tIOVBSFqCyNuQ98QPhcH2p1ZZTC9RWAwqrTSdW2HNeXaSsqKlzFxudp+E04EosS6mtQNdDLdl9qn6FgeSOTlarlsxRxI4iMFzyyJTIUxpZGk3ViEIK0HhnNN8knXAN1ItmFEDi2RNoWRUu/r4m3icujaR516wC5y0hW4BQCt1ZFqPG/V8LNaJpGsrdRY5imB6SBIwS2AVY0DI4i/6OWV0iNBqP88PrXLd6uUZTCNb0oYhEHK2q55vbG3KjdgF3hl3TUVWdy3fP3dbYYQI3rxh/v7eVIB5TEMCEWjCAd916KWjUxf8MGunEuS1+cA8D829zGuSt+LGXISXcRqjDx9+hFLFZBmtqMcOIviFIgHRuFwvJbqFrdmiPVNis/WI+UioiMsq14I6CImQKf6eDEJFIoeigfPbP6gBDxvnMNn5cdD16PlW8nVF0BXoNAhonZczD9zzqRYT89ilzS41mADuB2wk6rFQPn9QbonT1oZy9xm6KVl3ZACBF3G8VN9wkjTI1LHmmn3mkF6ypY+8Fq5OYN5P/o5vwXVTTyRuIVKAGmL0Z1z1STa+HG8gbjHJKV04u2EtmQD0hEVRlSEQ/iVTjSYP2yBo4ZLyRlCBg0phfC3/RDLrmZ7SpkpscgLTcNr7fmdouVB0EpqrcUY4WigETGbN1tuiXU/TPHn98kYnQFhIOxJksn2/Hga1MI18zdBKbHk1RuHUNhCNcHX/zFD+R9tKpZIieCvhXglDQvhbvZJDqfA3aF+2bcrdsE7CIvAiu2rutsEYCaGLxEzIslHbeDtFD02CMHOx47sjFcYzXPyTTIyUzj0P33BmqsNgnmz/sY0+ujvGID2b28oGyEcmtruQdVqHgzxdo4q1dQtbUc4Tjgq0J4o2wOBMnxhbEtSZAqKjwxeo4/HK83nZiKojauofrb+kXwnITbyOPBncgNPH1ywHRlzfBmMGLyaaTvNQoRyAQkYV866Ya/3r66Eu2qvMyePZtDDjmErKws+vbty2mnncbq1aub3GbBggUIIVI+gUCgPcVse4SbaROzYmwq346UUFLgBqPGG5rXUzCkLbFCUeytW8hbWdDk7vfZb083aFIoRCD1zdK2Gi6Ip2T8VTwcompzaVwWgcdroBxFlhFMylFv24TGBW7gWTPnxMIlq4hsKwUhGDN5FL0HZ9U64XhRvLjlB4VbuVcXF2seibetOqjkHeYiLQfVhPaScBuZhoGxg8nK9HiQUiJQWEKS3iPHDUB0HKp+yGvxKbRLc854dl8iwEBGmq6LpNEkeP/DDwDwxrM4bcdGxWKuwi0UtuMqHCFZM+dGLYdAEy9zG/O2g5KYGPQYnYnwWxjSIhYspWLrdjdw10ytsiurKrCrgqhoFEtZVPfx4BuagWUaRCsLoaocb/F2eossvGnpWB7Ij+RT9d0PVK7ZXE+GRMyLEAIlJMI06TP5BHr1qpmPDY+H7CEjGHHeCWT2HYzRYzB9s/fYiavZ/rSr8vLhhx9y5ZVXsmTJEt59910sy+KnP/0p1dVNZ5VkZ2dTUFCQ/GzcuLE9xWxzhBA8vfhljnzkZs586k+89r//sn1jFXYsMam6bqLa2LZk0Zfv8+rX7xIKBpvcf7YRQAIxj0KaqQ+m6lBVg29cKmH+EYmEPUApTI9rHxIq4fOsfzwZjWEYAsM04l17m/fQCZe6tQgMkdrQz/SaeDP8ULuorwKk1M0am4tSOJYiVOlaThIp8AkLH1K5k27dTLc6JAohGobRZJ0XANM02bZ1M+vWBXEci9zh6a7yKWUrLGYtazOxI0Tivk6m/MdPurumTOvWGy1mwQvzgRo3i+XYCGljCDcGJGa4y9dsqbFO/5BXybaSWq57p34ZCcOOETbcQm9+TxC/Uwp2mJhjgalIGxqAWrGKynZdN2EZIiQjBL0xfLleLC8Y0kJEQjixCN50V/lwcHAQxKpCmJVF9ayNsbh11esxAdeS5M/OJvfkQ+vJ6s1MZ+SR/cBjJ7vMd1XaVXlZuHAhF110Efvssw/jxo1jwYIF5Ofn89VXTUfBCyHo379/8tOvX7/2FLPNCZZFWLq6xp+/vmB9vOaJSsZ72FbqZK+k4pZHb+ahRc9SWt5wwaIEfb17cMhRZyMFyDp/wYKiLciG3EYSEkUBBG4QsUDFw0wURjxawlq3pt62TrzInMdvuspPM60j1durah6idfD4ve5be9wfpaTbCC1cXD+QeXegYnuIwvXlbba/6sooVtTh2/c3ARCptijfHk4atGTcb23Hmm7DYMXT3k3DQOxgsvLElZtn//EhCsXXkdU48Uk3cYyyVTt40YgHayMV4W3lxKrbxjJipKen+v0l8WJ43dht1ATVFVHWftW1etV0FXzx+9xyHLwq6haiRRD1NeNxGS6rtyhnyzcE4vEyft96DFXhPnhVPBPVa6LqBrBLhYWDVBIbsKwolhdMJ0aPbFddMTLSmTRkEreecRtKuC+ghpT19hWNWx99pgeFwt6WGieZRCk80SBVwa3IWNcO9IYOjnmpqHAvWs+ePZscFwwGGTp0KIMHD+bUU09lxYrGAwKj0SiVlZUpn87GsRXLN9T0vJDKwbHcbB8V73xbVhhK6QBdu8bQmvWNxw+cf+gxePyKtIxscvYfj6zzhlW4fXO9eBpIBHcqCIcgnr5tS0FVWaTGIAPY5fV/fNJxtXXDEJgeo9nVS+1w/C2koZfARN6gUviy0skZ3AslFV5/19b2W0s0ZLN1TXmb7c+OymRzNkgop4kYq/hDXNRc5kb3E1c+TCEwGwkQT2DWykZK79ufoFNCxInUCuaC75//lLWLVjayh1TCZdWseub9Zo1tPnELIjLu0uqmlhdo8g9vRyyK89o45mg3wR+PefH160GmUU2a30EYAlu2oCN0LaQTwxAmHgyqRgeQOeWJnyd90rcTihZDLStk1Rb35VUqByVAeqG8MB+P4cNjCjICknKjHDOuZG1dtxVQxLCw43VmVLAmGyoSdRUR1x2miFY3HMQulIPnx3cJW9Xs02ffVp1rR9JhyouUkmuvvZYjjzySffdt/MLsvffePPHEE/znP//h6aefRkrJEUccwebN9X154MbV5OTkJD+DBw9ur1NoNU4sgrSla+JXCbd86k00eWqNCe/xlx5O2X5QnxrLU5rPi227DxlhCBwhuP74E5PrC0u21MtkgvjDDRGPKFdJN1FZQTWJFuu1H4CNYXhNpO0ki5s1PRiQEtNXE1T8+bYvsWLhGjdH3N0QyAngMdVuGbCbsLhFww4lW5t2CTYbEc+OEO69tH1TVbyZZy3rQ2KGbOohFi9sZYodTwWmp+bv6M3MwjEFEX8ZSEm0NP4250hiJaWN7IEaLTkha1tZRhLnKXF7tkjl3vS+3VMZ3lmsou1YX/2vs8XoMpQVVtMnuxcAOZmZAASyTYRjE3KKqMgOU6oabp6455ABTe5bSgdDGAgUXqnokR0BJIZp4PVEeObx/1AVcpWNWDDM1v+tA6kwlKCiXwTpcZAGRIRFNFKCVVlNxIoQLa1xXykUBRSw0dmERJH/wcvceuP/sb14G5F4zzqf4Vpe0vpnNyyoUjjKITtcgd+b1vCYLkSHKS9XXnkl33//Pc8//3yT4yZMmMC0adM44IADmDhxIq+88gp9+vThsccea3D8zJkzqaioSH42bdrUHuK3iLqarRUNu7n8lkRKhc/vtldP9ApSSpG/rX4xugQv/OJGnr/gOgD23WMwnoAbOOb3pmF5oV92zc0YCgcbTndW8e6oub0Qyg26FABK0HtAIBkn0JCLp/ajz/SYKEdih5pZFl5JPJ6a22zZ5k9Y8t5T7hcp3eMK8AS8DDt82G5XGbVwfQUrPt6K47huw/wVbfO2m0hQUPHS4VBjfdnyYy3r2Q4MD0nlxdxxoTBRS8GpWrsRy44RNdx4FycSv+dNA9XM9hGufG1jGamp/ilJmvqkwtiBNan7Eq/auotkJLU35UVhLph4JgB79O0DgJOWjpA2ZbKA74vfwZYNK+VX/vyUmi8Zveutl8pGetPw9xnLYRmD6SVMRDzgb/HKjSxZtpl/fP4qTtTif/e/SqwqBEgq06qJZoAjJDkqgJmTy/ZoGeGt25E42LWe3sKMEZNRFO6cuqYon38ufJmrb7yMlavdDCRvWiYIidEjs8HzEEoihcCjwNxBq5CuQIcoL1dddRVvvPEGH3zwAYMGtSxX3Ov1cuCBB7J27doG1/v9frKzs1M+nU3d6rmWYyfTjRNzhR2TrP9mO1bM2eH8bUrFiF79+HrOC4wZsAdmXOkRQuAISPPWTNBWLNag8SJxjIRyIqRNmieGbTuYsWAyrbuxCruJxcJ0K0UWf7ceZwfuIwGk56Zq8EpKIgkTaTzQM1YZQinwmIJIecvKzXd1qiuiVBSF2LSyBCUVofLWmZ7rIhBI6fY9qdjumoVdQ4YiFrFRUrH8g807fDiFgu5bmdmMmeCjd15P/vvWq55la9F2TGGgpMQTqDXZNed5mMzdb8bY5uwu/t9kFl/CX6YDVxumiyktkUZcGR2KEpiGkYx5sU0TZUexbAfLlMl+RACTj6x5jnlqK/7e9Hq7LS3LR3n8jB18FMMzByCG5CJ7FKEUZGW4c/e/PljMf/82DycUcgN2E9Zww8ExAGHiycxCmhJlmnjNNES/PsljpKX7MQ0TB0mkuIKKeNLH0i8/Y/7T7ou/kvFcxMbauyiFQrjxj7vAz6ZdlRelFFdddRX//ve/ef/99xk+fHiL9+E4Dt999x0DBjRtmutS1PnD246dDAtQUpHVK8DXP3zKAZOHULh5+44nEqUQSIQS8ewd98eS48vBLzwEajVotOxYSt+Yiu0hQlUxHFvF39YlAvD264s/04+0JZGw45a+3lGARC15Nn28mlVPL256nGGkuIwAhGESNRNxGRIlbWQ0SqSoHMd2cGxJ6brdI5AwErQoLwph25JY2MGKyqQFZqcRrqXFcVTNn0wpKrdHEv/EsSQqEmlYH41b56orXcXHNHZseQlWpcaTVUYibBqyEa8P7Oowmz781j12E3EmIlGMq1b6fVvgFuRTCf9o/Biq+X24djOSTVQbudcSi3fU+6qjWPVZAeGqlin20ZCF3YCLvDWkZ/vwmDEMBD6Pq4hbjsMvX5nHMZfeCQLsWvd1RqAmM89IUZAF/5h5OM//+TfJJVXl5ezb2w2VcGNfwC+qEBIy01zlJeDzUZS/JdnzSMVfGKUh3YKQHonh9eIYiso0SVnfbAKDhiaP4c/tiRcPtmFjBnyUV9d3TwvlupfSq7c1OM+LeAKFUCB2gRJw7SrhlVdeydNPP82zzz5LVlYWhYWFFBYWEg7XRDJPmzaNmTNnJr/PmjWLd955h/Xr1/P1119z4YUXsnHjRi655JL2FLVdsZPdlVUywPLtj/8DQEVlOdWhpq0NhlKIhCaOg1Lug6ZfRj/2GHckYW9N6nlR6Ta+XfFt8nt5UZjvP9xC8eYq7KiNzFsLSPfBppT78Eum2cqaLqW1qf1AiP9QrWAIp6rp+I3Mfjn4euSmLBPCYF1OENuOkdkrA69X1KTbupeoJh5mFycWsYlUWVgRB9uSZPXwI52a9OadwfQYuGlFCq/fvR+k41Zulo5C/rgCadk4MasmvqQWq95fS6gyhhW3npnmjl+19j0wNbXS8ZpIU+HvXYrEIO+tL1HRKKqRFhWpqLZVYITAMATZfTNdBSmuyJSu2ojdTRUYoPHLG6/+3TVUF1cRKS1oWWPWovwqVn3aNu1EhADTBEOIeDE3iNk23xe5+3/l/U04tRS9HH86f7zCbQUwcmiteigeP/sdvDdTJx2WXPT4k9/i87i1ygzDxFQKM5KGLR1M093noaNH1/9bGLCH3Ycee44h6gFMk1gGKLOSiAwy9ZCf18iP4VpVhCS/MJ+7XngpZVeTj/0ppYWb8fffh1j112z7vn7bmURah7unrj8Ht6vyMnfuXCoqKjj22GMZMGBA8vPCCy8kx+Tn51NQUFOUraysjEsvvZQxY8Zw0kknUVlZyWeffcbYsWPbU9Q2pW7ciFXbohH/XzjiKiwBv59f/OLCRvd12WGT440dJaV2EaWyFBWtcROJ9AC2SK2XccxPJtSSxe2V4VgSL1FKVm7CUG7sjd8jkZZ0G/fFLTKN9ctLupsg/kYba3xwHKUUwlvjTrAdC9NRSENQXrwFw+vBn1PX/yoxmvEg3RWoLIng2Ioh+/QkWm0hlcK2HArXNZKq2AJcS4N7OyWul5Qq6Tqyy8uxgyF3gFT1XrTKPvuGLUvXJPueiGbEvJx01gUp33O8uThWmGi4ytVFpFuwjuYqLyn/31kUadk+Rk3cK27tq9mvjLZdPZnmUFVRTjTcdVNNKzcUsPHDle4V6ioxZgqKN7UsmF3aqlHLUkuwog4V28OuVVrA29+5D3arVpPbVxZtSjlWesDHqGHZfPjMTfz0qPE1OzNMDtvnXNL9NeEL1SGLDZuL2FZchhACyxsAZQCypg5R3VtUSQLSS4+03vhyeqCEYM/ee+OJOViVQUJ12l4ooXCwAMW7H/633jkefvDhiIweDDhiOHbAQVj170+hFNL0YmcOaJYltrNp16ic5pjHFy9enPJ9zpw5zJkzp50k2jliYRthiOSbbrMRNtJxrS/RkM3K9V+zZNliwG2NvnJF/dTScQOGsrxgI3v17IvphEGYlKhSHCeK11sTLLs9VERDiSKRkEUg3esWlZMKp6wMs2cWAgeUAwJMEa/dEnFqtTJoIM26jjtJKRF3+TT993WiVk0sDVBhhcABM9DD/e0mg4ZVMhhUScX2bzfQa6/+Te57V8AXMMnI8eH1e/Cle1GOwp/hpTCvgj3H992pfS9c9AZWhZf9RtU0S3PrECYyx2osG0aokpItQfrUqnCsYlG3GWe8IZu3GQrj3vsdmPJdeDKwqcARKj6RJAKHa1ULlRI7GMaXnZHYihqrS9vhy0qnx6B4vEG8jowi3hS1g/noqX+xbf1GLp5zR4cfuy4N/Z5jlWGqtxZjiIa6Y3UOju3gtLC6tuPIHb0/NYvNq8so3lzFt3k/ErFtgtVuYK5Vp4himlVT6T094L5A9mkk+LU2hoCDTnO9C4vun45/mA8jIwBlNcqLTBRoIt6PSwFR9+VP4SZb5GT1piI7A6PCwCtSA9EjMoYjwyAyKK8soy5p/jTS/ODvn0t4Cxh1HhpmrJqMzV8TNTwcPPq0HZ5TV6DrO7a6ECVbq1nx8ZYdjqs7YViREKaMoSREohHmPDo7ZWyi/k1t+vXO5PlfXMbkEaMxpA3KwQn4KRrSA8tTY6nKyu6Tks2T4Nm5b7JtYwWhiihSKVThForffA+UwlDxcvxKYZhgBMsRShEg1HDMi1SUWCW8u3ZhapPFHcwcFZtKOe/u6zjv1j9QGi7jna3vErLDpPcZhWW4bzkIhT87ndyhPUnLcR8+TlXDHVt3NcqLwljxglFD9+1F78FZ5PZLj7t8Wo7jyKTb8crfzeDaO6fh2AmFQSUVl6riUPzfcd95LEZlSeqblpQShKB0q3utzWZE7Na1KPbqPdZVP33eePoTcQtMzZhlj7zJ0ntfJhasU4yuHZ6avoB7Drn9M0i41IAODdot3rqFWKjhOKOOpwkpEgpuF4l5UY5KqToeDsZwrKbnF8eWDU5XrcGOSRYu+xwAT9zqYNUpB1E75mVdPC6vOS/oQafGRjD7pa+wPQGsfiUgHSLKVerdqMYapRvpoGwFBnhMj9vLzjCxM93M0F70SDmGW/rCQSKJhOtbsBZ99B4AphXBJDVzEMBwLLZvW0Y43ESZgy6GVl5agGEI7GbUN6kbsKiUIlbpPlBuuPsSlq+sqTAspSQzs772vrqoiKyAQHk8CCnBNPFIG8froGoZfrIze5KeYfPE9Ov43aTTkstnXH86/37hTYLlUaSjSPfGkq4hoWwSVg8Ri+Js2ojy+TGk1WjArq1irCpcRmlxHnbUNVnaO6iO6s9J4/uNa3nrk8958+Mn6OPrS/9oDkYghwpvpFYshhu34cvwg5Tx8ti7Po6d+mYoDIE/3Ysv0DqT7Pb8KlZ+soWywprYgITLyI1XdSsmSyeRe4OrrHoE2b1qsr6UVOC4PU5ipaVx2Vo+FRi+DBQQc6I4MTupvID795NSEty8HRmL4dStIBpPvZP1lreWmjT/zNxAvIZMx7tE1n21jLLCbSjRddwx9Ujm2bfl9d85SovWJpWV8m0htq4pZ/n7jZePAECqNmkn4lhOiqJkYOAxTWJ2quWldsyL46iaWkuNcPUFJwPw9bKaGmXvLf2eF18o4MfCTaAsHOnOBUo5GImAw0S7DSlRQjA8d0969Y0H53o9SCVxnFSniZRuxIqhFIs++yC5vHdPNyOpOhQEJfDYEQzqP/iFkvgl+NvClNVBaOWlJcTjDHZEgz8ow0A6km9WpRaGWvbpj1x2yf/VG761pJRys4pKn0VGzzSEbRHbWozXDCAG1LhUMso2I3EYkZnLOQccmbKPB+feSbTaxrEkhqGStQWSZakj4WQbdNmjH4E0M0XxCm7eTtnaLSil2O4U4BiCgk0r3Ld/pQhur6r/Rl2L2r+Dj1duQtkxfNlZ7LnXyTg+G8eJulHtjoMRf/MXAT92pJk1ZLo4Hp9Bj/4Zqcu8BuXbw26355aioKokwta15Sn7i6+K/2klHo+IP5vcB7hhGpieGuuDTLgBBdjxP5LZCuuExEQKKPVHkZEoxAP9VDwDRCaU0AYVYneZE26jv7WqSfLLHphTa3nHWBYKN+SxbvkyNn4ZjyXxGlSX73xsU3tQtDwPcB+8dmzn44GqKsp3eh/b135JsCAfK+aw9usiijZWEg01LZtC7PSft7I4TGlBNb60GmVAGAKf15sS8wJg16pcvt9e/XYYcF4RbDgR42/Pvcnf/vod6cNWYPRy7xGVbPYYt6B6zGTTRtMw6XPwEa5spklERHCc1N9r5WGjqM704wnbbCtxi9f95szjeWz24wDccv2trrIVyMQEPHUunJAOfo8P3y7UhV0rLy1BQXMS4DN7p3bnFaaBN82L6a3/xv3zy6eyYtkPALx0WY0S4/f5sAyH5RlFVDkhykQl0o7ShzR67F8r9qBkHUasyjU6OpKDxh6UXJXmT8e2HDedUEFFuNqd5JUk3bSxtm5BxP2jQkC1SicYNZNptGU/bmHV0x+w6eOVqJAFwqAkVOL6yuNxBSufXcx3T7zTsMJW6wdSWB1ibckKlM+HYXqoHFZOr5HpSMfBDkeTrq+0NBOnuusGOzaX9cuKKM6v7/4SQmCaBhu/b3mxOiHc2i6lBbXNwnUmT+V2BheoZLE4EQlS8n1Nz6Hk27YQyLjFxWigOOGOkMJACkFxRghp2yjpIAyDqq2lbFy9ipduvj9pWUsqMih+/dyfeHn5Rw3L31YoRSDDg89ndIhr5Ju3FvPhgpcJVlYicRuwlm+uce9WlBSz8NF5O6yN1GYk3AKNPt3d36+MtjwTa/kHH+JYNQ/2tx78B18+/2aL91M7zVkqSbQqyMpPthIL20hLEYsH0tZtYpsgmR6/E2zfVIVjyRRXrgJ8Hg+WbaW4SreW1lg8f3rIsB0+Cu789c8bXWeaAowYHsO9/o50S2G4wfWKam+UaruaugGNKi1AUFYQsVOV/oKt5YSHSEKBmr/nhDFD2WuPEaxfvp0BfXsj4u4wA/BIB39FYXKsUBK/8OLVlpfdE0XjAW52zCFv+XaUVNjldfyG8Y7MjfHPl54AoJc/gyuuOA6ArMwM8NhY6YJ14Tw2q0I8toMpAxi1esx4pZNIAQLAqRVk5vX6Scv00XNABu8t+4wpj93CYQ/9Dv/eo+k1bk+Ex6RvWiWGlJhe091NRVnS7ZBIp4xVR/FIgwwzh289RVRXbAXHAWlTlVdA6Q+bcMKploTqrcVESmoe3gqBHQojfD48RgDbhGisnMxeaSjbQsQnj+w+6bTCg9HlKCsIEQ03POkahiASbPlDw7YcoiGbWKT+G6npNZJxsAnlU61bRSDDg5KK8nU1KaXKcdx6DkKgyt2S595WuOq8RhpKCRwjNQhX2ZJQVRXVVjWWFY2nLdf8cr7bspa/fvKya5prI8VCSZWsWJ2IyxKmgZEWaGKrtiV5JkohkVi1LIgrPv6MLas3sPX7HzpMnkRcW10SQfygGlUMmmL5G4t57cG/8c7jT/LpS/8mWFlJUUnLazOlNKdVQeyYQagyilIK23HLORRtrGT9N7XK4Ne6XxLerx0fx6GglrUyQaTacjPzbElW75r7RAEej4eYbeOpNW8XV0Y4bNzenHfWXohmxIgN6l+/2m5yXyURIjGHWLwMvx3v/q6ocXe6gbqpGpLh8wEOjkydA+6+4G6kobADtSzhXoETf4GxYsF413hFIL0XOeEKYmvfoXjbd8nhoZwBZOcO2+F5dRV2g8dER9Pwr8VxFNvyKolFHZyK1GJeqwrcIN8dBXc5Jgwa7t7whscAAZapKBuageGN4JOQ2yM1UKu6chO5aY7rBgIsq0aJMITrquo1KIsPfvwiudyf7sWXnUFW3xyEwM1AAjJ7pkEslkwJrCooS3blzS/fQmbUiwVUxqoIUl3ToFHVV+qiZUFkpMaCogQYwo9tWximifBnUl1eSKQqhhOVyZjKzF7p4PdTF6uNug93BI4jMX0GvoCBP71+Ql/vIVkpbpyWIG1JrE7dkuqyKFbUJj3X706AkUhCi0FWVSJ9GUS8Ocn6OYnWDkKQrBoqWpEa6fGk4fTOxTYVISIgHUwDAlk+PIZr9nbixQ8bzExrRi+t5uIqL/WWtsm+WyBFIl/E/VrrnNNzs93rYXVs2nZDZPTNIVE1U7bCbWRLm/KyErasWM/qz74GFD7h3eF29aj95zGC2I6FUmDFe8F5/CaRaouSLcFkv7ZVnxfwxVt5biC6guqKHbtf7Zhk44qSekr/uq+LKN8Wwp/mJS0zNXvHtbzYGLXepCKWw7i9R3DS8UMQhoGhjJQXyfo0/RsvLA7zwCNukLDjOKQ7Ja5Cr+JNfAFZR2YV8KEAW9X/uzlGzQU9Y9KRKK+Bij8P7Gg1wjARShEOZON407CtIN7yeDyOkijDZN9BRzQpc1dCKy8tYEepwYlJq64Lxe/xNisqPX+AN5kZ4fd7kYDlUTjEiKUpohkB1F416a4ohSEMvEA0WoFQih61DlNSVkTvwW69gXe+WZpcLkyDNRUbXYllPFLdEGQGbFCSWIXrqw1tr8SJOfy4Zi1/+PuzPPHvz8gddiSWKamQVWwXxeDxglL8+EZNEHLiGLXP2etNY4DVgyHH3xJf78FxLHxpHnwBAxEPPK0oDFKVV0hdlv7tNdZ88G295V0R5Sh8AZO+w3MaXC8M0SqDg1KKXoOz6gS/CqpKIxRvCiazL1SoClAY0nUlGj4zkZQOQOmq/LjlTNbqbdQ8Zeovz7yR/Pd1l1xIP6MHEY+iYsimZFlzPF6Kv9oIShG13VgY2WDVXYVqYXpsUyTOIPGy6g34iJQFKd/U/hkUA/fZExmvUKqUQkYcNi1fk1xvmiYKxer/fdPusqTQwLyzfeXmeMxT61KlDcOD8Jvg5seggGC0cgdb1ae2C00RwanYBgo2L19IsKgApCJYFsGxJZtXlRIOxgiWRLCjbiVuNz5PNc+K2cCJxqJOMnC57lCf10ssZqVYXhzTT8DvJcPIxPAFOGL8Gey5RxP1xzw+bvyV2zT3kP1G8cGT96SsTvOnUVbmzrXV0SgWDlI6ZPbOYOikQdgBOzkvJtg6NJOSAdkoowHlRbh9kACyc/oiTYGMN2UMV5Zi+jzxl1yDful9UVKSVuLeo25JgV2rvpZWXlpA3Xon9Qe4JdkrK1JvrFPGHbij5r4A9AlkkhvI4uC9B3PKz45GGgopwPZAMMdHOCAwM2vMm0JJkA4GIBy3QNFtk89Ort93n/0brAGzuqqARXmvs/HHzyErB5TEANL69UQpRclGNw6muqAEpGTbNtd3/7/l69hj+PE4JiAl1Vg4kTAoRemGdYRrVdwVpkGFXZb8vseIn9LvrNtZ/f0yt3idMLEdt26OYYpkqm6PQdn4M+tbXooqClny/qtNX8AuQt7yYsoKQg02uQQ3kDdcEUtpoKlkI9aJWpQVhLBjDhm5dWKqDOGmvRuCjGwfjgN+EQUkSolEc+8klfluS4rCVduIxd1FHqN5JZ/GHnBwyvfMiCJih7H9sXiHaEWoPETpj25fJUvYKEcSa9ByplDt6GPvNWogyrYoXblxx4N3kvyv3UDdRFdvhSJkuTESq7/4gm9efR+lJFGnY6r9/vXxRzn/8d8TDdYPiA7HH5hCiR3ec3WxLQvTMHAsm7iqhlSyVcXiSrbWZOEoJGHczuhWJMy2jYsJlVdgxySxqMO2vEqWv78ZR0r3XhZxN76sXz26LtGQnVQqE1SVRohUxVDgWixrIQ2JaRisL1uOZdkMH+hmg+ZtLiLg93HK4b/kkAmnMGzQGHz+pt2Sd19zJb+bcSav/vWP9OlZ52XGW7Ot3+tFKUHIdpMoTI9Br8E2OZNGpmzi9/hJ72HRe2J9pWn/MZPI7jEQgB656UivkexjFKksx+c38W39lmCkFI9SmIZJWvLvr+q5qLo6WnlpATvUXZT7EApVpk4Y7/+wAoXCjjbtX1bpEfoaWVz+2zMY03c4W/fMpIfhwTYFFb0DRHLLUvLzhWORk9YrrjC7QZq5gZofxNaiTQ0+QE/4zTU4VpSIjCFr9eP1mQ6GtKjeuIXlf/8vKIVjO8ha/tX0tF6U7LGdWCAM/8/ee8dJVtXp/+9zQ+WqzmlynmFmGGAkg4AogooR46prWr+uu4Zd1zXuGlbXsK6YE+5iQsyAqEjOcXLOPdM5d1d15ZvO+f1xq6u6uronga7+XjwKdN1wbj7ncz7heQR+oqZSDIz18bNPfJH0uD/LzfSOMe5N86AIQW9XF+953TXc8aubyHsZthe72BbcTKCxUiquBw30SK0cu4aGnbW586vfP+49nI7kyJ9fI2msL8NYfwYpVbkvSCerlc51XSOfsRnpqsxWJ4Zy7H6or2o7q+CWO1wlFbqpEY6ahGIVF71ll0JzpXcvUh9EBaNEtCmxxhL7rierZ5+exO3pIm+XEoGbTky2NYUbbquUYpquR9DVSE+OYYTDfihRKZTrYMYMBALlukwcG52zPc9xefTTvyA3euqzd4DR0VFe9YV3MzA+RtJKs2tkb2Wl0JDHmVFu+drt5MefPq/QeO8goJDKg4j/jVqew9FdO+nctAtHOhCAkPbnUbn+2Gc+yeDkGENP1BJgAkxVm50q0hNjSOEh864f1lAeSleI0/CgjQ1UqnGm6OitvItUHlIqBrt24LkS6fr8Rp4jcW1ZMRDVifvkzETRz3dRsPO+XjIT/neRGS8gpcK1JeF49TOxDYGUBfKTEziux7GByqRMKUXADBI8gdEyBU3T+K9/fQfz2poIBqpDa10jlQTgsDm1zr82VzoIXdXkShq6AUJw249/W3OsukXLsEoTyGA44Bsvjj8WucUiCWOQdHaAiPSQxUmKgBX0v/vQRBeFYuqkrukvBc8aL6eAUMSscT/aRbccjwX8DiFfrdGRzOXY37kH1bmP89dcWF5+yZIzyn8vb2tjcKIb0d5K7pyl0JDGmN+AVi/wdFChIHaQKsKthsFdZAvjyMSUxLrvjfnJd3xdiy3TQkUzIV2FZVp4hSKlEiR+m32UsdwwCEHqcImMz/WqPAS6EcKJezgLkqB55HNJkBLpeUgU93/tR/Q8sIt03ziuVj3LTI37FTbDg/4gnaRAT/IwKnKovI0mxKzcCRq+dyGVS9asmwv3fucmHv3+r0684dPATFbQ9FgBJcEM6ggh6Np9B1tu+S7HHnqkajszZHBk2wiZ8QIj3WlSI3lSw3kObRpCScX4QJbtd3ez637f8MmmLPIpi2DUJNpY6Wxf/i4/Rq1KZZtWwUUi0HWBoWxkMIgR0HzpgNLLq5sGJVVHskNj6Jogtvryk75mM1CZqepCx9QiFIMBQgmDfmeYnJVGSolQys+pURKjJNBZ9Wx9VwXK8/ByWbrv2nLS5zAd99xzDwMTw9zx1GP0Tg7w0N47/MonfOZm7zgly4XBcfq2dJ3WcadgWxZK+YOqUhBvaSaysJ6JY31s/tWdDB7p8jl4bEUuk3paxzpVzBmWKyXsnqrDxHM99KDPNaLUlFabwpOnnvgrpyWJf/XeB/nRfbdSyGUQYhKhjeHk+n3ldOkb5o7l+X1tJTe8lCIy90UMdk6SGs7juRLPlRzdMYpSiuRwvqzvpmkCz63kzhT1BUjNpmB7KOC6K88srzv/zNWnfJ1TMGZIcHz9exXaDHcqSVcCKDylMFvaatrQdRNPg0fu9PuT5mlJwUN9QzglT6YmQAV05FQOpPQIeEnyhQmEVKSLSUwlaQjVIz2XvHRx/+w5Yk8Pzxovp4BofdB3V077WMb7c+x7pL+cQAbgWbWlvpZj8amf/xd7jlXyNr7ysrdW2o6EkRoEWtsw9QCGrljSuAKtoY4QJnUrzyBmRAjVNZb3GRrejanAaTHRsXxlMUPngo0X0dHui4XN9WHrhNEdF5krIJTCkTZ5L4frSZyR0VKcQYH0qjomQzdRgGPnKDSl/XWuH6v1pIvKuww8tpt4Rz3plspMWghRroTSdZ2FS16Ma2gIEULXqjkWZuPSsZRdjq+fLNKpFBN/YsbI7t1j7Hmoj87tI6XOEMyATlsp3yU71AVIxpIjOPnK/WhZFCOfttn9UD9Hd4wy1JmmmHMY7c1yZNsI+bSNXXCZHC0w2pNhrC+LZgiMgF71TItWAdd1y++eGfBL3TVDR0OCYfrkg0f2I0sJu8HSTFNJD0cpNE1DN6r5aI6H6bonGhpWNEqBIgPuCEW3SEEVSYfSSDtPXhTJimLVQFUN4ecuzJXUexIo55gJwf/79//iU1++r8QgDOG6IDjHCdUIfD2mpwHPdpCACGrEFjXTdMVy3KyDqzyy2QwS6XtklGJibOxpHetUIR2vKgfPzvph3qyXptM6eFyStdmgpP9uSVXi9EGBA4VslmI+S8/+OTw9s8DzKgbDwX0DPLjrCcBDkQFRQAmX1PBm8pPjyFL1kcrnUUrRtdO/jycMOyqFXXRxHb9/To8WsfIOqeFCiUTSf+eyw7um7RKhuz/LI9t8b2FLa0WnKBqpDWmfLBbNa+Ej73wN3/rEP9Sss/UcAamjaVOEky6aUZtErwkNVyhyGX+CnKivnNsbLn4DU296Yt0iVMBAWb7nRUnlV70CygyioTA9j6DSCIwdwjOCrGo4fcPs/wLPGi+ngamBYqQ7TTFnV/IJlMLKu3QN99Xs89C2e3h4/1PkrYqrVJv24b3tTa9AGQphmqxsXEXDgmV0LF1PZNES0DRWNq4mHmuqNCg9bCeHgUIToOkWsq6ZcFMCpGJwyPec9A9Uhyym0HLWdUhhUOzuwVi1hv62fjJjQyAg2zfGlD6OkrJG40OVwlSp+UXG48PkvBwhaaIiAh0dFGSGJ1FadccyZbzc9J3rCQYT6MqA+gY8x+K+3oewrTzM4nkpWHkKhTSgpgW5TgwNSA0P8buvfPuk9zkVKKkoZB2Sw3mGjqbp3DGMY3nEGv0OLpsaIDMyghQWgeQgm3/1NY48+BAAwbBJ6+IEhYxDMeciNFi0vgkr7zDam6Fn9zjhRADX8Ti8dZi+gxPlJN8PfOzdVedxYN8hfn/fr3j3x99AKGaia374OqKyGDJDgzlJwMsjS/HvSGuj72yTEkdKNE2gByInfd36tBmkUhDUwrg6ZFLDKHyS8oJXRBoutnAYk0mOHpzFq1IKSx76zWOU4l7HPW5uYGzWap0pY04Iwb4jXZUTE4K6ljAikajZpwpPk6V1ahA36kJ0vGwDwdY68KTvjSmdS3hBI2YkiHQlY10nYI59BjAVLk4e6mHPj/wwn5SSzV+5HeU4OMqmoAq41qmRJdrFIlP6VFN6PFJTFDMFtt52J/fe8DMmh04uXCtmmYoo++FSkqwCTaMwupuJwd3YRUkwoqOO7EcWCowPZEtkmdTMaKZU2zMTRX8SYPkGnGt5WHmHHff0AopYQ5CWRf67IafxpgT16gbDocrkKvo0Su81TePz//I2Ljt3fc06TzgYmoUmBQhBvzOKcmvfy3nRebQGKhPYSKz6u3VKbO3RjmZcU6NYTGLbeT+8pukEFZzVfh5xI4oOmEqR6ryXfGECQ/zlizFOx7PGy6lA+DHZqVBBcijHUOckCkUh45cYC+Dd3/lQza5/eOy2qt/fvfZNaLLScURCOq4uELqBruk0nemTzU11zOFwjPbLXlDe3nDyGKoksa4BbgE0DV2rnsHORfseTLQhhUKTjk+eZwiUEMhgDqfgoJTnV6QA9gyVYFXi/QoIE12TWNIBqQiaoXIooJDMk3CqE9S8abPvttazaWtYih6IYNkF9vc/xaaHby5xdVR3HsLzY8BKSuRJ0q57nocQOnbeYWygtnrpmYBUismRAk7Rw3U8xnpzJIemx/EVhaIFsXpsN4XtFhmeOFZeX9caYcGaesyARjBsEAybJJpD2HkXx5F4tkfjvBjFnINh6ERKHpP7H7676jxyk0W+8J2PsevAVkQhTfM8P2fIUA6dbGNP7wNoeGWjW3oemAZKSlKZAf+en0KyXiRWqXjb2zmGbvjaRm7Awg47ZPUCEokwfBvCijqkC2n2Pfkk9z1wX+X+KIWVLpI8NlapVJoFPfv3cff3f8DRP25lz41316wvGy/TDFs5lekyy/tU3mbKaHma5dqelERiEWLRevSw/4ziFy7Ek7Kc0GpoBkZ9GIXEKZ4Gu/JpQnoKJ5ny/y7auOkMqjSJUMJkfDBVs8/xwjDbbr+PXDJNfGUzIiIItccxQn5ZfGZ4AoXCyp6YZLKQsZkcOlKzfLjzCI4SKAFGrIgQDl6hEzszRj7zAMniKCo9WTK+HQJBgTlDbuPw5mEGjyRxbY9C1kHTBdLzeYCMoI7n+dVvQmhlZt3x3XeU9w/r1X3MsoXLy38HzNMoCZ+BmYm7L7tyDW7JUPHzeSTp8UGKydo8MVM3mX/li8u/l65eWrW+0OoLvibqE6QSGr0jj/PUL67320ZhoDD1IB2JReilPEkBeK5F8Fnj5f+/8B+yomun/1JJz88dKWYdBjsnS0lkJ+4IX3nWBVy4YDEoxVkr1wHgeRpSE2gz4qISiZpB3V7X+TD2nlvwjADFcAOR+DzQ8NV9NYmTr1R2pDOTpDN+uCIRqYQGdM1gok1Dly4uDv25HpQAYWRBKY7aBzmodpKyxogG/NlGU7MfXy3aeSatSQLNrXhClFy3CmEIXM8jmUkRiAbKZXtTmE6gp+k6y674GLoZJWWlQNPZEZpAaFpN+CCXTpUnWAoo5rO4xwsFUMqtKIX4pPv0Bqe54DmS+rYIrisxTA276OcHTY2J2WQ/CA/pFHmy/wA7u7qxsker2giETeataqCxVNHQND/O/NUNJJqDNC1MUNcSoWN5Pe3L62oSC6cwnexrbFc3sYZQmbjQEnlymq9rNeXR2nr/Zl74jfdSsAp4Momh6YQSC0/6uqPxiifDqlvPqmXXoQdCOJE8haiHFFCIuQTn6RSiFiJYRCrFgQc28Tdve0t1Ywq8bAY8OacRkZlI0n/gmH9vvVk8L3LK8zJ9mW8oWxmbiR2Ha/Z5JiFdF6Fp1D9/WXlZy4blvkdGKVQA6jbOJ7FxAcqs9lz9yaEqrompvCiBQEjQPUVypNYze/DJIZxZigs8z2O8fwgMWPCK82lds5Slb34uK//xhUglGekbQqJOSt6jd/8Eyd5ZJhVCoqSfh6eLLFahgNBTyOJhBvdsZ1KmcQf7USjsvXtwjtYaQPmMzWBnmkDIwHM8WhbGka7EDBmYQQPX9jCCOk0L/G9ueNcvKGQreVFBrfra57fOK/+9ce1yni7amhtYu7il/Ls9Ei2JPoqyx1C6Dq524n5ryaolVb9V2t+nobkBZehowsNxLaTrgJAYyhdlFMIf/AXKF2rEw9T/PMnkzxSeNV5OBWXdrKnOwGeCREF6vIjnqpMiTTKicd9bguKLV/4Nd//7VwjmcngCmJFdrpRCzZgVpzN9uMVJnECUK1a+AkvAZGCcHfpBlJdHOi7f//pPAXjJa67g7Ev9D+7tV7+83EY8toCkniWfS2JRJDXYjdQESmqgFK7nUMRmWB/Hlv5MatlKv2xP6QKpCVLdhxit66O3tYdxewRnosg4SZIyxeHd23FmGC+zDTyBcDPbzRGk7WKZ8Ph9P/Dv6zTa8okBv1RboSiMpXnk5lv55ae+RO+Bgye40wKpPEToT/Oa9x9MMj6QJRD2k3P9DlInGPVnc5O9u5FITJXmK7fexdduv8v3aJ0ARkCnoT1W1i0KRY8/23OKlXslSiaeTz6oMDwdO6D74p4l4+Daj70Fx3P5xeEHKDpZDM3ADNfN0XotplewZTJ5wnULCUXryCUKFNv9yp1iVBGY14x9hoXQXTRPVRnVQOl8KrlVcx9PKyWHzqiYKjdTu9CdKkmWCunJ2SuKSt+xfJo5L1PhEzHNKBFC0HL1akARqI8SXdFG3cp5mEbgGRETPBGqqgxLt2eqSqfgFUiLFEqAOzBQs296vMDkaK0uT3piHE95mKUckIbnV3IkdE3HkTZSSg4+trVm35lwHYnr1pbnKxRKeH742Mr4Zdg4DPU+het5SFwo5PAcSSbpIByr6p1IjxUwAxrFvMNgZwrP8yt22pfX0zQ/5vcttqwSGneKaYrT9JkCger+NhYJTVv39D0vAOFpVaGBYLhsvCgkx7R+GoONGM0ts+5rTwv1vfKtr+SciytyMcWC/41FYhFfHwmFwsFzXDzNQPN9gQg0NAWaUhgKkB6G9sxc258Lzxovp4Apt7R0KuWrU0lfqtRJTo/SNMYTfPl9769px9AMWtcvQiioD4fpSDShPBdPqBqp8tZIKzEqSWKaUySXG8MEdBRC09A1A09ICl6BYiYFUtJQX83EC7CguYXXvdyvdnrqoQfw6uvByZFL5ZBC0GAlwA3hSAepSWzTAaEz4pQ0Wkovd31iCXVeCJ0Qed0iJwaRKAJtUaSSONLB9mySk5XZzIN/vI0dmx6rOSc9EEPZHu1WM/XzziUXwDeepg3IsfoGpFAo4RuOjuVQzBe4/ye/mPNZSVmpcBGnyWZ7IniuBAmLzmiibVkdi9Y10bwgXuasibQsRa+bR8cbryvvI4InX5J8sjCnGWe/ffz3yM5DfnKu0PCUzUC7xoQ1UXZsvOK5VwPQ1hBGyRBG6NSTEK+5ztdtGRsZ4hUXrmLntkNk3SyNuoHUoN1rpuns83GsDK4pyRey5LKZmtJ9JRWUKkbmSti1cnmUBm7BmtV4mcJ0fSY96mIENF92QsoqA6987FL4N3vwaM26U0Kp7FgzqwdjL+NT3YvScv/bVsdJXn7mUG28TLtpCvIyR8H1JyQ908KYZcxlJEqPcF2ExpXtNevCKxpQSiJNSV1TI1Iqju0YZbw/W9sQoBsCIWrfO8/zPXeq5DlUwvGNGRQID6WlkB64luezKs8wXHsPTGAVPOyCx0iP/74JAfHGEIap0bQghlKS+raKF7owfLQq/2YmYWNsFuqGp4vpzL2hulZcTyGbhvGQ9LvD2FaeyKLFs+77otUvKv8thOAj13+k/HuKdFLTNdB0lAClPIqWjRIauvLL+QWQiTaiK9/zoqSHdhos2/+XeNZ4OQW4oyOQTZPP2r6xovzYqV8i6ZcNTpdNf+MLXsi1l1xS046uaT79v5IIJcn2T5BpjODpqkYzoy5Yx6KrXlbZ1y0SAQJKMZVXpvnTbKSuMellSp6TWi+HoWuMJ/0Q0u9/+RNCzSuYsEfIeDl/vh6P4gU1LC9PMVwgmqhDCY/Rer9iR+i+8bLu/A9ghJtoow4Ra8YLSUSdR3hDAqUUnut7bWy3Evvu7jzE73/x45pz8nAJySB1z72OpoUXkSspInvTaMuFJtBNDc3w3aq+Ng/I48zWPbskqqZ80bc/BQIhg2hD0CfaK53j9EEjO3yYYChGuLEygzIDsqw38kzBmzaTv/WJP2AnJ7GDdbSvn4/l5lFCkJd6eRCLR30D6t6eLbhmmEDkBAmts+DcS64A4Lab/odcJs1Df9yDhkAGbbIX+++wYQTwDA1HF1jpIgpVlW5tGgKkxAhomAENrW728zBCAaQrsfL5WZN6Z8t5iS6e5JaRX5PJjvhid7OUDO+76X6k4+LNYticCjzXxbdeqge9+nWLMFrDLH3DRUBpQPHg0PatFPOzD+rPFOYiSCxQoFiqSZF6AEfWJqBaO7dTTNZ6qqTns0LFzllUsy6yrBklBJot6D4wxpEtwwx3pRnpnp27x3VkWZpiOg50D5FY1AFCYTsKs3E5ml5KDMYjSo4QeRzL8SeNqLLsRWaiSGa8iFN0kVLi2ZJIIlDFixSKmCxe31yVJzM5MgBUzkXMCOtN8bMs7JjdE3I62LzfJ05cu3yh374L4dYiaTOLpytcq4CYgzhypueuvqm+/Lfruhim4T9/XUMJ37vpKYk0dNCMcvheKIGuFJry+9K/Mo66Z42XU4EcHcY5eoRs0qJr9yjBkIF0fYr9qT61b3+yvL2maVUW9hRuengqOcyfOQjlooRP7zxbmfB0/Qxf/dNAR6GVO2v/GEp4jLkpBKoqOXYK3ZP9eKW6/x1PPUrLoufiGUUc3aaDJprPfSOpQJqUShN146x69b+Tr8tj2v4sZdPD97F765MYgTCLL3s38y76e5Y1nkOjnUBfEcKYn0APGiglcZRFjhMn7s2ffwl1TozEvPMJmDEyYT/5d3rFkfQ8wvEY8197LlrcKN05hbQ9JsfHZs1/6Tt8ENdxUCjcjM3+h5844bmcChzbY6hzkkBobmbazOAQllsdKvFyI/Q8uWmOPY6Pgc7HObL5zuNuo5c8dxoSPWBgugaaCKKA8b4shbG0Xy4LbN/Rj7FwCYZxcuy603H51S+rXqDChMZD/O8370HP7yEe9Ll71m28ilAh5POCiOpZ8pKLl9O8tMk3/IWOdGY3MoXw3enJ0VEKxVzNwF8ul53W+U4UUmQmhxkcOOLLIMxioFhZ3zNi50+co3E8PPXrOyha+ZqJR7A+xvK/vbxqmXQ8jm7dxy/+/csMHqjN13imUDFeppXjSMmoTJKyxvGUJORoRAq136jMZskP1VIMSM8XgZ1NZFYIXxgUAROTvYz0phjp2U2ulCw8E7qhoalaZfVAvJnIhmUoFJqmUBoYOr7XRXgYGiB84jrPm/J4+9c31pfFcxUNHZFyCDfRHK4x5IyAXl6WG9mPchUa0yZ7M/SKggGT7vt/yJZff23Wa3k62NfZSzBg+hqlrTFcJJ6uKNqFWcUfZwuRmtNCWU/e/2TZ+zK/fiGeNhWKA6XrhDvOoTHWjsK3tQ0EQviGofgrMwf+us72/xhC04jrOTxXUiy4ZXVWqZTvplfV7LrBcBD9OBLJQkk05YByiRBCiuN7EwCE9F1+ulIYU4REmsCO6ChNkjJ91/q6MzbU7Dth9INdefkDZgxLdximH3SdxubVjLaOk5UTuKVZ0bo3fJLWtRXv0aff/3YAQomFBGPttG14DfqaM4gGGinmU7jnx/xyWSUJWCee0dclFrD0jdejlQbQFFkykyO4VqUz8SuHBJqpoxyPQirtu6g9ya1f+ia/u/577PrtfVXtDh/twS4ZL0rB3tM0GOaCdH3xxanQ1GwwIg1owWqXs+MpxtO5OfY4PqzsOP2H99csn66Ie3jgKI8f3I3IpbCiAdJRhRMPMB6apJCz6fzdU6SmqZ4/fM+dJMefPveIGYzx2GCYrVsHSO8ZxyxxZzU2LWD+tZf738iMGWNdawTPdXFtD+kqsgc7Z217yrOZFjkGRvq59UvfrFkP1d6GSSRoGpbhJ5S7+Tm8XUohZgmRnCz6Dh9ivHsQqWrZUGeDiPgaR4506Nl08pwop4ryvZghfukol2/+7hb+8X9vwA4XKQRrjTohmNVTJb25Z+ee5ZWfg2flOLb5TkaObOLQlnurtlNKcXTHCEd37kCnNq9GRYIYsTgEoyWzS2F2NCDx0JuXopuSgLAxAnqpz512ecpXyY7Wh5Ce8j16weOHQsYP3U1NjExUGy8B02DRvFZap3k4ni7e+NIrprVvYrseOpBbnMbVwTF8/be9W/cyOVEJv2cmaz1i09/7p+6vEJN2NC3xPfxIP4QU1okH631tqpZVGGYUXQh8t73kVGgo/hLwrPFyyvANlYn+HJnxAoGIUaavjiSCLDmz4lrsaG6iub6e//nwh2taMdraQCl0p4AjbBIyzPL4YvRZFJWnQ7PzaIChVPnhrWxaQ7bFIBhM4+hg20US8VrDYcWyBILKxxxPLGIyUGDEGcLMuhi6iYwGmWztxQj4+xuBCEa0tbxPOpWsalM3gqw8692gmUjPxtR8Eruh1aMkOLUZbVPzaoxAnFw+iZwmPug5jj+p0zRkQZIphb780JEkN5ait7erqi3peASbIgSbo6jps89nCOmxIkopjDke10jvdoQQNK9prlpuGArHTc6+04kgBF5hBHOGpyQQru6gf/jAHxBGADcRxTR1jGgTrpHGccYppnLMq6/wRGQzadKp2ln2qUJKSdM8v2xz93gdDmbZexab34Kuaf4znDH6SbfE7yLAKdizJrNOGa9FikjlVZJxS3BKnrcne3aWlxU1F+l5jMWSTGQGOXbbwzXtaiXBsaejr1TM5vwcsZN9vwQlLSBJb9+frgpqaiBSqpKoncvneKJrN3t7ugCInnchchbLTcCs98SxbZhjMlYcnCyxDIPEpljIoMQEthUoVy7l0zYHnxyikHVI9eyiaGcxZuSXPLDpYWIdC1l8xUU+EZ4OeH4SbzQeQZkKlEfH0gSeBNcTHN4yhPT8yi5d93WBEi2Rk6oydApZjEgLU/3DpecuBs1g8Yo15W1m0vo/E5jfVukXduw/SiproxVyuLEc9Q0erg66YfKeV76Hj7y1ktNiTavkOu/y8058ICXADCCFg6mnS8KMEIy1c8nyF6Gj+ca7ks9qG/3/GQqFLhSe42esg8AwNDzPj7vGm0LoZuWWvu0l1wJw9pozqtr5f5ddix6LseDyDf7LJG0002P+xS/ADB2fLCyY6sNUCtcIoko5KI3RdgKxOIam4RnarKGnb7/vX2mw6jj/pa8uL3NsFysaoDW7CKfVT/C95LL/xuxYTutLrypv507jeZmrFFwIHel5xJNBlFCsrl9GqnluQqdCbnbvQ2z+mUhXZ3Rff3mZ764WBOpjpez5KfVeidCYlSV07NgArm2z7G2XY+j6yQ8uJ0D33nGKWZtsyiKXsjnwyA849OAfard78o9MpiYQZrVhEWiro1g4XZIyv3NZ3NJUtXTmIwmHo9yTeJIjw3sIhgJsPPeDGF6IYiGLZhrcf+D0aPiPh96jh4k1dQAwWQgjLJ3iNK2UtpevR0S1mrmdbmjg+Qmvnu2x/5e1Sd2+PIWf7+R4bs2z7Oz0PTa3/rEiwTBkZIgUTJIteXKGNbuBInwOmFD89InHQjE/SZ2T5B9yM74HSClJZo6QyjMKVUm+fd8/vY//+W1FEycUaWZOo36W79wuFOYc4ELt/repm70oMQ5qAqVlQVjYRRe74HJocw+9B44wMZRCKRdFoeboW3b5zzK8ZjEtq8+kvj5Ew2XPRTQupP2VF5H3ihyQB5js7+KGe7/HLZt+RzZl8dTvjpFL2uUKvbYlCVoWn9jzW8zlSDS3cNEr30AkbNLSGAVNcP1NvytvEzBPPax6IrQ21gPwtY+9i5VL/FLsQtFDZCeRru1XmJYMxaFpJeWFXCXMV19q43jw88wcNF2Szg0xnq0uT9eEb+aK0v/+mvCs8XKKEEIwb3UDju1zenSsSBCOGEQSAWINIY52VVzfU/kuM/NeljX6ngyztYXwgg4sioj4ifNDACZSnbjKIx+u57nLXlw6Jw0poC3ail6wGD18sIpTBSCXOYamaVx4zVvLy370jf8i+pwXEWh3WHz1J/xzCsXYcPnHibVU9DxmYzWtuS9Wjp7+bgp6tqQwWyR7nI9+tsojgII9STKSKvN0wFSioM+PYeh6iQev0u1NGTLl8/U80mPjqNLhI+ubTxiOO1lkk0WO7RpDSYkZ0HCyGYbHa/kqctkc0s2BVFWljbGzz0YETo9iXDcCfrx/xkBs56rfnVAwhCuzPNX7GAW7SDAYJ+CYjHWmEZqge2zktI4/Ezfds7nqd32dX25dl1hExqrHdioGat2K+Sy87vwqz8tgZoTW5Y1+dUuplHtsm58rk9zfTX7U91B5pfunpMLBZeaAq80mnS4lCS/EGc/9CHkjj3RnCRtpAkc6JWLE04NfZq0QoZOfnasSgax0FY9+/9fH3basMXaKKN9nVf4X+3fvrd7GDKBQdO4YYazvxOKUTtGaNQ8DILaiBbQ+2i+5nGgbCG0So3E+VmaU/KTNxFCG3v176d5xLz3b76WYzRCyBo/rEG168SU0Xns+0fb5LHv98wAY7AijcBjes5XfbLqPGx74KU7Ro5i1mRjOYQRPzdAopsYIhXXmLVxcYuxVuN09JOJx1pzlE4X+KTwvjXV+0nxrUz2rly4A4K4H+5EapEWRnGaXZVkCwQr/yvS+ZPHKSjVSvK5CHDmduE4EQ4j2xWjRMEEFEbNaBkQXGhoSjdpK1790/HWd7f81Sh1BtC6AYWpouobo7SQytJ/W+SGcXdtIJmvzB7QZnWOgdNdt4dGypoOkmGTQmVt1t9yOU8QtTpKJtbJx0RWYpZiFKMkyCiXwhMCYGOLAvd/kv//50+V9EyqI6TQQjlZKdQuFHIvPfj2Lr/nEcY/ruieuxgguupTEeIGJ9F68+CTF/BiNYu6ZTzwxO6+IMgwKZpbiaJJ9N91PsnOAw0/sIJcthYoUZfc0gFv0kErhTBucPNfFUxI97OebBFsSzwgB0xTh3Vh/luGuNMLwmBgex5k8WEXM5XkupgEKD2W7fPNTlRyNYHMzAePExuBsKE5OIHGQSvHi9efxtZf+LQBPPvxg1XbhgOmXlQuBPlVmrzSs8QxiFr2U00XbvGpiu91bHgcgFDSJySK5ET8sIkphnnBLXZXx8q27v8ahyd0o6aFct/RwJXauyODWTvb9+D7u/p8fk0tOgu573DzpYqUtenbuLrcjC7WGiSslQgvS1LQSnRBWfnZPX5d9iKHR00+cPbLJD1WFYidXAm/UBf2E9FIws+gVj7v94d9v5sCtcwusTsesxI2l0NiDP/1lmddmCpppIvMej/36Brr3n9igdWx7Ts9LuL6B9jPWE163CLOtAZDEEiZKSbb85jEGOnsYObwdKT3y6SSKLErI8iTkupesAKC5pR4A3SmguRZmIQXSI9HzELaVY+llVyCFIpCpJPt6rk+LEIoYJFpOvqw5P3YQYQaZv9T3fLiexDB09CW+UTBVXTlTUPGZwBtf+jy+9K/v4NVXX0o66+f+fP8X+/E0hav5xRtOKe9vuvGy9ZEKh850I+WT3/5k+e+2+RVBx0Vvfj1LX3QxS195YXkCOB1FFIbQMZT8a4saPWu8nAqU5yfLCiFYtK6J+vYIODaF4SS4DhNb9yNnqWqYOTMUwQiu8vjDod9y/+DDSOninMT30TC4G2UEuXTpC4mHK3kLmuaXxCkU4cWLCRdyWL17WBCPseXWX7LlG9+jPmISinhVXqDW9nmzHaYG3kmQeEXnnYEuDexYI7LDYlQIovW1Gh5TePDO3866/Kz170RTJsmeXkZ3HqXztsfRTR1RmlGZHRE/gXOKNRRfudib5o2QpcEyWtLrEUIgPb8y6WSQHB3htv/+tt9ZT4N0FZmJYklIUBCtD+BzIHukJyp6Vrl0iVRPuOjNCX7304oL+ic3/IZ8spv9999yUucyHQqBEp7veZGStqhvHH75x1+u2i6g+7VoLcUoCy7xDRw9nMQZH+HosdqQ1fd/++Apn8ts+PUPvwtAPpMh3XYpDWOdSM9l/PE/kkp2ASCm5Tg8vrmP/d1bSLTGQfM1sVSpSk4pxeGhQ/TtPczRLXvKg72pfFmDLfdWzrkwVluO63qCwPqNAGQaxhmb4iqajlIZveWefrWRlS2ghTXqZuE+mQ0iZsJUFpaSJ3TUu5aHm5693Hgm7vjG/3D7l77lH2fK8eJKlCdJ9Y9gzagsCib8XI/8+CDb7r6xap1V8MhMVBtWxzNeABpefBFGJET98mV4AQ0hDP99lYq+/V0orQ+h96Jp/QhhYYb8KrgPvvsi3vOmM1mxqo2zzvMZxxP9O8hs+h7h/u0c3X8bo6P7uf8PP+UNz3kblmvhTMuna18cY8GaRlqX1GEeJ4F+Jg7d8SVkIUe8vs4nr3Olr8Ye8T3jV7z0dQCET4MH6UQIBEw++I7rMAydsWQlIbe1pY34ug08eN9eHr/vSWAqbOrju//pf2Mf+u8PcfFVF5eX102THJjex+vhIHo8gq5pFOOtLGxYWXUeLctfyNnzLkR7mhIZ/xd41ng5BShPIkp8ABW3bCUZVOChz0pfXu3mv+SiDbjKo5hPk0kOkzU8IuLEnoF8boyYUyRgVs8uBBoSn/bbWtqEyzhKOWiFwySPPEz/7kdwlYVs8GcS3/6Vrw8zb9HSmmPMBu8kPC+abrDogr9ncd1aQMON1qEFm+bc/rc33zjr8mAwToAEyZE++grHwHNItDUSLQ3U0XAcpSSBEsmUUtKXULCdspElPUk4HqHueaXr0wWFbIZb/vMbJ2WIZcbGGO8f5MkfVRtYxbxDtD7o68VYHqmxPQQDGgqPHX+8kfxkCtvOs//OH2CbDcQWrSe8pKOqjZ99++fc/sROxsZP7GmbCaXANHyiPl0TWLO8awC66yIx8AyduoV+Up8KBBhzjtAzcKBm+yXTkhOfCTiOzSDzSFgemfE+BicmmOgvVUlNM17GxnJYuqBnRS9b4neTyY74StglwT1HOuVU63yzRCqFoYRfrTPtnZyNbt/1JLpZ8oZ0NDCm14ZFApEAnnBJaycXsi2f90AllJObSCGDOgcyJ6efZS0zkA064GsenWjIEFDjMZkLxXSOsYEhHvjOTRSKvuHxyNHt5L3crD1936DPrquQuK4/+59iD8/nPfY/PoBVqLxj0nZOaGwJ6WGMP4J5zQJaXnkFmtBIZYZwbIHCAxyi9BGVvcTr6lAKHLeAqRThaAS3VOkzOrqPiIKRkd0k8hPEA3Geust/dz/1y3t8wbMSpmvEnSwmjtyLU7DAyxONxst6dbpBOXxywfOvZfPvvofxDHorZ0N6mhZUZMlS9FCIO36zjS/8y38BMNAzwJF9R7jxy5U+c9Hyaq6d9gUV43l8pLYEXUiXUCBOcEbYyCc5DaIp9Wyp9P+voabX5YHzxEPkh8aZHrjVZ3AEbB3dxR37quPaTYEE4zKNp4MVMZlcaNKsVb9UsyGfH8EQtfFXgUDHIVToB8NgVO5HeR7ILKDjYZGTSbQW3x26eIVP632yNOWue3JhjnDdQlrWvpLEvDWsX/CiMt/AqcIwY+S8LJNynImJHlzbLrOnytVRDKnRdsWaSpmkUqSGx/n912+onK9gmk6Uz58plaR4ErPYbX94EKlkVVXPka3D9B2YID1aYOG6Rurbw0z27KToOJimADx6tmyn88mbyeULyPwIbS/ZOGv76byFOo34spIegxOTSCXRhODoxOyu/t9ufwzbzhNQlURUbfE6FIqUXRlkf/HgLj75tdmNyJPFW9/3kRojWEpJXVjHsGN4mQmkhGiylAsWqFy3pmtMhG0Od2/CMSDvWuimVs49KLenPKJG3OeJEQoR1HBlxXgxQ7WGf5PeQaR1LQCrzn57DYEcgKtLcg0ZZFHHto4fvgHo2ruHh372K+78yg/Y8nM/STs7keK+LVv40Js+xLGDs7DVzoC3JILelqbjRetOTg9Sq5Qtb/vW75noPL5iswKOHarIZmwd3Mfu5BYCoQAzLY93v9pPyldCoJd0dLr3+AOfnZdIV+E5kvRYAavg+ob/DM+L5hQrYcHJASKH7wPHAs2hoesJNG0cKRX50aMoFPXBHMotIDQPM+6H8kwEASXp7R7moT88xMEd+1BGmLCShCU02wUcO0PE8r/d0fEs3nT9oRPcR1UsUHjsEb9PLGFs370IPAKxDsLRKO7UOsMXdAUIBAIU3D/9EPmxd72W5gZ/chYwwox0137X//aOf+MnX/tJ+ff8JfOr1sfqYsxb5HvSD+6qlU0R0qM2Xd6Hrvu8Yc8m7P7/GIFFC9DyaaTluyydbIFc70iJGMH/gmbyuuS9Atl89awvVRxgqNCPFAKlgQg6aNNmV9osbmwhXbJ2lkK0lvYfIdCUJJweYNJKgvIQykMoF7eYxtaKuNHF1C+70m+/NHBO9wh98aPv4ap17Tw0SzhnZix9347jV6vMX/sWoi3rcEuEeEtWrD7u9jPhrWwkrxdQKMZGJnCKdkUdW/MNESMUKJdAT4WQrKLfGVr5vL98WnLhlLy8OonyydxYClAE4r6HSylFIesw1pcjNdoFShFvDONaFgoXx5UoIcnbRQoTSaSwkcIp08LPhBmJgn7qCcSDo6N8/MY/MDA+iaFps1aEAEzmCtz+8z3Me/m/cXD3drLpSRrOuMAn/ip98rF4jMaWVi59wYtnbeNk8cZ3/RMXPe+FVcs8z6V93mJ0CeHRTkBjcjKM41QTbxkEMEQIx/OwEhpjLePgSSaPDTJxdKoD9z0UIS2I22AjlKLl+WswpnVdRqTWrb/g0vcSbfI1vYINLWgF+M3/+xTFdIVbZG/vNiy9iKMX2fzDB5AnMLa3/vY+jmzaheVa9A37goZKwUQqBVR0ZY6HNU1n0LBgMcH2ulL14sl0waVS55E0I7u65tyqmMlP+xpKmCK+VAptFg9C7IILUKaGV4Bt9+wFqRh3xnEc3wuz6/5eBjtTdG4bwbNVzfAWPvow2ae+A0phjh0iP3qAqJLMGz5IOt1LUHai6wWc/D6WNpqE10IiFiIaDhKt978BDZ8xPDXhP5tH/vgwnd056s0EuhCElMSgEg4GKIpp3rITWIGZ7idJHezEyfn9qvQ80sMDBBtWY5bC787UsxeCwpjv4TF1QUE985VGM9FQF+e/P/R3/rm5Hp995Wdrtpme9wLVrLpTWLJ6yZzH0KSLNpdqtND8sNFfWdLLs8bLKcCMRdGEov+hXf4CKRFOEc0ulIgsFfoMfQhH2thmZaC66dXvpEvsYmDX75Ea/j/CrXoQ0WOPMdxbnaRnWFm0QIQLF7+g5ryEEIiig64ECTWG0G2EclD5HH2DY2SEg2YKQgnfMp8yBKZXrdx7u+8d+tLH/6mm/ZmVS4/eW1saPBvKHpsTfBTbnniYq9a1MzLg542E69qQSJKNGSzNIdUzXi4btJSFJzw0Qy931KoUZpgc8atTtvz2HgrZfLmzFkJgF21AnVTVkeM4SCXLnqPDW4bJJi1cxyPTfw+77r3L91pJidI1JB4Kl2z6KEaoHtHYgt6yYtbBAmDUdQkapx5jHjpaCfnohiQ0g+8lZFY6uD2dA0hh8p7Xv4h/fvPLiHUsZdHfvJ3bdvtx9Pd85N9O+fhzoaGpmjZdExqRgM5Rt5mJ8SxHAwto9EySA9swp3kmg/WLaFp7DZ4uaFL1aPEUIhTkyB+2IQsFX1QRhWt6oCA/38KNK7SQQW4iQ+pwPz0P7JhV/mGor5LbI0wDnQA5WWTT535O3+ZdJLu7MJROm+W72w9sv4dt3zv+e+1ZNp7ykEiEUriOg8QrezBnrXqauieuRSA/QdjJ07zhOUTrQggEw+MnUU10kvkIrnTKYdQp+ArSAse2mS1nveOCa1jypn8C5bDplu8w0DnIcL6LgZ7deI7EcyXjAznsoktusvo+a65NKnmEeqnIPfEtUtKh3nMISUW9lKTzY0RkEcbuJSiS6HaWxoBgwZkmDasjZCM+14kuIFK/pNzuT7/zC979vpt58yfuQiOIrkAzQkz3OadCcxsvdq4SNnHdAse2/JyJ/L5yN1RMHgEky9a28eI3XAOAU8q10nSBKiXfG5pGQRpk7FP/Vk8VZqmv8ObwcpsnUfG0ZOWSOdcJ6VZpf1XD1zeaOXb9peNZ4+VUIARKKTRVesEUaEoirAL5noFSfNr/CKY66c7RPXjTXNarmxrI57owSh2dEBZRb5RIpgsA3c6TSh3DTnVXHTqcGcbwXEKB2vCSQAPpojQICCBkgwZpLGwUrlSYVPJPphK6ZhPCmy1/YOYHdbIldVOeF9Os7TVf/Oo3+eegFB/+u9cCcPSQzziqOpoYWjjEwvVXYRkWhYlRiiWdpIJd8HXwNI3W85fRcvZijDqzVC7tX4/0JEpX6KXy1cb1S/Ckh0T5XBUngKkbSKUolipU0mNFpCsJhHWkY2E7RaxCitTIOCKc8CuLhIeb6yU11E3risUsfcOl5eubiV1b9qFmI+M5AaxpStv1oTAXLFxetf76V7+z6vdUwnHXEd+NHGpeyPa9fvhm8xMnV8FyMohEqyttWtrnYeoaPdHzeXK7xXMbW4kEmqnv3VJVbeS5HsuWvYiO6FIWXfYBRoI5jg7vwstk/cou5SE9j2hrE/NftZHAmUtQHUmE0HAdh+0/u5Pu+7bP2uF/8G3X0XWkYuwF16wgZ6SxnSIP/ewmbrv+P3HsHIFwCJEIYWOxpeu+mnamQw8aqJAf0kpNjCKlJByNcqC7C6Cm5FpzLQK5ceJD+4l1P0F6x01MbvsRic4HyWy+AbMhSHZ0kmL2+IzLJ5tLORUanf7OecJDOAapwTG6+2sVpAGC0XgpBKvofPBXJaI5gecpP1xkSzITRWyrWrAx1vUYXqydtkgbDdJjcuIowWCCYsMSQlLiBSLoGmgyj+mm8AihawHWnPW3zF9xPpevfqV/XwUsCbfWnNeW/SOMjCfx9CDrlr6AcLjynhnG3IP5vls/xpabPwNAbngfdjaPRiXZuJjqBakIRyt9qVN6h3RDg1IY0tAFOc/gzr0jJEdnSfh+BmGWvLRyDt2zowcq4qFmcPZrf+sH3jr3ARwLfQ6tJPDVpbXjrP9LxLPGy6lACJ+IUPovuj/j8vWJclu2IpQsuza//Z4PAGBl0rQEfdfka8+8gGFzHygHaSiEGUDTcphunriWoZifwLCy4FqYShEb6yS07/d4TgHHCBGsWzDXaQEKTXpY4wH2N9XRE1+KrjzM+Fq0+hWE5sembV/KH5kleVWfpVM4mVLp2TDleZk63pKVa/inT36Jles2lL0/0weewb4edm5+nMamlbTJGOGW5SgUdm4IrGH09CjUBcjXF0ETNF2+huar1hI/Z2GpfFrS+dgW4m11BBurB1Rd01FSkuqrzhkY6e3h8LZtVcsSHX5orvPAHpRSBCMGxZxLfWsUgYunXJR0kXgE6xfQ9ooXQaIVzfBwPYmmG2Wvy5ZHZg+xSVk8+VEJ3/s1YVcMnnsO7C3zQExha9ehqt/HY45taG6bc92povdYNa3/j77pJxr++ic/5Js3/IKf/3E3h2OX4FCtMyM9n9V56Qs/SSzRTjhQT1FIpOPSZx3FsrNIFPXzmtFNAyF0lOmHO5VSFN0CfdYgfftmZ6p958uvKP/d+lxfifdIfi/FYhbLMimmxtAMkxVv/TBafRRnjsTPTM8I933xx0jXJVjnV7DZ6SJOsYDQoH/AzyOaORlIDO0ju+OnDB69h/TQLuqlpF5JhoZ30yIljjeIUpKtPz++XtV0MUonk8POFsgnR0mP1BojUzlgld+lBNzcxKwlv+UE9lIfknMmUIAj88QaAr5IqidxLQ/Gx8u5Wg1dTzAyshtXuaxYeAkhBfVK0rzkCp6z6Lm0hpuJuA6RprCvs4VDXjTQPv98goEYS1rXVYwsoc0Z0rjtsWGItdEQ62Dt0rXl5UcGKpWDRnSGBEcujyjldg1u/kWJSEKSG93N0O5b0MP16LElLFq2rLxP94AfpjQNjeYzfKPK0ATDdpBsOkl/8k8rpJmc9Nv/8D9+74TbNrXOXghhBkxe//ev593//u6adcotENTmKAopiTP+teFZ4+VUUFJvLsuwK4mmPAQS5SmE8lAlWvsFizoouhZxI0rd6vP5zVtewkcuvxaUoJEIrp5jcWaIxcUCZzQ3YrfHmDj4O0IjB6jTgrRnhikMbqeQPErXwdvRCkkiZmz208KnXpfoJF1Ftu4qxhYsZyyxgfaXvp5lf/vvtD7/bTX7ffXT/1qzbDaRvpkJuydL+OY6NoZhljupd/zTx3jJa9+Mrullw2l6W9/+/L/xwbe+ioAZZdV1X6KubRUAdlxSDI+z58HbaG5pJ7cohTZNEFFooqR/Az27D/vVRjM8VFpIRxqK3ER1wm7vvgM89vPby7+L+Syp/jF0TceVkqGjabITRRo7ImimQ7GU/5PLDBOsa2b+q84htmgx8150drnybCrrYGxojDt/WTswLVi6ACc3QGZk9oTbmWE6ACs/wbdurZxne12ChkB1Z2TMIBA7XmXV8178yjnXnSrqGhpnXZ4vebl+9cMbkLF2CimJ5lQ8XzPfq40vuh7H9OjPduIoCyVdjOYQ5rzKe68EPk+KKnkclSJbOPHAYoajaKEwSikmIlEsQ+A6QNAn95r3yreC7bHzobsr5+c4jA/14+YK9I8cI52cRAv5Xj4pJUNHu7CKRZ5z4dnl65nKV2s49jjFzAD1UtIoJSGhk4u1EpIKO9LAolAzgUa3VKrtG02uVZvrplwFniqvSx8bYuc3b+eB73yP3/3Hf/Dbz36MO77wH9xz4w98SpcS+/QU/rBtE3t6ukF5ROK1XtvMpB9qXfT2f0YGp56NwnUzGKZG25IETtHDcyXJ0TGE59Fw7HFSqWOYRoQLW86BaDPrV70MzYzSEG0naEZp6TiXgB5k2fI2ItEQ85YtJdqWZ3HLuvKx93X6ob3bH+ia0yvw69v2cuEK3/AMTPPgfukHv591+4EtP/RZt0ueTaeYR+Ai8MgM7KT38VvpefgHKJXHLH0/9z6+nQte+8+lS1doU/xZQuBJhYXJ1mE1K5P3M4XBUV+io2uWhOyZnpbgcUq33/Wxd/Had762Zrl0iwT1OfYLN+AETp4f5y8Ffxbj5Vvf+hZLliwhFApxwQUXsGnT8UXyfvWrX7FmzRpCoRBnnnkmd9xxx3G3/3NBCIFAoedTQEk12vM7FYGHplx6Si7k+kTcZ+9UGvGWNUy0BFDhILiK+mXrUQLqiznMhfWENUVYh3rXY3hkDzk8TKWwrQxRKVk8Ocz40E5Cc2SD39cn6HFiZAjSoBc5b8NVrJ+3mlUb1xBuODkulynosxgvM93yruvys+9/fc747BS+8dmP4roOh/ftKrXtf4SarpeNluMNsLomaHr+VQTjkkLQpahHwcqAkJUEXqBRTxKSvrbK+PggznCtG14pShT01bNrz5WgKYa6/EqRQi6P7TmEWmNoYZ1CxkbTBfXtUYaPPglCUcx1MXbkKQqTQ+hmqWPRNBzpgvCQpdLHT737U9x/+/0157Jo+SKktNn6h6/jOjaOU53oue++79I9g4HYsqoH6Fe/+fnYXvVgNxIa4va/e0v596G9O5kLq9adNee6U8V1b3lXzbKtjz9Ec32FpHDx/PnkzbMZHq5wWsxmpGkNCdIijeX4CdsdG1cSncahooSgfpXvgczbOVAnl8cE0Pjad9Ibn0/GaKBp3UK8kIZZ57cdjjdhuCaP//y33PSRfwHg8PZN/Po/Pkc+m0ZKn9lYGALlU9Kw6fa7CMWDNC/wvVjGWBdq5y9w+rYwOLiNwkQneqwNK9rG2lUv5/LlLyEkdAJS0rDwIkJJD5RkIuMbsfd98yvc+qmP4LkuD3znq6THhpCeh0Lx+89+mrHkHuxiBtexKGQmQEmygxMk+4YY2bYZTVkETIkpq0Oj3/7jHRCxWLF2MTMxFVoMRuMse9unkJRyhWSe0YN3EAgbOKnH6Orr5M1f+wj3PPxHLrjqE4z393HWostpTvjPIhBv55JVLy9XW5qNSzlv2TUsWfsSIpe0c+GLX82VV76k6tgj4ykABkZyIB1+/IXn1ZzfBWdVpFXmFL6c5pkaP7IFoenoRoJUzxNYmQyR4DyUBuMHtyFwKaYzVQPfx7/6o/Lf+w6OlVWlhQDpFpBGCM8InbYH+mRQtGb3+gE0tlRPDmYm754MpOcQ0uYItYXrOX/VMzeZ+XPhT268/OIXv+ADH/gAn/zkJ9m2bRtnnXUWV199NSNzzDoff/xx3vCGN/COd7yD7du384pXvIJXvOIV7Nmz5099qieEME3q26MYqWFyfSOoSBzhuX4hrlIIJfmnr34MgMZEgt/2/I6iXSQSncdks4mzIclYs+3ngBgaQoNGz8VAIx9uosnOoykXLxgnpCSOnUHoAQwAJ0dLaPYZbrGYw9LXknEjJEUdiaZ5tJxxGZENLz/hNU0mqzkB5sp5Wbl2A8+9yu987vzNzdz41c/xzlfWdjbHQ6LeD8fs27GFu279OXDicu3GdRcTbJ1H0IM6t4C+73ecNzmI2v4TzEN3o9s5GhM2q5aNIqRNfnSSbH8SZuTlLHr9eb60wIzDea6DlIo7v/FjurfuxrX9xF5TNzE0AyEEoZjfWaQHDvkzWztHsrsHLVEJvYSb26C+Ay9Rh9lRD8DerRU69saWxjKF9+ZHNmM2x/CweOpnn2HTz79YxaVTSKYYHKoOCYweeXLGjSmSV9UGjVkfYFBU9vvsB6pzYKbwTHpdAELhCG/+h3+pWvaRd76OSKQy0w8HdEZlM9Mf97FD+0lNVBMHdryilAuFXyQTbhCEhw8S3n8HC8PNROKNGFYW3RAUrCK54mhJjmJ2PHDHbeW/G+obWHb1y9iwvp6mc1/Fole+lebnvqyy/sqrsHXIpArc/JmPMTE4hJRweOsmNKEhg4rGs5cRaavHiJgUJrPUuV2otD/gJ7uegkIKuh/HitRR73k0Nq7gshXXkog0YegBOmLzCCtFMNxI6/wMSjgopdh9x6/JjI6SH01x+2c+ysCeA/zuk5/CzuUYGTpALpki544znN6NXcyhpFvhmFIeKA/DmcQMDaHL2qqn8LIQUq+d/EwnYjQDIUKLVyBDaQy1n5F9t7PzpreTO/ZbDm/6XwB+eNf9WLbH4Hgj8XB15aMxIyM4HIxjRhq4cs2rEJpWk1PR3OATq73vjWdBtIWGaO3getXF55T/nisnwy0RgyaPPYSVSROItqMbLspzUVISiQny+jhCD6PpAmFECIYrBvFUsi7AlVcsgpJ4rQBipqAlBCrWcdLUEqeDN1x7xZzr5AyFb/00eGekdAnMZbwApnn6+l7/V/iTGy/XX38973znO3nb297G2rVr+e53v0skEuHGG2fnl/ja177GNddcw7/+679yxhln8JnPfIaNGzfyzW9+c9bt/9yI1oXQpEPu/nuxMgWQDqIUPkLJMl+ApkFqrI9mp55ItA3bUDwxfoxxrZ19qTZWLnsOEaHIRZoI6UFiZhRNukQkXLL0KpbGFkEgxrrl1xCVHiHPRcrZPR0Jw+U5Ky5Arric5a3POaXrefWl66o+Smsa30XXkQMc2b8H13UwA0HqGv1Ya7HglzT2Hp1bFXc2j0rHgmpipf/9yn/OSoA3c998aBFHjcW4nk6HlIQWJAhaGbzR/WS3/C/57DCtqxcQimf9aiTpMJP8IdicQIuaWFaxqn3peiAVnnTZfv9D7L7vUaRSiLCJZwfpPzRKIFjqLBQoPKSbwZMSEa64WnUzwKq3v4Rlr30+kTOrE2kBvvyzL/OCV/qVYo7loMXjeCZ4UmI5uSp5AaUU3ozZs1us/F6yegmuAY4Gf/y7f+aRr9zMp174Ws5ds4JMfeW6izOSk6cGqgfuuLXm/J4u3vwPH6xZdmhfxfNj6hqyaXUN39on31sdzoxEW7BaHPIxSbQ+hzdwB5Odd2FNHCZ64HbmPWcj0b5thPQBsm4G13PwjkNStnPz41W/l8xrJb7+JZjROsIt1fIGzesvpuPCywCY7J+k84nNgOLArj3gSpo65hFd0sLCN1yAMDVQHsqxiXj+ff7ofz5Ca3w+USXRRZCca2DqgSrup7qFF6L0AGgBmuIeYnma7PA4+x94HCuTBSXJj6UJRQUoSSY9xNhED0ED8lLHlTYD6b0ozy2lqajyP0sbJkoq54p5jdUTncQZLyFi1k5+bLva0Fn88o+w6Lr3I6VF1gNcGyU9TPxJjlvqKxY1rqghPDtVTPWVi1cthWgrnlPbZ3z0+h/y+wee4tCxvjnpXJwDfqL/xIH7UVIxf2UDbnqgxGAskdEQQknswgh4NrgZ1l1Qefb2tBL5jkgHZtD3GAohWHHOFTSc/VIcPYJzElxAp4szVy2Zc91M42WmMvvJQCkP86+sFPpE+JOmF9u2zdatW/noRz9aXqZpGi94wQt44oknZt3niSee4AMf+EDVsquvvprbbrtt1u0ty8KaFitOnySV9ukgX8yRb4hiuxksRyeX7UM2HEAbaaQ+Mq+KOCtlZ4moGKEr3ogyTLK4uMkM0juDgK0zPt7G2ue+juZ4O57yqHPz9Ix3o0yToquTsQo4ZhhC7SxpPZ+9o7vR9UZyzhQtvg9XwtGuLhLtK0mseD7CDGLn02i6gdIDfh6O0Gs8EWufc1GZr+X7X/k8lHQ8UqlJnJK8/Dtf5ZNYPe/Fr0QPBtHNcHm7KTje7LORYqFQ3vaCy17AUw/fixS6v31p+c9/8F3Wn3dpTZv5QoFQOAJK+p1OpIOv/v0/8K4PfpCOulUcKY6xsTFHODeMIQTDrs1Z7RcST9xNNqPjiiiaNHGL1Z2Nl3HYv20L3Yf388J3v5n0RJJk/3Ap/CWYzI0jxjWMRoP6yxaT+dE2rNwQxaKNJ3VyE2MQrUfmhnFcA6HAK+SrjiECWnnZomUL6Dnaxxdv/CwLF7byrg++lVt/6BsOrZddgTfxO8SkgRSSTKoXz02QGj+GVczh5LYzdGgDiVa/DFlMmxl949MvZdfYIJmljSwZNujpuoXVK3IMyCZysfqa+zn1nAqWBbrJi1/zxjmf2+lCOTnCpeouQ/MVagePHSAaCeBJRbGQYsWiFqKRAI7rMaWiMTExXnMua179CTK9B5k49Eu60y5nBf31Qgisvb8nW0jSsgh69mexDUU0HJn1mgEsxym3L6SLUH6SvesUUcKo/i6UwlyylsLmhzEtSE3mUKEAWlFiYVG/vKGce6IApEuOBLfd11Vu4qs3HeWGX9xBJBwgX7CZ3PZmitO5hQKNXLzs5RSlYHFiOdt3p/GcPLaXJ9HSSD41jmuDFm5AZcewZQpNA7OxiVRmGDNT4jvJ67z0ndfy1MO7WLOmmZ0P7WLpVRdQ3P04Q3loa40zMFnhlwq3noMWnV9znwpFq+r+O7bN1u07aJGCZGw9rd5TOLaOoflt6ULgKcVIMlN9XaeBdEmTasPiyyli0hyfPSfjpe/2NdpWLJ49BJ4+shd9wzJc10aiiDcvQqqtdG552M9PioRK5eP+vxUSWxnl859Ozia9ejxhoDxZTgnwAEeYZIoWRlRxNOmyJKHNHcZ6hlFJqtbKhqprWaT3H8Crj9DQsej4DQDClbhSe9rPrHJS8H/tq/mTGi9jY2N4nkdbW3VlQ1tbGwcO1NKUAwwNDc26/dDQ7PTbn//85/n0pz8967pnGp39+7h1/z0kdAszN0AqDF+/8SHieoD3vPIaxLRp5Y07HwF9GYXOHrTecRbaTRhqgP7YBPnMOPsmNDp3xCjMm8RsmqKQfwV2PsfmLWmi3joOO2kODQ1iygaG5Qq25zzAp5Wf+ty80T4C3b1Y27tBuxelBC466foMKiFYGYuz3xCEQxdUXcvClWs43O2HGB565BHMabkxuzfdz/at28rLUrk8jhZk4wXnccedlQTUcCTM7k21OR0AhUKhvP9LX/taNpx/AUf3+SrE04+1f8+2qt8AuzY9QDgcZlluKxNqmPEt3bz7sgXYEw/RORzBNqNsPvOl2BQougWMtMGxUR0RO4uo08+klyI9msG7e6RqthZ0chiezkQqz41fuB5R6rM9XSE8hUrmGU5NYkeCHHvkSeJWjk07bkbsKHVyboFibB4iEMUsutjWJN33PFJz7VNUXj1H+zjjnDVk8zkeuudRANafu5Y9W/Zx4zdvYlV7HaZngMxx790/9o/hFdGcAp4Z4IFHf1WqlACpKh3spu4CBRVhlzVOl1Mg4hUZbQgzKjuY37wMs2EzM7F70/0UC0XMhnk0trbN+dxOB3q2j/pDd/Guy/z8h0lLgKUQLiRKk/09P/0YbpPO687sIBaHb23zr8sLJarPRSmW5bdhqxQHnRGMfo/huisIRprQ8/tJapKgihOXQQaCksbEEdaeE+Hu3qV4syS8jqfS7N50P2EvQ1thGylyZPRm4t4ESb2Fwz1xVq5cjtB0FhYPMukcJdchaUxLOgtLqa8PMTGuMA2bgSO7oMcfsEwrR8gy2B/wv91A23LkRA83/MLPz8uXBuavPzxQU0o+hTq7iVRjGjfrMhZdRGt7G3r7MtTe3QxaTSyM5fFyFulAAj3aRp02iOdZKDx26msZ3DoJ0cXs6gW17AIOHtZIqDXsaDnCiiuaGEMxNOa/N9sf/jiudZRoawe2U3mXDu7ZSiFTkaq45657eOiBB/nia85Aj/RyLLSK/KhBf2wQ2IVXCtH93cevZ7LVz5s6cmA/S1eumjXkfDwc2u+HDH+1N0vTyBhO/lxa521jZGAI3TBqcuqOdFeHUs3mxRh1bWzyDuLd2knAy5IKbaC7J0hUhclk86Qil1Gv6qhTB/G0EOOhdcScUY4ckoQG/ePHOpbA4S4+/sl/JxjsZu+m+wmrAhFrD6mSXAG5HD8JL0UPCULj25kMhAjGz6jKvXum8bLXX0km6/Dk/ZvRQnGee911PPHAE2Qm0zx21wMM5SME3SEaEp0nbCuHxibdJWicnL7bCaFcLtuQ49z5J970T4W/rsLuWfDRj360ylOTTqdZuHDhcfY4faxZeRGLrqgjqLngShqB0S/ezCjQ9roP+BTkN/wUgOUXvY3lE49w5dmNCKHj9iZ4amKIfEuU9o6LGP7t/WiWR+JYD0Y4QMvFr6o5XquSjN1/C3bfUZYsXQUyS8vF1UlvQ7/5PlIPEtYKaEIglEdOi9CUD7FE9FO3cByijVyzJIiYRkL0ioWXsPrnP2DjuhX0DXXhlJLnAN69McI/37UXZ8znmpkn23B0l3++pJFbm3V2lDgHQtEw5wf7WdTRQktjfdV5DY9ZfKq0//suqIMLNpTXfXiswmHz0298sea6/2aVoL1BY7RrknuCEZxHPY7tHefixnbqIibZkEN9vSC+4tqafb2LPAqpFG3hYCWZtgS50cPJ+y7+cu6LAN00S2XFCulIzEgQ3TDxznFwLasqTVoPBdEMA7dYxAzNnqHv2Da3/MgXUNu//QAbzq0k0e54Ypg9W/bR32Xxqrf+C04hj24EqgZeYegIXUdOS+LzPBe+/n0Azrjo/ZiBAJ5r+SE/TxHXdBb2bOW61RE+Pu3+TuFt6wxyeYNPjnXz4sVw7cbIrOd+qvBcm32P7KJT1HF0OMvtO0e5en0zvYN5WosasToNO6DYMH8ZV1y8kfd+4y6WrwmjJoZxJUQCBd497Vy0gS3snjjMhBCsG9MYKtjUj+1g/ss/T866nIWmwhAGQmjkO7pYlP0mmdww9VYnQ2O1YQdjLMi7N0YQE0M8Mp4hbZq0dawiUBhn4q67uPFLj/PQl9/C0oUGxWiR38bjZI/2sjwR5OJAiqs3XsUt2wcZLigWr78QPeznLXGuX400Hw3++2M8/0qTA5vmcayz+t7Xdaxk4bKVNec1hXrl4DkOy9AxA77nwTvnSpZoAl1o5LNpOoBAKMjQk9soREw0AU11Iyzb8Kaa9pL5C2k+8D2yzi6c1ADOmEtdXNCe20cxd5BzzvB459V/x1s+/BUALm1I85Jp93/37b14492cu3otO02DgtRZENNwFjyXwL17sIcrA+XiMy+h79hhvvPlt3D+5Vfxxnd/kEXLV534pSnhySd9z++ysy6lqbUduIxg8GfAEN/41b189v1vY6CnWnJh6aq1HCvxQQndQBbTtL3kHeil6sJ5gSDBcAxn4+U05LMsC4YIhqI4578Q1yowL5LAtQoEQ/72hXyOlvkPEa/byblXvJjC3q9z3dkGpi14cNKgcbEfRkxueohc6jBFp4d4zCATTNPqHiS47mUEotX6ZaeLptYOxkcqfDIXX/0P7Nr8OIX8IwTa5tOSaAQpicZaWHfu25DdY8THdrJgxXqMulrqg8mCSyKolQ0sXTNPmqPrRCi6Eq2t/hlp63TxJzVempub0XWd4eHq8q/h4WHa22dXYW1vbz+l7YPBIMHgM6/6ORcSiXrqQrUu6tbWau9BW+t8OvRmEtEoSJdJQ9C76AxWL7qUYDCBuPBiRu7cCbbC3XcEtX6QePuyqjaGN92DGhtDc8A9dAgQFOJ1tFxwFY5dZPTJe1DJJHoojHBEyf0pEJruD7i6IBtN0BJrJhwyMI3KfYovnsfGtSsIGEY5638KkaBJsVgZOC3bpqk+QTwSIjQt0z2TK/C8N38YAHWguiJsouRS/fR730Q8Uu1g/NrH3sX7Pzc3n8H2PQe4ZrVHr8izbN2bSIZ7mExJzJFm5rc2MCjSiLFeYhtmNx7q5pjp+ivnXnVKiM+96jc/+h6//t9vA9DY3Ep9vL687qWveTO/++mNPHLn7XziyzdAfBa5h1kwXaKhsb6xZpY7lrXwPBcx/DhnNGvsH6sOxRQKRYIlIqxENFzzTE4H0vN4/M6bGO4bx4iciVM65EOHJrAcSTAUZnjcodu2eVs4QmN9G67nz9yvWWGwbdA3Nsrnkh1mwptkX/NibGVDJkcsoJHLjVEY3MSh3HyW2IdZeO6LKFo56id/ghmyiXqKjnpjVuMlFgkRj4RwRlNY889ET7STPdbFmnOuZO9t97OoTrD9wBbMjhXsknnyxQT1wQaS3gBLhEY8GuaNFy7gjm1d5LUAvaM5VixoJzxNvfhFf7OGMybBPivCDMobvvO5j/L1m4/H3Hv8EtWuiQKrGnWEpqNpGtIQFOKCumCcWKR232Pdd+KkD5PussqMso0JnZ897BMVBkI6wbp9PHzTf3HZmz7EGz7whapvNxoKUBeElFek+TnPYWTbDialYjS1lXVnRlErF7PjUd9A+9vnn00+5yeNb3roHjY9dA/37D05gUqAX/3vNwBIxGPla2lqbaP32GFWrlrDd39zLy87rzp/LDCdHkBoICXNLR2YkQTVCENdffVvSr+nkdP90+uvprvzEE2t7ZhWkrzQiUUi6N4kIlJHQ8L/PmMXXcWBu39NyCswrunU2TDpjTDPGSYWqe63Txef+tr/8t43VOQ66uJ1mKUkZSUlrXoePdrA2jPX0pd0CCKpM1wChkFiWh8zhSMDXcSdwzSsv+oZOb/pMBwP/c8UNpsLf9KjBwIBnvOc53DffRXmSikl9913HxdddNGs+1x00UVV2wPcc889c27/l4KDu7fz1U9/iAsvv4oLr3ghnusQNEq3Nz/Ormwv8zqeQ7CUDJbbPUYo2sAbP/cfCCEY+I0fNsiO9jPetZtM/zHSTz2Bl0mXmSHDhEg99TiZwaMM338buR3bMLwgCxas8g2XUmflq4MKLKVIGgGM3BiZQq3SqK5rPLmzNnz30et/SP9wZft0Nk+sNMDMtv1ssGx/sL3i/DNr1v33D2457r6f/sL1HJzs5EisATMQpWfIN2YLlkNz0ypEJM7w5IldpX9qbH/yUf7+uhdUJQB3dx7ivt//pvz7P797c9U+S1f6pZ9t82YnHJwL0ynwZ60I8zzOKT7FofQxPv6+i2dtY4pF1JylHP500N+5g+G+cRwiWJisWbyS5228lKItiUZixDQNXQgcQKSSJLfuZRrPHhs7dHKpUVT/dgCyw7s5kOujZdFFLF17HdHEYt5y7j/QPOKQeuQhsjf9Hb+88esATGaHyE0cI98/gjkcoF1V3xOz9OnVxaNg5zia68cJxnCVx9jwMZx8loaQwZltOvc8dJCM0JiMNGGMZdCkwCGKGh/iaOc9CDuHnqin+9B29L4H6Np6B9u6RslN+i74UOnxpydqw1bOHIypJ4t8ahTr8APgeRi6SSZqsmLpxQjlkR86TD7ZV7V9dnQbwYIFiDIdvGoNYpeMRl2Bm8mweum0908pP5FVuqwK9WHqglSog/bFZ/Pbu3bzjev/SFgTtLY5VSlCU4bL08V0Bu5/+/L3+Oy3fQHCcCRKcIZ38+CeHZUfQqBpAuWdfglzd6dP7Dg+MoQ10U/G1kEp7OIkTrhiEJnRKKGV7Tg6FOZHcZTnC4U+g1izYSP37B1iUclTZ5gmd936M8LLz0cLBOk7uJevfuhNvPbq8yiOHsVMHSaIzaHDh8j01Vbj6solWBihezzHyMjJG5V/LfiTm04f+MAH+P73v8+PfvQj9u/fz7vf/W5yuRxve5tfZfC3f/u3VQm973//+7nzzjv58pe/zIEDB/jUpz7Fli1beM973vOnPtWnhS9+9L384Zc/xvNcdF3HdR0iqgiejZ0fpzPRRjRWce3ZA5PE6htINDRy7nUvQvM0jtzweUZ+/0smbr+Fwd/8GKkpEq0t/L9vfI1YUyMd0SUINIZ+9RPyJeXYQHOUltVT/A1i6v9oCNKpBGOhOGknw+6+x2vOeSbj5rwSc+OX/vc3VRVIm3YdmjXDfUVboDxIzCRwmjJegrNocrztlcefCSxr0DjSsIDl616LVJJA2G/jnh2P4hghhBkkQ5In7/nAn5Q46nhQSvGhd7yazgN7yoyyYyND/N3LLivz2gDUN9ayYW447yLWnXP+KR1vNjbkrOXSN+qTjAmnwIg2TkbT6Vhd66X8yJd/gOt5REwwjGfms0+NDSHqziNPM1qwgbPWv4B//8SXAFh3xgZ0BM26gVIKp2iTOjaM0ATjBVn2Cly4QGfz8FM8deweBt0C25uXEIt1gFTEj43g5YusaFiP9PyE0fYWm117fsCBzV9EejreUARLxqtUoxvDgqtXGCSCcNu9T0Cqm25do7llPUopdAVjjz6IVtrn/mMuQ4vOJdS2DlNqaAoc4gwYipGhA7z3mx/n+hv+iUBhC8HMbwh6nXhdv6Rzx+8ZGxnEdeHo3iTBuM7VbzyDq994BhsvX8z6CxacVmXITGhCUjj8IBkhWb5uA4YRxMplsfu307v5O0wc8/PQJiaOEBkaYuPBRkLhRiIBwfsub2NVUBFBw5iQnJEPErbi1VV+Q7vYsf1/yKX7yGFx/nydbKl8+IG7tjNu5YnKHIsKjejG8a/n7tt+gW3XGnGzob7J1zaKJSru0LqGJi64vNI/zBT9BPjNY/uIxisVQXKGkO3j99/Fr374neOW0APc9tP/qfqtCVBCMZEfpujkygSGU1i5/mrWvfDVnHXGFUSXLqIQUCh5+obTXFhZ4mAyzSBv/2dfg0wYQaTncN6aZUg0dE1jgZlh4+ImoqJIfugoA6kC/UN+2EkpRVAWGLEMsskhxg7+ZXClPZP4kxsvr3vd6/jv//5vPvGJT3D22WezY8cO7rzzznJSbk9PD4OD0+J8F1/MzTffzA033MBZZ53Fr3/9a2677TbWr1//pz7Vp4UpFtlisYCm67ieR6w4xOZdPyGdPEqseUXNPkaphHL5Wef6bRRtvEyauBVHA0LRGG/8j0+jGwZv/s/PcsmH3syCNt9FGRERmjvauOhV1xBrqcfWoqXOWNDWGKGOBBGpEww1Ewk14s3Sic50+w2MVLwtD2+ptuT/51d3Vf2OBTVevKaBS1f6M6MH7v0hO/dUDKTjGS8vuuzcmmWve/FlNIUF167yqwACrf7ztlIT6Jri8XyOx3JZ3JCOp4PmKcyRMXp+/dGatmQpcfpEndfJwJXVWjFTcKZ10JMT/n379udrxQ4bmms1W0wzWLX/rMd1nCojaCpstGbDRv/4nmQy7zB+8HGk5xLouo8CktFwgpRRS2L1sz88xPC+x7hyqcHg5BEArGzSn3GfJnKTkxixNlpWricYWsBZl7+KhYuWct3LXs/HP/gfKBSWkijAVQppBGkIx5gowEBGlr0Bk0KnNT/JEC5nrLwWoWlMjvQxOWrRe+cmhAdGzueFCngweeQR1g4GSWQFQqsHpZWNoZ987n28dL0/GF622KAhBHknR18witA0PNdGkwIhJZ/8/mb605K8AwsXXkwi4efKGcEQhjTAqIeRPAeHUgBEtN0EXVDJR0lM3ouTupsdD/8BOW6TGs0RTVQ8Wi3zw1zVFEPNohB/SpA2ynWRXpF0k0lbxxoi8zt8yZDcAMWAR6rzMaxCmiPHbkPkCkS0OLoe5EWL/ZCHjOmYh1xye33Pm2sHMaeJxfaMHiCjGaQLSQzTDy3nLN9YNOoMvHkaI9ok8WwLTR1hWhfWz3m6X/r4+/n5979+Upe2ZMUarnjRK467zYc/X0uRkahv5LYnD3HdG98KgQjeDM/LJ9/7Fm64/nNs3r0Pz55by+xbn6v+XrVEB/XhLNlikpxbRA/Uhp+DoRjRaCPLz7qSVj1AZvRQzTZPF+vO9vvHRH0Di1aWJBGEIBY2WZgQpIoSkRsiKmyaWtqIYDFShN7OvRjdjyI9F1cqwhTQ8bAGD5HKPcSeu2v7yr9m/FmCVu95z3vo7u7GsiyeeuopLrigUvny4IMP8sMf/rBq+9e85jUcPHgQy7LYs2cPL37xi/lLx3BJEdkqFNB13RcHtEawkXTmBgmGq2fgIqATLQmNNbS0U9dST7SpgbhKENaCbFx5CedceUnVPrG2eq799Ac4+wWXcO1H3strPvlJVp13KbG6BMoI07zQdzdqoRCNiQ6ywRYWtJ9LwIygu7UfccA8+fDBpc/xab3j0TBhE95+oV/Ce2Z7gg0LQwzu7mbL/i0MjPoJdpYzt/FiTiNZmhcXrGjUeMnl5zH2sE+Ela1rpr7Rj3UL2wFlYCuFA/zD1z7KCv05zM8naBx1UHZ1vlPXWI7N2zbh2QX29KcYOvr0yA339CYZObKtZnkhX2HxffwBf+Y7PS8F4N+v//6sIR4zEKDz4D6OHd4/53G/96VP8Q+veSFWid/FKYlcvuGd7wfgyEiWnt0PU6dZuIU0pjdOqi5OZMVVNNctLbdj7/YlBRbXCT73rR8TjgRwj+zDcz3u/s1mHrjppzinOMBKzyM50kNqIkW4eSFrL/9bzrjgfOrmzUfXdb70mW+wYukqHsrleCKfxwPGvRyeHmBNyzImLMHuYYUnoWdSkg3FGbbGORoIopUM+klRwBbgmWFEVkdIxe4nBskfybAkGef8s57P+ZGzwAkSyYepj2icP1/nijU5zEClW7tkkcHR4Z00z/cHBF36BpCQitT4JNuHpnnuSknbqlhAkxLPC1NEZ1e/x8CEJJZ1aLNiLCiEaPLCxJXEHn6IeXZJ8C/n8ejtxzi2KY0AinmPhgYX9zTDGrmB/USK/UjXYWR8N81RP7FW03Qi0mOiOEpoQTNJLcujD/4L9sBBzuoTRMNNVWSAMqBjSR1TauzakiMy4JIa8z12axc3k3TSFDRBIXmUpPK/p37p/1eWEpkKts5YMkfXpiTR2PEZXlPjJ1fR4joOxgn6IMOcvQR+ImfjFDMoYZA+tr1mvTACGOluXCuH7Uq279hKPl0bOq+CcggaAqRDGklwFuNlOhzPJTPWdfw2TwPXvu4t/OaxfcTr6lFTQ7TQCBo6AR3McIw6YRHXbOIBWBWepJ4skcIAsQBIu4DjSeKiyIKoIkiBJmzMsRTpyVo9rJGn7qHz5q8849fxp8az2kanCaUU3/vSp8q/p2bSVrGArhvobo5+e5gCkA5GfVd4Ca5lIy2X9vZKndnffOY/+dv//E+u/eB7aW5cRCiSYOM1szPkXvTqN9K8uEL1PX/VakCghwKAYN4561j75suwhEtmcx+mGcaw8zXtpLPVy7ru+8Gc1/vaa54LwJ3f/wwzxHO5YlkdD289iijA/U/8hKHxHgol0rXZjJeAaXDtKoOz2zU2duisadZwB3ZijR8mv3AphWAT+pT3QCm0afU+u4pFGlYs4nlrXkuj10JveJz0RBeFQpJt276D3H8DiXwv+f59OIU89tjTy43xHItAprZ6Z7rxkhof412vej4r11bn91x29UtnbdMMBBjoOcb/e8XcDMV7tvkSGlP5NFOGkWn6WlGxkEGcLAu9bsZHehmbHKUQn0c8MZ+gZ3PBfL20vT84nNnm/9Y1HQo6+3fuIJu1sIXg8a57TupeTOHx397IA7/8KbnxLGYogqYbxGfQGwQC1UblrffehhQGSggSkQTrFsbZPSI5lpQ0bHwraaFRnGbohUbSaAqkZhI1GjhLbsCxPEZ60ly44FLqA024k6CEgY6Jrilao4K+4hgOgrs7K2W2B+KNRKP++QWEiekqytnF05C20mgSDE8QT1pE+jW2RhqYpwwaOxVLIs+hufEczj/vH7nmwo9gSkEmmCXeYCIEPHTbIXKZIlg69958gImhPIs31PH4H/6+fIxcdgTXOTmyM3d4P+HUQ8j0IYr1MVadcUV53aILX4QVkCxYupHmiy5HODZS2jQ1LicYjJbFGR0knoLp0Q2hB0kPZrjuhZew0EhiCY9QrJ2R4hi/ussPR4dDpUTyqU/PVbhFjzdfci0vvbQikDgrpnJtlOL2n/2gbIDPxGRynHjixAnrC5f6XuvWjvn848f+E08qBlIFhnqP4WXHOTyQYnKouipJCA3h2eC5DPR1YW+9ka7932e0/xhHH725Ktz8no9/jrv3DPpSDAJwHdJCYZ6AhC8aaQThUEzPrtZ9uhBCkKj3OQaUpqGcYkm8UhA3wSiMsy6W5tw1i4mZgos3buSytfNJkCdPiD2d3ezrHiJYHObis9awMTxIfShEMpBnx0P/TmakMmkaGNjE+NHN2KkkrpWZ65T+IvGs8XKaKBby/PqH361Z3t15CE3TMN0saU1HaTq5ULyKD8ArMToWJ2s1eBLLO0AIxClQQOu6X13kFCovX6A+giYE6aERjIYluLPoIm3ZU82Qu3j+3ErDUyyUF29cy03//nrmNzfwUFeOoazfCUQ1GNk+SLTT5J6tP+Op/b8FIBSonaVNeV4WJCr3JO8MsmliP5YQKFWZjUkpCearB0IjaGL19NJuLkAoxa6HPk1y/BC53s0MjO+ko3g/Rq6XoOZRtF3Sg0dxPElfMk++ePKzYNuVKNdCm2XmPN14ATh6cC+TyYny72tf97dztptJJU947J4Se3Eu45Mu7t7iywNE4wkGJ4sM7H6YszhE0ukhMNmFFpmkfb4fanNjbbREBc0R/5lP/ff3h1z2iziemMeBR+9Fug6Too7YcdSnZ8Po4BieDOIQwgzO3sFrM/gv0guXIoXh89UInUWNMUZyilhbOwhBauWVtLZWjL/GSY+ojKCEjtSD/oCMTw6XCMXpu387wWwANBOFhoPivAuXYqER0BX2tBShiUC4bAxLJYm5JrZd+0zzI4MEXVhu1XG+WM68YhuuGcbNe3g5j3WrXsbyprMg46JrBvPXvAihYP+WES5YWaECONTTgxCC4d5JmvojBG2X7Xd/BICxO67n8E1z81I5hTRjj34HzymiK4tYKIs0xkhFLAKBSklzrLWNFZe9kLr6DgLhCA11rbRF24hGW1BCI+6WeHQEdE96TGRthGbQ2LwaJQycosctdz+GqQseykTRFl9CVmj0DPhJuFOhUlGaqfzsh4+gLMXzVl1My9IIn/vm58rnYgT1WQnbDu3dyTc++1F+NkcYaWx4kJaOE2uv3fj7R7ln7xA/vXcrr3jjO8jbLrmjT3DZQgN3cpj9+w/QdWQPWcstn3d84WpW5Hdh9zzKl/7lHWzfsg8znSKa78LN7yY3cYSWRj9vZs2GjX7ujGejCYnwbApG4IQcLkrTyAcFo73PfD5J30QWKT0isQRKegihoQnfsAnH4sRNRbzO9+brhs7yljgvXx0lEgqjp44ihnYR8grETMFzzlpL3IygS4nuebjZSjWv3TeAMZ7FlBpO7hnigPkz4Vnj5TQxM0QwHbrhe15y8Xbi8fnMdMor1yUYD3HO666u2VfT/Lp8cYqETz78jsbKZGls6wAEumaTr19INhCeU15gOpYvqniI/uktryj/Pb3aJaHSLJq3hOG0Q6aUMuFGdPYfyCKVQWQ/jGzy9V5m87wkckfLf6eKinuPurRevJa+5ZcRqZuPmCbYp5SsUZwVAvKjaaJ6jLMn5xFwPYa772NeNsy6QpqkKdmW2odtF1hRpzjauY+dmx5kcGiQzi1/rGJkPh4GUgUYPcCEBVZ2ompdIV/ryeo67Fdi3bN3iPd/4r/mbHfHDNHF2WCXqMi/8JF/BODzH/4HADoWLCYc0KnX8iTMAk5AJz36BMOxRuob/JwN1boa8JNhR3ue4MIFpXdJQECLYZituMxDoTEZymFlBtnVPzvj9UwUcin0cCPF2BpyohmdufVSprD+jA2cueFcWp+7EYkgYPrv6cLmMImSvk1r63oaGitlsTknR5yYb7wIHWkEeSqfQ1EiGRUa0giyVK1E000EcNHzV5PVwJ1mp//+kMuyFZWws1KKWHMH2Wmhj42X+HlEwvMwHIWpNOav3oiGhu4IAhEDicBzPLyJCfq3+Z64ixrOIXrIoJC1ee668wmUPA5vvuZFxEoDX0LM55VnvpFCdpAj93wKZ3IQmyyeO3uukXRtxvI9HN3zfY7lDxMJW0TaQ1x5Ua1ScGJKVNIIY0hIOAaabiBcm0bLJWSahF3Y4ARIuBpCaJy/5nzQBEbUT2wGyBn1JMMJcutfgSo9G7fEutsaquOS8OryMcNGEMOVOKmH+dcvv46Xvf6t/NMX3sL7PvoCzrpk0dRN9v8jJbqh0ddd6/1USlHI54hGj8M5MAc8qTgznuMF69qQxSy3/f5u4hTYv/k+Du94BHSDF3TkQBtjZGgz5y4K4mYnQLiMDtyH0mBk201ctn4+7c11RKIxihN9SLcIQiFcm7xx4ve67eLn0d68AGeom2TXw6d8HXNBKkV/92Gs7q3ooShuahB75FhZ2Palq2MsWVTLqtvcPp+XrInREfbYEB5jbZP/LD3lobtwyfznYniKrp23USxOIj0P/dg4zdlW7ECRzMTRmjb/kvGs8XKaOF5GvdB0otYwKhDGkQ65YKXcL3mgh/Enj6DpOsHI7ERhq157GWZL8ymdT7QhRtOSVYTqg6y62M+VEYAqBvCMIJFYR03s/Ssf/X817ez7fcWbpE+beZQrkzyXyVyKLA3c9uMHGM3ZHJmQHEkqhDBpCW1AllgpVzZpvvGilC9YV4J08xxLSrY7zTza41F0oemSd9HRcQ6hUIz1MYfBX/uhDKkkruNhTCvvvf/OX6OEgUJwxorLCMZiZEeP0GhEiKy+muG2euTgGGrsCOvbIzSQpdEbQx8/QAMZdm26/6SUiMfGhnh+YA9hL8WObZuwchXpiWK+1ms2U0dnLnzq65XwnH0CvZRdm6uNilAkgjNwhEDXDpQ3iBySuNho0wgIPSPI4hUtXP2ys+ga2cnyZU1MFBRo0Nro50cpo54CdUwaDfT3GfT11IbGalBIsXfbz9EI07HuXNBDGLN41mYiEAhi2xbaijM4GK+jIWIggIWNoVmToaXrkhsbxpUeWktrKe6vKCqFkpJ8Kg+ajtRMWl96HaOJNoSmUdAD1K18MbZXqSIyTANjmrSCUopMMcPAcBdGg/9ODfX6ZaSJSAOJcD1RWyfrOIxm0hRzEWKyhZaWM0ApPvH9G7j5yXsBMITOvGVn+d+GHiAgBM8962xe+/wraSu9r7btkU95TB5WDGWPIYpFwOPJBz/ExMCO2pvlueiGgZObIDl+jOSAQ09s9tCKW5qMSCU5M7KSy+dfxkQmw3Amg5exCAcCrFiynHrd91zOb2zj3BVnYml5RvuH0AQ4nmKkd5ID3VsZOLiP2NoYXSmJVLC7dwvNCxK0mU2UiJ4RwDvP/UdCDsQKk1y4PkPELKJJl/Yl0dL5KMZH+8jnsrzgdauJhQ6Xjf++/qfY9cSXy6GkYLi6FPpEUEqRszxikTBLV5Y8jckB5jUlWF/YjDH6R+Y3hFBK4soMBV0ilYfQDRrjNo4rQTjkPYvxrIWuCSKRGL1bvkf/0FMgwHEyuKGZvDG1MMwQC865jGTApffYfchZVNJPB7t6kwRyAwhccrkcXi6Flxmlo9UfE6KxurLXpeacjACXrp7HQjPN4hV+nqIrbTRXcObi82iKNJIjxaZHPsbeOz6Kkx3DQAOhOLjnp8/I+f+58Kzxcpo4XrXIU088TqPVTZIiVjCGnKa2mu+eIL1v6LgllO0bl7P6pacosPjRf2Hjq1/OS//tCzRM4xDpCQxz4HcPkxvM4s6oLJnuFXnLK3zRQHNaAt30xNpwqHQNbhFLj4EZo66+jS1HJ8sU/Jl8ll2HhhhKTqKKHmctCGK7k+BZ7NxzM0PJo2Bn6Ut1sXdUEo5UEuK0knFkBkw8x2Wy9yie5WDZBbo1nXltlfygX9x6M1L42ysBlzRfSsD1CE0WEEBdYhFhYbN09Pc8sOOnvPLsRs5ucnlhrItXnruUZpFm62N3s+vg3MKSUim0sUM0u4OE4z00aDnG9j1Qua8pCz3RAgjMliWAQJgnR5Z4yfNfVP77xq99nt5jR467fdeRCrdOOBJFjfZjTMD4sTDWSCPJCQdGK54hpZtc+Yl/JfD8C5jUdV72tit4vNdDIGi1wDGiZESMSNMi6gbi5HrrSO87CdK6/DgjdpG83opZIobUZ/GszYRpmtilhONAQwyvRKZYF5w9WTM90I01UAR0Gtcu9l1takppWpHvGUYhkEJHDwWoX7mYHUOSvlgLIlRHrjSGvOXD765pW8/muflbP+OeXz+CUaoOGugZYPem3SgFsi9Iov0M3vCRT/KLp57gvic24ww7vlaYUuzpPMrPn6zwUN23eQuu56Hpps+uJGBdyuJ1zznPfxYoznv727j+x3eTPJKn69g4o0N5VHaSvZu+ztHeIxw7spP0Ud9ILR57AjsQoGhl0JUgEF/K2jOuA2AoN0Q6lwLA9mw2b/sDTiGP57mYStDQuogP/fC7fOGWG3Ak2FLg6ibFtN9XXbzuAtA0irKdqD3Oxg6NXt1geChP8WgnExN+7saeEUmoYR7ZfbsBcFMOMlky9jWNQDDK3134XtaGluCqLCqdQqX9m371G88gVtfLD77/Zn5368dxXYUbgW1bvgzA4NAWUv37y8ZLIjvM0Ru/TGFiiN77fonyPFzXolicZHBwK8VCtVbdZMGhb99jhNwMoWDl3XPH+pkfGsU1LM5bPQ83NUh9BJo2ruPeHb08uncAOxrGUR7WokYOZNLsODJMfTxMLB5FItGkB0JhuUVU4OQ8QrppsvHyV2N4Bbru+wzZkd0ntd/x4OQmiGBRFFGyY/1lOvCPvet1J7X/gjqTdWdfWP7teS7e0UaUNHjDWW8naoGRzZFxR/DyGYJmiA2RCzBdj+23vn9WWoa/RDxrvJwmjkc+NZnJEhAF6tvWoq24iiWLLgf8RF03ZSEQz7gmhm4aaJpGYNpMJhFp9AnrjmZxD+YZmpyZ1FbbznSjKjqNhTU8xWLsFrGk9EcSIbjrlkfL2xxMjvGxu3/FLbcf4HC3jaFr9B66BWXlyes6Q5134g3vYzxSEmx8XrXeUjE5zkItS6FgoUkDL5tnLNXP4ZHu8uAHcNAqooSGEjrC81g8YXBZbAPheBgQpDMTzA8OY4714o3o/OHhb5Nz93HmWedTFw3xN+ctoF0kaZrYjluYPUnNdiXtjXU0dcxjvj7G+U15PMdGSo8jw2nGR4cItCzl/R/+KEailfDy8wgtOovX/P2/HPc5TeGMs3zj9Dc/+h5vv/bS4277zpdfUfVbhUIgBP3pZtCjNE0soa3fN1jTdpru4YM0zjuHVetegwjEGA2VjEQBSgmU5+IpjfqmsP+8PYOQPAHhmPRIJ4/SH2vGDsZoXrABLdxM4Dhsxm963du4+ILLqK9roH/ADyP+6rab6R+taOnIWXJPpPIQCpxgCLFkJfqK1eX3UkmF1A2UMHDj/kxUKV9Paunya3HiLWyf8L+BaCKK67i401SDQwMTiJRLo9IReuVdf99r3se2x3bwof/+Gv/8zx8k6ArCkTb2HDnEwmgzuhbA81T5m/EyGZKPbqKj2Z8Bh1sW+qGrMzcwOVbkFRuuIBYKl8v2AcLeUp58tIsbf3Yv6616TNdjYNtn6d/7FSaO3YKVGSadPkhfJEe2PUIikiAofSN9spBk9MBOuh+ell8xOkZ+qB8pPbQZtO+21BguBMjpLaTsEo1DtAGlGUQDCwCdD/3zlUw2BNi1czMZCzpKRQVmo8lQ+hiGo5ClqUljObfJvwFmIMzV57yWFhkl7Cj+8fw3sPW+fgDqEg5WwSNabyBdxVMHBnDSfYx0P8Gdv/41mw518tUvvgIjqGN4Ll42y6GHv09x7376f/dD+geeZPPdH+LY0ds48PuPVF2XJxUxlSXspavYvpuNHNEGjUB7u1/taRexpaShYTGW7TGWV7Sf+zq8pY0sXvgcvvfpW0lnC1zz0nOxxg4TNkwQHkUzQMAIIwInr5htRiPoQwnsTJ6xwUfp/fmHmThw4tDwFLpv+R8mu/cCkMzbMN5JCJuuvh7cVC8AiViEwElMFKYwfXyxvSJOto6+A0k0Xeedz/1nLim2clGhmdZ0goAZIWSEuHrRi5Fulkfuew/Z9OBxWv/LwLPGy2nCPk7ehB6KYupFNNOvxJhyW+f6x8n3TIDiz6JIqlAY/mQCUzhkeh6vIqe69Z7Z8xy67vsBa5Yt5M0vu7LMBROP+gOCsnJILVDqwwQrl6/GjLfSlSyw1yqSkZIn8jl2WRbnr1pNf9Zh5/6f4whBSjcZSfeSaW7lD/v+wN996O+qjutk04Qm87iOg4YOrkdoZJLOI90MjQzygiuuAWDQdRENjbh6mPy+AwwfHGZecSHLY+cjEHjJFJqr0D2IWAmEFGS6jqKXPEnR5pHcngAAhqZJREFUSJg3nL+Q+fVhnNzs5ZP7+sZx00NI0yQnNIKRIdoboniFLNIpoqX7EQKWL5nPq5+7CGeil4DpcunZC7Amh2dtE/zO13YlH7r+BwTnn4EWOXm9gre+tyTF4Fq4ykASwFMSTQmcUv5C3skzuKPyXAsrryKdaOXCKy9EFxAwGpkSkmjt6PD1roRJthA9PuFfqofDk52ocAOBUAOReCuXve79RBob59zlPz72X9x0w29YtmQFPX2VsFShWCAem3tmK1FoSqMQSyA0jfq2aJk00VISTwugNA0v0UygLlYOPanSDNUoyWBEY/4AVMxPC80pcCZcnDG77HkBEKbglh//gVXBEJ6URICMFNTF6jADURSinOSrAJnPkxxIg+0xv7GFIIrf/ONn+eC114IAIxxACK0sZAjwxZ/8uPz31Ze/k5cuuJzFziSLVQphO2R2/ppBb4LoZIazN1xFtKEdpy6C7dkc3PsIwYeOolui/Jw0BcX9+3AdGxMDz/MoTMtNEyKAzhJkzkOiEPMWo51zEW44yFBynFgiRM6F4UKa7/7PbxnO+J6X0KIQ9sgoIRsah6PIouIFi6a4marfkYs3vJz2bJCGlkUc/elt7LlrjBu+/CgP3nKIsf4CR/eM43mSmKNzaPsNhONwZOcE0YTBFa9cBSoFQKRHoiudwewBctlBP0k+PUFR5Hj43v+PvfeOl+Mq7//f50zbvnt7l3R11XuxiovkXnDDBVONY2zAYNMMIbEhgZBCLyH8QvEXSHCAEHqABBNjjG3cbdxtyer1Srq9bZ2Z8/vj7O69q3vVbDVL8369ZEu7s7tnz86cec5TPs/7eODeD9Pfs4ENG9dQb2bJ+ztx3VKnaxjY8QR9XpqG2cv52f0v8UxngZzvlj1m+rwI4TCdZx7Wnk7f92lvraJzzc8Ydmw8qbDcHF3uCPYByqT3xs4lEJ1VFO5bS2bPLgb/72cHflGR/PYddP1Bh8nXr1/Dwkg3SxsgjEtKpPneZz7A4z/550Maz1ie2PwgQvn4xQ23YVgsP/t6Vp5zAzVVUzBtB4SktaoD5UiMdJY/3/txtj31/Vf8mUeDwHg5BO6//z7Wv/gMMHHYyEzW0zFvMZddfhnDdgbbqbwxGUU3ufBFUcL/yGI4FvF+E1wbZTi4UvLU+t+Un2+qG73xyDH1z5NbGnjpf7/F5JYGhv/8c/7xQ9dx+TkrQSm6dz+DNyyLnhd9/F//3Q95afvozj2nFIYh6fNS9L+QY0SabEg2MSRge7YLs3oqkZjO9/ncnZ/jyz/6sn6hEEgh8QFp1aB8n9iIJJ3VO+f33/SX5c8onLqY5JwpKGmCYTK8dRcDO/sxhCQZqmJK/XK8QoiY147hSnJ+gUx2dIyhcJSmuhq8MboHO/pGynFrP5+m1ehHFNJkBeR619GTHuLPz79Az8anmJTfiNy9hgua05y6YAcfvjbGDZcUGO65mz8/8zQb9wyWkx5BC+e9uHOQp9Zu4NmHf8eudU8iQ3HsYsgpmxlNAB7s761QHS3xxht08m4u240ghLCjCASGgnRuhD3P/hm/aMyUiKXamN5xAe/92/diCAMhbOxYA1JIsgMjtM6YRkE6+Ejc/aiF5gZ3sC1WQzI5qWj6UNZkORBd3Xvo6t7D1IVaGygVslg57xQi8eoJXdSOFUYgkEYxJyyW4Cu/0nlCG/J5FBK3ugmzqlTOqz0ipS7h0bg2WkJFz2EmM1qqWzJw3EGPhYPamI3NjxGbE2PFmJ43UpoUMj5DGwbIpLvJ5AbJux6xaAMRq1T5JElnMti2g1fTQry6Eem6gMDN+wxlRvj2H34x7vspFKpQYOqUlVyx8hPkVT0b4h4v9j9Nf7VJ2IyQHejHxaVrsJM13S/i7tqN4UlUJoqbz/JC51P6GvQUSnlY0mT7jh0ko/VEYw34viIRncWAG8HL+uwUYZpmz8BwDIik8JVFNm8ydvrl2J/C86nKW8ysrkwMVbsqd+TtiTYuPPXNWLbe3OzoHvWqPfnHzWxZqytY5tpTmEo1e7al2fD8bn73g5cwDFCZQUJemLrhJLVWA77M0bv2LqTy8HIZptoNyKFhzL4etv/+y+R3fQM7/RBDkQJPPfBTtt77Pc7vMPnmD/7Af/7oSS6f92YA9owo0h4o32N4UF/3v/3xb7n58pv5h/f9Q3mMDWediV9lM2i7zLrgKkKWQdawsA8ybFSeF09hmCGgimRuGb7qZ9Oa/2XT997Pxvu0ftUzT3yDx//7o+x4qZjPV+qaLSVqaIBdLz0BfVvpMHtoa2ukkH+ec6u6eetl5zBjbDuHQ2Ao00t6rUAog3x29AfOj+TwfYUZssAwEVJiGRYXJVewMlNLKiPoWXc/mcHKtgLHU0gpMF4OgfPPPZfb3q61OwqFyrCRWdXM+95xNdessLlywSBKZct9jEoIKcs9iDxx5E+C6NxqDK/UrlHvmQbV6A3qja9bVf57fU1qwvcIOTYff8+bMU0D3AxbR3bi+6PVKwBNDc2887qbK14nBAhp4coIw0phJZqIrbiZfmmQ80YNv+VnLWfxaYuLrxFIw0ABti3BV/Tgky263u0xPVDWrnsRs30argzhGiGUkJDP4aOrRiZXLaV6uJ3q2FQuXv53mKFaNmyvFIWL2BbbOvfw7LpNDGULdL78OC89cQ9KKUKGYkEyzU/2PIM7aTU9hsEk/15qctu42voTprEVqfJMndpBHIMFjXUsrYvTwiDJwgaGXr6PZx/+LaANl2e295He8CBThp7gquRa3lS7iezWZ/ELOcIdy7jyglX8+7f+P86f28jVp89heHCgYqzX3fKXWMXk2NxIN8mwpT0oQpAkRmjIYejPg7B5mMS68d6QcCRMLBymczBNfW0UIQSuKmDHHXxMfGHh7asazc2SK4ywxwxD7/Cr7kxrCIFjhqhOVFE3Qc66DhFJohEdkhHJap7arUUgBz0PJSSeFaFhhe4T1dffX2yJofnkv36S2758W9l4Get5MbpH5zVSfMXY8JFhlLw2jXieIpUt5lYB+XyBRKKF6fFaHasSgl88eD8Pbd9E3dLpOFEHVSiA1OPLKX/C2KxAMPjkM3Rv2INpOiQmzSGOg1Qu9f15pA+57BCTVTX1bpj07k7yvRl+9sd74IWteNk8wy88j6EEm2UvPUN7wPfxN2wgEkoQClXhofv+LFlyNiqvmNU4B7c/pDWa7Bg5M0Heq/SiGAi8tEcEC8uyacyFx4W3vQlK4+PJ8SrSY8lszpDKmVy58kaeun/UA/fU/Z2Y5Ih6EWpTzYRlBMcNsTJdzTyvlgV7Qly89G2cWmhgdXgOw/YIqa4C6exWOnesQ/oGNak4poRtAz7/+uvRPk85D/73+QJSjoZavvDRL4wbW239VOaf80bmLlxJqNgx3BPioAzz3ODoZshMWhiGSUPbGdQ2zQCh2Pn8T/D7h+jc/RS92x8n8tBuqjfF6HrkLrbfewcbv/kXrH/xF+WclnXP/Tf1a39Cd/cIyhskMvIk4aoqzAkUsw+GfCHDL+//Fna/wJBRxJiih02Pb2PDo9uxLIkwDRQC5Ss6Zp7G6We/g7cuu4FZ1dN4+Y+fZe2an7F71/PkckM88fRXuf/376On64VXNKbDSWC8HAKhKQuxm7SK7diw0Y8feJGPfe37vGtWliWXzaWhuo/OqsZxF4BSShsSQuztfT0iKCmoGYxj+AACT4iKMtKLVi3lXz9xMz/84l/xqfdfO+F7eD0bR8MJe17ClQIlLYSvKhbmG659T8XrhrMupjTIiio2paZRVT0DYZgMz7wQO7KPSiohyeVz5FyPtVs2gK/wCy4KiIQjFQ3cQk4YUV2HL008aUNRU6fvmU1kR/oxDJOa6ikgTKQ0CIUTPLXubnatfwD6tkBumPa4y/Skj737adaseYF2sQunMEh/zx7Cwztw/W7Sgw6d6zZjn3IDT3mD7Nn4LfoSkoe2b2bWQpOekU5qzUbOnnUz7SzBtCxaMvexqv55atQeHv7TPWzsHiK/+TGuSq3jqiWTmLF4Ne3zVpL784/59A06Udqpbubnv9539+EZxX4nmewwg/3ryzkOQkjy0i1OnyT/VDdmbvxiZ9om8Y4YXlhQP3s+UgiUUsVE6WJ5rL+PUGg+zfqBjSRSUxl4/GUymfFl4vvjlnfdWvHvp3cMApKh4SGqVYbdf3yk8uP8PGE/RLzYlE/E4rxYvN6ySiFMA88ZtXq+9K+fLUUxAaiur+bCN1xIuJj/lcvo13ZnuunbsZegWGkFLEZ36hsXUFunRdhcpWiz7fJ5vvydby3n3vx/P/0Zf/vL/0IC0nAYHvYhO0yhpxdfGEhTkite7wBjhQ+EADebp79T3/xyg/2EC4KaUC2eFAgFwxvXEfIN8H3cnTvp3qkTsjsHOvF6hzB8sFyQSpB56SXS27aS7h8pGlWQzkboyliEImFS1bqlSG1NHW7Bx8sOAglye0bXJ2/Y47u/uI8YDhcllmGOCOpb5tM7NJowW8CH8MQVkiWe+Ld/H/dYKGcx77RLxz3+h899ndNTC0hFqkEKwkaERd5sVp71F5y36kYuuPx9GIbFaav/giWLL+OMxCJSe5pxB+oxdjoM9FtEwiF8Bc9nBCpceTv70XfuJ5ved2HELZ+4pfz3qpq28t/9CTSx9iY3lGbL/3uIkXXaMyEUTJs5jymL5hOdvYBpLOOsNZKpg41M9dp58YlvAILakQQCn8xzneCb7Hz5fzFdC4mkadcWnOwIPZ06NBjzFDsnUMQ9WBQ+Iu+Ss4cIN8bBMEZbp7iKfP+gFuUTEiEEasxro9Eqzpx3KXk1SNea37Dh4S/y6F0fxN/yIo27XbY8+mWGB/cdHj8aBMbLIZDd9gJGJMXv7rmHj9/6Xpob6/jmf/432Zd/x+TcGqprIwyE4+QNyciYnBY3k6fzvucZ2dpVbJwoiMf3nStwuGjNNhDGJixCdJpZssWQTAkpJTe/9VLeculZE+qxAGzZ8Qjrn/0+6dwguUKabdEapKmVfMcaL40NTRWv6x0qIA0DicnUplXlppRVtTN12ekECClxXY8nNg/Sk+3FVz75nPZw/cvn/x+MubwefPQ+hO1Qdd5ZWvOjKGZmZFziW0y8rj4iNQmd0wGY8Tgy6/O7tX/k4bW/5oFn7+Tpp77LqVU7mBV+kMTAiyyM9DC7OUl3XzfJ/Fbu7l9D3jdQ6TTYUfrcOu57YSd3/u63PL0mSyxpcu+a/yXerYinmpm/7CpWzXoHWb/Ay+sfQw7+ikZ3Pf1rH+Si1Fba5yzHdkaToC13mFsvmUf78J+5oGYXF7XlCE1ZVJxbSbhjOcIOc8cv7y03q1uz4bdYWRcD7YmyMMCQSCkxhUF+zxACgb/XrtqO2yyZ186qpctINVcBAtuwde6VABOPB35yZ6V+UXaAgS0PogY76XOiJKum4vsCt3BoxktsLy2PXX054lW1bNqlEzzv/8Vd5ed812Vo4wZ29XeRKYoVDu7lhQqfeTZVc0c1YbSDQ+AXKj1HdrFCrhQ22Nq9nr4xJe5G1OD9bzqDOiVJIcnt0kaOZUfZVMgzMNKNbUUIF1t7nBKOUBQg4NGHnyGeaKGjqYUrTn8Lu7dlyHUPMtI9jG/YqILLFasvLd8GV02Q2Fw6m6U0sPOKiBnG8XTnZ5HLExYO/TJDjRfGDsfJbssCgt1PvYwVT2L4CttVVPXmYLtBZiQ3WvmXzYOZJBwJEw7XkM4OIA3tqatqm4+vUnje6PVkxAzd5LP40J7dwyy84T3sHiNcpoDhETVheXuJGZMm8e2PfZxPvfNd5ceGMxmkNOkbqkyOr4onqKnrwAnHAYlhGdQ0T8Mw9FrUs6m7IuF56dwLcATY3Q2IviYyWa0kLAU4jQ52zXij/Vff/9U+x3rmpWdO+Lg6iGaaynPxfZ/05j6yPYMoDybNn87ii+dhxKKI+rm0zzydquoOZofm0TbskEonqIrXszR7CvFsmGRmFi39UaoyUVpDHURdsDABFzWUwdluk9u954Bj2RduwcXoTSJciS90nL/820lBZsRDmpK6FXPBtlH++N/1qo6rWLbD4fWTL2P+bptlwwnesuomTjWnkXvkznHHH00C4+VQ8Aq4XRuYvu7fuWJJA6fOqCW77efk0k/S7v0aw/Coa5iPWPRWGhsXl1+2508vMfDYNvqf1JnjQkgSzqHFVF8JogAxO45lWDjd1eQ4CIeP8iE/zNqel9i0/ncMe1m6/QzP7XoSzwpDzXTCiRRVTau11Px+MIQEJOwnTloYGS7HfoWUTGttJ1fwSSRi5HZs52e/1tUV1akawmN2fV//9j8DYLe1kuxoLIuZCWkTGXHZ/cRGCgUfOdiD7/ksa7iMTD7BgB/jhZ4cT2Zz9Gd9frfnCTp3b8Dxf46fWcu0apv87nWk8/fj9fvgpBAFj8eevwu3YPGH/+1nzY4BBnuLuTG7erG8UVd6VbSVZc1vprmvBtsVhNJ30cELNNTWlcM+AL7vsq3zSb679sc0Lo1R6OvE7dqEaVrIcLxcdh1qm0/YHxpVPM310TJiMWnKUuZddDogaJB1CGmQ60vj+Z7eRe1lvIy4IyxfOJ1wNE/r9Faqm+qYe/EqhrsHi94En97eyfzux/eCUoxsuJeBbY/yctdzDA1tpyecQOR1ubWUB1cSXqKmerynbcnl7+OspTpsGQqNGnRuLk3miY18+5E/cNkHL8fzPBatqmxqGpvcTLSlbtx7ir2+c6lvzu3X304+l+e3//m//M9Dz7AjVE9N0YCe1zCJmb6NJSxSqXZGfJ8dhTzDvk9KKBLJSXR7lfrUSilksVS/u7+PSCiCYZn40QRewcWPJPCU4PylF/JvH/l7UrEY7xhTHi+hGFfV73rBlAuYlk7gSBsn65MYARWPEe0awurxGVJZav0UylXaO6lc6B9AKrALCicPETPKyHCOSKQWELyQy2I6DrXNCbo9l67cMFJKDFNSVd+CFWmiR8SYW8yt8tL6Gq0x9bp01wOP6++XGULhEwuFOX3uUsK5PnY9Mb4Z4cDOPro26HyXN557Lu+75hoArKKH8Ik1L7H8hndU/o5hXY0lhAQJoVSUgW099G7u5YW717P5qd1sfWkvNepiDNz3LQzPgqFOLr1oDspXCHu80fHvX/73cY+VCO9LY+bAtgvK1f6Z7mc20fnrZ8mNZDEsEyEEDe0JpFR0d6bpF9UoD86e9EYaY40IaaA8SUusnbrkbC6edzVVNZOJxhvocKbjipl45cR5iXoV2QVuzsXqnYXrRih4edLdg3RvG8QrXidCCpQvqJnZovNuJjBemmunsvrqDzC1eTYXXf4BTrvgnZi2w/L5F3Pqire88sEdBgLj5RCYWSOZbPbx0vrnyO1eT3pkhFiiHyOeQ8QdnvCHsUNVhKO1JFNTRl9YnGWj+JdkYw1n3PCGIz7exiUdYNnEhb65jgiHaHpgv0q7w12buPeub/Po2v/hoaceoVvCkJAMD3fS27eJrKvzBzoWL8R09n8T8zx9sxt5Yt86Jj2PPMDGO38NlBQ5TXzlU5OxkV0Guaz2vDihEE0Nzfz8P+4qC9Z94ztfHX0jIXAbptCu2pnmd2AYDj964B5yuRzbntqOIS3qp5+OJRvoDTeT9urYGp/JtkEY9iMYGcVj3dvYs+H7VKsBfHcIkbNoTUfIU8DfvhO3X+/gn9rlozzFdUtvZlpXK5OXV/Ywamqdx7JzP8z8+tch84LI0LO0tk2uOOYPL/83f3zpIQb6DK48ZRp3b3AZyuQ5rXENM5e2Y9e1ozJ9qK51jOzewEv3/wTf88gNvUC1a2BYNqFoFInAtB3i8RpUQVHOcNprIdo1vAvbFVT7UeyQw5V/9QGqWhq1ojOyuOEW5PPD4ObYNLSVtYMbSUuDTQMb6bdC5Pp6EBg44QNLuh8Iw7RYNl9L6nft2Ei+e8xNSgniA3pE//KtL457ba4o7PfMc3/mT4/cB0ohhBiXXpKs1jfmbCbLJadcwmMPPE0sC+FYA8NGSIfevCqWzFpEyIwQidSy0y3QW7x5hJ04UpoMeh5m6b1Fxf8o5LIM5nNI28SwLTJDBQqpRnxpIqMRFnfMZuO/f485zdoAyyqfFstCeQoGeklv30XUiXPqqW/gdZMv4NLU6VT3WKQHe8j39PHzX93NwAv9mOkoKHA8h163D8sK0bg9x/SRBPOGUxg+uKXcMDtGKJTEMEzCkTCdrouK1IOERF2YhvYkTk0TRGfxkcWnM/LiMOl12pt2SryopjvGDhRI3rLqQpbOnId0LEYGxq8fmf4sO58bTea1TJOB39/Dm2aeBcA5t9zC7t5KlWohdJ6FTsQp/n6uR+emPrL9Qyjlo9zKzwqrFCULxnNNeje9iN2RxIyZmHETGZLc9Lc3jRvfRIQiIVzfJbNX09qDCRv1v7gdBEglyXYNYiAxi6XbQkr8fIF+alAYGF1bGe7L6O9YDNMK00CGwmS378II2cQ7WsmJKpQAL9tZ9oC5I68s3wUoe62E70BIrwnbHtvM879dy0j3MFZYe7iEKYHKsNGByA5kyhWAx4rAeDkEHBNm1Uq+d+8uHthc4LdPbqVh1bXE5qymb/al5KafSzgyPhwkhE7U9bM+sdokl7z3nRW78CNFzbwpCMPAMh29uK9J4QvYM7htn68pZNL0bM5St7lAYnuYtfE68jMuQOZH6DMMQrHG0rca99r/+ckfK/7dfvobQAkGBsZfFuk9nRQyaWQkjF/Q2wvl+xhC4vvwy8fuxXVtapTe4YaK4ZZFC5biFhe0L/zLP+qRWDYKQbRjMr4wsa0YD21ay91PPMjHv/dZSpI8SzbZGD0hHA8s3yBXVYvh1+PbTSiiZNwke9I+p86VNCVracw10lFIEbGjOAVBVZ82mryMh5/zSWcLzLn4vURiE6tdtrefzvwZV9DvDfPk+j+wpesltu9ZS8/QTjq3r8PLOThWE2b1HK645lTWdPsoQzF7jkldtcP8+CAPfnEVZ4YfIuE/xHNP3YUa6MeRJgiYtWIFk6fNoGZhB4mmZPEXESgUfr5y0Y/9ro/o1jocUXneTTt1oT43AITA8frI9W/BsxyywiAjYURK6mpnIywLoQxs89A8L/tCFo3Q7r5+Bh9aVxy9XpL8vF4YvzaB8fLE07pp5ZXXXsh1N71BlwFD+YbrFfIMbt1AIjWaMC/DOjTkDekcqh2uy9SWU1EqRWt0CbOsJhAQC0X45pe+xzvefBPNs3Se0YhS7C6G0wSyImG51jAZLOSxHBNp6pYFvmFhRUM6lLXpZQrd3ShlItF5NEsnTWf3jl7IjtD59GgCqx2KEUvU4WcUTkFQKKYg/eHxdfz9d3TFSiafxclCUz5CbW8VHQ2rmbHobDAM7vjDL4Fibgrw4svPYtqj3lHDkCSqQzRMSWAYut2pcmfxjjMuBwUja0fwMqVrsfKaFQiQJvgCf4IEUiGg4MKedXvwin2VhBCcPmcxM5KVIeXP3nwL23+lNyy+r8r5SqIkkFnyxngehb7RkKHvK4yIMxquFoJtXVvZU5fkzZctB8BMmLTNlSw+Y+G4Me71hTAtkxe7X+SJe/6z4qmDuYm7fVl93UiJIU2qGutIteq1saoxAtkMSIk0hM7F29Kjx20YOglaSC0Y2DOAl/eJVUfIUaxiyw2zddNGfGVRcPefY7Q/dmzaji89EvlJOLGU7pcnJYV0DmFaWBEHXwks2yI/lKaQO3hjpHvrALs7X1m39MNFYLwcArPPupqetCJdgIHiwhKL11LXqPuypMZ6W/ZGFCt+hEckceRDRiWc6hS189rJyRR5O4EPGH2bKbg5vG2PMdhfacgMZrIoDOSIwhMG4k/bcddmkNVTcP0C0Wg9qljlsjezZ8yt6CZ86hmXIIQgP7R93LEDTz3Bxjt/A0iEXxIg8wCBryDr+wx0PVY+PlRM3lRKYcrK/BxryXJdgeL52MkoShh0Dw1ilbvb+nhDQxQyBUJGFDtf9FAYEsMDuwAzs7PBqmWdK3hy+0P09nYytW0BXaFmfBnCUII/PqaVbtNr06i8Ihk7sBZEe/Up4MKLax/k/sd+yh8f/TGPbP4jzb1x3MQUslJhKZOFZ3Xwga/+Axf+7Xs5tVExu2ETM1MZusMuvzKz9MYGGNz1M5rT4FTPwiy2ljjrfW9j7lvP4pTXXzAmB0ngpyur4VQWQJKSlSXYU+bNRwBZM1VetF/a8gc2N86iMxTHm3MFaSEZyfWB7wOiHDI5FD7y/o+V//6h92q9mrHnUKn7hEKhfCryMfbm7e++uvK7KZCS0U7Kw0Ps/Ond5HaNavhISzLXt3GHPBRw5evezJypixAIkuEEp9QuIGZHuOL0C0nUhLnizRfz15/+OFObJnH56y4mV2wnsQdIJNsoGe/NlsmqxWciTYEhdRdsJS3kzHnY3jDZEZ/OP28uK/D6wMvbN3L7T+7gwZf+DBN8z8n5RqozFqJogCoPprfphFLLsrGzLpFhl4RdT//uEZTv059Ok85rj9SaYp7YwFA/piX5p7/5Ip/44OdJNUaYsqAWJ2KRajDwCjmUMrnlvKt5wznn4Gd8VK7Ul6i4axelOVZYYQtfyArF8PJvoI9m2/NdbHlmNJFzVks75l7h5dpUikSxLF17XvTOXxgGFS3rpUCMLXpQijylfCuBYyg2yWGGcyazGpq54ZyVzFs5Gbt3mOoZ+z9H3/iPb6B78xpy/T2EC+BViI7u3/PiuS5GTFf7WbZJQ/skrvjQLcRq9MY1WRvGqU6ghDYWlLTwSynbUurvWOxh5/oSTIm0TZQUxYwqg90bt5ATHSAOXphub7a+3E2BLHG7ntZppyAMA2EYujx6jHNW2gbSstj9/NaDfm/XE7iFg4ivHUEC4+UQ8BU8vN0jdxBxyFz/aBmd8ny9kxACfz+L8pFg6QcvY9Y1Z2OFLHLDkv41Frt71vLMzkfZM7iVp3aM6cdTSLN1/RMoBIM5RbdRByMRBre6hIVFNtePlNZ+Wxvs3fNJAf5ID5nNlfoQwjQhm0YJUOkBsrv3aM9LXO/SpIDCsLbspzbMLbtA0wN5ZrWdUn6fBx+9H+mE8IVJpmcEEOTb5hCPaAOx13NxBjrZ8ttHUb5ippqB4YFUPt17tjDHraOhsQNDCRw7jEuY7LbdVA1ZOMl2LvnIh7nzrj+A8pnUVulhuaTYQ+qAxJIY/WFkdxJREPRt2oDhmtQ1zcLJg2HbmL5g3qKpKBlDKoOXRzw6Fk/m4WQtajBOPhtmitdH/Y7JZHtshFO5qCVqaomEw3rxEwo/u5cCtNDu7L29JrojuUBhUBBhPBS7Q3EiDQuoXfQ2oqlJDM+4kES8pVgtJxDq0BetW945WnFUyoEpnUeer7jqvX/Nnp17QCnWb95MX37foc29UQoaYw6FYkVO6Qbo50bnoKa68oZ79unn07H09SDAIcyKSQt4w4qLWHXKPKYva2DqojomzWnj/L/4ADfceAMFJDsKBa65Riei7rRTdLoFBIKYozu4e57CTdRRNbONxILZDM9aTcEM65uYYXJaNIo7Jtn15c4tqL374QihK2ySZ5OsKnZ5zytet3IlUlrs6N6F3TOE3ZkDw9ASAb5PuqDHUhgT78nkhmmanqKxoZG6hloicavcJTqSipEdGsYX2gN29uQpLCq26xj2Kvt2vf3cy3BiDnWrFiPnLMK0pS4JH4PlmBi2icrnYa/v9Mbl55T/vnrRIq5YvXrMj6d/LyElFD0D+YERyu6YMeW9yleIkhEgQNiKAQVOxiHqSmY3NfC2C1cQSfuc3tpeft2cJXMqxvP9+7/P8tMXsuHFB8lt3Eg4p9j11Og66B3grji0eTeDf+4EIWibOoNTL74AKzR6XQkpsKIhlDRRkTiDKokvDZ3mZBiARLRNxY6aDHgJbEsSVcPFHEH081KHl+LJV+6hl4bCFlqAzuvvJ9neoOezGFn2ch5KaMFUO+qQHTmEBJvi73YsCYyXQ2BfWfZjDZXN/Zvo3bSZzd/+E7ld2uUpoxbS1KGjSOzADb8OJ1bYxo6FiCbiFHwDNWLhKR9PaDXWkTH9i/B9dvf3kCdK2o+CYYMU2JbWv9gSq8M0Ha1Pt48T98JzLwHgFz/4P/2AAoks7trHfFQ+j5QOhc5dCGDbb58C3ycWTfHxv/wHpBT88g+/ZyjnEgklsArFhbU/x9UXv7X8Pk8/+4T+GCHxigaOUxWjvqqeF7JZZrZPJ5cD3wxRyLqYIyPEqxswPIEcGMbJKc5sOp2OxWdxxpQzQYVxCg6DWwVXf/CjAOTyOaQvkJ7CsbTRcPXZZyMPssXDBdPeTf3wAlK75xO1amjvbaJ56lmcEV/IssEaDNMmnFe8vOtZvLXrWRo6jTeedhqz3/Rupk4+C9s3kH6Uue4ybFNX2Yi9zkXbcfBynl7vQxZ+fvxCFFY2YXO8TkepfN81tddqS7QKy45iFMMDqbqZJJKTwPexku3Eo/t3Ze/rOjllsW4HES6WOfvFXluGFFTHLe79p8+QS2d4adMGut2DX0hT0VpMI1y+3kZX52L4wtKawn7RLb5g6jwMU2I5FoaU+jeVJjISw5kzh1BU/8amJTETCRqn12CHEmx0PepadY8tD4GnFIZhY4eiIAT5WStwliwj1laP8mFkII+Mx3GdKJ6wkIiKhHlPSdSESe8SI+/St32IXGcOK2sgMGhoWsT23t386qF7USOW7rDt+6hCgUxx07BmjMF27nnnYDsmqfoIhikxrdHPMm0Hc8gkQxZsmwubO/jUG27jnWdfhqd8SkKEAGE7hOfDpBUduOkMmZ1d7Pjtg+UNhfI8lOdpr4JhUJl8JJg/abQy7Ddf+jK2NWp4K6BqXjtIgVNXizAknl/MgdnrvZTn0xDtIBZJkmxqxXXBdcH2BU35KPObl2B4ktk7a2nraeeOf9G9rWYuGO2KDdAyRf+G0odoXiB96OnRHmil9n3+ln+3TA4BxGqThI0w9dOnjjvGmLuQwpS5OPMW6EoeaQICGYno7xqzsKSPn8shDYEVC+v5E6pYuqzXlrx36CHagpuja3AbwvAJ1zSAaVC/Yg4zrz4NYZp4BYjUJym4PiqTRZoGdXNaMcIH/1mjMgvHjsB4OQQmOqmzvYNs/6/H6f6ZbsjVs349e376Ar5SuL16ByNQRONxBGAar9wN+GrQyXGAtPCFoOAVwHSIjfSVE3hznU+Ry1aTVnPIWTUIYSCV1gDIxhvot21Qxfj3Prwv//K5/8czD25k4TxdbVU/ZYbunrjXjd7tGYR8luy2XkDi9W6mkE4jhEFdbT0pXx9vGiHOOvV8LZIHhGMW8+cuKr/Pl/6/z+jPefubaVw5ByUNlAKnNkFa+fw5ncaTNq7hkBlx8aMp6mvaEAocD0KYSGkSiiSIOEmEgkVNV/HtR7qZHdOLklA+lqcwhhSObTPw+3v47sf/htxwtqKUc1+EwklaJ59CKjGJc5fcyrxz30tT20Jsw2Hu6ZezIDaDhoxNftduQgVo71jK0oVLGFj3Eq7rYhegYzhCw7TF2I424vz9tKdAKXD3FiCTRFW4olN4+XD07V4i6DWn0Nh62r7emGg0TvsZlR4npRRuwWOkP4db8Nm9aZBdGwfGvfrCc7XWh5OvIT2YBwUNNXUM5V2qYxZ+zmftg3+k0JNnovvHn+9/mRnTZpcNZND5ZC010wnZVeNzFUqhD0MQUQK3v0BPqJ5oLIVhGToXTYDX2FR0qUvkmMak0pAsOKcFJ2zy+kuuIhZOUlVVw5CvQ08Dvo+INiBiMaIJCycZITmtpThTWgcpev4FeNJGNrXynte9jded8nrsonhl91CvLvMfcw4Jy0KJUq6ExM/42NKiFJgpKb9qD4RA7t6KOzhEOp/jsXRlCfv73z3aZysUMWmdPZqPZ4ZMEIIIIdTLz7OlK0QsHEXYDi7acLSE5G8uvwGgXEkjkyl8aZArCNys9r4UOjvpeWFr2bu899rQmNSVYZ9657vwCh7uWK+arxCGvlnrlikCM2zrcmXTBGnQvWEPAzv7KGTymFaI133i77j0b/8W1zMpbJhEfE+ExqyDXxVHoGidsQjpQ8y2ue3Lt3HtGA2r2gbt9fM9F8sXTMlEmdOyGJUv0Nu1rVgJv/9reujZnUgpaa6bzOnvunrCY3IjLnZtDdK2kLEYCIkSAivigGEStwuYjgnCwI/ECc2ehReOou8WkmxBC/+57sGpWFeML9vLXQ/8G5mRLE5diuqZbURqYjjVCdrOXgimgVQKaVooIZCmQf3CdqxkHM/zyQ5m8AqVm4ctj2/BHbOmKKUqxB2PBYHxcggUCuMTlAZe2k5+MEOmoOPNiTUSwze0G7mYd+ClC1i2BQgc6yC69x4BhJQoT1dlZKUknR/GcxLkBfSndYljX3oPuUwNGA4oE6W0rDQICo1z6Zg+KjS1r9PWsqyKvjVOIkFJVXgsquAiELiuQGIglUn3H54GIQmHwuWYu21GCFn630opfE9RV1vPWWecV36vqQvreHnTOsywQ+x1F5OaPUVrxChFd18PyrRQGCjDRAz2YgkbqRRWQVE7Zdbo2IWJXVD4uQzVxRLS81oXIkcki0Zq+fr/PsDgyEixskWw8bHtbHx8xwHn3vcVA7tHEIage0MXe192UxvnMGnuqRh5lynpCFV1rbRGWojlJYVCliXONKabTVQ3FCuW5HhP1ujvIjANqyyDXyI/kMExQxOuy+WHBFhmlGhkfBky6F3+ROq62eECW57tZue6PjY/08VQT4Z8ZnzY5y1Xv52PvO92OtpmM9ybJdU2m0fWbSVb8HXeCoZuoigE+b3G/8Bv/0wqWcWUSVP53T3/wzV/cTEAcyetQAHWmCRSIfT5pnzFPZvvISQEHcrCLyiyhoMyBE7UJFGnw2zSkAjHJFyXwrYrbxbxqjCmbXDVFdfwn1/+PflBxbs/+nk8dP7Kn4d6SbY3UtUUxRqTHKuNfBCmTfWb30Syo4mpzR1cMP80NlhVPDAyTFd/jw4tjPtRJKZj6pAQUKV8bF+x23XZnWnRP5QojlNIfNcnnc+RVj4rFp/OJz7yGT787o9jF9uRRJK23umPTd6VBgJwpEPWiBSTSU2EIfHR19qVq8+kMZQCwKmOY9oSYVhIQ6KEJLtDh4IzOcFQwYGSttW4ryPp/b+7+dCb30z3xi5euGtt+Smv4IEQ1CybQ9W0RqywjY9ZPE8VvvLZ8lwP6/60mQ0PbkKYEiOsf2szFEK6IWJ7GrGjzdTIBFZBITERSmK6ggvfcCHVY9qg3PhXNwLgbt+Ok1M0ZkMsrl2EXVD0PvGI7rjAvimks/hDBRraWoml9u1FD8UsDEsSTVoYDU1IwyBcX80pH349yz/2Zma/7WxcYeEbFmZNre7O3qDXTZdmssV7h3oFIdqekd2gwHU9QokoC266mEiNfu/J5y5C2DZGRCeUY1hYERvDsUBI0j0jPP9/61hz73r6d+vNd244S9emPrY8OSqYpwBxFPrz7Y/AeDkEEonKk/WD//hBlKuTGAUKz/eg0cQQEikke17QCVB+3iMWTdHcPpk5y5Ycg5FrQTqtnQ95JJabwXOz+MDTnVrTwRAGSqYxLAf8VpRqA5XEdfVqZFnh0ZviQV5T0rQou/GBQjZN70vPFnfFxXYJSiKxEPkCAsng0OiuXQhBNBLF9xT5rEdf5wheweNrn/t2xefc/9AfADDDDlYsTO/UGRSUYmCwH9lQh5IC33BQCEIZg7p8mKq8gxMeTboVaFdyvKaF3zyou2XXRapxdjpMXXoee+MVfIZ3VjZ2LO1Gx9K7oYt07whCmmx7sYctz44XnnKsMLYHNXntum2MN2HGE/Tu3kJjqpX2hasrXzCBB8X19Y3fsW3Yy3bwfA/P8gk1jtdcEWP+CwpVmHj5Tq9dizeBzVTIeTq8GNYLtlW8abqFyoMjkSjvfNv7MU0DpRRTFlzIriETTynClvaCpHZoIbN4rJ5kZDTHqKW5jcxQnnXr9Y3vyacfZ1bL0vLzGd8k1Fqlv4mQCCUQvkJKybVv0obO2lwOJ5xiyYIV2CGDcNwGFMmUi1FTT7QqwtQlExtuk+ZUE46GkIYglazi5us+wi3v/BB3/eRBLFsSqw5pb0uJkjtL6HNSRiLaGBEmI/nh0Ruk77H5V2M6ECuly2U9v5xQWaMU4e1dgG7qaQ5W0duf5sPf+yLD2Swv7erkzpefxbYc3vG2m2isb6R9yjTMoiHWMrOKtlmVVZCy2KokYkVJk9AJpEaxCgZYYU3j9MQCkNqQMuO6pYSRiGKEQ3iYdD+9HuV5DOwc0N+tdDPba23wPR/TMMql0WqM7lN/Vwa/r4+515xK4+KpzHnH+SjfQwhQ+QLDO/tRbgEQ2iMlRbnBqiwm+sZFFKlaqTdTzMgkkcIkKeLI3Gjbgu/833f47t3f5aJrLsLzPcyqKk4ZrmPG0vMQQhBPNbAHrSbs7ee2uONnT1JI5zjtmstY+sbX7fO4xvYktW0xZixvwqjTZerh2iSmZRKpiSMNiWkbKGFgJKJIKVD+2Dw1Uyf7voIUyW0Dm1Ge7rcUilcWhxiOxRn/9Bc0nrMCTBNhmZiOhRmPkB1Is+XZXeD7ZAYy7N40QPeGLoY6BxG2hRqbz6jEuNYRR5vAeDkEvvLPX+HTP/w0AG+48Q1ccd0VkFNIBCPbelnz+KOMdG5FCl2R4e4ZoTCcxXc9DFPyug+8kynLFx2TsRu2hed52iMkoLaQY6N08QXltvdCmuRiLSTrZ4IwtQfVq8b3KTcshNLO9uCsF7NsvGjyQwPs+e3DqHxR+MtwEFKX4AolUcpnzqz5qHwxno4gGosxPJBjuC9LIedpcaVCZby1VI1UwhOjV/3yv34bdjxCvn4KbiRFq1/PytbTuHD+lUQSozdIS5gkXYtr/+mzFR6GhBPl7X//D+yN7ytcT7D95X79b8/nmbvWM9yfrTgul86DlOQyBV0WPsHc5VQB01XU1mvvihSSgirQsG2EkDOmqkn5CMMg1Da+UZspTd1gUwh812Pzfz5M18O6QsqJ2Ey/cDkz37R63OtKrQaMUFIbk/vIN8nv7CG/Vy5NPuOya8MAsZRDrMrGCZskG7S3IjM4PrQ12J3VVaLFG91NN3wApaAtFWbzzu107upii1egpaaD9775Y7RP7uCNF7yLQs6jf0+a7q5RY9Gs8LZQPs16Hv1Tcaq08XT1O98ACFrr5rJi0RnMnjmHtlnVtC/QNzcpJTOuOYOqZfP3mYweS4UQhsAK6YTH2TPmcubZZyCUQXa4ULz5jB6vUBU/s2idggyHcCMpsnkd3tnpFvCEieuMr1pTPmVDwgeUkhjFN4w5zfz8T78DYFPXTm7+xv/HExtfoKV6KiP9WRAC2zFonp4qzo2gqrEy18nzPIQhiM2ehTB15Uvpsl46ax7Tq9uY2zgJIQXR+iSz36qTbtvn15JJTaKXWhSSroeeYWDngB6rYYLSHq/+7X0M7dGGqJtXo6ExVXn6ewW34loLJ6PlH1OvM0UvoyyGpMbkCLl5F4EkZifAMLCFxfJTr0YLKcqKfNKps6bSPlMn8Q7kB8jt2kXDjIXYxfwr4fskekyism6fpdKDmzrJ7R6itrWZZGPDPo7SNE1LMWtFI5GEzeLzJ2FUVcFeKubSslF1LSQnN2CFDEZTgQS+7yKMEPnhvnHvfSAKu8DYNA/fE4QS488twzJpWjyZU/7yShJTm8uPVU1vITeULxqyJuneETY/uYMtz3WBZevE8yJK+eVr+FgRGC+HQDKZZO7yudy79V5u+aTui2HkBQba0yLv76d6exOzm2cSCYV1eMHzKexKI8Whxy4PK0KAgoxRjQdk3Qx5YSDM0KjxYkUwzCTSMgBFtGYqQgjSu55m650/Byh7Xg62K3a6bwcCiVcs48T3dew8FgelK106Zl1CsnY6IMgVBDM6ZrGxJ0Ohv0DB9YlFYximJDdcQEiBHTIxzMrPH5sECFDYS9wqO5TDlxbxtjqEIalumIztRMo3bgBTGJy/4Eruf+a5ioTFTCHH/z366LjvpnyFkAb53n79b0C5eQa6Km/anqf0LsUwtPDWBCGfejPFjHSSlumLRz+XPIlQglhKewP6Nnfr+bcsJp8+bdx72JEw0pBI00BlXdz+ND1PbAa0bzDZ2oAVnqh6QX/XmtQUUGqczH75KCkmlGi2HIOqhghLzp9MJGGTqAkRSdhkhvIMdmfYua6fQs4tzoVe9EIx/XudsnhFxe7y8eefY1eXFg1rn9TBf9/5R957/Ufo2zWCUuxT1TkZS+h+W0B++x6EGlV27t+2EcdKYBsRrrns7ZhF75AT1jkVhmHQMCVJy5yJvS4ATtjEtAwsW9/krZBB84wUw31Z8llP56iM+SI9O0YQQjLUo7+LEIKat7yJ0Lx5/O/3H+Lqy99EfPZCat9yDbKmdjTHoCi4p3xFrqiyrK09k4iU5Rtr90AvoXAV//PkfSSjdbTWzSQaShVzTsAOGeXE44lQShtXcy6Zq19iWUXjQLC6ZTlvPu28Yv6Pvj7suN4cZNMuorUdYVt4psPQrn7tdZGy6AnRIxzoHGLL41v0y+VolaXaqycaUOlFLLarKLutpP4+Qgry2crz0rOqEYaNkAamJShk8uXPKEiPXX4vg7lBHl/3x4rN147hHTiuKLcOAVgu5pLanmDgqQz+PvZl3feuQymIh5MHpdNV0tgJRS2sOQsIz5pV8bwzby5GQwN1k1MYpmThpecVv3fRKy0FmPtQAd4PXrf+LQWCcHzfoa1wKsb8Gy4o/7tp2XTtjZEGSAMzlUCYBpYN8SlNZIcybHtKy14oD6R9bO9pgfHyKik4LvGqVDHhUZJyI9hWCDseQQiBlymQH0gzkh854HsdSfJpnSFvKd15uSAEvhDUNywmObSbgYHtbO9Zg/IUYTOMQKKkJBSvRmCQz4zunJQa4yI+CASw83/vIrddl0MLJfCzuk8LbgE7FmX6qvMwDUkiEgMl2OF6PLxzkOe2jxCJxpBCYFgSaQpMWyc0fv/r/13+jFw+X3Hz8PYq13RqknihOEpKlOeT27J1XP8f0EJhULm+Prd5VCH4b97xDgC2PL6VwkgWLLO8Q8bXlQKlMFt5LK5fXISF1qroH38u1BpJli0dVerd4/YzMtiHPTCq/tm5vg9cj8SkOkxn/I1JAFVNjeSHc3Sv2wbFnj+eq8NJxj6qAxaeqRNwpWXr5OoJPC++5+JmCljmqBu6kPfYvXmAUMykuiWGNCWLL5hMx+J6WmemcGIWuzcNkhnMsXNdf/F9FIYlyQ7p32vpouV88v2fqJyvYkWUaRnsXNuvc7VQFHJeWWNmrHE5kh3gnBVnjgqrFXfkfvF8SD/7Mu5QgZyvsCyT+skJIgk9f6vf/GZmjemuvi+EFDRPSxKtdhBSkKqPYNoGhiGRpsQ0ZXlEuzcOaHkEY7zYmxWPoHubJRkaGkSGI1ghh0K6aPAWmzmO9Odwa+t4MK2NIGGYWnag9D6hJFXV09jT341jOoQtPWfS0OdBon7/N73StWJHIxAOUzN3CkhJ46pFVNe3YJm2NmikrNhxayNOwvR55GQUZdgow8QPJzDjJS0mv3xt2bbuWjw2AXTsbyfQz5f/bRh6Y2SZOFETYZjFqiNtwI0t0bYjEf28EOx+YTvP/M8aPM9HGIIoYQaMYbY+eT+F9RvY/PQD5dd5+RyhAhWegx1PZRAyhhDs03hRrl80ng8tD0VIwbwz22iaXdl927RMrFSi/Ha+v/c1rZBi/Ebi13f+jiceemKfn+cOj14j0aqD76GXaG/EjEcxIiFC1VHazpoPTghhW9TOm4SLSffmHnxf4SlBOPXKBfQOB4Hx8irJ705Tnaotqy1apo0wTKRpIhDs+eNaBALDPMaeF6WTdkdEkqw08JB4CFQoRk5IXu56ml1+FJHNUFUHlmFiGSZ1U09BYiCKniPluvhAuu9Q1BUlvifIvbStnGiaHcoTdmwEBkIKpKFvnFIY7N48yPS25Yx4Po4ZIRIJI6UgPZDXITlDu+ibE9PLn/B3n7mN+adOKf+7UKjUOUldejGt5yzGyI4wvKWTnuc2sfvuh8gMjG8yeNHKldSP+b1k0ZJpqK7mr659O+se2MBAt1bQFKau2ihVUAghyA9Wvqcq5vdQ2pnuY+0bGwbx8RG+Tzw7eon6nhb0ar1g+T6mWSClwPd9fE/hZ3Wfo9Idb18Jdotff75uM2DosamJwkYKCgUwjNEFKz2QJztcIFEbpq5t1KgRQmjdDykIRS3CCWesKCpSCgZ7s2x7SeuyxOsqPR62GSrOh4FhCXIZl4GuLLnhAv/x9V8iEMyZpOfgtOWrWLXsPAw3Q35Ez3su7QIGvuvjuy65rM/SOQt5/+tvwHIM7LBZvnF1LJtJqnFiheS9aV9Yx8Kz2ooeG4jEbaQpaZgSRxii+Lkw0JVhsDtbzivZex4RkIgnR3O7LKucKzX43Bp8BU7EJI+ioBR2NIQPDHte2fMSTbWX3zJlmOVzR5p6xx6J798zIKXUSa2WyfS3XUjbJacjLQMRCiOk0H8MEyvmECqWFgOE4zbSEBixGMMiQV6GSYskTO5AhnXi7+DOAQZ6sniewgqZSNumv1v/NkopPKXK10u0Okxq3qgX0QzZpGa2IExT5/wY2mjBNMGQFfky1W11lLwzQurr0Cv4OFEHAwOJx9DAbmxPIHfuIeNmGM4Pk9m8iVOG6ojEa8t9fpRbQHkKqeQ+w0YyIqmf3EpNzb49dPsiURsmXl1ZrCEMqGqKkqjVjwtV8lwVPeFuP9nBDePea2QoS+eGnnGPl9CGo0AIRaxmfI7bvjDCNqk57cx+5yXMuPZC2s6YS7S5nkLGw4mH8T2FV1Cke4Z17mAyMF5es2z/3VMUutOEY3GSdTUIIXDsCDIaomn2FB3L9fVqJSeo0jiqCH1TKQx5NFSfSkaCKyVDddPJAWb/dgYGbfwCoHzCiWZs6WBYPjqxVpIfGmTH9/4TVQjTtT3DcG+WfDEc4E6gKwLQMGu1Nkow6OtxyezcoRN0lSRSvQCJge96mKat3eVKVezSLNOhZWotdkTnc0hTYodMQJFPV35mOjNqNGSzlXknTz7zuJbydkyGd+hutdmBDNuf34Ofy5F+aW35BpKMxZhqhxjI9NLW0IRdVPnc3dtL9/o9DHQOkR9Ma7euEAz1ZHnmt+vo7xxAKcXAlj0V5a/KUyAFVsjSuQUH4bWqEUmiPRb2BNNqHsBdazo2hhB4vvZA6FCf2Kc2D8DqN1zOzNXzEEriT2C89D77JCAIF+P2IwM5Rvpz2utgjffo5LMuXduHCcVMDEtih83ybrxkwBSy+nMyPVsAeGr7YOUc1FZjmLKYx4PO0bCq+MMvniznSdx883t557U34+az7HnyUYYefkHfzzDY/cAfePlr3wYlmdk6k4aaeqSpPSWvFCEFbsHXHZqlYPK8GuonJ3TFUrF0VEiBHTa0rbrXnCulDcRcJseuPZ3s3rMLMTJIz5+eoO+FTQz3ZIoGpEveV9hmiHWhMB6CnuKNe30+R6joRautn4MY0y3eMLW0wd5h1b0ZnVODltl1pJriLPnQ1Uw5tQMr6hQ9HYJIUw1zrlo5+jpDn/OGJZGzFtBPFUhJoq2O/GAa5Xn4PrjpLGY0SrFoiK5nR3VUfF/y8n0b6dvczUhfRo+l9P6mwcJ3X4x0HMxwmFlvPEMrYTtac2qsZbH86ssRgBmPgGlgRZ3yOiQQGL7AKQiaRTXJUIr+bD/P3/tTauwqWqcvJtOd5rnfvlw+L6tJInxZERl1M3ncTF57LxU0t0xi6Zv2nah7KNghEztklq+fcKKks1JK4PJQ7vjN1YF0aEzb12EjIYgkqw56PFJK5r35DGpnNFE9Tbc6CKXCKClxUlG9dpkma/64gWzfCKHA8/LaZOOvHybzUhdeoUDeK7D8qosQCOy4w6QLljF39RmUxJ6PB3RYSy882S19+MCA6aCkSV7o4hSvoLP3s0PDTFp0JosvX0U04aO8JpSSdN//B3J5yBdSCEPQ35Vh2wu9pAdy7Hi5j+zweG9Mdf0M/flKu4Pt2jrtbcFAmhFANwQzQzE8D0ayHr6n+OjNf8vP7vwdN779vXTMaaNlhv7M6qYIyTr9un3Zg909XXzqcx+reOzdH3y7/ks4im9Y5HOe1pIYGWLXvY/Ru76TXS93A/Bfv/89Ap3rcsGNVxd1NuCj117Lnk39CK3aV/SwGbiZPKpQYMcLXVqzwnbY8lz3mE/XcX4rFgEkw91pdm4YYH/UiySTd82mum5pxeNCCgoTVDQBxRJuiVEcE+j13h3O6ryG/VQHdJx+Co0zJmnLYoIu4G5frxYbRC+eg93aeDUtAys83nixQyaWY+AVfBae00o04aCUzgOQhu5u7Hu+FruSkmXzFtI7VPpe+pqprq7FcgxksSuiaRYrkuKjnhLTsnDClm5ZgWRg+zChuip8L4HnFXezfgizZhkilqSuLUZLMZH1leJELH0TB1pnVlHTokON2aECmeE8dtjAiZhFb2zla0f6cgghmNWsf9dTz5/PyJ4BXEx6X95R7CgsUK7LH555mBkti3ENC+FY+IATtsgoVc45s6wolhVBAX99y6cwiuMyrP0v7cIwtIDkmAHGmqqw42Gd8yYk4ZoYc6+/sOJ1oahFLOlgWgahmgRi5nzceDWJ+qhuomgW8y0sC2EZ+J4+X3J5XRadSxdASrLDObY8140qFCY0JqvnTyUyqZGqWfqcnHTpaQghK7RGSsRbEwjLwnVh2zOdDO4eQiLxXAfTByOTQxpWeXMkpSQUiZPPFPAyObyS1xRJ1q5lpKhC7bkum755Hxu/fi8vf+VuvBF3Qp2kV0rb7GpaZ44aF6H4WJE4fQ34uSHy+cqNmPJVZWXbXkhDlNV8DXPiUPHBMvXSZdQu6CDeWls0aLV3LjmpZsLQ9dEkMF5eIe6aAdyCixVzmHHa4mKYCBKz2klNHnUrFoYzYwqFjyGlDH4EFHw8wClWOTTWzSMjDYxcHoEg7Q7rzqg+1E+JgAA/A+7ACFKZKAws26KQdVFKsePlPty8V27ItjdGqSwzpBOBi/tTkqlk0UuqMA0blMR3DQpZj9nzZjN/9kIuPOcyhBAkanUFi2HqsJHn+hNWhnz7e19n+Tlzxj1ectFbc+ZrHQkkvhmC4QHSI4pcxie3do0WwgIMM4QQkPYLZc/Lm845j3RfGiwLYRoow2Da61eAbSEsi/xIDicRRjg2PWu3s2dDL5m+EUplHKKkTGsY9G/YRdf6rn3+XF7Bw5AmTjRVfkzv5E1CVRP3VLrkQ+9i5vwFTF+1FNuxAYFhW+z81TPkctn9tnUYRY3rSA3gZbLo8B9se7GXwe4sVtggFNVGyt6kGiLUtsbxXIU0BenhPD07hskO5bFDJtIQmLaBW9DVU231bbz9kmv54/PdKAWRcIR4tYNhac+OAExblj0ZN7z5Fv7ize/EMCTRKrsYjTHwXAkqhFIJQCCVCX49oepWUjPbaJ1VfUCvxIGYu6qZ+smViZCWYyANQX/nCIWsh/IgkrIJxysXeK3jJpgyaVrZexRfuQzP0Mbd4EianYP9eLkC//2gztPwCuB6LrWpGhbO1VILLordboGdbgGnKHo3qW0SQkpmrtC6M/ujpI5qWOO9eIYpsSMmDauWlhN1xzLztEZaZugkUzMex5o2g3Dcpv6cFQjbQUiD+KQGMoM5Mj1DxCY3gm2z47lOerf2gxQoJXEzWTAMCnv14QKY+6bTmX/jhdixMNIwcfPFRN8Jwu+xjkbtFZCSka5BLYAodbm8VVA4nkApH0MYOqm76Fns3T6IEvD83evKicEFo4rZs4vCc35RwVgpLMOikM1hHMaGukIIoqlRg0XKknZP8Y5RTFz295IcOFCVj+t56BrYV6+AG22oZt47zscMOchImHBtjNrF02h9/Zmv+r1fLYHx8grwyxU3AkNIWhfMJpKIIxA0Lp9ScWx+IIt0BDXJQ4+THk5mrlpKtEar/A6a9fSGU+VFT0qTtISB/jhSCEKmg/J98mmXaKpGV1IBKpPT+S9IpKV31WYxJCClxN2HPoi+Z0rt7vSV3iUbDg2z54MQ5eob24zgF+IYlsQwdMWG7/lIqS/y1lkpqpqi+K5P54Z+DFNw78+f5Mwzzi1/1qe//MmKz77zWz8FGG3fbodQQsuy+9LENcJ4oRh2xMQzQ6x/cidxw6Cmdia2GcII29jS5Esf+CAdzS3lMkJh2STaaqlbPI265fMQtk5wjE5qxIhGEabN1ie38sLdL6N8RXVHA3axIZoVj5BLF9j5wq59/l6+q+XWSztpz9OuYIpei4mIppLMPOc0knU1uIPF6p68izeSB7e42z4QQo5zSyvfR2VzSGWRrE4WS4MhHLNZ+ropNHWkJnwrKSGf07tVr6DIpQtkhgq4rqerogwJCmqmLkcoA8swKUiTtrrpCCGpbYvrEIihF3Jp6BJYIWD+rMVcesVFNE9LEYrbSCEQqlihUTS+pDKLHgqtZeF7ikji1d987JBJVUOlcWCYkrpJcTLDrnZe+aoYDqk0GLV3rFTto58LNdXjCwNfGHzt97/hX37/W/y8Szyq1wzbctiYqMK0bKZ36Dyvl3I59ngeA57HxnwOKQRO1EJKLZBWIZg3Ac3TOojXpSZ8Lj+UpZDzaVvZMeHztmMyZb7OpXAiOvRhWZLWBU1YC5fipCI0nr1Uh2lDNq1nzscIOexZ3z1a8mwa2ntp6ZLc/RFrbySUCrP8tmuIt42WKEdicRIN1YRTceLT23RyMQaDPdq7JT1oIEE0r68XKSRSgTeSRkrt+UPIYgd2Ua7QKXkoM939GKaBZVpEklGkK3AiR05kVJrjk4EVAk9Vrque605Y9Qfg+y75XJ6IUYWh9m/AHipLP3gZqaXzmXfdedTNbD6s7/1KCIyXV8BIYQS/6Kgu7QSrG5pYsOJUYg2jRkrZ1yEk815/1rEZbJE5p53G6z90MyBID/m0Lb6Olhad9DjQsRonVA2DFrHGJKdd+3paZ1eTqAsTTTRS3TIfie74qq15iWFIrJCuPLBDOoExO1yY0PuiPS/6Ruy5WllXFUs6l150C7WzdGhpxhnXEQnrHV0u4zKwJ03/rrQuNRaCyXNraZ5WhTB0TN/3FbW19VQl951Rn82OVusMDPZrpWEh8Q0LT2gpdteKkM96eNKGyGjVSMywWX32mdx8zpt4w7LVbH5sK3YiSqSpBiNkEZvZgWlbzH3z6TStnEWsuZr577pYV0w4jk7mlQb9e0YQhoG0JJgmdUtn4Ju2XpgmUn0D+rZqfYfsiN6VrrtvI+neYQzbws3tP1laSp3nIgA/4+FnCwghi5o7+0cn+FYaL12PPkCus197FqdMQRTzPWqatarsvm6U0tDniTAEsZSNm/cREuonxTFMbZQM9WZJ1euETdt0ytVEuUKaRE2YyfNqiiEaHcMPx8yi7Id+LFEbpn1BXdFIERQy3eBqkTNZPFelHcMJm1pM7wjiewo372FYEjenw5+lHlQlLyWAm/NIxauJh6oI2VHwfZTQxvRgLk8oXIWbz5WNG9uy+NFv/pPn1j/JOz/wdv7hY58vf6YLjChFY30ztc2xg/SuQaKqmmtu/8iEz0lbC6QdaIcvi5VWhiWoao4SjttMWjaFUz72NlqWTsWqThFvq6N+TitmPIYwLYRtUz29WW8AbIvqaU00L568389ZcvMltCyZQrgmyfx3XlR+3LQs3nDbrbQunMPid55Py+r5YBqo4twldzmsnLKK6QvPKlZxCaQSDI30lisEhZTaFyxEMaw+eu7v/tVzuK7L2ddcxbnveAuRqhjVk5sOan5fCQKQY4QZRdED440L4wqy2YkNPl/54AomrTyNydPPOKzji1THmXnJ4sP6nq+GwHh5BeRGRnT/LBjTCRROefPFRBK66sIquWOLa4ntHJu2AGMJx2I4IRtDjL/ZOFPPxsNACpNQLErbrGoapiQwLYOGaYsIhWqQ4TgobYhIQ1DdHMF0DGpbY1iOwUh/ng1P7mHL893sXN9f9sTEG1tBCfxcGvzRhDqkINncihPRO4REYxOxhhZSDREapyYxLB1aKGmElJBS6IW1uFDnxsSEE5FqHGvU1T1v9sLy3xevms79D/6Bqjnt+FYYL5rEd6KIXBbXV7zsZ3nqhcdZEAqzYuZCLjrrcuxomBltHWz402b6OgcppLMk2mpITmtl6nlzy+894+ozmHLlmQghOPVjb8BIxHV82Lah4CIcm5lvWo1TFdOuetfDUwYv3bOeTX8e32KgdKPb8eQWnvz5C4wMFhC2Tc3CDuLN+0/CE4ZRqlcov5dAaONpf68rpmiV1m/l+xTSw3gjIxQKgJLkhl2tcmpIErX7L8cVAlL1uuNy8/QqrJBWWTUtg2RdBDti0r11CDejz4mxxtXq084hkrBJNUSK1WiCeE0IhGCkN4sY/fm1kaYiCCRe7za8fMnjob+vE27GicXGVXscdgRFhWGdpyOkoHPTIL7ns3vzIIPd2pAu5D3yGY9rL38vc6YuhkQKps7BlybrcjkGPY++/uFyWOmhx/6kk3KVR01TjObm8bvej9/2CaYuqWP+2a371Xc5GFKT63TS7gGYu6qJ6qYohqG9r0IIJs2pxgrpz1/wjnNxJmsxxZlXLsNMRBC2jVVbzeSrViEsG7OullhD8lWNt0TLylmUdG6EkMVkdQg5EXb5/XheActVOKXzzdEyB2W9l2KSK+hmu4WhLNVtTbSvXEzD5Clc9aH3T9iE8bAhYNKKt5d1b6STAMNCjdngbF67DoBCduJrWfk++JJYUxULb7p0wmNOFALj5RVQ+GNnsf5G4EQnds2FIjFmLFlYTIgTE8aWjwXx6hRW1fibTj7VgrQjjPodtOUfSdik6sIIU6JcD9OQKD+LlILmaSlaZlYxeV4Nlq1bvhu2xM37jPRl2fysTlqN1mp9g96tayj0DCLMEEKJ0btP6fOkQJqCUMTAzfu6ksWR49r46FCSNoCUgheefpkZzYuIh6uYVDeT6c2Lysc2NozulKQ0eO7FpyGfA8shee7ZmOedTi4M7/zeF7nzt//Hj37yPQDsuknMOO/1WJEQVnUSpIG0bCKN1cx8wypmXrMKcy/FzNoZ+rOkIVn6vot1/xDbRlg2dksLdiTE4g9dRbylCgyJsEyyg1lGdlVW2ZTmvliWg/I9VD5H9YIO7Pr6AybhCaFTxUUxZq5QOIkQob3aW0xEYWSA9Dodzhrp3Mbm//d9nYgJROtOx3UNzGLFTm3rxLk3JWLVIUIxEyEFdZPiJGu1iF4+5zJjeQOpel2Wu33tECCLCsH6u137xusBHZqaubIRw5Q0tCeonxQnl3EJx+0Kj085QKMErhslmmjXYaTis1KCHT6y16A0tOGSqNEClbmRApZtMNCVwXN93dXcluUbpGXaDA0NIqSk7qxlJC5/PV2uS04p/v0PPy8n0zYk24rnut4xLTpvEjff+EFuffftLJi9SB/TpOUaoknnVef0xCfVEaqOH/C4WFWYyXNriFU7GBN4aWJN1cx5g27yWT1rMpMvX83s6y+kblEHU06fpcNK+1g/XxlKez0th2hLFQJJuj+L7/kYm/L0r3sJa9gguq6Z9Q9sob8ro73JYQcptYe8lAfruy4KqIs3lt89mjo8Rta+EEI3SSxetsjQFLAbKpJzSy0R9pVE6eOhfEkocWwrgY4GR8R42bx5MzfeeCPt7e2Ew2E6Ojr45Cc/ST4/PjFrLGeddRalpnelP+95z3uOxBBfMZ7rMrhhNxE/TINIccqYfIu9mXvRaqQYXayOB6RpQGHiUEXJTbk3005pwPd8/HQGzweVH8aJmFQ1RZk0uwYnYtHQnkRInbhoh4yiO1nSs2NoNAENgTc4QigSp5w8PBalMAyBaZvF+7bEsg2aplYuGp6rymW/XVuGSESqsa0wDam2iuNmTJtd8e85bcv52je/gtHSgqcgXJfinKtO45P/8gmiTUvxit4Oadg4TphkU1KvE4ZEmDqkNudG3dHYju1/Fx+uSXD6P13Paf/wdpzaZFnfJpSIkJrWQmpaM8I0EaZBLu+P8y6Fk6FyhZCwLcK1Carmz2DaeeOTkffGKCYYSyGL65ygpqF5nyJ1ZYQg74UYHilWOrguviehoHMCquJJ0gMuwtRVX+YB8ioa25O0LxwNo2qNEIgm9A3WtLSHwg7ZdCy8mGRUKx6/7uzLiSRHd/6lG6NhSLIjBRRaLG3q4qLoV/m01X/xvRiplpn630oiDUWsKoTlHNm9WuuMFKalw5lSCqqaIliOwcCeDPnibj8Us/VvInVIM5fLsnnrRv1cTRJQZJXiqZ1bMIod6E3TpqNpPiFbC1/aIZNLrj6P6R0zuOn6D/DFT3yDWM3h8yolpjQx750XH9SxoZjFnNNaDnwg0LZyGvVzWstG/vS3nUvTkvZXPM69sZNRpGMSa66mdsk8qknRtyPHwOY+zJ4qVB807aqjrpAgM6xQRSVpMxLW8gXFfBzf9fB9H4kgZB/YA3V4EeX/K2XhqVhFk1WzvAme+J7iuh4IiR09dGXe1xpH5Gpes2YNvu/zrW99ixdeeIGvfOUrfPOb3+RjH/vYAV/7rne9i87OzvKfz3/+8wd8zdGk5xcv6g64QpA0EjTPn37A1xxPxktuOMvQHi0Olu0f1MlfJYTADo8/6U1LIrwRssNZrXRr28xY3lihz9DYntAaGobQfTocA9sx6N0xguUU1T8xULkCscQUEjWLx3mjlCp5HPS/DVMUhTX3mr+izoSQugfMmSvOByAeGTVyZk6fw4//7dcAfOA9Hy0/norWIuubKaSa6B/oY3h4iAdGhhn0fWpMEyEM4vEmwok6WmZWjf52Uu+KDsXFrXfiNsv++k10nDtqdNixMItuuZzqWW26csly2PSwvoFte2obQ3uGipohejEVhkW8o5W2FRMnUO6LUthBIAgbh7KYFb9z0ZgbXr9H2wFIDFvnOEWSB5f4qjV5SuPRImpWSBs9iuK5BTTOWUHrgiVIIXE9d8J8i5LBahiiYuUSQtA4dw4lg1gVMliOhSSB57WAMpmxopGORfXj3vNwEk7YWGGDeE0I05ZUNcYIx20KOVdfF445WkgiBKcuXU0kFOfPzzxefo+ZM2bjARvU+NDP6pWjzUELWd0jy7RMwpEQ6YH9bwwPlQMZ52M5UFn2vmiaP4nEAUKgh4Jhmaz6p3cw5aozmbS8g5SVItfnYmMjhGR4qI+QEyXmJIptSiSRmhjK0PpLuhGiLiBQBQ8zbtG6ZOZhG9/BsPj8SXs94lEYs+n3/X2LXAK4+QJCiXLPphOZI+JHveiii7jootHEqqlTp7J27Vq+8Y1v8MUvfnG/r41EIjQ2Nu73mGOJu2e4mAwo8ZUYYwmPR8rRm8fxgu965D19Mez46VN4wmXGjUXvkSFobRyfPCeEIFfIIpVWw3XCLYRiVoVRpiuEBKmGCKZl0LNzpPi4QfP0c9j13FMMjXQjwxbSNTnl0isB3dhPC53pKhfdGydM/540himJJJwKIwlg8txqdm8eLO9yw8UKgLH9jC446xISCW1oTJ0yquAphEDE4sROm8Mb3/QGTGkxq+0UAHYXXGqq2tlpRKibNbvsWXDTWV1l9ApDf+aE/YRg6iWnkO3uY6RrCAyJV/DYs2mA3Rv6KuLwyIlLRPdFKB7TN7aQiZt1izv9A5+DYsK/CXxfiyx6roeUgliVw7Ql+29Mty/CMatcxivQ43KiJvlMgZBbzZSGObQ0tVUqxIpiLL940zeK50vF+yZjRfVaCZ6PaRv4KokQXqlS/aDm4NUghGDJ+ZORpqRlhs7x6d4+hGEaGIYWWBTFxFBhCJqb2ojHkmzZtrn8Ho7jkCZdNjx39GygpUYbrfW1Y+ZcauO+cWqCXRsHy72iAnT41ne1urRXUIwMFjANi0F3BKl0eEgV8ohwmPiMKcTq43Q9s4Hczj0IFHiKwlCGUDhG64LZB/7Aw0goalFMPdPnfW6AR+/6Py4rtiV56clN7M966ds8iMg5hBJHNsR1PHDUcl4GBgaorj5wn4Uf/OAH1NbWMm/ePG6//XbS6fEKg2PJ5XIMDg5W/DmSCG80GSxSl9hvc6pSyd2RLK87VBSjcvfeQLb8dwA3l6e3t3vca4QUSGkgMJECDDl+obRDJoZlkKgNY4dNUg1hpAGmoxfsmunaQ6VcvyLJeag3y861veXBRVMOdZPiTFtSz9TFdcw+rWmc50oaklMumkysSsfaLzr/Ui466/KKY6a3ziMzlMcteETDo3H1SU064a53oJ+QHcW2Rn+brJslFK5iRClqWqPEqpzyuIRhYFUd3gUhUl/FKR99I0Y0yuCeEfZs6NbJtY5DqY2AEIK577pkwm7Q+8IotqZomzStWO0mWHTp2a9skArt/VEmrucjipL/r4T2RXVMP6WhHAbyfVXuWVXIelQn6/jbD36Oc849m7Y5o2uF5/r4Cga7M4TjFoY1cYWTUlFKW4WSamm8dg6xUGKcAXykMG0DWZwjw5CEIhamrStyKHaaFoYoNoc0GBkZ5mvfGt3Qlbqjl875f/3qHaSSVdRW1/H6111TPq6uLU6qIcKU+bXUNEdJNZz4O+1DQZoG0jTBNEj3ZXS1nRK4Q3l91xOiGLY1aTt7EbOuPZ/JV63UCsCeT6azn3js2BgAqam6okchUMpmbEGiWwz52xFwC+O9bVbEANM/qMaRr3WOivGyfv16vva1r3HTTTft97i3vvWtfP/73+fee+/l9ttv5z/+4z+49tpr9/uaz3zmMySTyfKftra2/R7/alGyqBdQbTD/5tfvt5xQFJOrGuv3dgUeQ3xV9gQppTCKwkhuUaBurGExFkNoVVw7Wo+U5oShsBnLGkjUhmmcmiAUMYkmtddkqDujczeUxM/lAV226hdvhlq0SumwUfEmI6SgsT1ZEXYYi2kbdCypx7Ak0UiE153zes5brdVA3/rWt3D2Wecw0JVh14YBIpFR46WvX5cgf/6f/x6A2oSu3BhK99LaNlqmaBhGOfFRSEmqo4nEzMMXnx+L4Wi39Y5nO7W8u2mCrXMjjLBNVXvduOTg/WGZNgKoa2nGEFogsKr5wN7McnhurM6LKCozI/E8ofVEXmHiq2FIqhpHf4u6trhusikFwtThoKpkNdEqu8LYKPUJStZGaJqWQhrF3JGx7y0T+H4K/EaQulTWiiQJWQ5TT1tYlu4/2kxdXFesPjLIF9sh1E9OYBbF96Q0MI3R33agv7/i9eeeexbf/Nc7+LuPfp7a5tGbaaImzMwVTUhDMnNlE/Gq42eDdLzQfJquPsr0DunzWIElQ2CY5Z5kFD2ckdoEyZYahvsHyW/tJb9zkJrEsdHmSrXoDZYQAl+FGetpqW+N40QE+YzkF9/9zbjXCltBtHBIYb/XKodkvNx2223jEmr3/rNmzZqK1+zYsYOLLrqIa665hne96137ff93v/vdXHjhhcyfP5+3ve1t3HnnnfziF79gw4bxzalK3H777QwMDJT/bNu27VC+0iEj7GKztZhDOLX/TPmSlLRlHD9WcPup88vS5jCaF+HlXZx4iDlnrZzwdW1LVyKUwfQVV9A2a/6Ex9S0xEjVR4gkHDqWNDBtST1SCrq2DWmrD4k36DPUH6VnxzCbnu4mn3XxCj6bn+smly0gD5BTOpZIwiFVFy6W00JdawoAU9h4Bb/YjJIK4yVkR1mz7iV2btRGTCKid/iRUILNPVrx9qwlZ1Tk2cx621k0rV5I28rR8NPhZOq584qN5wwMx6Ru5bxi/yMtx32olWqGbQECv+AeUk8tw5DlCqUyShTL4wXZjEGyPkxV8+GpEEk1RFh+2VRS9RGGe3IIqTuGx1KVC28s5egqntoQQgiWXjSFljGy6gCRRAuJxhmgtOGGhEkLzqdqysyyF+RYIIRg6eum0DIjRbo/h1KKSXOrmXZKQ/lcn9Wqw5a//+NdvLj2OQBMw+LCMy/VYddpKUzbGCew92qrik50onXJojCjzpCWngBl6JCsaeq2BGOM5JKnfPCZnajhAq0LD5zPeCQoKe1O1MLIMCWy5C0ek8j71AsP0t3XqZu3Hkc5lkeSQzr7P/KRj/DSSy/t98/UqaN18Dt37uTss8/mtNNO44477jjkwa1YsQLQnpt94TgOiUSi4s+Rwi0UIOsTq08RCR94ARfHYSV6TUsTue4MQ8/vwAhb+MWMezwfISXxuolDe22zVlLXchHRmlqsSHi/SWMlwgkbhNboqGpZBNJCeVr/QimFtIQuiTYEbs6jZ+twOU/oYLAcg9mnNxeb5EmG8/0AxCPVdG8fQaEQShCyw8TDVeQKGXzf448P/H7cexnSZPfubtLKp7GtDSc0akXVzmimfk7rQY/rUKlbOl27sA2JFYsw5+qV2FUp/eQrWIhKHczd0m97kO8hpECWOxiVH9UaMU6SxunTMW15WHf5hikJx22UD1bIwA6Z4yqvnKhJKGKWc5DskDkubOQVPFKNpZuNTU1rFNPSvac899j2F3PCJtGkFukb6tFtGhrbk0RiNgvnLKF/pJvBoUFe3rCGKQ06sduUFtGEzh+raowSr3YO6doIADMaKoaHDBBQtzmM60KyvR5hmjSceQqTV48m0ouiwm4uk8YOhWieP+uYjDtaN5VS5dzemwnP98Y1+wTY8FAvD/36CXzPO65yLI8kh7Slq6uro67u4FxpO3bs4Oyzz2bp0qX827/92yu68J5++mkAmpqOnKrhofCH7/wnQkhWnHMOU1YsPuDxJS244+lUymWyKBSDL2otD3cgR27PAMoW5dyOiZASpq86DcM20LqeB0YIQbzaITdSIJZspn7yVLp6d+hmgTkPAaT7c8SqHe0i9XzGKlwe1GcUOztbtuTyC9/Ans4ulq84hcE9eTxXYUiBKkgm188iV8ggpcGjjz9Yfv2ugY0sW7qS+uhk/PgMHrznSf7p2ktom1Ozn089vEgpmXzOAjb/7kmkVQwhSJ1wG206cJ7Y3hiGweSO6dROayG1cwtd23Ye9Gvjje0oU+eNlcTtQKAwUb5BKHr4vYjKV/i+TzgWwsv741rOxatDtC+s3e97WI5JOJrEshwKnqJtZhV9nV26MvAYhYwqEDph168IyQmWnbqEPz//GM8+9xRf/Jd/Yt7kU/F9D8MwqWmMk6zTOTDTT2mgsI/O7QETUz1vijZeDZNqkaJTZHCsEJGOKTiTWmlePJlw1egmtJQCkE2nqW6acszyRibNruKZUpY5MPYO0rlpoBzqr9iU+KCkAgXqKOV3HWuOSLXRjh07OOuss5g8eTJf/OIX6eoabUBXqiTasWMH5557LnfeeSfLly9nw4YN/PCHP+Tiiy+mpqaGZ599lltvvZXVq1ezYMGCIzHMQ8bPuwgg2XZwxpQQoyWhxwu+q7+Dj4/ydDu73feupf5Cvcsw9lHVIqQkM5imqy9HOG4ftEOgti1O945hRvqz5Ie78YaHkNW6O6xhSgxLEYpYiBgM9eZwwoeeDBpN2HQbgpqqGv7f97/GSH+ep+7eQmYgR6IuTGNVE031Laxafi4//s2ddG/X6qW5QoZHHnyUjjmTGe7LEo7ZuJ6L7VRWUh0NrGgIDImZ1MJv1bNaKfTGmXfDhQd45cSc977rAFj3zHOEBg++TFoYZlndN7d7EKV0novAxM17oz2iDiPZkQKep0g2RJg6v7byBo82gqub9y+IV1LhLdbbYxgm4biFaRuEIsdeIFIIMC2B8kV5fsMJi5b2Ogxpct1731A+1vULJCM1pKpGQ2PhuM2Jr9xxeJFSEq6vYnhbnqhpM8ltwZACt6eHOdeeM+74Uggd3z9m+S4AiTqdfG2aLgUq7x8DvSPEa3XTUUGlITzcn6VreHfgeXk13H333axfv57169fT2lrpbi9duIVCgbVr15ariWzb5ve//z3//M//zMjICG1tbVx99dX8zd/8zZEY4iuitr2JPTu3YVkHZ5GL49DNmxnSJcwCAd4Ym17LRuzbeBGCwZ4chZyLFTIP+gLR8gmSPZuHKGQL+J5EGlDIeFgp3WV6xopGQlGTx36zeVxTwIOheUaK3VsHsUM6kTiStEnWau2L7IhLrCrGbe//e3zP58e/ubO8SH31q/9MxxxdGh4rhkKMg/xtDzctqxfQs6mbUJMuh515xcS5R4dKor6Knl2dB328NIxyf6rhF4YBE4HC95LFqrPDvzAKKTANiZf3EFJgvMLFd6y9KYr9kKobo+PyY44FpWT0RG24nIQ+bWkDO4a0UdbeMIcdPVrrx/Ncwk4MxwzMlVeNEDgxByUMlK+IVoVJzt5H4n1JmdowaVlwZPLbDhYjMQUnosiJwUojBca49PUJv+GFNShfgWeydssaHHXsz/ejwRExXq6//nquv/76/R4zZcqUihtVW1sb991335EYzmHDdByEFHqXfBBIWZQnfwU35CNJSfXXsAR+XuL7Pkr5KCGQ+0gOlVLvai3HpKRQfTBkhl0tXGkIMBxQIwhhIA3dH0cautqkJOCVGTp0sS3dtLFGJ+mir+lc1kNIXcHSt3sEWUxGHcr0EQ9X0Tu0iwuuWHXIn3UkWfAX43eDr5YVl11CMpw66OMN0yJfnEfl+joDxnBAOUjJK/KMHYjGqUk6Nwy8qjzDhvYEA3vSuhTZ1+HP6qYIznHgdQFI1IapaoxU9FeSUrBs+TL6hvdQFatnRosORecKGRwrzJIVC/f1dgGHQLSphvjkerbe+xxG2KFl6cTGSym1wbItWo6yvsveTFv9RlpnpLjnSy/h+dm9ni2FlPQFs/Xl3eRzBUAg+8OofOB5CdgL5XmAwAodnPFiWhYCyfgo/rHDcmxAkE+ncXNeUUJeFPMb2LeEfPFaMSydG3MoO3BZ1LUwLQOBRKENi0lzqtn0XLdWjQSSdeFXnJRYMyasIITQcuxaTZDMYAEnapKoCfOu97+dH337N4Tt2PGRC3EUmHXe6Qd9bKLeIb25GBoyin25RBRXFfsZte0/fPNKcKJmWX33lWJaxVYIQoGUmLbF5Hn7z5M5mjhhk9mnNY8LR8ZiMVqnNDDSra+BM5adw/XvuI6u7QMkU4d/rk9KDKkr8IraLvui5CkXQhxznZRw1CrveZXYayzFU6jUB8wfU3UkXBtTnvhl0hA0ZjwkYrXVWKFDz/qXx1EMct4q3SZdeT7SLul6+AcO1whd3SOlREhx0Gql9ZPj2rtiCJAW+pRTuveRbVSI5LXOqtKdgw8DQoJZVGKVhsCyDZyoxV/f9leA7v9zPLVtOF6IJBwqs1oEnpcCtIryqzEw9oUUOhz1aq4T09a6PEJANDXtOLriRtnX+fb7P9zNu657HwtnL+Gay99GNBYhFku8Yj2dgFGqZzRhhMO0rJqvmx4eUJeL46LUePZpTeWNgvIV658tFhmI0VzK0kmezbilJ7BtgV1zcL2mXusEV8chMGflSqxDdckd++ugAu0NAlCEYzGyfWnc4Uzx2X0PNjtcwM15hGI22fTBVRsBWqjOKN6cQgsR6o9I08M09a2qujla9uIk6yIk6w6PUmh1Y5Su/CCNU1NsfaFHJ0zaBqZp8qG/eRdb1u46LJ9zoqHVebUha0RiuH0JhBlHGlpT50hoiwgpWHjeJArZgz+v9iZeHWLReZPIDlxIbnD4uLgBHSyxRITVZ65i4ZylhOMWNS1xClkP0zkE0aOACZl68XI818MwDaIttVqpbh8YpXj4cRDmHxU/VSg/zzN/vJ/eXoqK1xBrSOIO9pEdSePmtZdZIvEKCusgZDxOBALj5RCZvnrFIR0vxvz3eKF5+iS6u/do1VsAJeh9bBMH0jMr5DyiKUEkcWh5D3ZYV6qEotWAoODlMC2DmtYYDVMSR6TnjGHqfBonbGKYAgREi/1ybnznOw77550oSMssd7FVSoHdSCTSRrS6npYZVUdMZj8cswi/yv48oahFXXszA3syx9kVd2Bmrmjgz7/bSlVDlKaOJPWT44EI3WHCMLUR2LxsOr3r9i0bUNLlUu7hr6h7RRQVgBUhcqqdjc/vBEwUPgsvvJgH//37PHbv4wwPpkEYGI5C+QpjH6rkJxonx7c81hxnK6kVCZc7OCvAEJL0mi6sxL7bvwsB0pJaKOwQdyaWYyANSTRZhxVpwiz2RpKHEH46VBS6P1HD1ASWI7FC5jiF0oDxCDlaR+YPD1GdWkq4bjKWbR5HmVv7x4689jwW4ZjNisvayx2aA8Pl8NO4fCaNyw+mS/TxsWALdPWfUgKFg0I3J0WJooo29A8MAxCvTZAZHgHfw3ROjtt6cIUcYWI1yeNOGVOPR9+K6pqaKAzqCh8/t38RLMs2sByDeO2h5aXUtcW18SMFs8+4kmkrTi0nAB8pqhojOBEtC183KUGqPrLPPkkBo+jFUp8b7lCOnJfBtExMx6CQeeVhnaOFUlDTFDviHaSPBKZtBHlYx5DRCuTjY70WUlDVsQIvXxj7KEKatC1ciZCSQjHiL0Op4rXLPitGTzROjm95DLnyrz4woZzzsUSYBtm+DNE6m1XXX81PP/0v+MpH7EfBM1YVomkqtC+uK4rbHTx1k+J0bR1kuC+H7ynssIMQ+SO6v6lrS1Db+lrxFRw/GIZAqWJWlFKA1CXnpsR/DUxny8wqvEKgRBtw6JQSYY8n+9GOjFac+Z4gXhNl/mWXAbrrdHYkp58UAsMy8HPqoKthX+sExssR5lCb6h0NLMfG9z08VdBXarF/xv6E5xqnJvHa4rrB3SF65Q1TMmluDS892Inn+cSqHeyIccR3x8Eu9tAxDBPK9UYCIRVCFDs/Hx8b0v1S1XB4Er4DTj5KOYDH17pRuugEWqPCZMqiZRMcp3Dz4BYkyYZjpw58NHkNLEcBh5tIVbJssOjqkqKy5AHuTqV4/CshWRchXhtiZCCPYUkmz609zhaJACiFFPXvYjgRwpaDkLppYqImUHwNOHEpq4sfV+tSaadYjLOPHVrZEyrAV8iiRtdxkm58xAmMl5MQJxIpd1AtVxwhik0XjxyWrZV1j6elIaASachyQrY0DKK19bpthCUr1GEDAk40SgKd8ngyXsraM8X/ib2LKkYNGmmaIAS71244asM7lgTGy0mIHCMtrXwfiq3Xq5uPbPduoygY578WkidOUqRhIJRC+T5arFZiO4GgX8DJxPFzrjthh3LICPYhsid0qbRpAoJodfIojvDYERgvJyF+sRUAQCgSLcd5F55+6hH93EjcxrKMwHg5jpGGRCHY8d8/p+C6IKF2cpxE4HUJOAmQ0jiuPC9N02IVtpSQ+9ZCssPF5rLm4e8/djwSGC8nMUIKbMdh0sJZCASh+JHtpVLTGsOwJemBQ2++GHB0EIYBCtyuPlA6DyoSt5l2SsOxHlpAwBHHsqzjKufFDlVqU+27xkFhR8I4Ucmiiy874uM6HgiMl5MQ3WByFK8oy36kK6PskMmM5Y2k6oOKkOMV3T0cKPiAoqrRoWnayeGGDgjQIfTjx3gZpeit3ntopX+7OZa96S2EUo2jiccnOCfHtwyoYKR/CCFkRWm0EBJxFFQ9a1uCTrnHM6Zl6YRdJZAiR31bBNN67SnWBgS8Umzn+AmRlqr/BAKFAjnGEyMkKJ2/KIQgUd/MpR/7xLEa6lEn8LycjChfGy5F26V6SuNxlKIWcCyxw1GU7+nF0vfK5ZcBAScDUoBzHDU2lAboZidgh3xC1VXl5xJ1NYyWIR2DwR1jAuPlJKQk/17SdVl20YVMnzWfeG3NsRxWwHGAEw6D6+P7AiFMzPC++10FBJyIyOPIErBCJW0lhTQNVr/jhvJzi68czW2RxsmRpDuWwHg5CXGiEQQQjYzmMqy+6U04kSAX5WQnFIkilMJXAoFBvPbkUOsMCChxPNVCxuomYdcvBgzdAmCMJ7SufUyTSefkC8cHxstJyPwzVwMQtgLF1IBKpNQeFy3/c3xVXgQEHHGOw/O9deE5mOH4uERiw9L5L7rp7cl3Kz/5vnEAhmFgSeukjJMG7B8hBYZt43ugW78FBAQcK6yQFoiUwkXsdbs2HQeEoGpSB8uvueLYDPAYEhgvJymGbRxf/tGA4wY7HEaoeEVSd0DAyYJxHHkxpBSsuHwqplVATSDyEkqFwXKoam49BqM7tgSl0icpV9z+AXLDI8d6GAHHIXYsBkYjhh0kcAecXMw+YykD2/uO9TAqEEIgTYHnjn/uik994egP6DghMF5OUiKJOJFE/FgPI+A4xInHMZ1qmtpXHqeCXQEBR4ZFF19wrIcwIUIAarxHyDiJpQyOH/9YQEDAcUE0mUJi4kSix2P+YkDASYcQEkQQ5x9LYLwEBARUYEdiSMMiWuVgWMESERBwrFG+j3KHjvUwjiuCsFFAQEAFda3TSVWP4Ll+EDYKCDgOcBIpXM8+8IEnEcG2KiAgoALLNog3NGGHT954ekDA8cS8y2+lZu7Fx3oYxxWB8RIQEFCBYUqErGzcGRAQcOwQAuomzzrWwziuCIyXgICACqQlsUOSUOzk65cSEHBcIkWQPL8XgfESEBBQgWkKoskQM5Y3HuuhBAQEoJtFCiOwXsYSGC8BAQEVCClwoiaGGSwPAQHHA1bIwDAD42UsQbVRQEBABeGYTbI2aNoZEHC8UN0cJVkfXJNjOWJbqylTpiCEqPjz2c9+dr+vyWaz3HLLLdTU1BCLxbj66qvZvXv3kRpiQEDABFiOQdO01LEeRkBAQBEhBKYVVP+N5Yj6hf/+7/+ezs7O8p/3v//9+z3+1ltv5de//jU/+clPuO+++9i5cydXXXXVkRxiQEBAQEBAwGuMIxo2isfjNDYeXNLfwMAA3/nOd/jhD3/IOeecA8C//du/MXv2bB555BFWrlx5JIcaEBAQEBAQ8BrhiHpePvvZz1JTU8PixYv5whe+gOtO0BazyJNPPkmhUOC8884rPzZr1iwmTZrEww8/vM/X5XI5BgcHK/4EBAQEBAQEnLgcMc/LBz7wAZYsWUJ1dTUPPfQQt99+O52dnXz5y1+e8Phdu3Zh2zapVKri8YaGBnbt2rXPz/nMZz7Dpz71qcM59ICAgICAgIDjmEPyvNx2223jknD3/rNmzRoAPvzhD3PWWWexYMEC3vOe9/ClL32Jr33ta+RyucP6BW6//XYGBgbKf7Zt23ZY3z8gICAgICDg+OKQPC8f+chHuP766/d7zNSpUyd8fMWKFbiuy+bNm5k5c+a45xsbG8nn8/T391d4X3bv3r3fvBnHcXAc56DGHxAQEBAQEPDa55CMl7q6Ourq6l7RBz399NNIKamvr5/w+aVLl2JZFvfccw9XX301AGvXrmXr1q2ceuqpr+gzAwICAgICAk48jkjOy8MPP8yjjz7K2WefTTwe5+GHH+bWW2/l2muvpaqqCoAdO3Zw7rnncuedd7J8+XKSySQ33ngjH/7wh6muriaRSPD+97+fU089Nag0CggICAgICChzRIwXx3H40Y9+xN/93d+Ry+Vob2/n1ltv5cMf/nD5mEKhwNq1a0mn0+XHvvKVryCl5OqrryaXy3HhhRfy9a9//UgMMSAgICAgIOA1ilBKqWM9iMPJ4OAgyWSSgYEBEonEsR5OQEBAQEBAwEFwKPfvoPNaQEBAQEBAwGuKwHgJCAgICAgIeE1xwnWVLkXBAqXdgICAgICA1w6l+/bBZLOccMbL0NAQAG1tbcd4JAEBAQEBAQGHytDQEMlkcr/HnHAJu77vs3PnTuLxOEKIYz2cI8Lg4CBtbW1s27btpE9KDuaikmA+Kgnmo5JgPioJ5qOSYz0fSimGhoZobm5Gyv1ntZxwnhcpJa2trcd6GEeFRCIRXHBFgrmoJJiPSoL5qCSYj0qC+ajkWM7HgTwuJYKE3YCAgICAgIDXFIHxEhAQEBAQEPCaIjBeXoM4jsMnP/nJoCElwVzsTTAflQTzUUkwH5UE81HJa2k+TriE3YCAgICAgIATm8DzEhAQEBAQEPCaIjBeAgICAgICAl5TBMZLQEBAQEBAwGuKwHgJCAgICAgIeE0RGC8BAQEBAQEBrykC4+U4I5PJHOshHFds2bKF7du3A+B53jEezbGlq6uL/v5+fN8HKP//ZCWbzR7rIRxXrFu3ji9+8YusXbv2WA/luCBYSys50dbSwHg5TigUCrz3ve/lqquu4rrrruORRx45qM6aJzL//d//TXt7O+973/sAMAzjGI/o2FAoFHjPe97D6tWrufjii7nhhhvwPO+AvT9OVPL5PLfeeitve9vbuO6663jggQeO9ZCOKZ7nccsttzB//nxeeuklurq6jvWQjinBWjqeE3EtPTlXv+OMXbt2sWLFCp599lkuu+wynn32Wd7znvfwhS98ATh5d9iPPfYYK1asYNu2bfzsZz8DTowdw6Gwfv16li1bxtq1a/n617/OxRdfzMMPP1w+N042fvnLXzJt2jSefvppzjrrLJ5++mluv/328vlxMvLlL3+ZZ555hvvuu4/vfOc7nHHGGQAn5Q07WEsn5kRcSwPj5TjgwQcfJJ/P8+Mf/5ibb76Z++67jyuvvJJPfvKTvPDCC0gpT6qFqLTADAwMsGzZMhYvXsxXv/pVCoUChmGcVHPx29/+llgsxq9//WvOPvts/uqv/orJkycfdPOyE4kNGzbw/e9/nxtuuIF7772X97///dxzzz3Yts26deuO9fCOOkopRkZG+MUvfsH111/PihUrePjhh7njjjv405/+xMjIyLEe4lEnWEsrOZHX0sB4OYaUTqyuri76+vpoaWkBdFfNm266iTPOOIObbroJACHEMRvn0aa0wKxfv55rr72WK6+8kp6eHr7xjW8A2i18olM6N7q7u9m1axexWAyA3bt309fXRzQaZc2aNcdyiEeN0gKbz+dZsGABf/EXfwHonWNdXR2GYbBhw4ZjOcRjghCCnTt3snHjRi666CI+8pGPcPXVV/O9732Pq6++miuvvJLBwcFjPcyjQrCWTsyJvJYGxstR5o477uCHP/wh69evL+csGIZBY2NjRey+sbGR2267jccff5y7774bODHdwGPno4TneQghMAyDXC7HypUrufLKK/nOd77Dtddey5e//GVyudwxHPWRoTQX69atK58bixYtIpPJcNFFF3HttdfS0dGB4zj88z//M+eccw7f/e53gRPz3HjssceA0RvT7Nmz+cQnPkF7ezugr5t8Pk86nebUU089ZuM8Wuw9HwCtra3U1NTwN3/zN2zZsoV77rmHX/3qV9xzzz08+eST/OM//uMJeW4A/PSnP+X3v/89nZ2dwVpK5XyUOKHXUhVwVLjrrrtUXV2dWrRokZo8ebKaPn26+tKXvqSUUurZZ59Vs2fPVp/97GdVLpcrv2bXrl3q8ssvV29/+9uP1bCPGBPNx1e+8pXy8z09PaqxsbE8H7feeqsKhUIqHA6rJ5544hiN+siwv3PD8zz15JNPqjvvvFNNnz5d/fSnP1VKKdXX16f+6Z/+SdXU1KhCoXAsh3/Y+cUvfqGam5tVTU2N2rRpk1JKKdd1y8/7vl/++9DQkJo+fbp65JFHjvYwjxr7m4/e3l514403qng8rq666irleZ7yPE8ppdS3v/1tlUwmVTqdPlZDPyLceeedqr6+Xi1fvlzV1dWp008/Xf3sZz9TSin15z//Wc2ZM+ekWksnmo9f/OIX5ed7e3tPyLU08LwcJb797W9z5ZVX8tRTT3H33Xdz00038Zd/+Zf8+te/Zv78+Zx11ln87Gc/46GHHiq/pqGhAcuyTsiqkonm48Mf/jD/8z//g+d5uK7LqlWr+PnPf86CBQv4j//4D8477zwmT55c3nm+1hPOSuzr3PjNb34DwJIlS+jr66Oqqoqrr74apRSpVIpVq1aRzWbLO/ITgR/84Ad8+tOfZvXq1cyePZvPfvazQGV1xFi3/4MPPsjw8DAzZswoP7Z79+6jN+AjzIHmo6qqinPPPRfbtssVaKroVZg3bx62bfPSSy8ds/EfTlzX5atf/Sqf+cxn+PSnP80DDzzAL3/5Szo6Ovj2t79NJpNh8eLFnHHGGfz85z8/4dfS/c3HHXfcUfaoZDIZzjzzzBNvLT3W1tOJTGmHuHHjRpVKpdRdd91V8fxb3/pWNX36dNXV1aV2796tFi9erN7ylreo7du3l4+5+OKL1a233npUx32kOJj5mDVrltqxY4favn27EkIoy7LULbfcovr6+tQLL7ygLrroInXGGWcci+EfVg5mLmbPnq3Wr1+vlFLqc5/7nLr00kvVwMBA+ZhPf/rTavXq1WpkZOToDfwIUfIkPPLII+q2225TW7ZsUZ///OfVzJkz1b333ltxzFhuuukm9Za3vEUppXfdZ511lrryyivL3ofXKgczH6Wd9PDwsPrQhz6khBDq7rvvLr/HF7/4RXX++ee/5ueiRH9/v/r4xz+uPvvZz1Z8p89+9rPq9NNPV/39/UoppTo7O0/4tVSpA8/H0NCQUkqprVu3npBraWC8HAFefvnlCtd2JpNR9fX16o477lBKjS46/f39KhKJqM985jNKKaX+67/+S61atUpNnjxZfelLX1Jvf/vbVX19vXrggQeO/pc4jBzKfITD4fJ8/PCHP1SPPvpoxXt985vfVF/4wheU7/sV7/la4VDPjc997nNKKaW+973vqWXLlqnzzz9f/fSnP1U33HCDqqurU9/85jeP/pc4jOw9H0qpchjs+eefV5dffrm6+OKLy8+NPdbzPPX6179efeELX1Dve9/7lJRSXXfddSqfzx+dwR8BDnU+SkbOxo0b1XXXXaei0ai66qqr1Fve8hZVXV2tvvWtbyml1GvyWlFq/Hw89dRT5e9cumH/4Ac/UIsWLaoIE/3kJz85KdbSg52PH/3oRyfcWhoYL4eR//qv/1JTpkxRM2fOVMuXL1ff+c53lFJ6Z3TdddepCy+8sHxClRbY22+/XU2aNKn8Htu3b1fvfve71RVXXKEuvvhitWbNmqP/RQ4Th2M+SpQurol2368FDsdcfP/731erV69WZ5xxxgl7bihVeaP97ne/q+bMmaO++93vKqVUxQ6ztKMUQqjTTjtNvfjii0fvCxxmXul87J3v9M1vflN99KMfVe94xztOqPPj29/+dsXzY8+Dt771rer6669XSqmKG/aJvJYe7HxMZMi/1tfSEoHxcpj4v//7PzVlyhT1r//6r+quu+5SH/7wh5VpmuUd9b//+7+rxYsXl3dCpUXn8ccfV3V1derxxx+veL9MJnN0v8Bh5tXOx2s5kWxvXu1cjN0xFQoFtWvXrqP/JQ4jE82HZVnqjjvuKCeXluZg+/bt6sYbb1TLli0ru8FLN6jnn39evelNb6oIlbwWebXz8Vr2NE3E/uajtC6WvAWZTEYtWLBA/cd//Mc+3+9EXEtfyXy81o2VvQmMl1dJyYr91Kc+pZYuXVqxkNx8881q8eLF6ne/+50aHBxUb3vb29Rpp51WrhhQSlvUzc3NauPGjUd76EeEYD5GCeaikgPNxymnnKJ+/vOfj3vdb37zG3XKKaeoT37yk+qZZ55Rl1xyidq6detRG/eR4nDNx6WXXnrSzseOHTvUlClT1Msvv6yU0mGVEyWv5f9v735Cmv7jOI6/5jbU3DARtonzMFw5WjFyYTsEaSJG7RBYWSnNgwVR4SE6dOhQGHVJoUuwcI7+0SGKLjVKQkgWFVEWZULSHJRrhw6VVmzz8zv087s+RL/ftP329dvv9YAdnNv8fJ9EvPl+P9vY45/9OVuvVTL3zoeXL1+itrYWRqNR+eCf3t5elJWV4eLFi9Dr9di/fz+KioqwY8cORKNRxONx3Lx5E16vFzabTc3DyBv2yGIL2b/1KCkpwY0bN5BIJABk3wHR1NSEhoYGHD9+HF6vF+l0GhaLRZ2DyKN89UilUv/LHgAwNDSEmpoaVFVVoaenBytWrMDk5CRSqZTmP8uFPf6F2tOT1ty+fVscPHhQ9Pf3S6fzg8GgMJvNyqm5uSk5GAwKp9MpRkZGhBBCvHr1Sni9XlFXVyesVqtYvXq1pq/FskcWW8gW0mP58uVieHhYeeznz59Ff3+/0Ov1orGxUTx79qywB5FH7CFbaI+5d1vNzs6Kbdu2iYqKClFZWSncbvdPl9+1hD3mh8NLjt69eyf8fr+wWCyio6NDrFq1SpSXlyv/yMbHx0V1dbU4evSoEELeOGaz2URfX5/y86dPn8SbN280/cFa7JHFFrLf7fHjhxW+ePFCrF27Vpw/f76gx5BP7CHLV4/p6Wnh9/uF3W4XV65cKfhx5At7LAyHlxxMT0+LQCAg2tvbpf0HDQ0Nyq7ujx8/it7eXlFaWqpcf567Zrl+/XrR3d2tPE+Lb0v7EXtksYUs3z20jj1k+e6h9Y397LFw3POSgyVLlqC4uBhdXV1wOBxIp9MAgE2bNmFsbAxCCJjNZuzatQv19fXYvn07JicnodPpEI/HkUwmsWXLFuX1tP7FYOyRxRayfPfQOvaQ5buH1+tV6Ujygz0WTifEn7aL57+RSqVgNBoBfP9itKKiInR0dKCsrAzBYFB53Nu3b9HY2Ih0Oo01a9YgGo3C5XLh8uXLsFqtai0/79gjiy1k7CFjDxl7yNhjYTi8/IZ169Zhz549CAQCyndEFBUV4fXr13j8+DEePHgAj8eDQCCg8koLgz2y2ELGHjL2kLGHjD1yoNLlKs2bmJgQVqtVusb440aq/xv2yGILGXvI2EPGHjL2yA33vMyT+PtE1cjICEwmk3KN8dixY+jp6UEymVRzeQXHHllsIWMPGXvI2EPGHvNjUHsBWjO3ofLhw4doa2vDnTt3sHfvXszMzODChQt/xIdFzQd7ZLGFjD1k7CFjDxl7zJOKZ30068uXL8LpdAqdTieKi4vFqVOn1F6Sqtgjiy1k7CFjDxl7yNgjd9ywu0AtLS1YtmwZ+vr6UFJSovZyVMceWWwhYw8Ze8jYQ8YeueHwskCZTAZ6vV7tZSwa7JHFFjL2kLGHjD1k7JEbDi9ERESkKXy3EREREWkKhxciIiLSFA4vREREpCkcXoiIiEhTOLwQERGRpnB4ISIiIk3h8EJERESawuGFiAqqq6sLOp0OOp0ORqMRVqsVLS0tCIVCmJ2d/enxra2t0Ov1ePToEQAgFospz//VLRwOY3h4+Je/TyQShT5sIsojDi9EVHAbN27E1NQUYrEYbt26haamJvT09MDv9yOdTiuPi8fjiEajOHDgAEKhEACgpqYGU1NTyu3QoUNwu93Sfe3t7cprjI+PS7+bmpril9wRaRy/VZqICq64uBg2mw0AUF1djfr6evh8PjQ3NyMcDqO7uxsAMDg4CL/fj3379sHn86Gvrw+lpaXKcwHAZDLBYDBI9/3IYrFg6dKl//kxEVHh8MwLES0KGzZsgMfjwbVr1wAAQggMDg6is7MTLpcLTqcTV69eVXmVRLQYcHghokXD5XIhFosBAIaGhjAzM4PW1lYAQGdnJwYGBub9mna7HSaTSbm53e58LpmIVMDLRkS0aAghoNPpAAChUAjt7e0wGL7/N7Vz504cPnwYExMTqK2tzfk17927B7PZrPxsNBrzu2giKjgOL0S0aIyNjcHhcODDhw+4fv06UqkUzp49q/w+k8kgFArhxIkTOb+mw+HgnheiPwwvGxHRonD37l08f/4cbW1tuHTpEux2O0ZHR/H06VPldvr0aYTDYWQyGbWXS0Qq4pkXIiq4b9++IZFIIJPJ4P3794hEIjh58iT8fj92794Nr9eLrVu3YuXKldLzampqcOTIEUQiEWzevDmnv5VMJvH161fpvsrKSl4+ItIwDi9EVHCRSARVVVUwGAyoqKiAx+PBmTNnEAgE8OTJE4yOjuLcuXM/Pa+8vBzNzc0YGBjIeXipq6v76b779+/D5/P99nEQkTp0Qgih9iKIiIiIcsU9L0RERKQpHF6IiIhIUzi8EBERkaZweCEiIiJN4fBCREREmsLhhYiIiDSFwwsRERFpCocXIiIi0hQOL0RERKQpHF6IiIhIUzi8EBERkaZweCEiIiJN+Qsp7k6KKqZFKAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "stacked_plot(dfn)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's compare solutions from two different packages" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Jeremy\\miniforge3\\envs\\finm\\Lib\\site-packages\\numpy\\core\\fromnumeric.py:3643: FutureWarning: The behavior of DataFrame.std with axis=None is deprecated, in a future version this will reduce over both axes and return a scalar. To retain the old behavior, pass axis=0 (or do not pass axis)\n", + " return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)\n" + ] + }, + { + "data": { + "text/plain": [ + "4.875717064874378e-16" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def root_mean_squared_error(sa, sb):\n", + " return np.sqrt(np.mean((sa - sb)**2))\n", + "\n", + "pc1_sk, loadings_sk = pca(dfn, module='scikitlearn')\n", + "pc1_sm, loadings_sm = pca(dfn, module='statsmodels')\n", + "root_mean_squared_error(pc1_sm, pc1_sk)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Factor Analysis of a Panel of Stock Returns?" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[ 0%% ]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************67%%****** ] 2 of 3 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*********************100%%**********************] 3 of 3 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "sample = yf.download(\"SPY AAPL MSFT\", start=\"2017-01-01\", end=\"2017-04-30\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PriceAdj CloseCloseHighLowOpenVolume
TickerAAPLMSFTSPYAAPLMSFTSPYAAPLMSFTSPYAAPLMSFTSPYAAPLMSFTSPYAAPLMSFTSPY
Date
2017-01-0326.95271556.930584198.56002829.03750062.580002225.24000529.08250062.840000225.83000228.69000162.130001223.88000528.95000162.790001225.0399931151276002069410091366500
2017-01-0426.92254356.675854199.74128729.00499962.299999226.58000229.12750162.750000226.75000028.93750062.119999225.61000128.96250062.480000225.619995844724002134000078744400
2017-01-0527.05945856.675854199.58262629.15250062.299999226.39999429.21500062.660000226.58000228.95249962.029999225.47999628.98000062.189999226.270004887744002487600078379000
2017-01-0627.36112057.167107200.29669229.47750162.840000227.21000729.54000163.150002227.75000029.11750062.040001225.89999429.19500062.299999226.5299991270076001992290071559900
2017-01-0927.61173656.985157199.63552929.74749962.639999226.46000729.85750063.080002227.07000729.48500162.540001226.41999829.48749962.759998226.9100041342476002038270046939700
.........................................................
2017-04-2433.47629561.806141209.98651135.91000067.529999237.16999835.98749967.660004237.41000435.79499867.099998234.55999835.87500067.480003237.1799936853720029770000119209900
2017-04-2533.68372062.163094211.20831336.13250067.919998238.55000336.22499868.040001238.94999735.96749967.599998237.80999835.97750167.900002237.910004754860003024270076698300
2017-04-2633.48561562.080711211.07551635.91999867.830002238.39999436.15000268.309998239.52999935.84500167.620003238.35000636.11750068.080002238.509995801648002619080084702500
2017-04-2733.51125362.483433211.25260935.94749868.269997238.60000636.04000168.379997238.94999735.82749967.580002237.97999635.98000068.150002238.770004569852003497100057410300
2017-04-2833.47862262.657310210.79219135.91249868.459999238.08000236.07500169.139999238.92999335.81750167.690002237.92999336.02249968.910004238.899994834416003954880063532800
\n", + "

81 rows × 18 columns

\n", + "
" + ], + "text/plain": [ + "Price Adj Close Close \\\n", + "Ticker AAPL MSFT SPY AAPL MSFT \n", + "Date \n", + "2017-01-03 26.952715 56.930584 198.560028 29.037500 62.580002 \n", + "2017-01-04 26.922543 56.675854 199.741287 29.004999 62.299999 \n", + "2017-01-05 27.059458 56.675854 199.582626 29.152500 62.299999 \n", + "2017-01-06 27.361120 57.167107 200.296692 29.477501 62.840000 \n", + "2017-01-09 27.611736 56.985157 199.635529 29.747499 62.639999 \n", + "... ... ... ... ... ... \n", + "2017-04-24 33.476295 61.806141 209.986511 35.910000 67.529999 \n", + "2017-04-25 33.683720 62.163094 211.208313 36.132500 67.919998 \n", + "2017-04-26 33.485615 62.080711 211.075516 35.919998 67.830002 \n", + "2017-04-27 33.511253 62.483433 211.252609 35.947498 68.269997 \n", + "2017-04-28 33.478622 62.657310 210.792191 35.912498 68.459999 \n", + "\n", + "Price High Low \\\n", + "Ticker SPY AAPL MSFT SPY AAPL \n", + "Date \n", + "2017-01-03 225.240005 29.082500 62.840000 225.830002 28.690001 \n", + "2017-01-04 226.580002 29.127501 62.750000 226.750000 28.937500 \n", + "2017-01-05 226.399994 29.215000 62.660000 226.580002 28.952499 \n", + "2017-01-06 227.210007 29.540001 63.150002 227.750000 29.117500 \n", + "2017-01-09 226.460007 29.857500 63.080002 227.070007 29.485001 \n", + "... ... ... ... ... ... \n", + "2017-04-24 237.169998 35.987499 67.660004 237.410004 35.794998 \n", + "2017-04-25 238.550003 36.224998 68.040001 238.949997 35.967499 \n", + "2017-04-26 238.399994 36.150002 68.309998 239.529999 35.845001 \n", + "2017-04-27 238.600006 36.040001 68.379997 238.949997 35.827499 \n", + "2017-04-28 238.080002 36.075001 69.139999 238.929993 35.817501 \n", + "\n", + "Price Open \\\n", + "Ticker MSFT SPY AAPL MSFT SPY \n", + "Date \n", + "2017-01-03 62.130001 223.880005 28.950001 62.790001 225.039993 \n", + "2017-01-04 62.119999 225.610001 28.962500 62.480000 225.619995 \n", + "2017-01-05 62.029999 225.479996 28.980000 62.189999 226.270004 \n", + "2017-01-06 62.040001 225.899994 29.195000 62.299999 226.529999 \n", + "2017-01-09 62.540001 226.419998 29.487499 62.759998 226.910004 \n", + "... ... ... ... ... ... \n", + "2017-04-24 67.099998 234.559998 35.875000 67.480003 237.179993 \n", + "2017-04-25 67.599998 237.809998 35.977501 67.900002 237.910004 \n", + "2017-04-26 67.620003 238.350006 36.117500 68.080002 238.509995 \n", + "2017-04-27 67.580002 237.979996 35.980000 68.150002 238.770004 \n", + "2017-04-28 67.690002 237.929993 36.022499 68.910004 238.899994 \n", + "\n", + "Price Volume \n", + "Ticker AAPL MSFT SPY \n", + "Date \n", + "2017-01-03 115127600 20694100 91366500 \n", + "2017-01-04 84472400 21340000 78744400 \n", + "2017-01-05 88774400 24876000 78379000 \n", + "2017-01-06 127007600 19922900 71559900 \n", + "2017-01-09 134247600 20382700 46939700 \n", + "... ... ... ... \n", + "2017-04-24 68537200 29770000 119209900 \n", + "2017-04-25 75486000 30242700 76698300 \n", + "2017-04-26 80164800 26190800 84702500 \n", + "2017-04-27 56985200 34971000 57410300 \n", + "2017-04-28 83441600 39548800 63532800 \n", + "\n", + "[81 rows x 18 columns]" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TickerAAPLMSFTSPY
Date
2017-01-0326.95271556.930584198.560028
2017-01-0426.92254356.675854199.741287
2017-01-0527.05945856.675854199.582626
2017-01-0627.36112057.167107200.296692
2017-01-0927.61173656.985157199.635529
............
2017-04-2433.47629561.806141209.986511
2017-04-2533.68372062.163094211.208313
2017-04-2633.48561562.080711211.075516
2017-04-2733.51125362.483433211.252609
2017-04-2833.47862262.657310210.792191
\n", + "

81 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + "Ticker AAPL MSFT SPY\n", + "Date \n", + "2017-01-03 26.952715 56.930584 198.560028\n", + "2017-01-04 26.922543 56.675854 199.741287\n", + "2017-01-05 27.059458 56.675854 199.582626\n", + "2017-01-06 27.361120 57.167107 200.296692\n", + "2017-01-09 27.611736 56.985157 199.635529\n", + "... ... ... ...\n", + "2017-04-24 33.476295 61.806141 209.986511\n", + "2017-04-25 33.683720 62.163094 211.208313\n", + "2017-04-26 33.485615 62.080711 211.075516\n", + "2017-04-27 33.511253 62.483433 211.252609\n", + "2017-04-28 33.478622 62.657310 210.792191\n", + "\n", + "[81 rows x 3 columns]" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample['Adj Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "tickers = [\n", + " 'AAPL','ABBV','ABT','ACN','ADP','ADSK','AES','AET','AFL','AMAT','AMGN','AMZN','APA',\n", + " 'APHA','APD','APTV','ARE','ASML','ATVI','AXP','BA','BAC','BAX','BDX','BIIB','BK',\n", + " 'BKNG','BMY','BRKB','BRK.A','COG','COST','CPB','CRM','CSCO','CVS','DAL','DD','DHR',\n", + " 'DIS','DOW','DUK','EMR','EPD','EQT','ESRT','EXPD','FFIV','FLS','FLT','FRT','GE',\n", + " 'GILD','GOOGL','GOOG','GS','HAL','HD','HON','IBM','INTC','IP','JNJ','JPM','KEY',\n", + " 'KHC','KIM','KO','LLY','LMT','LOW','MCD','MCHP','MDT','MMM','MO','MRK','MSFT',\n", + " 'MTD','NEE','NFLX','NKE','NOV','ORCL','OXY','PEP','PFE','PG','RTN','RTX','SBUX',\n", + " 'SHW','SLB','SO','SPG','STT','T','TGT','TXN','UNH','UPS','USB','UTX','V','VZ',\n", + " 'WMT','XOM',\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'AAPL ABBV ABT ACN ADP ADSK AES AET AFL AMAT AMGN AMZN APA APHA APD APTV ARE ASML ATVI AXP BA BAC BAX BDX BIIB BK BKNG BMY BRKB BRK.A COG COST CPB CRM CSCO CVS DAL DD DHR DIS DOW DUK EMR EPD EQT ESRT EXPD FFIV FLS FLT FRT GE GILD GOOGL GOOG GS HAL HD HON IBM INTC IP JNJ JPM KEY KHC KIM KO LLY LMT LOW MCD MCHP MDT MMM MO MRK MSFT MTD NEE NFLX NKE NOV ORCL OXY PEP PFE PG RTN RTX SBUX SHW SLB SO SPG STT T TGT TXN UNH UPS USB UTX V VZ WMT XOM'" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\" \".join(tickers)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[ 0%% ]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[* 2%% ] 2 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[* 3%% ] 3 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[** 4%% ] 4 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[** 5%% ] 5 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[** 5%% ] 5 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*** 7%% ] 7 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*** 7%% ] 8 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**** 8%% ] 9 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**** 9%% ] 10 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[***** 10%% ] 11 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[***** 11%% ] 12 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[****** 12%% ] 13 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[****** 13%% ] 14 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******* 14%% ] 15 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******* 15%% ] 16 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******** 16%% ] 17 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******** 17%% ] 18 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********* 18%% ] 19 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********* 19%% ] 20 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********** 20%% ] 21 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********** 21%% ] 22 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********** 21%% ] 23 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*********** 22%% ] 24 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*********** 23%% ] 25 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************ 24%% ] 26 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************ 25%% ] 27 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************ 26%% ] 28 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************* 27%% ] 29 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************* 28%% ] 30 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************** 29%% ] 31 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[************** 30%% ] 32 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*************** 31%% ] 33 of 107 completed\r", + "[*************** 31%% ] 33 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**************** 33%% ] 35 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**************** 34%% ] 36 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[***************** 35%% ] 37 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[***************** 36%% ] 38 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[***************** 36%% ] 39 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[****************** 37%% ] 40 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[****************** 38%% ] 41 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******************* 39%% ] 42 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******************* 40%% ] 43 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******************** 41%% ] 44 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[******************** 42%% ] 45 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********************* 43%% ] 46 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[********************* 44%% ] 47 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************45%% ] 48 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************46%% ] 49 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************47%% ] 50 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************48%% ] 51 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************49%% ] 52 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************50%% ] 53 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************50%% ] 54 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************51%% ] 55 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************52%% ] 56 of 107 completed\r", + "[**********************52%% ] 56 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************54%% ] 58 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************55%% ] 59 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************56%%* ] 60 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************57%%* ] 61 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************58%%** ] 62 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************59%%** ] 63 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************60%%*** ] 64 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************61%%*** ] 65 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************62%%**** ] 66 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************63%%**** ] 67 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************64%%***** ] 68 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************64%%***** ] 68 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************65%%***** ] 70 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************66%%****** ] 71 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************67%%****** ] 72 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************68%%******* ] 73 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************69%%******* ] 74 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************70%%******** ] 75 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************71%%******** ] 76 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************72%%********* ] 77 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************73%%********* ] 78 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************74%%********** ] 79 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************75%%********** ] 80 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************76%%********** ] 81 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************77%%*********** ] 82 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************78%%*********** ] 83 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************79%%************ ] 84 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************79%%************ ] 85 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************80%%************ ] 86 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************81%%************* ] 87 of 107 completed\r", + "[**********************81%%************* ] 87 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************83%%************** ] 89 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************84%%************** ] 90 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************85%%*************** ] 91 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************86%%*************** ] 92 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************87%%**************** ] 93 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************88%%**************** ] 94 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************89%%***************** ] 95 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************90%%***************** ] 96 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************91%%****************** ] 97 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************92%%****************** ] 98 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************93%%******************* ] 99 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************93%%******************* ] 100 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************94%%******************* ] 101 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************95%%******************** ] 102 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************96%%******************** ] 103 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************97%%********************* ] 104 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************98%%********************* ] 105 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[**********************99%%**********************] 106 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[*********************100%%**********************] 107 of 107 completed" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "\n", + "8 Failed downloads:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "['FLT', 'ATVI', 'COG', 'BRKB', 'APHA', 'RTN', 'UTX', 'BRK.A']: YFTzMissingError('$%ticker%: possibly delisted; No timezone found')\n" + ] + } + ], + "source": [ + "data = yf.download(\" \".join(tickers), start=\"1980-01-01\", end=\"2023-08-01\")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGVCAYAAADUsQqzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPDElEQVR4nO3dd3gU5fo38O+WZFNIMZE0CL23GFqkiKB0sKI/KQooiiCggh4BjwXUc4JiQTmgh1cFPUqxAYKK0hEpAooUAekBSUIoyZKQbLbc7x9LhmyyabCbmU2+n+vai9mZZyb3zWaz9z7zzDM6EREQERERaYhe7QCIiIiIimKBQkRERJrDAoWIiIg0hwUKERERaQ4LFCIiItIcFihERESkOSxQiIiISHNYoBAREZHmGNUO4Fo4HA6cOXMGISEh0Ol0aodDRERE5SAiuHTpEuLi4qDXl95H4pMFypkzZxAfH692GERERHQNTp06hdq1a5faxicLlJCQEADOBENDQ1WOhoiIiMrDbDYjPj5e+RwvjU8WKAWndUJDQ1mgEBER+ZjyDM+o0CDZ5ORkdOjQASEhIYiKisLdd9+NQ4cOubTJy8vDuHHjEBkZiRo1amDQoEFIT093aZOSkoIBAwYgKCgIUVFR+Mc//gGbzVaRUIiIiKgKq1CBsnHjRowbNw7btm3D6tWrYbVa0bt3b+Tk5ChtJk6ciBUrVuDLL7/Exo0bcebMGdx7773KdrvdjgEDBiA/Px9btmzBJ598ggULFuCll17yXFZERETk03QiIte6c0ZGBqKiorBx40Z069YNWVlZqFmzJhYuXIj77rsPAHDw4EE0b94cW7duxc0334wffvgBAwcOxJkzZxAdHQ0A+OCDDzB58mRkZGTA39+/zJ9rNpsRFhaGrKwsnuIhIiLyERX5/L6ueVCysrIAABEREQCAXbt2wWq1omfPnkqbZs2aoU6dOti6dSsAYOvWrWjdurVSnABAnz59YDabsX//frc/x2KxwGw2uzyIiIio6rrmAsXhcODpp59Gly5d0KpVKwBAWloa/P39ER4e7tI2OjoaaWlpSpvCxUnB9oJt7iQnJyMsLEx58BJjIiKiqu2aC5Rx48Zh3759WLx4sSfjcWvq1KnIyspSHqdOnfL6zyQiIiL1XNNlxuPHj8fKlSuxadMml4lWYmJikJ+fj8zMTJdelPT0dMTExChtfv31V5fjFVzlU9CmKJPJBJPJdC2hEhERkQ+qUA+KiGD8+PFYunQp1q1bh/r167tsb9euHfz8/LB27Vpl3aFDh5CSkoJOnToBADp16oS9e/fi7NmzSpvVq1cjNDQULVq0uJ5ciIiIqIqoUA/KuHHjsHDhQixfvhwhISHKmJGwsDAEBgYiLCwMo0aNwqRJkxAREYHQ0FBMmDABnTp1ws033wwA6N27N1q0aIGHHnoIb7zxBtLS0vDCCy9g3Lhx7CUhIiIiABW8zLikmd/mz5+PkSNHAnBO1PbMM89g0aJFsFgs6NOnD+bOnety+ubkyZMYO3YsNmzYgODgYIwYMQIzZsyA0Vi+eomXGRMREfmeinx+X9c8KGphgUJEROQdK/44g2W//43uTWvioU71PHrsinx+++S9eIiIiMg7jpzNxtqDZxEbHqBqHNc1URsRERFVLav/dF5Z628wqBoHCxQiIiJS/JnqnK39pz/dT55aWVigEBEREQDg+LmrN/+9mJOvYiQsUIiIiOiKl7+9ek+8YJO6w1RZoBAREREAwGpzKMssUIiIiEgT/I1Xy4LQQD8VI2GBQkRERFcULlDGdGugYiQsUIiIiOgKf8PVsqB9vQgVI2GBQkRERFfo9VdvaVO4WFEDCxQiIiICABS+456f0f399yoLCxQiIiICABgK9aDoS7hBcGVhgUJEREQAWKAQERGRBkUG+yvLfgYWKERERKQB/910TFnWsQeFiIiIyBULFCIiItIcFihERESkOSxQiIiISHNYoBAREZGLRlE11A6BBQoRERG5+ueA5mqHwAKFiIiInAomaqsfGaxyJCxQiIiI6Aq7QwC4ziirFhYoREREVciaP9Ox88SFCu934lyOsmxUeRZZADCqHQARERF5xumLl/HopzsBACdmDKjQvtuOnVeW2YNCREREHpOalXfN++oLFSVGvfrlgfoREBERkUdcV4FS6N47PtmDsmnTJtxxxx2Ii4uDTqfDsmXLXLbrdDq3j5kzZypt6tWrV2z7jBkzrjsZIiKi6uzJRb8ryza7A3+lX4KIVPg4Plmg5OTkICEhAXPmzHG7PTU11eXx8ccfQ6fTYdCgQS7tXnnlFZd2EyZMuLYMiIiIqJiHF+xA73c24d21h8vV3mS8WhIYNVCgVHiQbL9+/dCvX78St8fExLg8X758OXr06IEGDRq4rA8JCSnWloiIiDzj58PnAACz1hzG0z2blNn+Up5NWQ7wM3gtrvLy6hiU9PR0fPfddxg1alSxbTNmzEBkZCQSExMxc+ZM2Gw2N0dwslgsMJvNLg8iIiLynIhgfwBA7RsCVY7EyauXGX/yyScICQnBvffe67L+ySefRNu2bREREYEtW7Zg6tSpSE1Nxdtvv+32OMnJyZg+fbo3QyUiIqrW/s7MBQCEBfqpHImTVwuUjz/+GMOGDUNAQIDL+kmTJinLbdq0gb+/Px5//HEkJyfDZDIVO87UqVNd9jGbzYiPj/de4ERERNXMqyv/BADsP6ONsxReO8Xz888/49ChQ3j00UfLbJuUlASbzYYTJ0643W4ymRAaGuryICIiovLLsdjw4/405FntaodSLl4rUD766CO0a9cOCQkJZbbdvXs39Ho9oqKivBUOERFRtfbsl3/g8f/twrRv96sdSrlU+BRPdnY2jhw5ojw/fvw4du/ejYiICNSpUweA8xTMl19+ibfeeqvY/lu3bsX27dvRo0cPhISEYOvWrZg4cSIefPBB3HDDDdeRChEREZXkh31pAIDFO05hxqA2LtscjorPleJtFS5Qdu7ciR49eijPC8aGjBgxAgsWLAAALF68GCKCIUOGFNvfZDJh8eLFmDZtGiwWC+rXr4+JEye6jDEhIiKiyuO4hsncvK3CBUr37t3LnJVu9OjRGD16tNttbdu2xbZt2yr6Y4mIiOgaFJ6ADQD8NHCn4vLgvXiIiIiqsKJdCu6msS/cZtodLbwaT3mxQCEiIqrKynH2pvCJkXva1vZeLBXAAoWIiKgKy7c7XJ7nWR1lttECFihERETV3Laj55VlnUaGqLBAISIiqubMeVZlWSP1CQsUIiKi6u7k+ctqh1AMCxQiIqIqIsjfcE37vbv2sLKslRlRWKAQERFVEfYSZoQta/6ywrQyqywLFCIioiqipALlfE5+uY9hY4FCREREniIiJRYXe09nlfs4kcH+ngrpurBAISIiqgJK6/h49NOd5T6OTiPXGbNAISIiqgJsjpInWyvp1I+WsUAhIiKqAkqpT4qxanDm2KJYoBAREVUBpfWgFLX41xRlufBVO61rhXk0puvBAoWIiKgKqMhpnL8z85TlwgNrRTOzoLBAISIiqhKu9fJgR6E5UipymsjbWKAQERFVAav2pZW7beELdQqPR3FUYEI3b2OBQkREVAVsOJRR7raFLyRe8UeqstwyjmNQiIiIyIMsNvs17bdyzxll+cWBzT0VznVjgUJERFQF2OzlPz1T+BTPlqPnleWwQD9PhnRdWKAQERFVARW5zLgkWplFFmCBQkREVCVYK9CDUngs7KNd63shmuvHAoWIiKgKKHw1zi2Nbyy17Z5CNw9sEh0CAGgWE+KdwK4RCxQiIiIfJiI4eT7HZQzKw13qlbrP5iPnlOXj53MAAHUigrwS37Uyqh0AERERXbv31h7BO2v+clkXFRJQ5n4f/nwMN8WH4/0NRwEARoN2xp8ALFCIiIh8WtHipEujSBSdb02vA4pONPvadwfgb7h6IsWo19ZJFW1FQ0RERNflxhqmYvfUKWkW/PxC41bOXspz30glFS5QNm3ahDvuuANxcXHQ6XRYtmyZy/aRI0dCp9O5PPr27evS5sKFCxg2bBhCQ0MRHh6OUaNGITs7+7oSISIiIsBwjZcKbzt2wcORXJ8KFyg5OTlISEjAnDlzSmzTt29fpKamKo9Fixa5bB82bBj279+P1atXY+XKldi0aRNGjx5d8eiJiIjIhUGvgw7aGk9yLSo8BqVfv37o169fqW1MJhNiYmLcbjtw4ABWrVqFHTt2oH379gCA2bNno3///njzzTcRFxdX0ZCIiIjoCoNeBw3Nt3bNvDIGZcOGDYiKikLTpk0xduxYnD9/dRrdrVu3Ijw8XClOAKBnz57Q6/XYvn272+NZLBaYzWaXBxERERWnpdlgr4fHC5S+ffvi008/xdq1a/H6669j48aN6NevH+x2502M0tLSEBUV5bKP0WhEREQE0tLc3yo6OTkZYWFhyiM+Pt7TYRMREVUJufk29qC4M3jwYNx5551o3bo17r77bqxcuRI7duzAhg0brvmYU6dORVZWlvI4deqU5wImIiLyUYVnjy2wbPeZKjEGxeuXGTdo0AA33ngjjhw5AgCIiYnB2bNnXdrYbDZcuHChxHErJpMJoaGhLg8iIqLqbt3Bs27X144IrORIPM/rBcrp06dx/vx5xMbGAgA6deqEzMxM7Nq1S2mzbt06OBwOJCUleTscIiKiKiPPane7PjTADz8/1wP3tq1VyRF5ToWv4snOzlZ6QwDg+PHj2L17NyIiIhAREYHp06dj0KBBiImJwdGjR/Hcc8+hUaNG6NOnDwCgefPm6Nu3Lx577DF88MEHsFqtGD9+PAYPHswreIiIiCpg5o+HStwWHxGEDYcyyn2sYUl1PBGSx1S4B2Xnzp1ITExEYmIiAGDSpElITEzESy+9BIPBgD179uDOO+9EkyZNMGrUKLRr1w4///wzTCaTcozPP/8czZo1w+23347+/fuja9eumDdvnueyIiIiquKOnL2E0xdzi60vPEC2IiNRwgL9rj8oD6pwD0r37t0hRSf5L+THH38s8xgRERFYuHBhRX80ERERXXE+O9/t+h5Nr14pW5GreQL8DNcbkkfxXjxEREQ+SK93X33MGNS60LPyVyiRNfyvMyLPYoFCRETkg9yVHq1rhSEqJOCajlf4zsZaoK1oiIiIqFzczRibb3OdF6W0IRlF3ZGgrQtVWKAQERH5pLKLj3w3E7m506BmMMegEBER0fX7fm/x28MYioxLKTrTrC9Ngc8ChYiIyAeFBhS/LLhogVL0lE9EkPuBsLXCtTfzLAsUIiIiH9Q0JqTYur1/Z7k8dxQ5C1S0gCnwdM/GHovLU1igEBERaZyI4JEFO/DAf7cqA18d5RgAO7lvM5fnJj/3H/thgdq6xBi4honaiIiIqHJZbA7lxoCnL+YiPiIItqLdI240K9LLYre738dYQs+KmtiDQkREpHHuOksKxpeUVlwU7WUxGNy3LenUj5pYoBAREWmcuLmk2GJz3sn4tmZRxbYVKNrJYjK6v5TYWELhoiYWKERERBpXuNAouFQ4z+rsQSk8f8ktjW902a/oRG0ldZSwB4WIiIgqrPCpmoIZZAt6UEzGqx/lRS89Lu88ska99soB7UVERERELsTNhLCWKz0oJj89HrulPvQ64KkilwsXHbvSq0W02+NrsQeFV/EQERFpnEsPypV/8670oAQYDfjngBb4R59m8De69juYijy/pXFNGHQ6vLfuiMt6XsVDREREFWYvVKAUFCuFe1AAFCtOAKBrkTEpJqMebeveUKydFntQWKAQERFpXGpmnrI8fcWfAK6OQQko4cocAPAz6NGz+dWrfG6KD3fbjj0oREREVGF3/Gezsrz6z3QAxXtQSrLmwFllWafTQe/mjoHsQSEiIiKPUMag+JXcg+JOp4aRxWaY1WnwNscsUIiIiHxMvSnf4fu9aQCKD4Qti59Bjx+eusUbYXkUCxQiIiINOpx+CdkWW5ntKtqDAmizx6QoFihEREQas+vkBfR6ZxNuf2tDmW0r2oPiK6pmVkRERD7shyunb9LNljLblnR/HV/HAoWIiMiHlXUVjwYv0CkXFihEREQ+rKwelK6Na1ZSJJ7FAoWIiMiHBZTRg3JDkF+p27WK9+IhIiLSmML3+HM4Sr8ncVpWHlrGhZW4/Z/9myPjkgUP3lzXQ9FVjgr3oGzatAl33HEH4uLioNPpsGzZMmWb1WrF5MmT0bp1awQHByMuLg7Dhw/HmTNnXI5Rr1496HQ6l8eMGTOuOxkiIqKqwF6oKLEXvSVxEZE1TKVujwoNwMLHbkb/1rEeia2yVLhAycnJQUJCAubMmVNs2+XLl/Hbb7/hxRdfxG+//YZvvvkGhw4dwp133lms7SuvvILU1FTlMWHChGvLgIiIqIqRQkWJvYwelOaxIaVu91UVPsXTr18/9OvXz+22sLAwrF692mXdf/7zH3Ts2BEpKSmoU6eOsj4kJAQxMTEV/fFERERVXuGS5I9TmaW29TdUzeGkXs8qKysLOp0O4eHhLutnzJiByMhIJCYmYubMmbDZSp4tz2KxwGw2uzyIiIiqKkehHpQDqaV/5vnCrLDXwquDZPPy8jB58mQMGTIEoaGhyvonn3wSbdu2RUREBLZs2YKpU6ciNTUVb7/9ttvjJCcnY/r06d4MlYiISDMKDzvJsznUC0RFXitQrFYr/u///g8igvfff99l26RJk5TlNm3awN/fH48//jiSk5NhMhUf7DN16lSXfcxmM+Lj470VOhERkaoOpl1SlkMDvHOZcM0QEzIulT1TrVq8coqnoDg5efIkVq9e7dJ74k5SUhJsNhtOnDjhdrvJZEJoaKjLg4iIqKradfKistwizjufeZ8/moSbG0Tgi8c7eeX418vjPSgFxcnhw4exfv16REZGlrnP7t27odfrERUV5elwiIiIfJqjjMuMr1WT6BAsHq3N4gS4hgIlOzsbR44cUZ4fP34cu3fvRkREBGJjY3Hffffht99+w8qVK2G325GW5rzhUUREBPz9/bF161Zs374dPXr0QEhICLZu3YqJEyfiwQcfxA033OC5zIiIiKqAx/+3S+0QVFHhAmXnzp3o0aOH8rxgbMiIESMwbdo0fPvttwCAm266yWW/9evXo3v37jCZTFi8eDGmTZsGi8WC+vXrY+LEiS5jTIiIiKqzxlE1cPhsNgBoepyIN1W4QOnevbvLBDJFlbYNANq2bYtt27ZV9McSERFVG2GB5RsY+9Ttjb0ciXqq5uwuREREPqys6e0B4I6EuCpdoPBmgURERBpTxuz2AIDZQxK9H4iK2INCRESkMWXdwbg6YIFCRESkMenmvGLrXr2rpQqRqIcFChERkcbUiQgqvrKK3nOnJCxQiIiINEZfRjEyoE1sJUWiHhYoREREPqZxVA21Q/A6FihEREQa47YDpdClx16a/V5TWKAQERGR5rBAISIi8gGFO02iQwNUi6OycKI2IiIiHyACzHuoHTYfOYf729dWOxyvY4FCRESkMduPXyi2TkTQu2UMereMUSGiysdTPERERKQ5LFCIiIh8QM2Qqj/upDAWKERERBqSbbG5Xd+vVfU4tVOABQoREZGGOEqY5ESv51T3REREpJLqVYaUjAUKERGRhuiq2U0BS8IChYiIiDSHBQoREZGGSHW40U45sEAhIiLSkHybQ+0QNIEFChERkYbY3fSgPHRzXRUiURcLFCIiIi1xc4Zn/G2NKj8OlbFAISIi0hCHmwKlOty9uCgWKERERBpSdKK20d0aqBSJung3YyIiIg0pXKB8PLI9ejSNUjEa9bBAISIi0pCC+iTI34DbmkWrG4yKKnyKZ9OmTbjjjjsQFxcHnU6HZcuWuWwXEbz00kuIjY1FYGAgevbsicOHD7u0uXDhAoYNG4bQ0FCEh4dj1KhRyM7Ovq5EiIiIqoKCHpTqPp9shQuUnJwcJCQkYM6cOW63v/HGG3jvvffwwQcfYPv27QgODkafPn2Ql5entBk2bBj279+P1atXY+XKldi0aRNGjx597VkQERFVEQU9KPpqPuV9hU/x9OvXD/369XO7TUQwa9YsvPDCC7jrrrsAAJ9++imio6OxbNkyDB48GAcOHMCqVauwY8cOtG/fHgAwe/Zs9O/fH2+++Sbi4uKuIx0iIiLfpvSgVO/6xLNX8Rw/fhxpaWno2bOnsi4sLAxJSUnYunUrAGDr1q0IDw9XihMA6NmzJ/R6PbZv3+72uBaLBWaz2eVBRERUFRVcZqzXV+8KxaMFSlpaGgAgOtp1UE90dLSyLS0tDVFRriOSjUYjIiIilDZFJScnIywsTHnEx8d7MmwiIiLNKLgXT3U/xeMT86BMnToVWVlZyuPUqVNqh0REROQVSg9K9a5PPFugxMTEAADS09Nd1qenpyvbYmJicPbsWZftNpsNFy5cUNoUZTKZEBoa6vIgIiKqiq7Og1K9KxSPFij169dHTEwM1q5dq6wzm83Yvn07OnXqBADo1KkTMjMzsWvXLqXNunXr4HA4kJSU5MlwiIiIfI5DOcWjciAqq/BVPNnZ2Thy5Ijy/Pjx49i9ezciIiJQp04dPP3003jttdfQuHFj1K9fHy+++CLi4uJw9913AwCaN2+Ovn374rHHHsMHH3wAq9WK8ePHY/DgwbyCh4iIqj1eZuxU4QJl586d6NGjh/J80qRJAIARI0ZgwYIFeO6555CTk4PRo0cjMzMTXbt2xapVqxAQcPVGR59//jnGjx+P22+/HXq9HoMGDcJ7773ngXSIiIh826G0SwCANHNeGS2rNp2IuLlvoraZzWaEhYUhKyuL41GIiKhKqTflO2X5xIwBKkbieRX5/PaJq3iIiIioemGBQkRERJrDAoWIiIg0hwUKERERaQ4LFCIiItIcFihERESkOSxQiIiISHNYoBAREZHmsEAhIiLSiIs5+cry7CGJKkaiPhYoREREGjF3w9V73fVpGaNiJOpjgUJERKQRpy/mKsv+xur9EV29syciItKQnHy72iFoBgsUIiIijchjgaJggUJERKQRv564oHYImsEChYiIiDSHBQoRERFpDgsUIiIi0hwWKERERKQ5LFCIiIhIc1igEBERkeawQCEiItKIRlE1AACv3t1K5UjUxwKFiIhII26s4Q8ACAv0UzkS9bFAISIi0ojLV2aSDfY3qByJ+ligEBERqcThEDw8/1dM+3Y/ACDHYgMABJuMaoalCSxQiIiIVLJizxmsP5SBBVtOQESQYynoQWGBwgKFiIhIJU8t3q0sbz16HmnmPABAsImneFigEBERacCKPanKcg2e4vF8gVKvXj3odLpij3HjxgEAunfvXmzbmDFjPB0GERGRT1l3MF1ZDg/yVzESbfB4ibZjxw7Y7Xbl+b59+9CrVy/cf//9yrrHHnsMr7zyivI8KCjI02EQERFpmsMhLs/TzRZl2d/IExweL1Bq1qzp8nzGjBlo2LAhbr31VmVdUFAQYmJiPP2jiYiIfIbV4VA7BE3zaomWn5+Pzz77DI888gh0Op2y/vPPP8eNN96IVq1aYerUqbh8+XKpx7FYLDCbzS4PIiIiX5ZvY4FSGq+Owlm2bBkyMzMxcuRIZd3QoUNRt25dxMXFYc+ePZg8eTIOHTqEb775psTjJCcnY/r06d4MlYiIqFJZ7eJ2fVSIqZIj0SadiLj/H/KAPn36wN/fHytWrCixzbp163D77bfjyJEjaNiwods2FosFFsvVc3Nmsxnx8fHIyspCaGiox+MmIiLytrSsPNycvLbY+pcGtsAjXeurEJH3mc1mhIWFlevz22s9KCdPnsSaNWtK7RkBgKSkJAAotUAxmUwwmVhREhFR1WHOs7pdzwGyTl77X5g/fz6ioqIwYMCAUtvt3r0bABAbG+utUIiIiDRn+Ee/ul1vYoECwEs9KA6HA/Pnz8eIESNgNF79EUePHsXChQvRv39/REZGYs+ePZg4cSK6deuGNm3aeCMUIiIiTWoeG6LMHFuYyY+zyAJe6kFZs2YNUlJS8Mgjj7is9/f3x5o1a9C7d280a9YMzzzzDAYNGlTqGBUiIqKq6Lbm0W7Xbz92vpIj0Sav9KD07t0b7sbexsfHY+PGjd74kURERD4lN9/mdv3pi7mVHIk28UQXERGRCi7n292u79+aE5kCLFCIiIhUkVtCgdK6VnjlBqJRLFCIiIhUkHnZ/WXGRzKyKzkSbWKBQkREpILM3Hy36y+VMD9KdcMChYiISAXmXPeDZLs3jarkSLSJBQoREZEKsnLd95RE8148AFigEBERqeLPVLPb9UYDP5oBFihERESV7ufDGWqHoHksUIiIiCrZQ4Xuw1PD5LX79vo0FihEREQqem/ITcryQzfXVS8QjWGBQkREpKIbgvyVZYNep2Ik2sIChYiISEU63dWiZPepTPUC0RgWKERERJXIancoy/99qB0Kd5qwQLmKBQoREVElyrVevQdP96Y18TfvXuwWCxQiIqJKlFfoJoH+Bj1SLlxWMRrtYoFCRERUiX76M11Z1ul0HBhbAhYoRERElei3kxddnvtx5li3+L9CRERUiUx+BpfndSKCVIpE21igEBERVaIWsSEuzzvUj1CW/31P68oOR7NYoBAREVWi7/emAQB6No8CABgKzYPSulaYKjFpEQsUIiKiSrT12HkAwJoDZwG4zh7rEFElJi1igUJERKSCoUl1AABGFihusUAhIiK6TtuOnUfX19dh/aGzZbaNDHbee6dLwxsBAHoWKG6xQCEiIroOeVY7Bs/bhtMXc/Hw/B1ltj+fkw8A2Hcmq9g2B+sTBQsUIiKi6/Dqyj/L3Xbat/uV5bSsPGU5yN956XGzmJBi+1RXRrUDICIi8mVf7jzt8txmd8BYwuRrC7acUJbvbVtLWf7txV6w2BwICfDzSoy+iD0oRERE16PITPXPfbWnXLvVCg9UlgP8DAgLZHFSmMcLlGnTpkGn07k8mjVrpmzPy8vDuHHjEBkZiRo1amDQoEFIT08v5YhERETalW9zuDz/5ve/y7Vfg5o1vBFOleGVHpSWLVsiNTVVeWzevFnZNnHiRKxYsQJffvklNm7ciDNnzuDee+/1RhhERESqSzfnweEQ/Ou7q2NVXhrYQsWIfINXxqAYjUbExMQUW5+VlYWPPvoICxcuxG233QYAmD9/Ppo3b45t27bh5ptv9kY4REREqvj5cAYe+uhXDGgTi+/2pCrrCwbFUsm80oNy+PBhxMXFoUGDBhg2bBhSUlIAALt27YLVakXPnj2Vts2aNUOdOnWwdevWEo9nsVhgNptdHkRERFo36Ys/AMClOAGA/Wf4OVYWjxcoSUlJWLBgAVatWoX3338fx48fxy233IJLly4hLS0N/v7+CA8Pd9knOjoaaWlpJR4zOTkZYWFhyiM+Pt7TYRMREVXYr8cvlLo945LF7fq4QgNkyT2Pn+Lp16+fstymTRskJSWhbt26+OKLLxAYeG0vyNSpUzFp0iTludlsZpFCRESqO5h2bT0hj91S38ORVD1ev8w4PDwcTZo0wZEjRxATE4P8/HxkZma6tElPT3c7ZqWAyWRCaGioy4OIiEhtsWHOL94hAcW/79tLmRa2pHlS6Cqv/w9lZ2fj6NGjiI2NRbt27eDn54e1a9cq2w8dOoSUlBR06tTJ26EQERF5VEER0iQ6BE2iXS8bPnspz90uCA/ifCfl4fEC5dlnn8XGjRtx4sQJbNmyBffccw8MBgOGDBmCsLAwjBo1CpMmTcL69euxa9cuPPzww+jUqROv4CEiIp9TUKAYdDo82rUBAKBzw0gAQPL3B93uE84J2crF42NQTp8+jSFDhuD8+fOoWbMmunbtim3btqFmzZoAgHfeeQd6vR6DBg2CxWJBnz59MHfuXE+HQURE5FUTFv2OFX+cAQD8euIC2ta9AQCw5eh5AMC3V7YV9eDNdSsnQB+nE/G9ezubzWaEhYUhKyuL41GIiKjSWWx2NH1hlcu6ZjEhOJh2CQBwYsYA1JvyXbH9vnmiM26qHQ69XldsW3VQkc9v3iyQiIiogvrO+rnYOr8yBr7WjQxC2zo3eCukKocFChERUQUdP5fj8nzeQ+2Qbs7D3r+zAABHzmYX28da5J49VDpe50RERFROIoKjGcWLj94tY9C1cU3l+Tur/0KzmBCXNrlWu9fjq0rYg0JERFQOdodg/i/H8dp3B9xu9zNcHVey6XAGQgNcr9a5eNnq1fiqGhYoREREZRAR3PTKT7iUZ3NZP6VfM/xfe+fM5v7GqyclokJMOJrhehqIKoYFChERUSmeWvw7lu92f8nwgNaxiAj2BwD4FxokW7g4iQ41Id1sUdpR+bBAISIiKkFWrrXE4gQAjIVO6wT4Gdy2+WpMZ3y0+TjnP6kgFihEREQluJiTX+p2o/5qr4m7AqVj/QjERwRh2p0tPR5bVcereIiIiEpw8XLpBUrhgbGA6zgUAJg7rK3HY6ouWKAQERG58VvKRfy4P73UNkH+ricimse6zo5qMvJj9lrxf46IiKiIs+Y83Dt3Cz7YeBQA0LXRjW7bFe0xGXtrQ5fnZc0uSyXj/xwREVERHf+91uV5wQyxhbkrWoL8XcehsEC5dhwkS0REdMX2Y+dhcjPYNSvXdZK1EzMGuN0/s0g7QzW9KaAnsEAhIiICcDDNjAfmbXO7zajXITY8AKcu5JZ6DH/2mHgMCxQiIiIAP5UyIHbdM90RWcMf7649jHsSa5XYjj0mnsMChYiICMDZS3klbqsTGQQAeL5/81KPERJw9WM1oXaYZwKrpligEBERwXXStQIvDWyB3i2jy32MpPoRynLvljEeiau6YoFCRETV3pIdKViw5USx9Y90rV+h4+h0V0/xtKrFHpTrwQKFiIiqNRHB5K/3Flt/W7Ooazrej093w6H0S7i1Sc3rDa1aY4FCRETV2uo/XQfH3t4sCn4GPd4bknhNx2saE4KmMSGeCK1aY4FCRETV2rLdfyvLs4ck4o6EOBWjoQK8YJuIiKq17ccuAAAGd4hncaIhLFCIiMhniAgu5DjvMHw+24LL+TY4HOKRYw9NquOR45Bn8BQPERH5jBk/HMR/Nx1DaIAR5jwbACDQz4Dn+zfDQ53qVfh4mZfzcf5KwdM4iuNGtIQ9KERE5DP+u+kYACjFCQDkWu14cfn+azpetsV5nAA/PQL9i9+Dh9TDAoWIiKqts5csAIA8q0PlSKgoFihEROQT7GWMNTl98TLqTfkOH/58rMxj7T2dhX1/Z+HeuVs8FR55mMcLlOTkZHTo0AEhISGIiorC3XffjUOHDrm06d69O3Q6nctjzJgxng6FiIiqiINpZpzJLP1Owl1fXw8AeO27A/j39wdKbDdn/RHc8Z/NGDh7s7IusU64R+Ikz/F4gbJx40aMGzcO27Ztw+rVq2G1WtG7d2/k5OS4tHvssceQmpqqPN544w1Ph0JERFXAqn1p6DvrZ9zyxnpl3buDb8KJGQMwoE2s233mbXLfi3I0IxszfzxUbP0nj3T0TLDkMR6/imfVqlUuzxcsWICoqCjs2rUL3bp1U9YHBQUhJoY3UiIiotK9v+FIsXV33VQLAPCfIYn4bk9qifsu/jUFyT8cxPdP3YJa4YH45ci5Ym2GJtVBaICf5wImj/D6GJSsrCwAQEREhMv6zz//HDfeeCNatWqFqVOn4vLlyyUew2KxwGw2uzyIiKh6SKxzQ4nbCt+cryiHQzDlm73IyrXioQ+349SFy3jJzdU+7Uo5PqnHq/OgOBwOPP300+jSpQtatWqlrB86dCjq1q2LuLg47NmzB5MnT8ahQ4fwzTffuD1OcnIypk+f7s1QiYhIo9zdZbg8hn/8q7KccuEyvtvrvqeFs8dqk1cLlHHjxmHfvn3YvHmzy/rRo0cry61bt0ZsbCxuv/12HD16FA0bNix2nKlTp2LSpEnKc7PZjPj4eO8FTkREmmCzl335b2xYAFKz8gAAN8WHY/epTADA5kKnczo1jMSGQ2dd9msWE4KnezaGv5EXtGqR116V8ePHY+XKlVi/fj1q165datukpCQAwJEjxc8zAoDJZEJoaKjLg4iIqrZNf2Wg0T9/KLZ+6ROdXZ4n1b86hGDZuC5uj/Xz4XPYduWeOwAwtV8zrHq6G/q2cj/IltTn8R4UEcGECROwdOlSbNiwAfXr1y9zn927dwMAYmP5i0JERM7xI4VP0QDAnmm9kZ6Vh8bRrlPST+3fHPl2Bx68uS4AICY0AGnmvBKP3TQ6BI/fWry3nrTF4wXKuHHjsHDhQixfvhwhISFIS0sDAISFhSEwMBBHjx7FwoUL0b9/f0RGRmLPnj2YOHEiunXrhjZt2ng6HCIiqiQnz+cgJiwAJuP1Txnf8d9riq0LDfBze7VNdGgA5g5rpzwvrTgBgH6teQWpL/D4KZ73338fWVlZ6N69O2JjY5XHkiVLAAD+/v5Ys2YNevfujWbNmuGZZ57BoEGDsGLFCk+HQkREleTH/Wm4deYGvLryz+s+1pOLfse57Pxr3v/rsZ1K3T6GvSc+wSuneEoTHx+PjRs3evrHEhGRShwOweP/2wUA+GxbCl65sxX0+pIv/y3N7ykX8e0fZ5TnfgYdBrWtjeEVuFNxu7oRCAv0Q1auFf++pzWeX7pX2fbm/QkI8ONNAX2BV6/iISKiqslmd0Cv00Gv1+H0Rdcp6D//NQUPXRkPUlGbD7tOpPbnK33hZ6h4Z/8fL/dWlutGBuHX4xcw5taGvGOxD+G1VUREVCHZFhsa/fMHDPrAeaO97/e5zi/y4rJ913RcEcFbq/9Snm9//vZrKk6K6tLoRkzs1YTFiY9hDwoREVVI31mbAAC/p2Ri2rf73U6kZrU7KlxcfPzL1eN8NKI9okMDridM8nHsQSEiogopfEqnpFleX1hadi/Kkh0pqDflO9Sb8h1OnMvBsYxsZVuXRjded5zk21igEBGRR3zw4NVLfZfsPIVsi63U9pO/vjp4tfubG/D59hQAwP3tanMgK7FAISKi8suz2t2ub1M7DH1aRrusKzgV5E7Ll1aVuO3LXaevLTiqUjgGhYiIyu3r34oXD5880hG3NqlZbP3pi7kw51ldJlf75rfTmPTFH6X+jFsa8/QOsQeFiIgq4J+FxpaM79EIA9rEomuh8SKvD2rt0v7JRb+7PHdXnNQMMQEAEuLD0atFND59pKMnQyYfxR4UIiKqsBuC/PBsn6bF1j/QoQ78jXpMXOIsRDYcysD8X47DZDTgnsRaxdqfmDEA+/7OQsYlC3o0i/J63OQ7WKAQEVG52OwOGPQ62B2CTx9JKrHdPYm1lQIFAKavcE5/X3hGV8A5bgUAWtUK80K05OtYoBARUalOX7yMIH8j9v2dBbvDeTuTFnGh13XMhNphWDT6Zk+ER1UUCxQiIirGYrNj46EMfPzLcWw7dqHYdkMZ99qZM7Qtxi38ze02o16H5eO7eiROqrpYoBARUTH3zt2C/WfM17z/gDax6FD/dnT819pi2zY91+N6QqNqggUKEVE1JyKYu+Eofk/JxP8b7pxsrbTi5MSMAeU6blRIAP54qTfunLMZ3ZvUxIXLVgxoHYu48ECPxE1Vm05ERO0gKspsNiMsLAxZWVkIDb2+86BERNVZntWOZi+WPGlaUf8ZmoiBbeK8GBFVZRX5/GYPChFRNZSWlYeHPtqOw2ezy2y7ckJXnDifA5PRgF4tostsT+QJLFCIiKoZEcHNycXHhrhTcDqHlwJTZWOBQkRUxZ3LtuDk+RycPH8ZceGBOHvJUqzNzhd6IjLYH5fz7TiWkYOpS/dg/kjO6Erq4RgUIqIqrt6U70rcNu+hdujdMqYSo6HqrCKf37wXDxFRFbbxr4wSt73zQAKLE9IsnuIhIlKZiECnK33is/L6K/0SXvvuADaVUpgUuCextkd+JpE3sEAhIlKBiOCmV1YjK9cKABjVtT5eHNgCpy5cxi1vrAcA/Pr87QgN9EOAn6Fcx3x5+T58svWk223P92+Gfq1iER8RhGyLDSYjO9BJ21igEBGp4B9f7VGKEwD4aPNxPNG9oVKcAEDHfzuvtEmsE46lT3Qp8VhnL+W5nbG1wKt3tcRDneopz2uY+KeftI+/pURElej1VQfx9a7Tbq+kaffaGrf7/J6SiUt5VoQE+BXbtujXFEz9xvUuwTfW8EftG4LQq0U0at8QiLtuquWZ4IkqEQsUIqJKkG2xodXLP17z/s9++Qf++1B75fnKPWcwfuHvxdr9/FwPxEcEXfPPIdIKXmZMRORhNrsDmblWLPjlBB69pT7WHDiLZ7/8o1i7B9rHY9qdLfHPpXvxze9/K+vfH9YW/VrHup2GfnS3Bpi36VixYzWNDsGPE7t5PhkiD6rI5zcLFCKiclp3MB0vLN2HM1l5WDOpG2qY/KDXAVGhAbDZHTh54TLmrDviUmyUpHlsKH546hYArgNmB7SOxZxhbZV28385jukr/iz1WL+92AsRwf7XlxxRJfCZAmXOnDmYOXMm0tLSkJCQgNmzZ6Njx7JnLmSBQkSVxZxnxZOLfseGQ2VftluWN+5rg/9rH1+hfbIuW5Hwyk9ut/VrFYP3H2x33XERVRafuFngkiVLMGnSJHzwwQdISkrCrFmz0KdPHxw6dAhRUVFqhUVEpXA4BH+dvQQRYPnuM5j/y3H0bB6Nf93TCsfO5UAEOGvOQ5fGNyLUzYBOrRERbDiUgV+OnMOHm48X2x4VYnI7mLU8Hrq5Liw2Oyw2B57t3fSax4WEBfnh8L/64XB6Nvb9nYUjGdmoGxmEWuGBuLVJzWs6JpEvUK0HJSkpCR06dMB//vMfAIDD4UB8fDwmTJiAKVOmlLqvt3pQ8m0O5FrtEBEY9M5JkwTOP8oigF6vg14HGPQ66HUFD+dznU4HEWc7AeAQgUMEdofAahdYbHbk5tsBAFa7A3lWB/Q6HQL9DQj2NyDYZFT2AwB/gx4izpgAADpArwP0Oh10V/4FXJ/rdXCZ7ElE4BDA5nDA7hDlYXMIrHbH1f3h3C/f7kBuvh15Vufjcr4d2RYbciw25FqvLhv1ejSJDoHV7oBAoIMzBlw5jvN4UNYXPIfL80LtrrSFu23QXTmuc5vRoEdOvg2Zl/ORmpWHUxcuI98mqBliQq3wABgNelzIyYfNLkpsOfk2XMqzQUQQEmCECFAzxASTUQ+58nrk2xzItzv/X0SAYH/nvBN6vQ6hgX6oFR6AmjUC4BBBrtXubG9zwOZwwM+gV/5fbQ6Bze6AzSEQEQT6G2G1OWC1OxBkci7n5NtgsTpg0OsQ5G9AaKAfrHbnccKuzHlh1Otg0OtgNOjgZ9DD4XC+lgLn74dBp0OwyQi7w/ncz6CHTgdcyMmHn8H5++hv0MNo0MFmF1zOtyP3yutq1OuQbbFh/xkz9Dod6kUGwaDX4fKV388APz0sNgeyLc7/t3RzHo6czcbPh8/Bz6CD1V6+PxmzHrgJ4UF+uHg5H1a74Fy2Bf4GPax25/9ReJAf/I3O53aHXPld0MFw5XdZr9MhyGTADUH+uPLrA6td4Cj4XZYry1feZw4RWG0Ci90Bo77g/QFkW+zIzrMhJ9+GbIvNuWxxLp++mIu/M3PLlQ/gPC3z/ZNdcfL8ZXz922mkm/MQHuSvjAn59JGO6MaigahEmj/Fk5+fj6CgIHz11Ve4++67lfUjRoxAZmYmli9f7tLeYrHAYrn6LcZsNiM+Pt7jBcpn207ihWX7PHY8tRQUC743uohIPXod8ECHePx8+BxOX8xFz+bR6NwwEgnx4UioHQajgRObEV0vzZ/iOXfuHOx2O6Kjo13WR0dH4+DBg8XaJycnY/r06V6Pq6DXxFsC/QzQ6wA/ox7+Bj0cIsizOnA53waHB4uJ8hQmfgYddNApPT0OAfyNegT6GRDgV/CvAaEBfggyGRDkb0CA0YCcfBvOZOYh0M8Af6PzW7tc+WYvUmQZAIo8F5Er/xZsL/y88DGcbVFkm80hCPQzIDzID9GhATDnWlEzxASHCLJyrbA7cKUXwhmb3SGoYTIqgxmzcq3Q63VIN+fBZhdAB5gMevgZ9PA3Ov8FgFyrDXaHINfqwOH0S1d6lZy9TsEmA/yNzvyNeh2sdmdviFGvg1Hv7LUwXully8m3OY9t0OPSldk7a5iMCPAzwOYQ5FhsuJRnhZ9BD6vdgaxcK/KsjkK9XQ5YbA7leAU9ZFa7AzkW25XeO1zpMYLSoxIaYHT2VDicsQX7O39mgJ8eNocgyN+I0AAjbA6B/krPRICfHka9HpfzbfA36hES4IcQkxEhAUYYDXoE+OnRueGNaFM7TOnl0el0sDsEpy5cRkxYACw2B345cg7Lfv8bmblWmHOtiKzhDz+DHmfNFmRezkdUaAB2n8pEl0aRMBkN8DM4/98AKL2ODhFYbM7/j9x8O3Q6wCHOniKjXge9XgdDod5MQ0GPk/5Kj1Oh351gkxE1AoyoYTIi2L9g2dlrGRboh/Z1IxDoX76ZWomo8vjEPChTp07FpEmTlOcFPSiedn+72hjUtjb0OucHIQDl9IkOzj+QhT/Q7Ve68QvWixT8wXR2VRd0U/sZ9Eq3uzt2hyDPalc+bAo+iHVwFg2FP6CBqz/LUfDh7nBuLxxfwakRP4Pzj7lyykCvL3YqiOh6GPQ61LsxGAAQ4GdA/9ax6N86VuWoiMjXqVKg3HjjjTAYDEhPT3dZn56ejpiY4nfWNJlMMJlMXo+rcBeusRK/UBn0zvEERERE5KTKSVV/f3+0a9cOa9devXeEw+HA2rVr0alTJzVCIiIiIg1R7Wv7pEmTMGLECLRv3x4dO3bErFmzkJOTg4cfflitkIiIiEgjVCtQHnjgAWRkZOCll15CWloabrrpJqxatarYwFkiIiKqfjjVPREREVWKinx+88J+IiIi0hwWKERERKQ5LFCIiIhIc1igEBERkeawQCEiIiLNYYFCREREmsMChYiIiDTHJ28AUzB1i9lsVjkSIiIiKq+Cz+3yTMHmkwXKpUuXAMArdzQmIiIi77p06RLCwsJKbeOTM8k6HA6cOXMGISEh0Ol05drHbDYjPj4ep06dqjKzz1a1nKpaPgBz8hXMyTcwJ99QWk4igkuXLiEuLg56femjTHyyB0Wv16N27drXtG9oaGiV+SUoUNVyqmr5AMzJVzAn38CcfENJOZXVc1KAg2SJiIhIc1igEBERkeZUmwLFZDLh5ZdfhslkUjsUj6lqOVW1fADm5CuYk29gTr7BUzn55CBZIiIiqtqqTQ8KERER+Q4WKERERKQ5LFCIiIhIc1igEBERkeawQCEiIiLNqXIFSlW5KOns2bNV+maIfJ20KTc3V+0QPG7fvn34+eef1Q7Doy5duuTyHqoK76d9+/bh66+/ht1uVzsUj+H76fr4dIGSn5+PN998E/PmzcOvv/4KAOW+N49W5efnY+jQobj11ltx9OhRtcPxCL5O2me1WjF27Fjce++9GD58OLZt2+bzH3r5+fl49NFH0aZNG6xbt07tcDzCarXi8ccfR9++fXHXXXdhyZIlAHz7/ZSfn49Ro0ahTZs2+P3338u8P4sv4PvJQ8RHfffddxIRESFJSUnSsmVLiYqKkn//+99qh3Vd3n33XQkMDJTOnTvL77//rnY4HsHXSftSU1MlMTFROnfuLHPmzJGEhARJSEiQ119/XURE7Ha7yhFW3OzZsyU4OFg6d+4su3fvVjscj7h48aJ07dpVOnfuLIsWLZK+fftK48aNZeLEiWqHds3ee+89qVGjRpV6nfh+8hyfLVDuu+8+GTt2rIiInDlzRj766CPR6XQyf/58sVgsKkdXcUOHDhWdTifvv/++si47O1vFiDyDr5P2ffXVV9KyZUs5ffq0iIhkZmbKtGnTJCAgQPbt2yciIg6HQ80QK+TgwYMSGBgo//d//6esO3LkiGRkZPjk71yBDRs2SOPGjWXv3r0iIpKXlyfz588XnU4nP/zwg8rRVVxWVpZERETIbbfdpqw7cOCAHDlyRMxms4qRXR++nzzHJwuUo0ePSu3atWXx4sUu60eOHClt27aVbdu2qRTZtfv444+lYcOGsnnzZklJSZExY8bIkCFDZMKECfLdd9+JiO9V3seOHasyr5PVahWRqvU6FcT5/vvvS1xcnMu21NRU6dmzp3Tp0kWN0K5LXl6eTJs2TeLi4uTAgQMyePBgadq0qTRu3Fj69esnq1evVjvEa/L1119LYGCgyzqHwyEPPvigtGrVSnJzc1WKrGIKfzh//PHHEhERIT/99JPcf//90rBhQ2nUqJF07NhRPv74YxWjrDi+nzzPJ072rV69Gnv27IHD4QAA1K9fH/n5+bh48SKAqwORZs6cidTUVHz//ffIz89XLd7yKMipYEDYww8/jLp162LYsGHo2LEjMjIyEBcXh127duGuu+7Cpk2bNH9u9ujRoy7nWevWrevzr1NBTkajEYDvv07z5s3DwoULceTIESVOg8GAmJgYl4FvMTExmDJlCnbs2IHVq1cD0O5AzIKcDh8+DMB5H5CRI0ciODgYLVq0QFBQEGbNmoVp06YhPz8fkydPxo4dO1SOunQFY7UK/uYBzlvXx8fH4+uvvwbgfD10Oh1efvllHDlyRFlfeB8tKcip8O/RyJEj0ahRI/Tp0wehoaH4+OOP8e6776J169Z44YUXND926KuvvsKaNWuQmppaZd5PhXMCrr6fatSoUfnvJ6+VPh4wf/58iYmJkdatW0tISIg88cQTSrfZ448/LgkJCUrb/Px8ERF56aWXpE6dOmKz2dQIuUzucjp58qSIiGzdulUSExNl8eLFSvwWi0WGDBkirVu3VjPsUn300UdSp04dadeunSQlJcn//vc/Jf7Ro0f75OtUNKfPPvtM8vLyRERky5YtPvc6rVq1SmrWrCk33XST1K1bVxo3bixvvfWWiIjs2bNHmjdvLjNmzHDpsk1LS5M777xTHnroIbXCLpW7nN5++20RcX6bXbp0qbz66quSlZWl7PPrr7/KbbfdJuPGjVMr7FItXbpU4uLiJDIyUo4fPy4iV3vvjh07JrfffruMGTNGOa1ot9vFarXKww8/LN26dVMr7FK5y6nw+37Hjh0yZcoUOXfunLLu+PHjcvfdd0v//v0rO9xy+fTTTyUqKko6duwoNWvWlC5dusjXX38tIiK//fabtGjRwufeT+5y+uabb0TE+fdt2bJllf5+0myB8uGHH0qjRo1k0aJFkpGRIZ9//rkEBwcrgxK//vpradasmcyaNUtERPnwOHbsmAQFBcmOHTvUCr1EJeX022+/KW22bNni8gsgIrJt2zYJCAhwaacVs2bNkkaNGsnixYtl8+bN8vLLL4ter5e5c+eKw+GQFStWSJMmTXzqdSoppzlz5ijx//zzzz71Ot13330yevRoERH566+/5M033xSdTifffvutiIiMHTtWOnToIOvXr3fZb9CgQTJixIhKjrZ8iuY0c+ZM0el0smLFChERycnJKfYaiYjceuutMmrUqEqNtTw+++wz6dChgwwePFi6du0qjz/+uLKt4LTIq6++Kh07dpT//e9/LvtOmjRJevXqJZcuXarUmMtSWk4FHA6H27gffPBB6devn6bGeFmtVpk1a5Y0b95cPvzwQ7FYLPLLL7/I8OHDpV+/fnL58mURcX4x69ixo0+8n8rKqeDUodlsdvs6efP9pLkCxeFwiM1mk6FDhxarNBs3biy7du0SEWc1+uSTT0qdOnXkzJkzSptly5ZJnTp15MCBA5Uad2nKyqmkUdEF5zRnz54ttWrVksOHD3s91orIycmRXr16ycsvvywiV/+IduvWTWrXri2rVq2SvLw8mTBhgk+8TiKl51S3bl3lG0VhWn2dCmI/duyYhIeHy6pVq1y2Dx06VBo3biwZGRmSnp4uiYmJMmTIEKWXUkSkf//+mrpKpDw5NWvWTI4dO+Z2/3PnzkliYqIkJyd7PdbyKuhN2LZtm0yZMkVOnjwpb7zxhjRt2lT5gCv4Jn7u3Dm55557pFu3bnLw4EHlGA8++KCmPvjKk1NpvaeXL1+W2267Tf7xj39URrjllpmZKf/85z9lxowZLmPNZsyYIV26dJHMzEwRuXolj9bfTyJl51Ra0evt95PmTpbrdDoYDAYcOHAAJpMJ6enpAIAnn3wSer0e3377LbZu3Yro6Gg89dRTqF27NgYOHIglS5bg6NGjWLRoEVq2bIl69eqpm0ghZeW0bNkybNu2DXl5eS776fV6nD59GuvWrcN9992HRo0aqRF+iYxGI3bt2oWmTZsCACwWCwAgKioKDocDn332GaxWK8aPH4/4+HjNv05A6TlZrVYsXboUGRkZLvto7XU6fPiwMj4BAGJjY+Hv74+UlBQAUMb9zJ07F3///Tc+/PBDREVFYcqUKTh9+jS6dOmCt99+G8OHD8fOnTtx7733qpZLgYrklJKSoozHKJCXl4fU1FQ899xzAIBBgwZVYvTuFeRkMBgAAElJSXj11VdRp04d9O/fH02bNsXMmTMBAP7+/rDZbIiMjMSkSZMQHByMm2++Gf/4xz/w4IMP4vvvv8f9998PQN2xDRXJyWAwFIs1KysLp06dwvjx45GamorBgwdXeg5FFeQEAGFhYbjvvvvw7LPPQq/XK+N94uPjkZOTg8DAQADOMSfPP/+85t9PQNk5+fv7F9u/0t5PXil7KuCLL76QRx99VGbNmiV79uxR1i9atEji4+OlV69eEhkZKc2aNZNXXnlFevToIW3atJEZM2aIiLMnpU+fPtKiRQuJi4uTzp07K+c51XItOSUkJMi//vUvEXHOd7Bo0SKZNGmSREZGSt++fV16H9RQUk5DhgyRZs2aKd8SPvvsM+nRo4c8+uij0qhRI6VtWlqa9O3b1ydep9JyatKkiXKa8eLFi7J48WLNvE5LliyRevXqSdOmTaVjx47y0UcfiYjzMujhw4dLnz59lG/iBWOBpk6dKnXq1FGOcfr0aRk9erRy/r/wt3Q1XGtO9erVU46xePFiGTNmjERGRkr37t3l6NGjlZ9IISXlJFL8CpcWLVooV7MUjEURcZ4q/ec//ynDhw+Xe++9V7Ovk0jpORX+xv7DDz/I2LFjlddJ7Z7Iojl9+OGHLtsLxz506FAZOXKkiIjLuBOtv5/Km1Ph3q4lS5ZU2vtJtQLl3Llzct9990lMTIyMGTNGunbtKrVq1ZL58+crbdLS0uSNN96Qbt26uVwX/9hjj8k999wj6enpIiKSm5srqampLh8yavBETpmZmXLu3DmZOXOm3HrrrcoYAbWUlNMnn3wiIs5z/w0aNJAGDRpIXFycBAUFKYPFjEajcumtiPOPqpZfp4rmlJqaKm+++aYmXqeffvpJ6tWrJ3PmzJFVq1bJpEmTxGg0yrx580REZMGCBZKYmCj//e9/ReTqh92OHTukZs2axcYCaeGS1evN6ddffxURkf3798urr74qP/74ozqJFOIuJz8/P5k3b54yfqEgj9OnT8uoUaOkQ4cOSjd70XkntDDI3FM5nThxQubMmSNr1qxRJ5FCSsup4L3hcDjE4XBIbm6utGnTpti4oMK0+n66lpz27NlTae8n1QqUL7/8Ujp27Ohyfm7QoEHSsGFD5cPAarXK4MGD5bXXXhORq7/IkyZNkoYNGyqDp7Qy6Y0ncip4Q2tlsFtJOdWvX1+WLl0qIiKnTp2SH3/8UT755BPlW+zZs2elQYMG8uWXX6oRdqmuN6cvvvhC2U/t16ngd3/69OnSrl07JVYRkSeeeEISExPlxx9/FLPZLMOGDSvWc7VkyRKJi4srccyGGjyVk9o9JYWVlVP79u3djm9auXKltG/fXl5++WX5448/ZODAgZKSklJpcZfGUzkNGDDAp3P6+++/pV69evLXX3+JiPMLjpbGmXgqp6effrrygr5CtTEoCxcuRO3atVGrVi1kZ2cDAO68804cO3YMc+bMQXp6OoxGI86fP4+dO3cCcJ6HTU9Px19//YXBgwcjODgYgHbuQ+GJnArOYdaoUUO1PAorKacTJ05g9uzZOHv2LGrXro2ePXti+PDh8PPzAwCsX78e/v7+6Nq1q5rhu3W9Od1yyy3KsdR+nQp+9//88080bNgQfn5+sFqtAIDXXnsNwcHB+Oyzz2AwGDBu3Djo9XoMHjwYW7ZsQUpKCr7//nu0a9cOMTExaqbhwlM5xcbGqpmGi7JyCggIwPLly5GWlgYAyvxIPXr0QMeOHfHKK6+gXbt2sFqtiIqKUieJIjyVk81m89mcAGDNmjWIj49HbGwsnnrqKbRo0QInT56E1WrVxFwnnsopJSWl8nOqjCpo48aNsmrVKpdzqM8995w0bdrUpd2UKVPk9ttvl86dOyvdtuvWrRM/Pz/p3LmzjB07VmrXri3dunVT5g5RC3Ny5lTQ3S7i7GE4cOCAzJ49W+Li4uT5558Xq9Wqag9XVcvpp59+kgkTJsg777wj27dvV9bPmzdPQkJClC7/gm9J8+bNk0aNGsnmzZtFxDltdbt27aRp06YSHR0tiYmJqp8XZ07O9U2aNJENGzYobbOzs+Wdd94Rg8Eg3bt3V/3UKHO6mlPBlUgOh0Puv/9+ueGGGyQyMlJatmyp+tQJVSknrxYoGRkZMnz4cNHpdJKQkODSDXv06FGpWbOmdOvWTd544w3p1KmT1K9fX9auXSsJCQnywgsvKG2XLl0qkydPlqFDh7p0r6uBObnm9OKLLyptd+3aJXfffbfUr1+/1POxlaGq5XTmzBkZOHCgREVFybBhw6R169YSFham/AE6dOiQ1KpVS4m98FiFmJgYZQIzEedpqePHj6t+qwHmVDynd955R3m+f/9+SUpKkk8//bRScyiKOZWcU05OjgwcONDtLT0qW1XMyWsFitVqlblz50qfPn1kyZIlEhQUJMnJycpEVyIimzdvlkcffVTatm0r48ePl4yMDBEReeihh2TQoEHeCu2aMaeyc9LCJGVVLaecnBwZMWKEPPDAAy5jRTp27KiMsjebzfLaa69JYGCgcj6/oJfn1ltvlUcffVTZTwtjtphT2TlpAXMqO6edO3dWYvTuVcWcRLzcg7Jt2zbl6obp06dLzZo13d6evnAll56eLq1atVIGkWrtxmvMyaloToVPoWhBVctp9OjRyh1rC+KaNm2aJCUluUxe1qVLF7n55pvlxIkTIiJy8uRJad68uaxcuVKdwEvBnJiTWpiTb+Tk1QKl6LeauLg4GT16tHJ5beHtubm5kp+fL3PnzpXExETVz02WhDkxJzUUHnlfUOAOHTpUHnvsMZd2p0+flkaNGkm9evXkvvvuk7i4OLntttskLS2tUuMtD+bEnNTCnHwjp0oZJFvwLfWLL74Qo9EoP/30k8v206dPy9y5c6V9+/YSEREhCxcurIywrgtzYk5q69KliyxYsEBEnH+QCv4oHT58WBYvXiwTJ05UtvsK5uQbmJNv8PWcKn0elE6dOknPnj2VSdbOnj0rIiILFy6UN998s7LD8Qjm5BuqUk5Hjx6V6Ohol3PFRSfx8jXMyTcwJ99QFXKqtAKl4JzYvn37xGAwyLvvvitPPvmktG3bVvbu3VtZYXgUc/INVSmnglNTn3zyiTRs2FBZP23aNBkzZoxSfPkS5uQbmJNvqEo5qTKTbIcOHUSn00ndunWL3Y3UVzEn31BVcho3bpw899xzyvTVUVFRmpjK/XowJ9/AnHxDVcipUguUI0eOSKtWrSQoKKjYTYp8FXPyDVUpp9zcXGnUqJHodDoxmUzKjTN9GXPyDczJN1SVnIyVN2et8/bagwYNwuTJk5Up3X0dc/INVSmngIAA1KtXD7169cLbb7+NgIAAtUO6bszJNzAn31BVctKJaOBmAURUIXa7HQaDQe0wPIo5+Qbm5BuqQk4sUIiIiEhzVLubMREREVFJWKAQERGR5rBAISIiIs1hgUJERESawwKFiIiINIcFChEREWkOCxQiIiLSHBYoROQVI0eOhE6ng06ng5+fH6Kjo9GrVy98/PHHcDgc5T7OggULEB4e7r1AiUiTWKAQkdf07dsXqampOHHiBH744Qf06NEDTz31FAYOHAibzaZ2eESkYSxQiMhrTCYTYmJiUKtWLbRt2xbPP/88li9fjh9++AELFiwAALz99tto3bo1goODER8fjyeeeALZ2dkAgA0bNuDhhx9GVlaW0hszbdo0AIDFYsGzzz6LWrVqITg4GElJSdiwYYM6iRKRx7FAIaJKddtttyEhIQHffPMNAECv1+O9997D/v378cknn2DdunV47rnnAACdO3fGrFmzEBoaitTUVKSmpuLZZ58FAIwfPx5bt27F4sWLsWfPHtx///3o27cvDh8+rFpuROQ5vBcPEXnFyJEjkZmZiWXLlhXbNnjwYOzZswd//vlnsW1fffUVxowZg3PnzgFwjkF5+umnkZmZqbRJSUlBgwYNkJKSgri4OGV9z5490bFjR/z73//2eD5EVLmMagdARNWPiECn0wEA1qxZg+TkZBw8eBBmsxk2mw15eXm4fPkygoKC3O6/d+9e2O12NGnSxGW9xWJBZGSk1+MnIu9jgUJEle7AgQOoX78+Tpw4gYEDB2Ls2LH417/+hYiICGzevBmjRo1Cfn5+iQVKdnY2DAYDdu3aVeyW8jVq1KiMFIjIy1igEFGlWrduHfbu3YuJEydi165dcDgceOutt6DXO4fEffHFFy7t/f39YbfbXdYlJibCbrfj7NmzuOWWWyotdiKqPCxQiMhrLBYL0tLSYLfbkZ6ejlWrViE5ORkDBw7E8OHDsW/fPlitVsyePRt33HEHfvnlF3zwwQcux6hXrx6ys7Oxdu1aJCQkICgoCE2aNMGwYcMwfPhwvPXWW0hMTERGRgbWrl2LNm3aYMCAASplTESewqt4iMhrVq1ahdjYWNSrVw99+/bF+vXr8d5772H58uUwGAxISEjA22+/jddffx2tWrXC559/juTkZJdjdO7cGWPGjMEDDzyAmjVr4o033gAAzJ8/H8OHD8czzzyDpk2b4u6778aOHTtQp04dNVIlIg/jVTxERESkOexBISIiIs1hgUJERESawwKFiIiINIcFChEREWkOCxQiIiLSHBYoREREpDksUIiIiEhzWKAQERGR5rBAISIiIs1hgUJERESawwKFiIiINIcFChEREWnO/weX4pPirWZQkgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data['Adj Close']['AAPL'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "cols_with_many_nas = [\n", + " \"BRK.A\",\n", + " \"APHA\",\n", + " \"UTX\",\n", + " \"RTN\",\n", + " \"COG\",\n", + " \"BRKB\",\n", + " \"ATVI\",\n", + " \"FLT\",\n", + " \"DOW\",\n", + " \"KHC\",\n", + " \"V\",\n", + " \"APTV\",\n", + " \"ABBV\",\n", + " \"ESRT\",\n", + "]\n", + "df = data['Adj Close']\n", + "df = df.drop(columns=cols_with_many_nas).dropna().pct_change().dropna()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGWCAYAAAB1i/n1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuiklEQVR4nO3dd3gU5doG8Hs3lUAKgZAQeu8lBIhBpCMRURHkAEYpcrBioegnnqNgRQ8IHBTloCI2FHtBRSGI9GLoVTqhJNQ0QurO90fYze5mdnZmd3ZndnP/riuXspmdfffNlGfe8rwGQRAEEBEREfkRo9YFICIiIlIbAxwiIiLyOwxwiIiIyO8wwCEiIiK/wwCHiIiI/A4DHCIiIvI7DHCIiIjI7zDAISIiIr/DAIeIiIj8TqDWBdCCyWTCuXPnEB4eDoPBoHVxiIiISAZBEJCXl4f4+HgYjU7aaAQvePvtt4VGjRoJISEhQvfu3YWtW7c63Hbfvn3CsGHDhEaNGgkAhHnz5lXaZsaMGQIAm59WrVrJLk9GRkal9/OHP/zhD3/4wx/f+MnIyHB6r/d4C87y5csxZcoULFq0CElJSZg/fz4GDRqEw4cPo06dOpW2LygoQNOmTTFixAhMnjzZ4X7btWuH1atXW/4dGCj/q4SHhwMAMjIyEBERoeDbEBERkVZyc3PRoEEDy31ciscDnLlz52LixIkYP348AGDRokX4+eefsWTJEjz77LOVtu/WrRu6desGAKK/NwsMDERcXJxLZTJ3S0VERDDAISIi8jFyhpd4dJBxcXEx0tPTMWDAgIoPNBoxYMAAbN682a19HzlyBPHx8WjatClSU1Nx+vRph9sWFRUhNzfX5oeIiIj8l0cDnEuXLqGsrAyxsbE2r8fGxiIzM9Pl/SYlJWHp0qVYuXIl3n33XZw4cQK33HIL8vLyRLefNWsWIiMjLT8NGjRw+bOJiIhI/3xymvhtt92GESNGoGPHjhg0aBB++eUXZGdn48svvxTdfvr06cjJybH8ZGRkeLnERERE5E0eHYNTu3ZtBAQEICsry+b1rKwsl8fPiImKikLLli1x9OhR0d+HhIQgJCREtc8jIiIiffNoC05wcDASExORlpZmec1kMiEtLQ3JycmqfU5+fj6OHTuGunXrqrZPIiIi8l0en0U1ZcoUjB07Fl27dkX37t0xf/58XLt2zTKrasyYMahXrx5mzZoFoHxg8oEDByz/f/bsWezatQs1atRA8+bNAQDTpk3DHXfcgUaNGuHcuXOYMWMGAgICMHr0aE9/HSIiIvIBHg9wRo4ciYsXL+KFF15AZmYmOnfujJUrV1oGHp8+fdomG+G5c+eQkJBg+fecOXMwZ84c9O7dG2vXrgUAnDlzBqNHj8bly5cRExODnj17YsuWLYiJifH01yEiIiIfYBAEQdC6EN6Wm5uLyMhI5OTkMA8OERGRj1By//bJWVREREREUhjgEBERkd9hgEOKLNt6Gt/tPKN1MYiIiCR5fJAx+Y8LuYV47ru9AIC7OtWD0eh8LRAiIiItsAWHZMstLNG6CERERLIwwCHZqt58OyIi8lUMcEg2k1WAw1iHiIj0jAEOySYwrCEiIh/BAIdkM5m0LgEREZE8DHBINhMH4RARkY9ggEMuqYIrfBARkQ9hgEOyMaYhIiJfwQCHZGMXFRER+QoGOCSbdYDDUIeIiPSMAQ7J5iioKS3j9CoiItIXBjgkm9jA4i//ykCr51di7eELGpSIiIhIHAMcks06vjH//zNf70GZScCDH6drUygiIiIRDHBINhMH3hARkY9ggEOySea+MXivHERERM4wwCHZpFpwGN8QEZGeMMAh2QSbaeK20Y6BEQ4REekIAxySTWoIjoFtOEREpCMMcEg2JjImIiJfwQCHZLPJZGwX7LCLioiI9IQBDskm3UVFRESkHwxwSDYutklERL6CAQ7JJpUHx8A+KiIi0hEGOCQbG3CIiMhXMMAh2ZjImIiIfAUDHJJNcgwOIxwiItIRBjgkm0lkNXEzxjdERKQnDHBIAQ4yJiIi38AAh2STWmyTiIhITxjg6FxJmQkXcgu1LgYA224pLrZJRER6xgBH5+56eyO6v5aG/edytC4KE/0REZHPYICjcwfO5wIAfth1TuOScKkGIiLyHV4JcBYuXIjGjRsjNDQUSUlJ2LZtm8Nt9+/fj+HDh6Nx48YwGAyYP3++2/skdQiSi20yxCEiIv3weICzfPlyTJkyBTNmzMCOHTvQqVMnDBo0CBcuXBDdvqCgAE2bNsXrr7+OuLg4VfZJ6mAXFRER+QqPBzhz587FxIkTMX78eLRt2xaLFi1CWFgYlixZIrp9t27dMHv2bIwaNQohISGq7JPUwTx/RETkKzwa4BQXFyM9PR0DBgyo+ECjEQMGDMDmzZu9ts+ioiLk5uba/PgaqYUuvVcGx79jDxUREemJRwOcS5cuoaysDLGxsTavx8bGIjMz02v7nDVrFiIjIy0/DRo0cOmzqzrrLqrKsQ4jHCIi0o8qMYtq+vTpyMnJsfxkZGRoXSTF9DCIVweNSERERLIEenLntWvXRkBAALKysmxez8rKcjiA2BP7DAkJcTieh+SzT+5HRESkVx5twQkODkZiYiLS0tIsr5lMJqSlpSE5OVk3+/QFehiDY7vYJjMZExGRfnm0BQcApkyZgrFjx6Jr167o3r075s+fj2vXrmH8+PEAgDFjxqBevXqYNWsWgPJBxAcOHLD8/9mzZ7Fr1y7UqFEDzZs3l7VP8gzOoiIiIl/h8QBn5MiRuHjxIl544QVkZmaic+fOWLlypWWQ8OnTp2E0VjQknTt3DgkJCZZ/z5kzB3PmzEHv3r2xdu1aWfskz5DqomILDhER6YnHAxwAmDRpEiZNmiT6O3PQYta4cWNZ3TFS+yTPkFpN3MA2HCIi0pEqMYvKH+hjFpXUNHEiIiL9YIDjI/QwyJiJ/oiIyFcwwCFVML4hs3PZ1zH1y93YdzZH66IQURXGAIdcwtXEyZEnPt+Jb3acwZC3NmhdFCKqwhjgEJGq/s7K07oIREQMcMg1uddLtC4C6RRb84hID7wyTZz8zy3/+QNP9m+hdTGIiIhEsQWHXPbftCOW/+dDOxER6QkDHFIFAxwi91zOL8Lv+zNRWmbSuihEfoEBjo/QQRocScxkTGYMdl0zeMF6PPhJOj7ceFLrohD5BQY4JEtxqQl/HL7g8Pe8qRG5Jyu3CADw+4FMjUtC5B8Y4JAsb/5+GGsPX9S6GERERLIwwPERWreQLP8rQ9sCkM9gYx4R6QEDHFKFP9/U/vz7It78/TBMUsupExGRrjAPjo/Q/SBjrZuYPGjskm0AgGYxNTA0oZ7GpdE/fz4WvEHv5zqRr2ALDsni7JZVFW5pZ7Ova10EIiKSiQEOEZGOsAGMSB0McEgdvCiTF2TlFqLEzxPhsYuKSB0McEgWZ+MqqkJ8wydrbe07m4Ok19Iw7J1NWheFiHwAAxxSRVUYWMpszfJ4qpa+2XEGALD3bI6HPoGI/AkDHCJSladiXXbdEJESnCauU2VVNOeKIAhVojWIiIg8iwGODplMAgbM/ROBRt+50YuV9Gz2dcTUCEFwoLyGQpNJwMjFmxERGoQPxnVTt4BERFSlsItKhy7kFeHEpWs4ciFf66JYOM2DY7dB+qkruPn1NbhnUcWA0OyCYgxduBFLN54Q3cfJy9ew/eRVpB26gFIdzpRhw5K2TOyjIiIFGOCQKuwH4H71V/mA0D1nKgaEvrv2GHZlZGPmTwdE98Hbl79gJEj6c+LSNby//jiuF5dpXRTyEnZReVlRaRnST11FYqOaCAkM8MhnvLfuOOpEhOCuzt5bVsC+dUPsYft6ifSFxfo9DHbIHhtwyB1956wFAFzML8L029poWxjyCgY4Xvav7/bh6/Qz+EfX+vjPPZ1U3/+RrDy8+stBAFA1wJHbPbP/XA4e+iQdl/OLK+9DwefxZqZPV68VIywkwGPBuRR2UZEatp+4onURyEvYReVlX6eXd918eaMLRy65l/arBSUKS6Sup77YhTNXr4u21jifHSVY/Z/+bmZVvePlQl4hEl5ehZ5v/CG5HccquUd/Rz6Rb2KAQ6o4lJmHTzafRKlK09v5sK4/m49dBgBczCvS5PN5SJAa1DqO9p7JwejFW7DnTLZKeyS1McDxEb7wUPz8D/shNbPd+sn+jZWHINhFMXoLar5JP4Pp3+7Vuhh0g96OD0/xhXPdl6l1HI343yZsPn4Zd3PpEN1igEOqCpCIcKxnWr279hjWHbnkcFs93MymfrUbn287bfm3r3a9FJWW4b73t+LtNUe88nnW1VRYUoZ9Z3MqBbOu0cFB4QVV41v6vsKS8lQW/p6U1Zze46NNJ7UuimIMcDR2Lvs69vnR2joBRvmH1JVrjrs69DgGx1f9uOscNhy9hDm//+31z77v/a0Y8tYGS9oAd+gh6CX58gpL8N3OM8gt1HZcILnHnN5jxo/7tS6KYgxwNNbj9TUY8tYGnLp8TXI7Odf27IJiDx6E8povAiSOKPvGHanFK/38ocirCku1S5r416mrAIDPt592siVp5Zv0M5i3Sv3gd/LyXZi8fDee/Hyn6vsm7ynw4bxBnCauEwfO5aJRrepu7eOlnw7g4PlclUrkmgCJfhz7X0l1+ajTpUF6YVShf4+HhGdM/Wo3AKBPqxgkNKyp2n5XH7wAAPjj8EXV9qkGHkbK+GrXPMAWHN1Q46Q7nJWnwl7cIzUGxxnBwf/rhVSLE1UQuyCqUXPMg+NZ2RqnmPAaHkdVhlcCnIULF6Jx48YIDQ1FUlIStm3bJrn9V199hdatWyM0NBQdOnTAL7/8YvP7cePGwWAw2PykpKR48it4nPU55+oNwpPnrdwoXnKQsd1OpPLi8BrkX3z5KbCq0Nu4t4wrBVi87hjyOIZHU7586no8wFm+fDmmTJmCGTNmYMeOHejUqRMGDRqECxcuiG6/adMmjB49GhMmTMDOnTsxdOhQDB06FPv27bPZLiUlBefPn7f8fP75557+Kl4jdnPX16XHMelZVNL/FvTehEMuU6P1i4dE1TLkrQ147ZdDeNHB2nWu4nGkjPMErfrl8QBn7ty5mDhxIsaPH4+2bdti0aJFCAsLw5IlS0S3/+9//4uUlBQ8/fTTaNOmDV5++WV06dIFb7/9ts12ISEhiIuLs/zUrKle37Gv8tSJm1tYIju5m2QXlZIxODq8DPnqeS5V7PVHLuK2/65XLVlZaZkJWbkix4oKdefNVr25vx/GxI//0mQKMMeflcu5Xt5ys+mo43QSRFI8GuAUFxcjPT0dAwYMqPhAoxEDBgzA5s2bRd+zefNmm+0BYNCgQZW2X7t2LerUqYNWrVrhkUceweXLlx2Wo6ioCLm5uTY/emN9Q3f1RuqpC+P9H0h3KVqTGkxq/xRv/2/rOuA1Xj1SVXn/B9tw8Hwuxi6R/zeWYp03yJoasaE3g94Fa45i1YEsbLS7uZpMAnacvopCJwvH+iK9nnNqF0uv35PU59EA59KlSygrK0NsbKzN67GxscjMzBR9T2ZmptPtU1JS8PHHHyMtLQ1vvPEG/vzzT9x2220oKxO/6MyaNQuRkZGWnwYNGrj5zZTbdzYH6afkLfKm9QlYWmY7rXh3Rrbs90o1Z9r/Sqqxh9cg7zI/LbvLPC3cniqtXxocFMV2U+w/3HQSw97ZhAeWbvfYZ/pyl4AnaH09JN/lk7OoRo0ahTvvvBMdOnTA0KFDsWLFCmzfvh1r164V3X769OnIycmx/GRkZHi1vIIgYMhbGzD8XfFWq/JtlO0z53oJth6/LNlqs/aw+DgnKVuPX0ar51diyYYTit8LAAHye6gkb3qcMaMe62r+x6LNOJ9z3SufZfu6b47BuVZciiNWsxM/23IKALDpmOMWY3dp1UXFU05bgiB4/G+fV1iCC7mFit7jy/G2RwOc2rVrIyAgAFlZWTavZ2VlIS4uTvQ9cXFxirYHgKZNm6J27do4evSo6O9DQkIQERFh86Nncg6oIW+tx8jFW/DtjrOW1+zPjXEfbkd2QbGiz57y5W6UmQS8tMK1gX3Ss6gqvWLzL+vyu3KeZxcU4/nv92HnafFWBAK2nbyCmRpkJFXjIqnFjf/JL3Zh4Lx12Hq8PKDx5xhAr99N7a5JPY7vKykzYdD8dXjwk3SPfk6Hmb+j+2tpuHJN2X3BV3k0wAkODkZiYiLS0tIsr5lMJqSlpSE5OVn0PcnJyTbbA8CqVascbg8AZ86cweXLl1G3bl11Cq4ypddlOdtnXCl/Cv9573nJ7eb8fljZh7tJ0Rgcu02tW21cuQi9vOIgPtlyymOL3/lL14FYd5Sc2nbn+6uS6M/tPbju133lXeTeCLL85Tgj+dJPXcXfWflYdSDL+cYq2H9O/vJAvpz/y+NdVFOmTMF7772Hjz76CAcPHsQjjzyCa9euYfz48QCAMWPGYPr06Zbtn3zySaxcuRJvvvkmDh06hJkzZ+Kvv/7CpEmTAAD5+fl4+umnsWXLFpw8eRJpaWm466670Lx5cwwaNMjTX8dj1FmKsPJeLuUV35jZIq9Z0t1rq2SA42Tf7k4TP3pBXqLDMpOAM1cLlH+An3D1Hi3n5u7o5uype3Z+USkOZXp+0oC5/N4IsjiLypba1cHqrQhaCkvKcK2oVOPSeI7HA5yRI0dizpw5eOGFF9C5c2fs2rULK1eutAwkPn36NM6fr2iF6NGjB5YtW4bFixejU6dO+Prrr/H999+jffv2AICAgADs2bMHd955J1q2bIkJEyYgMTER69evR0hIiKe/jkscnU8/76n43oKbrReOBAYY8M+P/0LSa2kOpwIfv5ivWpOlkkzGUnlwPHkNmrRsB3q+8QdW7DnnwU/RL7G69YVnNLEb06B565Ayfz22HPfcmBjAt59i5dJrYFUVZlF5u0zmgL3Ly6vQbsZvkrMCfblB0StrUU2aNMnSAmNPbGDwiBEjMGLECNHtq1Wrht9++03N4mnmsWU7ZG/r6ARwdlEqLDFh7Y21YL7dcRYd60fZ/D7jSgH6vfknAODk67e7fTBLvd9ZJmN3p4nLbdo3dzcsXnccQzrGK/8gX+fixdSdrhM1ul3Ein02u7yr9te953FT01puf4YjlhYcHd4cfcGl/CLUruHaAyjrXH0GlKc8MC+kmXGlAC1iw7UtlAf45CwqXyPnyaikzLWbu02vjsj7Vh+s6NNtKXIA71IwBVwOJZmM7Tc12bTgKL+qid1DBUHAo5+lY/LyXU7L43T/iktU4XzOdZy4JL1ivJbUuoc4nkXlPqnz6KPNpxzm4CF5PBlHLPzDdgLI+ZzrWH9Em0U4q0K8JAgCJizdjkmOHqINtmMeJdN7qF04L2KAoxPTbqzoW1Rahv3nKo8pkPMA7OzEDQsOcPoed5vilbzb/jvZdNOpdBXKzC3EL3sz8d3OsygotutrdrNV4e+sPLz+6yHkyFikMHnWGvSds1bWtv5IlVlUTn4//du97n+I0zJUhduj+krLbOstedYa3P/BNvz5t5wgx/q6wPqX48zV60g7dAEr9pzH0Qv5otuUWdWlG2sk6xoDHA8yn4xKTsnHPtuBiR//5dbnucPdG5FUCez3XTmTcQVX8uCIFd2mVchul9Yn9dEL+fhDYd6gW+etw6I/j+GFH/c53/iGM9naD24Wu0mrdn1zsCNX959dUIyBc//EgrQjmj56++n134YWsYOSsVNbj19G11dW++XYObUDZ+vr55C31lf6vQEG2WMefXkMDgMcD/l2xxkkvrIaqw5kKWo6X31Q/CbreAyOK6VzzN1jWaw82QXFuJxfhG0n7DI53/iw0jIT1v19EblW05flfq+lG0/gf38eK9+dwjPReusBc//E+A+3S3bZXcovEk2StfeM/CmXWtxEPH2Byi8qdbpWmatjcN5ffwJHLuRj7qq/NW09UToGZ93fFzFp2Q5cdWHw/o7T2Yrf44qZP+7Hm15OI2FPTn2atxn34XZcvlaMSct2uvmZ/t8KZP3wWFhiqvx7A2zWWftyu7rJb7efvILU97fYJMnUglcGGVdFU74s73JS0hpz8Lx7012dnbbHL4o3VVpzdzCoWMvLzB/3Y9WBLFwrth2pv3JvJvq0jMH/1h3H7N+UX2iLSssw88ZKw8O61LcJWPKLSlFdpEvOmQPnctG5QZTo795ZewzvrD2Gw6+kICRQ/r63n6wI7LRZvNGz+28/o3zQ/47nBzrcxtWjqthq2RBfui+NubG2V1hwAP5zTyeNS1NZxpUCLN100u5Vz1WwO8Gp+Z3Ozp3rxWX4YMNx3NouTnS8IVUwwLaL6oDEvceVe8KIReVZ+x/4aDvWP9NP8fvVwhYcHXE4IMxKTkFJ5ZYQADN+2IfjF6UHsS5YI57p2VpJWeVo3117z+ZUCm4AYPlfGVh7+CK++qvy04Ocm5nJqqiFJWU2LRXtZ/yG8U7WCxI7ceV0jWXbj6OROP/zCkssJ7vc/XuakiJsOnpJ9pIfB87lOhzDpU4mY/f34SrzsaK0DJliK6vrQFFp5fNcrfotKC7F6MVbZG2rZqvc3FWHMef3v3HrvHWq7VNvTly6JitTu7PzzWAwQLA6BNz525eWmbD/XI5oy1hWjrbHPwMcHbkuEgTYG7xgPf7xv4ob5p9/X8SFvEJ8tPmUrM9wFsCcueq5dYrE7MzIhtiDmf2Fz5WEVObp8Y6IXQNcOs8l3pRbaFtmDRpwXAousguKUVJmwr3vbxVd8uPU5WuVLmjSAxVdi3CUdid8uT0D/119xKXPkuJqfOavgzelfLrlFDarmJdI7nIzrswI3Xn6Km5+fY1NTjJNyDzM+85Zi7vf2aRKolLrFhx3As2pX+3G7Qs24J21x9wuk9oY4OiInJW4zXk/rE290R0mx+J1x23+LXUDcaU7ZYfIatLHJFqWBEEQbdWwf6nrK6srJaSyri5BcD4DrPurq/HDroq1u0SrW8YNVck9t3IyQx204Dj5/Zbjl9H5pVV44vOKsQ72yzv0nr228gVNMgeSwkLeYDsQ0nndPfPNHsxb/TcOiMxEdIuL5VdjiQpfk1+obmZckwBZmdjlXq6sj6mpX+7G2ezrinKS6cERBzOjpFhfe+zH4JgknnudHcE/7Cof9P0uAxySIha8mEndF7eKdFk5skLBk4or3VXncpStVHspvxgmkSuTzYwqk4D8G6031rlkKtWJkzPxWnEZnvxil9XmYl1UzkoscqNVcGN3tntBELB43TFsOnbJeUFUZBKAlfvKjw1zzhJzQkRH7MdNGQ0Gh4GMGrd5JfG22Hpb7jAfK0oDVP224Eifc+4oU1JHNzZ9ZcUB3Drvz8qpHG5YJ2M6udzuX+vzVw9dxq4oK1NebuvzxwDbY1mNetDDw5s9Bjg+4npJKZZvF5+NVSfcM0tUFHtgPI69z7edFg2KrE+WBz8RH6htk/kYgvKbqMgb1L7g2QdRYsGctTWHLuC1Xw7h3ve2uvR5hSVl+GLbacknXkcXooc/LX+KdbUOftufia/Tz4j+zuUWHAevy+nOVSortxBjl2xD2kH1FjzU68KZnrwXKQlEL18rxqdbTuH9DSfwd1Y+vtlxVnQ7JbOtqoJSF1rXK7XgyA1wZB7Ceqx+zqJS2Zu/H0aNEPWr9fNtGfh8m/hUvto1QlQbOxMcYLQENsUiAxG9xfr8lTN1XhDEb6JS56aLPVTKuqgksjWLOX3Ftb71Lccv46NNJ2E0GPDz3vOIiwjFluf6i27rvBWp8muOuv+sL5ofbjzpcJ+uJpC0/xubPfPNHrw1OsGF/Ql4avkuxEWEYvrgNja/m/njfvz590XJ5HNKL+IBXgpw1v19EfvO5eCR3s1cDqqcHddZuYUoMwmIj6omuZ2zLmfrVAtfp5+xCYpLHTxUCRCc3mjltiBYb6bFmDgxSotRKtWnBAdZ3W23sOmiciVgEnO9uAyX8q0GFmsc3zPAUVHGlQK8JWOmktqCApQfRSaTAKNd+/n5nOs2B6SWAY6jU14qOZXYTVRqZprzi4C4Hq+vwaL7ulh9rq30U1fx1V8ZeCaltdfG4Iyym7WSKXP1eDFiRXQ0/kXu13G9BUew+ZfZT7vPYf7Izg7f52hA+pEL+ZYxA08PaoXAgIpGbKlWL1fLb/RSG7l5WvqV/GKMTmqIZjE1RLcrKTNh8brjiIsIrfQ7qTFOZSYBSa+lAQAOvpSCahIpGJy1Ur76y0GHv3N0PMm5/7pyj/bZLiqXWnAc/1tqf3IfTgShfBC0O9cetTHAUdF1iRVZ9UIQBDzx+U6kn7qK3yf3svnd+A9tp1V7Ysq4XPJaUqy7qMRvQlJJ08ROXLkBiLk7R8zwdzcBKM9r1KF+pM3vFI1P8BBnRXB00Re7zMn9Pq4OtnXUggMASa+tdvi+/6YdwYC2sZL7yyssRc3qwbLKYS690j+ft7uo3t9wAu9vOIGTr98u+vuPNp10KeeU9cPOpfwiNIgOc7its3uv1PgoR8felWvFTh+4XAlWtDodNx69hI1HL2HKwJY2QbZc9ktf2HOWAsN+kLEa+bkECLoKbgCOwVGVVk8DSj/2x93ncDb7OjYctR3IeijTNuukli04Ul9p1i8H8eHGE5VbcHSWa2X3mRx8usV23JSz64i3bofvrz+Of1jl57HmqIhir8s+5j2wFtWlfMfTh09eLh+MXlhShm0nrlgu4NZBu32zvNQ3kXtsHTiXi+92VnS5eKuLyl6ZScCujOxKDynOZpflXC8RPe/tZyxKETsmPttacR64co7JCcpkz6Ky/n8nhXHWGiXXroxsm3XoUt/finfWHsNykRxgcjjronLGANu/k2QLjtwxONo/u1XCFhwVuXnMuUzJcWV98YoIDcI5u5lb1r/3xiBjR05euoZb562r1JR+KDMX/7sx1X1Yl/qW1wVBUDzOY/Pxy5W66jy9HIBJEFBYUoYPNpzAgDaxaBVnm3FV6on/4Plc1I0MRVSYvFaHy/lFePKLXZUuhscu5OOVnx13E8itAoNBQRfVjf/mFpZg5d5MDGoXh8iwICzdeAIx4aGICQ9BXmEJ+rep3OriEgH4fX8mHvwkHQDw/JC2mNCzCYpKHbeyymo1dFI5gxfYrvvjiVlUGVcKEBoUgBiJyQVzfj+Md9cewz2J9TFnRCfL61Klv5xfjE4v/o76Nathw/85zj4rFsBsPX4ZM386gFeGtnPrRufOQ6Ir3b9S8cu8VX9jycYT+HFSTzSpXd3lcq09fAHjPtyO2IgQbH1ugM3vMq6UX38VJ5B0IYGe9WcYDAbZAY5cWmRpd4YtOCrSrgVH/ucet5pmPevXg3jxxlIHYrRswTHfmOybPG3GVkiMx5Er26653JVz9NjFa1j0p7wcEIIgYEHaEcz+7TAGzZefcXV3RjZu++96JM9aI/s9s387jA1HL2HLcds0AnkSCRNPXLqGbSflpR0QBNtlKKSYA7epX+7GM9/swWPLduDohTzM/OkAHlu2A//432ZM+OgvXMiz/XvbrjAv/48joOIYAoBlW8sTYV4vtlr6we6okWzBsUwTl10EAOrnwckpKMEt//kD3V513D0HVOQkcTSrTczGGy265gkLuYUleHvNEZy8ZJvHSuw6N+q9LTh4PhfD393s9Doo9Vt3LqFy3yt3evR/044gr7AUs3875HqhAPy6tzzdQpZIVmvRcYAyvsi81X8rLof18W4AYP38KtXVLHYEbzl+GV/atT6pNVBZTQxwVKRVE52ri/PtcbJIpLaDjB0wOG5tceVeYn+Bc/Vv+Pqv8i6CguC83sWYZ/aYx3ltOnrJ6c1rtwuf03fOWtHXHbWO3f/BNln7PXRjrZtVB8qnYG84egkX8yp3MeVeLw++1hzKwkebTtqtMC/ro0Q1qV0+6NY6UaSSFlfLYptWr52+XID73t+KDUcc5yyyH8jvrhOXpZdjcUbq5ml/g5r5w37M+f1vpPzXNhAX24PcAau5hSU4JpGkTsnf2L77yJUHTG/ck6Vawj2VJ0lstzZ5cAy29aW0K27U4i145us9+EvmA45WGOCoyFdH5DtS4kIyKW+yPiddrXr7E9vzXVTSv3cUpNl/v3vf34ppX+2WHFPh7uKt9ty5FotlXhW72Zpn5zyw9C/M+HE/Ppa5BIk9+3PRXK+FVl1UlfIrKXyK7TX7D2w4egn3fVCes0hsqQC1b2CeTKa25pBtOgZzAtHCEhNOXa5IXzB5+a7yGZcOSB3jPV9fI53QVOb5t/7IRXSY+Ru+31mRN0d+oj/H//IEqQdF8YkO7n9mpQSjgmCbB0fBNHGpB8fnvtvrchm9gQGOivwtwCku0/esMOtm+gc//gvrJZ6kHbE/rz39J3R0jAiCgBOXrin+fDXWpPGmAKs7vtg1VWpQrpKqsa9H816tEwTuOZODp77YKW+2oIzFNh/8uHJCSrW7qLx5hbE+Vq27U/ecycHk5btstg0NqriVSAVh9muz2TO/1Vnr8Zgl23CtuAxPWZVD9rljtZ3WLTjeGoMuCJWPHbktOFJjG//OUr5khDcxwFGRf4U3+uyisj7VrJ9Ajl9yreneJAi4bJWYytPpxu33n1dYPgboky2n0HfOWsz4cX+l7eeu+hs/7hbP8KrHgX1Sgq2mxIomhJM4i5T8bcSTzQk4ateS9P2uc/jxRl4cyb0LAg5n5qFIIhWEWHZlNaeJF5eabJLkuULJ0SL1wGa/vlxYcMV8FUfH5LGLzm+G5hvtqz87HhsIAIEiTWOunAlqPpSay15YUoY9Z7Itx6t0C04526zs7rMPSgTYDzK2De4kx+DoMxm3LAxwVKTHtTjcUazzLio1lJkEvLmqYsCe51twbP/918mrAMpnbIjZeuIKFqQdcbhgqR4H9jnyw66zNrmixC6qZSYBW1VYidp+z78fyMIdb2+wzMCzli9jlfoPN53EoPnrJAdohwRVvpyaTAJm/rjfZvmH4xfzsfCPow6TETpy9zsbbfIvuXK9UfIWJYdWmFXiP0fvsx+sLMb81o+cdE2KdZ9LBSubjoq37qo1DXzVgSx0eul3pB3MwoSPtuPOtzfi0y2nIAiCZGZsJQGwo793QXGpwwzQZluOX670flfy4Mxd9bdtpmKdY4CjIh+618iixxacX/fJXyxUDkGATQvOxfwifLvjjM1gVPn7cn4AlJkEm6c18+Knjo4dsYuJ9VRnX2rBsV7oFBCvr5T56zHSLitzxfYKPkxk231nxcckmQcCS+0/T8YK2SGBlbP7Lv8rA0s3ncSEjyq6r/q9+Sdm/3bY6cD0tYcv4EhWRW6q/XbjrZTUR15hCU5dvqawm8/x1hfzimzG4VgHOKeviAcyco5VT0wxv5xfhHvfF1/bTa2zZ+LHfyGvsBQTPvoLG4+WB+ifbDmFK9cc52oClM2isk8ku/9cDs5cLUDbF35zOiMz9f2tNsv5DHlrg81gb+lMxhUWpB3BE5/vlPwsR+/VAgMcFan1NKAXWmYydsR88VBLr9l/4Lf9FU/XH28+hSlf7sZ/VirP9tpk+i82NyQxOddLcMKqNcacFE5JU/knVk+33mrB8UQztfXAVTOp1hRHK02LUTJYXK2BwMGB0pfT8znX8S+rQZl/nbrqcNu9Z3Iw7sPtGDhvncObj5K/fPdX09B79locl9FNBAD3f7BVMpEiAJuUBUFWXY/bT4p/LzkBTqnJhOe/3yerjPasZ8VZH0eX7YIM6+5s69OutMwkq5VJdnkE55m+pca3LN14AuM/3IbCkjJcKypF2xd+s/n97Qs2oOcbfwAo7zLccOQSXllxwOGD6dUC23p45ps9lv8vMwn4YddZPPJputPzbNMxda/BnsREfyrys/hGly043vLz3nMuvW/gPOknqX/bXbzNx4zYdXDHafEbxfe7rGaOeOmgEwQ4fRpVSioHkxgl6RCUVIt5ILC7M+icBUoPf5Iue+q+9d9+V8ZVJDaKrrRN+ZO+vOjM/PRv3wrkiNIB+3ICYDnLevy6L7PSOCk58gpLbGZnjf9wG756uAc2HLmE/61znKPK+sFi4sd/4Y/DF7Hw3i64vWNdy+sGGLD6QBYu5hdhVLcGsruVymcuSW9jST9gtV1+USkEAZh54/xo/fxKdKgX6fTzzLP5zucU4oGeTSr9XiqlQ5lJsLSwtowNx+SBLZFzvQTvrz+O43bd40oSfGqNAY6K/G4MThUOcApLvPfdj17IEz12hr2zCTPvaFvpdevBrCVeSp+dfvpKpQHQeqbkXAyQMUPKmTve2uB0JXgleYmsWyCGv7sZu1+4tdI2covrjSBYThbxFbuddy+7GkTbZ5A2tyKZb/qOWAc4fxwuHyuzdNMJmwBnz9ls/Ly3vOz1a1bDLS1iZI2fsh/YC5S3ilu3dokFxZ1fWlXptb1n5R87P+89bymvXNbBpznZ5os/7se3O8UnN/gKdlGpyN9acP78+6LTwWv+SmpBQLXlFpY6PHZmirRyyE2qpqbJy3ervs9QkUG5alFSK898swe5he79vfeezVGcN0oqCLNfe2mRSCuE3IDs062u5RJSQk6jxsr9mU63ceUh8Ze95y1LHshlTlAnmqrAaMDFvIqxb9b7Nrcuvb/+hPMPEemiavGvXzFhacWixovXHdfFg7H1A13Rjf/fKZLXCfCd1huAAY6q9LBStJo2HL2E/6Yd0boYfk8QBEVjcKy3LS41IbtA3a4jb/FkK5nSU3Hxn8c1vXBLJb8DxKegf7LlFJpO/xnvicwMs/bCD55veVNriJYrf4JHP9vhfCM7b/9x1OEHBhgNlVqE7Ml5ABIg3nqWZpVQMbewFE2m/+LS0gueUlRmsuTlcpfWt0R2UamoTKvVNj3orTVHtS6C3zMJyi4EoUG2s3UWpPFv5K5rxaWa5LESBAF/nbqKEQ5WdjcTC4BfXlHeuvfqLxILp3qLSqPQswu803JqXmRYrF4DjEabFhxr5s3lDEw3CQLe/F3eZIWdLi634wnFpSaXM4hX2pfGPQAMcFRURXtzyE32U8edsb74Gg0G7DmT7YFSVS0GGDTpKhi1eItlSQQpat1w1PbKigOYemsrzacDK/V3Vj5WHcgSD3AkvoyA8pw6V2S0mp66XCA6U1DvDpzLtawZ5+sY4KjIl3KSkH6YBEHR+C3raa8510skpxuTPFpka825XoJDmdJpBfTu/Q0nEBYcoLtst9YZsx158/fDDsbgOH7v+iMXLS1n/spZd6kvYYCjIn9bi4q8o6RM2RgcaxwjpQ7r5Inecj7HvWUX9GLdkUuiC41qqXaNYKfbOAout0uskJ3uIMcP6RMHGavIl9Lmk36MXbJN88F4Vd2nW077fGuKVvQW3ADlXUnbZHT9iZEaQFw/OszFEpEWGOCoyN8yGRMR+aLzOYX4x/+kB267Qq2s1+QdDHBUxDE4RET+S24maNIHBjgqYoBDRESkDwxwVORvif6IiIh8lVcCnIULF6Jx48YIDQ1FUlIStm1zvOgXAHz11Vdo3bo1QkND0aFDB/zyyy82vxcEAS+88ALq1q2LatWqYcCAAThyRPvZJGzBISIi0gePBzjLly/HlClTMGPGDOzYsQOdOnXCoEGDcOHCBdHtN23ahNGjR2PChAnYuXMnhg4diqFDh2LfvopVmP/zn/9gwYIFWLRoEbZu3Yrq1atj0KBBKCzUdtpl39Z1cEuL2pqWgYiIiACD4OH0nUlJSejWrRvefvttAIDJZEKDBg3w+OOP49lnn620/ciRI3Ht2jWsWLHC8tpNN92Ezp07Y9GiRRAEAfHx8Zg6dSqmTZsGAMjJyUFsbCyWLl2KUaNGOS1Tbm4uIiMjkZOTg4iICJW+abklG07gJT9PBEVERCTHyddvV3V/Su7fHm3BKS4uRnp6OgYMGFDxgUYjBgwYgM2bxafwbd682WZ7ABg0aJBl+xMnTiAzM9Nmm8jISCQlJTncZ1FREXJzc21+PIWdVERERNrzaIBz6dIllJWVITY21ub12NhYZGZmir4nMzNTcnvzf5Xsc9asWYiMjLT8NGjQwKXvQ0RERL6hSsyimj59OnJyciw/GRkZWheJiIiIPMijAU7t2rUREBCArCzblUmzsrIQFxcn+p64uDjJ7c3/VbLPkJAQRERE2Px4ihYrEhMREelNWHCApp/v0QAnODgYiYmJSEtLs7xmMpmQlpaG5ORk0fckJyfbbA8Aq1atsmzfpEkTxMXF2WyTm5uLrVu3OtwnERGRmoIDjHj17vaYPKCl1kXRrW6NozX9fI+vJj5lyhSMHTsWXbt2Rffu3TF//nxcu3YN48ePBwCMGTMG9erVw6xZswAATz75JHr37o0333wTt99+O7744gv89ddfWLx4MQDAYDDgqaeewiuvvIIWLVqgSZMmeP755xEfH4+hQ4d6+usQERHhh0k3o03dCFwrKsW81X9rXRxd0nrtLo+PwRk5ciTmzJmDF154AZ07d8auXbuwcuVKyyDh06dP4/z585bte/TogWXLlmHx4sXo1KkTvv76a3z//fdo3769ZZtnnnkGjz/+OB588EF069YN+fn5WLlyJUJDQz39dYhkO/LqbbK3bVwrDN01ftohqurG9Wgsa7vN0/uhTd3yoQ7VQwJxW3vx4RFVncGgbYTj8RYcAJg0aRImTZok+ru1a9dWem3EiBEYMWKEw/0ZDAa89NJLeOmll9QqIpGNbo1rYvvJq27tIyhA3vPD/+5PxKB2cbh6rRgJL69y6zOpavl0QhLu+2Cr1sXwujs6xeOn3edU329MeIis7UICbceWvHZ3BzSuXR2L/jwG+2GY025tidUHL2BXRrZKpfQdft+CQ+SL6kZW89pn9W4ZAwAICND4aqCRAW3qaF0En1AtqPKAzZ5OMqff2jYWvW4cX/4kLkJeIKKm1VN6W/6/Roht20DN6sH4v5TWaB5To9L7JvVrgVrVg936bK0H67pK6xYcBjgq4yQqUsp8DQjU+nHHDQkNo1x+r9yWrqpm3shONi0Krhwfs+/phI8f6K5msXQh0M1jZtXkXnh6UKtKr0vdj5vXqYHfJ/fC6im9ERzo3WO2dg3PB3SeWGbonz2bqL5PJXhl0ZHX7u6gdRF07b+jOnvts0xejFQNKL+qGjV+2pEyrEs9rYugKrHWEL25O6G+TdqJ1nXDle/kxiH1n+EdnW7aok7l1ge9ClYY4NSLsm2RjYsMxa1tYyttZz4XrXVuEIXnh7QFALSMDUdzF+rJ3VM7sVFN2du2ras8DcozKa3w9uguaF9P3RQqLWJdOGZVxABHZYIbizV0qBepYkn8z12dxW+y0W42/4oRANELoCfovQWnYXQY5v6js6r71HpRWk8cM2pKaVc+aNVkdTn576gExfsxH1sBMo4tOdvoxU1Naynafr7Iw5FY0CH22qxhHTBBZktE/Zq2gZSclk05rTOhQfJv1UEutC492qc5IsOC8PXDPRxuM7xLfex8fqCi/Wp9SDHA0RGjEX7ZX+5JDaPDUD1E/afxB29pio71XQ84o8KCZG9rvgbo9QYj5+lTaYNXSZlJ0f7VpofGsgWjE/DemK6VXh/QJhZv31sezFi34MRHKR8XZv6aRhlX+kCJMWD2Y07MloyrXH5P++iB7khupizAkdtiJ1YDSlpWXx/eEYM7xOGLB2/CoZdT8I1EwFBBvdbikEAjghReR6wfNkIl6ikowICaCh8MjBpf0xjg6EhRqUn0BKMK9q0qZSb1Lg7/uacj3k3tgj0zb0WnBlGq7VcuOQPyHurd1ObfzWKqe6o4iij9K5SUcbDanZ3iMVCklfCRPs0sY0zcPbzNs33Eul7sBUgcf0/0by76er/W3mnltNZbhYfA8nOt8veV26rjSGxEKN5JTcRNTWshNChA1g1e7d5wqUBVTNdG8tJTmMfKhTsIdsVo3e3OAEdl7hysgqCPJ0s9sz9hykyCrIu3HA2jw3Bbh7qICC1vfXFnBkCZghu41jMNVKHwwLduwQFgGePgLZ6o8to1gvHh+G6IrBaExfcnurSP1VN624y3cGcs2B/T+lgGw8r5vg1rOQ6WD57Pc7kccni6e9ZgAOaP7FzxbzgIZkSuJZ4ejtdO1tCEinKNSW7kcCtBUD5o/x/d6svazrzfagpmdGndKM0AR2f84FbnUfZN7WWCoNrNSs2BxaU3Hr1fvbs9ejhpTldUfKE8b07tGsFY9s8k1wuoMndbcCb0bIJ1T/dVr0BOWN/IujW2HcAZH1mRMPS9MV3Rp5V4i8Ghl1Ns/m0SgL6t6mDXCwNxazvpxG/WN/S4iPLPaxgdVnkAq4uHZEq7ODSpXRGwyAminxGZVWS287R7OaGsTbu18tIGSrp0nXmoV1NLF59ZcIARQxPqYWjnePyja31UDwkUPe8a164c5KlzXRCvf/vAS47gACNCHIyzMQmC4mBR7gytoMDy/SqpDbbg+JmaYY77KO/oFO/0/X7xNO9BYi04ckVWC0JTiS4dR+MMXFFqKm+hSE1qhGUTb5LcVsmfXAAwqF0ctv9rAHo0dzxQd/WUXujixtRtpaoHK6u7FKsAwBxsNKwVpmqZpFjX+ZcP2a5htzC1i+X/OzeIQh2R5G8/PHZzpfEK/769zY19O/6DDmhTnpfmu0dvtrz2+YM3YWjneNHxOG3iy2e1BCnsdpg1zHZGppx3RzoIMt4f0xUP9W6m6POlNK9TeWaN2jfCIR1tr7Xm1of5oxLwn3s6ARD/O/UVCWY9NaPy1raxODHrdlkD3q2LajQasOP5gagp8vcqf+BTVpf2XZPt4sVnUrW88XdTMsCbAY6fuVtiOq2cE4XhjfgThfk8sT9hpt7aUnadbZ7eD2um9qn0+qhuDfBw72ZuzWKzH5BcqiDwUnJBMg86Nb/H0cDkZjE18K3VTVQN5umn/5fSutLvRnZroGhsxE1NtV2WwrrW7Ou/U/0o1IuqhrqRoQ5vPmJjtIZ1cd7U37ZuOD5+oDs6WB0vTWpXx/xRCWgVV/nGv2BUAlKTGmLF47c43bc1+8Gg7txoaoeHSD64RVZT1voidsiqeSMUO/PE8tZYf+LtHeti/TN9Rc9FNeIbV8b2pE3tbRmjNfGWirF3giCgekggqos8kAlCeUugO2X7cVJP/GtwebDevl4Evno4Gc+ktMLdCeX3tlfuam+/C4fYReVnggKMeKhXU/FfOj1RbLtbUpMaqlUsn3LfTZW/t3kWhPUJs/6ZvkhNctwfbS/sRiuDfZfD6O4N8extrd1qPVtgN4VX7kVxRKK8/m9HrG/Ai+7rgqcHtcKJWYNVbQk07+nLh5PxzSM98HDvysd3cKARHylIKKf1EGOp+jEaDfjz6T5Y/0xf2TPbPPWgGhcZilfv7mAJflztlpRTPqlNpN6/akovRWURC2bUrD9B5OQTG5di/ZnPDW6DBtFhonWgVfLWZjE1sPj+RBx6OcWmu9FcHkdB4RS7LsBJfZvjXatWSXv250KA0YB/3tIE3zzSA8sfTEa3xtF4tE9zy4DpyLAg2dnH2YLjhwZ3qCv6urMcOfYnkm0futvF8hkmkdYPsZO6wY0nFT1067lyIn/7aA/MHtFJ0Xvsj5FaVq1dKe3r4rG+zZ3Wx8Zn+yn6TLMaIYFIbFRTdP9Km/Fbi7RWeJOzv1ZggFFRtlzZX9/NY7VH89p4on8Lxe9z51MFQZA8vuuEK1vkuEykstTsBhLblXgLTsV3MsexYl/TU11U1rv9ZILtw8EHY7veKI+hUleo+W2O/iTmSRJm4aGBuM3BPckRg8GAxEY1RVuJACBQTt4BcJq4X+rUIEo0MZPJJLKxlRudD5Z/W99IfCHzqloCRE4ek13XjDXtwxvX7ltS03IBedlam4msfeNM7RoeSIwo8x6wd+at2Pav/oiy7vLQ4g9o95nOBoL7OvvzxnogtRxq3qfEWljUjCFEu6ictOCYz0U1gncxzqrvlhYxeNCq5b9/G8fT783FGdKxPGjRIlWEr6ybxwDHQ8T6Qds6GLxlZj9N3GacgErl8gXjejSu9Jr5EuPNZYvkBi3JTWtVymAqh9RT8c3Na2Fwh8ozcewvtY/0boZb28ZijoKWIGeBlb0GMvr05c7ECA8NUvzE7wn2NXD/TfK7OuXSIpeSI/YBirMblHW+JQHqdjWIDU8Tm73kjNj5AchvwbEm1erprR4quTVs7gl4sn9LLLy3C74SSSbYxIX6VEKvWdftMcDxkKQmtk+E025taROhixEEweFBPtHJe9U2qJ33E3iZRYYF4ZcnbAdVmkf2i15oZZxr1gNg1W5x/vzBm1zqJhN7S2pSQ8RGhOCdexNFs4ral71acAAWj+mKexSM5ZE7rmRYQj3c3qEuZt/jOHh6pE8zTB3YUvNBw1KeFOnSsf97uduULva3fG9MYqVgXY3bgiv7sP6+9yTWdxrk9mlZMcbC/sFr3shOeLRPM/w4Sf4gduup0GIzHx/rK55I0J71YP7Z93TCwnu7VGqNEptxJnbMW5fD+oZtnzZArMVJKTmDjOV+irk4wYFG3N6xruhA+EYiMxJbxqq31pjcLiqt+UYpfdCzt9nONJnUr4VkGmygPBW7TQuO1f8PkGiylEvJ+jsp7aXzeHhacGDFl7/vpoZ458YgObFAok2cdMvYrhcGYsm4buoW0Ak5AYfYRffVuztg87P9ERkWJB7gqPA8KTcYS2oajYWpXRAn0p2xYHQCpg5sif9LaY3H+7fQxTgoR8JDK48jsC+tu0+kYvfAOuGhsm/cSrhS1dZvmX1PR6cBne1xZjsG5+6E+ngmpTU61o+S/fnW2XXFunxCZayftPuFW22m11cPCcTtHeuimVXuoOZ1alimtJtnAjlSbJVs0vpc+/KhZJtASqtBxvbMkyNcnXzy8xPKZuJJUZq2QCsMcDykekig4qfa8lH8VmNw1C6UAnd18t7q0csmVp4Z0iymBm5rH4fUpIZ4ZWgH1I0s7wIS66J6eWh7jE1uhBWP9xTdf1RYsFfXeZrQswlevdv5VEpHzf7mm0+IggX2lBrauTxPiNTKw7ERjruS7uwUj8ddGOwqxpN/mbsT6llmz0lx9fi460Y92i+hYVa7RrCmraFm1g/cBoPBaUBn3cIjJ8O6s9WurYMEsRYcOVkVIsOCnP6dVk/pbXmQc5Y8sKikIsCxTpxnMBhszk2p88Ad9oPYnR2BS8Z2w56Zt4qu0G3OiRMbUd5VLBaUKc1wLEXpchBaYYDjQa70W+vlQdhoNIjmO/EEsZuswWDAu/cl4tW7bROWidVpdPVgvHhXe7SvFykrqFTjgUwqKeDNzWtZ1gCS4uyeGiqyD7WeJl8b1gELRifgi4fEkxA+0a+5Kmv+KFXvxoKS/3Qjs/ELQ9ri98m9sPP5gZj7j06oFiw9wBQQb+WRY/Y9nfDNIz3wzCDxc8VgMOB/93e1+rdLH2PD/HdxlM3WUTmsiZ1HAspbS5Ob1kLXxhXnUXxUNafXss8n3iS6rpYYsQBHzqrbjjg6J5ytd1azekUAJNWiJWcMmjNiS0AoXRTTaDRUmiFl9uVDybijUzw+u5FGwFECVIcpTBSqEaJe5mlPUi91K1XiSoDTvl4kft2XCcD2oqTGhVEnsVMlURJJxOw5q9PmdWpgy/ErAMoT+HV2Y6Cn1Mw1pf3y76Z2wdNf78GC0Z3xwNK/ANhO8RbjrEtTjpfvaofnf9hf6fWw4EDc6SCz9q1tYzHlVsdp+z3plydvwd9ZeejqYDq6HA/0bGLzb7G/o/0Np0vDmhjZtQEa1VZ2MwsONDptvZD6XFckNKyJn5/oaQkG5X2uLbGWEEEAXhla8UCx4vGeyC4oqdR1LiY40Ch7oL3YqRMaFIBXhrbHv7/fJ/qe21zoMrdf78xe/ZphWHhvF9GMwN5QqUXFjUOjRWw43hqdYPl3qdWUXeukj9MHt8Gzt7XG7N8O4521x1z+vEd6N8PGo5dwV+d4vPLzQZf342kMcDzIlevzP29pAoOh/Ckt/ZR66794U1RYELILSjyyb2d1an3xfH14R7c+a1S3hnjxpwM2r9WLqob3x3bF8Hc3ySqD2W0d6mJQuzgYjQZ89XAyCkvKnI6JEntCVxpY3Z/cWDTAERNoNOCPaX0Qr+DGqbbIakHo1ljdActigaL9cWQwGPDGPeLHS5yHuijc0S5eWdZt+2DxnsT62H/ugIOty7W3yuxdN7Iavnu0h+KsxWbWR62jadepSQ3Rpm4Eftp9Dks3nbT5nVS+KEfj0m5uXj7RQ6ql6/aO4vlhXryzHe5+ZyMmD6i8bpZaKuVZUnGsj3ULzrAE2+EGBoPB7Y+KDAvCTzeGBOg5wGEXlQe58gQaEhiAR/s0V3wBsxemYMVXR9QY0ComPDTQsv6P0oRvzmZ/KFghwalqwQGVnhz7t6mDNnUjJLuKHP3O3AzerXE0bmnhvPtHjRYcJQyG8uZ4T41Xsl8fqeJzXf+8sOAA0czX1tytx4f7NMMwiSVYlNCqC9r+Tzo2uTGW/TMJqyZbZSF2cu4kNKyJpi7kXbInlugPqEgup8a1Cyhf8yptam9s+9cAxe/t1CAKh1+5TbVxZmI8OVDXeqkYsYSVehk47WkMcDzI3cPX/v3mxfzkaFCzclO7ty6uzk6eoAAjujeJxrqn++IHBVNNATnTeZ2fuUpaQfq2sk1Jbn6rVPIvta4dYskife26NP221tjwf31x6OUUjO6u/tIjBjgfPCnaRaXgZAgLDsTcf3RWWDJ9se8aMxoN6NG8NsIdjOlQ4zPsdW4QBaMB6CmxSCzgYEq1xPZSp3OzmBoutzqpOShXTKWp1ipen0udjD+qKthF5UFuBxR2O0j2k2yr5icXV1aPdlanzrJFK/9A8ZelLh9q5M0ANGjB8cAorX6t66C+SLCtFvsZL2LaxUegVWw4DmflVbzPYyXSJ63zsgmCgG8f6YHiMpPN9GwAlcYSeeI41JrYIWrfghOtYCyiM84W+/VU67zeMMDxILUXGmsXH4lPJnTHpmOX8a6TAWLiLR3euXA4+9ruPBk5q1O1T1z7z7Ps3wvXB9EWHE9+rsqHx7upXUSntKrN0YwRs8AAI3598haMX7odf/59EYB2XUVa3bqtc8U44umbntFoQKgxAKFBARjXozHyi0rRvUk0+siYrSf19/LV7hb76+DYHo2x50wOBrSVt5CllDJ56wL5PQY4HuTuU5PB5v/L/3VLixiczyl0+t43R3TCmCXbcCm/yOXPd/XCIaeLylXO6lTNMTiA4xuS1M1ArSKITcX05E1I7Zuv0gX+XFUqo9nOPuDvWD8S+8/luvR5t7SQ7mKRolVgFRsRil+euKXSdHjr8ngzUJh5ZzuHvxPvonJccb7QGtG/TSx+3ZeJ8NBA5BWWAqicSyY0KAALJVb9VsJ5C07VwDE4HjS8S3k2W1dXTnZ4MZRxdLaNj8D2f/V36XPNzEnM1OZO1linLThqBzj26dQF2/96sgxdG9VESrs4m9wVvvq06knOWnDMrLd6bnAbPNa3GVY+pTy7q6/+DdrGR1TK6WI9w0gvCygqLYUv/D2GJdTD0vHdsGZqH8trnlzPSe454e/YguNBKe3j8PMTPdG0tnprgADyn1jsB1IqfXp0deyEszEoYqP65XI2ONSV8S81JJK8Ofo4sUHGwYFGFJea0KVRlOIyiDEaDVh0fyIA4H/rjquyTylqtC4EGA2qXlzDggNQUFzm8PcGALe2jcPn2zKc7sv62AgPDcLTDpLzVSVRYcGYdmtLGAyOk8jpgV4SoLrKaDSgj92EBXeug844G2Ss1jhBvWOA40EGg8Gt6d6OmmV9/dgMduNJ0dk0cTlVY19/zSSmvtr/DQS7/1rb+fxAXCsu9ehq2Xr/0wcFqBvg/PDYzViy8SQ+33ba4TZ9WsVgcIc4/LI3U7XP9RQ9rtk1qZ/npkKbKbpmKawjvZ8TjmjZguPr9xC52EWlY47Oc0fHZpPa1QEA3Zvod2VnwL0nF+djcJSduc5SxDv8G4h8TPWQQI8GN44+Vy1qzF5xZXyV1Ke2iA3HrGEdUOtGUsTaNWxnmswe0REGgwGdFCz8SJ6hVuymvxDQM4IVLLWhlLMxOFUFAxwf5Ogm1zouHH/9ewA+nyi+vpBeLhxiCa7MwZkzTldBVnheB9nnonBC+ycf9wqwTWJclho3qGAPNbt/+s8k3NY+Dl88aHtsp7SXP5BZrb+dXge1hocE4rG+zUQXr/UlooOMJRPheKwoHmHOYO7Jtd6cDbz3sSpzGQMcHbOZRWU920Hi8KxdI8SlTLTdHaTHt0/zLYezk2dcjyaVXnv4xmrMrwyVXoXb2SBj84J/zpZBMHO2Km7lz/O9S0MvqwupVAuTGgGwp55K29SNwLv3JaJ5HfEB+zrs+fG6wAADnh7UGj2auT7Ly1P0GhRqYcP/9cXGZ/uhUS15D3WuKHM6BsdjH60rHIOjY0q6R+RSuk7UPYn18e3Os65/oJ0n+7dAisjCeSO7NURK+7pOs446i92GdKyLWjWC0Tqu8grlYjrUkx4j5WgWlVZc+XxP9vXba16nhqw0BlpQ6ybrzjHgz4GYWl9NrKvU16eJWwsLDkRYsGdvvc66qFLax2HJxhOIjZBe8NfXsQVHYw/cXLk1wxlXT2eDAfjyoWQM7hCH7x+7GQ2inS+q6NKgSIkCNox2PDNLTkp1Zy04BoMBPZrVlt2C85STxfRa2SWqU7LyuV7I/QuqMQB29j2dcHvHuvjq4WS396WEnKBD6+DUU9rFlwfzdzhYHd5b2jt5WJDL2bg4e/76d3WHs0HG3ZtE47eneiHNatq6P2ILjsaaS2QYdfjU4uIZbYABLWPD8U5q+dTjdU/3RZPpv0i+R+2FF929FvVqGYNXfzkour6QK6o5WdivRWw4Pp2QhK0nLuPg+Vw81reZKp/rKlf+9N6cuRMXGYqF98pLVla7Rggu5RdhULvKLXqe4K83wk8nJGHdkYteq0dH7uwUj2vFpbhWVIrXfjlk8zsldd+rZQwW35+I6yVlePKLXQCcZDJ2oaz+rnerGKw6kIWmMY67wVq5mJ/NlzDA0ZjkvceFdZCUfbbtB3RqEIXdGdk2r6ndu+Fu/oVWceUrBMeEu960qrRJu2eL2ujpRvZaNdWNUj5LS+7f0NvdJ6un9MLhzDzdz/qz51YXlQeG+tesHoy7Oquz2rk7jEYDUpMaWZbDsKZ0Uc9b28Vhl9W1yI979jxi9j0d8eVfGbizk/bHhZY82kV15coVpKamIiIiAlFRUZgwYQLy8/Ml31NYWIjHHnsMtWrVQo0aNTB8+HBkZWXZbGMwGCr9fPHFF578KrriqSfRDvUqj1tx5elfeiFKxburpFlMDc2Tkk0dWN615UoXoyuWju+G0d0b4qFeyluQ5K6J5u2bSFRYMJKa1vJaC5OvjdXwF92bRKN/a/fXV3KkqiStUyIqLBgP9mqGuEjPpq3QO4+24KSmpuL8+fNYtWoVSkpKMH78eDz44INYtmyZw/dMnjwZP//8M7766itERkZi0qRJGDZsGDZu3Giz3YcffoiUlBTLv6Oiojz1NTTjcBaVq11UTu4jYk+XrrTgSJWvkQsriKtNjevhpH7NcXvHurKnt7urT6s6lTKhyuXPA1uV0MM08ar4t/jP8I5O0zs4o8cEiVSuVvVgXL5WjNZx4TiUmad1cWx4rAXn4MGDWLlyJd5//30kJSWhZ8+eeOutt/DFF1/g3Llzou/JycnBBx98gLlz56Jfv35ITEzEhx9+iE2bNmHLli0220ZFRSEuLs7yExrqf5Gqo5Pa0eXV2QX8yf4SGUsN4oP7XFkR/elBrWz+vXl6P3RvEo0n+rdAUtNaivenRwaDAU1javjEhVd2C44PfBfyPWqP4yN9+fOZvlg9pRc61rcdZO7N2ZuOeCzA2bx5M6KiotC1a1fLawMGDIDRaMTWrVtF35Oeno6SkhIMGDDA8lrr1q3RsGFDbN682Wbbxx57DLVr10b37t2xZMkSn22mdOUQUPJV54/sjJR2cVg1uRdGdW8oue3QzvUwZ0QnpE3tbXlN7s1x3shOlv8fZ9dtUzeyGr58KBlTBkrPWCLPYNxSTq0rhI9eajTj6vFnfU33ozx/fqdGSCCa1wmH/cQtVxayVZvHuqgyMzNRp47d4mKBgYiOjkZmpviaMZmZmQgODq7U3RQbG2vznpdeegn9+vVDWFgYfv/9dzz66KPIz8/HE088IbrfoqIiFBUVWf6dm5vr4rdSn9TJqXQxcbELydCEehgqM1mf0WjAPYn17V6T9dZKwkMCkVdU6tqbPWxoQj1sOnYZLSRmsPkT+S04Hi6I1nRwJ/T3Khbj6RYcBpz6YL9MjqOknN6kOMB59tln8cYbb0huc/DgQZcLJMfzzz9v+f+EhARcu3YNs2fPdhjgzJo1Cy+++KJHy+QqqZPfcaI/8TPaEye63Juj/Wcvm3gTZv60H8/epr8Vm0ck1kezmOpoJTMZoK+TG7j4+82Xg4y14Uo3tz1OE9c/63vAg72aalcQK4oDnKlTp2LcuHGS2zRt2hRxcXG4cOGCzeulpaW4cuUK4uLE8zXExcWhuLgY2dnZNq04WVlZDt8DAElJSXj55ZdRVFSEkJDK04enT5+OKVOmWP6dm5uLBg0aSH4HbxnQJhadGkShi7NFHz10+3mifwssSDuCf9/eRvT3ci9O9s2THepH4ptHerhbPI8wGAxIbORbU5PdwTE45E0xNWyvwWocVjw29c+6Bee5weL3E29THODExMQgJsb5ImHJycnIzs5Geno6EhPLE8utWbMGJpMJSUnii8ElJiYiKCgIaWlpGD58OADg8OHDOH36NJKTHWdG3bVrF2rWrCka3ABASEiIw99pLTjQiB8eu1n0d0qXanDlGjBlYEs83q+5w1WgdTBOjNxUFe4Ncp7i1ZtF5bqq8LdoGx+BSX2b4+0/jgIAAjz9pdlHpQt6XMDcY2Nw2rRpg5SUFEycOBGLFi1CSUkJJk2ahFGjRiE+vjyl+NmzZ9G/f398/PHH6N69OyIjIzFhwgRMmTIF0dHRiIiIwOOPP47k5GTcdFP5KsI//fQTsrKycNNNNyE0NBSrVq3Ca6+9hmnTpnnqq3iU1OBoR602jpraXT3PHQU3AJ+c/IHcG4y//6XVuv5GyVhSxBFPtcTqzf3JjSwBjqtdVDq8X5IE+zE4euDRPDifffYZJk2ahP79+8NoNGL48OFYsGCB5fclJSU4fPgwCgoKLK/NmzfPsm1RUREGDRqEd955x/L7oKAgLFy4EJMnT4YgCGjevDnmzp2LiRMnevKr6Io3jyO5LTi+OoutKpg8sCX+OHwRqUnSs+j83V2d45F+6qrk8ihSFt3XBR9uPIkX72qncsn8j/XNzt0cOM7wyqMPerwHeDTAiY6Olkzq17hx40qVEhoaioULF2LhwoWi70lJSbFJ8OfrJGdReXipBjlkDzL2cDnIdfFR1bD9X/0dtsYNS6iHb3eexeP9mnu5ZOqRc5Tel9QIzWJquLwoZEr7ukhpX9el91Y11t0V7OauGkwmrUtQGdei0liNYMd/gp2ns0VfdxQoP9xH/YUgQ4LkzRPXY/ROFaS6GmeP6ITH+jVHUy9lZfYEOUef0WjAzc21XVOsqvT4mqwiHE4TrxqqXBcVSftjWh/J5tta1YMt/2+zVIPI5XzvzFsVL2gnR93Iaqrvk/QlwGhAs5iqkROIvM/T4444/V8f9DjI2KOLbZI0Z6ms+zpYoE4sUPZEcENE5ArraxQnUVUNemzFZ4CjIWfHQ3Cg7/x5dHhsE5FGbAYZV5V+uSpOj11UvnMH9RNKlgcIdjB9W4+Rsv5KRERaqVezGiKrBaFuZCiCAlycJi7zoqLDy2GVpMc/AwMcL/vmUfnZfR214OjxhNZjmYj0pqrklQoKMGL7vwZg/TN9Pf6dB7Urz3JfL4rjBbVUpsNBOBxk7GWOWmVEt7UKcKwDCP0dRkREtrzVxf5In2ZoVqc6kprU8srnkTg9PuSyBUfHrC8QJWUVSQb0eCBxJgN5y2t3dwAAvDU6wfKaHs8J8o7gQCOGdIxHTLg+l+OpKvR4D2ALjo5Zt/YUWwc4OjyQWsaGa10EqiLuTWqI4Yn1EBIYoHVRFKsaHVTqaFQrTOsikAJ6PB8Z4GjIWaBiE+CUVgQ4OuzqRKPoMPz8RE9EurFOD5Fc9hdTXxna4ivl1IPaNULwyxO3oEYIb1O+4MU72yHjSgEm3tJU66JY8MjxMuspk84yfFonAbQOcPRmUt/mqBMRijoRoVoXhaoodlH5p7bxEVoXgWRqEB2GVVN6a10MGwxwvCw40Ih/9myCa8VlqF9TfhOsTYCjo6t5j2a1MG1QK62LQUREZIMBjgb+PaSt4vfERVa0juglvLk3qSGe7N9C62IQ+Qz2UBF5DwMcnft84k3IuFJgswKyHhpwpgxsiScY3BARkU4xwNG55Ga1kNzMNr+D1imxb25ei8ENkQuqSqI/Ij1gHhwiIiLyOwxwfJDWPVQGjiQgIiKdY4Djg7TuoiLSGz0mvxTDHioi72GA44Nua19X6yIQkQsY3xB5DwMcH9S5QRT+mNYHj/ZppnVRiHSB3aZEZI8Bjo9qUrs6qgXpb+0PIi34ShcVEXkPAxxSjDcTItcoyV5ORO5hHhwiIg/7ZEJ37Dubiz6tYrQuClGVwQCHFON4ByJlbmkRg1taMLgh8iZ2UREREZHfYYBDREREfocBDhEREfkdBjhERETkdxjgkFPrn+mrdRGIiIgUYYBDTjWIZu4OIiLyLQxwiIiIyO8wwCEinycwuTYR2WGAQ4oNbBurdRGIiIgkMcAhxe67qZHWRSCyYWBybSKywwCHFImPDEWAkXcT0hd2URGRPQY4RERE5Hc8FuBcuXIFqampiIiIQFRUFCZMmID8/HzJ9yxevBh9+vRBREQEDAYDsrOzVdkvqYcPykRE5As8FuCkpqZi//79WLVqFVasWIF169bhwQcflHxPQUEBUlJS8Nxzz6m6X3+lxbgDdgUQEZEvCPTETg8ePIiVK1di+/bt6Nq1KwDgrbfewuDBgzFnzhzEx8eLvu+pp54CAKxdu1bV/RIREVHV4pEWnM2bNyMqKsoShADAgAEDYDQasXXrVq/vt6ioCLm5uTY/5BqBnVREROQDPBLgZGZmok6dOjavBQYGIjo6GpmZmV7f76xZsxAZGWn5adCggctl0BN2FxEREYlTFOA8++yzMBgMkj+HDh3yVFldNn36dOTk5Fh+MjIytC6Sz2JQRUREvkDRGJypU6di3Lhxkts0bdoUcXFxuHDhgs3rpaWluHLlCuLi4hQX0szV/YaEhCAkJMTlz9UrJjcjIiISpyjAiYmJQUxMjNPtkpOTkZ2djfT0dCQmJgIA1qxZA5PJhKSkJNdK6sH9EhERkX/xyBicNm3aICUlBRMnTsS2bduwceNGTJo0CaNGjbLMdDp79ixat26Nbdu2Wd6XmZmJXbt24ejRowCAvXv3YteuXbhy5Yrs/ZJnsYeKiIh8gcfy4Hz22Wdo3bo1+vfvj8GDB6Nnz55YvHix5fclJSU4fPgwCgoKLK8tWrQICQkJmDhxIgCgV69eSEhIwI8//ih7v0REREQeyYMDANHR0Vi2bJnD3zdu3BiC3YjVmTNnYubMmW7ttypJblYbwN9e/UwOMiYiIl/gsQCHPC+xUU18+2gP1K9ZTeuiEBER6QoDHB/XpWFNL38im3CIiEj/uJo4ERER+R0GOKQIx+AQEZEvYIBDRD7PfsICEREDHCIiIvI7DHBIET4nkx4ZuG4JEdlhgENERER+hwEOKcKxDqRHPC6JyB4DHCIiIvI7DHBIET4nExGRL2CAQ4qwJ4CIiHwBAxwiIiLyOwxwiIiIyO8wwCEiIiK/wwCHFOF0XNKjPq3qAADCggM0LgkR6UWg1gUg38LwhvSofb1IrJrcC3UiQrUuChHpBAMcIvILLWLDtS4CEekIu6hIGTbhEBGRD2CAQ0RERH6HAQ4pwgYcIiLyBQxwiIiIyO8wwCEiIiK/wwCHFGEeHCIi8gUMcIiIiMjvMMAhRdh+Q0REvoABDhEREfkdBjikCIfgEBGRL2CAQ0RERH6HAQ4pInAUDhER+QAGOKQIu6iIiMgXMMAhIiIiv8MAh4iIiPwOAxwiIiLyOwxwSBEOwSEiIl/AAIeUYYRDREQ+wGMBzpUrV5CamoqIiAhERUVhwoQJyM/Pl3zP4sWL0adPH0RERMBgMCA7O7vSNo0bN4bBYLD5ef311z30LYiIiMgXeSzASU1Nxf79+7Fq1SqsWLEC69atw4MPPij5noKCAqSkpOC5556T3O6ll17C+fPnLT+PP/64mkUnCcyDQ0REviDQEzs9ePAgVq5cie3bt6Nr164AgLfeeguDBw/GnDlzEB8fL/q+p556CgCwdu1ayf2Hh4cjLi5OzSITERGRH/FIC87mzZsRFRVlCW4AYMCAATAajdi6davb+3/99ddRq1YtJCQkYPbs2SgtLZXcvqioCLm5uTY/5Bom+iMiIl/gkRaczMxM1KlTx/aDAgMRHR2NzMxMt/b9xBNPoEuXLoiOjsamTZswffp0nD9/HnPnznX4nlmzZuHFF19063OJiIjIdyhqwXn22WcrDfC1/zl06JCnygoAmDJlCvr06YOOHTvi4Ycfxptvvom33noLRUVFDt8zffp05OTkWH4yMjI8WkYiIiLSlqIWnKlTp2LcuHGS2zRt2hRxcXG4cOGCzeulpaW4cuWK6mNnkpKSUFpaipMnT6JVq1ai24SEhCAkJETVz62q2ENFRES+QFGAExMTg5iYGKfbJScnIzs7G+np6UhMTAQArFmzBiaTCUlJSa6V1IFdu3bBaDRW6hIjIiKiqssjY3DatGmDlJQUTJw4EYsWLUJJSQkmTZqEUaNGWWZQnT17Fv3798fHH3+M7t27Aygfu5OZmYmjR48CAPbu3Yvw8HA0bNgQ0dHR2Lx5M7Zu3Yq+ffsiPDwcmzdvxuTJk3HfffehZs2anvgqZEfgKGMiIvIBHsuD89lnn6F169bo378/Bg8ejJ49e2Lx4sWW35eUlODw4cMoKCiwvLZo0SIkJCRg4sSJAIBevXohISEBP/74I4DyrqYvvvgCvXv3Rrt27fDqq69i8uTJNvslIiIiMghV8JE8NzcXkZGRyMnJQUREhNbF8QmNn/0ZAGAwACdm3a5xaYiIqCpScv/mWlRERETkdxjgkCJVr72PiIh8EQMcIiIi8jsMcIiIiMjvMMAhIiIiv8MAh4iIiPwOAxwiIiLyOwxwiIiIyO8wwCEiIiK/wwCHiIiI/A4DHCIiIvI7DHCIiIjI7zDAISIiIr/DAIeIiIj8DgMcIiIi8jsMcIiIiMjvMMAhIiIiv8MAh4iIiPwOAxwiIiLyOwxwiIiIyO8wwCFZpt3aEgDw0l3tNC4JERGRcwZBEAStC+Ftubm5iIyMRE5ODiIiIrQujs+4cq0Y0dWDtS4GERFVUUru32zBIdkY3BARka9ggENERER+hwEOERER+R0GOEREROR3GOAQERGR32GAQ0RERH6HAQ4RERH5HQY4RERE5HcY4BAREZHfYYBDREREfocBDhEREfkdBjhERETkdwK1LoAWzOuL5ubmalwSIiIikst835azTniVDHDy8vIAAA0aNNC4JERERKRUXl4eIiMjJbcxCHLCID9jMplw7tw5hIeHw2AwaF0cxXJzc9GgQQNkZGQ4XS6eKrDeXMN6cw3rzTWsN9dUlXoTBAF5eXmIj4+H0Sg9yqZKtuAYjUbUr19f62K4LSIiwq8PZE9hvbmG9eYa1ptrWG+uqQr15qzlxoyDjImIiMjvMMAhIiIiv8MAxweFhIRgxowZCAkJ0booPoX15hrWm2tYb65hvbmG9VZZlRxkTERERP6NLThERETkdxjgEBERkd9hgENERER+hwEOERER+R0GOEREROR3GODo0MWLF5GdnQ2TyQQAlv+StLy8PJsF2DhB0LnCwkKti+CTjh07hmPHjgEASktLNS6N7zhy5AjmzJmDw4cPa10Un5KZmYlz587h+vXrAHhPkIsBjo6UlJTg4YcfRq9evTB48GA88MADKCsrc7reRlVXUlKChx56CCkpKbjrrruwfPlyAPDJdca8pbi4GJMnT0ZqairGjBmD9evXa10kn7FmzRq0aNEC99xzDwAgMLBKrnijSFlZGR577DF06NABBw8exMWLF7Uukk8wX9uSk5Nxxx134LbbbkNhYSHvCTKxlnTi6NGj6NatGw4fPox33nkHgwcPxubNmzF79myti6Zr2dnZ6NevH/bt24fHH38cJSUleP755zFlyhSti6Zb33//PZo3b45du3ahT58+2LVrF6ZPn45vvvlG66L5hMOHD6NXr164ePEi3nvvPQBsxXFm7ty52L17N/7880988MEH6NmzJwC2sko5e/YsevXqhSNHjmDZsmV48sknkZGRgWeffVbrovkMPnroxK+//ooaNWrgp59+Qo0aNXDzzTdj3bp1shcVq6p2796NrKwsfPvtt2jfvj3uvvtufP7553jggQdw6623IiUlResi6sqxY8fw6aef4oEHHsDMmTMBAKNGjcLIkSNx5MgRbQunc4IgwGAw4NSpU2jZsiV69+6Nl156CWPHjkVwcLDl91RBEAQUFBTgu+++wwMPPICkpCRs3rwZe/fuRdu2bdG5c2fUqFFD62Lq0vr163H9+nV89913iIuLQ3JyMtLS0hAeHq510XwGW3A0Zu5LvXTpEjIzMy0ne1ZWFq5evYrq1avj0KFDWhZR1y5fvowzZ86gffv2AMrTlY8dOxapqal4+umnOcbkBvOTcnFxMTp27IixY8cCKO86iImJQUBAgGVMCYkzBy8XL17E7bffjhEjRiAoKAgzZswAABQUFGhZPF0yGAw4d+4cjh8/jpSUFEydOhXDhw/HRx99hOHDh+Puu+9Gbm6u1sXUpezsbBw5cgRxcXEAgPPnz2PPnj2Ijo7Ghg0bNC6db2CAo4HFixdj2bJlOHLkiKUvtXPnzrh+/TpSUlJw3333oVmzZggJCcH8+fPRr18/LFmyBEDVbtLdtm0bANsBdhEREWjQoIGle8X8FD1jxgwcPXrU8npVHZRnX2dt2rTBCy+8gCZNmgAAAgICUFxcjIKCAiQnJ2tWTr0RO9bM5152djauXbuGli1bYvr06Xj33XeRmpqK6dOn4/Lly5qUVy/E6q1+/fqoVasW/v3vf+PUqVNIS0vDjz/+iLS0NKSnp+OVV16p0tc1QLzekpOTERkZiaSkJNxzzz1o2LAhIiMj8fPPP2Pw4MF46aWXUFJSolWRfYNAXrNy5UohJiZG6Ny5s9CoUSOhRYsWwptvvikIgiCUlZUJ6enpwscffyy0aNFC+PrrrwVBEISrV68Kr776qlCrVi2hpKREy+Jr5rvvvhPi4+OFWrVqCSdOnBAEQbDUxfHjx4X+/fsLDz/8sJCfny8IQnldlpSUCOPHjxd69eqlVbE1JVZnpaWllt+bTCbL/+fl5QktWrQQtmzZ4u1i6o5YvZWVlVl+X1hYKLRo0ULIysoSBEEQXnzxRSE0NFQICQkR0tPTbeq1KpE63q5cuSJMmDBBCA8PF4YNGyaUlZVZ6vT9998XIiMjhYKCAq2Krimpa5sgCMKJEyeEX3/9VWjbtq3w8ccfW17/9NNPherVqwsZGRneLrJPYQuOF73//vu4++67sXPnTqxatQoPPfQQpk2bhhUrVgAAunTpgqtXr6JmzZoYPnw4BEFAVFQUbrnlFhQWFlqi/Krks88+w2uvvYZevXqhTZs2eP311wGUz1wRBAFNmjRBnz59sGPHDnz33XcAAKPRiMDAQNSsWRMhISHIz8/X8it4naM6CwgIsGxjPVZk48aNyM/PR8uWLS2vZWVlea/AOuGo3sytrCaTCYIgoEuXLli2bBkSEhLw9ttvY+TIkQgLC0NOTg4MBkOVG3Ds7HirWbMm+vfvj+DgYMusUOFGi0379u0RHByMgwcPalZ+rUhd28waN26Mq1evIiAgAPfdd5+lhadnz54oLi7Gnj17NCm7r2CA42HmE/nEiRNYvXo1hg0bBgBo0aIFpk6ditGjR+OZZ57BiRMnAJTnJalTpw5yc3MtN6ENGzYgMTERnTt31uQ7aKGsrAwA0Lx5c/Tv3x9vvPEG7rzzTqxduxZr164FAEvz7COPPIJ69erhvffes8mvceHCBcTHx1eZQYxy6sy8jbXvvvsOffr0Qc2aNbFz50707dsXjzzySJXp1pNbb0ajEfn5+fjhhx8wffp09OzZEwcOHMCcOXMwcOBA3HvvvQCqzrRxOfVWXFwMALjzzjtx//3348cff8Tq1astwc+GDRvQuXNnXtskzlNBEGA0GnHhwgVLsP3zzz+jS5cu6N69u9fL71O0bD7yZ3///bdNc/X169eFOnXqCIsXLxYEQRCKiooEQRCE7OxsISwsTHjjjTcEQRCEjz76SOjWrZswcOBA4euvvxYeeOABISYmRli0aJH3v4QG7OtNECqabPft2yfceeedwuDBgyv9bv369cJtt90mREVFCdOmTRNSU1OF6OhoYcWKFYIgCH7ddaC0zqy3LSsrE+666y5h9uzZwqRJkwSj0SiMGTNGKC4u9k7hNaS03sx18tNPPwnbt2+3ed9vv/0mvPzyy4LJZPLrY00QlNebuavq+PHjwpgxY4Tq1asLw4YNE0aPHi1ER0cL//vf/wRB8O9zVBCU15u5G2/VqlVC7969hfbt2wuLFi0Sxo8fL0RHRwvz5s3zWtl9FQMclS1fvlxo3Lix0KpVK6F79+7CBx98IAiCIOTn5wtjxowRBg0aZAluzBfM6dOnCw0bNrTs49NPPxV69eol9OzZUxg8eLBw6NAh738RL3NUb4Jge+FbsmSJ0LZtW2HJkiWCINj2VxcWFgr/+te/hDFjxgjDhg3z+3pztc6sx5ScPn1aMBgMgsFgEHr06CEcOHDAe19AI2oca/bb+/vNWRDUq7dFixYJTz/9tDB+/Hi/P0cFQZ1627hxo3DHHXcIgwYNEu66664qUW9qYICjot9//11o3LixsHDhQmHlypXClClThMDAQEurzdKlS4WEhATLE4v5AN6+fbsQExMjbN261bKvkpISITMz0/tfQgNi9RYUFCQsXrzYMvjQXFdnzpwRJkyYIHTr1k3Iy8sTBKGiNczMejCtv1Krzvbt2yeMHDlSWLVqlTZfxMvcrbeq0LIlhvXmGnfrrbCw0LKvsrIyITs72/tfwocxwFGBOQp/8cUXhcTERJuT+dFHHxUSEhKE3377TcjNzRVSU1OFHj16WEbMC0J5hB8fHy8cP37c20XXlLN669q1q/Dtt99Wet+KFSuErl27CjNmzBB2794tDBkyRDh9+rTXyq0lters9ttvrzJ1Jgg81lzFenMN600fOMhYBebBwAcOHECzZs0QFBRkGQD7yiuvoHr16vj0008REBCAxx57DEajEaNGjcKmTZtw+vRp/PLLL0hMTLQkdKoqnNVbaGgofvjhB2RmZgKoGHjXt29fdO/eHS+99BISExNRUlKCOnXqaPMlvEytOistLa0ydQbwWHMV6801rDed0DrC8kW///678Pjjjwvz5s2z6VZavHixEB4ebukiMUftixcvFpo3by5s2LBBEARBOHTokJCYmCi0atVKiI2NFRISEqpEn6or9dayZUth7dq1lm3z8/OFefPmCQEBAUKfPn2EPXv2ePdLeBnrzDWsN9ew3lzDetMnBjgKnDt3ThgyZIhQp04dITU1VejQoYMQGRlpOaAPHz4s1KtXT3j++ecFQbAdGxIXFyfMnTvX8u+8vDzhxIkTVSK5mrv1Zj1bYP/+/UJSUpJN0it/xDpzDevNNaw317De9I0BjkzXrl0Txo4dK4wcOdJmrEz37t2FcePGCYIgCLm5ucIrr7wiVKtWzdJvau6L7d27t/DPf/7T8r6qMOtCENSvt6qAdeYa1ptrWG+uYb3pH8fgyBQWFoaQkBCMGzcOTZo0sWQrHTx4MA4ePAhBEBAeHo57770XXbp0wT/+8Q+cOnUKBoMBp0+fxoULFzB06FDL/qrKqsNq11tVwDpzDevNNaw317De9M8gCFV8lTMFSkpKEBQUBKA8bbvRaERqaiqqV6+OxYsXW7Y7e/Ys+vTpg9LSUnTt2hWbNm1C69atsWzZMsTGxmpVfM2w3pRjnbmG9eYa1ptrWG/6xgDHTT179sTEiRMxduxYS2p7o9GIo0ePIj09HVu3bkWnTp0wduxYjUuqL6w35VhnrmG9uYb15hrWm34wwHHD8ePH0aNHD/z8889ITEwEUL72SnBwsMYl0zfWm3KsM9ew3lzDenMN601fOAbHBeaYcMOGDahRo4blQH7xxRfx5JNP4sKFC1oWT7dYb8qxzlzDenMN6801rDd9qhrL3qrMPEB427ZtGD58OFatWoUHH3wQBQUF+OSTT5iYyQHWm3KsM9ew3lzDenMN602nvD1ty19cv35daN68uWAwGISQkBDh9ddf17pIPoH1phzrzDWsN9ew3lzDetMfjsFxw8CBA9GiRQvMnTsXoaGhWhfHZ7DelGOduYb15hrWm2tYb/rCAMcNZWVlCAgI0LoYPof1phzrzDWsN9ew3lzDetMXBjhERETkdziLioiIiPwOAxwiIiLyOwxwiIiIyO8wwCEiIiK/wwCHiIiI/A4DHCIiIvI7DHCIiIjI7zDAISJdGjduHAwGAwwGA4KCghAbG4uBAwdiyZIlMJlMsvezdOlSREVFea6gRKRLDHCISLdSUlJw/vx5nDx5Er/++iv69u2LJ598EkOGDEFpaanWxSMiHWOAQ0S6FRISgri4ONSrVw9dunTBc889hx9++AG//vorli5dCgCYO3cuOnTogOrVq6NBgwZ49NFHkZ+fDwBYu3Ytxo8fj5ycHEtr0MyZMwEARUVFmDZtGurVq4fq1asjKSkJa9eu1eaLEpHqGOAQkU/p168fOnXqhG+//RYAYDQasWDBAuzfvx8fffQR1qxZg2eeeQYA0KNHD8yfPx8RERE4f/48zp8/j2nTpgEAJk2ahM2bN+OLL77Anj17MGLECKSkpODIkSOafTciUg/XoiIiXRo3bhyys7Px/fffV/rdqFGjsGfPHhw4cKDS777++ms8/PDDuHTpEoDyMThPPfUUsrOzLducPn0aTZs2xenTpxEfH295fcCAAejevTtee+011b8PEXlXoNYFICJSShAEGAwGAMDq1asxa9YsHDp0CLm5uSgtLUVhYSEKCgoQFhYm+v69e/eirKwMLVu2tHm9qKgItWrV8nj5icjzGOAQkc85ePAgmjRpgpMnT2LIkCF45JFH8OqrryI6OhobNmzAhAkTUFxc7DDAyc/PR0BAANLT0xEQEGDzuxo1anjjKxCRhzHAISKfsmbNGuzduxeTJ09Geno6TCYT3nzzTRiN5UMKv/zyS5vtg4ODUVZWZvNaQkICysrKcOHCBdxyyy1eKzsReQ8DHCLSraKiImRmZqKsrAxZWVlYuXIlZs2ahSFDhmDMmDHYt28fSkpK8NZbb+GOO+7Axo0bsWjRIpt9NG7cGPn5+UhLS0OnTp0QFhaGli1bIjU1FWPGjMGbb76JhIQEXLx4EWlpaejYsSNuv/12jb4xEamFs6iISLdWrlyJunXronHjxkhJScEff/yBBQsW4IcffkBAQAA6deqEuXPn4o033kD79u3x2WefYdasWTb76NGjBx5++GGMHDkSMTEx+M9//gMA+PDDDzFmzBhMnToVrVq1wtChQ7F9+3Y0bNhQi69KRCrjLCoiIiLyO2zBISIiIr/DAIeIiIj8DgMcIiIi8jsMcIiIiMjvMMAhIiIiv8MAh4iIiPwOAxwiIiLyOwxwiIiIyO8wwCEiIiK/wwCHiIiI/A4DHCIiIvI7DHCIiIjI7/w/haHkhhddRsUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df['AAPL'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "pc1, loadings = pca(df, module='scikitlearn')" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGVCAYAAADDk5p6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABft0lEQVR4nO3dd3xTVf8H8E/aQgt0sFpm2XtvZMhGioAgqKAgywdFQVFw0MeBOKgIIj8XCIqigOKjIgqyNzIF2avMVqBsOqEjOb8/StIkvRk3uTc34/N+vfpSkpvck5Obe7/3nO85RyeEECAiIiLSQJDWBSAiIqLAxUCEiIiINMNAhIiIiDTDQISIiIg0w0CEiIiINMNAhIiIiDTDQISIiIg0w0CEiIiINBOidQHsMRgMuHTpEiIiIqDT6bQuDhERETlBCIH09HRUrFgRQUH22zy8OhC5dOkSYmNjtS4GERERuSA5ORmVK1e2u41XByIREREA8j9IZGSkxqUhIiIiZ6SlpSE2NtZ0HbfHqwMRY3dMZGQkAxEiIiIf40xaBZNViYiISDMMRIiIiEgzDESIiIhIMwxEiIiISDMMRIiIiEgzDESIiIhIMwxEiIiISDMMRIiIiEgzDESIiIhIMwxEiIiISDMMRPzUqsOXsWD7Oa2LQUREZJeqgYher8ebb76J6tWro1ixYqhZsybeffddCCHU3C0BeHbxfryz4hg+2ZCIq+l3tS4OERGRJFUXvZs+fTrmzJmDhQsXomHDhvj7778xatQoREVF4YUXXlBz13TPrHWnMH/rWRye2kvrohARERWiaiCyY8cO9O/fH3369AEAVKtWDT/88AP27Nmj5m7JSnp2ntZFICIikqRq10z79u2xYcMGnDp1CgBw8OBBbN++Hb1795bcPjs7G2lpaRZ/RERE5L9UbRGZPHky0tLSUK9ePQQHB0Ov1+P999/H0KFDJbdPSEjA1KlT1SwSEREReRFVW0R++uknLF68GEuWLMH+/fuxcOFCzJw5EwsXLpTcPj4+Hqmpqaa/5ORkNYtHREREGlO1ReSVV17B5MmTMWTIEABA48aNceHCBSQkJGDEiBGFtg8NDUVoaKiaRSIiIiIvomqLSFZWFoKCLHcRHBwMg8Gg5m6JiIjIR6jaItKvXz+8//77qFKlCho2bIh//vkHs2bNwujRo9XcLREREfkIVQORTz/9FG+++Saee+45XL16FRUrVsQzzzyDt956S83dEhERkY9QNRCJiIjA7NmzMXv2bDV3Q0RERD6Ka80QERGRZhiIEBERkWYYiBAREZFmGIgQERGRZhiIEBERkWYYiBAREZFmGIgQERGRZhiIEBERkWYYiBAREZFmGIgQERGRZhiIEBERkWYYiBAREZFmGIgQERGRZhiI+CEhhNZFICIicgoDESIiItIMAxE/xAYRIiLyFQxEiIiISDMMRPwQG0SIiMhXMBAJEEcvpSJu9lZsOnHV6dckXknHol0XoDcwtCEiInWEaF0AUp7UqJkxC//GpdS7GPXtXpz/oI9T79Pz460AAJ0OGNq2qqJlJCIiAtgiEjBS7+S6/NqDybeVKwgREZEZBiJ+SKojhZ0rRETkjRiIBAiDG2N6ddApWBIiIqICDET8EOcRISIiX8FAxA8JiY4YucHJ8gMXTf+vY4MIERGphIFIgJATiBy5mIoJPx5QrSxERERGDET8kFTQIdVKYsuFG1kKloaIiMg21QORixcvYtiwYShTpgyKFSuGxo0b4++//1Z7t2SFeSNEROSNVJ3Q7NatW+jQoQO6du2KVatWITo6GomJiShVqpSauyUJ7sQhzBEhIiK1qBqITJ8+HbGxsfjmm29Mj1WvXl3NXZIN7gzfJSIiUouqXTO///47WrVqhUcffRQxMTFo3rw55s+fb3P77OxspKWlWfyRfJI5IoxDiIjIC6kaiJw9exZz5sxB7dq1sWbNGjz77LN44YUXsHDhQsntExISEBUVZfqLjY1Vs3hERESkMVUDEYPBgBYtWmDatGlo3rw5nn76aYwZMwZz586V3D4+Ph6pqammv+TkZDWL57fkjJAhIiLSkqqBSIUKFdCgQQOLx+rXr4+kpCTJ7UNDQxEZGWnxR96A2apERKQOVQORDh064OTJkxaPnTp1ClWrckl5NTEfhIiIfIWqgchLL72EXbt2Ydq0aTh9+jSWLFmCefPmYdy4cWrulhTG4btERKQWVQOR1q1bY9myZfjhhx/QqFEjvPvuu5g9ezaGDh2q5m4DHhtEiIjIV6g6jwgA9O3bF3379lV7N2RGuNk3wxYQIiLyFK41Q4Uwx4SIiDyFgYgfUjqOYAMJERGphYEIERERaYaBiB9yt2vFOkeEOSNERKQWBiJERESkGQYi/sjNFhEmqxIRkacwECEiIiLNMBDxQ+4uelcoR4TjZoiISCUMRIiIiEgzDET8kLs5Htav56gZIiJSCwMRcojJq0REpBYGIn7I3biBLSBEROQpDETIIQYmRESkFgYifsjd1XeJiIg8hYGIH+Kid0RE5CsYiJBDWxOv45d9/2pdDCIi8kMMRPyQ0j0z565nYtL/DuLstQxl35iIiAIeAxFy2rX0bK2LQEREfoaBiB9yd4p32+9LRESkLAYi5DQOxiEiIqUxEPFHMgOGzOw8p4b8clgwEREpjYFIgDtzLQMNp6zB2EX7HG7LMISIiJTGQMTPpGblYtyS/U5v//3OCwCANUevONyWDSJERKQ0BiJ+Zta6k9h7/pbdbd5afgTztp6R/d5qJcESEVHgCtG6AKSsK2mOh9h+d68V5OlONWW9N1tEiIhIaWwRIacxDiEiIqV5LBD54IMPoNPp8OKLL3pqlwFJ7kq5crbnqBkiIlKaRwKRvXv34ssvv0STJk08sTtSCcMQIiJSmuqBSEZGBoYOHYr58+ejVKlSau+OZJLVyMFIhIiIFKZ6IDJu3Dj06dMHPXr0UHtXBPldM9Yu3r6DhTvOSz7HUTNERKQ0VUfN/Pjjj9i/fz/27t3r1PbZ2dnIzi4Y9ZGWlqZW0fyWu2kcD/7fNqTeyVXlvYmIiKyp1iKSnJyMCRMmYPHixQgLC3PqNQkJCYiKijL9xcbGqlU8use6BcVWEAIwECEiIuWpFojs27cPV69eRYsWLRASEoKQkBBs2bIFn3zyCUJCQqDX6wu9Jj4+Hqmpqaa/5ORktYrnt9ztmrGHcQgRESlNta6Z7t274/DhwxaPjRo1CvXq1cNrr72G4ODgQq8JDQ1FaGioWkUiN3H4LhERKU21QCQiIgKNGjWyeKxEiRIoU6ZMocfJNzAMUV92nh5BOh2KBHOuQSIKDDzb+Rkd1OubYYOIunLyDGj+zjp0+GAjW5+IKGB4dK2ZzZs3e3J3pDheHNWUdDMTWTl6ZOXoYRBAsIr5PkRE3oItIv5GzWRVxiFERKQwBiL+xo1g4USK/XlbvD0OWXM0BSO/2YNr6Y5XICYiIu/AQMTPyJ391Dyn5NG5O+1ua/DyJpFnvt+HzSevYdqfx7UuChEROYmBiB/Zeuoa/jyc4vLr0+/m2X3ey+MQk+sZvt8iwmRVIgoUDET8yPAFe1R9f1+5NOrUnNVNVfLLvWjXBSzYfk6FshAReYZHR82Qb+NdutoK6vdmZg5iIu0vjXA3V483fjsCAHioWUWUDedkgETke9giQk7LyTPg/ZXHsOP0da2LYpevtoeY+/3gJYfb5BkKApe7uYWXTCAi8gUMRMhp3/x1HvO3ncMTX+3Wuih2+WzPDBFRAGIgQk47dz1T6yIEDPaCEVGgYCCiobS7uej18VbMWndK66I4Re8jV0ffbRApKLkzw7CZs0NE/oCBiIa+33kBJ6+k45MNiZrsXwghrxuD1z0iIlIYAxEN5eoNWhdBFl9pEfFdMiejYzIMEfkBBiIa8obrupwyePvMqkb+cIG2VdU3M3Ow4tAlZOdxlAwR+QcGIgFMblxhvv1nGxOR52MtOr7E1lfz2Jc7MX7JP/h4nTbdeURESmMgoiFXbtwP/Xsb903bgN/+uahZGQBg5tpTWPp3siJlUJrvtoeYJavaiEROX80AAPx5+LInCkREpDoGIhoyv9jsPHPDqVEQzy3ej5S0u3hx6QH39+/m689c9c7hvH7QM0NEFDAYiHiJx+fvcm42Tb1v5Gl4kzy9AQeTb/tdVxKH7xKRP2AgoiHrO/e1x67Ifo07/PdCZllJ7/95HP0//wtT/zimUXmIiMgWBiIa8ts4QGPWwdo3f50HAHy/64LnC+MiZyY0I1LCxdt3MPKbPdh66prWRaEAxUBEQ860gFhTMv3B3UsdczHU4yhIta57fxiyTNqY/MshbD55DcMX7NG6KBSgGIho6PjlNNmv4QXHsXXHruDJr3f73IRxcvFYICVcTcvWuggU4BiIBDB3u4a8+TK4LfE6NhyX3+LkLWasOekwUPXfHB/yJMazpDUGIgHOn89B2Xm+3SIywqypPFdvwPbE6xqWhohIHQxEAligJ0QaDAKnr6Z7bcvC1fSCJvPZ609h2Ne7LZ73zlKTr2EXH2mNgYgXceZ04O3nDF9aA+X9P4+jx6ytmLXulNZFsSnpRhYAYNGuJLvbCSFwN9d36p68R5CXn1PI/zEQ0Yird+HKziOi3HsBwNfbz6HuG6ux3oXRQFr4evs5AMCnG09rXBLbOs3YhNSsXMnjxfyhoV/tRr03V+NmZo4HS0f+wNtvbsj/MRAJYCmpd5FnUC4aeXdF/oRhL/10QLH3dMfl1LswKPj5tJJ0M8thN8yFey0n646lqF8g8itBjERIY6oGIgkJCWjdujUiIiIQExODAQMG4OTJk2ruUnU3M3Ow8tBl5NhIhFy8+wKWH1BmQTopOrMOnFd/PujWe3WZuRnf7jjv8uu/utei4K0+WHVCkTV5vEH63bzCD0pEJ16a7kJejGEIaU3VQGTLli0YN24cdu3ahXXr1iE3NxcPPPAAMjO9c7E0ZzwyZwfGLdmPTzcWXoY96UYWXl92BBN+PODwfZS4YPz097/IyJa4QHnQkYupmu7fEWfW7/EWtm5Mb2RKz/MQ6MnGpBC2iJDGVA1EVq9ejZEjR6Jhw4Zo2rQpvv32WyQlJWHfvn1q7lZVZ6/nB1ErrZZh/7/1ieg0Y5Pq+7c+Z4z9Xtu6TLubq+n+/Ymt4PTfW3ckH19zlN0w5D6GIaS1EE/uLDU1/+65dOnSks9nZ2cjO7vg7i8tTf7Mo1r5eL37Iy+cGUZnvcX209rOLaGTOo3xRl1RtvrwT1/N8HBJyB+xQYS05rFkVYPBgBdffBEdOnRAo0aNJLdJSEhAVFSU6S82NtZTxZPPwcXW0agYf7lWfy2RJ5KucXdRoGA+CCmByaqkNY8FIuPGjcORI0fw448/2twmPj4eqamppr/k5GRPFU9x1heJL7ecwS/7/nX7fb1t8qH1Lk6jLoTA/qRbSL3j2a4d47wcvkRqngcdADUHBKXdzcXMNSdxMiVdvZ2QV/CuMwoBwNqjKXjjt8M2B0X4G48EIuPHj8eKFSuwadMmVK5c2eZ2oaGhiIyMtPjzVnKuAaevpiNh1QlM+l/BKBdvnc1TKY4m19pw/CoGfrEDPWZt8VCJ8nWasQkpqXc9uk9n2YoxbT1uUPEYen/FcXy26TR6zd6q2j7IO3jZvQ0BePr7fVi0Kwk/7rU/kaG/UDUQEUJg/PjxWLZsGTZu3Ijq1auruTuvYn6JuJ3l3F3/HwcvYfrqE3a3SfNwC4Krvtp21u7zq+8lWl5Lz8bbvx/1RJFMDnv5SB9rknk4Kkm7m4uz1zJwyMfqiFxnfny5OjPyzcwc7Dp7w+9vsDwtUFZGVjUQGTduHBYtWoQlS5YgIiICKSkpSElJwZ070qMAfIlaP7g5m8/YfO7opVTckJg582q6993hn7nm/BBtd+YyccXX288iV+99TZ42DykPtoi0fX8Dun20BWcUToQVQuDopVRN6l3vB5Paqcrs+GrxzjrkufAddZ25GUPm7cKaoymmbletpxbwB4HSWqVqIDJnzhykpqaiS5cuqFChgulv6dKlau7WIxyd2swDFamDyZVTo631Rry1q8Fb7Tp7Ewutgp+kG1m4muad9Xgg+bbk41KBiLuX3Dv3utRyFA4Y5m09iz6fbMdLHp5gbsupa6j35ir89Lfv5pt5UmaOHtcy5N+FG3O91h27imX/XMTAL3bg4c//Urp45KdU75qR+hs5cqSau/UK6tyDSb9rrp53fHIdvWQ5NLzTjE1oM22DRqXJZ+vuZ8lu6QDUl1rBv7jX0rfi0GUHWyprzMK/kasXePXnQx7dry9zpytQCIHfDuRPIpjI4eVuC5AGEa414yo1LwJyu31caUpV0t1cPRKvyBtdofVF1NebPM/fyMJiGwGKN/KHNX88SW8QmPTTQXy/64Lq+7L+KbizGq+QeD81XU69g883nfbfxR59/UTlJAYiKrG80BY+mOxdiPdduCVrX1r3gQ/4/C/0/Ljw6IqbmTlYdfiyV+Zj2Jo74bd/Cq8TtD/pFr7beZ6JeGaSb2Yh+abzQ6HVHOHjj9YdS8Ev+//Fm78d8fzO3bj2Sa6JpKIn5u/GjDUn/WZNKWuBEYZ4eGZVX6E3COTkGVCsaLDpse93nsfyAwXrljha58OddUDkTpueq3EgckJirgkhBB6ZswNnr2fixR61UTGqGA5dvI13HmqEoCCd5oG+rbu+F5ceQN3yEahfoWDo+MAvdgAAKkQVQ88G5TxRPFV8v/M8Eq9mYOpDDWXPR7P3/E0s3nUBr/dpgIiwENz/Yf5yBqfe642iIY7vZ9ggIk/aHc9d0K0PBR10yNMbEBykk32cuDqvkKvO3VtyY3viNY/u11/cyszBdzsvYGCLSogtXVyzcrBFRMJDn21H/bdW43ZWQXPfm8uP4m+ZLRVSnLmrNt8k6UaWKRPdljy9weuavjOy80zr8qw6nIJXfzmERbuSEPd/W3HDhWS4EylpePHHf3D+ujILJtqbTfKijbVdfH1K9TeXH8V3Oy9g59kbsl/76Nyd+O3AJby+7LDFEPI7Oc4N92SLiLTsPD2+33keF254z0Kgd3P1aP/BRvxn4d9aF8Vp/jo7rNof65WfD+Lj9afw8BfaJhazRUSCMZHxr9M30LluNEZ/s7fQNo7Oq+bPmx9MQuT/216LiflrjQvpfT2ilc195uoFxv+w336BPGz98auSj5+6koGW762X/X4DPv8Ld3MNOHIpDesndna3eA7v9LJy8nD2WiYaVixoGXF0MTVO4hZWJNjudlrLkNl8/u+tgi6Y81YXTKnjWAiBGWtOokZ0OB5pWfneYy4UNAB8vvE0Ptl4GgBw/oM+Gpcm37bE67iano0NJ6R/w97IT+MQxecQ+mrbWRQJDsKI9tUAADvP5N+UXM/QNseGgYgdF29nodGUNYq+pzPnY6lt7OWNvPLzQY/3zXra3dz8PBOlWiUcJeQNmrMTxy+n4fMnWjj1fnl6Axq/vQZCACfejUNIsDaNjWpc8F/5X8GIE71BWHRcS+1v7/lbplEyxkCELSLSdp29qXURCsnKsX0u2Z90C+uOXcGE7rVNAbezrWKO9nkwORVtqpdGsAvZst629IVSlPxYNzKy8d7K4wDyf5clQr3n8s+uGTukFnQzcvW8auxisff6ZxftKzQK5Qs7E535exCihjwHQ56PX85vFRu3pKClyV731+07ucjVC+QZBG45OZOu2q6lZyuyls8VswnzhHB8lybV9eatgcjSvUnYeMKzeQ3m3MklU4r193kt3XbX6cAvdmDO5jP4YtNp02OvLztsc/v1x5yr2+cW78fj83c5nJHZFndG+nizWetO2Ry+L9cds2U3Gk5Zk9/lr8g7u4+BiB3ujEZZczQFvT7eihMpaRY/8z3nHN8B5RkEnvhqd6HHree+CESu3C1JOXPNdsuKrW/d2cNB7l3MnRw93v79qKmZVAmZ2Xlo/f56NJ261unX2ApazprNkmsdUEhVSZ5ERXlZChOA/DWgXvvlMEZ/q10uhK16MQ9Q3l1xDCO/2eOx0XFfbnUcDJy6UvD7+VVipJnRf75zrm43n8xPNp27xfYNlz3+miMCAP+1E+i545nv93nNDQIDETvc+d1P+PEATl5Jx3OLLHM3pAIMKVJ3JekyR9N4CyXv+pS68wly4Y2sP0fa3Vz0mLUFH9pZH+jstQzsdpAc+uXWM/h2x3m8oeBQzWSzvA6plpycPAPOmgVj87eedSpo0Ttx4vKWk5sjV+3c+RsZDELz4fFfbz+HzSevOXUTo7Sx3+/DmnvrQplT6zt2tTXRf8MQ5Uh1Xxm7vLXGQOSeOzn6QmsjKDFvxM2swklAf5937YTizEXA39nqC76cKm/9omAX7qCsq3/xriScvppht9us20dbMHjeLrstMBduOD8fhyP/XXYYfxy8ZPH5rFsoBIChX+1Ct4+2YO29i8z7fx536v0NBssWny2nCic0qnWRMhgEXv3ZM5N8Afm//36fbUfPWVtUCUYys/Nw9JLziwtqERCtPpqCZ77fV+hxY0lcXSTPnsW75X+/vt4iIoTAuyuOYez3+/Dk187drMrlzTXEQAT5B0H9t1aj0ZQ1FsvX2/vZX7x9ByfvzZ9hL7krN69wxPnI3J0urQBr8I7gVTZH+RgAcOjf26Y791y9AYO/3In3VhyDwSAQ/2tBsmSQTvqE3C5ho6wyhQS7EohY7td8ojZH196TVnOtZGbnYfyS/Ziy/IjsIMqR53/4x6LFR6q+9p7PT37+YY+8/mfrIOOlpQcLbaPE/HUGg0CSVYC28cRV/PS35yb5ys4z4OilNJy9nmlzSLc7+nyyzeYdqdTx9Ov+fxUvA+BcV+KxS2noOWuL6d/G8n25xbWcDnum/n5M9mt8OQ75v/WJ6DV7K77efg6rj6ZgW+J1rYvkcQxEYHmi/tfshOPo4tJr9lZk5+nR4C3bI2tyDULyLv5A0m23yulLzjox98dDn/2FBX/lJwdvPnkNu8/dxFfbz2Hb6ev4YU/BgmV3cw1oOnWt2/OJuJJlb139to4PqXe23vaLzaex4tBlLNx5QZWRE9/8VZBonWcVwT632PWh3s4cg9ZdQafsTP+fpzdgz7mbFjcAmdl5qPHfP9FpxiZ8v/O86fHv3GwJuZx6B0/M34V19xIolR4aKdd5mS1h9nIx1Dbmu78t1o4xBuU7zrh+0UxJvSvZbWh9vDrDla5Wb/Hx+lMWOTeBiIFIIfIu9gl/2s4PAPL74ofM21no8XkuZIdLJQH6k/dWHsfVtLsWLQ1SeTEZ2Xn4aN0pt/a19ZT8mRitc0RsdUFM/OkgPlp70u5rr6TJn9RNDvOVmq2DB/N/bzoprx6cOQTNuxAzs/PwgMT0/0Yz157CY1/utFiV1zznxvx7tv7Ofj94CYf/zW9ZtG6tmr/1LB6du8NiFeE3fzuKHWduYIyDBMr0u7myukyUYh5c24qT/7vsMP48rNzCgTl5BqdGAF68bdkitOHEVbz8v4NOt9LeyMjGjtPXTd/T6iMpuC9hA15cegBHrFqHpY6xbYnX0GXGJuyykW9lHELsqDv96KVU3DdtA37ep07rkifsOXfTpe4rb8ZABJahh/lx7EyOyLdWy8lLkWp+tTdEzuisVV5BIKx18unG0xbfQYiNOx0tEiINIn9K5OEL9uCPg5dshqxbTl3DpxtP23g2nydPhI5WZ5ZzXOWvoG1/G/NA54aDiZIW3Bsiv+pIiun9F+50fJL9/eAlvPDDP+j32XaM/X4fHvh4K3LMukHf//O4qfvJyNnpx4fM24U+n2zHdg83kXeZudn0/7bqeMnuJKdatL7ccgar7AQs/97KwsSfDqDOG6tcmmkXyD+G9ziZ79Z15mY88dVurD6Sggs3MjF2UX7eye8HL+FA8m2Hr3/y6z04fyMLQ+btknw+O8+AU1fS0fr99fjWrDXQ2ktLDyAl7S5e/l/hLkVf8diXO/H6siOKjrLTGgMRWP7oXzFbLlzr6363j7ZY/DsQklV/O3DRYu4OW0loak5pbyuxVAhgxtqT2HrqGp7/4R+LC7jDtYfMnnYmCFXS7nM37NbX+CX/OP1ejo7BhTvO48e9Ba0xB/+97fR7A4Vbb25n5VoEGEYv/FBQ5tVHU5B4NUP2qJKrZvOjmDMOkze/65T6fg//m4r4Xw/jugtLFihFCIHUO7n4YvNpU+vQweTbSFh1As/eC1iWH7iINu+vt7jgP/3dPvy633NdPWn35jracOIqOs/YbPGc3F+yrQnU3vjtCK5n5ODtP2znmDgKyn1J0k153dPenEfDQASWfdjmP1ZvO2Rve8lEWWqynpztcqr0xcIgBO7m6jFr3SnJri93fLBKurtNCGERRHxnducutWqvxWvN/t+VPnB3jF/yD5b+nWzz+ZUymvr1BmEz6LqSdhdTfj+KIxcL5ruZbmdoM4BCCTVS79x22npcTZM+Dize6t57XbrtOLF09ZEUTPjxgOnfeoPA9NUnsOlkwSigbIkAKL8rI7+U/T7bjh/2JDlMnnWlJdPRK65nZCNPb0D1+D/RdOpafLj6JPp9tt30nLkJPx7A1fRsPPN9QZfUscteNCeRzPqZ8rt0fWvVYvzn4ct48uvddm8wMrPdm3Ry34VbGP3tXosVr/3pvpSBCIDHbTT3WQ/nJc+b8vtRycf1BuC9lcfwyYZEj02TbRDComXBfAKwaQ5yhYwup97BjNUnHW+osF8U6goSApJXyf/9nYz+nxVeOMthy5XV01LJsLeycvHgJ9sclm3ZPxfR99NtaP+B4xFUn25MtPj38gMXMWfzGYwyW1dqh1nTtxD588Y0nboWT369x+K19pYduJaejbbTNiBhleXwaGeCJXu+2HQGvx+8JPmcrTvfPL1Adp4eU/+Q/k1pxdYRkmtj+NVv/0h/bq2G8D63eD+2JV63eQOzPfE6Gk5Zg4R7Q+TPXMvAZxsTkZGd53S+z6A5O7DxxFXTqteAf12fAj4QOZB8G+l+9IUGivXHr1gkZHqCEK53jxmDluFf79Fk9INSN0/5LSKWxn6/D6/8fAgpEq0WUgnW87aeQbXJKzFvq+X8K6l3cm3e5TmzKNfP+/61aI2xx3qWYlstb+Y2HL+CO7l6bD9tmTsiNdtv8s0sxP96GG/8dhhX07MLDXP9bJP9HCJHFvx1zuaEbLZGA+l0wI97kvHNX+fd2rdc5nfxzlqyOwl13liFzScLz1Njq0XOXhxyJ0dfKChOWHXc1IpiMAikOHEM2HMzU/r7eG9lfleRccbaXh9vxcy1pzB+yX63RrAZ141Zeegy7v9wIw46yLXRepSYPQEfiKg1eQz5HwF5Q6jNh6S++dsRvPPHMYshkJ5kb9FEOe7k6pFkdWFZLTHzppFUUrGx9WjanycsRrUs2Z2k2aysjm6mv/nrnMWqxeYtGlKByDPf78MPe5Kw5mhBgmya2QiwQw5yZ9ypBvNE6D+sWk2kgkW1jfq28Orl5qRazf677DCEkB5qbusnaKtF5GZmDuq/tRpD5lu2fH+55Sz+vnArfwqGKatxX8IG/HHwEr7fdQGfOwgUDybfxnsrjrk027UxON8sc8SaLeOW7EfyzTumqeDv5uqx48z1QrlVcvO1PMl7lt/zsMP/puLdlce4YBw57c/Dl526czZ6ZO4Oi38vsJPN70senet8To6c5cUFhGYJ2Y6a9RfuvGCxvMDALwq+W/ORXVk5efj9wCXJHIx20zbg6DtxuJOjd7rlRq53/jhmkfPzvFlSL6DN7JqOVsy2n1xauHtGbxD4fNPpQt2Nx83q/FZmDpb+nYyHm1fCphP5rSp7zt1E9bIlLF6TmpWLTzYkmkY2zlp3CufuDaP+5q/zWPyftqhTLhyZOXqEm61W2//z/G7Ir+wsjArkT2R4IkU6B1FpxhW/X/vlEJYfuIRh91XBewMam56XmiHXWwRsIPLEV7sYhJAscoIQAKpdbPyVDjqkapSQ7cwF2vxO3Lxl4dz1TJy9loGlfyfbnWk0895oD/OWMndI5STYC3avZ+Q4HE7tbWyNcpmxpnCelfk6NZN/PYQ1R69g0a4LFpNUWpu94ZTF79Q8kfx6RjbGfPc3OtQqgx/2JOPX59qjRZVSssrfa7blHDoDPi+cR6WUg8m38emGRCw/kN8KtmhXkkUg4s0CNhBhEELkXaavPuF4lI1K3El0TLubV2iovT3TnFzXRw32Rk95gtLLGdhi7PawF4QAhW8WrJejuJaebZrZ+eWfDqJehQg827mWzffLzM5DaEiQqXXC06wnejx6KRU7z9zA2mPOzaGjlYANRIiIjDw14OLi7Tv4n50RTDczc3DhRiZ+UWldGa39ddozk3BJ5e0AMHW72GLdFXTHrPXq7PVMnL2eiT8PS+dE3crKRcMpa1CnXDjWvtRZZonVMWLBHlndo1phIEJE5CGORma0eHedh0ri37JsTHrmiDst5cb8D29aN8YXghCAo2aIiLDIzQX1nHXYi0cueCtPTlQmNYmdK6b+cdTtuWKcsdbOiDVfohNevIBJWloaoqKikJqaisjISEXfu9rklYq+HxERka86/0EfRd9PzvWbLSJERESkGY8EIp9//jmqVauGsLAwtG3bFnv27HH8IiIiIvJ7qgciS5cuxcSJEzFlyhTs378fTZs2Ra9evXD1auGpez3Fn+boJyIi8mWqByKzZs3CmDFjMGrUKDRo0ABz585F8eLFsWDBArV3bdOG4949ppqIiChQqBqI5OTkYN++fejRo0fBDoOC0KNHD+zcWXia6OzsbKSlpVn8qaF5rLzZ8YiIiEgdqgYi169fh16vR7ly5SweL1euHFJSCg87SkhIQFRUlOkvNjZWlXLFli6myvsSERH5mvKRYZru36tGzcTHxyM1NdX0l5ysznTEOk9No0hEROTlbExE6zGqzqxatmxZBAcH48oVy5yMK1euoHz58oW2Dw0NRWhoqJpFIiIiIjNBGkciqraIFC1aFC1btsSGDRtMjxkMBmzYsAHt2rVTc9dERETkBK07CVTvmpk4cSLmz5+PhQsX4vjx43j22WeRmZmJUaNGqb1rIiKvMbB5Ja2LQCr6angrrYvgMh38uEUEAAYPHoyZM2firbfeQrNmzXDgwAGsXr26UAIrEZE/++ixpnaf/2HMfXijT30PlYaU1qNBOWyc5B2r7srVrV6Mpvv3SLLq+PHjceHCBWRnZ2P37t1o27atJ3ZLRF5oUIvKWhdBE46S5NvVLINyGo9e8FVtq5dW/D1PvBsn+zU1osPx5H1VFS+L2oa307bMXjVqhsgZRUO8/7B9vE0VrYuA3o0KJ4R7g+e71VLsvUZ1qKbYe3mDiDBVxw/4nPKRYahaprjD7Zw9Jzxsp3tsdIfq6G7WMhBWJNip97T2RFv7v/3zH/TB8nEdXHpvf+X9Z3TyOZ883lzV9zcYtF0wulZMuMNt9AZllhN3hzeuq7306ftQrWwJRd7roaYV8UynmogqVqTQcxGh9i/or/Sqq0gZlBYdEVijBq3ndKpU0vLfswY3xZZXujp8nzgngu6YiFAUCbbdKlWyeBF0ddBFYV0+yW1K2d6mVdX8yTSbxpbEF0NbOHwvub4d1dri3x8MbIw65Ryfr7Q+VTAQIcU91LSiqu+fp3Egsn6i435gvcZxSOc60TB4QSTSLLakxb9LOAgQ5JjYsw7KR4Vh3xs9HG9sZVxX5VplAKBDrTKKvE9MhHNdM/83pJki+3OkZwN1c/ms4/VCgZiTh/CQ1lUwd1jLQo+bL21vEPl/tjjzcxnfrRZei6tnd5vIsCIY17Umxnauid/Hd8B/H6yHr4a3QtvqpTHrsWam7R5sXMHxDmUqEmx5SR/SpgqmD2qi+H6UxkCESAV6gwFlw7W5u133UicsGNna7knXE1pUKYnfrJqglRwmGHxv7oOQ4MKnsbCirjWrm3PUxG5uxiNNFZmdsnSJok5t17+Z+iNwPn+ihSp37eb0Vgdp5zrRpv/vXi8GbWs4F+AFB+kctopEhIXYDc5bV3Nu6Y/aVi2ijStFYZZVIvIrvephcu96aFK5JJ7uVBM9GpTD0mfaoYoT3UzOamoV5AOwGPti7OZrXqUUEt/vbfe9ShV37rhTCwMRFzG7XTvmJwxPNrE3r1LS6b7dPIPAO/0bqlwiadERoQgO0uHVuLooEqzD2M41NSmH2nGQeVBTzKo//4Xutd1+/5Htqzm9bcWSxbDrv93x5ZMt8akbXZPBQTo0qBDp8uuVFB4WUugOW2nZeXqLf9eILoFtr3bF0am98PXI1qZg05ZWVUvhpR517G4zf3gr1I4Jx2dPNEebaoWTWre92hXfjmqN9rXKFnou3KoFTyqQ+eP5jhjooQRs84Dn4WaFW55T7+Sa/v+zJwqCSEffo7MBsFoYiLigW70YjJBxkiJldahVFkv+0xa7/9vdo/kisx5rJnkXIsUghGbTJhvPlXXKReDYO3GY3Nt+U7Kr5g6zf7dsLMdjrQpO0krOVxBkFolY1/WT91V1Ohh5tot0oFatTAm8KzOY7NWwPPrZ6Zp0dGcKAE0qR8napzseaWn7AuqJw9f8wmkUW7q40114Pz/bHhN62P+eezYoh3UTO6NhxSg82ioWswc3w/21C4KO2NLF0aVufm6I9dnkl2fbW4zyEkK7yb/Khhe1yK8Klggu7q8TjRplS2Bg80oWrUvejoGIC4J0OhQJDkKI1hP0ByghgPa1yqJcZJhHk6yqy0iy1BuExYVSK9Z3Qg0rune3PahFZbzSqy6+f6oN7q/t3IkuYWBBH7WxSv77oPvBkXn1Sg2NDStS8Nml7oSNyoaHSg7/1Ony54ZQkjMtDKM7Vld0n/aoPQItPDQEZWzcbY9sX03x7kN7QSCQ3+I0oHklxJZ2roukbvkIi/lfiivQ5eeqxpWiEGr2fZlff2pEl8Dswc0QHhqCjS93wazBzTQooesYiLggPDT/YHystTqrA5N95ucupRMyK0ZJ9/O3rykvGVFvEA6bldWiVnBWISoMr/epj3Fda+H+2tEOAy1jOaSq4elONfHegEamf9sbzWCL+UVM6tX9mhRclIrZuYDoAIS4sH8g/7iQO4nV1IcKt7KsfKGj6f9LFi88CshdtlrFQu0EIsbqlSqvHLZGAr3t5vtK+fixplg/sRO+HdUaK57vaHM7ud/2m30boGeDcg4DHbWFhhQcx8Fmv7+Nk7pggA/P3MtAxAXG8eVeMCghMJlVvKd6ZuR+197SIqKknfHdXepLNm+tqGw2tNE8UbFt9TKSszvOHdYSi56SngDR4CASMb/rtRew6nSQ/K50cPy9LxlzH2pEOx4e+aJZ94HUENCGFdXtjrGVJ2R+YbMm7n14d5v4perQGJyYd5EAzq2Mbi9QCwkOQq2YCHSpG4NGlZSr06c6Vsf84a1QJDhI03VZzFv5tF6oTkkMRFxQcAAwElGL0+tyKBQNvtC9Nva83t3mNypkftd5BmFxouijwlA9W4SDOvnwEeeH873Sqy6mD2qMH5++r9BzDk/IZuXY90YP7IzvhoiwgouIeSCi0wELRrZGU6v8iLhG5dGxduEkQuvXO+Ko5UwqQVSn07n8C69sNZfEeAWHC4+533HXTfWyJTB3WAs826Umvh5hew0Ue10zwuq/Sihxr2Xq/+51HXz6eHOM6yovmVqJn7yv3SNEhoXg9T71LVtE/Ojq7UcfxTWuDLkzXl+8YM4qv9O7UXk83iZWMh8jrEgQKkSFYWSHghOxUi0iDSpE2p3DwZUWEfOM+08eb46iHjpzOCpqj/rO5z0E6XQY3LoK7pMYRhlWJBjPdqmJUR2qoWy4/ZaSMuGhqBBleXE2DySM9fvTWOdX5TbvbnF0XbEXtOgATOhRWzJJ1F5QZ290zM9j2+PBxgXDSc1bXNw9ZK1HCEnZ9HIXxDWqgNfi6qG7ne/bbtfMvc8uJ+Bz5Og7cUh8v7dphErJ4kUtkkE1jw80bOZuXa0Ufn2uveRzB956ALViIixaRLSeq0hJAR+IyL3TBQpOKq68luybM6wlEgY2wZhONQo9F9+7PnZM7mbRPaBUjojxpKvUiVBvEGhRpSQGt4rFK73qIjhIh7Y1lF8PQ4qjKpGToOjoGH8trh6m9Gso2aTu6JvRSxTUVleB1HT15uuyOGrSNxgKD8U0Kl40BMWLhmCy1URVOuTfqJQNL4oKVrlDu+K7280XKB8VhlFmAbOSd+C26rVL3fwuFDnT3ttb28b49bgTiEh9bHeHBDtq8XNG0WDXk06VHPllPkQ8SKdDiyqF5zLR6Qpa4c1/H7l+FIkEfCBibfqgxg63MQUijENskjMZlJSwIsGSCXbWFxylvoJOEv3g5tn+cqfe1hsEdDodpj/SxDSL5wcSMxzaG83hKnuJmUJYJrk54uwx7srFoZFZXoSjgMc8sVWKo49ULioM3z3VBjWiS5imwZ7cux461YlG/+YV75Wh8HuGBAdhx+Tu2PpqV4sWE2e6582rxPy4dfcyZquq21QvjaNTe2FKP+eSQCd0r22actzeftxNRTB2rdlaR8eibjzUJPJc15qoEV2i8DxEHu6zqRld0PJr3LV1fZv/Xs2Tuj05zFttARuI9GmS32f/TKeC/slaMeGILeV4WJdxNITWM1d6s/oKTMpkfcKVutgp0SIysHklyXkLzM9Jb/VrYPHcMhtNqEZSd/uVShYrtLaG0iNrEgY2tnnnbxRk9qtXavdSd82ORkWY5344+hpDHXRH2PoY3z/VBr0blcdbfRugRZVS2Dipi2nOiLGda+K70W1Md5m27vyLhgShSHAQ5phNIe5MUqWrHN1x2zrmhXB+Cv0KUWF4qWcdu8efcS+1YsIxoFlFPOXisOKXH6iLd/s3xOoXO7n0emtD761u21FiAjJnlQ0PxcZJXQpP9e/E+UTJ2VGlAp93+lsG3ea5ZjqdDltf6Yp1L3VCw4pRmPdkS/xPRnemtwrYQOT/BjfD2pc6WTRjGoRABScWNTIeF+yasU3qrtuZvm25lGiVsnUyNt4tPdG2SqH8keYSTajmnG3OdnXYqJQiwTqnVv01/24cFdPZlg6p6bWlmplt78f+8+GhIXjBzqq9vRpKT+99f+1ozBnW0qkWLesLvHWwUcTsOHEngCtvY4i4s2xVVQcZF2Zj8e2NvDDWh06nw+whzfFm3wb43Gy2Tnsi77V+tKtZBsWKBuPJdtWcWjDOmW6PiT3rYNFTbTFveOG1ZTyhZnS4aeFLd+dhMf+0xsPP+nxk/RVVKVMctctFAAAeaFgerVVoVfW0gA1EQoKDUKdchMXJxmAQqF62hMMpmoMKIhGyQer85u4iT1LVrUR/sfk79L83Wqd+hUgMbl0FOyZ3w/sOugWkPmue3vZdqzklp9Du5OQEY3JaYZyt3jf7NsD0QY1dniramaB+4gN1bSaXv9WvgeSkZLLK4CgoM/t/Z4Zm2zo2G1WKQsJAx13AQOHVafPft/B2K57vWGiBQWfYOxSkyt+jgf3VaYH8LoM/J9yPV3rVdWqEltyYrkhwEDrWLoviRZVbQNHI2bPJiuc7YupDDbHBiQUw7XGmYc3fpgGQErCBiBRjc7qjSWsKklVd48rkTb5G6k5L7u/JmYuTEt1j5q0IL/Wog7nDWuCHMflzV1QsWcxmM/yMR5qgYlQY/m9I4cDV2S4jJWfndba7QE63grP1W7xoCAa3ruJ6IOLm91i8aAiGtHFvgkFHrVjm36m71wZ7LVfmuRRd6hRc+KOK5Q997l4//zHzBFq5c2YYu07t5QtJfSfOtFg83qYKKpcqjnFda6GkzMXUfOWaG1YkGCPaV3N6hlZbzOvT+Nmt611OTpevYiCCglkzh7Wt6tT2xgPD1btxe+e7GmVLyFri29V+W7XJ+fHE25j10bp6pd7R3RyRClFhaGmWsFc0JAhxjSo4dQJ9tFUsdsR3l7wIONs1o2SLiDNVXkXmiVNu96OrvwlnX2XvM7obzDg6lmwlnyotrEgwNr3cBZte7mIxvHbba12xasL9pqZ443pXrkw4Zkyctvc5pGrDmY8dIzOxOwCuszY589kDoX6Ub9vyQV+PaI2jl1Id9vsbGe/2XT3v2TvhBQXp0L9ZJTSsGIlxi//BySvpdt+rUSXvWKnTmlTzv63fk7MJdlK15kxysT1yJveyRapVw9lApE310lh5+LLbZQCAuvf6jaX89Ew7LNl9Aa/3sUy6rVK6OJJuZtl8ndzmfpdjAQVatoxr31R1MZnQYb6M2f87NWrGpVLkM86jY34RigwrgsgKBRPCPX1/DbSuVlr2+kHhoSGmnBn7XTOFHzPf/K2+DfDOimOFtpE7wszW+0t5s28DB1v4Puvg359mULWFLSLIH+7Yqlppi4unvZOZcRZGV7sF7N14GVsSasVEYM1LymSZa0FOFD+oRWU0iy3p0tLtw+6rancIoiMhQe7/BKSCrphIxyfj4+/EmZrblVBoBICZNtVLY/aQ5oUuEq/F1cPI9tVQzcbxLvtu29XfhJMvtHdYRUeE4uCUB7DexX57xy0iBc87029fMcpxcqYj9pIhg4J0aFm1lGnJCWeZfw7rY9c8J0XqOzFvQbF1faxa2vnFIeVS+5osJ8FaCVLJqtbU7ppZPq6Dqu/vDAYiNrzRRzry7lYvBr0a5s9UqESipDU5x5w355rISYgsVjQYv43rgIk969jdTqq6i4YE4fU+9eUWz8TdBEfAskXkw0FN0LVuNGY80tTh64oVDbboFnKXvflDbGlcKQpvP9QQm1/pinYSs6fK7YKQ+4sw1v9QJ7tFHYkqVsTl7i45XTPOBCJVyhTHvCdb4pdnXR9eOeb+GqgVE+7wtyGH+ae0/n7NE56lbrTMt7Z1px4lc9E+OROEqX3Ga1QpCj+PbYcdk7upvKfCbOWIqNkNCABNXUhyVhq7ZmzoaWP570EtKpsODDUGzcgdzqnkLH9KklxEzMuKOuy+Koo0e5oHXe1qlpG1KnNs6eLYMKkzun+0xe1yyLH2pU64npFtMSeCEsPR5Qbn3z3VBuevZ6FOOccLxwHqnpQdD2U2L4dz7/mAjWHF5hrbSTQtWbyoyy08thgsWnZsbyf1XZp/7rLhlq1rraqWwtD73JvI0BvOEa08OBzWmc+r1soQw+6rYjGpoJYYiMhk/iNWskWkY62y2H76Ooa3q+b0a4Rw7S7YE6RzRGTeXVvVr7eOlpbTvSN1yNSMDkdkWAjS7uYpWCr76pSLQB2rnBIlRiDJfYvQkGDULW87t8WTHP2elZ43aP7wVvhsYyJm3VsATm31ykfgREq6xZwrcifU0+l0+HlsO9zJ1RdaO+nnZ+1P8qcEtVsHPE3qnGh9HCoxOaSU9wY4N4TcExiIyGQZiCj3vl+PbIWz1zJRT+ZJuXu9GJQNL4rrGTnKFcZJL3SvjU82JFo8ZsyYV6JfU6lVNm29j1KtScFmrVhKLhDmaUoE1krMdBuk02bWYlutoEautIg42p+jfSpp0X/aYs3RFPRvVrCytXXLpXm12/oqjS0Gu8/eUKRclkWwX7F+FodIfp48q4N/usTSEP6GOSJuUDIQCQ0JRv0KkbIj/pDgIMwdps0Mg1L91rPv3d0pkANaiCsXSk+ct8xzRFy9EA9oXsnxRiozL3rFqDCM7SxveXYAiiTfajWBU/GiIfjx6ftsPm/ebeqLk0yVDQ/F0LZVLZYAsDsc2mvbIP2HVIuU+c1MjbIlZA+H9kVsEZHJokWEP9RCjFn+3nKiDtLpFFuh15Zgi0DEtff474P18d3OCwqVyDXmRf9rcjeXmsFnD26OiT8dwPPd5I+AMso/drT5bdlLdK1cqjgeb1MF4aHBis7/oiXrlkvzn4rBweKuanSTOHpL7zirKEcqEDFvEVk3sbPfdUdJYSDipLAi+Qtfda9f0JTqw63wqjH+aBwlqz7dqQbmbT1r972qlbUcBujKDzLITju/Ur9vy7VbXDsonB2COeb+6pi/7ZxL+3DEcuZQ1yqnVkw4fh/f0a1y2Nu12ufkppWj0LRyFCrbmJ/G2anZfYW9GwZvOr0NbhWLbYnXvKLlUElS9W/eIqL0opjeSrWw/vz583jqqadQvXp1FCtWDDVr1sSUKVOQk+P5XAYlHH8nDvvf7InIsIKmZyVutEe0q4op/fxnkh7j70YyWdXsIXuTbxn1aVwBk81mXbXVNWNvETFP/I6DgnToXCcajStFoWa0c6M/XNXeamEzJbvlVG44cpq9BOz7763YW1LmEFFnhQQH4bdxHfD5UOcWd/N1ha+DBQeBo6DafPoAqTVxXGFryYPpjzTB9te6ISJMne9dK466ZgKFai0iJ06cgMFgwJdffolatWrhyJEjGDNmDDIzMzFz5ky1dqso4810TEQodDqdxLwd7h8wU/vbX1DN1wTZaREx50zLQVCQDmM718QHq07Y3a6CnYmj7CXNKhmjfDuqdf57qnzLbv3ucY3K4/fxHVAm3P1+ZDXmxXHFgpGtMX7xfrwhMYvmG30aoFZMhGkuHzUEQlO4kdRnrRUTjtNXM9Clrv3J7JpWLol2Ncpg59kb+OkZ1+dKMS+CvRYAf5xhVOo8+UDDcpi17pRTqxX7C9UCkbi4OMTFxZn+XaNGDZw8eRJz5szxmUBk+biO+Hj9KYu7cnNSgesrvepixpqTKpfMkivnzeplS+Dc9Uy39239eY0/LEdNip665HnqouLsfqYPaoJhX+/Ga3HSx5Qr+2lSuaRL72XtkZaVcfDfVLvzWnhCiyqlsCO+u+RzJUJDvHZ9JX+xesL9yMrVW7T+SgkK0uEHO8m9rlBipmNfInWerFc+Ettf61ponhZ/5tEckdTUVJQubXuymOzsbGRnZ5v+nZaW5oli2dS4chQWjGxt8/lyEtN4j+taSzIQeaJtFSzZnaRo+bxB17oxFp/XeJ20/n290qsu/r11p+ABD0Ui9vMNPH+H1bF2WZx8Lw6hIa7N/6LmTeHQtlVRt3wkGshcu4T8hxD53VORGiXjBlgcYnOyMls5Sv7KY1/76dOn8emnn+KZZ56xuU1CQgKioqJMf7Gx7i3rrbZXe9VDXMPymDO0BSb2rIM/rJL0akYXJFtOe7ggyc2dRaG8jfW13NQ1Y3bFPDjlAYzrWstiW1dGHNnrObDVVO+NyV6uBiGAuqORgoJ0aFO9tMXwTiK1md8QBFqLSCB1A9oj+1ufPHkydDqd3b8TJyz79C9evIi4uDg8+uijGDNmjM33jo+PR2pqqukvOTlZ/ifyoFIlimLuky3Ru3EFvNC9NhpXzm/S/r8hzdCkchS+HdUGPz3TDusn5i9et/Tp+/BE2yqmuTb8QaFA5N4RZZ6bITW3hNL5WENaS08t7S3DiF2x8oXCo098+OOQD9A6TcgbbxzUZCs5N9DIvvWZNGkSRo4caXebGjVqmP7/0qVL6Nq1K9q3b4958+bZfV1oaChCQ32/taB/s0qm2QtjSxc0sbWtUQZt7y0sNn1QY1RxYZXK8NAQZGRbTwXuPQez8cLvaM0cV054dltRbOzOXinkLp/uaTWjw9G4UhQOX0w1PeatawsRucr8iA60C7PaK+v6CtmBSHR0NKKjnVsa/OLFi+jatStatmyJb775BkEB1uxmz2Abd/D21CkXjumDmuDhL3aoUCJlFL839LJ++Uh0qFUGMRHSQ2vDwxRu/rc1jbvED33VhPvx9/mbGNSisrJlUEHhri9tykGBQetJGgOtRYRdM/lU6wy+ePEiunTpgqpVq2LmzJm4du2a6bny5R2vSEmWmlcpiWXPdZB8ztmVS9Vgfoc+5v7qpiSroCAdFv/HMqN+VPtqWLI7CXENy+PBRuWxvmlFtK5WStXymZ/XQoJ0mDOsJepXiFRtISm1ecOS3eS/7A2F94RAC0TkrrbujqFtq2Cxlw6YUC0QWbduHU6fPo3Tp0+jcmXLO09vma/Al9jLdfCWSX5e6G5/Wu/a5SJwZGovlCgaDJ1Oh08eb656mcyr7cS7cQjxoam5dbrCXUthRYLxTKca+NLBrLRErnBlfSF36axuFgKJJ3PY3hvQCDWjw/HOimMe26ezVDsrjxw5EkIIyT+Sz/z3OeneYnPT3JhuWgfgGztDk51+H535/zv+UYWHhqjSHGmrSdn8h+5LQQhwr7VJoq78ZZ0T8i7d6sXYndXWE/xx0jJ7zD+u2vlfOp0Ow+6riq51oxFvY24srXCcno8wv6A+3702hrerhig3prkWAFop0C3iydOGvRi2eFHpQ9mXR80A0vWrdT8++adcvYNV7jwg0FpEzIcre+J3XTQkCN+MaqP6fuTirZWPqBljmQfiThBipPRhr/YpxN6Mn22rl8Zjrbw/+VQOnXSDCJEqtFrjxLwlINByRDh+Ix9bRLzcz2PbYdk/F/Gqi1OC26LGz12ti+b6iZ1x5lpGoQXfLPetw4ePNMVPf/9r8bgv/9B1sPyePnykiVZFoQCQp9e+pS3gAhHeaQBgIOL1WlUrjVbVbE+L7yoBZSYv0nmgj7NWTDhqxbg2MsjX5914p38jDJyzAxO618ZjrfJnGmaaFakh16BN14yzi975o0D7vLb48P0imVMi8dQ1BT8kbwzujSN5+jerqHFJ5NPpdGhUKQrHpvbCuK61tC4O+TmtWkTMV+IOtCne2SKSjy0ifsLRkt3WdIBLSSL/6VgdBgH0buwbc8H0rF8Oe1/vgbLhRbUuimzGU5SvjfYh35SnUY6IeW5KoLUQBNrntYWBiJ/w1Ax9xYoGY9IDdT2yLyWEBOsQVdz3lw0wx54ZUkOeRqNmzHuEAu3CzCne8/FWi2Sxzk+wnEfEs2Vx5JVedVHCh1eS9bb6JP+m1agZvUXXTGAd9OY9UZN719euIBpjIBLAXFnvxd5Yd29KDG1VtZTP51VwHQryJK2SVdk1k69GtPxFUP0FA5EA1ahSFIKDdLIXUSvUIqJckRTx3eg26FirLD4e3EzrohD5FK2SVS0CkQALvksVL8hdCwvRdlZbLfluuzW55Z3+DQEAJYqGID07z+nXWZ+qzO/avWHGz051otGpjrzEXV8zukN1LN2bjIea+t5IICJrkcUKLkOBNsV7WJFgbJjUGTrkz3oaqBiIBKDh7aqiZHFlRpFEFSuY4TXQ7ma0Eh0Rir9f7xFwJ21Sx8eDm+K9Fcfx+dAWmuy/QlQxfDioCSJc6Cr2BzWjtVs93VsE5jcf4Cy6V+xcy3Q6x5NnlS5RFHOHtUBoSDCHmXoQgxBSysPNK2NAs0qa5iQ91jpWs32T9hiIBDh7p55gnQ55VpGIVGAS16iCsoUiIo9iYjRpibewAc7eCUgqg90b8kCIiMh/MBAhmwJtTD8REXkeA5EAZN6qYa9FtohUFjcbRIiISEHMEQlw9to8wkND0K9JReTqDfhxbzIAxiFERKQsBiIByDzh1FGS2rsDGgFAQSDCNeiJiEhB7JoJcPbCECbSExGR2hiIBCCLaUTszSMiEaawQYSIiJTEQIRskgpSGIcQEZGSGIgEPHn9L2wRISIiJTEQCUCWyaralYNsa1u9tNZFICLyCAYiZJNUjMKZVT3jx6fv07oIREQewUAkIJlNaKZhKcg2rv1BRIGCgUiAs3e9k2r7YI6IesZ3raV1EYiIPM4jgUh2djaaNWsGnU6HAwcOeGKXZIdFjoidNhEDow6PKlm8iNZFICLyOI8EIq+++ioqVqzoiV0FtE0vd1H0/RiHEBGR2lQPRFatWoW1a9di5syZau8q4FUvW0L2KBi7XTMSgQineCciIiWputbMlStXMGbMGPz2228oXry4w+2zs7ORnZ1t+ndaWpqaxSPYT1atUrrwd8YwRD1MUCWiQKRai4gQAiNHjsTYsWPRqlUrp16TkJCAqKgo019sbKxaxfNbzlzKnF307vU+9e2+lpTFMISIApHsQGTy5MnQ6XR2/06cOIFPP/0U6enpiI+Pd/q94+PjkZqaavpLTk6WWzxygrNzgVSICiv0WP0KkUoXh+5hgwgRBSLZXTOTJk3CyJEj7W5To0YNbNy4ETt37kRoaKjFc61atcLQoUOxcOHCQq8LDQ0ttD2py9bF78NBTVAmvOC7WPF8R+w+dxODW7OVioiIlCM7EImOjkZ0dLTD7T755BO89957pn9funQJvXr1wtKlS9G2bVu5uyUn6XQ6h/0nzkzx/phVwNGoUhQaVYpyt3hkBxtEiCgQqZasWqVKFYt/h4eHAwBq1qyJypUrq7VbIp/FZFUiCkScWdXPyL2U2ZvQjDyLcQgRBSKPBSLVqlWDEALNmjXz1C4DktTF7A2J0S/2tn+mcw0FS0TOYhxCRIGILSIBYEDzShb/djRmJr637cCFVMQmESIKQKpOaEbaq18hEpFhttcwMb/0rXyhI0oWL6p+oUgSwxAiCkQMRPxcbKlihR6zNaFZw4ocFUNERJ7Frhk/I5V8aq/Fn3fh3oM9M0QUiBiIBCBnZ1Ylz+IIJiIKRAxE/I1Ti83I3J48gi0iRBSIGIj4GfnziBAREWmHgUgAsBdscDZP78FvgogCEQMRPyM3ruDFj4iItMRAJABZpIgwEvEa/C6IKBAxEAlwHKnhPfhdEFEgYiASAKzzQITg8F2vxDiEiAIQAxE/I/eumt0B3oNfBREFIgYifsY6sJBq+2B7iHeqEV1C6yIQEXkc15oh8hItq5bGjEeaMCAhooDCQMTPWDfv6yQes3iefTNe5dFWsVoXgYjIo9g1E4AsVt/VrhhEREQMRIiIiEg7DET8TKGhurCfwMqeGSIi0hIDkQCg0+mwfFwHG895uDBERERmGIj4GVtxRdPYkqb/N5/QjLN5EhGRlhiIBDi2iBARkZYYiPgbnd1/OtqciIjIoxiI+DlHs6hWLl3cI+UgIiKSwgnN/IwzLRzmwcnUhxoiWKfDkDacSIuIiDyPgUiAKxseik8eb651MYiIKECxayYQcdU7IiLyEqoGIitXrkTbtm1RrFgxlCpVCgMGDFBzdwTn1o4RjESIiMhLqNY188svv2DMmDGYNm0aunXrhry8PBw5ckSt3REREZEPUiUQycvLw4QJEzBjxgw89dRTpscbNGigxu7IDOcFISIiX6JK18z+/ftx8eJFBAUFoXnz5qhQoQJ69+7tsEUkOzsbaWlpFn9ERETkv1QJRM6ePQsAePvtt/HGG29gxYoVKFWqFLp06YKbN2/afF1CQgKioqJMf7GxHFIql1PDd5kiQkREXkJWIDJ58mTodDq7fydOnIDBYAAAvP766xg0aBBatmyJb775BjqdDv/73/9svn98fDxSU1NNf8nJye59OiIiIvJqsnJEJk2ahJEjR9rdpkaNGrh8+TIAy5yQ0NBQ1KhRA0lJSTZfGxoaitDQUDlFIhewRYSIiLyFrEAkOjoa0dHRDrdr2bIlQkNDcfLkSXTs2BEAkJubi/Pnz6Nq1aqulZScYj18l0EHERF5M1VGzURGRmLs2LGYMmUKYmNjUbVqVcyYMQMA8Oijj6qxS5KB84gQEZG3UG0ekRkzZiAkJARPPvkk7ty5g7Zt22Ljxo0oVaqUWrskFE5W5XBeIiLyZqoFIkWKFMHMmTMxc+ZMtXZBEhh4EBGRL+FaMwGIeSNEROQtGIj4OQYdRETkzRiIBCDGJkRE5C0YiPgdJokQEZHvYCASgNhdQ0RE3oKBiJ+xHjXDUTREROTNGIj4Geu4g60fRETkzRiIEBERkWYYiPgZ57pi2ExCRETegYGIn3muSy2ti0BEROQ0BiJ+Zni7qlg/sZPdbZg3QkRE3oKBiJ/R6XSoFRNhdxvGIURE5C0YiPipZzrXgE4HvNyrjtZFISIiskm11XdJW/G96+PlB+qiSDBjTSIi8l68SvkxBiFEROTteKUKQILZqkRE5CUYiBAREZFmGIgEILaHEBGRt2AgQkRERJphIBKAmCJCRETegoEIERERaYaBSADp17QiAGBs55oal4SIiCifTnjxWM60tDRERUUhNTUVkZGRWhfH5wkhcCsrF6VLFNW6KERE5MfkXL/ZIhJAdDodgxAiIvIqDESIiIhIMwxEiIiISDMMRIiIiEgzqgUip06dQv/+/VG2bFlERkaiY8eO2LRpk1q7IyIiIh+kWiDSt29f5OXlYePGjdi3bx+aNm2Kvn37IiUlRa1dEhERkY9RJRC5fv06EhMTMXnyZDRp0gS1a9fGBx98gKysLBw5ckSNXRIREZEPUiUQKVOmDOrWrYvvvvsOmZmZyMvLw5dffomYmBi0bNnS5uuys7ORlpZm8UdERET+K0SNN9XpdFi/fj0GDBiAiIgIBAUFISYmBqtXr0apUqVsvi4hIQFTp05Vo0hERETkhWS1iEyePBk6nc7u34kTJyCEwLhx4xATE4Nt27Zhz549GDBgAPr164fLly/bfP/4+Hikpqaa/pKTk93+gEREROS9ZE3xfu3aNdy4ccPuNjVq1MC2bdvwwAMP4NatWxZTu9auXRtPPfUUJk+e7NT+OMU7ERGR75Fz/ZbVNRMdHY3o6GiH22VlZQEAgoIsG1yCgoJgMBjk7JKIiIj8mCo5Iu3atUOpUqUwYsQIvPXWWyhWrBjmz5+Pc+fOoU+fPk6/j7GxhkmrREREvsN43Xam00WVQKRs2bJYvXo1Xn/9dXTr1g25ublo2LAhli9fjqZNmzr9Punp6QCA2NhYNYpJREREKkpPT0dUVJTdbWTliHiawWDApUuXEBERAZ1Op3VxXJKWlobY2FgkJyczz0UG1pt8rDPXsN5cw3pzTaDUmxAC6enpqFixYqE0DWuqtIgoJSgoCJUrV9a6GIqIjIz064NOLaw3+VhnrmG9uYb15ppAqDdHLSFGXPSOiIiINMNAhIiIiDTDQERloaGhmDJlCkJDQ7Uuik9hvcnHOnMN6801rDfXsN4K8+pkVSIiIvJvbBEhIiIizTAQISIiIs0wECEiIiLNMBAhIiIizTAQISIiIs0wEHHDtWvXcPv2bdOKwlxZ2Dnp6ekWCyFx4JZz7t69q3URfM6ZM2dw5swZAEBeXp7GpfEdiYmJmDlzJk6ePKl1UXxKSkoKLl26hDt37gDgNcFZDERckJubi7Fjx6JTp0548MEHMXr0aOj1eofz6Qe63NxcPPPMM4iLi0P//v2xdOlSAPDZdYQ8JScnBy+99BKGDh2K4cOHY9u2bVoXySds3LgRtWvXxiOPPAIACAnx6hUtvIJer8e4cePQuHFjHD9+HNeuXdO6SD7BeG5r164d+vXrh969e+Pu3bu8JjiJtSTT6dOn0bp1a5w8eRJffPEFHnzwQezcuRMzZszQumhe7fbt2+jWrRuOHDmC559/Hrm5uXjzzTcxceJErYvm1X777TfUqlULBw4cQJcuXXDgwAHEx8fjl19+0bpoXu/kyZPo1KkTrl27hvnz5wNgq4gjs2bNwsGDB7FlyxZ8/fXX6NixIwC2Wtpz8eJFdOrUCYmJiViyZAkmTJiA5ORkTJ48Weui+QzeIsi0atUqhIeH448//kB4eDg6dOiArVu3Or24T6A6ePAgrly5gl9//RWNGjXCww8/jB9++AGjR4/GAw88gLi4OK2L6HXOnDmDRYsWYfTo0Xj77bcBAEOGDMHgwYORmJiobeG8mBACOp0OFy5cQJ06ddC5c2e88847GDFiBIoWLWp6ngoIIZCVlYVly5Zh9OjRaNu2LXbu3InDhw+jQYMGaNasGcLDw7Uuplfatm0b7ty5g2XLlqF8+fJo164dNmzYgIiICK2L5jPYIuIkY1/f9evXkZKSYvpRXrlyBbdu3UKJEiVw4sQJLYvo1W7cuIF///0XjRo1ApA/zfGIESMwdOhQvPLKK8x/MGO8+8zJyUGTJk0wYsQIAPnN5tHR0QgODjblPVBhxiDj2rVr6NOnDx599FEUKVIEU6ZMAQBkZWVpWTyvpNPpcOnSJZw9exZxcXGYNGkSBg0ahIULF2LQoEF4+OGHkZaWpnUxvdLt27eRmJiI8uXLAwAuX76MQ4cOoXTp0ti+fbvGpfMNDETsmDdvHpYsWYLExERTX1+zZs1w584dxMXFYdiwYahZsyZCQ0Mxe/ZsdOvWDQsWLAAQ2E2Ze/bsAWCZqBUZGYnY2FhTl4LxrnTKlCk4ffq06fFATu6yrrf69evjrbfeQvXq1QEAwcHByMnJQVZWFtq1a6dZOb2J1LFm/O3dvn0bmZmZqFOnDuLj4zFnzhwMHToU8fHxuHHjhibl9RZS9Va5cmWUKVMGb7zxBi5cuIANGzbg999/x4YNG7Bv3z689957AX1eA6TrrV27doiKikLbtm3xyCOPoEqVKoiKisLKlSvx4IMP4p133kFubq5WRfYNggpZvXq1iI6OFs2aNRNVq1YVtWvXFh999JEQQgi9Xi/27dsnvvvuO1G7dm3x888/CyGEuHXrlnj//fdFmTJlRG5urpbF18yyZctExYoVRZkyZcS5c+eEEMJUF2fPnhXdu3cXY8eOFRkZGUKI/LrMzc0Vo0aNEp06ddKq2JqTqre8vDzT8waDwfT/6enponbt2mLXrl2eLqZXkaozvV5vev7u3buidu3a4sqVK0IIIaZOnSrCwsJEaGio2Ldvn0WdBhJ7x9rNmzfFU089JSIiIsTAgQOFXq831elXX30loqKiRFZWllZF15S9c5sQQpw7d06sWrVKNGjQQHz33XemxxctWiRKlCghkpOTPV1kn8IWEQlfffUVHn74Yfzzzz9Yt24dnnnmGbz88stYsWIFAKBFixa4desWSpUqhUGDBkEIgZIlS+L+++/H3bt3TVFzIFm8eDGmTZuGTp06oX79+vjggw8A5I9UEEKgevXq6NKlC/bv349ly5YBAIKCghASEoJSpUohNDQUGRkZWn4ETdiqt+DgYNM25vkMf/31FzIyMlCnTh3TY1euXPFcgb2ArToztloaDAYIIdCiRQssWbIEzZs3x2effYbBgwejePHiSE1NhU6nC7jEVUfHWqlSpdC9e3cULVrUNApQ3GsBadSoEYoWLYrjx49rVn6t2Du3GVWrVg23bt1CcHAwhg0bZmox6dixI3JycnDo0CFNyu4rGIjcY/zBnTt3DuvXr8fAgQMBALVr18akSZPw+OOP49VXX8W5c+cA5M/pEBMTg7S0NNOFYvv27WjZsiWaNWumyWfQgl6vBwDUqlUL3bt3x/Tp0/HQQw9h8+bN2Lx5MwCYmiWfffZZVKpUCfPnz7eYn+Dq1auoWLFiQCXDOVNvxm3MLVu2DF26dEGpUqXwzz//oGvXrnj22WcDokvL2ToLCgpCRkYGli9fjvj4eHTs2BHHjh3DzJkz0bNnTzzxxBMAAmc4rzP1lpOTAwB46KGH8OSTT+L333/H+vXrTUHK9u3b0axZM57b7PxGhRAICgrC1atXTUHxypUr0aJFC7Rp08bj5fcpWjbHeINTp05ZNNPeuXNHxMTEiHnz5gkhhMjOzhZCCHH79m1RvHhxMX36dCGEEAsXLhStW7cWPXv2FD///LMYPXq0iI6OFnPnzvX8h9CAdb0JUdBUeeTIEfHQQw+JBx98sNBz27ZtE7179xYlS5YUL7/8shg6dKgoXbq0WLFihRBC+H2Tudx6M99Wr9eL/v37ixkzZojx48eLoKAgMXz4cJGTk+OZwmtEbp0Z6+OPP/4Qe/futXjdmjVrxLvvvisMBgOPNat6M3bRnD17VgwfPlyUKFFCDBw4UDz++OOidOnS4ssvvxRC8DdqXW/G7qt169aJzp07i0aNGom5c+eKUaNGidKlS4uPP/7YY2X3VQEbiCxdulRUq1ZN1K1bV7Rp00Z8/fXXQgghMjIyxPDhw0WvXr1MQYjxxBYfHy+qVKlieo9FixaJTp06iY4dO4oHH3xQnDhxwvMfxMNs1ZsQlieoBQsWiAYNGogFCxYIISz7U+/evStef/11MXz4cDFw4EDWm516M897SEpKEjqdTuh0OtG+fXtx7Ngxz30ADShxrFlv7+8XUSGUq7e5c+eKV155RYwaNYq/USfr7a+//hL9+vUTvXr1Ev379w+IelNCQAYia9euFdWqVROff/65WL16tZg4caIICQkxtYJ8++23onnz5qY7AOOBtnfvXhEdHS12795teq/c3FyRkpLi+Q+hAal6K1KkiJg3b54pic1YV//++6946qmnROvWrUV6eroQoqB1ycg8IdOfKVVvR44cEYMHDxbr1q3T5oN4kLt15u+tRLaw3lzjbr3dvXvX9F56vV7cvn3b8x/ChwVUIGKMaqdOnSpatmxp8aN77rnnRPPmzcWaNWtEWlqaGDp0qGjfvr0pQ1qI/Ii5YsWK4uzZs54uuqYc1VurVq3Er7/+Wuh1K1asEK1atRJTpkwRBw8eFH379hVJSUkeK7fWlKq3Pn36BEy98VhzDevNNaw37xBQyarGpNJjx46hZs2aKFKkiCmR8r333kOJEiWwaNEiBAcHY9y4cQgKCsKQIUOwY8cOJCUl4c8//0TLli1NE9cECkf1FhYWhuXLlyMlJQVAQQJX165d0aZNG7zzzjto2bIlcnNzERMTo82H0IBS9ZaXlxcw9cZjzTWsN9ew3ryE1pGQmtauXSuef/558fHHH1t0p8ybN09ERESYugaMUfC8efNErVq1xPbt24UQQpw4cUK0bNlS1K1bV5QrV040b948IPr8XKm3OnXqiM2bN5u2zcjIEB9//LEIDg4WXbp0EYcOHfLsh9AA600+1plrWG+uYb15J78MRC5duiT69u0rYmJixNChQ0Xjxo1FVFSU6cA7efKkqFSpknjzzTeFEJa5C+XLlxezZs0y/Ts9PV2cO3cuICaQcrfezLPDjx49Ktq2bWsxuY+/Yr3JxzpzDevNNaw37+Z3gUhmZqYYMWKEGDx4sEUuR5s2bcTIkSOFEEKkpaWJ9957TxQrVszUr2fsK+zcubP4z3/+Y3pdIGTZC6F8vQUK1pt8rDPXsN5cw3rzfn6XI1K8eHGEhoZi5MiRqF69umn2xAcffBDHjx+HEAIRERF44okn0KJFCzz22GO4cOECdDodkpKScPXqVQwYMMD0foGySqfS9RYoWG/ysc5cw3pzDevN++mE8L9VjHJzc1GkSBEA+dM9BwUFYejQoShRogTmzZtn2u7ixYvo0qUL8vLy0KpVK+zYsQP16tXDkiVLUK5cOa2KrxnWm2tYb/KxzlzDenMN6827+WUgIqVjx44YM2YMRowYYZoOOygoCKdPn8a+ffuwe/duNG3a1LTkOuVjvbmG9SYf68w1rDfXsN68R0AEImfPnkX79u2xcuVKtGzZEkD+2gpFixbVuGTejfXmGtabfKwz17DeXMN68y5+lyNizhhjbd++HeHh4aYDburUqZgwYQKuXr2qZfG8FuvNNaw3+VhnrmG9uYb15p38evlJY6Lpnj17MGjQIKxbtw5PP/00srKy8P3333MCGhtYb65hvcnHOnMN6801rDcv5elhOp52584dUatWLaHT6URoaKj44IMPtC6ST2C9uYb1Jh/rzDWsN9ew3rxPQOSI9OzZE7Vr18asWbMQFhamdXF8BuvNNaw3+VhnrmG9uYb15l0CIhDR6/UIDg7Wuhg+h/XmGtabfKwz17DeXMN68y4BEYgQERGRd/LrUTNERETk3RiIEBERkWYYiBAREZFmGIgQERGRZhiIEBERkWYYiBAREZFmGIgQERGRZhiIEJFbRo4cCZ1OB51OhyJFiqBcuXLo2bMnFixYYFpe3RnffvstSpYsqV5BicgrMRAhIrfFxcXh8uXLOH/+PFatWoWuXbtiwoQJ6Nu3L/Ly8rQuHhF5MQYiROS20NBQlC9fHpUqVUKLFi3w3//+F8uXL8eqVavw7bffAgBmzZqFxo0bo0SJEoiNjcVzzz2HjIwMAMDmzZsxatQopKammlpX3n77bQBAdnY2Xn75ZVSqVAklSpRA27ZtsXnzZm0+KBEpjoEIEamiW7duaNq0KX799VcAQFBQED755BMcPXoUCxcuxMaNG/Hqq68CANq3b4/Zs2cjMjISly9fxuXLl/Hyyy8DAMaPH4+dO3fixx9/xKFDh/Doo48iLi4OiYmJmn02IlIO15ohIreMHDkSt2/fxm+//VbouSFDhuDQoUM4duxYoed+/vlnjB07FtevXweQnyPy4osv4vbt26ZtkpKSUKNGDSQlJaFixYqmx3v06IE2bdpg2rRpin8eIvKsEK0LQET+SwgBnU4HAFi/fj0SEhJw4sQJpKWlIS8vD3fv3kVWVhaKFy8u+frDhw9Dr9ejTp06Fo9nZ2ejTJkyqpefiNTHQISIVHP8+HFUr14d58+fR9++ffHss8/i/fffR+nSpbF9+3Y89dRTyMnJsRmIZGRkIDg4GPv27Su0bHt4eLgnPgIRqYyBCBGpYuPGjTh8+DBeeukl7Nu3DwaDAR999BGCgvJT03766SeL7YsWLQq9Xm/xWPPmzaHX63H16lXcf//9His7EXkOAxEiclt2djZSUlKg1+tx5coVrF69GgkJCejbty+GDx+OI0eOIDc3F59++in69euHv/76C3PnzrV4j2rVqiEjIwMbNmxA06ZNUbx4cdSpUwdDhw7F8OHD8dFHH6F58+a4du0aNmzYgCZNmqBPnz4afWIiUgpHzRCR21avXo0KFSqgWrVqiIuLw6ZNm/DJJ59g+fLlCA4ORtOmTTFr1ixMnz4djRo1wuLFi5GQkGDxHu3bt8fYsWMxePBgREdH48MPPwQAfPPNNxg+fDgmTZqEunXrYsCAAdi7dy+qVKmixUclIoVx1AwRERFphi0iREREpBkGIkRERKQZBiJERESkGQYiREREpBkGIkRERKQZBiJERESkGQYiREREpBkGIkRERKQZBiJERESkGQYiREREpBkGIkRERKQZBiJERESkmf8HbB1A6Z7mXvgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pc1.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGVCAYAAADQRNqOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtB0lEQVR4nO3dd3gU1foH8O/upodUCAmBQOi9hNAFBEVAsIuioIhwwX69gAUsIFhQUWxXRfSHFRWvil2KFKVJ09CJ9AAhoab33fn9sZnJzOxszbZkv5/nycPuzOzuybDZefec97xHJwiCACIiIiI/pPd1A4iIiIisYaBCREREfouBChEREfktBipERETktxioEBERkd9ioEJERER+i4EKERER+S0GKkREROS3gnzdgNoymUzIzs5GVFQUdDqdr5tDREREDhAEAYWFhUhOToZeb73fpM4HKtnZ2UhJSfF1M4iIiMgFJ0+eRLNmzazur/OBSlRUFADzLxodHe3j1hAREZEjCgoKkJKSIl3HranzgYo43BMdHc1AhYiIqI6xl7bBZFoiIiLyWwxUiIiIyG8xUCEiIiK/xUCFiIiI/BYDFSIiIvJbDFSIiIjIbzFQISIiIr/FQIWIiIj8FgMVIiIi8lsMVIiIiMhvMVAhIvKi4vIqvLTiIHadzPN1U4jqBI8GKn/88QeuvfZaJCcnQ6fT4bvvvlPsFwQBs2fPRpMmTRAeHo5hw4bh0KFDnmwSEZFPvfjrQby7/giuf3sT9mXn48SFYl83iciveTRQKS4uRvfu3fH2229r7n/55Zfx5ptvYtGiRdi6dSsiIyMxYsQIlJWVebJZREQ+8+mfJ6Tbo9/ciMsXrPddY4jqAI+unnz11Vfj6quv1twnCAJef/11PPXUU7j++usBAJ988gkSExPx3Xff4bbbbvNk04iIvO7tdYc1txtNAs7kl2LEa3+gtNKIPx4bimZxEbV+vYKySkSHBdf6ecg3jp0vxh0fbMXkgS0xaWBLXzfHZ3yWo3Ls2DHk5ORg2LBh0raYmBj07dsXW7Zssfq48vJyFBQUKH6IiHzl1KUSZOYU2jymosqEJ5fvwYKVmZr7/866hIEvrUNxhREmARj40rpat+uuJdvQ7ZlV+PavU7V+LvKNd9cfxum8Usz7ab+vm+JTPgtUcnJyAACJiYmK7YmJidI+LfPnz0dMTIz0k5KS4tF2EhFZU1hWiYEvrcOI1//AsfPWc00yTuZh6dYsq/u/yzhtsW3mN7sttplMAsa9/ydSZ/6MjzcfR1F5FV5ecRAbD51XHPdX1iX8/s85AMD0r3Y5+uuQnxH/DwHz/32gqnOzfmbNmoX8/Hzp5+TJk75uEhEFqF0n86Xbq/fnoMpogiBYXlDySyttPs9nf1oGMV9uP4mKKpN0v8powtvrDmPzkQsAgDk/7EOXOSvxzvojeFb1jfuhz/926vcg/5RbUC7dLiyv8mFLfMtngUpSUhIAIDc3V7E9NzdX2qclNDQU0dHRih8iIm8oKKvEusyzqDSapPuiM/llGPjSOtz72U6LxxWrLjKvj+3h0OtdKqmQbn+xLQuvrv5H87jM3JqhJ5NJwOm8UpuvT3VPIP8f+ixQadmyJZKSkrBmzRppW0FBAbZu3Yr+/fv7qllERBb2Zxfgx13Z6PbMKtz94XYsrZ65c//Sv6RjPtx0HDkFZVi5L9eim179bfiGtKYY37e5xesM66gcCr9YXBOovLv+iNX2NQitmRfx+6FzFvs7z1mJVfssh9QvFVfAGMBDCv4uxFBziS6pYKDiEUVFRcjIyEBGRgYAcwJtRkYGsrKyoNPp8J///AfPPfccfvjhB+zZswcTJkxAcnIybrjhBk82i4jIYXtO5WPUmxvw0Bc1wyk/7T6D1ftzrT6mwmhS3P/jH8vg4fkbu+LZG7ootjWLC1cEHW/8VlNXyqgxpCS9nmyIKFvVmyKa+ulOHD9fjGELf8fzP+/HtmMXkfbsas1cGPK9grJKxfuoqNzow9b4lkcDlR07diAtLQ1paWkAgOnTpyMtLQ2zZ88GADz22GN46KGHMHXqVPTu3RtFRUVYsWIFwsLCPNksIiK7xFyTez7dYbEvKiwIUz6x3C6qlF1gyquMiqBmxX8GSbdDg5QfwQlRofj14Zr9K6p7QQ7mFCjyFdQqjCYUl1fh5MUSaYigQ1KUxXFDXlmPw2eL8P6GY7j1PfPsyv/tPKUIdMg/XPHK74r78mHAQOPROipDhgzRTCwT6XQ6zJs3D/PmzfNkM4iIHLbj+EWMWWS+iB9+/mpEhwcjO19ZhPJiie3k2O8zsnFHvxYAgF/2nJG2H5s/CjqdTrov79oHgIgQA1LiLeunyHtWds0Zju5zV1kc03nOSsV9ewm8ckfPF6FDEvP9/Mn5ImVgerEocAOVOjfrh4jIk8QgBQAWrMxE1sUSi2MuFdu+aDz13V4s//sUjp0vxku/1tROkQcpABCsClSaawQp5VVGmGRf+GLCg/HGbT1svj5gTu511C2LrNeuIv9ga+ivvmOgQkRkxXt/HEVJhWVugDx4mTggVfOx05btwtBX1iOnwBww3N7HMnlW3Z3frVksAOWwzalLpYgJN1eXnTLIXJ1Urwp4tAxul2D3GFFhWeAmatYVrKNCREQ2Z8C0Soi02BYZYsAd/SwDEC2D2jay2BYWbFDcFwOSEFnuyokLxVIOSWK0OX/vtwPWE3lFfVvGO9QuUerMn5E682dsO3bRqceR+8mDkl4t4gAAVQxUiIgCW1mlEVuPXbC6//N/9UNchHLdnNv7NEebxlH4/oHLMO/6zjafPz4yxGLbdd2TFffFAGXG8PbStkkf7ZBmf4hDRf1aNbT5WkBN0OMsMcmWfOefszV1caLCzKmkgTyNnIEKERGAiR9uw7j3t2ru69QkGkkxYbjn8taK7ZHVU4m7p8RiQv9Um88fF2EZqMh7TvSy0ZzLVcM2v+xR1kBxJFAZk95Mc/vxF0fj9j7mpUcevrKt3ech7/tMtsK2+B5jjwoRUQArrTDiz6PWhzxSG5mTXA2q3BB5zRMAuKJDY6vPoe6NUROHdWwJDzEPFQXpbeeoTOjfwmJYSe6FG7ti6xNX4j/D2uLREe0V+7SmNZN3Xaie4fPg0DbSzDBxOKiovAqnLlkmeNdnDFSIKODtzc63uT9Ib/6oVOew9lHlgYztbX2R1BgrgcrLY7ohKiwIb9yWZredPVJiAVjOFlKrNGrXRfnw7t4AzLOPEqPDoNPpEK0aIhKHGsh3xOTmNo0bwFAdlFaaTJi2LANd5qzEwJfW4Z9c2yt223M6rxSTP9qOzUfO2z/Yx/iOJKKAVFBWiWC9HuEhBovpucM6NsbtfZpj8sfmom67T+UBsOxBaRwdqrhvradjSPsEhAZp93Dc2isFY3o2g1712Ot7JOP7jGzFNvHbdbDBdo/KiQvmb9zfPXAZ3lxzCOP6NEdybDg6JVvWSmkaq+zJOVtovbAceYe4hlR0eBCCq4cHj58vxvK/a1bZXrT+CBY6uGaUlmGv/o7SSiPWHDyLYR0TodcBi+5It3gf+gMGKkQUcCqqTBj88joYjQJ2zRlusT8kSK/oLTlefeFvEhuuOE7dsxEkuz/3us44cq4I3ZrF4voeyqRZNa2Lw/i+LSwCFfHbdaxGvotcXHXibo+UWCyZ2Nvmsc3ilLVbLhZVmNcAEgQ0ahBq5VHkSQXVxfqiw4Kl4PS8quDbuaLaBZSllTXT7sVZZEfOFaFtov8N/XHoh4gCzrmicuSVVKKwvMrqB364LMfj6i7mFd37tVIO9agDlWBZwJHeIg7zru+CMenN7A7VaImPtBwqatjAHIAY7HzrjbcTyMi1ahSJfq3i0b1ZDADzAoppz65Gr+d+s7puUH32xz/nMPHDbT793fPEQCU8WOo9u6AqMqhV30du54mLeOGXAxbLI2RdKME3O09pPkbsifM3DFSIqN77dMtxbDlSM/VYXqdCq9jZoLYJCDLo8fKYbpg4IBXvjO8JABbDN+q1esplF4WUOMsqs85o01j5zTY6LAgRIZad4C0bWdZ36awxxGNNkEGPL6f2x2f/6mux7+udp7D16AX88c+5gJkeO2HJNqzPPIfHfbBY4+//nEO7p35FXvUSDYnRYdLMsHMFykrDxeXWi/QVllXi5ne3YPEfR7H4D+Wq2zP+l4EZ/9ul+bgdJy7Vpvkew6EfIqrX9p7Ox9Pf7wMA7H5mOKLDghXJpvI1cX6bPhj/5BZhRGdzD8qtvSyTY8ekN8PX1d9I1T0l5VU133KtJc86Iyk6TKpsW2ClemyQXoe4iGBckq0/pNVue7SCoIWr/5Fuz72uM+6yUoW3vpD3Phw9V+z1179ryTbF/ZjwYOk9pl5v6mCO9WTajJN50u2vd57Cg1e0hckk4OZFm/F3Vp7Vxy36/Qhu7dUMrRIaON94D2KPChHVW4Ig4H87Tkr3/6zuVak01vQOyKd6tmgYiVFdm9gcWpEnzKqPu6JDIkZ0TsScazvVuu1az6+laVw40qurlwYbdDg2f5RLCZH2XmvxH0edfs66ZuKHNYGCmNDqa7aGDa0t+isPWmOqhwFPXiqxGaSINhzyv1lA7FEhojqvymhCaaURUWHKXowfdmXj4y01xbPEfJRC2UXo4S8zpNuO5JIcOVdkdV9IkB7v3dnL0WbbZWt2z1f39MeHm47h6Ws6ITRIj3fWH8FtvVMsFj50l2Zx4fYPqsNyC8qwWTY86M31jwRBwP1L/1Jsu7N69W31CttyReVVFu/5Dzcdw0+7ZSt2nyvCb/tz8a9PdjjUFnmvoL9goEJEdVqV0YR+89eipKIKGx4bioaymSpfbMtSHPvk8r0Y37cF1mWedfn1jnhxSMBWL0eflvGKmUlPX+OeXhxrxETe+upQrmUAWl5ltDqtvLZMJkHq+Vr0+1H8urem+vAXU/qhf2tz9eHsfOtJvfmllYpA5YttWZj7437FMQVlVVaDlKdGd8TF4grc2isFSzYdwydbTvjlApUc+iGiOm3L0Qs4X1SOkgojdsqSAQVB0Kw2W1JRhbfXHbHY7ihnElVrS97D441y90k2quOKRe/qun9/8Tfu+GCrxWrEZZWWPQlXv7HBra9daTRh5b4c/OfLv9Hr+d+QU5138udR5RpTsbL8pt2nrBcj/FRWav9cYTlmfbvHqfZEhwXjsZEdkNooUqoR9N7v/jfEVz/eeUQUsN5ac1i6LZ/CueWo9gKDmTaSEB0x6+qOCAnS46Er2tTqeRwh71FJia/dLCJHbJp5hdV9toYESiuMVvMl/MnOExfxw65sbDx8Huv/Ufaqna8eFpSvcn30XDGKbMyucdbHm4/jnk934ruMbFwsrkC/+WtQVmm0CH47Nqm5HxFivUdn6Z9ZyMkvww+7svF3lmMzdhrJesZCg2tCgOTqGkFBdooJ+gIDFSKq07Ydr+k1kX+jPHy2pit/ycRe0jTPskrt8vLqGinWdEqOxp5nhitWOPYUeS0XF0qxOE1rqGlYx0QA1lfvPXa+GB1nr0DLWb94tG3u8IYsqJ300Q6kzvwZqTN/xmUvrsWcH8wzw9qrCp7tOG59DSi18iqj4n2ntmp/rsW2Dk+vkOqmAMB9Q5QLX9pas2lC/xaY++M+/PuLv/Hab4fstm9A64ZYPe1y6X6kbKbX6K5NAJjrs1hbgsFXGKgQUb1yurpQl3ys/fJ2jaXF9soqjZoX5Jt6aq82rMVTeQtqkbKS/THhtZ/u7IqQIPO5srZ67zvrai7+WX5aMEzUSqPmDGB+z4g1cNqrFmW0FXio3fPpTgxb+DueqQ561Kwt+Ph75jnp9tRBrRT71Athyul1Oim35cCZAov9YhE/0Ud390FcZAimDGqJgW0a4fL2Nat0y1fyrjL6V+8YAxUiqtP6pCp7Qg5kmz+wxYJYEwekwqDXScXZ8korpN6Bdok19SJsXRB8Rb62UHKsb2bdiHky1npU/iercnomvxSvrMxU5Ar5E0d6ChpFhWLJxJqZW2IeySsrMzHwpbVSIAyYg95Nh89L9VfWVwccH20+rjk7bH/1ezNc1UsiPucz13aSlj8QNZXNtuqREosnRnXAhP7mGUHWgkdRp+SaQKVlo0gpGHlydCd89q++ihwoefBu9LNhPAYqRFSnJagWBszMLcSHm45JJcbFMX6xC10slBVi0OOb+wZIj6vws+5uQHnxaBLtnUDlpZu7Ylzf5njjth6YOCAVV3RoDMCxi/zYxX/iv+sO4+Z3N3u6mS4ptVN2HgDiIkJwRYdE3Fzdw/bBxmP47u/T+O+6wzh1qRSXvbhWSsR95od9GP/BVrR76leLkvtXvvq7Im+nqLxKKsS28j+Dsfz+AdKwmkir6N49g2t6WHo2j8PUwa2l97LJTkBxsbhmeQhbQ0iAuXdG5G9ViBmoEFGddk612u+ClZmY++N+/P6P+dutGKiIwzXirIaGDUIUPRZVfhionC2sqUbaIMw71STG9m6OF27siut7NMUz13WWeqK0Ll7+WHPDFnEhvl7VBfK0tKhOWm4QWnNh/8+yDMUxrZ74BYIg4MvtNcUEv1RNhQdqiqcVllWiy5yVqDIJ0OuAlPhwpDWPw8A2DTXbJxche4+KbRIDWHtF+OQ9Jv/k2k4ilwfF6hlRvsZAhYjqrJz8Mmw7pp3seOy8ud5JePW31LBg5cddbESIojhapZ+NywNQTK92pEqtJxiqpyVrnZ9vdp72dnNqRQwE1MMrcuI+ez0Qw1/7Q3H/zbWHLY45VJ3fsuj3munwTWLCpffdwLYJiuNHVSe0ysmHJMVgtchGrZMuTWtmDI3r21y6ba+XRP728rehHxZ8I6I66/Xf/rF7TKRq6Ed06qIy8dPfZjoAQPP4CGRd9G2CqrhkgNaF7vsM64HKmfxSNIlx/3DVwlWZeHPtYXRPicWu6qGUnx4aiC5NY2w+bv4vB6QckoSomuHCdY8MwdBX1gMA7qrO/QCAXqnxeM9Gj8UhK0m2N/dshm/+MuftXKqeLi+vhfLm7T2k25GyXpu/n75KM4CSp041CDUnVF8qqbA4TjTn2s4oLq9C64QGiqEhcQjPGp1OB70OMAkc+gkoGw6dQ9c5K7Ev23rBHiJyXZvGNcmwE2QXGbnw6kClpEL5LfSa7smK+94aWnHGvZe3tn+Qh4l1NbQSN7VWbhaJPVrudL6oXOq52CVbeO+atzbisa93WR2yyC+tVAQd13Rtgjv7tcCLN3VFy0aR2D9vBN67Mx0zr+4oHXNlh8bo1sx28KMlPEQvFecTAwpxePLjSX2Q3qIm+btRdRVlg16HKCvvP71Gj4qt3rWEBqEY0r4xUuIj0KJhJN4e1xNTB7fCa2N72G27wUZQ6ksMVDzozv/bhsLyKox+c6Ovm0JUL4kXz2EdGys+0OUSqi8Gx88reyaaV+civHxzN4zu2gRj0h2fnuwto7omoWWjSEVCpbeJFy+tHB759Gm1i8XWv/W7SmsKruirHacw76f9mvvE2TailgmRePaGLritj3loJCIkCCM6J0lBLQDo9Tp8dU9/fDm1n1Nt7NQkRuopWbrVnLdytjpQaRylTPwONuixd+4IZMy+CkFWCuXoFT0qYhKt9deXTzMGgNHdmuCJUR0dmt4u/g0xUAkQ6mqGl724VjFOSUS1t+GQuSu/X6uGVo/pXD0kMLidMh+gYXU3+629U/D2+J5eq43ijNiIEKx7ZAhmjepo/2APEUvna128xOGy5hpVcy95IFD5RjYVWstnspLycre//6fivq2lAuTCgg1Sr4dIvr5SYnSoYuYYANzaq5limPGDDUeloE0dqADmKejqhQXl5AF4iMH8vLYSv+3NBHLEfhsBoS8wUPEQ9R/p6bxSvPjrQR+1hqh+ErvU5SXH5cKC9dI3yRnD2yn2padan/lBNWwN/Yj1Q7TKvL+x5hA++/METlxwbggov6TS6r7GGgHGa2O7S7erTAI2HzmvmBasLu3/1u1pTq0wLf/dvr1/AMplM3N+f3Qo0lvE4a3b06RtQQa9Yhr0cz8fkG7HRTi/sKO8qWLvlnjeRcM6NkZ8ZAiiQoOQ6GAQpkUsenfPpztdfg5P8L9B2XrCHxPziOobsRy+ekaPSEw+BMzd7O0To5BZPU3TWpVSUgqyMvTz6P92ScXetIZ5zhdV4Knv9gIAjr842qHX+nxrFp5YvgfP3tAFd/ZrAUEQcM+nO6HX6fDuHT0RVT3U1K9VvDQj6sa0Zlhz4Cx+2n0GADDu/a14fWwP3JDWFEDNxRcw14i5VpWbZE9ybDjuGdwKMRHB6Nk8ThGwiT0n13ZPRliwAfHVvXT5pdrBlt6FmVvyoCq4OmhU1/zR6XTYMusKmEzKKcn1Rf37jfzEao01HYjIfcqrjNKMmNAgg2Zip7jQnOiZ6zpDpzOvROzMt+pAJg79ZOeX4WT1+b5QVK6oSHtWVcvGVU8sN6/V9HR1gHMmvwyr9udixb4cXCiukKYXd0iKxvL7B2Dj40MBWCYdy+uelMvWdnJmmQS5WaM64v4h5kUoS6wUjbuqUyLSq+uz9JYND7lTTb6QspdoQOuGCA0yKHJs3MFfFppkoOIh860M8/xVvcLlu+uP4H07xXqo/si6UIJv/zrFnjY32Xz4PD7adFy6Hxasx7i+zTGqa5LNx/Vv3RD75o7AtKva2TyOashX0338m90AtAuTiVyN/7RW/z2TX1Pwbu6P+/Hj7mwA5pWk05rHoVmcOTdGK5F6yxHz6tnyVbTd0dvw+MgOAIDJA1taPWaIKh8KAP5di9W2h3VsjE5NotG1Ot9K/TlyV/9Ul5/bmnk/7seQV9Zb7R3yJgYqtWCrep+1buU53+9Ddl4pXlpxEM//cqDOVXYk11z12u+Y/tUuLP+rbhXI8kdZF0ow7oOtii8DwQY9gg16vDM+Hdd0syyaJadVppysk0+F3XzkAq59ayO+z8hWHPPhxN4AzGsnjXGx1+KNNcrVf09eLFGU4v9xVzZOXjSXqVdPG5YHU6Lb3/8TJpOAV1ZlutQea0Z2ScLWJ67EU6OtJzjrdDr0VuVATa/FatvvT+iFn/89UJoZ1L+1MnnclSEle5ZsOoYTF0rwvx0n7R/sYQxUXLT7VB66z1uFT7cc19yfU1CmuR0Ath6rifBN/IJd78lXZl19gEOCriirNCJ15s+459MdikXhRDrUfFDLh3SW3z/A4lhyTrBeeZnYczofC1YqL/5DOzTGtieuxI8PDbSYXeUo9SiDWIRNS4iDPSN/HDonBTVD27vWLi2J0WF2hw7l78nrnMyLsXgunU7xeg8MbWMxG8lT/KFiMwMVB50rLEeZrLvzuv9uQmFZFZ7+3nI578Nni6yOY+p0wLRlu6T7/laqmNzvN1m+krUx3/d+P4JZ3+7xu/oF/kIsV75yn3agFx1e00si7+nslKw9G4gcZ9DordDSODoMoUEGKeFTZK2QmZq4NpPI1srA6h4UdTkI0aNf75ZWcvZU3og1t/ZOAWBe12fhrd3tHO2csGADNj4+FFMHt8L/7u3v1udWE+D7zyT2gTpg18k8jFm0GQNaN8LHk/pYTA1TG7bwd6v7CkorERsRjLzqKXi8MNV/c36oCWa1pg7uy86XhjHG9WmOri5Uw6zv5GXk1TUx+raMR6xs2qf8b8rRb95kXbCdYYXvHrhMcd+g6oEpt/N56VKbVP+vzWK1S/XLF6yMsLN2j7uNSW+GAa0bIjE6zCPrNIUFG/CEF+rr+MMChfwrdsCClZmoNApSxG8tetcSrfo2YRKgGMP1hzcBeY9WEuKJCzUX4Xs+3eHN5tQL9w1RzviQV+bkzJ7as3eR7ZESq7gfpDq+ospksXyBKCe/DN/9fRo3vbPJqTapX0NdX+VyjeGnCBtVdD0lOTbcZ4tJuuKGHpZDVP5wifKLQOXtt99GamoqwsLC0LdvX2zbts3XTVIoLFNmPat7VGz1sKjLGY/onKj4j/8r6xKDlXpM/X977HyxRT0KeeCbnV+GC0XumepZH+w+lYcpn9gO3tSLDVqrqUKuCdJbP58dkqIstmkldl4o0q5S++jXu/CfZRn4KyvPxutbPp9W4TQxF+WGHsmI1igXH8kkarteG9sDac1jFdvcUem2tnz+F71s2TJMnz4dc+bMwV9//YXu3btjxIgROHv2rK+bhm3HLuLHXdnYJVv5suuclSgqVwYutta0OK/6A9XrdViy6Zh0f/LHO/Bkdc0Aql8qqkz452yhYtvfWXkY+up6xbYSVQ8d41azrAsluO6/m+zWJApXBSrq+1Q7WjNqRAPbNLLYplXeXV3PRrTh0Hm7r681XKq1yvCSib3xwo1d8dyNXaUVs+W0queSkk6nQ1PVMFqVUfD57FSfByoLFy7ElClTcPfdd6NTp05YtGgRIiIisGTJEp+2a/vxi7j1vS146Iu/FdsLy6swbOEfim3qOe3if/SXU/splhMHgPd+t6yd8sW2LHc0mfzI2YIyDHhxDUa+vsFinzjFEjDnUxSrEq8vFLNHBQAGL1jn0HHqIlexLpQpJ+tsDV1oDaf0bG65NIE8x6i2rz/pMu36JY0ahGJc3+ZoEBqkGVwxUHGM+jz9d91hdJmzEntP51t5hOf5NFCpqKjAzp07MWzYMGmbXq/HsGHDsGXLFs3HlJeXo6CgQPHjCc4EDyv35Sjui8l8DUKD8MGEXhjZOQnXa4z9Uf21cn+uRW+aXJXRhJ7PrkbrJ37B2oPK3sOlfzJwfWmF4+tiqXtQJl3WEh2SojBtGIu6uYPW0ItIq+ciLjIEsRHKoRex3L0jZl7dQXH/flUOkro+iRat4SpbKz1TDa0eyUqjgNnf+67n36eByvnz52E0GpGYmKjYnpiYiJycHM3HzJ8/HzExMdJPSkqKR9qmlYxlzSrVlElxWp1Br0P3lFgsujMdrRo1cGv7yL+VqXpJ1GP5d3+0XRoyFKdPij7984TflK72hf3ZBXh3veVK420aN8CmmVdYbI9RXRRjIoKx4j+D8fCwth5rYyBxtkcFAF4f20MRxDTUGKqxNpygLoc/uF0CXh7TTbof5MBMrokDUi22ubu8fH2lnrUlcmYSibv5fOjHWbNmzUJ+fr70c/KkZ6rmXd+jqcPHbjt+EfN/rVkhs6q6ipu8nkBwUN3J/Kba23UqT3Ffnfxnb2x+xv92SXV7TlwoxrqDvs/Z8hZrS8x3axaDprHheEhVijw6zDJxktzH1swpa1N+h7RvjD3PjMC/qsvMV2pUtlyy8bhDr58cG64okW8rZ0aU2igSL9/cDZ1kq2ozmdYx1uLA6T5cdsKngUqjRo1gMBiQm6vskcjNzUVSkvaaHaGhoYiOjlb8+AN57onRKPao1Jxe1nMIHCaTIK3kKnLk25y8i/3bv05LpasvX7Aed3+0XVq7xNNy8suwLvOsz3p1tIYTgJpp3DOGt5fWPCHfCg6y/rmm1+ukYnFGjeqmtob3vpzaDwDQubpgn7xTR10p15pbe6fg5vSaUhARoexRcYTWukmA9Z4Wb/Dp1TMkJATp6elYs2aNtM1kMmHNmjXo39+z1fY8Sfz2IL/w2BrnBaCoekt12/gPtlps05pOKRcebMBlqhkU6porO447Ps5fG8MW/o67P9yOx77e7ZXXUyuzMiTgzhLo5B72isGJQYW6yqx62GfdI0Pw6Ij22Dt3BACgX6uG2DVnuFRMztkeFZH8SG8XfKurrK0bZO8a5kk+/5o/ffp0vP/++/j4449x4MAB3HfffSguLsbdd9/t66bh538PxPM3dsGiO9IdOv5sYRmueWsDyqqXFZf/QdkbVz11yfWsePIv8tVaRQ1CDXhnfE+bj1NP9VRPy6z0wrzlv7IuSWPR/9t5CqVWloLwJPHvp11iA0VuQ4ekmt7T9hr1O8j77H2uiZ+BVaqhnwNnaqbtj+ychJaNIvHA0DZoIMt5iQkPlirQyr/kq0v02yJ/nCO5LWReAkaLLwvX+fx/buzYsXjllVcwe/Zs9OjRAxkZGVixYoVFgq0vdE6Owfi+LTCyi/YwVJ9U5doRs77Zg72na8bXDU70qJzOs76IIdUdX23XzpnqlByNUV2tr+pbWmnE3ZelKrapy4Rr1adwN/lqtYD1+heeJPYutk2MwmMja1aclQ8zPDW6IyYOSMUPD15m8XjynCmDlFOD7QUN4udelWroJ1u2sKQjs3HkQ+e2CtCpqVdZJvvkdYvkly1fBip+kV304IMP4sEHH/R1M5wyvm9z5JUqC7+tUSU8yrsr7eUoFKiei+qmx75RDpcMbNMIAgTckGY/OVv9jc9oErBblpRra5E2d1GnpRSWeT/Tv7i6Ryc82ICRnZvg8W/2WBwTGxGCZ67r7O2mBTyTAPz7ijZ4c+1hAJbBtJr4nla/d8W1zgDHFr0Lk31+OnPB7Nk8Dq+N7Y7OyQxYXBEREiT1sDq6uKQn+LxHpa7449GhaJUQKd3v2jTG7vhsrKyMc5JGdUW5gjIGKvXN4jvT8dm/+mLpv/ohNMj8QTu2l+PT6U2CgOV/n5buf7LlOLYd806eiqjYyhotniSWU2+X2ECRAGnUmDlC3mUSBLRoWPM5aG+5gpoeFeX/3aWSmhpDOtgPPOS1PewFR3I6nQ43pjVDu0QOFbpCPmTXsEGojSM9i4GKg5o3jMDaGUNwS3ozNI4KxdVdm2DjYetTTCcOSFV8Q062srqnqKDUd3PUyT0+3XJccT+9hWVhqn+rant0Vy3oJmc0CYou77JKE259T7sQojtozfIp9nLtBEEQpGBsQOtGiosSp5f6nskkKNZWEgNwa8RARZ1fJc996trU/sxNeaDiTDIt1Y6YLwZo18LxFgYqTlpwS3f8OetKxIQH26w8Gq/6T20WZydQYY+KRy3bnoXbF/+JvBLr/2e1kXWhBE9/v0+6v/6RIZrfQNRj+qGqb4fyxG2jSUCFRl6Kp9bd0EqiKy73bjJtcYVR6mpu09hcJPHfV7bFtd2T0VuVE0beV2USEB5S856116NiqH5/q6cny+uqjO/Xwu7ryofOHZ2eTO6lXvzTm/g/7gJr07fk1Osl6HQ6rJ1xudXji3yQCxAojCYBj3+zB1uOXsALvxyw/wAXnCtSJkM3j4/QPE79ITv72k4IDzbg0RHmpNGRXZKk2T9bjl5AucbK3KculVpscwd55Umx/XmlFZjyyQ6MfW+LxZpWnvDu+sPS7dDq5NnpV7XDW7enOfR3R55lNAkIC3K8R0UcHlfP+qmsMgcu9w1p7dBQDntUvGdQW8uFJn2NgYqHaEWf6kI6069qhys7NAbgnUTJQDXvx5qeDnW5ene5VKzsEbN2UZXPXOnUJBpdmsZg9zPD8cDQmmqru07mAQAaR4WhQiNQyfdQ4rVYgbRpbLhU02XF3hys3p+LrccuYrOHC85l5hTi7XU1pfNtVUQl32jeMAKhss82e9+yrSXT1lTvduwSJH8dX9bzCATv3VnTq/tudUmFOx3o9fIkBiq1IJ86qaa1sJP6W8W/r2yLntV5DCYXApX92QU+XX+hrvh4ywnp9pFzxR55jZnf1sz2sTUrQf4hK35zUX9Yj+vXHIB5VW6tHhVP5I28ve4wbnh7k7mNBh0aV6/6LS/1b/Jwpdr/rqvpTWElZ/+ybGo/TB3cymLlYseTaVVDP9W9c/YmJIhCZAG+MYDXwfKGiJAgzL2uM8b1bY4RnZNwbP4oPHtDF5+2iZ8GtTCqi/W6GPENLBOPmsVZDgeIvSzO/vHtPZ2PUW9uwKg3Njj1OHJfjscHG45iyic7UFxepchXutHGVGRFcqiV+hFi13pZpRHlGhWLtXpZauODDUexYGWmdN+g1yEhyjK/xuBkD0dZpRE/7MqWFl+058dd2dLtn/890KnXIs/q26ohnhjVEWHBBsTJFoFsYKcGirWCbxXVQz+2SvDLyV/HXpVnqr27BqTihRu7Qq/X+UXPJtPoayG1UaTm9sdHdsCgNpbjfFrdpOJ1y9kelfWZ5potWRdLcPRcEVolcHVmR/3fxmO4f0gb+wfa8dzP5nyX11b/I23r1yoec23U95D3toRa+ZAW6xUUlFVpJtO6K1DJyS9Dv/lrLLbrdTqLZHAATueo/N/GY1iwMhMdkqKw4j+DnXpsipUcH/K9VgkN8NrY7kiMDrN7ERN7VP48ehFVRhOCDHqUVhjxzV+nFPvtMeh1yJh9FUyCb5M6yTfYo+IB917eyuFyza70qPy4KxuvrKq5ODr6jTUQnbxouTRBRnWdDnf5YOMx6fZ7d/ZyqNImYH18vlH1bKHzheUor9QIVNyU1CoGu2rWSmg7G6isOWCucHkwp9DOkWZiraE+qfG8GPm5G9OaYUBr+0mX8iqyX2w/ibySCjwuK4rozGdXbESIZgBN9R8DFQ+w9S1jTPVqnuP6mvMQxG/YRid6VB764m/F/TKNixmZDXp5ncU2RwMJVzizDom1Y8VAZeeJS5rrBrl76EeL1vuxUmMFXFvkhcFsrcRcaTSh49MrkFNgnjk1WVWmneoug+w9/vR3e9Fv/hr8IBvi45cscgQDFS977oYuWPqvvphzbScANT0qP+0+41AtlbOFlmsClVRUuZSMG6g8+W3dmXVIrPaoRJm/NVrrOXFXj4q1Fbuv75GsmTjrbI9KjKwy86SPtmO7ldWfn//5gGKl6BAH8xbI/0Wryq6rv1RxtiM5gp8ItfTxpD5OHR8WbMBlbRpJ9QfEb5EAMPu7vXjkf7uww8oHOgAslA35iKZ+uhM3vLPJ5rdWqmEtN8QZ1s61M1MnG0drl6RupFEoTl6XxV09KlozigAgLSXWLYGK3LrMc7hl0Rbc8cFWi/arlwVQF8GjuistxbI6s9zDV7a1uZ8IYKBSa5e3S0BtpvVflM0W+S4jG1/vPIUxi6yXSV9nJa9g96l8t33Tru/szVRwhLWhOkeKkr1yS3dMHJCKoe0ba+7XmtWw8Nbu0nRmdwUq4rfbm3o2xaHnr5a2hwQZoPVWqnBy6EerMN3Gw+exan+OYltKvLJqM3tU6g97fw9MmiZH8BPBzRaM6ebU8VMGt3L42FOXSpBbUO5skwKaOINGXsQoOrz2gUptgsIx6c3wzHWdreYyadVhCQs2SB/qJRXumV4tTtOOCQ9WDEOFBuk1e1QWrT9isc2aswVl+O1AruY+dfuv6KAM2BioEJEcPxHcQH7BucWJ1XEBy2+TtmRpzGCR4+KyNc4WlKH387+hsHppgoFtGkmJzO7oePJGQqtcWLBeWo3bXesV7ThurtKrLoMeGqxH/1YNAZh7n8TFFbPzHSvdLwgCdtioAKwu5qZO0nVmdVyqu1grhxzFOipuUJvcEGeSL7Wq3cp5unJoXdJv/hrIR2ciQ4OkWTZvrzuMyQNb1uqbu7dnWjWMDJV6VI5dsB2wOmLz4fPYVp0Lpa4u2jk5BinxEdj4+FDERoTgrxOXMGHJNodWT91zKh+TPt6OTk2sr4irDkTeWHNIcd/e+5zqh7aNo3zdBKoj+NXFx6yVW5//6wG8s/6w4pu7Oi9CnOIs7WegItFKIRFnWBWVV+HDTccsD3DC/3acrNXj7VFXt40JD0bb6tWEj1ipc+KMez7dKd0WZ4yte2QIvr63P1pWFzJsFheBBqFBUiKvI0NOaw+exbnCcvz+zzmrx5y4WIyfd5+BIAgoLKvEuULlcKZ8thDVX1yzhxzFHhU38MQMu/d+PwoAKK80YdpV7QCYE2ZFV3VKtFjzReDQj03yD8Z92QW1eq5XV1vOvnKnO/o1x/K/T0v39XodGlTn21ibVuyMQtl7R3z7tmwUKQUpcmJyb0mFEeVVRpsr5pZU2l+H6OUV5nL9b92eJq11JRcVxo+l+iS1YQSOq3oB9TrHEs+JAPaouMVbt6dBrwNedjKR1hFbj5kLfqXO/BnzftovbQ/S6yy+iXLoR9uSib0AAAbZMFttlq/ILbCsZeNu7ZOipRoU/77CXO7f4OK6UPZM6J9qc39UWJA0sy2vxHatnywnhqV2nriEL7ZmWWx3tKoz1Q39qvOd5Fh5mJzBry5ucG33ZFzVKdHlP76513XGnB/2ae4LCTJo5sAY9DqcL1IGKoE29PP2usNYsDITi+9Mx/DOSdL2koqab/XXdk/GFR0SAdSsq1Rbb6pyKkT/d1cv97wAzEmsu+YMhyDUfPPUu1DFWIv8/bT9yWGaCxDK6fU6xEaE4GJxBS6VVCCxutS92lc7TuLXvcqpx31S49GnZbxiZWTRmfxSrNynPTOI6o9WCZa9dBzeI2fwq4ub1OYbQrpG97coxKDTHFpqGheOgW0SFNsCqUelymiSVvyd+ulOHMypGcr5ZU/NxfLhK2sWH5T3qGTnOTaDRU0QBCyt7gUIMeiRHGO+aPdsHosrOya69JzW6HQ6Rfe42KNi77+5uLwKmTbW15FPrXY0oTg2QpxxVNOjUmk04fGvd+O76iGqdzSCkfNF5XhkRHtse+JKi0J2q/fXBCm39zHnW3W0kYRLddMd/VpYbGOgQs5gj4ofsJZQC5i/WWsFIA9d0RY6AC0TIvH0d3sBBNb05PxS5RDEL7vPoEOS+SInH5qRF5SS56i4usbIbwdqCu5VGE14ZER7vPf7Ucy7votLz+cMR9eFGv3mBhy/UIIvpvRD/9aW3e7yBG1Hq/TWTI2uOe8r9uZg2Y6TWLbjJBKiQi3yEADg6PliAEDj6DC8cks3TPxwu7RP/mskNAjBtievRGw4F52rb9TT0QEgmoEKOYE9Kn7A1kJ24SFBuFCkvKgOaN0QDUKDEBkahDv7tZA+CAKpR0V9UZR/8H253dzjMXFAqiLxU56XMkI2VOSMt9bWDPu0aBiBm3o2w8ppg9GlaYxLz+cMaejHzv+zeG5uf/9PizwmQBmoaF1EtIjfgAtkAaI8qXf8B1ul2/cNaa35HLZ6Ha/tnozGUWEs9lYPaeUcRXlwYVCqf/ip4AcMdmqpXP3GH4r76kRQsQ5GoKxEevhsIe5ask2xTVwRucpowsmL5mEddfey/Pru6tTIvadrZl55uzCZOPRTUWVyuHbPY1/vstgmVjfWOTHzIrZ65k9eqfk9tv34RTz69W7NY6/o0Bj3VwcrX0zpJ223VR+lbSJratRnS//VF2/dnibdr00yOwUeBip+wNZFUxAEXLIz06J7SiwAIONknhtb5b/+b+MxFKmmZovDIfIqp2N7K6sEC5Bd3F34pNyXna8YrvB2HQh5kw/ayEGR2yMLrEQ3vbsJgP1cF7kY1dDP/Uv/snps46hQPDayA46/OFox9NQkRjsJl+q/y9o0wrXdk6X7tU0Ip8DCQMUPBNkY+tH6g1ZfYFo0NOdh7DlleVGqj85qrHcknid5oqg6ebO2I2Pqaclaiwd6kitl+7Xyn1ypqisFKtVDP1pDSrZeEzDnqcy/qavF9hdutNxG9VtBmf16O0QiBip+wFYyrSNTjqPCzBeRZTtOWkxZro/UvSkAUFUdqFTJAhV17k9tv8QVlysLrb14s3cvsEmyHglHZ5m5axFLsQhbYVmV4hxrsbUsxO19muMmWdXd6LAgiwrLVP95oxYR1R/MaPIDwRof7NFhQSgoq0JJuWUVUvWFOie/5o/+yNkii56E+kar6JixesqTvMy7enVi+dCPvYut2vcZp/HwlxnS/eMvjnbq8e4QbNAjPNiA0kqjWxKnX9To3bAmIsT8UfHjrmzssjPEaCvwVu9vmdDA4TZQ/RFAef/kBuxR8QMGjaGf+OoF4Fbsy7HYd0I140U+E0N9ca5vTCYBmbmW+Rlij8pOG6v2ylNUdjs5TCYPUnxJTJw2OdE9VKpao6dBdeJxX42KodZEhNT04Nhbxdte7o58eI71NIjIHgYqfkD9wd6qUSRu6ZVi5WjLUv3y4GTp1hPubZyfefr7vYr7PaoTiY3VSbTizKdGDSzzR+SX9hMXiz3SPk8zODhFWe7H3dnS7UvFFVKPXGSI40UKnZnhZK9t8nc71/UJTIFUSoFqj4GKH5CP6Q9o3RBrZlyOTlYqdP799FUWNUDk15DvM7JR3xSXV+GPf86h0miSqsICwKppg9Glqfk8VZkEVBlNWHPQXO10dNcmFs8j74UwGq1/UH6z8xRSZ/6MDYesrwDsK+IK0M7Mmjh1qRQLV2XiTH4pnv25Zr0oZ4YIbdX6UYu3k2T88LB20m1H67hQ/cI4hZzBrzN+QN6jIgjmHhKtiqIAEBdpeRGwlxNQ1z3+zW78tPuMxfa2jRtIQZ7RJOCrHaew6bB5EUeti7D8s9Hat35BEDDjf+baI3f+3zaf5KLYordTRl++zpFIXJvol7056J1qXq6hSUyYU6vXBjtYiO2d8T3tPm8LWbVgZwIgqvuaxIThTH4ZhrRPsH8wUTUGKn5A/sFeWl3t05m1g/T1PC9FK0gBzAGdGKSpF70rrbRMQpZf3K31SGg9Tn3sJ5P62GyvJ9kro//ltpNWH3v4bBG6NTNX0L2zv+X6K7Y42vNR5UBPj/z97u2ieeRb394/AKv25WJMejNfN4XqEH5K+BlXFsurb7N8BEHAmHc3o/PsFXaHOKwlbmptl4+LixfU5X+fwtuyIEerxsjZQuVUysHtfPdtUBwltNYjlFdquzjg/mzz4o3OvmdsBRQ39Kgp5FWuEei5+rxU/zSJCcddA1KlStJEjuCnhJ94YlQHAMCkgS2tHmNthsQ02Zj/9bKLBmAuoT7y9T9QXuXcBcSXcgvKsePEJRRXGDHxw202j7U27HWHnR4Do1FAXkkFpi3bhQUrM7G2Orfli21ZFseOeXeLgy33PLGMvrVZP6UaQz9yYkXbBCcDFVtFCR8d2QFNY8MBAAPbNnLueev5sCUR1R7DWj8xdXBrjOraBE1iwq0e8/O/B2puj4kIxvSr2mHh6n8svql8teMUAGDT4fO4okOi+xrsAXtP5yM2IlgRfGw4dF7z2LgIc9C2LlM74VUrqBNUPSrypQkyTubjig6JWLAyU9omTsmtki1L3cDH3wTFYRNrHU0lFY4FpM72qNga+okJD8aaGZejqLzK6edNjGZZfSKyzWM9Ks8//zwGDBiAiIgIxMbGah6TlZWF0aNHIyIiAo0bN8ajjz6KqqrALa3cLC7CZmJss7gIq/vEb7zlsqEL+eq2R8/593Tc7LxSXPPWRgx8aR2qbMzIEa2adjkAoHsz7VWLtS6s8ot7aaURr8iCkgsaFX3FdvRqES8953cPXGa3bZ5kb9ZPsUbVXi2Nopwr/28t9yQixIDIEAPCgg1OBSkv3NgVV3Zo7HSuDBEFHo8FKhUVFbjllltw3333ae43Go0YPXo0KioqsHnzZnz88cf46KOPMHv2bE81qc5xJkc2qfqb6Td/nUJldUEteSG4534+4Na2uZs8kPpw03G7xydEmS+Kj45ob7Hv8yl9NQvfqUu1/7ynJklXax2dyuqeFHHF4JfHdEObxr6tpCoN/QgClmw8hgUrDyr221vAUtQw0rmeD63z8+74ntjx1DCXigyO69sc/zext1NJ40QUmDwWqMydOxfTpk1D167aZbpXrVqF/fv347PPPkOPHj1w9dVX49lnn8Xbb7+NiooKTzWrTnFm/L5lo0jp9o7j5uqs6sRKdYVSfxIuKz62ZNMxm8e+P6GXdLuhxrf4FCs9Tx2bROO36Zdr7qs0mhQ9UIB5lpDRJODgGXNehz9UURWHfqpMAub9tB9vrzuCY+drgjxH/49DHJxuLEprHou05rGKbVd3bSKV1ici8hSfJdNu2bIFXbt2RWJiTd7EiBEjUFBQgH379ll9XHl5OQoKChQ/9ZV8+OJyOzNN5IFKaHWZ9XxVoJL27Co3ts69Qp24cF7VyXauTWyE9YDCWhJppUnQXOzwlVWZuFBd7TbaDwIV8S0hX9RNnihd5qGk6WCDHsvvv0zKDSIi8hafBSo5OTmKIAWAdD8nx3J9G9H8+fMRExMj/aSkWC81X9eFy76thtvpIo+VVQMVA5xKVXe91tRbf+FopVVHejVsJbxaW9i3ssqk2YZ31x+Rvbbvew/EoZ/Hvt4tbRv5+gY884M5uHck2ffxkR1cfv36vpYUEfkfpwKVmTNnQqfT2fw5ePCg/SeqhVmzZiE/P1/6OXnSeoGruk6+EFxhuf3cg2Zx5hlDYo7KCY3F45wpve5N9taHubVXMzw4tA2+dyCZ1dbFNMhKpFJpNFmdYSSKDvN9b4K13+2jzccBAJuPXLD7HPcNae3y63M2MRF5m1NfEWfMmIGJEyfaPKZVq1YOPVdSUhK2bVPWyMjNzZX2WRMaGorQ0PpV4MwaeaCS50CSZJAsf6GwrBKzvt1jcUyl0QSD3v8SGO0FUC0aRuKBoW009z06or1iWrEt1mZVXSypxCPVpfOt8Y+hH+uRwlnZcFB8ZAiu654sBTBERHWVU4FKQkICEhLcU5Wzf//+eP7553H27Fk0btwYALB69WpER0ejU6dObnmNuk5eE8WhQEUc8jGa0G2udj7KqUulPp+5okXsBbLG1uyQa7o1cThQsZagfPqSZe+TmjN5NJ5isNFb9P6Go9Jtvc75hFlHaM3+ISLyJI998mZlZSEjIwNZWVkwGo3IyMhARkYGioqKAADDhw9Hp06dcOedd2LXrl1YuXIlnnrqKTzwwAMB02NijzxQaR5vvYaKSOpRMQpWF6177/cj2jt8rLjcdhKorRwdZ9Y6srZgniOzZfwhP8NWj4q82JtBr/PI1N/eqfFuf04iIls8FqjMnj0baWlpmDNnDoqKipCWloa0tDTs2LEDAGAwGPDTTz/BYDCgf//+uOOOOzBhwgTMmzfPU02qc565tqZn6eUx3eweL66bYutb76WSSsWMEX9RYGeNGkd7B1wtyV5iZ42aiQNSXXped7MVqMiDrbBgg2Lo0F0W3toD13VPVkwRJyLyJI9NY/joo4/w0Ucf2TymRYsW+OWXXzzVhDqvVUIDHJs/yuFv8mJ12n/OFlo95rcDufjtQC6+uqc/+rT0n2/HOXaCJ1uBijzJ9bruyVaPs8VOLi96pMS69LzuZq1HCAD2n6mZqt8nNd4jgUpMRDDevD3N7c9LRGSN7wfdySZnhhv+zsoDALy8wn6+xidbjrvYIs+wl2MSYmNRvBhZbQ917Rh3sRUgeJOtHiNxwUEA+NegVnantBMR1QUMVAKUv05TtsbRoZ9SO0M4jvrmvgGK+/6yyq+jrdDpwKqxRFQvMFAJAKO7NrHYVunAwn/e1DDS9iJ5wTZW7wWAudd1RlxEMJ4Y1dEt7UmMViZ028oN8aZdp/Kt7pNXJy6vNHlk6IeIyNsYqNQjz17fWXN7WLABD12hrEFiNPnXNNMGYba//dsLVO4akIq/nr4KXZpqr6bsLHVvhL/0qJzXWOVZJF/zJyosSLF+khh4tZIFM0REdQEDlXqkZ4s4ze0Xi8stpt9W+dnQjzhTqXWC9oXUXqACOJ7Ps+I/gzC2l+2lF+IighVrBvlLj4qjUhtFKnpUOjWJxobHhuLnfw/yYauIiJzHQKUesVaQrKCsymL6bZWfDP0YTQIWrDyIM/nmWT/WWuXOYmsdkqJxrY3ZQVMGtYROp1OsK2St9L4/mjasHQBlZePQIANS4iMUvSxERHUBs+3qkRCD9kXoydEd8emWE4pt/pJM2/oJ5fR0a+1yd3ujbAw1PTi0LQDgxIWaarV1KE5BhyZRAMzBiYgBChHVVXXo45fsCQ3W/u/s2TxOY+jHv3JURNZ6ejolR7v1dawFKq+N7a6Y7iyqSz0qYu+TfLjKE1VqiYi8oe58+pJd8pL7akkxYYr7/tKjomZtzR9HclScIV9gsIns3BisBCR1KUdFnMotTwDmDCAiqqsYqNQjDWwEKmLegsjfkmlFnlhIT4u8R0V+29qif3UpUBF7VPSKHhX+qRNR3cRPrwChHs7Yl11g5UjvWbj6H4ttT40210GZOCAVn07uAwCYcVU7i+NqKzTIIAUorRrVrCZtLSCpS6sGi7kp8qBLnq9CRFSXMJm2nrupZ1Or+/JLKjXzMbzhfFE53lxzyGL7yC5NsP3JYWjUIAQ6nQ775o6wOaRVG9ufHIYKownP/rhf2mYtUCkq90xpfk8Qe6UMsmUHvNVTRUTkbvz0qsceGNoaC8Z0t7q/oMx3F9931h2x2BZZnUeREBUq1UTxVJACmBNMo8OCFcGJPK9j7nU1BfQ6J7unkJy7vXdnusW2kOp8HnmPSoibc3yIiLyFn171jHxl2xYNIxUXYXUpfV8utKcVJAX56GIqP0fyczKhfwt8e/8AbHhsKBKjw7Qe6nOx4ZY9YiEas37Yo0JEdRU/veqZxKiaNWrUiaEdq+triHyZH5oQFWqxzVftCbLSo6LT6dCzeRxS4iN80SyHaA1VidvkM6XK61CODRGRHAOVekY+VKKeaevLHhS1Mo1Vjh0tge9u8inJeh+1wVVagUqYmEwr29chKcriOCKiuoDJtPWMvOy7+qKr7mHx5QzlDzcdt9jmqzhKPuIUZKj7gYo8QXrDY0NxMKcQA1o39GaziIjchoFKPSNfSK9SVeVVfVEz+V0tFd8ECfLcmLrWo2KvvSnxEX49dEVEZA+HfuoZedG3QlXCapAqUPG36rS+ihEaNajJl1GfI39XlwrRERG5goFKPSPP8ygsq1Lsa9NYmadgEvwsUPHR68qrtlpbL8lfNI0NV9xnoEJE9Z1/fypTrajXzendMk5x35eBSpxGobkmMb6fAty2sX8nnd47pLXifl0bqiIichZzVOoxdY6KDv6TTFusWs15QOuGeOHGrj5py01pzbDt2EWM6trE73so7ujbHJ2aROPmdzcjNEiPhAaW07yJiOoTBir1mNGk7FFRX4O3H7+Idone70GoNJos1s75fEo/r7dDFB5iwBu3pdk/0A/odDqkt4jDtieuRFF5lc+WQCAi8hYO/dRDPZvHAgBuTGum2K6uU/Lk8r3eapJCSbllDRVyTuPoMLRKMC+m2N4HwSYRkbewR6Ue+uqe/rhYUoHGUcqcD38Z1SiqqLJ/EDls6ZS+6PXcb75uBhGRRzBQqYeCDHqLIAXwXeVXtdLqQCXYoMOY9BRc272JnUeQLY2Yp0JE9RgDFfK6skpzfkrDyFDMv8k3CbRERFQ3MEeFvE5cIM/fa5YQEZHv8UpBXneusAyA/1XGJSIi/8NAJcD4Q1G1ez/7CwBw6lKpj1tCRET+joFKgPnjsaG+bgIREZHDGKgEmGAD/8vrIz+Z0EVE5Ha8apHPhAbx7ecudW3VZyIiR/FKQT7z3QOX+boJ9Ya/r1FEROQqBirkVfKZPonRvk/srS8MHPshonrKY4HK8ePHMXnyZLRs2RLh4eFo3bo15syZg4qKCsVxu3fvxqBBgxAWFoaUlBS8/PLLnmoS+YFKY81ihMEGXlzdJTYixNdNICLyCI9Vpj148CBMJhPee+89tGnTBnv37sWUKVNQXFyMV155BQBQUFCA4cOHY9iwYVi0aBH27NmDSZMmITY2FlOnTvVU08iHlIEKO/Tc5b070zFtWQYeG9nB100hInIrjwUqI0eOxMiRI6X7rVq1QmZmJt59910pUFm6dCkqKiqwZMkShISEoHPnzsjIyMDChQsZqNRTVcaaoR8GKu7TpWkMVk+/3NfNICJyO69eKfLz8xEfHy/d37JlCwYPHoyQkJpu6xEjRiAzMxOXLl3SfI7y8nIUFBQofsg/CYKAr3acxNvrDuNSsXnIT+xR0euYAEpERPZ5LVA5fPgw3nrrLdxzzz3StpycHCQmJiqOE+/n5ORoPs/8+fMRExMj/aSkpHiu0VQrP+85g8e+3o0FKzMx9NX1AGrW+WFvChEROcLpq8XMmTOh0+ls/hw8eFDxmNOnT2PkyJG45ZZbMGXKlFo1eNasWcjPz5d+Tp48WavnI8958PO/pdt5JZWKf2Mjgn3SJiIiqluczlGZMWMGJk6caPOYVq1aSbezs7MxdOhQDBgwAIsXL1Ycl5SUhNzcXMU28X5SUpLmc4eGhiI0NNTZZpOfOF9cDgBoGMn/QyIiss/pQCUhIQEJCQkOHXv69GkMHToU6enp+PDDD6HXKztw+vfvjyeffBKVlZUIDjZ/w169ejXat2+PuLg4Z5tGfkAQBLz460Grix9eLDLnqjRswOm0RERkn8cSBU6fPo0hQ4agefPmeOWVV3Du3Dnk5OQock/GjRuHkJAQTJ48Gfv27cOyZcvwxhtvYPr06Z5qFnlYZm4h3vvjKJ75cb9ie/P4CADAsfPFAID4SAYqRERkn8emJ69evRqHDx/G4cOH0axZM8U+QTBPUY2JicGqVavwwAMPID09HY0aNcLs2bM5NdnDHh/ZAS+tOIhWjSLd/tzllSbN7WJF2v+uOwwA2Hr0ottfm4iI6h+PBSoTJ060m8sCAN26dcOGDRs81QzS0Ck5GgAQFmxw+3NXyUrkN4sLx6lLpQCA8iqj4ricgjK3vzYREdU/nCMagMR1YUyCYOdI532w4ah0Wz6zp7RCGag8OLSN21+biIjqHwYqAUhcY0dezt5dDp8tkm5fKq6UbpdV10/pXN2b07tlPIiIiOxhoBKAgqqLrVUa3d+jIu+luVA9FRkw56hUGk1SrkoQq9ISEZEDGKgEILFHpcoDPSqyFBWUqRJr95zOl3JYWD6fiIgc4bFkWvJfYvn6Cg/3qKjd9M5m6TZ7VIiIyBHsUQlAUo+KyRM9Ko4FP+xRISIiRzBQCUBij0qVB3pUTl4sdei4ID3fekREZB+vFgEoSBr6cX+PiqPYo0JERI5goBKAgvWeS6Z1VJCBgQoREdnHQCUAiUM/JqGmtL273NAj2WLbwDaNLLaxR4WIiBzBQCUAyXsz3F30TQyC5No0bmDZBgYqRETkAAYqAUgeTFS5uUdFK/AJDbJ8m7FHhYiIHMFAJQDJA5XKKvf2qFRqBD5aQQln/RARkSN4tQhABr0OYuxQaTLhzTWHcMPbm1BSUVXr59ZK0NUKVMI9sHIzERHVPwxUApR8vZ+Fq/9Bxsk8LNt+stbP6+j6QWEhfOsREZF9vFoEKK0pyhVuGAbSylFRzyzS64AQjaRbIiIiNV4tApReZw5U5BXvdW7Ib1VXu42LCIZRVVbfJAA6d7wYERHVewxUApQYJzi6No+j1D0qM6/ugPJK3xWWIyKiuo2BSoASezTkozI61L6XQz3rZ2zv5rgxrWmtn5eIiAITA5UAJU7EEdzdo6KR59I9JRYbHhvq1tchIqLAwEAlQEk5KrJtbslRMWkP86TER9T+yYmIKOAwUAlQnspRUSfTEhER1QYDlQAl5ai4Oc+1oKwSANCtWQy2PznMvU9OREQBh4FKgBJHeR77Zpdbn/dicQUA4P0JvZAQFerW5yYiosDDQCVAnS0sBwDsPV1g9RhBELBg5UF8uS3L7vOVVhhxw9ubpFlEWqsji8NNLRtFOt9gIiIKSEG+bgD5D3URtt2n8vH2uiMAgNv6NLf52DfWHELGyTzpfpBG5dmfHhqIjzYdx/Th7WrfWCIiCggMVMiqvNJKh4/dezpfcT/YYNmj0jk5Bgtu6V7rdhERUeDg0A9J1Gv91KbGSpCeby0iIqo9Xk1IEh6sfDs4E6cIUB6s1aNCRETkLAYqJEmKCVfcVwcftqiDGi46SERE7sBAhWSU0YZ8RpC9YaDNRy54pEVERBTYGKiQRLWeIBau/sfqPiIiIm9goEISdadJu8QG0m0jIxUiIvIBBiokUa/707ZxlNV9csXlVR5rExERBTYGKiRRhyLyXpTsvFKrj8spKPNQi4iIKNAxUCGJOmHWKLufmVNo9XEFqsJw1/dIdm/DiIgoYHk0ULnuuuvQvHlzhIWFoUmTJrjzzjuRnZ2tOGb37t0YNGgQwsLCkJKSgpdfftmTTSIb1KM7BtkU45T4CKuPU6ev6Dk1mYiI3MSjgcrQoUPx1VdfITMzE9988w2OHDmCMWPGSPsLCgowfPhwtGjRAjt37sSCBQvwzDPPYPHixZ5sFlkhr5tiMgmoMplsHK18pNzdl6W6r1FERBTQPLrWz7Rp06TbLVq0wMyZM3HDDTegsrISwcHBWLp0KSoqKrBkyRKEhISgc+fOyMjIwMKFCzF16lRPNo00iHFJZk4hblm0GQVlNUmytpJp1bsSo8M80TwiIgpAXstRuXjxIpYuXYoBAwYgODgYALBlyxYMHjwYISEh0nEjRoxAZmYmLl26pPk85eXlKCgoUPyQe4jxxgu/HFAEKYDt6cnqPRz5ISIid/F4oPL4448jMjISDRs2RFZWFr7//ntpX05ODhITExXHi/dzcnI0n2/+/PmIiYmRflJSUjzX+AAj9pqEBVu+LWz1qJhUQYyBkQoREbmJ04HKzJkzodPpbP4cPHhQOv7RRx/F33//jVWrVsFgMGDChAm1WpV31qxZyM/Pl35Onjzp8nOR0toDZwEAIUEGi3226r2pdzGZloiI3MXpHJUZM2Zg4sSJNo9p1aqVdLtRo0Zo1KgR2rVrh44dOyIlJQV//vkn+vfvj6SkJOTm5ioeK95PSkrSfO7Q0FCEhoY622xywIp95l4svUacYXPox2JBQne2ioiIApnTgUpCQgISEhJcejFTdbZmeXk5AKB///548sknpeRaAFi9ejXat2+PuLg4l16Daq+s0mixTT28I6deZZnV9omIyF08lqOydetW/Pe//0VGRgZOnDiBtWvX4vbbb0fr1q3Rv39/AMC4ceMQEhKCyZMnY9++fVi2bBneeOMNTJ8+3VPNIjty8suwcl+uxXajE7N+tHJciIiIXOGxK0pERAS+/fZbXHnllWjfvj0mT56Mbt264ffff5eGbmJiYrBq1SocO3YM6enpmDFjBmbPns2pyT70XcZpze2VRus1VeSBytJ/9UVEiEdnvRMRUQDx2BWla9euWLt2rd3junXrhg0bNniqGeSkyirtgKSs0nqgIq710yEpCpe1aeSRdhERUWBiHz0pWOs5Ka+yzFsRPfK/XQCAgzbWAyIiInIFAxVSKK7QDkjKbfSoEBEReQqTCUjhu7+1c1T+OHQOmbmF6J0ajyHtE5iHQkREXsGrDSmUakxNBoBf9phrrHy46ThuTGuK18b28GKriIgoUHHohxSqjPaLoCy30utCRETkbgxUSCE6PNjuMREhliX2iYiIPIGBCik0jw+3e0xCFJcwICIi72CgQgp/ZeXZPSZIazEgIiIiD2CgQk7TyVYd3H0qz3cNISKieo+BCjlN3qFy3X83+a4hRERU7zFQIafpdRz6ISIi72CgQja9ekt3q/sEGysqExERuQMDFbKqaWw4GoRZ1gQUe1QKy6u83SQiIgowDFTIqvWPDtGc4aOvftdwAIiIiDyNgQppmjywJYINehi0ApXqHhX1wM9lbRp6oWVERBRIGKiQJrEnJUhv+RYRpycLqgWVF92R7vF2ERFRYGGgEqCaxtquQKuvDlS0e1TM/xpVybShQSytT0RE7sVAJUC9e0dPDO+UaHW/GIwEGawP/RhNykBFK6ghIiKqDQYqAapbs1i8eXua1f25BeUAgPySSot9Yjiinp7MOIWIiNyNgUoACzZY/+//eucpAEBBmWWgIvWoqAIVHQvBERGRmzFQCWCODNVo1XTbdvwiAMuhHyIiIndjoEI29WkZb3UfC9MSEZGnMVAhm2zNDiqtNHqxJUREFIgYqJBNehvDQ49+vduLLSEiokDEQIVctutknq+bQERE9RwDFXKa1vo/REREnsBAhZxWZRIsaqgQERF5AgMVckmlkYEKERF5HgMVckmVyWT/ICIiolpioEKa+tqonwKwR4WIiLyDgQppmnZVO5v7q4zsUSEiIs9joBLgHh/ZAVFhQbh/SGvF9tAgy7dG35bxUtl99qgQEZE3MFAJcPcNaY2M2cPRoUm0Yru1BQaDpECFPSpEROR5DFQIBr0O6rBEa/qxSRAQUr3ichUXJCQiIi9goEIAACsdKApGk4Agg/lAdY7K2hmXe6JZREQU4BioEABA3aeiNfRjFICg6h4VdY5Kq4QGnmscEREFLK8EKuXl5ejRowd0Oh0yMjIU+3bv3o1BgwYhLCwMKSkpePnll73RJFJRV8XXHPoxCQhmjgoREXmRVwKVxx57DMnJyRbbCwoKMHz4cLRo0QI7d+7EggUL8Mwzz2Dx4sXeaBbJODL0YxIEBAeJOSoMVIiIyPOCPP0Cv/76K1atWoVvvvkGv/76q2Lf0qVLUVFRgSVLliAkJASdO3dGRkYGFi5ciKlTp3q6aaRgP1IxmgTZrB8m0xIRked5tEclNzcXU6ZMwaeffoqIiAiL/Vu2bMHgwYMREhIibRsxYgQyMzNx6dIlzecsLy9HQUGB4odqz9Fk2mBx1g8DFSIi8gKPBSqCIGDixIm499570atXL81jcnJykJiYqNgm3s/JydF8zPz58xETEyP9pKSkuLfhAcqBOAUmoWbWD3NUiIjIG5wOVGbOnAmdTmfz5+DBg3jrrbdQWFiIWbNmubXBs2bNQn5+vvRz8uRJtz5/oLJW4E3OJEDqUWGgQkRE3uB0jsqMGTMwceJEm8e0atUKa9euxZYtWxAaGqrY16tXL4wfPx4ff/wxkpKSkJubq9gv3k9KStJ87tDQUIvnpNpzpEfFaBIQrGfBNyIi8h6nA5WEhAQkJCTYPe7NN9/Ec889J93Pzs7GiBEjsGzZMvTt2xcA0L9/fzz55JOorKxEcHAwAGD16tVo37494uLinG0a1YJe1bfWNDbc4hh5wbdKowldm8Zgz+l8jO7WxBtNJCKiAOSxWT/NmzdX3G/QwFwQrHXr1mjWrBkAYNy4cZg7dy4mT56Mxx9/HHv37sUbb7yB1157zVPNIivkBd+evqYTGkeHWRzTslGkYlHC6HDz22d4p0SLY4mIiNzBp5VpY2JisGrVKhw7dgzp6emYMWMGZs+ezanJviAb++nbMl6xa/n9A3BDj2QsuKUbgmUl9MUpyo7ktxAREbnC43VURKmpqZrVTrt164YNGzZ4qxlkhTzUMKjK1KY1j0Nac/NQXFD1GFFZpRHbjl00H89AhYiIPIRr/RAAZa+IOlCRiwgxAAD2ZtfUrykoq/Rcw4iIKKAxUCEAyh4VG3GKlLtSUlElbcu6WOKhVhERUaBjoEIAlJVp9TaGckKr1/r5ZU9NQb5BbRt5rF1ERBTYGKgQAOWsH1tDPyFBlm+ZAa0ZqBARkWcwUCEAyuEeR3pURFGhXsvHJiKiAMRAhcxksYkzPSp6WwktREREtcRAhQAoh35s9aiEGJRvGVtBDRERUW0xUCEAqmRaG++K0GBVjwrjFCIi8iAGKmTBVgG3EINBcd9W7wsREVFtMVAhAIC8aLCt4RyxhL4jxxIREdUWAxUCAMXyBrYSZIPVybTsUSEiIg9ioEIAAPkqTLaHfphMS0RE3sNAhQAoh35sdZKopyczUCEiIk9ioEIAAEHWp2JrOCdY1aPCkR8iIvIkBipkwVbwYZFMy0iFiIg8iIEKAVAO/bDgGxER+QsGKgRAmUxrK/RQD/1w1g8REXkSAxWyYDNHhcm0RETkRQxUCICyjoozOSpclJCIiDyJgQpZ0DmRo8I4hYiIPImBCjkliDkqRETkRQxUCIAymdYW9qgQEZE3MVAhMwcjlZAgvSKB1tYwERERUW0xUCEAysq09jx8ZVvpNsMUIiLyJAYq5LQg2cwf5qgQEZEnMVAhAMrKtPYE62veNnq+g4iIyIN4mSEAzgUq8h4VHQd/iIjIgxiokNPkU5Q58kNERJ7EQIUAABEhBoePDdYzR4WIiLwjyNcNIP/Qr1VD3JTWFG0SG9g9lj0qRETkLQxUCIB5zZ6FY3s4dGwwZ/0QEZGXcOiHnGaSZd4aTU5k4RIRETmJgQo5rbCsSrpdXmX0YUuIiKi+Y6BCTjMwmZaIiLyEgQo5LUix1o8PG0JERPWeRwOV1NRU6HQ6xc+LL76oOGb37t0YNGgQwsLCkJKSgpdfftmTTSI3MMjK0TpTKI6IiMhZHp/1M2/ePEyZMkW6HxUVJd0uKCjA8OHDMWzYMCxatAh79uzBpEmTEBsbi6lTp3q6aeQi+awfBipERORJHg9UoqKikJSUpLlv6dKlqKiowJIlSxASEoLOnTsjIyMDCxcuZKDix3Sy8R5nVl0mIiJylsdzVF588UU0bNgQaWlpWLBgAaqqamaMbNmyBYMHD0ZISIi0bcSIEcjMzMSlS5c0n6+8vBwFBQWKH/IuWYoKe1SIiMijPNqj8u9//xs9e/ZEfHw8Nm/ejFmzZuHMmTNYuHAhACAnJwctW7ZUPCYxMVHaFxcXZ/Gc8+fPx9y5cz3ZbLJDr+hRISIi8hyne1RmzpxpkSCr/jl48CAAYPr06RgyZAi6deuGe++9F6+++ireeustlJeXu9zgWbNmIT8/X/o5efKky89Frrm8XULNHUYqRETkQU73qMyYMQMTJ060eUyrVq00t/ft2xdVVVU4fvw42rdvj6SkJOTm5iqOEe9by2sJDQ1FaGios80mN4oMrXnbMEeFiIg8yelAJSEhAQkJCfYP1JCRkQG9Xo/GjRsDAPr3748nn3wSlZWVCA4OBgCsXr0a7du31xz2If/DHBUiIvIkjyXTbtmyBa+//jp27dqFo0ePYunSpZg2bRruuOMOKQgZN24cQkJCMHnyZOzbtw/Lli3DG2+8genTp3uqWeRmjFOIiMiTPJZMGxoaii+//BLPPPMMysvL0bJlS0ybNk0RhMTExGDVqlV44IEHkJ6ejkaNGmH27NmcmlyHCOxSISIiD/JYoNKzZ0/8+eefdo/r1q0bNmzY4KlmkIcxTCEiIk/iWj9UK+xQISIiT2KgQrXCOIWIiDyJgQrVDrtUiIjIgxioUK0wTCEiIk9ioEK1wg4VIiLyJAYqVCusTEtERJ7EQIVcMrxTInQ6YOrg1r5uChER1WMeXT2Z6q//juuJovIqxEeG+LopRERUjzFQIZeEBOkRH8QghYiIPItDP0REROS3GKgQERGR32KgQkRERH6LgQoRERH5LQYqRERE5LcYqBAREZHfYqBCREREfouBChEREfktBipERETktxioEBERkd9ioEJERER+q86v9SMIAgCgoKDAxy0hIiIiR4nXbfE6bk2dD1QKCwsBACkpKT5uCRERETmrsLAQMTExVvfrBHuhjJ8zmUzIzs5GVFQUdDqdr5vjtIKCAqSkpODkyZOIjo72dXPqDJ431/C8uYbnzTU8b64JlPMmCAIKCwuRnJwMvd56Jkqd71HR6/Vo1qyZr5tRa9HR0fX6DekpPG+u4XlzDc+ba3jeXBMI581WT4qIybRERETktxioEBERkd9ioOJjoaGhmDNnDkJDQ33dlDqF5801PG+u4XlzDc+ba3jelOp8Mi0RERHVX+xRISIiIr/FQIWIiIj8FgMVIiIi8lsMVIiIiMhvMVAhIiIiv8VAxYPOnTuHvLw8mEwmAJD+JdsKCwsVi1RxYppjysrKfN2EOunIkSM4cuQIAKCqqsrHrak7Dh06hFdeeQWZmZm+bkqdkpOTg+zsbJSWlgLgdcERDFQ8oLKyEvfeey8GDx6MUaNGYdKkSTAajTbXMiDzebvnnnswcuRIXH/99Vi2bBkA1Mk1nLypoqIC06ZNw/jx4zFhwgRs2LDB102qM9auXYu2bdtizJgxAICgoDq/qojHGY1GPPDAA+jatSsOHDiAc+fO+bpJdYL4+da/f39ce+21uPrqq1FWVsbrggN4htzs8OHD6N27NzIzM/HOO+9g1KhR2LJlCxYsWODrpvm1vLw8XHHFFdi7dy8eeughVFZW4umnn8b06dN93TS/9t1336FNmzbIyMjAkCFDkJGRgVmzZuGbb77xddPqhMzMTAwePBjnzp3D+++/D4C9KvYsXLgQu3btwu+//47/+7//w8CBAwGw59OW06dPY/DgwTh06BA+//xzPPzwwzh58iRmzpzp66bVCfz64Ga//vorGjRogB9//BENGjTAZZddhj/++MOhhZcC2a5du5Cbm4tvv/0WXbp0wY033ogvvvgCkyZNwvDhwzFy5EhfN9HvHDlyBJ999hkmTZqEZ555BgBw2223YezYsTh06JBvG+fnBEGATqfDiRMn0K5dO1x++eWYN28e7rrrLoSEhEj7qYYgCCgpKcHy5csxadIk9O3bF1u2bMGePXvQqVMn9OjRAw0aNPB1M/3Shg0bUFpaiuXLlyMpKQn9+/fHmjVrEBUV5eum1QnsUXETcZzx/PnzyMnJkf5gc3NzcenSJURGRuLgwYO+bKJfu3DhAk6dOoUuXboAMJeQvuuuuzB+/Hg8+uijzL+QEb+5VlRUoFu3brjrrrsAmLvkExISYDAYpJwL0iYGIefOncPo0aNxyy23IDg4GHPmzAEAlJSU+LJ5fkmn0yE7OxtHjx7FyJEjMWPGDNx88834+OOPcfPNN+PGG29EQUGBr5vpl/Ly8nDo0CEkJSUBAM6cOYPdu3cjPj4eGzdu9HHr/B8DlVpYvHgxPv/8cxw6dEgaZ+zRowdKS0sxcuRI3HHHHWjdujVCQ0Px+uuv44orrsCSJUsABHY36bZt2wAok8iio6ORkpIiDVmI32jnzJmDw4cPS9sDOfFMfd46duyI2bNno2XLlgAAg8GAiooKlJSUoH///j5rp7/Rer+Jf395eXkoLi5Gu3btMGvWLLz77rsYP348Zs2ahQsXLvikvf5C67w1a9YMDRs2xFNPPYUTJ05gzZo1+OGHH7BmzRrs3LkTzz33XEB/tgHa561///6IiYlB3759MWbMGDRv3hwxMTH4+eefMWrUKMybNw+VlZW+arL/E8hpK1asEBISEoQePXoILVq0ENq2bSu8+uqrgiAIgtFoFHbu3Cl88sknQtu2bYWvv/5aEARBuHTpkvD8888LDRs2FCorK33ZfJ9Zvny5kJycLDRs2FA4duyYIAiCdC6OHj0qXHnllcK9994rFBUVCYJgPpeVlZXC3XffLQwePNhXzfY5rfNWVVUl7TeZTNLtwsJCoW3btsKff/7p7Wb6Ha3zZjQapf1lZWVC27ZthdzcXEEQBGHu3LlCWFiYEBoaKuzcuVNxXgOJrffbxYsXhcmTJwtRUVHCTTfdJBiNRumcfvDBB0JMTIxQUlLiq6b7lK3PN0EQhGPHjgm//vqr0KlTJ+GTTz6Rtn/22WdCZGSkcPLkSW83uc5gj4oLPvjgA9x44434+++/sXr1atxzzz145JFH8NNPPwEAevbsiUuXLiEuLg4333wzBEFAbGwsBg0ahLKyMiniDiRLly7FCy+8gMGDB6Njx4548cUXAZhnWQiCgJYtW2LIkCH466+/sHz5cgCAXq9HUFAQ4uLiEBoaiqKiIl/+Cj5h7bwZDAbpGHkuxaZNm1BUVIR27dpJ23Jzc73XYD9h7byJPZ8mkwmCIKBnz574/PPPkZaWhv/+978YO3YsIiIikJ+fD51OF3CJtfbeb3FxcbjyyisREhIizWQUqntQunTpgpCQEBw4cMBn7fcVW59votTUVFy6dAkGgwF33HGH1OMycOBAVFRUYPfu3T5pe13AQMVB4h/jsWPH8Ntvv+Gmm24CALRt2xYzZszA7bffjsceewzHjh0DYK5p0bhxYxQUFEgXko0bNyI9PR09evTwye/gC0ajEQDQpk0bXHnllXjppZdw3XXXYf369Vi/fj0ASF2e9913H5o2bYr3339fUZvh7NmzSE5ODqhEPUfOm3iM3PLlyzFkyBDExcXh77//xtChQ3HfffcFzJCZo+dNr9ejqKgI33//PWbNmoWBAwdi//79eOWVV3DVVVdh3LhxAAJnurIj562iogIAcN111+HOO+/EDz/8gN9++00KYjZu3IgePXrw883G36kgCNDr9Th79qwUNP/888/o2bMn+vTp4/X21xm+7M6pC/755x9FF3BpaanQuHFjYfHixYIgCEJ5ebkgCIKQl5cnRERECC+99JIgCILw8ccfC7179xauuuoq4euvvxYmTZokJCQkCIsWLfL+L+ED6vMmCDXdoHv37hWuu+46YdSoURb7NmzYIFx99dVCbGys8Mgjjwjjx48X4uPjhZ9++kkQBKHed8c7e97kxxqNRuH6668XFixYIDz44IOCXq8XJkyYIFRUVHin8T7k7HkTz8mPP/4obN++XfG4lStXCs8++6xgMpn4flOdN3EI6OjRo8KECROEyMhI4aabbhJuv/12IT4+XnjvvfcEQeDfqfq8icNjq1evFi6//HKhS5cuwqJFi4S7775biI+PF1577TWvtb0uYqBixbJly4TU1FShffv2Qp8+fYT/+7//EwRBEIqKioQJEyYII0aMkIIU8UNv1qxZQvPmzaXn+Oyzz4TBgwcLAwcOFEaNGiUcPHjQ+7+Il1k7b4Kg/PBasmSJ0KlTJ2HJkiWCICjHcsvKyoQnn3xSmDBhgnDTTTfxvNk4b/Kci6ysLEGn0wk6nU4YMGCAsH//fu/9Aj7ijveb+vj6fpEVBPedt0WLFgmPPvqocPfdd/Pv1MHztmnTJuHaa68VRowYIVx//fUBcd5qi4GKhlWrVgmpqanC22+/LaxYsUKYPn26EBQUJPWifPTRR0JaWpr07UF8E27fvl1ISEgQtm7dKj1XZWWlkJOT4/1fwge0zltwcLCwePFiKcFOPFenTp0SJk+eLPTu3VsoLCwUBKGmd0okTxitz9x13vbu3SuMHTtWWL16tW9+ES+r7XkLhJ4mLTxvrqnteSsrK5Oey2g0Cnl5ed7/JeooBioyYkQ8d+5cIT09XfEHef/99wtpaWnCypUrhYKCAmH8+PHCgAEDpOxuQTBH28nJycLRo0e93XSfsnfeevXqJXz77bcWj/vpp5+EXr16CXPmzBF27dolXHPNNUJWVpbX2u1r7jpvo0eP5nmrxvebdTxvruF58z0m08qISa/79+9H69atERwcLCV6Pvfcc4iMjMRnn30Gg8GABx54AHq9Hrfddhs2b96MrKws/PLLL0hPT5eK+gQKe+ctLCwM33//PXJycgDUJJcNHToUffr0wbx585Ceno7Kyko0btzYN7+ED7jrvFVVVfG88f1mF8+ba3je/ICvIyVfWrVqlfDQQw8Jr732mmK4ZvHixUJUVJQ09CBG0IsXLxbatGkjbNy4URAEQTh48KCQnp4utG/fXkhMTBTS0tICYrzRlfPWrl07Yf369dKxRUVFwmuvvSYYDAZhyJAhwu7du737S/gAz5treN5cw/PmGp43/xOQgUp2drZwzTXXCI0bNxbGjx8vdO3aVYiJiZHelJmZmULTpk2Fp59+WhAEZe5EUlKSsHDhQul+YWGhcOzYsYAosFXb8ybPbN+3b5/Qt29fReGj+ornzTU8b67heXMNz5v/CrhApbi4WLjrrruEsWPHKnJJ+vTpI0ycOFEQBEEoKCgQnnvuOSE8PFwaUxTHKS+//HLhX//6l/S4QJghIAjuP2+BgufNNTxvruF5cw3Pm38LuByViIgIhIaGYuLEiWjZsqVUeXLUqFE4cOAABEFAVFQUxo0bh549e+LWW2/FiRMnoNPpkJWVhbNnz+KGG26Qni9QVlh193kLFDxvruF5cw3Pm2t43vybThACbwWpyspKBAcHAzCX0tbr9Rg/fjwiIyOxePFi6bjTp09jyJAhqKqqQq9evbB582Z06NABn3/+ORITE33VfJ/heXMNz5treN5cw/PmGp43/xWQgYqWgQMHYsqUKbjrrrukcuN6vR6HDx/Gzp07sXXrVnTv3h133XWXj1vqX3jeXMPz5hqeN9fwvLmG580/MFABcPToUQwYMAA///wz0tPTAZjXtQgJCfFxy/wbz5treN5cw/PmGp431/C8+Y+Ay1GRE2O0jRs3okGDBtKbce7cuXj44Ydx9uxZXzbPb/G8uYbnzTU8b67heXMNz5v/CYylQa0QE2G3bduGm2++GatXr8bUqVNRUlKCTz/9lMV5rOB5cw3Pm2t43lzD8+Yanjc/5O1pRv6mtLRUaNOmjaDT6YTQ0FDhxRdf9HWT6gSeN9fwvLmG5801PG+u4XnzL8xRAXDVVVehbdu2WLhwIcLCwnzdnDqD5801PG+u4XlzDc+ba3je/AcDFZjXZjAYDL5uRp3D8+YanjfX8Ly5hufNNTxv/oOBChEREfmtgJ71Q0RERP6NgQoRERH5LQYqRERE5LcYqBAREZHfYqBCREREfouBChEREfktBipERETktxioEJHHTZw4ETqdDjqdDsHBwUhMTMRVV12FJUuWwGQyOfw8H330EWJjYz3XUCLyOwxUiMgrRo4ciTNnzuD48eP49ddfMXToUDz88MO45pprUFVV5evmEZGfYqBCRF4RGhqKpKQkNG3aFD179sQTTzyB77//Hr/++is++ugjAMDChQvRtWtXREZGIiUlBffffz+KiooAAOvXr8fdd9+N/Px8qXfmmWeeAQCUl5fjkUceQdOmTREZGYm+ffti/fr1vvlFicitGKgQkc9cccUV6N69O7799lsAgF6vx5tvvol9+/bh448/xtq1a/HYY48BAAYMGIDXX38d0dHROHPmDM6cOYNHHnkEAPDggw9iy5Yt+PLLL7F7927ccsstGDlyJA4dOuSz342I3INr/RCRx02cOBF5eXn47rvvLPbddttt2L17N/bv32+x7+uvv8a9996L8+fPAzDnqPznP/9BXl6edExWVhZatWqFrKwsJCcnS9uHDRuGPn364IUXXnD770NE3hPk6wYQUWATBAE6nQ4A8Ntvv2H+/Pk4ePAgCgoKUFVVhbKyMpSUlCAiIkLz8Xv27IHRaES7du0U28vLy9GwYUOPt5+IPIuBChH51IEDB9CyZUscP34c11xzDe677z48//zziI+Px8aNGzF58mRUVFRYDVSKiopgMBiwc+dOGAwGxb4GDRp441cgIg9ioEJEPrN27Vrs2bMH06ZNw86dO2EymfDqq69Crzenz3311VeK40NCQmA0GhXb0tLSYDQacfbsWQwaNMhrbSci72CgQkReUV5ejpycHBiNRuTm5mLFihWYP38+rrnmGkyYMAF79+5FZWUl3nrrLVx77bXYtGkTFi1apHiO1NRUFBUVYc2aNejevTsiIiLQrl07jB8/HhMmTMCrr76KtLQ0nDt3DmvWrEG3bt0wevRoH/3GROQOnPVDRF6xYsUKNGnSBKmpqRg5ciTWrVuHN998E99//z0MBgO6d++OhQsX4qWXXkKXLl2wdOlSzJ8/X/EcAwYMwL333ouxY8ciISEBL7/8MgDgww8/xIQJEzBjxgy0b98eN9xwA7Zv347mzZv74lclIjfirB8iIiLyW+xRISIiIr/FQIWIiIj8FgMVIiIi8lsMVIiIiMhvMVAhIiIiv8VAhYiIiPwWAxUiIiLyWwxUiIiIyG8xUCEiIiK/xUCFiIiI/BYDFSIiIvJbDFSIiIjIb/0/RT0UMy9X3GQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pc1.cumsum().plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " - Why does this plot only go back to 2019? What happened? \n", + " - What are methods that we might use to deal with missing data?" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_sources/apidocs/index.rst b/docs/_sources/apidocs/index.rst new file mode 100644 index 0000000..9e1673b --- /dev/null +++ b/docs/_sources/apidocs/index.rst @@ -0,0 +1,11 @@ +API Reference +============= + +This page contains auto-generated API reference documentation [#f1]_. + +.. toctree:: + :titlesonly: + + misc_tools/misc_tools + +.. [#f1] Created with `sphinx-autodoc2 `_ diff --git a/docs/_sources/apidocs/misc_tools/misc_tools.md b/docs/_sources/apidocs/misc_tools/misc_tools.md new file mode 100644 index 0000000..792f5ba --- /dev/null +++ b/docs/_sources/apidocs/misc_tools/misc_tools.md @@ -0,0 +1,295 @@ +# {py:mod}`misc_tools` + +```{py:module} misc_tools +``` + +```{autodoc2-docstring} misc_tools +:allowtitles: +``` + +## Module Contents + +### Functions + +````{list-table} +:class: autosummary longtable +:align: left + +* - {py:obj}`merge_stats ` + - ```{autodoc2-docstring} misc_tools.merge_stats + :summary: + ``` +* - {py:obj}`dataframe_set_difference ` + - ```{autodoc2-docstring} misc_tools.dataframe_set_difference + :summary: + ``` +* - {py:obj}`freq_counts ` + - ```{autodoc2-docstring} misc_tools.freq_counts + :summary: + ``` +* - {py:obj}`move_column_inplace ` + - ```{autodoc2-docstring} misc_tools.move_column_inplace + :summary: + ``` +* - {py:obj}`move_columns_to_front ` + - ```{autodoc2-docstring} misc_tools.move_columns_to_front + :summary: + ``` +* - {py:obj}`weighted_average ` + - ```{autodoc2-docstring} misc_tools.weighted_average + :summary: + ``` +* - {py:obj}`groupby_weighted_average ` + - ```{autodoc2-docstring} misc_tools.groupby_weighted_average + :summary: + ``` +* - {py:obj}`groupby_weighted_std ` + - ```{autodoc2-docstring} misc_tools.groupby_weighted_std + :summary: + ``` +* - {py:obj}`weighted_quantile ` + - ```{autodoc2-docstring} misc_tools.weighted_quantile + :summary: + ``` +* - {py:obj}`groupby_weighted_quantile ` + - ```{autodoc2-docstring} misc_tools.groupby_weighted_quantile + :summary: + ``` +* - {py:obj}`load_date_mapping ` + - ```{autodoc2-docstring} misc_tools.load_date_mapping + :summary: + ``` +* - {py:obj}`calc_check_digit ` + - ```{autodoc2-docstring} misc_tools.calc_check_digit + :summary: + ``` +* - {py:obj}`convert_cusips_from_8_to_9_digit ` + - ```{autodoc2-docstring} misc_tools.convert_cusips_from_8_to_9_digit + :summary: + ``` +* - {py:obj}`_with_lagged_column_no_resample ` + - ```{autodoc2-docstring} misc_tools._with_lagged_column_no_resample + :summary: + ``` +* - {py:obj}`with_lagged_columns ` + - ```{autodoc2-docstring} misc_tools.with_lagged_columns + :summary: + ``` +* - {py:obj}`leave_one_out_sums ` + - ```{autodoc2-docstring} misc_tools.leave_one_out_sums + :summary: + ``` +* - {py:obj}`get_most_recent_quarter_end ` + - ```{autodoc2-docstring} misc_tools.get_most_recent_quarter_end + :summary: + ``` +* - {py:obj}`get_next_quarter_start ` + - ```{autodoc2-docstring} misc_tools.get_next_quarter_start + :summary: + ``` +* - {py:obj}`get_end_of_current_month ` + - ```{autodoc2-docstring} misc_tools.get_end_of_current_month + :summary: + ``` +* - {py:obj}`get_end_of_current_quarter ` + - ```{autodoc2-docstring} misc_tools.get_end_of_current_quarter + :summary: + ``` +* - {py:obj}`add_vertical_lines_to_plot ` + - ```{autodoc2-docstring} misc_tools.add_vertical_lines_to_plot + :summary: + ``` +* - {py:obj}`plot_weighted_median_with_distribution_bars ` + - ```{autodoc2-docstring} misc_tools.plot_weighted_median_with_distribution_bars + :summary: + ``` +* - {py:obj}`_demo ` + - ```{autodoc2-docstring} misc_tools._demo + :summary: + ``` +```` + +### Data + +````{list-table} +:class: autosummary longtable +:align: left + +* - {py:obj}`_alphabet ` + - ```{autodoc2-docstring} misc_tools._alphabet + :summary: + ``` +```` + +### API + +````{py:function} merge_stats(df_left, df_right, on=[]) +:canonical: misc_tools.merge_stats + +```{autodoc2-docstring} misc_tools.merge_stats +``` +```` + +````{py:function} dataframe_set_difference(dff, df, library='pandas', show='rows_and_numbers') +:canonical: misc_tools.dataframe_set_difference + +```{autodoc2-docstring} misc_tools.dataframe_set_difference +``` +```` + +````{py:function} freq_counts(df, col=None, with_count=True, with_cum_freq=True) +:canonical: misc_tools.freq_counts + +```{autodoc2-docstring} misc_tools.freq_counts +``` +```` + +````{py:function} move_column_inplace(df, col, pos=0) +:canonical: misc_tools.move_column_inplace + +```{autodoc2-docstring} misc_tools.move_column_inplace +``` +```` + +````{py:function} move_columns_to_front(df, cols=[]) +:canonical: misc_tools.move_columns_to_front + +```{autodoc2-docstring} misc_tools.move_columns_to_front +``` +```` + +````{py:function} weighted_average(data_col=None, weight_col=None, data=None) +:canonical: misc_tools.weighted_average + +```{autodoc2-docstring} misc_tools.weighted_average +``` +```` + +````{py:function} groupby_weighted_average(data_col=None, weight_col=None, by_col=None, data=None, transform=False, new_column_name='') +:canonical: misc_tools.groupby_weighted_average + +```{autodoc2-docstring} misc_tools.groupby_weighted_average +``` +```` + +````{py:function} groupby_weighted_std(data_col=None, weight_col=None, by_col=None, data=None, ddof=1) +:canonical: misc_tools.groupby_weighted_std + +```{autodoc2-docstring} misc_tools.groupby_weighted_std +``` +```` + +````{py:function} weighted_quantile(values, quantiles, sample_weight=None, values_sorted=False, old_style=False) +:canonical: misc_tools.weighted_quantile + +```{autodoc2-docstring} misc_tools.weighted_quantile +``` +```` + +````{py:function} groupby_weighted_quantile(data_col=None, weight_col=None, by_col=None, data=None, transform=False, new_column_name='') +:canonical: misc_tools.groupby_weighted_quantile + +```{autodoc2-docstring} misc_tools.groupby_weighted_quantile +``` +```` + +````{py:function} load_date_mapping(data_dir=None, add_remaining_days_in_year=True, add_estimated_historical_days=True, historical_start='2016-01-01', add_estimated_future_dates=True, future_end='2092-01-01') +:canonical: misc_tools.load_date_mapping + +```{autodoc2-docstring} misc_tools.load_date_mapping +``` +```` + +````{py:data} _alphabet +:canonical: misc_tools._alphabet +:value: > + '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ*@#' + +```{autodoc2-docstring} misc_tools._alphabet +``` + +```` + +````{py:function} calc_check_digit(number) +:canonical: misc_tools.calc_check_digit + +```{autodoc2-docstring} misc_tools.calc_check_digit +``` +```` + +````{py:function} convert_cusips_from_8_to_9_digit(cusip_8dig_series) +:canonical: misc_tools.convert_cusips_from_8_to_9_digit + +```{autodoc2-docstring} misc_tools.convert_cusips_from_8_to_9_digit +``` +```` + +````{py:function} _with_lagged_column_no_resample(df=None, columns_to_lag=None, id_columns=None, lags=1, date_col='date', prefix='L') +:canonical: misc_tools._with_lagged_column_no_resample + +```{autodoc2-docstring} misc_tools._with_lagged_column_no_resample +``` +```` + +````{py:function} with_lagged_columns(df=None, column_to_lag=None, id_column=None, lags=1, date_col='date', prefix='L', freq=None, resample=True) +:canonical: misc_tools.with_lagged_columns + +```{autodoc2-docstring} misc_tools.with_lagged_columns +``` +```` + +````{py:function} leave_one_out_sums(df, groupby=[], summed_col='') +:canonical: misc_tools.leave_one_out_sums + +```{autodoc2-docstring} misc_tools.leave_one_out_sums +``` +```` + +````{py:function} get_most_recent_quarter_end(d) +:canonical: misc_tools.get_most_recent_quarter_end + +```{autodoc2-docstring} misc_tools.get_most_recent_quarter_end +``` +```` + +````{py:function} get_next_quarter_start(d) +:canonical: misc_tools.get_next_quarter_start + +```{autodoc2-docstring} misc_tools.get_next_quarter_start +``` +```` + +````{py:function} get_end_of_current_month(d) +:canonical: misc_tools.get_end_of_current_month + +```{autodoc2-docstring} misc_tools.get_end_of_current_month +``` +```` + +````{py:function} get_end_of_current_quarter(d) +:canonical: misc_tools.get_end_of_current_quarter + +```{autodoc2-docstring} misc_tools.get_end_of_current_quarter +``` +```` + +````{py:function} add_vertical_lines_to_plot(start_date, end_date, ax=None, freq='Q', adjust_ticks=True, alpha=0.1, extend_to_nearest_quarter=True) +:canonical: misc_tools.add_vertical_lines_to_plot + +```{autodoc2-docstring} misc_tools.add_vertical_lines_to_plot +``` +```` + +````{py:function} plot_weighted_median_with_distribution_bars(data=None, variable_name=None, date_col='date', weight_col=None, percentile_bars=True, percentiles=[0.25, 0.75], rolling_window=1, rolling=False, rolling_min_periods=None, rescale_factor=1, ax=None, add_quarter_lines=True, ylabel=None, xlabel=None, label=None) +:canonical: misc_tools.plot_weighted_median_with_distribution_bars + +```{autodoc2-docstring} misc_tools.plot_weighted_median_with_distribution_bars +``` +```` + +````{py:function} _demo() +:canonical: misc_tools._demo + +```{autodoc2-docstring} misc_tools._demo +``` +```` diff --git a/docs/_sources/discussion_01.md b/docs/_sources/discussion_01.md new file mode 100644 index 0000000..16e1a69 --- /dev/null +++ b/docs/_sources/discussion_01.md @@ -0,0 +1,33 @@ +# 1. Agenda + +- Introduction: Who am I? What's the goal of this review? +- **Course Page on GitHub** + - Review course page on GitHub: https://github.com/jmbejara/finm-python-crash-course + - Course textbook: https://jeremybejarano.com/finm-python-crash-course/ +- [**Set up Environment**](./01_setting_up_environment.md): Today we will make sure that everyone has their computational environment set +up correctly. This includes Python (via the Anaconda distribution), Visual +Studio Code, Git and GitHub, and a WRDS class count for this course. +- **Various Method of Interacting with Python**: Throughout the course, we'll +discuss the various ways of interacting with Python: Google Collab, Jupyter +Notebooks through the standard Jupyter server, Jupyter Notebooks in VS Code, +using IPython in the command line, and running Python scripts directly from the +command line (`.py` files). +- Discuss assignment for next week (installing software). (Assignments are not + graded. This is an optional review.) + - List of software to install is on the main README: + https://github.com/jmbejara/finm-python-crash-course/blob/main/README.md + - Helpful text to understand the process of setting up your environment: + https://datascience.quantecon.org/introduction/local_install.html +- [Run Python Demo Notebook in Google + Colab](https://colab.research.google.com/github/jmbejara/finm-python-crash-course/blob/main/week_1/Part_1_Python_Jupyter_demo.ipynb) +- Start HW1 as a group. Discuss how the Jupyter notebook can be used for HW. + Formatting is important! [Work through problems together + here.](https://colab.research.google.com/github/jmbejara/finm-python-crash-course/blob/main/HW/HW-1-numpy-scipy/HW1.ipynb) +- With the remaining time, we'll take a step back and go over some of the more + basic aspects of Python. We'll go through some simpler examples in the + following notebooks (which can be accessed in Google Colab). +- [Python + Fundamentals](https://datascience.quantecon.org/python_fundamentals/index.html) + - [Basics](https://datascience.quantecon.org/python_fundamentals/basics.html) + - [Collections](https://datascience.quantecon.org/python_fundamentals/collections.html) + diff --git a/docs/_sources/discussion_02.md b/docs/_sources/discussion_02.md new file mode 100644 index 0000000..51b5c8f --- /dev/null +++ b/docs/_sources/discussion_02.md @@ -0,0 +1,51 @@ +# 2. Agenda + +- Questions about HW1? Did anyone attempt? +- Follow-up on previous assignment, HW 0: Installation of software on the main + [README](https://github.com/jmbejara/finm-python-crash-course/blob/main/README.md) + - Today we will use Jupyter locally to do all of our coding. We will use + Jupyter notebooks. Next week we will use notebooks within VS Code. The + week after than we will move away from notebooks and write `.py` files + directly. + - Did anyone have any trouble installing Anaconda and VS Code? Share screen + if there are issues. + - Review HW 2 from last time. + - Who tried the HW? Any questions? + - Show location of solutions notebook. +- What are some gotcha's when using Jupyter notebooks? + - What is the terminal/command prompt? What is bash? + - Spin up Jupyter notebook. Show how it can't go above the root folder. + - Discuss the importance of maintaining a reasonable folder structure. + Folder for all course work, separate folder for each course, for each + project, etc. + - Google Colab vs locally-running Jupyter server, Jupyter Notebooks vs VS + Code + - Difference between Python and Anaconda? + - Difference between Anaconda and Conda. + - Demo the use of conda for installing packages and using conda + environments. + - What is the purpose of a conda environment? +- Skim over the [./src/02_Using_Interact.ipynb](./_notebook_build/_02_Using_Interact.ipynb) + - We're not going to cover it, but those that are interested can learn more + about how to use it here. +- Continue with introductory Python topics: + - To learn about "Control Flow" in the context of generating pseudo-random + time series, let's use the ["Introductory Example" or "Python by + Example"](https://python-programming.quantecon.org/python_by_example.html) + notebook found here: + [./src/01_python_by_example.ipynb](./_notebook_build/_01_python_by_example.ipynb) +- Start with discussion of Pandas. Start going over the Pandas chapter from + ["Python Data Science + Handbook"](https://jakevdp.github.io/PythonDataScienceHandbook) + - `02_00-Introduction-to-Pandas.ipynb` + - `02_01-Introducing-Pandas-Objects.ipynb` + - `02_02-Data-Indexing-and-Selection.ipynb` + - Break for an set of in-class exercises: + [./src/01_occupations.ipynb](./_notebook_build/_01_occupations.ipynb) + - `02_03-Operations-in-Pandas.ipynb` + - `02_04-Missing-Values.ipynb` +- Homework for next time: See HW 2 folder. These are a series of short exercises + to practice using Pandas. + + + diff --git a/docs/_sources/discussion_03.md b/docs/_sources/discussion_03.md new file mode 100644 index 0000000..e672823 --- /dev/null +++ b/docs/_sources/discussion_03.md @@ -0,0 +1,20 @@ +# 3. Agenda + +- Today we will use notebooks within VS Code. We'll also begin the discussion of writing `.py` files directly. The week after that we will move away from notebooks entirely. +- Discuss the features of using the Python and Jupyter extensions within VS Code. + - Overview: https://code.visualstudio.com/docs/datascience/overview + - Variable explorer and data viewer: https://code.visualstudio.com/docs/datascience/jupyter-notebooks#_variable-explorer-and-data-viewer + - Custom notebook diffing: https://code.visualstudio.com/docs/datascience/jupyter-notebooks#_custom-notebook-diffing +- Demonstration of Git and GitHub + - VS Code especially makes Git diffs of Jupyter notebooks easy. Demonstrate why they are otherwise difficult. +- Finish discussion of Pandas from previous lecture: + - Set of in-class exercises: [./src/occupations.ipynb](./_01_occupations.ipynb) + - `03.03-Operations-in-Pandas.ipynb` + - `03.04-Missing-Values.ipynb` +- Demonstrate Pandas in the context of factor analysis/principal components analysis of a panel (Note from 2023. Ran out of time at the beginning of discussing this notebook.) +of economic and financial time series. [./src/factor_analysis_demo.ipynb](./_notebook_build/_03_factor_analysis_demo.ipynb) +- Very quick review of Numpy, Matplotlib, and Scipy, with emphasis on plotting + - Introduction to [NumPy](https://python-programming.quantecon.org/numpy.html) + - Introduction to [Matplotlib](https://python-programming.quantecon.org/matplotlib.html) + - Compare Matplotlib to other plotting libraries: [./src/comparing_plotting_libraries.ipynb](./_notebook_build/_03_comparing_plotting_libraries.ipynb) + - Introduction to [SciPy](https://python-programming.quantecon.org/scipy.html) diff --git a/docs/_sources/discussion_04.md b/docs/_sources/discussion_04.md new file mode 100644 index 0000000..e69f9ad --- /dev/null +++ b/docs/_sources/discussion_04.md @@ -0,0 +1,22 @@ +# 4. Agenda + +- Today we move away from Jupyter notebooks entirely and focus on writing `.py` files directly. We'll focus on writing our own modules, discuss automating tasks by using the command line, we'll discuss task management software (Python's `doit` package and Makefiles), and discuss the importance of conda environments (and hint at Docker containers). +- Give an overview of GitKraken and GitHub. + - Create a new repository on GitHub and clone it in GitKraken. + - Create a commit and push to GitHub + - Make edits to code and view the diffs. + - Discuss pull requests and the open source model (delegating oversight) +- Now, let's briefly move away from notebooks and write `.py` files directly. We'll discuss the pros and cons of working with Notebooks vs `.py` files. + - To do this, complete again the `Occupations` exercises the following in-class Pandas exercises within a `.py` file. Complete using the %% cells. + - Once the assignment is complete, remove the %% cells for comparison. + - Show how to use the debugger. + - Show how to run the script from the command line. + - Use the script to print to the command line. + - Use the script to save a figure. + - Write a shell script to run several Python scripts. +- Discussion of writing our own modules + - Start with a review of functions in Python: review the ["Functions"](https://datascience.quantecon.org/python_fundamentals/functions.html) chapter found here: [./src/02_functions.ipynb](./_notebook_build/_02_functions.ipynb.ipynb) + - Demonstrate my own, very simple module that I use, called `config` +- Write an end-to-end automatically-run program using a conda environment, the command line, and Python's `doit`. This should download data on it's own, store it somewhere as a cached data set, run the analysis, generate the charts, and insert the charts into a PDF document (do this using a Jupyter notebook). + - Do this by looking at the structure of my `blank-project` repository. + \ No newline at end of file diff --git a/docs/_sources/index.md b/docs/_sources/index.md new file mode 100644 index 0000000..7510071 --- /dev/null +++ b/docs/_sources/index.md @@ -0,0 +1,104 @@ +# FINM August Review: Python + + +## Summary + +The FINM August Review is a series of lectures designed for incoming students to prepare for starting with the Financial Mathematics program. The Python Introduction and Review portion is designed to be a refresher or short introduction to the Python programming language. No prior experience is necessary. Even though some incoming students may have extensive prior experience with Python, this review is designed for those with little experience. The aim is to introduce you to what you need to know for the upcoming FINM program. The academic lectures of September Launch and autumn quarter will assume students have mastered the concepts covered throughout August Review, and so it’s critical that all students enter the year with a solid grasp of this material. + +```{attention} Pardon my dust! These notes will change frequently as I update it with new content before the course begins. +``` + + +## Course Info + +* **Class:** + - Discussion 1: Tuesday, July 30: 6-9pm CT on Zoom + - Discussion 2: Friday, August 2: 6-9pm CT on Zoom + - Discussion 3: Tuesday, August 6: 6-9pm CT on Zoom + - Discussion 4: Friday, August 9: 6-9pm CT on Zoom + +* **Lecturer:** Jeremy Bejarano, jeremiah.bejarano@gmail.com +* **Website:** + - Canvas: https://canvas.uchicago.edu/courses/57668 will be used for grades. + - Lecture notes will be hosted here: https://jeremybejarano.com/finm-python-crash-course/ + - Code for the course will be hosted on GitHub: https://github.com/jmbejara/finm-python-crash-course + +**Required Software** +Each lecture after this will use the following software. Please make sure to install these before then. If you need help installing this software, please ask for help in the discussion section on Canvas. + + - Python 3.11 or greater, Anaconda Distribution + - For this class, please download the [Anaconda distribution of Python](https://www.anaconda.com/products/distribution). Be sure to download current version, with Python version 3.9. or greater. When you install Anaconda, be sure to install the full Anaconda distribution. + The MiniConda version is nice, but I only recommend it for advanced users. Nice instructions for installing and using Anaconda can be found (here.)[https://datascience.quantecon.org/introduction/local_install.html] + - The Visual Studio Code (VS Code) text editor + - A good text editor is important for software development. Some of your classes will use a fully-fledged Integrated Development Environment (IDE) like PyCharm. For this review, I suggest Visual Studio Code. You can download it here: https://code.visualstudio.com/ + - There are several VS Code extensions that I recommend installing. To learn about extensions, see [here.](https://code.visualstudio.com/docs/editor/extension-marketplace) I recommend installing at least these two extensions: the [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) and [Python](https://marketplace.visualstudio.com/items?itemName=ms-python.python) VS Code extensions. + - Git + - Although there are many different Git clients and Git GUI's that you could use, + I prefer that you install GitHub Desktop. You will need to install both + Git (link here: https://git-scm.com/downloads) + and GitHub Desktop (link here: https://github.com/apps/desktop). + - Some classes will use GitHub. GitHub is a website that allows you to store, interact with, and share your Git repositories online. [Please register an account with GitHub](https://github.com/) if you don't already have one. + +*NOTE:* It's also important that you have a quality laptop. I recommend a laptop with at least 16GB of RAM and at least 500 GB of storage (at a minimum). +So much of your schooling and of your job will revolve around your laptop. +It's important to invest in a good one. If you have any questions about your laptop, please ask in the discussion section on Canvas. + +**WRDS Account** + +This course requires that you create a WRDS account. WRDS is a comprehensive data research platform that provides access to a wide range of financial, economic, and marketing data. +Follow the instructions [here](./01_setting_up_environment.md#wrds-how-do-i-sign-up) to sign up. + + + +## Helpful References + +A lot of my lecture material will use content from the following helpful books: + +* [Introduction to Economic Modeling and Data Science](https://datascience.quantecon.org/), by Thomas J. Sargent and John Stachurski (QuantEcon) +* Note, the whole lectures series on QuantEcon's website is very good: [Quantitative Economics](https://lectures.quantecon.org/), by Thomas J. Sargent and John Stachurski (QuantEcon) +* [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/), by Jake VanderPlas (PDSH) +* [Python for Data Analysis, 2nd Edition](https://github.com/wesm/pydata-book), by Wes McKinney (PDA) + +## Table of Contents / Schedule + + +```{toctree} +:maxdepth: 1 +:caption: Discussion 1 +discussion_01.md +01_setting_up_environment.md +_notebook_build/_01_python_jupyter_demo.ipynb +_notebook_build/_01_python_by_example.ipynb +_notebook_build/_01_occupations.ipynb +``` + +```{toctree} +:maxdepth: 1 +:caption: Discussion 2 +discussion_02.md +WRDS_intro_and_web_queries.md +_notebook_build/_02_Using_Interact.ipynb +``` + +```{toctree} +:maxdepth: 1 +:caption: Discussion 3 +discussion_03.md +_notebook_build/_03_comparing_plotting_libraries.ipynb +``` + +```{toctree} +:maxdepth: 1 +:caption: Discussion 4️ +discussion_04.md +myst_markdown_demos.md +apidocs/index +``` + + +## Indices and tables + +- {ref}`genindex` +- {ref}`modindex` +- {ref}`search` + diff --git a/docs/_sources/myst_markdown_demos.md b/docs/_sources/myst_markdown_demos.md new file mode 100644 index 0000000..37cda81 --- /dev/null +++ b/docs/_sources/myst_markdown_demos.md @@ -0,0 +1,87 @@ +# MyST Markdown Demos 💡 + +Here is a demo of MyST Markdown. + + + +| Training | Validation | +| :------------ | -------------: | +| 0 | 5 | +| 13720 | 2744 | + + +Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. + +```{note} Notes require **no** arguments, +so content can start here. +``` + +```{warning} This is an example +of a warning directive. +``` + +```{tip} This is an example +of a tip directive. +``` + +```{caution} This is an example +of a caution directive. +``` + +```{attention} This is an example +of an attention directive. +``` + +```{hint} This is an example +of a hint directive. +``` + +```{important} This is an example +of an important directive. +``` + +```{figure} ../assets/logo.png +:height: 150px +:name: figure-example + +Here is my figure caption! +``` + + +This is an example of an +inline equation $z=\sqrt{x^2+y^2}$. + +This is an example of a +math block + +$$ +z=\sqrt{x^2+y^2} +$$ + + +This is an example of a +math block with a label + +$$ +z=\sqrt{x^2+y^2} +$$ (mylabel) + + +This is an example of a +math directive with a +label +```{math} +:label: eq-label + +z=\sqrt{x^2+y^2} +``` + +Check out equation {eq}`eq-label`. + + +Wrap in-line code blocks in backticks: `boolean example = true;`. + +```python +note = "Python syntax highlighting" +print(node) +``` \ No newline at end of file diff --git a/docs/_static/basic.css b/docs/_static/basic.css new file mode 100644 index 0000000..2af6139 --- /dev/null +++ b/docs/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 270px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/_static/doctools.js b/docs/_static/doctools.js new file mode 100644 index 0000000..4d67807 --- /dev/null +++ b/docs/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/docs/_static/documentation_options.js b/docs/_static/documentation_options.js new file mode 100644 index 0000000..db215b5 --- /dev/null +++ b/docs/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '0.1', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/docs/_static/file.png b/docs/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/docs/_static/file.png differ diff --git a/docs/_static/images/logo_binder.svg b/docs/_static/images/logo_binder.svg new file mode 100644 index 0000000..45fecf7 --- /dev/null +++ b/docs/_static/images/logo_binder.svg @@ -0,0 +1,19 @@ + + + + +logo + + + + + + + + diff --git a/docs/_static/images/logo_colab.png b/docs/_static/images/logo_colab.png new file mode 100644 index 0000000..b7560ec Binary files /dev/null and b/docs/_static/images/logo_colab.png differ diff --git a/docs/_static/images/logo_deepnote.svg b/docs/_static/images/logo_deepnote.svg new file mode 100644 index 0000000..fa77ebf --- /dev/null +++ b/docs/_static/images/logo_deepnote.svg @@ -0,0 +1 @@ + diff --git a/docs/_static/images/logo_jupyterhub.svg b/docs/_static/images/logo_jupyterhub.svg new file mode 100644 index 0000000..60cfe9f --- /dev/null +++ b/docs/_static/images/logo_jupyterhub.svg @@ -0,0 +1 @@ +logo_jupyterhubHub diff --git a/docs/_static/language_data.js b/docs/_static/language_data.js new file mode 100644 index 0000000..367b8ed --- /dev/null +++ b/docs/_static/language_data.js @@ -0,0 +1,199 @@ +/* + * language_data.js + * ~~~~~~~~~~~~~~~~ + * + * This script contains the language-specific data used by searchtools.js, + * namely the list of stopwords, stemmer, scorer and splitter. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; + + +/* Non-minified version is copied as a separate JS file, if available */ + +/** + * Porter Stemmer + */ +var Stemmer = function() { + + var step2list = { + ational: 'ate', + tional: 'tion', + enci: 'ence', + anci: 'ance', + izer: 'ize', + bli: 'ble', + alli: 'al', + entli: 'ent', + eli: 'e', + ousli: 'ous', + ization: 'ize', + ation: 'ate', + ator: 'ate', + alism: 'al', + iveness: 'ive', + fulness: 'ful', + ousness: 'ous', + aliti: 'al', + iviti: 'ive', + biliti: 'ble', + logi: 'log' + }; + + var step3list = { + icate: 'ic', + ative: '', + alize: 'al', + iciti: 'ic', + ical: 'ic', + ful: '', + ness: '' + }; + + var c = "[^aeiou]"; // consonant + var v = "[aeiouy]"; // vowel + var C = c + "[^aeiouy]*"; // consonant sequence + var V = v + "[aeiou]*"; // vowel sequence + + var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/docs/_static/locales/ar/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ar/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..15541a6 Binary files /dev/null and b/docs/_static/locales/ar/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ar/LC_MESSAGES/booktheme.po b/docs/_static/locales/ar/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..34d404c --- /dev/null +++ b/docs/_static/locales/ar/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ar\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "طباعة إلى PDF" + +msgid "Theme by the" +msgstr "موضوع بواسطة" + +msgid "Download source file" +msgstr "تنزيل ملف المصدر" + +msgid "open issue" +msgstr "قضية مفتوحة" + +msgid "Contents" +msgstr "محتويات" + +msgid "previous page" +msgstr "الصفحة السابقة" + +msgid "Download notebook file" +msgstr "تنزيل ملف دفتر الملاحظات" + +msgid "Copyright" +msgstr "حقوق النشر" + +msgid "Download this page" +msgstr "قم بتنزيل هذه الصفحة" + +msgid "Source repository" +msgstr "مستودع المصدر" + +msgid "By" +msgstr "بواسطة" + +msgid "repository" +msgstr "مخزن" + +msgid "Last updated on" +msgstr "آخر تحديث في" + +msgid "Toggle navigation" +msgstr "تبديل التنقل" + +msgid "Sphinx Book Theme" +msgstr "موضوع كتاب أبو الهول" + +msgid "suggest edit" +msgstr "أقترح تحرير" + +msgid "Open an issue" +msgstr "افتح قضية" + +msgid "Launch" +msgstr "إطلاق" + +msgid "Fullscreen mode" +msgstr "وضع ملء الشاشة" + +msgid "Edit this page" +msgstr "قم بتحرير هذه الصفحة" + +msgid "By the" +msgstr "بواسطة" + +msgid "next page" +msgstr "الصفحة التالية" diff --git a/docs/_static/locales/bg/LC_MESSAGES/booktheme.mo b/docs/_static/locales/bg/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..da95120 Binary files /dev/null and b/docs/_static/locales/bg/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/bg/LC_MESSAGES/booktheme.po b/docs/_static/locales/bg/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..7420c19 --- /dev/null +++ b/docs/_static/locales/bg/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: bg\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Печат в PDF" + +msgid "Theme by the" +msgstr "Тема от" + +msgid "Download source file" +msgstr "Изтеглете изходния файл" + +msgid "open issue" +msgstr "отворен брой" + +msgid "Contents" +msgstr "Съдържание" + +msgid "previous page" +msgstr "предишна страница" + +msgid "Download notebook file" +msgstr "Изтеглете файла на бележника" + +msgid "Copyright" +msgstr "Авторско право" + +msgid "Download this page" +msgstr "Изтеглете тази страница" + +msgid "Source repository" +msgstr "Хранилище на източника" + +msgid "By" +msgstr "От" + +msgid "repository" +msgstr "хранилище" + +msgid "Last updated on" +msgstr "Последна актуализация на" + +msgid "Toggle navigation" +msgstr "Превключване на навигацията" + +msgid "Sphinx Book Theme" +msgstr "Тема на книгата Sphinx" + +msgid "suggest edit" +msgstr "предложи редактиране" + +msgid "Open an issue" +msgstr "Отворете проблем" + +msgid "Launch" +msgstr "Стартиране" + +msgid "Fullscreen mode" +msgstr "Режим на цял екран" + +msgid "Edit this page" +msgstr "Редактирайте тази страница" + +msgid "By the" +msgstr "По" + +msgid "next page" +msgstr "Следваща страница" diff --git a/docs/_static/locales/bn/LC_MESSAGES/booktheme.mo b/docs/_static/locales/bn/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..6b96639 Binary files /dev/null and b/docs/_static/locales/bn/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/bn/LC_MESSAGES/booktheme.po b/docs/_static/locales/bn/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..63a07c3 --- /dev/null +++ b/docs/_static/locales/bn/LC_MESSAGES/booktheme.po @@ -0,0 +1,63 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: bn\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "পিডিএফ প্রিন্ট করুন" + +msgid "Theme by the" +msgstr "থিম দ্বারা" + +msgid "Download source file" +msgstr "উত্স ফাইল ডাউনলোড করুন" + +msgid "open issue" +msgstr "খোলা সমস্যা" + +msgid "previous page" +msgstr "আগের পৃষ্ঠা" + +msgid "Download notebook file" +msgstr "নোটবুক ফাইল ডাউনলোড করুন" + +msgid "Copyright" +msgstr "কপিরাইট" + +msgid "Download this page" +msgstr "এই পৃষ্ঠাটি ডাউনলোড করুন" + +msgid "Source repository" +msgstr "উত্স সংগ্রহস্থল" + +msgid "By" +msgstr "দ্বারা" + +msgid "Last updated on" +msgstr "সর্বশেষ আপডেট" + +msgid "Toggle navigation" +msgstr "নেভিগেশন টগল করুন" + +msgid "Sphinx Book Theme" +msgstr "স্পিনিক্স বুক থিম" + +msgid "Open an issue" +msgstr "একটি সমস্যা খুলুন" + +msgid "Launch" +msgstr "শুরু করা" + +msgid "Edit this page" +msgstr "এই পৃষ্ঠাটি সম্পাদনা করুন" + +msgid "By the" +msgstr "দ্বারা" + +msgid "next page" +msgstr "পরবর্তী পৃষ্ঠা" diff --git a/docs/_static/locales/ca/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ca/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..a4dd30e Binary files /dev/null and b/docs/_static/locales/ca/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ca/LC_MESSAGES/booktheme.po b/docs/_static/locales/ca/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..8fb358b --- /dev/null +++ b/docs/_static/locales/ca/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ca\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Imprimeix a PDF" + +msgid "Theme by the" +msgstr "Tema del" + +msgid "Download source file" +msgstr "Baixeu el fitxer font" + +msgid "open issue" +msgstr "número obert" + +msgid "previous page" +msgstr "Pàgina anterior" + +msgid "Download notebook file" +msgstr "Descarregar fitxer de quadern" + +msgid "Copyright" +msgstr "Copyright" + +msgid "Download this page" +msgstr "Descarregueu aquesta pàgina" + +msgid "Source repository" +msgstr "Dipòsit de fonts" + +msgid "By" +msgstr "Per" + +msgid "Last updated on" +msgstr "Darrera actualització el" + +msgid "Toggle navigation" +msgstr "Commuta la navegació" + +msgid "Sphinx Book Theme" +msgstr "Tema del llibre Esfinx" + +msgid "suggest edit" +msgstr "suggerir edició" + +msgid "Open an issue" +msgstr "Obriu un número" + +msgid "Launch" +msgstr "Llançament" + +msgid "Edit this page" +msgstr "Editeu aquesta pàgina" + +msgid "By the" +msgstr "Per la" + +msgid "next page" +msgstr "pàgina següent" diff --git a/docs/_static/locales/cs/LC_MESSAGES/booktheme.mo b/docs/_static/locales/cs/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..c39e01a Binary files /dev/null and b/docs/_static/locales/cs/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/cs/LC_MESSAGES/booktheme.po b/docs/_static/locales/cs/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..c6ef469 --- /dev/null +++ b/docs/_static/locales/cs/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: cs\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Tisk do PDF" + +msgid "Theme by the" +msgstr "Téma od" + +msgid "Download source file" +msgstr "Stáhněte si zdrojový soubor" + +msgid "open issue" +msgstr "otevřené číslo" + +msgid "Contents" +msgstr "Obsah" + +msgid "previous page" +msgstr "předchozí stránka" + +msgid "Download notebook file" +msgstr "Stáhnout soubor poznámkového bloku" + +msgid "Copyright" +msgstr "autorská práva" + +msgid "Download this page" +msgstr "Stáhněte si tuto stránku" + +msgid "Source repository" +msgstr "Zdrojové úložiště" + +msgid "By" +msgstr "Podle" + +msgid "repository" +msgstr "úložiště" + +msgid "Last updated on" +msgstr "Naposledy aktualizováno" + +msgid "Toggle navigation" +msgstr "Přepnout navigaci" + +msgid "Sphinx Book Theme" +msgstr "Téma knihy Sfinga" + +msgid "suggest edit" +msgstr "navrhnout úpravy" + +msgid "Open an issue" +msgstr "Otevřete problém" + +msgid "Launch" +msgstr "Zahájení" + +msgid "Fullscreen mode" +msgstr "Režim celé obrazovky" + +msgid "Edit this page" +msgstr "Upravit tuto stránku" + +msgid "By the" +msgstr "Podle" + +msgid "next page" +msgstr "další strana" diff --git a/docs/_static/locales/da/LC_MESSAGES/booktheme.mo b/docs/_static/locales/da/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..f43157d Binary files /dev/null and b/docs/_static/locales/da/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/da/LC_MESSAGES/booktheme.po b/docs/_static/locales/da/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..306a38e --- /dev/null +++ b/docs/_static/locales/da/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: da\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Udskriv til PDF" + +msgid "Theme by the" +msgstr "Tema af" + +msgid "Download source file" +msgstr "Download kildefil" + +msgid "open issue" +msgstr "åbent nummer" + +msgid "Contents" +msgstr "Indhold" + +msgid "previous page" +msgstr "forrige side" + +msgid "Download notebook file" +msgstr "Download notesbog-fil" + +msgid "Copyright" +msgstr "ophavsret" + +msgid "Download this page" +msgstr "Download denne side" + +msgid "Source repository" +msgstr "Kildelager" + +msgid "By" +msgstr "Ved" + +msgid "repository" +msgstr "lager" + +msgid "Last updated on" +msgstr "Sidst opdateret den" + +msgid "Toggle navigation" +msgstr "Skift navigation" + +msgid "Sphinx Book Theme" +msgstr "Sphinx bogtema" + +msgid "suggest edit" +msgstr "foreslå redigering" + +msgid "Open an issue" +msgstr "Åbn et problem" + +msgid "Launch" +msgstr "Start" + +msgid "Fullscreen mode" +msgstr "Fuldskærmstilstand" + +msgid "Edit this page" +msgstr "Rediger denne side" + +msgid "By the" +msgstr "Ved" + +msgid "next page" +msgstr "Næste side" diff --git a/docs/_static/locales/de/LC_MESSAGES/booktheme.mo b/docs/_static/locales/de/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..648b565 Binary files /dev/null and b/docs/_static/locales/de/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/de/LC_MESSAGES/booktheme.po b/docs/_static/locales/de/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..4925360 --- /dev/null +++ b/docs/_static/locales/de/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: de\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "In PDF drucken" + +msgid "Theme by the" +msgstr "Thema von der" + +msgid "Download source file" +msgstr "Quelldatei herunterladen" + +msgid "open issue" +msgstr "offenes Thema" + +msgid "Contents" +msgstr "Inhalt" + +msgid "previous page" +msgstr "vorherige Seite" + +msgid "Download notebook file" +msgstr "Notebook-Datei herunterladen" + +msgid "Copyright" +msgstr "Urheberrechte ©" + +msgid "Download this page" +msgstr "Laden Sie diese Seite herunter" + +msgid "Source repository" +msgstr "Quell-Repository" + +msgid "By" +msgstr "Durch" + +msgid "repository" +msgstr "Repository" + +msgid "Last updated on" +msgstr "Zuletzt aktualisiert am" + +msgid "Toggle navigation" +msgstr "Navigation umschalten" + +msgid "Sphinx Book Theme" +msgstr "Sphinx-Buch-Thema" + +msgid "suggest edit" +msgstr "vorschlagen zu bearbeiten" + +msgid "Open an issue" +msgstr "Öffnen Sie ein Problem" + +msgid "Launch" +msgstr "Starten" + +msgid "Fullscreen mode" +msgstr "Vollbildmodus" + +msgid "Edit this page" +msgstr "Bearbeite diese Seite" + +msgid "By the" +msgstr "Bis zum" + +msgid "next page" +msgstr "Nächste Seite" diff --git a/docs/_static/locales/el/LC_MESSAGES/booktheme.mo b/docs/_static/locales/el/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..fca6e93 Binary files /dev/null and b/docs/_static/locales/el/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/el/LC_MESSAGES/booktheme.po b/docs/_static/locales/el/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..3e01acb --- /dev/null +++ b/docs/_static/locales/el/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: el\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Εκτύπωση σε PDF" + +msgid "Theme by the" +msgstr "Θέμα από το" + +msgid "Download source file" +msgstr "Λήψη αρχείου προέλευσης" + +msgid "open issue" +msgstr "ανοιχτό ζήτημα" + +msgid "Contents" +msgstr "Περιεχόμενα" + +msgid "previous page" +msgstr "προηγούμενη σελίδα" + +msgid "Download notebook file" +msgstr "Λήψη αρχείου σημειωματάριου" + +msgid "Copyright" +msgstr "Πνευματική ιδιοκτησία" + +msgid "Download this page" +msgstr "Λήψη αυτής της σελίδας" + +msgid "Source repository" +msgstr "Αποθήκη πηγής" + +msgid "By" +msgstr "Με" + +msgid "repository" +msgstr "αποθήκη" + +msgid "Last updated on" +msgstr "Τελευταία ενημέρωση στις" + +msgid "Toggle navigation" +msgstr "Εναλλαγή πλοήγησης" + +msgid "Sphinx Book Theme" +msgstr "Θέμα βιβλίου Sphinx" + +msgid "suggest edit" +msgstr "προτείνω επεξεργασία" + +msgid "Open an issue" +msgstr "Ανοίξτε ένα ζήτημα" + +msgid "Launch" +msgstr "Εκτόξευση" + +msgid "Fullscreen mode" +msgstr "ΛΕΙΤΟΥΡΓΙΑ ΠΛΗΡΟΥΣ ΟΘΟΝΗΣ" + +msgid "Edit this page" +msgstr "Επεξεργαστείτε αυτήν τη σελίδα" + +msgid "By the" +msgstr "Από το" + +msgid "next page" +msgstr "επόμενη σελίδα" diff --git a/docs/_static/locales/eo/LC_MESSAGES/booktheme.mo b/docs/_static/locales/eo/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..d1072bb Binary files /dev/null and b/docs/_static/locales/eo/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/eo/LC_MESSAGES/booktheme.po b/docs/_static/locales/eo/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..f7ed226 --- /dev/null +++ b/docs/_static/locales/eo/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: eo\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Presi al PDF" + +msgid "Theme by the" +msgstr "Temo de la" + +msgid "Download source file" +msgstr "Elŝutu fontodosieron" + +msgid "open issue" +msgstr "malferma numero" + +msgid "Contents" +msgstr "Enhavo" + +msgid "previous page" +msgstr "antaŭa paĝo" + +msgid "Download notebook file" +msgstr "Elŝutu kajeran dosieron" + +msgid "Copyright" +msgstr "Kopirajto" + +msgid "Download this page" +msgstr "Elŝutu ĉi tiun paĝon" + +msgid "Source repository" +msgstr "Fonto-deponejo" + +msgid "By" +msgstr "De" + +msgid "repository" +msgstr "deponejo" + +msgid "Last updated on" +msgstr "Laste ĝisdatigita la" + +msgid "Toggle navigation" +msgstr "Ŝalti navigadon" + +msgid "Sphinx Book Theme" +msgstr "Sfinksa Libro-Temo" + +msgid "suggest edit" +msgstr "sugesti redaktadon" + +msgid "Open an issue" +msgstr "Malfermu numeron" + +msgid "Launch" +msgstr "Lanĉo" + +msgid "Fullscreen mode" +msgstr "Plenekrana reĝimo" + +msgid "Edit this page" +msgstr "Redaktu ĉi tiun paĝon" + +msgid "By the" +msgstr "Per la" + +msgid "next page" +msgstr "sekva paĝo" diff --git a/docs/_static/locales/es/LC_MESSAGES/booktheme.mo b/docs/_static/locales/es/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..ba2ee4d Binary files /dev/null and b/docs/_static/locales/es/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/es/LC_MESSAGES/booktheme.po b/docs/_static/locales/es/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..5e0029e --- /dev/null +++ b/docs/_static/locales/es/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: es\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Imprimir en PDF" + +msgid "Theme by the" +msgstr "Tema por el" + +msgid "Download source file" +msgstr "Descargar archivo fuente" + +msgid "open issue" +msgstr "Tema abierto" + +msgid "Contents" +msgstr "Contenido" + +msgid "previous page" +msgstr "pagina anterior" + +msgid "Download notebook file" +msgstr "Descargar archivo de cuaderno" + +msgid "Copyright" +msgstr "Derechos de autor" + +msgid "Download this page" +msgstr "Descarga esta pagina" + +msgid "Source repository" +msgstr "Repositorio de origen" + +msgid "By" +msgstr "Por" + +msgid "repository" +msgstr "repositorio" + +msgid "Last updated on" +msgstr "Ultima actualización en" + +msgid "Toggle navigation" +msgstr "Navegación de palanca" + +msgid "Sphinx Book Theme" +msgstr "Tema del libro de la esfinge" + +msgid "suggest edit" +msgstr "sugerir editar" + +msgid "Open an issue" +msgstr "Abrir un problema" + +msgid "Launch" +msgstr "Lanzamiento" + +msgid "Fullscreen mode" +msgstr "Modo de pantalla completa" + +msgid "Edit this page" +msgstr "Edita esta página" + +msgid "By the" +msgstr "Por el" + +msgid "next page" +msgstr "siguiente página" diff --git a/docs/_static/locales/et/LC_MESSAGES/booktheme.mo b/docs/_static/locales/et/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..983b823 Binary files /dev/null and b/docs/_static/locales/et/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/et/LC_MESSAGES/booktheme.po b/docs/_static/locales/et/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..8680982 --- /dev/null +++ b/docs/_static/locales/et/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: et\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Prindi PDF-i" + +msgid "Theme by the" +msgstr "Teema" + +msgid "Download source file" +msgstr "Laadige alla lähtefail" + +msgid "open issue" +msgstr "avatud küsimus" + +msgid "Contents" +msgstr "Sisu" + +msgid "previous page" +msgstr "eelmine leht" + +msgid "Download notebook file" +msgstr "Laadige sülearvuti fail alla" + +msgid "Copyright" +msgstr "Autoriõigus" + +msgid "Download this page" +msgstr "Laadige see leht alla" + +msgid "Source repository" +msgstr "Allikahoidla" + +msgid "By" +msgstr "Kõrval" + +msgid "repository" +msgstr "hoidla" + +msgid "Last updated on" +msgstr "Viimati uuendatud" + +msgid "Toggle navigation" +msgstr "Lülita navigeerimine sisse" + +msgid "Sphinx Book Theme" +msgstr "Sfinksiraamatu teema" + +msgid "suggest edit" +msgstr "soovita muuta" + +msgid "Open an issue" +msgstr "Avage probleem" + +msgid "Launch" +msgstr "Käivitage" + +msgid "Fullscreen mode" +msgstr "Täisekraanirežiim" + +msgid "Edit this page" +msgstr "Muutke seda lehte" + +msgid "By the" +msgstr "Autor" + +msgid "next page" +msgstr "järgmine leht" diff --git a/docs/_static/locales/fi/LC_MESSAGES/booktheme.mo b/docs/_static/locales/fi/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..d8ac054 Binary files /dev/null and b/docs/_static/locales/fi/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/fi/LC_MESSAGES/booktheme.po b/docs/_static/locales/fi/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..34dac21 --- /dev/null +++ b/docs/_static/locales/fi/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: fi\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Tulosta PDF-tiedostoon" + +msgid "Theme by the" +msgstr "Teeman tekijä" + +msgid "Download source file" +msgstr "Lataa lähdetiedosto" + +msgid "open issue" +msgstr "avoin ongelma" + +msgid "Contents" +msgstr "Sisällys" + +msgid "previous page" +msgstr "Edellinen sivu" + +msgid "Download notebook file" +msgstr "Lataa muistikirjatiedosto" + +msgid "Copyright" +msgstr "Tekijänoikeus" + +msgid "Download this page" +msgstr "Lataa tämä sivu" + +msgid "Source repository" +msgstr "Lähteen arkisto" + +msgid "By" +msgstr "Tekijä" + +msgid "repository" +msgstr "arkisto" + +msgid "Last updated on" +msgstr "Viimeksi päivitetty" + +msgid "Toggle navigation" +msgstr "Vaihda navigointia" + +msgid "Sphinx Book Theme" +msgstr "Sphinx-kirjan teema" + +msgid "suggest edit" +msgstr "ehdottaa muokkausta" + +msgid "Open an issue" +msgstr "Avaa ongelma" + +msgid "Launch" +msgstr "Tuoda markkinoille" + +msgid "Fullscreen mode" +msgstr "Koko näytön tila" + +msgid "Edit this page" +msgstr "Muokkaa tätä sivua" + +msgid "By the" +msgstr "Mukaan" + +msgid "next page" +msgstr "seuraava sivu" diff --git a/docs/_static/locales/fr/LC_MESSAGES/booktheme.mo b/docs/_static/locales/fr/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..f663d39 Binary files /dev/null and b/docs/_static/locales/fr/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/fr/LC_MESSAGES/booktheme.po b/docs/_static/locales/fr/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..8991a1b --- /dev/null +++ b/docs/_static/locales/fr/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: fr\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Imprimer au format PDF" + +msgid "Theme by the" +msgstr "Thème par le" + +msgid "Download source file" +msgstr "Télécharger le fichier source" + +msgid "open issue" +msgstr "signaler un problème" + +msgid "Contents" +msgstr "Contenu" + +msgid "previous page" +msgstr "page précédente" + +msgid "Download notebook file" +msgstr "Télécharger le fichier notebook" + +msgid "Copyright" +msgstr "droits d'auteur" + +msgid "Download this page" +msgstr "Téléchargez cette page" + +msgid "Source repository" +msgstr "Dépôt source" + +msgid "By" +msgstr "Par" + +msgid "repository" +msgstr "dépôt" + +msgid "Last updated on" +msgstr "Dernière mise à jour le" + +msgid "Toggle navigation" +msgstr "Basculer la navigation" + +msgid "Sphinx Book Theme" +msgstr "Thème du livre Sphinx" + +msgid "suggest edit" +msgstr "suggestion de modification" + +msgid "Open an issue" +msgstr "Ouvrez un problème" + +msgid "Launch" +msgstr "lancement" + +msgid "Fullscreen mode" +msgstr "Mode plein écran" + +msgid "Edit this page" +msgstr "Modifier cette page" + +msgid "By the" +msgstr "Par le" + +msgid "next page" +msgstr "page suivante" diff --git a/docs/_static/locales/hr/LC_MESSAGES/booktheme.mo b/docs/_static/locales/hr/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..eca4a1a Binary files /dev/null and b/docs/_static/locales/hr/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/hr/LC_MESSAGES/booktheme.po b/docs/_static/locales/hr/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..42c4233 --- /dev/null +++ b/docs/_static/locales/hr/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: hr\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Ispis u PDF" + +msgid "Theme by the" +msgstr "Tema autora" + +msgid "Download source file" +msgstr "Preuzmi izvornu datoteku" + +msgid "open issue" +msgstr "otvoreno izdanje" + +msgid "Contents" +msgstr "Sadržaj" + +msgid "previous page" +msgstr "Prethodna stranica" + +msgid "Download notebook file" +msgstr "Preuzmi datoteku bilježnice" + +msgid "Copyright" +msgstr "Autorska prava" + +msgid "Download this page" +msgstr "Preuzmite ovu stranicu" + +msgid "Source repository" +msgstr "Izvorno spremište" + +msgid "By" +msgstr "Po" + +msgid "repository" +msgstr "spremište" + +msgid "Last updated on" +msgstr "Posljednje ažuriranje:" + +msgid "Toggle navigation" +msgstr "Uključi / isključi navigaciju" + +msgid "Sphinx Book Theme" +msgstr "Tema knjige Sphinx" + +msgid "suggest edit" +msgstr "predloži uređivanje" + +msgid "Open an issue" +msgstr "Otvorite izdanje" + +msgid "Launch" +msgstr "Pokrenite" + +msgid "Fullscreen mode" +msgstr "Način preko cijelog zaslona" + +msgid "Edit this page" +msgstr "Uredite ovu stranicu" + +msgid "By the" +msgstr "Od strane" + +msgid "next page" +msgstr "sljedeća stranica" diff --git a/docs/_static/locales/id/LC_MESSAGES/booktheme.mo b/docs/_static/locales/id/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..d07a06a Binary files /dev/null and b/docs/_static/locales/id/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/id/LC_MESSAGES/booktheme.po b/docs/_static/locales/id/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..b8d8d89 --- /dev/null +++ b/docs/_static/locales/id/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: id\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Cetak ke PDF" + +msgid "Theme by the" +msgstr "Tema oleh" + +msgid "Download source file" +msgstr "Unduh file sumber" + +msgid "open issue" +msgstr "masalah terbuka" + +msgid "Contents" +msgstr "Isi" + +msgid "previous page" +msgstr "halaman sebelumnya" + +msgid "Download notebook file" +msgstr "Unduh file notebook" + +msgid "Copyright" +msgstr "hak cipta" + +msgid "Download this page" +msgstr "Unduh halaman ini" + +msgid "Source repository" +msgstr "Repositori sumber" + +msgid "By" +msgstr "Oleh" + +msgid "repository" +msgstr "gudang" + +msgid "Last updated on" +msgstr "Terakhir diperbarui saat" + +msgid "Toggle navigation" +msgstr "Alihkan navigasi" + +msgid "Sphinx Book Theme" +msgstr "Tema Buku Sphinx" + +msgid "suggest edit" +msgstr "menyarankan edit" + +msgid "Open an issue" +msgstr "Buka masalah" + +msgid "Launch" +msgstr "Meluncurkan" + +msgid "Fullscreen mode" +msgstr "Mode layar penuh" + +msgid "Edit this page" +msgstr "Edit halaman ini" + +msgid "By the" +msgstr "Oleh" + +msgid "next page" +msgstr "halaman selanjutnya" diff --git a/docs/_static/locales/it/LC_MESSAGES/booktheme.mo b/docs/_static/locales/it/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..53ba476 Binary files /dev/null and b/docs/_static/locales/it/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/it/LC_MESSAGES/booktheme.po b/docs/_static/locales/it/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..36fca59 --- /dev/null +++ b/docs/_static/locales/it/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: it\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Stampa in PDF" + +msgid "Theme by the" +msgstr "Tema di" + +msgid "Download source file" +msgstr "Scarica il file sorgente" + +msgid "open issue" +msgstr "questione aperta" + +msgid "Contents" +msgstr "Contenuti" + +msgid "previous page" +msgstr "pagina precedente" + +msgid "Download notebook file" +msgstr "Scarica il file del taccuino" + +msgid "Copyright" +msgstr "Diritto d'autore" + +msgid "Download this page" +msgstr "Scarica questa pagina" + +msgid "Source repository" +msgstr "Repository di origine" + +msgid "By" +msgstr "Di" + +msgid "repository" +msgstr "repository" + +msgid "Last updated on" +msgstr "Ultimo aggiornamento il" + +msgid "Toggle navigation" +msgstr "Attiva / disattiva la navigazione" + +msgid "Sphinx Book Theme" +msgstr "Tema del libro della Sfinge" + +msgid "suggest edit" +msgstr "suggerisci modifica" + +msgid "Open an issue" +msgstr "Apri un problema" + +msgid "Launch" +msgstr "Lanciare" + +msgid "Fullscreen mode" +msgstr "Modalità schermo intero" + +msgid "Edit this page" +msgstr "Modifica questa pagina" + +msgid "By the" +msgstr "Dal" + +msgid "next page" +msgstr "pagina successiva" diff --git a/docs/_static/locales/iw/LC_MESSAGES/booktheme.mo b/docs/_static/locales/iw/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..a45c657 Binary files /dev/null and b/docs/_static/locales/iw/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/iw/LC_MESSAGES/booktheme.po b/docs/_static/locales/iw/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..dede9cb --- /dev/null +++ b/docs/_static/locales/iw/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: iw\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "הדפס לקובץ PDF" + +msgid "Theme by the" +msgstr "נושא מאת" + +msgid "Download source file" +msgstr "הורד את קובץ המקור" + +msgid "open issue" +msgstr "בעיה פתוחה" + +msgid "Contents" +msgstr "תוכן" + +msgid "previous page" +msgstr "עמוד קודם" + +msgid "Download notebook file" +msgstr "הורד קובץ מחברת" + +msgid "Copyright" +msgstr "זכויות יוצרים" + +msgid "Download this page" +msgstr "הורד דף זה" + +msgid "Source repository" +msgstr "מאגר המקורות" + +msgid "By" +msgstr "על ידי" + +msgid "repository" +msgstr "מאגר" + +msgid "Last updated on" +msgstr "עודכן לאחרונה ב" + +msgid "Toggle navigation" +msgstr "החלף ניווט" + +msgid "Sphinx Book Theme" +msgstr "נושא ספר ספינקס" + +msgid "suggest edit" +msgstr "מציע לערוך" + +msgid "Open an issue" +msgstr "פתח גיליון" + +msgid "Launch" +msgstr "לְהַשִׁיק" + +msgid "Fullscreen mode" +msgstr "מצב מסך מלא" + +msgid "Edit this page" +msgstr "ערוך דף זה" + +msgid "By the" +msgstr "דרך" + +msgid "next page" +msgstr "עמוד הבא" diff --git a/docs/_static/locales/ja/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ja/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..1cefd29 Binary files /dev/null and b/docs/_static/locales/ja/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ja/LC_MESSAGES/booktheme.po b/docs/_static/locales/ja/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..2615f0d --- /dev/null +++ b/docs/_static/locales/ja/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ja\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "PDFに印刷" + +msgid "Theme by the" +msgstr "のテーマ" + +msgid "Download source file" +msgstr "ソースファイルをダウンロード" + +msgid "open issue" +msgstr "未解決の問題" + +msgid "Contents" +msgstr "目次" + +msgid "previous page" +msgstr "前のページ" + +msgid "Download notebook file" +msgstr "ノートブックファイルをダウンロード" + +msgid "Copyright" +msgstr "Copyright" + +msgid "Download this page" +msgstr "このページをダウンロード" + +msgid "Source repository" +msgstr "ソースリポジトリ" + +msgid "By" +msgstr "著者" + +msgid "repository" +msgstr "リポジトリ" + +msgid "Last updated on" +msgstr "最終更新日" + +msgid "Toggle navigation" +msgstr "ナビゲーションを切り替え" + +msgid "Sphinx Book Theme" +msgstr "スフィンクスの本のテーマ" + +msgid "suggest edit" +msgstr "編集を提案する" + +msgid "Open an issue" +msgstr "問題を報告" + +msgid "Launch" +msgstr "起動" + +msgid "Fullscreen mode" +msgstr "全画面モード" + +msgid "Edit this page" +msgstr "このページを編集" + +msgid "By the" +msgstr "によって" + +msgid "next page" +msgstr "次のページ" diff --git a/docs/_static/locales/ko/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ko/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..06c7ec9 Binary files /dev/null and b/docs/_static/locales/ko/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ko/LC_MESSAGES/booktheme.po b/docs/_static/locales/ko/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..c9e13a4 --- /dev/null +++ b/docs/_static/locales/ko/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ko\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "PDF로 인쇄" + +msgid "Theme by the" +msgstr "테마별" + +msgid "Download source file" +msgstr "소스 파일 다운로드" + +msgid "open issue" +msgstr "열린 문제" + +msgid "Contents" +msgstr "내용" + +msgid "previous page" +msgstr "이전 페이지" + +msgid "Download notebook file" +msgstr "노트북 파일 다운로드" + +msgid "Copyright" +msgstr "저작권" + +msgid "Download this page" +msgstr "이 페이지 다운로드" + +msgid "Source repository" +msgstr "소스 저장소" + +msgid "By" +msgstr "으로" + +msgid "repository" +msgstr "저장소" + +msgid "Last updated on" +msgstr "마지막 업데이트" + +msgid "Toggle navigation" +msgstr "탐색 전환" + +msgid "Sphinx Book Theme" +msgstr "스핑크스 도서 테마" + +msgid "suggest edit" +msgstr "편집 제안" + +msgid "Open an issue" +msgstr "이슈 열기" + +msgid "Launch" +msgstr "시작하다" + +msgid "Fullscreen mode" +msgstr "전체 화면으로보기" + +msgid "Edit this page" +msgstr "이 페이지 편집" + +msgid "By the" +msgstr "에 의해" + +msgid "next page" +msgstr "다음 페이지" diff --git a/docs/_static/locales/lt/LC_MESSAGES/booktheme.mo b/docs/_static/locales/lt/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..4468ba0 Binary files /dev/null and b/docs/_static/locales/lt/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/lt/LC_MESSAGES/booktheme.po b/docs/_static/locales/lt/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..35eabd9 --- /dev/null +++ b/docs/_static/locales/lt/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: lt\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Spausdinti į PDF" + +msgid "Theme by the" +msgstr "Tema" + +msgid "Download source file" +msgstr "Atsisiųsti šaltinio failą" + +msgid "open issue" +msgstr "atviras klausimas" + +msgid "Contents" +msgstr "Turinys" + +msgid "previous page" +msgstr "Ankstesnis puslapis" + +msgid "Download notebook file" +msgstr "Atsisiųsti nešiojamojo kompiuterio failą" + +msgid "Copyright" +msgstr "Autorių teisės" + +msgid "Download this page" +msgstr "Atsisiųskite šį puslapį" + +msgid "Source repository" +msgstr "Šaltinio saugykla" + +msgid "By" +msgstr "Iki" + +msgid "repository" +msgstr "saugykla" + +msgid "Last updated on" +msgstr "Paskutinį kartą atnaujinta" + +msgid "Toggle navigation" +msgstr "Perjungti naršymą" + +msgid "Sphinx Book Theme" +msgstr "Sfinkso knygos tema" + +msgid "suggest edit" +msgstr "pasiūlyti redaguoti" + +msgid "Open an issue" +msgstr "Atidarykite problemą" + +msgid "Launch" +msgstr "Paleiskite" + +msgid "Fullscreen mode" +msgstr "Pilno ekrano režimas" + +msgid "Edit this page" +msgstr "Redaguoti šį puslapį" + +msgid "By the" +msgstr "Prie" + +msgid "next page" +msgstr "Kitas puslapis" diff --git a/docs/_static/locales/lv/LC_MESSAGES/booktheme.mo b/docs/_static/locales/lv/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..74aa4d8 Binary files /dev/null and b/docs/_static/locales/lv/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/lv/LC_MESSAGES/booktheme.po b/docs/_static/locales/lv/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..ee1bd08 --- /dev/null +++ b/docs/_static/locales/lv/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: lv\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Drukāt PDF formātā" + +msgid "Theme by the" +msgstr "Autora tēma" + +msgid "Download source file" +msgstr "Lejupielādēt avota failu" + +msgid "open issue" +msgstr "atklāts jautājums" + +msgid "Contents" +msgstr "Saturs" + +msgid "previous page" +msgstr "iepriekšējā lapa" + +msgid "Download notebook file" +msgstr "Lejupielādēt piezīmju grāmatiņu" + +msgid "Copyright" +msgstr "Autortiesības" + +msgid "Download this page" +msgstr "Lejupielādējiet šo lapu" + +msgid "Source repository" +msgstr "Avota krātuve" + +msgid "By" +msgstr "Autors" + +msgid "repository" +msgstr "krātuve" + +msgid "Last updated on" +msgstr "Pēdējoreiz atjaunināts" + +msgid "Toggle navigation" +msgstr "Pārslēgt navigāciju" + +msgid "Sphinx Book Theme" +msgstr "Sfinksa grāmatas tēma" + +msgid "suggest edit" +msgstr "ieteikt rediģēt" + +msgid "Open an issue" +msgstr "Atveriet problēmu" + +msgid "Launch" +msgstr "Uzsākt" + +msgid "Fullscreen mode" +msgstr "Pilnekrāna režīms" + +msgid "Edit this page" +msgstr "Rediģēt šo lapu" + +msgid "By the" +msgstr "Ar" + +msgid "next page" +msgstr "nākamā lapaspuse" diff --git a/docs/_static/locales/ml/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ml/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..2736e8f Binary files /dev/null and b/docs/_static/locales/ml/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ml/LC_MESSAGES/booktheme.po b/docs/_static/locales/ml/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..d471277 --- /dev/null +++ b/docs/_static/locales/ml/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ml\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "PDF- ലേക്ക് പ്രിന്റുചെയ്യുക" + +msgid "Theme by the" +msgstr "പ്രമേയം" + +msgid "Download source file" +msgstr "ഉറവിട ഫയൽ ഡൗൺലോഡുചെയ്യുക" + +msgid "open issue" +msgstr "തുറന്ന പ്രശ്നം" + +msgid "previous page" +msgstr "മുൻപത്തെ താൾ" + +msgid "Download notebook file" +msgstr "നോട്ട്ബുക്ക് ഫയൽ ഡൺലോഡ് ചെയ്യുക" + +msgid "Copyright" +msgstr "പകർപ്പവകാശം" + +msgid "Download this page" +msgstr "ഈ പേജ് ഡൗൺലോഡുചെയ്യുക" + +msgid "Source repository" +msgstr "ഉറവിട ശേഖരം" + +msgid "By" +msgstr "എഴുതിയത്" + +msgid "Last updated on" +msgstr "അവസാനം അപ്‌ഡേറ്റുചെയ്‌തത്" + +msgid "Toggle navigation" +msgstr "നാവിഗേഷൻ ടോഗിൾ ചെയ്യുക" + +msgid "Sphinx Book Theme" +msgstr "സ്ഫിങ്ക്സ് പുസ്തക തീം" + +msgid "suggest edit" +msgstr "എഡിറ്റുചെയ്യാൻ നിർദ്ദേശിക്കുക" + +msgid "Open an issue" +msgstr "ഒരു പ്രശ്നം തുറക്കുക" + +msgid "Launch" +msgstr "സമാരംഭിക്കുക" + +msgid "Edit this page" +msgstr "ഈ പേജ് എഡിറ്റുചെയ്യുക" + +msgid "By the" +msgstr "എഴുതിയത്" + +msgid "next page" +msgstr "അടുത്ത പേജ്" diff --git a/docs/_static/locales/mr/LC_MESSAGES/booktheme.mo b/docs/_static/locales/mr/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..fe53010 Binary files /dev/null and b/docs/_static/locales/mr/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/mr/LC_MESSAGES/booktheme.po b/docs/_static/locales/mr/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..f3694ac --- /dev/null +++ b/docs/_static/locales/mr/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: mr\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "पीडीएफवर मुद्रित करा" + +msgid "Theme by the" +msgstr "द्वारा थीम" + +msgid "Download source file" +msgstr "स्त्रोत फाइल डाउनलोड करा" + +msgid "open issue" +msgstr "खुला मुद्दा" + +msgid "previous page" +msgstr "मागील पान" + +msgid "Download notebook file" +msgstr "नोटबुक फाईल डाउनलोड करा" + +msgid "Copyright" +msgstr "कॉपीराइट" + +msgid "Download this page" +msgstr "हे पृष्ठ डाउनलोड करा" + +msgid "Source repository" +msgstr "स्त्रोत भांडार" + +msgid "By" +msgstr "द्वारा" + +msgid "Last updated on" +msgstr "अखेरचे अद्यतनित" + +msgid "Toggle navigation" +msgstr "नेव्हिगेशन टॉगल करा" + +msgid "Sphinx Book Theme" +msgstr "स्फिंक्स बुक थीम" + +msgid "suggest edit" +msgstr "संपादन सुचवा" + +msgid "Open an issue" +msgstr "एक मुद्दा उघडा" + +msgid "Launch" +msgstr "लाँच करा" + +msgid "Edit this page" +msgstr "हे पृष्ठ संपादित करा" + +msgid "By the" +msgstr "द्वारा" + +msgid "next page" +msgstr "पुढील पृष्ठ" diff --git a/docs/_static/locales/ms/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ms/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..f02603f Binary files /dev/null and b/docs/_static/locales/ms/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ms/LC_MESSAGES/booktheme.po b/docs/_static/locales/ms/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..65b7c60 --- /dev/null +++ b/docs/_static/locales/ms/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ms\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Cetak ke PDF" + +msgid "Theme by the" +msgstr "Tema oleh" + +msgid "Download source file" +msgstr "Muat turun fail sumber" + +msgid "open issue" +msgstr "isu terbuka" + +msgid "previous page" +msgstr "halaman sebelumnya" + +msgid "Download notebook file" +msgstr "Muat turun fail buku nota" + +msgid "Copyright" +msgstr "hak cipta" + +msgid "Download this page" +msgstr "Muat turun halaman ini" + +msgid "Source repository" +msgstr "Repositori sumber" + +msgid "By" +msgstr "Oleh" + +msgid "Last updated on" +msgstr "Terakhir dikemas kini pada" + +msgid "Toggle navigation" +msgstr "Togol navigasi" + +msgid "Sphinx Book Theme" +msgstr "Tema Buku Sphinx" + +msgid "suggest edit" +msgstr "cadangkan edit" + +msgid "Open an issue" +msgstr "Buka masalah" + +msgid "Launch" +msgstr "Lancarkan" + +msgid "Edit this page" +msgstr "Edit halaman ini" + +msgid "By the" +msgstr "Oleh" + +msgid "next page" +msgstr "muka surat seterusnya" diff --git a/docs/_static/locales/nl/LC_MESSAGES/booktheme.mo b/docs/_static/locales/nl/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..e59e7ec Binary files /dev/null and b/docs/_static/locales/nl/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/nl/LC_MESSAGES/booktheme.po b/docs/_static/locales/nl/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..71bd1cd --- /dev/null +++ b/docs/_static/locales/nl/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: nl\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Afdrukken naar pdf" + +msgid "Theme by the" +msgstr "Thema door de" + +msgid "Download source file" +msgstr "Download het bronbestand" + +msgid "open issue" +msgstr "open probleem" + +msgid "Contents" +msgstr "Inhoud" + +msgid "previous page" +msgstr "vorige pagina" + +msgid "Download notebook file" +msgstr "Download notebookbestand" + +msgid "Copyright" +msgstr "auteursrechten" + +msgid "Download this page" +msgstr "Download deze pagina" + +msgid "Source repository" +msgstr "Bronopslagplaats" + +msgid "By" +msgstr "Door" + +msgid "repository" +msgstr "repository" + +msgid "Last updated on" +msgstr "Laatst geupdate op" + +msgid "Toggle navigation" +msgstr "Schakel navigatie" + +msgid "Sphinx Book Theme" +msgstr "Sphinx-boekthema" + +msgid "suggest edit" +msgstr "suggereren bewerken" + +msgid "Open an issue" +msgstr "Open een probleem" + +msgid "Launch" +msgstr "Lancering" + +msgid "Fullscreen mode" +msgstr "Volledig scherm" + +msgid "Edit this page" +msgstr "bewerk deze pagina" + +msgid "By the" +msgstr "Door de" + +msgid "next page" +msgstr "volgende bladzijde" diff --git a/docs/_static/locales/no/LC_MESSAGES/booktheme.mo b/docs/_static/locales/no/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..6cd15c8 Binary files /dev/null and b/docs/_static/locales/no/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/no/LC_MESSAGES/booktheme.po b/docs/_static/locales/no/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..b21346a --- /dev/null +++ b/docs/_static/locales/no/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: no\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Skriv ut til PDF" + +msgid "Theme by the" +msgstr "Tema av" + +msgid "Download source file" +msgstr "Last ned kildefilen" + +msgid "open issue" +msgstr "åpent nummer" + +msgid "Contents" +msgstr "Innhold" + +msgid "previous page" +msgstr "forrige side" + +msgid "Download notebook file" +msgstr "Last ned notatbokfilen" + +msgid "Copyright" +msgstr "opphavsrett" + +msgid "Download this page" +msgstr "Last ned denne siden" + +msgid "Source repository" +msgstr "Kildedepot" + +msgid "By" +msgstr "Av" + +msgid "repository" +msgstr "oppbevaringssted" + +msgid "Last updated on" +msgstr "Sist oppdatert den" + +msgid "Toggle navigation" +msgstr "Bytt navigasjon" + +msgid "Sphinx Book Theme" +msgstr "Sphinx boktema" + +msgid "suggest edit" +msgstr "foreslå redigering" + +msgid "Open an issue" +msgstr "Åpne et problem" + +msgid "Launch" +msgstr "Start" + +msgid "Fullscreen mode" +msgstr "Fullskjerm-modus" + +msgid "Edit this page" +msgstr "Rediger denne siden" + +msgid "By the" +msgstr "Ved" + +msgid "next page" +msgstr "neste side" diff --git a/docs/_static/locales/pl/LC_MESSAGES/booktheme.mo b/docs/_static/locales/pl/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..9ebb584 Binary files /dev/null and b/docs/_static/locales/pl/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/pl/LC_MESSAGES/booktheme.po b/docs/_static/locales/pl/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..1b7233f --- /dev/null +++ b/docs/_static/locales/pl/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: pl\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Drukuj do PDF" + +msgid "Theme by the" +msgstr "Motyw autorstwa" + +msgid "Download source file" +msgstr "Pobierz plik źródłowy" + +msgid "open issue" +msgstr "otwarty problem" + +msgid "Contents" +msgstr "Zawartość" + +msgid "previous page" +msgstr "Poprzednia strona" + +msgid "Download notebook file" +msgstr "Pobierz plik notatnika" + +msgid "Copyright" +msgstr "prawa autorskie" + +msgid "Download this page" +msgstr "Pobierz tę stronę" + +msgid "Source repository" +msgstr "Repozytorium źródłowe" + +msgid "By" +msgstr "Przez" + +msgid "repository" +msgstr "magazyn" + +msgid "Last updated on" +msgstr "Ostatnia aktualizacja" + +msgid "Toggle navigation" +msgstr "Przełącz nawigację" + +msgid "Sphinx Book Theme" +msgstr "Motyw książki Sphinx" + +msgid "suggest edit" +msgstr "zaproponuj edycję" + +msgid "Open an issue" +msgstr "Otwórz problem" + +msgid "Launch" +msgstr "Uruchomić" + +msgid "Fullscreen mode" +msgstr "Pełny ekran" + +msgid "Edit this page" +msgstr "Edytuj tę strone" + +msgid "By the" +msgstr "Przez" + +msgid "next page" +msgstr "Następna strona" diff --git a/docs/_static/locales/pt/LC_MESSAGES/booktheme.mo b/docs/_static/locales/pt/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..d0ddb87 Binary files /dev/null and b/docs/_static/locales/pt/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/pt/LC_MESSAGES/booktheme.po b/docs/_static/locales/pt/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..1b27314 --- /dev/null +++ b/docs/_static/locales/pt/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: pt\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Imprimir em PDF" + +msgid "Theme by the" +msgstr "Tema por" + +msgid "Download source file" +msgstr "Baixar arquivo fonte" + +msgid "open issue" +msgstr "questão aberta" + +msgid "Contents" +msgstr "Conteúdo" + +msgid "previous page" +msgstr "página anterior" + +msgid "Download notebook file" +msgstr "Baixar arquivo de notebook" + +msgid "Copyright" +msgstr "direito autoral" + +msgid "Download this page" +msgstr "Baixe esta página" + +msgid "Source repository" +msgstr "Repositório fonte" + +msgid "By" +msgstr "De" + +msgid "repository" +msgstr "repositório" + +msgid "Last updated on" +msgstr "Última atualização em" + +msgid "Toggle navigation" +msgstr "Alternar de navegação" + +msgid "Sphinx Book Theme" +msgstr "Tema do livro Sphinx" + +msgid "suggest edit" +msgstr "sugerir edição" + +msgid "Open an issue" +msgstr "Abra um problema" + +msgid "Launch" +msgstr "Lançamento" + +msgid "Fullscreen mode" +msgstr "Modo tela cheia" + +msgid "Edit this page" +msgstr "Edite essa página" + +msgid "By the" +msgstr "Pelo" + +msgid "next page" +msgstr "próxima página" diff --git a/docs/_static/locales/ro/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ro/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..3c36ab1 Binary files /dev/null and b/docs/_static/locales/ro/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ro/LC_MESSAGES/booktheme.po b/docs/_static/locales/ro/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..1783ad2 --- /dev/null +++ b/docs/_static/locales/ro/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ro\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Imprimați în PDF" + +msgid "Theme by the" +msgstr "Tema de" + +msgid "Download source file" +msgstr "Descărcați fișierul sursă" + +msgid "open issue" +msgstr "problema deschisă" + +msgid "Contents" +msgstr "Cuprins" + +msgid "previous page" +msgstr "pagina anterioară" + +msgid "Download notebook file" +msgstr "Descărcați fișierul notebook" + +msgid "Copyright" +msgstr "Drepturi de autor" + +msgid "Download this page" +msgstr "Descarcă această pagină" + +msgid "Source repository" +msgstr "Depozit sursă" + +msgid "By" +msgstr "De" + +msgid "repository" +msgstr "repertoriu" + +msgid "Last updated on" +msgstr "Ultima actualizare la" + +msgid "Toggle navigation" +msgstr "Comutare navigare" + +msgid "Sphinx Book Theme" +msgstr "Tema Sphinx Book" + +msgid "suggest edit" +msgstr "sugerează editare" + +msgid "Open an issue" +msgstr "Deschideți o problemă" + +msgid "Launch" +msgstr "Lansa" + +msgid "Fullscreen mode" +msgstr "Modul ecran întreg" + +msgid "Edit this page" +msgstr "Editați această pagină" + +msgid "By the" +msgstr "Langa" + +msgid "next page" +msgstr "pagina următoare" diff --git a/docs/_static/locales/ru/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ru/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..6b8ca41 Binary files /dev/null and b/docs/_static/locales/ru/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ru/LC_MESSAGES/booktheme.po b/docs/_static/locales/ru/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..b1176b7 --- /dev/null +++ b/docs/_static/locales/ru/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ru\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Распечатать в PDF" + +msgid "Theme by the" +msgstr "Тема от" + +msgid "Download source file" +msgstr "Скачать исходный файл" + +msgid "open issue" +msgstr "открытый вопрос" + +msgid "Contents" +msgstr "Содержание" + +msgid "previous page" +msgstr "Предыдущая страница" + +msgid "Download notebook file" +msgstr "Скачать файл записной книжки" + +msgid "Copyright" +msgstr "авторское право" + +msgid "Download this page" +msgstr "Загрузите эту страницу" + +msgid "Source repository" +msgstr "Исходный репозиторий" + +msgid "By" +msgstr "По" + +msgid "repository" +msgstr "хранилище" + +msgid "Last updated on" +msgstr "Последнее обновление" + +msgid "Toggle navigation" +msgstr "Переключить навигацию" + +msgid "Sphinx Book Theme" +msgstr "Тема книги Сфинкс" + +msgid "suggest edit" +msgstr "предложить редактировать" + +msgid "Open an issue" +msgstr "Открыть вопрос" + +msgid "Launch" +msgstr "Запуск" + +msgid "Fullscreen mode" +msgstr "Полноэкранный режим" + +msgid "Edit this page" +msgstr "Редактировать эту страницу" + +msgid "By the" +msgstr "Посредством" + +msgid "next page" +msgstr "Следующая страница" diff --git a/docs/_static/locales/sk/LC_MESSAGES/booktheme.mo b/docs/_static/locales/sk/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..59bd0dd Binary files /dev/null and b/docs/_static/locales/sk/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/sk/LC_MESSAGES/booktheme.po b/docs/_static/locales/sk/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..6501288 --- /dev/null +++ b/docs/_static/locales/sk/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: sk\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Tlač do PDF" + +msgid "Theme by the" +msgstr "Téma od" + +msgid "Download source file" +msgstr "Stiahnite si zdrojový súbor" + +msgid "open issue" +msgstr "otvorené vydanie" + +msgid "Contents" +msgstr "Obsah" + +msgid "previous page" +msgstr "predchádzajúca strana" + +msgid "Download notebook file" +msgstr "Stiahnite si zošit" + +msgid "Copyright" +msgstr "Autorské práva" + +msgid "Download this page" +msgstr "Stiahnite si túto stránku" + +msgid "Source repository" +msgstr "Zdrojové úložisko" + +msgid "By" +msgstr "Autor:" + +msgid "repository" +msgstr "Úložisko" + +msgid "Last updated on" +msgstr "Posledná aktualizácia dňa" + +msgid "Toggle navigation" +msgstr "Prepnúť navigáciu" + +msgid "Sphinx Book Theme" +msgstr "Téma knihy Sfinga" + +msgid "suggest edit" +msgstr "navrhnúť úpravu" + +msgid "Open an issue" +msgstr "Otvorte problém" + +msgid "Launch" +msgstr "Spustiť" + +msgid "Fullscreen mode" +msgstr "Režim celej obrazovky" + +msgid "Edit this page" +msgstr "Upraviť túto stránku" + +msgid "By the" +msgstr "Podľa" + +msgid "next page" +msgstr "ďalšia strana" diff --git a/docs/_static/locales/sl/LC_MESSAGES/booktheme.mo b/docs/_static/locales/sl/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..87bf26d Binary files /dev/null and b/docs/_static/locales/sl/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/sl/LC_MESSAGES/booktheme.po b/docs/_static/locales/sl/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..3c7e3a8 --- /dev/null +++ b/docs/_static/locales/sl/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: sl\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Natisni v PDF" + +msgid "Theme by the" +msgstr "Tema avtorja" + +msgid "Download source file" +msgstr "Prenesite izvorno datoteko" + +msgid "open issue" +msgstr "odprto vprašanje" + +msgid "Contents" +msgstr "Vsebina" + +msgid "previous page" +msgstr "Prejšnja stran" + +msgid "Download notebook file" +msgstr "Prenesite datoteko zvezka" + +msgid "Copyright" +msgstr "avtorske pravice" + +msgid "Download this page" +msgstr "Prenesite to stran" + +msgid "Source repository" +msgstr "Izvorno skladišče" + +msgid "By" +msgstr "Avtor" + +msgid "repository" +msgstr "odlagališče" + +msgid "Last updated on" +msgstr "Nazadnje posodobljeno dne" + +msgid "Toggle navigation" +msgstr "Preklopi navigacijo" + +msgid "Sphinx Book Theme" +msgstr "Tema knjige Sphinx" + +msgid "suggest edit" +msgstr "predlagajte urejanje" + +msgid "Open an issue" +msgstr "Odprite številko" + +msgid "Launch" +msgstr "Kosilo" + +msgid "Fullscreen mode" +msgstr "Celozaslonski način" + +msgid "Edit this page" +msgstr "Uredite to stran" + +msgid "By the" +msgstr "Avtor" + +msgid "next page" +msgstr "Naslednja stran" diff --git a/docs/_static/locales/sr/LC_MESSAGES/booktheme.mo b/docs/_static/locales/sr/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..ec740f4 Binary files /dev/null and b/docs/_static/locales/sr/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/sr/LC_MESSAGES/booktheme.po b/docs/_static/locales/sr/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..773b8ad --- /dev/null +++ b/docs/_static/locales/sr/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: sr\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Испис у ПДФ" + +msgid "Theme by the" +msgstr "Тхеме би" + +msgid "Download source file" +msgstr "Преузми изворну датотеку" + +msgid "open issue" +msgstr "отворено издање" + +msgid "Contents" +msgstr "Садржај" + +msgid "previous page" +msgstr "Претходна страница" + +msgid "Download notebook file" +msgstr "Преузмите датотеку бележнице" + +msgid "Copyright" +msgstr "Ауторско право" + +msgid "Download this page" +msgstr "Преузмите ову страницу" + +msgid "Source repository" +msgstr "Изворно спремиште" + +msgid "By" +msgstr "Од стране" + +msgid "repository" +msgstr "спремиште" + +msgid "Last updated on" +msgstr "Последње ажурирање" + +msgid "Toggle navigation" +msgstr "Укључи / искључи навигацију" + +msgid "Sphinx Book Theme" +msgstr "Тема књиге Спхинк" + +msgid "suggest edit" +msgstr "предложи уређивање" + +msgid "Open an issue" +msgstr "Отворите издање" + +msgid "Launch" +msgstr "Лансирање" + +msgid "Fullscreen mode" +msgstr "Режим целог екрана" + +msgid "Edit this page" +msgstr "Уредите ову страницу" + +msgid "By the" +msgstr "Од" + +msgid "next page" +msgstr "Следећа страна" diff --git a/docs/_static/locales/sv/LC_MESSAGES/booktheme.mo b/docs/_static/locales/sv/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..b07dc76 Binary files /dev/null and b/docs/_static/locales/sv/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/sv/LC_MESSAGES/booktheme.po b/docs/_static/locales/sv/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..bcac54c --- /dev/null +++ b/docs/_static/locales/sv/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: sv\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Skriv ut till PDF" + +msgid "Theme by the" +msgstr "Tema av" + +msgid "Download source file" +msgstr "Ladda ner källfil" + +msgid "open issue" +msgstr "öppna problemrapport" + +msgid "Contents" +msgstr "Innehåll" + +msgid "previous page" +msgstr "föregående sida" + +msgid "Download notebook file" +msgstr "Ladda ner notebook-fil" + +msgid "Copyright" +msgstr "Upphovsrätt" + +msgid "Download this page" +msgstr "Ladda ner den här sidan" + +msgid "Source repository" +msgstr "Källkodsrepositorium" + +msgid "By" +msgstr "Av" + +msgid "repository" +msgstr "repositorium" + +msgid "Last updated on" +msgstr "Senast uppdaterad den" + +msgid "Toggle navigation" +msgstr "Växla navigering" + +msgid "Sphinx Book Theme" +msgstr "Sphinx Boktema" + +msgid "suggest edit" +msgstr "föreslå ändring" + +msgid "Open an issue" +msgstr "Öppna en problemrapport" + +msgid "Launch" +msgstr "Öppna" + +msgid "Fullscreen mode" +msgstr "Fullskärmsläge" + +msgid "Edit this page" +msgstr "Redigera den här sidan" + +msgid "By the" +msgstr "Av den" + +msgid "next page" +msgstr "nästa sida" diff --git a/docs/_static/locales/ta/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ta/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..29f52e1 Binary files /dev/null and b/docs/_static/locales/ta/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ta/LC_MESSAGES/booktheme.po b/docs/_static/locales/ta/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..b48bdfa --- /dev/null +++ b/docs/_static/locales/ta/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ta\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "PDF இல் அச்சிடுக" + +msgid "Theme by the" +msgstr "வழங்கிய தீம்" + +msgid "Download source file" +msgstr "மூல கோப்பைப் பதிவிறக்குக" + +msgid "open issue" +msgstr "திறந்த பிரச்சினை" + +msgid "previous page" +msgstr "முந்தைய பக்கம்" + +msgid "Download notebook file" +msgstr "நோட்புக் கோப்பைப் பதிவிறக்கவும்" + +msgid "Copyright" +msgstr "பதிப்புரிமை" + +msgid "Download this page" +msgstr "இந்தப் பக்கத்தைப் பதிவிறக்கவும்" + +msgid "Source repository" +msgstr "மூல களஞ்சியம்" + +msgid "By" +msgstr "வழங்கியவர்" + +msgid "Last updated on" +msgstr "கடைசியாக புதுப்பிக்கப்பட்டது" + +msgid "Toggle navigation" +msgstr "வழிசெலுத்தலை நிலைமாற்று" + +msgid "Sphinx Book Theme" +msgstr "ஸ்பிங்க்ஸ் புத்தக தீம்" + +msgid "suggest edit" +msgstr "திருத்த பரிந்துரைக்கவும்" + +msgid "Open an issue" +msgstr "சிக்கலைத் திறக்கவும்" + +msgid "Launch" +msgstr "தொடங்க" + +msgid "Edit this page" +msgstr "இந்தப் பக்கத்தைத் திருத்தவும்" + +msgid "By the" +msgstr "மூலம்" + +msgid "next page" +msgstr "அடுத்த பக்கம்" diff --git a/docs/_static/locales/te/LC_MESSAGES/booktheme.mo b/docs/_static/locales/te/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..0a5f4b4 Binary files /dev/null and b/docs/_static/locales/te/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/te/LC_MESSAGES/booktheme.po b/docs/_static/locales/te/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..952278f --- /dev/null +++ b/docs/_static/locales/te/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: te\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "PDF కి ముద్రించండి" + +msgid "Theme by the" +msgstr "ద్వారా థీమ్" + +msgid "Download source file" +msgstr "మూల ఫైల్‌ను డౌన్‌లోడ్ చేయండి" + +msgid "open issue" +msgstr "ఓపెన్ ఇష్యూ" + +msgid "previous page" +msgstr "ముందు పేజి" + +msgid "Download notebook file" +msgstr "నోట్బుక్ ఫైల్ను డౌన్లోడ్ చేయండి" + +msgid "Copyright" +msgstr "కాపీరైట్" + +msgid "Download this page" +msgstr "ఈ పేజీని డౌన్‌లోడ్ చేయండి" + +msgid "Source repository" +msgstr "మూల రిపోజిటరీ" + +msgid "By" +msgstr "ద్వారా" + +msgid "Last updated on" +msgstr "చివరిగా నవీకరించబడింది" + +msgid "Toggle navigation" +msgstr "నావిగేషన్‌ను టోగుల్ చేయండి" + +msgid "Sphinx Book Theme" +msgstr "సింహిక పుస్తక థీమ్" + +msgid "suggest edit" +msgstr "సవరించమని సూచించండి" + +msgid "Open an issue" +msgstr "సమస్యను తెరవండి" + +msgid "Launch" +msgstr "ప్రారంభించండి" + +msgid "Edit this page" +msgstr "ఈ పేజీని సవరించండి" + +msgid "By the" +msgstr "ద్వారా" + +msgid "next page" +msgstr "తరువాతి పేజీ" diff --git a/docs/_static/locales/tg/LC_MESSAGES/booktheme.mo b/docs/_static/locales/tg/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..b21c6c6 Binary files /dev/null and b/docs/_static/locales/tg/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/tg/LC_MESSAGES/booktheme.po b/docs/_static/locales/tg/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..c33dc42 --- /dev/null +++ b/docs/_static/locales/tg/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: tg\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Чоп ба PDF" + +msgid "Theme by the" +msgstr "Мавзӯъи аз" + +msgid "Download source file" +msgstr "Файли манбаъро зеркашӣ кунед" + +msgid "open issue" +msgstr "барориши кушод" + +msgid "Contents" +msgstr "Мундариҷа" + +msgid "previous page" +msgstr "саҳифаи қаблӣ" + +msgid "Download notebook file" +msgstr "Файли дафтарро зеркашӣ кунед" + +msgid "Copyright" +msgstr "Ҳуқуқи муаллиф" + +msgid "Download this page" +msgstr "Ин саҳифаро зеркашӣ кунед" + +msgid "Source repository" +msgstr "Анбори манбаъ" + +msgid "By" +msgstr "Бо" + +msgid "repository" +msgstr "анбор" + +msgid "Last updated on" +msgstr "Last навсозӣ дар" + +msgid "Toggle navigation" +msgstr "Гузаришро иваз кунед" + +msgid "Sphinx Book Theme" +msgstr "Сфинкс Мавзӯи китоб" + +msgid "suggest edit" +msgstr "пешниҳод вироиш" + +msgid "Open an issue" +msgstr "Масъаларо кушоед" + +msgid "Launch" +msgstr "Оғоз" + +msgid "Fullscreen mode" +msgstr "Ҳолати экрани пурра" + +msgid "Edit this page" +msgstr "Ин саҳифаро таҳрир кунед" + +msgid "By the" +msgstr "Бо" + +msgid "next page" +msgstr "саҳифаи оянда" diff --git a/docs/_static/locales/th/LC_MESSAGES/booktheme.mo b/docs/_static/locales/th/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..abede98 Binary files /dev/null and b/docs/_static/locales/th/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/th/LC_MESSAGES/booktheme.po b/docs/_static/locales/th/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..9d24294 --- /dev/null +++ b/docs/_static/locales/th/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: th\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "พิมพ์เป็น PDF" + +msgid "Theme by the" +msgstr "ธีมโดย" + +msgid "Download source file" +msgstr "ดาวน์โหลดไฟล์ต้นฉบับ" + +msgid "open issue" +msgstr "เปิดปัญหา" + +msgid "Contents" +msgstr "สารบัญ" + +msgid "previous page" +msgstr "หน้าที่แล้ว" + +msgid "Download notebook file" +msgstr "ดาวน์โหลดไฟล์สมุดบันทึก" + +msgid "Copyright" +msgstr "ลิขสิทธิ์" + +msgid "Download this page" +msgstr "ดาวน์โหลดหน้านี้" + +msgid "Source repository" +msgstr "ที่เก็บซอร์ส" + +msgid "By" +msgstr "โดย" + +msgid "repository" +msgstr "ที่เก็บ" + +msgid "Last updated on" +msgstr "ปรับปรุงล่าสุดเมื่อ" + +msgid "Toggle navigation" +msgstr "ไม่ต้องสลับช่องทาง" + +msgid "Sphinx Book Theme" +msgstr "ธีมหนังสือสฟิงซ์" + +msgid "suggest edit" +msgstr "แนะนำแก้ไข" + +msgid "Open an issue" +msgstr "เปิดปัญหา" + +msgid "Launch" +msgstr "เปิด" + +msgid "Fullscreen mode" +msgstr "โหมดเต็มหน้าจอ" + +msgid "Edit this page" +msgstr "แก้ไขหน้านี้" + +msgid "By the" +msgstr "โดย" + +msgid "next page" +msgstr "หน้าต่อไป" diff --git a/docs/_static/locales/tl/LC_MESSAGES/booktheme.mo b/docs/_static/locales/tl/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..8df1b73 Binary files /dev/null and b/docs/_static/locales/tl/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/tl/LC_MESSAGES/booktheme.po b/docs/_static/locales/tl/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..20e0d07 --- /dev/null +++ b/docs/_static/locales/tl/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: tl\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "I-print sa PDF" + +msgid "Theme by the" +msgstr "Tema ng" + +msgid "Download source file" +msgstr "Mag-download ng file ng pinagmulan" + +msgid "open issue" +msgstr "bukas na isyu" + +msgid "previous page" +msgstr "Nakaraang pahina" + +msgid "Download notebook file" +msgstr "Mag-download ng file ng notebook" + +msgid "Copyright" +msgstr "Copyright" + +msgid "Download this page" +msgstr "I-download ang pahinang ito" + +msgid "Source repository" +msgstr "Pinagmulan ng imbakan" + +msgid "By" +msgstr "Ni" + +msgid "Last updated on" +msgstr "Huling na-update noong" + +msgid "Toggle navigation" +msgstr "I-toggle ang pag-navigate" + +msgid "Sphinx Book Theme" +msgstr "Tema ng Sphinx Book" + +msgid "suggest edit" +msgstr "iminumungkahi i-edit" + +msgid "Open an issue" +msgstr "Magbukas ng isyu" + +msgid "Launch" +msgstr "Ilunsad" + +msgid "Edit this page" +msgstr "I-edit ang pahinang ito" + +msgid "By the" +msgstr "Sa pamamagitan ng" + +msgid "next page" +msgstr "Susunod na pahina" diff --git a/docs/_static/locales/tr/LC_MESSAGES/booktheme.mo b/docs/_static/locales/tr/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..029ae18 Binary files /dev/null and b/docs/_static/locales/tr/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/tr/LC_MESSAGES/booktheme.po b/docs/_static/locales/tr/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..a77eb02 --- /dev/null +++ b/docs/_static/locales/tr/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: tr\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "PDF olarak yazdır" + +msgid "Theme by the" +msgstr "Tarafından tema" + +msgid "Download source file" +msgstr "Kaynak dosyayı indirin" + +msgid "open issue" +msgstr "Açık konu" + +msgid "Contents" +msgstr "İçindekiler" + +msgid "previous page" +msgstr "önceki sayfa" + +msgid "Download notebook file" +msgstr "Defter dosyasını indirin" + +msgid "Copyright" +msgstr "Telif hakkı" + +msgid "Download this page" +msgstr "Bu sayfayı indirin" + +msgid "Source repository" +msgstr "Kaynak kod deposu" + +msgid "By" +msgstr "Tarafından" + +msgid "repository" +msgstr "depo" + +msgid "Last updated on" +msgstr "Son güncelleme tarihi" + +msgid "Toggle navigation" +msgstr "Gezinmeyi değiştir" + +msgid "Sphinx Book Theme" +msgstr "Sfenks Kitap Teması" + +msgid "suggest edit" +msgstr "düzenleme öner" + +msgid "Open an issue" +msgstr "Bir sorunu açın" + +msgid "Launch" +msgstr "Başlatmak" + +msgid "Fullscreen mode" +msgstr "Tam ekran modu" + +msgid "Edit this page" +msgstr "Bu sayfayı düzenle" + +msgid "By the" +msgstr "Tarafından" + +msgid "next page" +msgstr "sonraki Sayfa" diff --git a/docs/_static/locales/uk/LC_MESSAGES/booktheme.mo b/docs/_static/locales/uk/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..16ab789 Binary files /dev/null and b/docs/_static/locales/uk/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/uk/LC_MESSAGES/booktheme.po b/docs/_static/locales/uk/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..993dd07 --- /dev/null +++ b/docs/_static/locales/uk/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: uk\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "Друк у форматі PDF" + +msgid "Theme by the" +msgstr "Тема від" + +msgid "Download source file" +msgstr "Завантажити вихідний файл" + +msgid "open issue" +msgstr "відкритий випуск" + +msgid "Contents" +msgstr "Зміст" + +msgid "previous page" +msgstr "Попередня сторінка" + +msgid "Download notebook file" +msgstr "Завантажте файл блокнота" + +msgid "Copyright" +msgstr "Авторське право" + +msgid "Download this page" +msgstr "Завантажте цю сторінку" + +msgid "Source repository" +msgstr "Джерело сховища" + +msgid "By" +msgstr "Автор" + +msgid "repository" +msgstr "сховище" + +msgid "Last updated on" +msgstr "Останнє оновлення:" + +msgid "Toggle navigation" +msgstr "Переключити навігацію" + +msgid "Sphinx Book Theme" +msgstr "Тема книги \"Сфінкс\"" + +msgid "suggest edit" +msgstr "запропонувати редагувати" + +msgid "Open an issue" +msgstr "Відкрийте випуск" + +msgid "Launch" +msgstr "Запуск" + +msgid "Fullscreen mode" +msgstr "Повноекранний режим" + +msgid "Edit this page" +msgstr "Редагувати цю сторінку" + +msgid "By the" +msgstr "По" + +msgid "next page" +msgstr "Наступна сторінка" diff --git a/docs/_static/locales/ur/LC_MESSAGES/booktheme.mo b/docs/_static/locales/ur/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..de8c84b Binary files /dev/null and b/docs/_static/locales/ur/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/ur/LC_MESSAGES/booktheme.po b/docs/_static/locales/ur/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..2f77426 --- /dev/null +++ b/docs/_static/locales/ur/LC_MESSAGES/booktheme.po @@ -0,0 +1,66 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: ur\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "پی ڈی ایف پرنٹ کریں" + +msgid "Theme by the" +msgstr "کے ذریعہ تھیم" + +msgid "Download source file" +msgstr "سورس فائل ڈاؤن لوڈ کریں" + +msgid "open issue" +msgstr "کھلا مسئلہ" + +msgid "previous page" +msgstr "سابقہ ​​صفحہ" + +msgid "Download notebook file" +msgstr "نوٹ بک فائل ڈاؤن لوڈ کریں" + +msgid "Copyright" +msgstr "کاپی رائٹ" + +msgid "Download this page" +msgstr "اس صفحے کو ڈاؤن لوڈ کریں" + +msgid "Source repository" +msgstr "ماخذ ذخیرہ" + +msgid "By" +msgstr "بذریعہ" + +msgid "Last updated on" +msgstr "آخری بار تازہ کاری ہوئی" + +msgid "Toggle navigation" +msgstr "نیویگیشن ٹوگل کریں" + +msgid "Sphinx Book Theme" +msgstr "سپنکس بک تھیم" + +msgid "suggest edit" +msgstr "ترمیم کی تجویز کریں" + +msgid "Open an issue" +msgstr "ایک مسئلہ کھولیں" + +msgid "Launch" +msgstr "لانچ کریں" + +msgid "Edit this page" +msgstr "اس صفحے میں ترمیم کریں" + +msgid "By the" +msgstr "کی طرف" + +msgid "next page" +msgstr "اگلا صفحہ" diff --git a/docs/_static/locales/vi/LC_MESSAGES/booktheme.mo b/docs/_static/locales/vi/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..2bb3255 Binary files /dev/null and b/docs/_static/locales/vi/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/vi/LC_MESSAGES/booktheme.po b/docs/_static/locales/vi/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..33159f3 --- /dev/null +++ b/docs/_static/locales/vi/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: vi\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "In sang PDF" + +msgid "Theme by the" +msgstr "Chủ đề của" + +msgid "Download source file" +msgstr "Tải xuống tệp nguồn" + +msgid "open issue" +msgstr "vấn đề mở" + +msgid "Contents" +msgstr "Nội dung" + +msgid "previous page" +msgstr "trang trước" + +msgid "Download notebook file" +msgstr "Tải xuống tệp sổ tay" + +msgid "Copyright" +msgstr "Bản quyền" + +msgid "Download this page" +msgstr "Tải xuống trang này" + +msgid "Source repository" +msgstr "Kho nguồn" + +msgid "By" +msgstr "Bởi" + +msgid "repository" +msgstr "kho" + +msgid "Last updated on" +msgstr "Cập nhật lần cuối vào" + +msgid "Toggle navigation" +msgstr "Chuyển đổi điều hướng thành" + +msgid "Sphinx Book Theme" +msgstr "Chủ đề sách nhân sư" + +msgid "suggest edit" +msgstr "đề nghị chỉnh sửa" + +msgid "Open an issue" +msgstr "Mở một vấn đề" + +msgid "Launch" +msgstr "Phóng" + +msgid "Fullscreen mode" +msgstr "Chế độ toàn màn hình" + +msgid "Edit this page" +msgstr "chỉnh sửa trang này" + +msgid "By the" +msgstr "Bằng" + +msgid "next page" +msgstr "Trang tiếp theo" diff --git a/docs/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo b/docs/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..0e3235d Binary files /dev/null and b/docs/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/zh_CN/LC_MESSAGES/booktheme.po b/docs/_static/locales/zh_CN/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..2e519ef --- /dev/null +++ b/docs/_static/locales/zh_CN/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: zh_CN\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "列印成 PDF" + +msgid "Theme by the" +msgstr "主题作者:" + +msgid "Download source file" +msgstr "下载源文件" + +msgid "open issue" +msgstr "创建议题" + +msgid "Contents" +msgstr "目录" + +msgid "previous page" +msgstr "上一页" + +msgid "Download notebook file" +msgstr "下载笔记本文件" + +msgid "Copyright" +msgstr "版权" + +msgid "Download this page" +msgstr "下载此页面" + +msgid "Source repository" +msgstr "源码库" + +msgid "By" +msgstr "作者:" + +msgid "repository" +msgstr "仓库" + +msgid "Last updated on" +msgstr "上次更新时间:" + +msgid "Toggle navigation" +msgstr "显示或隐藏导航栏" + +msgid "Sphinx Book Theme" +msgstr "Sphinx Book 主题" + +msgid "suggest edit" +msgstr "提出修改建议" + +msgid "Open an issue" +msgstr "创建议题" + +msgid "Launch" +msgstr "启动" + +msgid "Fullscreen mode" +msgstr "全屏模式" + +msgid "Edit this page" +msgstr "编辑此页面" + +msgid "By the" +msgstr "作者:" + +msgid "next page" +msgstr "下一页" diff --git a/docs/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo b/docs/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo new file mode 100644 index 0000000..9116fa9 Binary files /dev/null and b/docs/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo differ diff --git a/docs/_static/locales/zh_TW/LC_MESSAGES/booktheme.po b/docs/_static/locales/zh_TW/LC_MESSAGES/booktheme.po new file mode 100644 index 0000000..beecb07 --- /dev/null +++ b/docs/_static/locales/zh_TW/LC_MESSAGES/booktheme.po @@ -0,0 +1,75 @@ + +msgid "" +msgstr "" +"Project-Id-Version: Sphinx-Book-Theme\n" +"MIME-Version: 1.0\n" +"Content-Type: text/plain; charset=UTF-8\n" +"Content-Transfer-Encoding: 8bit\n" +"Language: zh_TW\n" +"Plural-Forms: nplurals=2; plural=(n != 1);\n" + +msgid "Print to PDF" +msgstr "列印成 PDF" + +msgid "Theme by the" +msgstr "佈景主題作者:" + +msgid "Download source file" +msgstr "下載原始檔" + +msgid "open issue" +msgstr "公開的問題" + +msgid "Contents" +msgstr "目錄" + +msgid "previous page" +msgstr "上一頁" + +msgid "Download notebook file" +msgstr "下載 Notebook 檔案" + +msgid "Copyright" +msgstr "Copyright" + +msgid "Download this page" +msgstr "下載此頁面" + +msgid "Source repository" +msgstr "來源儲存庫" + +msgid "By" +msgstr "作者:" + +msgid "repository" +msgstr "儲存庫" + +msgid "Last updated on" +msgstr "最後更新時間:" + +msgid "Toggle navigation" +msgstr "顯示或隱藏導覽列" + +msgid "Sphinx Book Theme" +msgstr "Sphinx Book 佈景主題" + +msgid "suggest edit" +msgstr "提出修改建議" + +msgid "Open an issue" +msgstr "開啟議題" + +msgid "Launch" +msgstr "啟動" + +msgid "Fullscreen mode" +msgstr "全螢幕模式" + +msgid "Edit this page" +msgstr "編輯此頁面" + +msgid "By the" +msgstr "作者:" + +msgid "next page" +msgstr "下一頁" diff --git a/docs/_static/logo.png b/docs/_static/logo.png new file mode 100644 index 0000000..f33dc62 Binary files /dev/null and b/docs/_static/logo.png differ diff --git a/docs/_static/minus.png b/docs/_static/minus.png new file mode 100644 index 0000000..d96755f Binary files /dev/null and b/docs/_static/minus.png differ diff --git a/docs/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css b/docs/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css new file mode 100644 index 0000000..3356631 --- /dev/null +++ b/docs/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css @@ -0,0 +1,2342 @@ +/* Variables */ +:root { + --mystnb-source-bg-color: #f7f7f7; + --mystnb-stdout-bg-color: #fcfcfc; + --mystnb-stderr-bg-color: #fdd; + --mystnb-traceback-bg-color: #fcfcfc; + --mystnb-source-border-color: #ccc; + --mystnb-source-margin-color: green; + --mystnb-stdout-border-color: #f7f7f7; + --mystnb-stderr-border-color: #f7f7f7; + --mystnb-traceback-border-color: #ffd6d6; + --mystnb-hide-prompt-opacity: 70%; + --mystnb-source-border-radius: .4em; + --mystnb-source-border-width: 1px; +} + +/* Whole cell */ +div.container.cell { + padding-left: 0; + margin-bottom: 1em; +} + +/* Removing all background formatting so we can control at the div level */ +.cell_input div.highlight, +.cell_output pre, +.cell_input pre, +.cell_output .output { + border: none; + box-shadow: none; +} + +.cell_output .output pre, +.cell_input pre { + margin: 0px; +} + +/* Input cells */ +div.cell div.cell_input, +div.cell details.above-input>summary { + padding-left: 0em; + padding-right: 0em; + border: var(--mystnb-source-border-width) var(--mystnb-source-border-color) solid; + background-color: var(--mystnb-source-bg-color); + border-left-color: var(--mystnb-source-margin-color); + border-left-width: medium; + border-radius: var(--mystnb-source-border-radius); +} + +div.cell_input>div, +div.cell_output div.output>div.highlight { + margin: 0em !important; + border: none !important; +} + +/* All cell outputs */ +.cell_output { + padding-left: 1em; + padding-right: 0em; + margin-top: 1em; +} + +/* Text outputs from cells */ +.cell_output .output.text_plain, +.cell_output .output.traceback, +.cell_output .output.stream, +.cell_output .output.stderr { + margin-top: 1em; + margin-bottom: 0em; + box-shadow: none; +} + +.cell_output .output.text_plain, +.cell_output .output.stream { + background: var(--mystnb-stdout-bg-color); + border: 1px solid var(--mystnb-stdout-border-color); +} + +.cell_output .output.stderr { + background: var(--mystnb-stderr-bg-color); + border: 1px solid var(--mystnb-stderr-border-color); +} + +.cell_output .output.traceback { + background: var(--mystnb-traceback-bg-color); + border: 1px solid var(--mystnb-traceback-border-color); +} + +/* Collapsible cell content */ +div.cell details.above-input div.cell_input { + border-top-left-radius: 0; + border-top-right-radius: 0; + border-top: var(--mystnb-source-border-width) var(--mystnb-source-border-color) dashed; +} + +div.cell div.cell_input.above-output-prompt { + border-bottom-left-radius: 0; + border-bottom-right-radius: 0; +} + +div.cell details.above-input>summary { + border-bottom-left-radius: 0; + border-bottom-right-radius: 0; + border-bottom: var(--mystnb-source-border-width) var(--mystnb-source-border-color) dashed; + padding-left: 1em; + margin-bottom: 0; +} + +div.cell details.above-output>summary { + background-color: var(--mystnb-source-bg-color); + padding-left: 1em; + padding-right: 0em; + border: var(--mystnb-source-border-width) var(--mystnb-source-border-color) solid; + border-radius: var(--mystnb-source-border-radius); + border-left-color: var(--mystnb-source-margin-color); + border-left-width: medium; +} + +div.cell details.below-input>summary { + background-color: var(--mystnb-source-bg-color); + padding-left: 1em; + padding-right: 0em; + border: var(--mystnb-source-border-width) var(--mystnb-source-border-color) solid; + border-top: none; + border-bottom-left-radius: var(--mystnb-source-border-radius); + border-bottom-right-radius: var(--mystnb-source-border-radius); + border-left-color: var(--mystnb-source-margin-color); + border-left-width: medium; +} + +div.cell details.hide>summary>span { + opacity: var(--mystnb-hide-prompt-opacity); +} + +div.cell details.hide[open]>summary>span.collapsed { + display: none; +} + +div.cell details.hide:not([open])>summary>span.expanded { + display: none; +} + +@keyframes collapsed-fade-in { + 0% { + opacity: 0; + } + + 100% { + opacity: 1; + } +} +div.cell details.hide[open]>summary~* { + -moz-animation: collapsed-fade-in 0.3s ease-in-out; + -webkit-animation: collapsed-fade-in 0.3s ease-in-out; + animation: collapsed-fade-in 0.3s ease-in-out; +} + +/* Math align to the left */ +.cell_output .MathJax_Display { + text-align: left !important; +} + +/* Pandas tables. Pulled from the Jupyter / nbsphinx CSS */ +div.cell_output table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 1em; + table-layout: fixed; +} + +div.cell_output thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} + +div.cell_output tr, +div.cell_output th, +div.cell_output td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} + +div.cell_output th { + font-weight: bold; +} + +div.cell_output tbody tr:nth-child(odd) { + background: #f5f5f5; +} + +div.cell_output tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + +/** source code line numbers **/ +span.linenos { + opacity: 0.5; +} + +/* Inline text from `paste` operation */ + +span.pasted-text { + font-weight: bold; +} + +span.pasted-inline img { + max-height: 2em; +} + +tbody span.pasted-inline img { + max-height: none; +} + +/* Font colors for translated ANSI escape sequences +Color values are copied from Jupyter Notebook +https://github.com/jupyter/notebook/blob/52581f8eda9b319eb0390ac77fe5903c38f81e3e/notebook/static/notebook/less/ansicolors.less#L14-L21 +Background colors from +https://nbsphinx.readthedocs.io/en/latest/code-cells.html#ANSI-Colors +*/ +div.highlight .-Color-Bold { + font-weight: bold; +} + +div.highlight .-Color[class*=-Black] { + color: #3E424D +} + +div.highlight .-Color[class*=-Red] { + color: #E75C58 +} + +div.highlight .-Color[class*=-Green] { + color: #00A250 +} + +div.highlight .-Color[class*=-Yellow] { + color: #DDB62B +} + +div.highlight .-Color[class*=-Blue] { + color: #208FFB +} + +div.highlight .-Color[class*=-Magenta] { + color: #D160C4 +} + +div.highlight .-Color[class*=-Cyan] { + color: #60C6C8 +} + +div.highlight .-Color[class*=-White] { + color: #C5C1B4 +} + +div.highlight .-Color[class*=-BGBlack] { + background-color: #3E424D +} + +div.highlight .-Color[class*=-BGRed] { + background-color: #E75C58 +} + +div.highlight .-Color[class*=-BGGreen] { + background-color: #00A250 +} + +div.highlight .-Color[class*=-BGYellow] { + background-color: #DDB62B +} + +div.highlight .-Color[class*=-BGBlue] { + background-color: #208FFB +} + +div.highlight .-Color[class*=-BGMagenta] { + background-color: #D160C4 +} + +div.highlight .-Color[class*=-BGCyan] { + background-color: #60C6C8 +} + +div.highlight .-Color[class*=-BGWhite] { + background-color: #C5C1B4 +} + +/* Font colors for 8-bit ANSI */ + +div.highlight .-Color[class*=-C0] { + color: #000000 +} + +div.highlight .-Color[class*=-BGC0] { + background-color: #000000 +} + +div.highlight .-Color[class*=-C1] { + color: #800000 +} + +div.highlight .-Color[class*=-BGC1] { + background-color: #800000 +} + +div.highlight .-Color[class*=-C2] { + color: #008000 +} + +div.highlight .-Color[class*=-BGC2] { + background-color: #008000 +} + +div.highlight .-Color[class*=-C3] { + color: #808000 +} + +div.highlight .-Color[class*=-BGC3] { + background-color: #808000 +} + +div.highlight .-Color[class*=-C4] { + color: #000080 +} + +div.highlight .-Color[class*=-BGC4] { + background-color: #000080 +} + +div.highlight .-Color[class*=-C5] { + color: #800080 +} + +div.highlight .-Color[class*=-BGC5] { + background-color: #800080 +} + +div.highlight .-Color[class*=-C6] { + color: #008080 +} + +div.highlight .-Color[class*=-BGC6] { + background-color: #008080 +} + +div.highlight .-Color[class*=-C7] { + color: #C0C0C0 +} + +div.highlight .-Color[class*=-BGC7] { + background-color: #C0C0C0 +} + +div.highlight .-Color[class*=-C8] { + color: #808080 +} + +div.highlight .-Color[class*=-BGC8] { + background-color: #808080 +} + +div.highlight .-Color[class*=-C9] { + color: #FF0000 +} + +div.highlight .-Color[class*=-BGC9] { + background-color: #FF0000 +} + +div.highlight .-Color[class*=-C10] { + color: #00FF00 +} + +div.highlight .-Color[class*=-BGC10] { + background-color: #00FF00 +} + +div.highlight .-Color[class*=-C11] { + color: #FFFF00 +} + +div.highlight .-Color[class*=-BGC11] { + background-color: #FFFF00 +} + +div.highlight .-Color[class*=-C12] { + color: #0000FF +} + +div.highlight .-Color[class*=-BGC12] { + background-color: #0000FF +} + +div.highlight .-Color[class*=-C13] { + color: #FF00FF +} + +div.highlight .-Color[class*=-BGC13] { + background-color: #FF00FF +} + +div.highlight .-Color[class*=-C14] { + color: #00FFFF +} + +div.highlight .-Color[class*=-BGC14] { + background-color: #00FFFF +} + +div.highlight .-Color[class*=-C15] { + color: #FFFFFF +} + +div.highlight .-Color[class*=-BGC15] { + background-color: #FFFFFF +} + +div.highlight .-Color[class*=-C16] { + color: #000000 +} + +div.highlight .-Color[class*=-BGC16] { + background-color: #000000 +} + +div.highlight .-Color[class*=-C17] { + color: #00005F +} + +div.highlight .-Color[class*=-BGC17] { + background-color: #00005F +} + +div.highlight .-Color[class*=-C18] { + color: #000087 +} + +div.highlight .-Color[class*=-BGC18] { + background-color: #000087 +} + +div.highlight .-Color[class*=-C19] { + color: #0000AF +} + +div.highlight .-Color[class*=-BGC19] { + background-color: #0000AF +} + +div.highlight .-Color[class*=-C20] { + color: #0000D7 +} + +div.highlight .-Color[class*=-BGC20] { + background-color: #0000D7 +} + +div.highlight .-Color[class*=-C21] { + color: #0000FF +} + +div.highlight .-Color[class*=-BGC21] { + background-color: #0000FF +} + +div.highlight .-Color[class*=-C22] { + color: #005F00 +} + +div.highlight .-Color[class*=-BGC22] { + background-color: #005F00 +} + +div.highlight .-Color[class*=-C23] { + color: #005F5F +} + +div.highlight .-Color[class*=-BGC23] { + background-color: #005F5F +} + +div.highlight .-Color[class*=-C24] { + color: #005F87 +} + +div.highlight .-Color[class*=-BGC24] { + background-color: #005F87 +} + +div.highlight .-Color[class*=-C25] { + color: #005FAF +} + +div.highlight .-Color[class*=-BGC25] { + background-color: #005FAF +} + +div.highlight .-Color[class*=-C26] { + color: #005FD7 +} + +div.highlight .-Color[class*=-BGC26] { + background-color: #005FD7 +} + +div.highlight .-Color[class*=-C27] { + color: #005FFF +} + +div.highlight .-Color[class*=-BGC27] { + background-color: #005FFF +} + +div.highlight .-Color[class*=-C28] { + color: #008700 +} + +div.highlight .-Color[class*=-BGC28] { + background-color: #008700 +} + +div.highlight .-Color[class*=-C29] { + color: #00875F +} + +div.highlight .-Color[class*=-BGC29] { + background-color: #00875F +} + +div.highlight .-Color[class*=-C30] { + color: #008787 +} + +div.highlight .-Color[class*=-BGC30] { + background-color: #008787 +} + +div.highlight .-Color[class*=-C31] { + color: #0087AF +} + +div.highlight .-Color[class*=-BGC31] { + background-color: #0087AF +} + +div.highlight .-Color[class*=-C32] { + color: #0087D7 +} + +div.highlight .-Color[class*=-BGC32] { + background-color: #0087D7 +} + +div.highlight .-Color[class*=-C33] { + color: #0087FF +} + +div.highlight .-Color[class*=-BGC33] { + background-color: #0087FF +} + +div.highlight .-Color[class*=-C34] { + color: #00AF00 +} + +div.highlight .-Color[class*=-BGC34] { + background-color: #00AF00 +} + +div.highlight .-Color[class*=-C35] { + color: #00AF5F +} + +div.highlight .-Color[class*=-BGC35] { + background-color: #00AF5F +} + +div.highlight .-Color[class*=-C36] { + color: #00AF87 +} + +div.highlight .-Color[class*=-BGC36] { + background-color: #00AF87 +} + +div.highlight .-Color[class*=-C37] { + color: #00AFAF +} + +div.highlight .-Color[class*=-BGC37] { + background-color: #00AFAF +} + +div.highlight .-Color[class*=-C38] { + color: #00AFD7 +} + +div.highlight .-Color[class*=-BGC38] { + background-color: #00AFD7 +} + +div.highlight .-Color[class*=-C39] { + color: #00AFFF +} + +div.highlight .-Color[class*=-BGC39] { + background-color: #00AFFF +} + +div.highlight .-Color[class*=-C40] { + color: #00D700 +} + +div.highlight .-Color[class*=-BGC40] { + background-color: #00D700 +} + +div.highlight .-Color[class*=-C41] { + color: #00D75F +} + +div.highlight .-Color[class*=-BGC41] { + background-color: #00D75F +} + +div.highlight .-Color[class*=-C42] { + color: #00D787 +} + +div.highlight .-Color[class*=-BGC42] { + background-color: #00D787 +} + +div.highlight .-Color[class*=-C43] { + color: #00D7AF +} + +div.highlight .-Color[class*=-BGC43] { + background-color: #00D7AF +} + +div.highlight .-Color[class*=-C44] { + color: #00D7D7 +} + +div.highlight .-Color[class*=-BGC44] { + background-color: #00D7D7 +} + +div.highlight .-Color[class*=-C45] { + color: #00D7FF +} + +div.highlight .-Color[class*=-BGC45] { + background-color: #00D7FF +} + +div.highlight .-Color[class*=-C46] { + color: #00FF00 +} + +div.highlight .-Color[class*=-BGC46] { + background-color: #00FF00 +} + +div.highlight .-Color[class*=-C47] { + color: #00FF5F +} + +div.highlight .-Color[class*=-BGC47] { + background-color: #00FF5F +} + +div.highlight .-Color[class*=-C48] { + color: #00FF87 +} + +div.highlight .-Color[class*=-BGC48] { + background-color: #00FF87 +} + +div.highlight .-Color[class*=-C49] { + color: #00FFAF +} + +div.highlight .-Color[class*=-BGC49] { + background-color: #00FFAF +} + +div.highlight .-Color[class*=-C50] { + color: #00FFD7 +} + +div.highlight .-Color[class*=-BGC50] { + background-color: #00FFD7 +} + +div.highlight .-Color[class*=-C51] { + color: #00FFFF +} + +div.highlight .-Color[class*=-BGC51] { + background-color: #00FFFF +} + +div.highlight .-Color[class*=-C52] { + color: #5F0000 +} + +div.highlight .-Color[class*=-BGC52] { + background-color: #5F0000 +} + +div.highlight .-Color[class*=-C53] { + color: #5F005F +} + +div.highlight .-Color[class*=-BGC53] { + background-color: #5F005F +} + +div.highlight .-Color[class*=-C54] { + color: #5F0087 +} + +div.highlight .-Color[class*=-BGC54] { + background-color: #5F0087 +} + +div.highlight .-Color[class*=-C55] { + color: #5F00AF +} + +div.highlight .-Color[class*=-BGC55] { + background-color: #5F00AF +} + +div.highlight .-Color[class*=-C56] { + color: #5F00D7 +} + +div.highlight .-Color[class*=-BGC56] { + background-color: #5F00D7 +} + +div.highlight .-Color[class*=-C57] { + color: #5F00FF +} + +div.highlight .-Color[class*=-BGC57] { + background-color: #5F00FF +} + +div.highlight .-Color[class*=-C58] { + color: #5F5F00 +} + +div.highlight .-Color[class*=-BGC58] { + background-color: #5F5F00 +} + +div.highlight .-Color[class*=-C59] { + color: #5F5F5F +} + +div.highlight .-Color[class*=-BGC59] { + background-color: #5F5F5F +} + +div.highlight .-Color[class*=-C60] { + color: #5F5F87 +} + +div.highlight .-Color[class*=-BGC60] { + background-color: #5F5F87 +} + +div.highlight .-Color[class*=-C61] { + color: #5F5FAF +} + +div.highlight .-Color[class*=-BGC61] { + background-color: #5F5FAF +} + +div.highlight .-Color[class*=-C62] { + color: #5F5FD7 +} + +div.highlight .-Color[class*=-BGC62] { + background-color: #5F5FD7 +} + +div.highlight .-Color[class*=-C63] { + color: #5F5FFF +} + +div.highlight .-Color[class*=-BGC63] { + background-color: #5F5FFF +} + +div.highlight .-Color[class*=-C64] { + color: #5F8700 +} + +div.highlight .-Color[class*=-BGC64] { + background-color: #5F8700 +} + +div.highlight .-Color[class*=-C65] { + color: #5F875F +} + +div.highlight .-Color[class*=-BGC65] { + background-color: #5F875F +} + +div.highlight .-Color[class*=-C66] { + color: #5F8787 +} + +div.highlight .-Color[class*=-BGC66] { + background-color: #5F8787 +} + +div.highlight .-Color[class*=-C67] { + color: #5F87AF +} + +div.highlight .-Color[class*=-BGC67] { + background-color: #5F87AF +} + +div.highlight .-Color[class*=-C68] { + color: #5F87D7 +} + +div.highlight .-Color[class*=-BGC68] { + background-color: #5F87D7 +} + +div.highlight .-Color[class*=-C69] { + color: #5F87FF +} + +div.highlight .-Color[class*=-BGC69] { + background-color: #5F87FF +} + +div.highlight .-Color[class*=-C70] { + color: #5FAF00 +} + +div.highlight .-Color[class*=-BGC70] { + background-color: #5FAF00 +} + +div.highlight .-Color[class*=-C71] { + color: #5FAF5F +} + +div.highlight .-Color[class*=-BGC71] { + background-color: #5FAF5F +} + +div.highlight .-Color[class*=-C72] { + color: #5FAF87 +} + +div.highlight .-Color[class*=-BGC72] { + background-color: #5FAF87 +} + +div.highlight .-Color[class*=-C73] { + color: #5FAFAF +} + +div.highlight .-Color[class*=-BGC73] { + background-color: #5FAFAF +} + +div.highlight .-Color[class*=-C74] { + color: #5FAFD7 +} + +div.highlight .-Color[class*=-BGC74] { + background-color: #5FAFD7 +} + +div.highlight .-Color[class*=-C75] { + color: #5FAFFF +} + +div.highlight .-Color[class*=-BGC75] { + background-color: #5FAFFF +} + +div.highlight .-Color[class*=-C76] { + color: #5FD700 +} + +div.highlight .-Color[class*=-BGC76] { + background-color: #5FD700 +} + +div.highlight .-Color[class*=-C77] { + color: #5FD75F +} + +div.highlight .-Color[class*=-BGC77] { + background-color: #5FD75F +} + +div.highlight .-Color[class*=-C78] { + color: #5FD787 +} + +div.highlight .-Color[class*=-BGC78] { + background-color: #5FD787 +} + +div.highlight .-Color[class*=-C79] { + color: #5FD7AF +} + +div.highlight .-Color[class*=-BGC79] { + background-color: #5FD7AF +} + +div.highlight .-Color[class*=-C80] { + color: #5FD7D7 +} + +div.highlight .-Color[class*=-BGC80] { + background-color: #5FD7D7 +} + +div.highlight .-Color[class*=-C81] { + color: #5FD7FF +} + +div.highlight .-Color[class*=-BGC81] { + background-color: #5FD7FF +} + +div.highlight .-Color[class*=-C82] { + color: #5FFF00 +} + +div.highlight .-Color[class*=-BGC82] { + background-color: #5FFF00 +} + +div.highlight .-Color[class*=-C83] { + color: #5FFF5F +} + +div.highlight .-Color[class*=-BGC83] { + background-color: #5FFF5F +} + +div.highlight .-Color[class*=-C84] { + color: #5FFF87 +} + +div.highlight .-Color[class*=-BGC84] { + background-color: #5FFF87 +} + +div.highlight .-Color[class*=-C85] { + color: #5FFFAF +} + +div.highlight .-Color[class*=-BGC85] { + background-color: #5FFFAF +} + +div.highlight .-Color[class*=-C86] { + color: #5FFFD7 +} + +div.highlight .-Color[class*=-BGC86] { + background-color: #5FFFD7 +} + +div.highlight .-Color[class*=-C87] { + color: #5FFFFF +} + +div.highlight .-Color[class*=-BGC87] { + background-color: #5FFFFF +} + +div.highlight .-Color[class*=-C88] { + color: #870000 +} + +div.highlight .-Color[class*=-BGC88] { + background-color: #870000 +} + +div.highlight .-Color[class*=-C89] { + color: #87005F +} + +div.highlight .-Color[class*=-BGC89] { + background-color: #87005F +} + +div.highlight .-Color[class*=-C90] { + color: #870087 +} + +div.highlight .-Color[class*=-BGC90] { + background-color: #870087 +} + +div.highlight .-Color[class*=-C91] { + color: #8700AF +} + +div.highlight .-Color[class*=-BGC91] { + background-color: #8700AF +} + +div.highlight .-Color[class*=-C92] { + color: #8700D7 +} + +div.highlight .-Color[class*=-BGC92] { + background-color: #8700D7 +} + +div.highlight .-Color[class*=-C93] { + color: #8700FF +} + +div.highlight .-Color[class*=-BGC93] { + background-color: #8700FF +} + +div.highlight .-Color[class*=-C94] { + color: #875F00 +} + +div.highlight .-Color[class*=-BGC94] { + background-color: #875F00 +} + +div.highlight .-Color[class*=-C95] { + color: #875F5F +} + +div.highlight .-Color[class*=-BGC95] { + background-color: #875F5F +} + +div.highlight .-Color[class*=-C96] { + color: #875F87 +} + +div.highlight .-Color[class*=-BGC96] { + background-color: #875F87 +} + +div.highlight .-Color[class*=-C97] { + color: #875FAF +} + +div.highlight .-Color[class*=-BGC97] { + background-color: #875FAF +} + +div.highlight .-Color[class*=-C98] { + color: #875FD7 +} + +div.highlight .-Color[class*=-BGC98] { + background-color: #875FD7 +} + +div.highlight .-Color[class*=-C99] { + color: #875FFF +} + +div.highlight .-Color[class*=-BGC99] { + background-color: #875FFF +} + +div.highlight .-Color[class*=-C100] { + color: #878700 +} + +div.highlight .-Color[class*=-BGC100] { + background-color: #878700 +} + +div.highlight .-Color[class*=-C101] { + color: #87875F +} + +div.highlight .-Color[class*=-BGC101] { + background-color: #87875F +} + +div.highlight .-Color[class*=-C102] { + color: #878787 +} + +div.highlight .-Color[class*=-BGC102] { + background-color: #878787 +} + +div.highlight .-Color[class*=-C103] { + color: #8787AF +} + +div.highlight .-Color[class*=-BGC103] { + background-color: #8787AF +} + +div.highlight .-Color[class*=-C104] { + color: #8787D7 +} + +div.highlight .-Color[class*=-BGC104] { + background-color: #8787D7 +} + +div.highlight .-Color[class*=-C105] { + color: #8787FF +} + +div.highlight .-Color[class*=-BGC105] { + background-color: #8787FF +} + +div.highlight .-Color[class*=-C106] { + color: #87AF00 +} + +div.highlight .-Color[class*=-BGC106] { + background-color: #87AF00 +} + +div.highlight .-Color[class*=-C107] { + color: #87AF5F +} + +div.highlight .-Color[class*=-BGC107] { + background-color: #87AF5F +} + +div.highlight .-Color[class*=-C108] { + color: #87AF87 +} + +div.highlight .-Color[class*=-BGC108] { + background-color: #87AF87 +} + +div.highlight .-Color[class*=-C109] { + color: #87AFAF +} + +div.highlight .-Color[class*=-BGC109] { + background-color: #87AFAF +} + +div.highlight .-Color[class*=-C110] { + color: #87AFD7 +} + +div.highlight .-Color[class*=-BGC110] { + background-color: #87AFD7 +} + +div.highlight .-Color[class*=-C111] { + color: #87AFFF +} + +div.highlight .-Color[class*=-BGC111] { + background-color: #87AFFF +} + +div.highlight .-Color[class*=-C112] { + color: #87D700 +} + +div.highlight .-Color[class*=-BGC112] { + background-color: #87D700 +} + +div.highlight .-Color[class*=-C113] { + color: #87D75F +} + +div.highlight .-Color[class*=-BGC113] { + background-color: #87D75F +} + +div.highlight .-Color[class*=-C114] { + color: #87D787 +} + +div.highlight .-Color[class*=-BGC114] { + background-color: #87D787 +} + +div.highlight .-Color[class*=-C115] { + color: #87D7AF +} + +div.highlight .-Color[class*=-BGC115] { + background-color: #87D7AF +} + +div.highlight .-Color[class*=-C116] { + color: #87D7D7 +} + +div.highlight .-Color[class*=-BGC116] { + background-color: #87D7D7 +} + +div.highlight .-Color[class*=-C117] { + color: #87D7FF +} + +div.highlight .-Color[class*=-BGC117] { + background-color: #87D7FF +} + +div.highlight .-Color[class*=-C118] { + color: #87FF00 +} + +div.highlight .-Color[class*=-BGC118] { + background-color: #87FF00 +} + +div.highlight .-Color[class*=-C119] { + color: #87FF5F +} + +div.highlight .-Color[class*=-BGC119] { + background-color: #87FF5F +} + +div.highlight .-Color[class*=-C120] { + color: #87FF87 +} + +div.highlight .-Color[class*=-BGC120] { + background-color: #87FF87 +} + +div.highlight .-Color[class*=-C121] { + color: #87FFAF +} + +div.highlight .-Color[class*=-BGC121] { + background-color: #87FFAF +} + +div.highlight .-Color[class*=-C122] { + color: #87FFD7 +} + +div.highlight .-Color[class*=-BGC122] { + background-color: #87FFD7 +} + +div.highlight .-Color[class*=-C123] { + color: #87FFFF +} + +div.highlight .-Color[class*=-BGC123] { + background-color: #87FFFF +} + +div.highlight .-Color[class*=-C124] { + color: #AF0000 +} + +div.highlight .-Color[class*=-BGC124] { + background-color: #AF0000 +} + +div.highlight .-Color[class*=-C125] { + color: #AF005F +} + +div.highlight .-Color[class*=-BGC125] { + background-color: #AF005F +} + +div.highlight .-Color[class*=-C126] { + color: #AF0087 +} + +div.highlight .-Color[class*=-BGC126] { + background-color: #AF0087 +} + +div.highlight .-Color[class*=-C127] { + color: #AF00AF +} + +div.highlight .-Color[class*=-BGC127] { + background-color: #AF00AF +} + +div.highlight .-Color[class*=-C128] { + color: #AF00D7 +} + +div.highlight .-Color[class*=-BGC128] { + background-color: #AF00D7 +} + +div.highlight .-Color[class*=-C129] { + color: #AF00FF +} + +div.highlight .-Color[class*=-BGC129] { + background-color: #AF00FF +} + +div.highlight .-Color[class*=-C130] { + color: #AF5F00 +} + +div.highlight .-Color[class*=-BGC130] { + background-color: #AF5F00 +} + +div.highlight .-Color[class*=-C131] { + color: #AF5F5F +} + +div.highlight .-Color[class*=-BGC131] { + background-color: #AF5F5F +} + +div.highlight .-Color[class*=-C132] { + color: #AF5F87 +} + +div.highlight .-Color[class*=-BGC132] { + background-color: #AF5F87 +} + +div.highlight .-Color[class*=-C133] { + color: #AF5FAF +} + +div.highlight .-Color[class*=-BGC133] { + background-color: #AF5FAF +} + +div.highlight .-Color[class*=-C134] { + color: #AF5FD7 +} + +div.highlight .-Color[class*=-BGC134] { + background-color: #AF5FD7 +} + +div.highlight .-Color[class*=-C135] { + color: #AF5FFF +} + +div.highlight .-Color[class*=-BGC135] { + background-color: #AF5FFF +} + +div.highlight .-Color[class*=-C136] { + color: #AF8700 +} + +div.highlight .-Color[class*=-BGC136] { + background-color: #AF8700 +} + +div.highlight .-Color[class*=-C137] { + color: #AF875F +} + +div.highlight .-Color[class*=-BGC137] { + background-color: #AF875F +} + +div.highlight .-Color[class*=-C138] { + color: #AF8787 +} + +div.highlight .-Color[class*=-BGC138] { + background-color: #AF8787 +} + +div.highlight .-Color[class*=-C139] { + color: #AF87AF +} + +div.highlight .-Color[class*=-BGC139] { + background-color: #AF87AF +} + +div.highlight .-Color[class*=-C140] { + color: #AF87D7 +} + +div.highlight .-Color[class*=-BGC140] { + background-color: #AF87D7 +} + +div.highlight .-Color[class*=-C141] { + color: #AF87FF +} + +div.highlight .-Color[class*=-BGC141] { + background-color: #AF87FF +} + +div.highlight .-Color[class*=-C142] { + color: #AFAF00 +} + +div.highlight .-Color[class*=-BGC142] { + background-color: #AFAF00 +} + +div.highlight .-Color[class*=-C143] { + color: #AFAF5F +} + +div.highlight .-Color[class*=-BGC143] { + background-color: #AFAF5F +} + +div.highlight .-Color[class*=-C144] { + color: #AFAF87 +} + +div.highlight .-Color[class*=-BGC144] { + background-color: #AFAF87 +} + +div.highlight .-Color[class*=-C145] { + color: #AFAFAF +} + +div.highlight .-Color[class*=-BGC145] { + background-color: #AFAFAF +} + +div.highlight .-Color[class*=-C146] { + color: #AFAFD7 +} + +div.highlight .-Color[class*=-BGC146] { + background-color: #AFAFD7 +} + +div.highlight .-Color[class*=-C147] { + color: #AFAFFF +} + +div.highlight .-Color[class*=-BGC147] { + background-color: #AFAFFF +} + +div.highlight .-Color[class*=-C148] { + color: #AFD700 +} + +div.highlight .-Color[class*=-BGC148] { + background-color: #AFD700 +} + +div.highlight .-Color[class*=-C149] { + color: #AFD75F +} + +div.highlight .-Color[class*=-BGC149] { + background-color: #AFD75F +} + +div.highlight .-Color[class*=-C150] { + color: #AFD787 +} + +div.highlight .-Color[class*=-BGC150] { + background-color: #AFD787 +} + +div.highlight .-Color[class*=-C151] { + color: #AFD7AF +} + +div.highlight .-Color[class*=-BGC151] { + background-color: #AFD7AF +} + +div.highlight .-Color[class*=-C152] { + color: #AFD7D7 +} + +div.highlight .-Color[class*=-BGC152] { + background-color: #AFD7D7 +} + +div.highlight .-Color[class*=-C153] { + color: #AFD7FF +} + +div.highlight .-Color[class*=-BGC153] { + background-color: #AFD7FF +} + +div.highlight .-Color[class*=-C154] { + color: #AFFF00 +} + +div.highlight .-Color[class*=-BGC154] { + background-color: #AFFF00 +} + +div.highlight .-Color[class*=-C155] { + color: #AFFF5F +} + +div.highlight .-Color[class*=-BGC155] { + background-color: #AFFF5F +} + +div.highlight .-Color[class*=-C156] { + color: #AFFF87 +} + +div.highlight .-Color[class*=-BGC156] { + background-color: #AFFF87 +} + +div.highlight .-Color[class*=-C157] { + color: #AFFFAF +} + +div.highlight .-Color[class*=-BGC157] { + background-color: #AFFFAF +} + +div.highlight .-Color[class*=-C158] { + color: #AFFFD7 +} + +div.highlight .-Color[class*=-BGC158] { + background-color: #AFFFD7 +} + +div.highlight .-Color[class*=-C159] { + color: #AFFFFF +} + +div.highlight .-Color[class*=-BGC159] { + background-color: #AFFFFF +} + +div.highlight .-Color[class*=-C160] { + color: #D70000 +} + +div.highlight .-Color[class*=-BGC160] { + background-color: #D70000 +} + +div.highlight .-Color[class*=-C161] { + color: #D7005F +} + +div.highlight .-Color[class*=-BGC161] { + background-color: #D7005F +} + +div.highlight .-Color[class*=-C162] { + color: #D70087 +} + +div.highlight .-Color[class*=-BGC162] { + background-color: #D70087 +} + +div.highlight .-Color[class*=-C163] { + color: #D700AF +} + +div.highlight .-Color[class*=-BGC163] { + background-color: #D700AF +} + +div.highlight .-Color[class*=-C164] { + color: #D700D7 +} + +div.highlight .-Color[class*=-BGC164] { + background-color: #D700D7 +} + +div.highlight .-Color[class*=-C165] { + color: #D700FF +} + +div.highlight .-Color[class*=-BGC165] { + background-color: #D700FF +} + +div.highlight .-Color[class*=-C166] { + color: #D75F00 +} + +div.highlight .-Color[class*=-BGC166] { + background-color: #D75F00 +} + +div.highlight .-Color[class*=-C167] { + color: #D75F5F +} + +div.highlight .-Color[class*=-BGC167] { + background-color: #D75F5F +} + +div.highlight .-Color[class*=-C168] { + color: #D75F87 +} + +div.highlight .-Color[class*=-BGC168] { + background-color: #D75F87 +} + +div.highlight .-Color[class*=-C169] { + color: #D75FAF +} + +div.highlight .-Color[class*=-BGC169] { + background-color: #D75FAF +} + +div.highlight .-Color[class*=-C170] { + color: #D75FD7 +} + +div.highlight .-Color[class*=-BGC170] { + background-color: #D75FD7 +} + +div.highlight .-Color[class*=-C171] { + color: #D75FFF +} + +div.highlight .-Color[class*=-BGC171] { + background-color: #D75FFF +} + +div.highlight .-Color[class*=-C172] { + color: #D78700 +} + +div.highlight .-Color[class*=-BGC172] { + background-color: #D78700 +} + +div.highlight .-Color[class*=-C173] { + color: #D7875F +} + +div.highlight .-Color[class*=-BGC173] { + background-color: #D7875F +} + +div.highlight .-Color[class*=-C174] { + color: #D78787 +} + +div.highlight .-Color[class*=-BGC174] { + background-color: #D78787 +} + +div.highlight .-Color[class*=-C175] { + color: #D787AF +} + +div.highlight .-Color[class*=-BGC175] { + background-color: #D787AF +} + +div.highlight .-Color[class*=-C176] { + color: #D787D7 +} + +div.highlight .-Color[class*=-BGC176] { + background-color: #D787D7 +} + +div.highlight .-Color[class*=-C177] { + color: #D787FF +} + +div.highlight .-Color[class*=-BGC177] { + background-color: #D787FF +} + +div.highlight .-Color[class*=-C178] { + color: #D7AF00 +} + +div.highlight .-Color[class*=-BGC178] { + background-color: #D7AF00 +} + +div.highlight .-Color[class*=-C179] { + color: #D7AF5F +} + +div.highlight .-Color[class*=-BGC179] { + background-color: #D7AF5F +} + +div.highlight .-Color[class*=-C180] { + color: #D7AF87 +} + +div.highlight .-Color[class*=-BGC180] { + background-color: #D7AF87 +} + +div.highlight .-Color[class*=-C181] { + color: #D7AFAF +} + +div.highlight .-Color[class*=-BGC181] { + background-color: #D7AFAF +} + +div.highlight .-Color[class*=-C182] { + color: #D7AFD7 +} + +div.highlight .-Color[class*=-BGC182] { + background-color: #D7AFD7 +} + +div.highlight .-Color[class*=-C183] { + color: #D7AFFF +} + +div.highlight .-Color[class*=-BGC183] { + background-color: #D7AFFF +} + +div.highlight .-Color[class*=-C184] { + color: #D7D700 +} + +div.highlight .-Color[class*=-BGC184] { + background-color: #D7D700 +} + +div.highlight .-Color[class*=-C185] { + color: #D7D75F +} + +div.highlight .-Color[class*=-BGC185] { + background-color: #D7D75F +} + +div.highlight .-Color[class*=-C186] { + color: #D7D787 +} + +div.highlight .-Color[class*=-BGC186] { + background-color: #D7D787 +} + +div.highlight .-Color[class*=-C187] { + color: #D7D7AF +} + +div.highlight .-Color[class*=-BGC187] { + background-color: #D7D7AF +} + +div.highlight .-Color[class*=-C188] { + color: #D7D7D7 +} + +div.highlight .-Color[class*=-BGC188] { + background-color: #D7D7D7 +} + +div.highlight .-Color[class*=-C189] { + color: #D7D7FF +} + +div.highlight .-Color[class*=-BGC189] { + background-color: #D7D7FF +} + +div.highlight .-Color[class*=-C190] { + color: #D7FF00 +} + +div.highlight .-Color[class*=-BGC190] { + background-color: #D7FF00 +} + +div.highlight .-Color[class*=-C191] { + color: #D7FF5F +} + +div.highlight .-Color[class*=-BGC191] { + background-color: #D7FF5F +} + +div.highlight .-Color[class*=-C192] { + color: #D7FF87 +} + +div.highlight .-Color[class*=-BGC192] { + background-color: #D7FF87 +} + +div.highlight .-Color[class*=-C193] { + color: #D7FFAF +} + +div.highlight .-Color[class*=-BGC193] { + background-color: #D7FFAF +} + +div.highlight .-Color[class*=-C194] { + color: #D7FFD7 +} + +div.highlight .-Color[class*=-BGC194] { + background-color: #D7FFD7 +} + +div.highlight .-Color[class*=-C195] { + color: #D7FFFF +} + +div.highlight .-Color[class*=-BGC195] { + background-color: #D7FFFF +} + +div.highlight .-Color[class*=-C196] { + color: #FF0000 +} + +div.highlight .-Color[class*=-BGC196] { + background-color: #FF0000 +} + +div.highlight .-Color[class*=-C197] { + color: #FF005F +} + +div.highlight .-Color[class*=-BGC197] { + background-color: #FF005F +} + +div.highlight .-Color[class*=-C198] { + color: #FF0087 +} + +div.highlight .-Color[class*=-BGC198] { + background-color: #FF0087 +} + +div.highlight .-Color[class*=-C199] { + color: #FF00AF +} + +div.highlight .-Color[class*=-BGC199] { + background-color: #FF00AF +} + +div.highlight .-Color[class*=-C200] { + color: #FF00D7 +} + +div.highlight .-Color[class*=-BGC200] { + background-color: #FF00D7 +} + +div.highlight .-Color[class*=-C201] { + color: #FF00FF +} + +div.highlight .-Color[class*=-BGC201] { + background-color: #FF00FF +} + +div.highlight .-Color[class*=-C202] { + color: #FF5F00 +} + +div.highlight .-Color[class*=-BGC202] { + background-color: #FF5F00 +} + +div.highlight .-Color[class*=-C203] { + color: #FF5F5F +} + +div.highlight .-Color[class*=-BGC203] { + background-color: #FF5F5F +} + +div.highlight .-Color[class*=-C204] { + color: #FF5F87 +} + +div.highlight .-Color[class*=-BGC204] { + background-color: #FF5F87 +} + +div.highlight .-Color[class*=-C205] { + color: #FF5FAF +} + +div.highlight .-Color[class*=-BGC205] { + background-color: #FF5FAF +} + +div.highlight .-Color[class*=-C206] { + color: #FF5FD7 +} + +div.highlight .-Color[class*=-BGC206] { + background-color: #FF5FD7 +} + +div.highlight .-Color[class*=-C207] { + color: #FF5FFF +} + +div.highlight .-Color[class*=-BGC207] { + background-color: #FF5FFF +} + +div.highlight .-Color[class*=-C208] { + color: #FF8700 +} + +div.highlight .-Color[class*=-BGC208] { + background-color: #FF8700 +} + +div.highlight .-Color[class*=-C209] { + color: #FF875F +} + +div.highlight .-Color[class*=-BGC209] { + background-color: #FF875F +} + +div.highlight .-Color[class*=-C210] { + color: #FF8787 +} + +div.highlight .-Color[class*=-BGC210] { + background-color: #FF8787 +} + +div.highlight .-Color[class*=-C211] { + color: #FF87AF +} + +div.highlight .-Color[class*=-BGC211] { + background-color: #FF87AF +} + +div.highlight .-Color[class*=-C212] { + color: #FF87D7 +} + +div.highlight .-Color[class*=-BGC212] { + background-color: #FF87D7 +} + +div.highlight .-Color[class*=-C213] { + color: #FF87FF +} + +div.highlight .-Color[class*=-BGC213] { + background-color: #FF87FF +} + +div.highlight .-Color[class*=-C214] { + color: #FFAF00 +} + +div.highlight .-Color[class*=-BGC214] { + background-color: #FFAF00 +} + +div.highlight .-Color[class*=-C215] { + color: #FFAF5F +} + +div.highlight .-Color[class*=-BGC215] { + background-color: #FFAF5F +} + +div.highlight .-Color[class*=-C216] { + color: #FFAF87 +} + +div.highlight .-Color[class*=-BGC216] { + background-color: #FFAF87 +} + +div.highlight .-Color[class*=-C217] { + color: #FFAFAF +} + +div.highlight .-Color[class*=-BGC217] { + background-color: #FFAFAF +} + +div.highlight .-Color[class*=-C218] { + color: #FFAFD7 +} + +div.highlight .-Color[class*=-BGC218] { + background-color: #FFAFD7 +} + +div.highlight .-Color[class*=-C219] { + color: #FFAFFF +} + +div.highlight .-Color[class*=-BGC219] { + background-color: #FFAFFF +} + +div.highlight .-Color[class*=-C220] { + color: #FFD700 +} + +div.highlight .-Color[class*=-BGC220] { + background-color: #FFD700 +} + +div.highlight .-Color[class*=-C221] { + color: #FFD75F +} + +div.highlight .-Color[class*=-BGC221] { + background-color: #FFD75F +} + +div.highlight .-Color[class*=-C222] { + color: #FFD787 +} + +div.highlight .-Color[class*=-BGC222] { + background-color: #FFD787 +} + +div.highlight .-Color[class*=-C223] { + color: #FFD7AF +} + +div.highlight .-Color[class*=-BGC223] { + background-color: #FFD7AF +} + +div.highlight .-Color[class*=-C224] { + color: #FFD7D7 +} + +div.highlight .-Color[class*=-BGC224] { + background-color: #FFD7D7 +} + +div.highlight .-Color[class*=-C225] { + color: #FFD7FF +} + +div.highlight .-Color[class*=-BGC225] { + background-color: #FFD7FF +} + +div.highlight .-Color[class*=-C226] { + color: #FFFF00 +} + +div.highlight .-Color[class*=-BGC226] { + background-color: #FFFF00 +} + +div.highlight .-Color[class*=-C227] { + color: #FFFF5F +} + +div.highlight .-Color[class*=-BGC227] { + background-color: #FFFF5F +} + +div.highlight .-Color[class*=-C228] { + color: #FFFF87 +} + +div.highlight .-Color[class*=-BGC228] { + background-color: #FFFF87 +} + +div.highlight .-Color[class*=-C229] { + color: #FFFFAF +} + +div.highlight .-Color[class*=-BGC229] { + background-color: #FFFFAF +} + +div.highlight .-Color[class*=-C230] { + color: #FFFFD7 +} + +div.highlight .-Color[class*=-BGC230] { + background-color: #FFFFD7 +} + +div.highlight .-Color[class*=-C231] { + color: #FFFFFF +} + +div.highlight .-Color[class*=-BGC231] { + background-color: #FFFFFF +} + +div.highlight .-Color[class*=-C232] { + color: #080808 +} + +div.highlight .-Color[class*=-BGC232] { + background-color: #080808 +} + +div.highlight .-Color[class*=-C233] { + color: #121212 +} + +div.highlight .-Color[class*=-BGC233] { + background-color: #121212 +} + +div.highlight .-Color[class*=-C234] { + color: #1C1C1C +} + +div.highlight .-Color[class*=-BGC234] { + background-color: #1C1C1C +} + +div.highlight .-Color[class*=-C235] { + color: #262626 +} + +div.highlight .-Color[class*=-BGC235] { + background-color: #262626 +} + +div.highlight .-Color[class*=-C236] { + color: #303030 +} + +div.highlight .-Color[class*=-BGC236] { + background-color: #303030 +} + +div.highlight .-Color[class*=-C237] { + color: #3A3A3A +} + +div.highlight .-Color[class*=-BGC237] { + background-color: #3A3A3A +} + +div.highlight .-Color[class*=-C238] { + color: #444444 +} + +div.highlight .-Color[class*=-BGC238] { + background-color: #444444 +} + +div.highlight .-Color[class*=-C239] { + color: #4E4E4E +} + +div.highlight .-Color[class*=-BGC239] { + background-color: #4E4E4E +} + +div.highlight .-Color[class*=-C240] { + color: #585858 +} + +div.highlight .-Color[class*=-BGC240] { + background-color: #585858 +} + +div.highlight .-Color[class*=-C241] { + color: #626262 +} + +div.highlight .-Color[class*=-BGC241] { + background-color: #626262 +} + +div.highlight .-Color[class*=-C242] { + color: #6C6C6C +} + +div.highlight .-Color[class*=-BGC242] { + background-color: #6C6C6C +} + +div.highlight .-Color[class*=-C243] { + color: #767676 +} + +div.highlight .-Color[class*=-BGC243] { + background-color: #767676 +} + +div.highlight .-Color[class*=-C244] { + color: #808080 +} + +div.highlight .-Color[class*=-BGC244] { + background-color: #808080 +} + +div.highlight .-Color[class*=-C245] { + color: #8A8A8A +} + +div.highlight .-Color[class*=-BGC245] { + background-color: #8A8A8A +} + +div.highlight .-Color[class*=-C246] { + color: #949494 +} + +div.highlight .-Color[class*=-BGC246] { + background-color: #949494 +} + +div.highlight .-Color[class*=-C247] { + color: #9E9E9E +} + +div.highlight .-Color[class*=-BGC247] { + background-color: #9E9E9E +} + +div.highlight .-Color[class*=-C248] { + color: #A8A8A8 +} + +div.highlight .-Color[class*=-BGC248] { + background-color: #A8A8A8 +} + +div.highlight .-Color[class*=-C249] { + color: #B2B2B2 +} + +div.highlight .-Color[class*=-BGC249] { + background-color: #B2B2B2 +} + +div.highlight .-Color[class*=-C250] { + color: #BCBCBC +} + +div.highlight .-Color[class*=-BGC250] { + background-color: #BCBCBC +} + +div.highlight .-Color[class*=-C251] { + color: #C6C6C6 +} + +div.highlight .-Color[class*=-BGC251] { + background-color: #C6C6C6 +} + +div.highlight .-Color[class*=-C252] { + color: #D0D0D0 +} + +div.highlight .-Color[class*=-BGC252] { + background-color: #D0D0D0 +} + +div.highlight .-Color[class*=-C253] { + color: #DADADA +} + +div.highlight .-Color[class*=-BGC253] { + background-color: #DADADA +} + +div.highlight .-Color[class*=-C254] { + color: #E4E4E4 +} + +div.highlight .-Color[class*=-BGC254] { + background-color: #E4E4E4 +} + +div.highlight .-Color[class*=-C255] { + color: #EEEEEE +} + +div.highlight .-Color[class*=-BGC255] { + background-color: #EEEEEE +} diff --git a/docs/_static/plus.png b/docs/_static/plus.png new file mode 100644 index 0000000..7107cec Binary files /dev/null and b/docs/_static/plus.png differ diff --git a/docs/_static/pygments.css b/docs/_static/pygments.css new file mode 100644 index 0000000..012e6a0 --- /dev/null +++ b/docs/_static/pygments.css @@ -0,0 +1,152 @@ +html[data-theme="light"] .highlight pre { line-height: 125%; } +html[data-theme="light"] .highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight .hll { background-color: #fae4c2 } +html[data-theme="light"] .highlight { background: #fefefe; color: #080808 } +html[data-theme="light"] .highlight .c { color: #515151 } /* Comment */ +html[data-theme="light"] .highlight .err { color: #a12236 } /* Error */ +html[data-theme="light"] .highlight .k { color: #6730c5 } /* Keyword */ +html[data-theme="light"] .highlight .l { color: #7f4707 } /* Literal */ +html[data-theme="light"] .highlight .n { color: #080808 } /* Name */ +html[data-theme="light"] .highlight .o { color: #00622f } /* Operator */ +html[data-theme="light"] .highlight .p { color: #080808 } /* Punctuation */ +html[data-theme="light"] .highlight .ch { color: #515151 } /* Comment.Hashbang */ +html[data-theme="light"] .highlight .cm { color: #515151 } /* Comment.Multiline */ +html[data-theme="light"] .highlight .cp { color: #515151 } /* Comment.Preproc */ +html[data-theme="light"] .highlight .cpf { color: #515151 } /* Comment.PreprocFile */ +html[data-theme="light"] .highlight .c1 { color: #515151 } /* Comment.Single */ +html[data-theme="light"] .highlight .cs { color: #515151 } /* Comment.Special */ +html[data-theme="light"] .highlight .gd { color: #005b82 } /* Generic.Deleted */ +html[data-theme="light"] .highlight .ge { font-style: italic } /* Generic.Emph */ +html[data-theme="light"] .highlight .gh { color: #005b82 } /* Generic.Heading */ +html[data-theme="light"] .highlight .gs { font-weight: bold } /* Generic.Strong */ +html[data-theme="light"] .highlight .gu { color: #005b82 } /* Generic.Subheading */ +html[data-theme="light"] .highlight .kc { color: #6730c5 } /* Keyword.Constant */ +html[data-theme="light"] .highlight .kd { color: #6730c5 } /* Keyword.Declaration */ +html[data-theme="light"] .highlight .kn { color: #6730c5 } /* Keyword.Namespace */ +html[data-theme="light"] .highlight .kp { color: #6730c5 } /* Keyword.Pseudo */ +html[data-theme="light"] .highlight .kr { color: #6730c5 } /* Keyword.Reserved */ +html[data-theme="light"] .highlight .kt { color: #7f4707 } /* Keyword.Type */ +html[data-theme="light"] .highlight .ld { color: #7f4707 } /* Literal.Date */ +html[data-theme="light"] .highlight .m { color: #7f4707 } /* Literal.Number */ +html[data-theme="light"] .highlight .s { color: #00622f } /* Literal.String */ +html[data-theme="light"] .highlight .na { color: #912583 } /* Name.Attribute */ +html[data-theme="light"] .highlight .nb { color: #7f4707 } /* Name.Builtin */ +html[data-theme="light"] .highlight .nc { color: #005b82 } /* Name.Class */ +html[data-theme="light"] .highlight .no { color: #005b82 } /* Name.Constant */ +html[data-theme="light"] .highlight .nd { color: #7f4707 } /* Name.Decorator */ +html[data-theme="light"] .highlight .ni { color: #00622f } /* Name.Entity */ +html[data-theme="light"] .highlight .ne { color: #6730c5 } /* Name.Exception */ +html[data-theme="light"] .highlight .nf { color: #005b82 } /* Name.Function */ +html[data-theme="light"] .highlight .nl { color: #7f4707 } /* Name.Label */ +html[data-theme="light"] .highlight .nn { color: #080808 } /* Name.Namespace */ +html[data-theme="light"] .highlight .nx { color: #080808 } /* Name.Other */ +html[data-theme="light"] .highlight .py { color: #005b82 } /* Name.Property */ +html[data-theme="light"] .highlight .nt { color: #005b82 } /* Name.Tag */ +html[data-theme="light"] .highlight .nv { color: #a12236 } /* Name.Variable */ +html[data-theme="light"] .highlight .ow { color: #6730c5 } /* Operator.Word */ +html[data-theme="light"] .highlight .pm { color: #080808 } /* Punctuation.Marker */ +html[data-theme="light"] .highlight .w { color: #080808 } /* Text.Whitespace */ +html[data-theme="light"] .highlight .mb { color: #7f4707 } /* Literal.Number.Bin */ +html[data-theme="light"] .highlight .mf { color: #7f4707 } /* Literal.Number.Float */ +html[data-theme="light"] .highlight .mh { color: #7f4707 } /* Literal.Number.Hex */ +html[data-theme="light"] .highlight .mi { color: #7f4707 } /* Literal.Number.Integer */ +html[data-theme="light"] .highlight .mo { color: #7f4707 } /* Literal.Number.Oct */ +html[data-theme="light"] .highlight .sa { color: #00622f } /* Literal.String.Affix */ +html[data-theme="light"] .highlight .sb { color: #00622f } /* Literal.String.Backtick */ +html[data-theme="light"] .highlight .sc { color: #00622f } /* Literal.String.Char */ +html[data-theme="light"] .highlight .dl { color: #00622f } /* Literal.String.Delimiter */ +html[data-theme="light"] .highlight .sd { color: #00622f } /* Literal.String.Doc */ +html[data-theme="light"] .highlight .s2 { color: #00622f } /* Literal.String.Double */ +html[data-theme="light"] .highlight .se { color: #00622f } /* Literal.String.Escape */ +html[data-theme="light"] .highlight .sh { color: #00622f } /* Literal.String.Heredoc */ +html[data-theme="light"] .highlight .si { color: #00622f } /* Literal.String.Interpol */ +html[data-theme="light"] .highlight .sx { color: #00622f } /* Literal.String.Other */ +html[data-theme="light"] .highlight .sr { color: #a12236 } /* Literal.String.Regex */ +html[data-theme="light"] .highlight .s1 { color: #00622f } /* Literal.String.Single */ +html[data-theme="light"] .highlight .ss { color: #005b82 } /* Literal.String.Symbol */ +html[data-theme="light"] .highlight .bp { color: #7f4707 } /* Name.Builtin.Pseudo */ +html[data-theme="light"] .highlight .fm { color: #005b82 } /* Name.Function.Magic */ +html[data-theme="light"] .highlight .vc { color: #a12236 } /* Name.Variable.Class */ +html[data-theme="light"] .highlight .vg { color: #a12236 } /* Name.Variable.Global */ +html[data-theme="light"] .highlight .vi { color: #a12236 } /* Name.Variable.Instance */ +html[data-theme="light"] .highlight .vm { color: #7f4707 } /* Name.Variable.Magic */ +html[data-theme="light"] .highlight .il { color: #7f4707 } /* Literal.Number.Integer.Long */ +html[data-theme="dark"] .highlight pre { line-height: 125%; } +html[data-theme="dark"] .highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight .hll { background-color: #ffd9002e } +html[data-theme="dark"] .highlight { background: #2b2b2b; color: #f8f8f2 } +html[data-theme="dark"] .highlight .c { color: #ffd900 } /* Comment */ +html[data-theme="dark"] .highlight .err { color: #ffa07a } /* Error */ +html[data-theme="dark"] .highlight .k { color: #dcc6e0 } /* Keyword */ +html[data-theme="dark"] .highlight .l { color: #ffd900 } /* Literal */ +html[data-theme="dark"] .highlight .n { color: #f8f8f2 } /* Name */ +html[data-theme="dark"] .highlight .o { color: #abe338 } /* Operator */ +html[data-theme="dark"] .highlight .p { color: #f8f8f2 } /* Punctuation */ +html[data-theme="dark"] .highlight .ch { color: #ffd900 } /* Comment.Hashbang */ +html[data-theme="dark"] .highlight .cm { color: #ffd900 } /* Comment.Multiline */ +html[data-theme="dark"] .highlight .cp { color: #ffd900 } /* Comment.Preproc */ +html[data-theme="dark"] .highlight .cpf { color: #ffd900 } /* Comment.PreprocFile */ +html[data-theme="dark"] .highlight .c1 { color: #ffd900 } /* Comment.Single */ +html[data-theme="dark"] .highlight .cs { color: #ffd900 } /* Comment.Special */ +html[data-theme="dark"] .highlight .gd { color: #00e0e0 } /* Generic.Deleted */ +html[data-theme="dark"] .highlight .ge { font-style: italic } /* Generic.Emph */ +html[data-theme="dark"] .highlight .gh { color: #00e0e0 } /* Generic.Heading */ +html[data-theme="dark"] .highlight .gs { font-weight: bold } /* Generic.Strong */ +html[data-theme="dark"] .highlight .gu { color: #00e0e0 } /* Generic.Subheading */ +html[data-theme="dark"] .highlight .kc { color: #dcc6e0 } /* Keyword.Constant */ +html[data-theme="dark"] .highlight .kd { color: #dcc6e0 } /* Keyword.Declaration */ +html[data-theme="dark"] .highlight .kn { color: #dcc6e0 } /* Keyword.Namespace */ +html[data-theme="dark"] .highlight .kp { color: #dcc6e0 } /* Keyword.Pseudo */ +html[data-theme="dark"] .highlight .kr { color: #dcc6e0 } /* Keyword.Reserved */ +html[data-theme="dark"] .highlight .kt { color: #ffd900 } /* Keyword.Type */ +html[data-theme="dark"] .highlight .ld { color: #ffd900 } /* Literal.Date */ +html[data-theme="dark"] .highlight .m { color: #ffd900 } /* Literal.Number */ +html[data-theme="dark"] .highlight .s { color: #abe338 } /* Literal.String */ +html[data-theme="dark"] .highlight .na { color: #ffd900 } /* Name.Attribute */ +html[data-theme="dark"] .highlight .nb { color: #ffd900 } /* Name.Builtin */ +html[data-theme="dark"] .highlight .nc { color: #00e0e0 } /* Name.Class */ +html[data-theme="dark"] .highlight .no { color: #00e0e0 } /* Name.Constant */ +html[data-theme="dark"] .highlight .nd { color: #ffd900 } /* Name.Decorator */ +html[data-theme="dark"] .highlight .ni { color: #abe338 } /* Name.Entity */ +html[data-theme="dark"] .highlight .ne { color: #dcc6e0 } /* Name.Exception */ +html[data-theme="dark"] .highlight .nf { color: #00e0e0 } /* Name.Function */ +html[data-theme="dark"] .highlight .nl { color: #ffd900 } /* Name.Label */ +html[data-theme="dark"] .highlight .nn { color: #f8f8f2 } /* Name.Namespace */ +html[data-theme="dark"] .highlight .nx { color: #f8f8f2 } /* Name.Other */ +html[data-theme="dark"] .highlight .py { color: #00e0e0 } /* Name.Property */ +html[data-theme="dark"] .highlight .nt { color: #00e0e0 } /* Name.Tag */ +html[data-theme="dark"] .highlight .nv { color: #ffa07a } /* Name.Variable */ +html[data-theme="dark"] .highlight .ow { color: #dcc6e0 } /* Operator.Word */ +html[data-theme="dark"] .highlight .pm { color: #f8f8f2 } /* Punctuation.Marker */ +html[data-theme="dark"] .highlight .w { color: #f8f8f2 } /* Text.Whitespace */ +html[data-theme="dark"] .highlight .mb { color: #ffd900 } /* Literal.Number.Bin */ +html[data-theme="dark"] .highlight .mf { color: #ffd900 } /* Literal.Number.Float */ +html[data-theme="dark"] .highlight .mh { color: #ffd900 } /* Literal.Number.Hex */ +html[data-theme="dark"] .highlight .mi { color: #ffd900 } /* Literal.Number.Integer */ +html[data-theme="dark"] .highlight .mo { color: #ffd900 } /* Literal.Number.Oct */ +html[data-theme="dark"] .highlight .sa { color: #abe338 } /* Literal.String.Affix */ +html[data-theme="dark"] .highlight .sb { color: #abe338 } /* Literal.String.Backtick */ +html[data-theme="dark"] .highlight .sc { color: #abe338 } /* Literal.String.Char */ +html[data-theme="dark"] .highlight .dl { color: #abe338 } /* Literal.String.Delimiter */ +html[data-theme="dark"] .highlight .sd { color: #abe338 } /* Literal.String.Doc */ +html[data-theme="dark"] .highlight .s2 { color: #abe338 } /* Literal.String.Double */ +html[data-theme="dark"] .highlight .se { color: #abe338 } /* Literal.String.Escape */ +html[data-theme="dark"] .highlight .sh { color: #abe338 } /* Literal.String.Heredoc */ +html[data-theme="dark"] .highlight .si { color: #abe338 } /* Literal.String.Interpol */ +html[data-theme="dark"] .highlight .sx { color: #abe338 } /* Literal.String.Other */ +html[data-theme="dark"] .highlight .sr { color: #ffa07a } /* Literal.String.Regex */ +html[data-theme="dark"] .highlight .s1 { color: #abe338 } /* Literal.String.Single */ +html[data-theme="dark"] .highlight .ss { color: #00e0e0 } /* Literal.String.Symbol */ +html[data-theme="dark"] .highlight .bp { color: #ffd900 } /* Name.Builtin.Pseudo */ +html[data-theme="dark"] .highlight .fm { color: #00e0e0 } /* Name.Function.Magic */ +html[data-theme="dark"] .highlight .vc { color: #ffa07a } /* Name.Variable.Class */ +html[data-theme="dark"] .highlight .vg { color: #ffa07a } /* Name.Variable.Global */ +html[data-theme="dark"] .highlight .vi { color: #ffa07a } /* Name.Variable.Instance */ +html[data-theme="dark"] .highlight .vm { color: #ffd900 } /* Name.Variable.Magic */ +html[data-theme="dark"] .highlight .il { color: #ffd900 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/_static/sbt-webpack-macros.html b/docs/_static/sbt-webpack-macros.html new file mode 100644 index 0000000..6cbf559 --- /dev/null +++ b/docs/_static/sbt-webpack-macros.html @@ -0,0 +1,11 @@ + +{% macro head_pre_bootstrap() %} + +{% endmacro %} + +{% macro body_post() %} + +{% endmacro %} diff --git a/docs/_static/scripts/bootstrap.js b/docs/_static/scripts/bootstrap.js new file mode 100644 index 0000000..c8178de --- /dev/null +++ b/docs/_static/scripts/bootstrap.js @@ -0,0 +1,3 @@ +/*! For license information please see bootstrap.js.LICENSE.txt */ +(()=>{"use strict";var t={d:(e,i)=>{for(var n in i)t.o(i,n)&&!t.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:i[n]})},o:(t,e)=>Object.prototype.hasOwnProperty.call(t,e),r:t=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})}},e={};t.r(e),t.d(e,{afterMain:()=>E,afterRead:()=>v,afterWrite:()=>C,applyStyles:()=>$,arrow:()=>J,auto:()=>a,basePlacements:()=>l,beforeMain:()=>y,beforeRead:()=>_,beforeWrite:()=>A,bottom:()=>s,clippingParents:()=>d,computeStyles:()=>it,createPopper:()=>Dt,createPopperBase:()=>St,createPopperLite:()=>$t,detectOverflow:()=>_t,end:()=>h,eventListeners:()=>st,flip:()=>bt,hide:()=>wt,left:()=>r,main:()=>w,modifierPhases:()=>O,offset:()=>Et,placements:()=>g,popper:()=>f,popperGenerator:()=>Lt,popperOffsets:()=>At,preventOverflow:()=>Tt,read:()=>b,reference:()=>p,right:()=>o,start:()=>c,top:()=>n,variationPlacements:()=>m,viewport:()=>u,write:()=>T});var i={};t.r(i),t.d(i,{Alert:()=>Oe,Button:()=>ke,Carousel:()=>li,Collapse:()=>Ei,Dropdown:()=>Ki,Modal:()=>Ln,Offcanvas:()=>Kn,Popover:()=>bs,ScrollSpy:()=>Ls,Tab:()=>Js,Toast:()=>po,Tooltip:()=>fs});var n="top",s="bottom",o="right",r="left",a="auto",l=[n,s,o,r],c="start",h="end",d="clippingParents",u="viewport",f="popper",p="reference",m=l.reduce((function(t,e){return t.concat([e+"-"+c,e+"-"+h])}),[]),g=[].concat(l,[a]).reduce((function(t,e){return t.concat([e,e+"-"+c,e+"-"+h])}),[]),_="beforeRead",b="read",v="afterRead",y="beforeMain",w="main",E="afterMain",A="beforeWrite",T="write",C="afterWrite",O=[_,b,v,y,w,E,A,T,C];function x(t){return t?(t.nodeName||"").toLowerCase():null}function k(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function L(t){return t instanceof k(t).Element||t instanceof Element}function S(t){return t instanceof k(t).HTMLElement||t instanceof HTMLElement}function D(t){return"undefined"!=typeof ShadowRoot&&(t instanceof k(t).ShadowRoot||t instanceof ShadowRoot)}const $={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];S(s)&&x(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});S(n)&&x(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function I(t){return t.split("-")[0]}var N=Math.max,P=Math.min,M=Math.round;function j(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function F(){return!/^((?!chrome|android).)*safari/i.test(j())}function H(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&S(t)&&(s=t.offsetWidth>0&&M(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&M(n.height)/t.offsetHeight||1);var r=(L(t)?k(t):window).visualViewport,a=!F()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function B(t){var e=H(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function W(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&D(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function z(t){return k(t).getComputedStyle(t)}function R(t){return["table","td","th"].indexOf(x(t))>=0}function q(t){return((L(t)?t.ownerDocument:t.document)||window.document).documentElement}function V(t){return"html"===x(t)?t:t.assignedSlot||t.parentNode||(D(t)?t.host:null)||q(t)}function Y(t){return S(t)&&"fixed"!==z(t).position?t.offsetParent:null}function K(t){for(var e=k(t),i=Y(t);i&&R(i)&&"static"===z(i).position;)i=Y(i);return i&&("html"===x(i)||"body"===x(i)&&"static"===z(i).position)?e:i||function(t){var e=/firefox/i.test(j());if(/Trident/i.test(j())&&S(t)&&"fixed"===z(t).position)return null;var i=V(t);for(D(i)&&(i=i.host);S(i)&&["html","body"].indexOf(x(i))<0;){var n=z(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Q(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function X(t,e,i){return N(t,P(e,i))}function U(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function G(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const J={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,a=t.name,c=t.options,h=i.elements.arrow,d=i.modifiersData.popperOffsets,u=I(i.placement),f=Q(u),p=[r,o].indexOf(u)>=0?"height":"width";if(h&&d){var m=function(t,e){return U("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:G(t,l))}(c.padding,i),g=B(h),_="y"===f?n:r,b="y"===f?s:o,v=i.rects.reference[p]+i.rects.reference[f]-d[f]-i.rects.popper[p],y=d[f]-i.rects.reference[f],w=K(h),E=w?"y"===f?w.clientHeight||0:w.clientWidth||0:0,A=v/2-y/2,T=m[_],C=E-g[p]-m[b],O=E/2-g[p]/2+A,x=X(T,O,C),k=f;i.modifiersData[a]=((e={})[k]=x,e.centerOffset=x-O,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&W(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Z(t){return t.split("-")[1]}var tt={top:"auto",right:"auto",bottom:"auto",left:"auto"};function et(t){var e,i=t.popper,a=t.popperRect,l=t.placement,c=t.variation,d=t.offsets,u=t.position,f=t.gpuAcceleration,p=t.adaptive,m=t.roundOffsets,g=t.isFixed,_=d.x,b=void 0===_?0:_,v=d.y,y=void 0===v?0:v,w="function"==typeof m?m({x:b,y}):{x:b,y};b=w.x,y=w.y;var E=d.hasOwnProperty("x"),A=d.hasOwnProperty("y"),T=r,C=n,O=window;if(p){var x=K(i),L="clientHeight",S="clientWidth";x===k(i)&&"static"!==z(x=q(i)).position&&"absolute"===u&&(L="scrollHeight",S="scrollWidth"),(l===n||(l===r||l===o)&&c===h)&&(C=s,y-=(g&&x===O&&O.visualViewport?O.visualViewport.height:x[L])-a.height,y*=f?1:-1),l!==r&&(l!==n&&l!==s||c!==h)||(T=o,b-=(g&&x===O&&O.visualViewport?O.visualViewport.width:x[S])-a.width,b*=f?1:-1)}var D,$=Object.assign({position:u},p&&tt),I=!0===m?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:M(i*s)/s||0,y:M(n*s)/s||0}}({x:b,y},k(i)):{x:b,y};return b=I.x,y=I.y,f?Object.assign({},$,((D={})[C]=A?"0":"",D[T]=E?"0":"",D.transform=(O.devicePixelRatio||1)<=1?"translate("+b+"px, "+y+"px)":"translate3d("+b+"px, "+y+"px, 0)",D)):Object.assign({},$,((e={})[C]=A?y+"px":"",e[T]=E?b+"px":"",e.transform="",e))}const it={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:I(e.placement),variation:Z(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,et(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,et(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var nt={passive:!0};const st={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=k(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,nt)})),a&&l.addEventListener("resize",i.update,nt),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,nt)})),a&&l.removeEventListener("resize",i.update,nt)}},data:{}};var ot={left:"right",right:"left",bottom:"top",top:"bottom"};function rt(t){return t.replace(/left|right|bottom|top/g,(function(t){return ot[t]}))}var at={start:"end",end:"start"};function lt(t){return t.replace(/start|end/g,(function(t){return at[t]}))}function ct(t){var e=k(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function ht(t){return H(q(t)).left+ct(t).scrollLeft}function dt(t){var e=z(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function ut(t){return["html","body","#document"].indexOf(x(t))>=0?t.ownerDocument.body:S(t)&&dt(t)?t:ut(V(t))}function ft(t,e){var i;void 0===e&&(e=[]);var n=ut(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=k(n),r=s?[o].concat(o.visualViewport||[],dt(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(ft(V(r)))}function pt(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function mt(t,e,i){return e===u?pt(function(t,e){var i=k(t),n=q(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=F();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+ht(t),y:l}}(t,i)):L(e)?function(t,e){var i=H(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):pt(function(t){var e,i=q(t),n=ct(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=N(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=N(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+ht(t),l=-n.scrollTop;return"rtl"===z(s||i).direction&&(a+=N(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(q(t)))}function gt(t){var e,i=t.reference,a=t.element,l=t.placement,d=l?I(l):null,u=l?Z(l):null,f=i.x+i.width/2-a.width/2,p=i.y+i.height/2-a.height/2;switch(d){case n:e={x:f,y:i.y-a.height};break;case s:e={x:f,y:i.y+i.height};break;case o:e={x:i.x+i.width,y:p};break;case r:e={x:i.x-a.width,y:p};break;default:e={x:i.x,y:i.y}}var m=d?Q(d):null;if(null!=m){var g="y"===m?"height":"width";switch(u){case c:e[m]=e[m]-(i[g]/2-a[g]/2);break;case h:e[m]=e[m]+(i[g]/2-a[g]/2)}}return e}function _t(t,e){void 0===e&&(e={});var i=e,r=i.placement,a=void 0===r?t.placement:r,c=i.strategy,h=void 0===c?t.strategy:c,m=i.boundary,g=void 0===m?d:m,_=i.rootBoundary,b=void 0===_?u:_,v=i.elementContext,y=void 0===v?f:v,w=i.altBoundary,E=void 0!==w&&w,A=i.padding,T=void 0===A?0:A,C=U("number"!=typeof T?T:G(T,l)),O=y===f?p:f,k=t.rects.popper,D=t.elements[E?O:y],$=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=ft(V(t)),i=["absolute","fixed"].indexOf(z(t).position)>=0&&S(t)?K(t):t;return L(i)?e.filter((function(t){return L(t)&&W(t,i)&&"body"!==x(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=mt(t,i,n);return e.top=N(s.top,e.top),e.right=P(s.right,e.right),e.bottom=P(s.bottom,e.bottom),e.left=N(s.left,e.left),e}),mt(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(L(D)?D:D.contextElement||q(t.elements.popper),g,b,h),I=H(t.elements.reference),M=gt({reference:I,element:k,strategy:"absolute",placement:a}),j=pt(Object.assign({},k,M)),F=y===f?j:I,B={top:$.top-F.top+C.top,bottom:F.bottom-$.bottom+C.bottom,left:$.left-F.left+C.left,right:F.right-$.right+C.right},R=t.modifiersData.offset;if(y===f&&R){var Y=R[a];Object.keys(B).forEach((function(t){var e=[o,s].indexOf(t)>=0?1:-1,i=[n,s].indexOf(t)>=0?"y":"x";B[t]+=Y[i]*e}))}return B}const bt={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,h=t.name;if(!e.modifiersData[h]._skip){for(var d=i.mainAxis,u=void 0===d||d,f=i.altAxis,p=void 0===f||f,_=i.fallbackPlacements,b=i.padding,v=i.boundary,y=i.rootBoundary,w=i.altBoundary,E=i.flipVariations,A=void 0===E||E,T=i.allowedAutoPlacements,C=e.options.placement,O=I(C),x=_||(O!==C&&A?function(t){if(I(t)===a)return[];var e=rt(t);return[lt(t),e,lt(e)]}(C):[rt(C)]),k=[C].concat(x).reduce((function(t,i){return t.concat(I(i)===a?function(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,c=i.allowedAutoPlacements,h=void 0===c?g:c,d=Z(n),u=d?a?m:m.filter((function(t){return Z(t)===d})):l,f=u.filter((function(t){return h.indexOf(t)>=0}));0===f.length&&(f=u);var p=f.reduce((function(e,i){return e[i]=_t(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[I(i)],e}),{});return Object.keys(p).sort((function(t,e){return p[t]-p[e]}))}(e,{placement:i,boundary:v,rootBoundary:y,padding:b,flipVariations:A,allowedAutoPlacements:T}):i)}),[]),L=e.rects.reference,S=e.rects.popper,D=new Map,$=!0,N=k[0],P=0;P=0,B=H?"width":"height",W=_t(e,{placement:M,boundary:v,rootBoundary:y,altBoundary:w,padding:b}),z=H?F?o:r:F?s:n;L[B]>S[B]&&(z=rt(z));var R=rt(z),q=[];if(u&&q.push(W[j]<=0),p&&q.push(W[z]<=0,W[R]<=0),q.every((function(t){return t}))){N=M,$=!1;break}D.set(M,q)}if($)for(var V=function(t){var e=k.find((function(e){var i=D.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return N=e,"break"},Y=A?3:1;Y>0&&"break"!==V(Y);Y--);e.placement!==N&&(e.modifiersData[h]._skip=!0,e.placement=N,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function vt(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function yt(t){return[n,o,s,r].some((function(e){return t[e]>=0}))}const wt={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=_t(e,{elementContext:"reference"}),a=_t(e,{altBoundary:!0}),l=vt(r,n),c=vt(a,s,o),h=yt(l),d=yt(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},Et={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,s=t.name,a=i.offset,l=void 0===a?[0,0]:a,c=g.reduce((function(t,i){return t[i]=function(t,e,i){var s=I(t),a=[r,n].indexOf(s)>=0?-1:1,l="function"==typeof i?i(Object.assign({},e,{placement:t})):i,c=l[0],h=l[1];return c=c||0,h=(h||0)*a,[r,o].indexOf(s)>=0?{x:h,y:c}:{x:c,y:h}}(i,e.rects,l),t}),{}),h=c[e.placement],d=h.x,u=h.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=d,e.modifiersData.popperOffsets.y+=u),e.modifiersData[s]=c}},At={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=gt({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},Tt={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,a=t.name,l=i.mainAxis,h=void 0===l||l,d=i.altAxis,u=void 0!==d&&d,f=i.boundary,p=i.rootBoundary,m=i.altBoundary,g=i.padding,_=i.tether,b=void 0===_||_,v=i.tetherOffset,y=void 0===v?0:v,w=_t(e,{boundary:f,rootBoundary:p,padding:g,altBoundary:m}),E=I(e.placement),A=Z(e.placement),T=!A,C=Q(E),O="x"===C?"y":"x",x=e.modifiersData.popperOffsets,k=e.rects.reference,L=e.rects.popper,S="function"==typeof y?y(Object.assign({},e.rects,{placement:e.placement})):y,D="number"==typeof S?{mainAxis:S,altAxis:S}:Object.assign({mainAxis:0,altAxis:0},S),$=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,M={x:0,y:0};if(x){if(h){var j,F="y"===C?n:r,H="y"===C?s:o,W="y"===C?"height":"width",z=x[C],R=z+w[F],q=z-w[H],V=b?-L[W]/2:0,Y=A===c?k[W]:L[W],U=A===c?-L[W]:-k[W],G=e.elements.arrow,J=b&&G?B(G):{width:0,height:0},tt=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},et=tt[F],it=tt[H],nt=X(0,k[W],J[W]),st=T?k[W]/2-V-nt-et-D.mainAxis:Y-nt-et-D.mainAxis,ot=T?-k[W]/2+V+nt+it+D.mainAxis:U+nt+it+D.mainAxis,rt=e.elements.arrow&&K(e.elements.arrow),at=rt?"y"===C?rt.clientTop||0:rt.clientLeft||0:0,lt=null!=(j=null==$?void 0:$[C])?j:0,ct=z+ot-lt,ht=X(b?P(R,z+st-lt-at):R,z,b?N(q,ct):q);x[C]=ht,M[C]=ht-z}if(u){var dt,ut="x"===C?n:r,ft="x"===C?s:o,pt=x[O],mt="y"===O?"height":"width",gt=pt+w[ut],bt=pt-w[ft],vt=-1!==[n,r].indexOf(E),yt=null!=(dt=null==$?void 0:$[O])?dt:0,wt=vt?gt:pt-k[mt]-L[mt]-yt+D.altAxis,Et=vt?pt+k[mt]+L[mt]-yt-D.altAxis:bt,At=b&&vt?function(t,e,i){var n=X(t,e,i);return n>i?i:n}(wt,pt,Et):X(b?wt:gt,pt,b?Et:bt);x[O]=At,M[O]=At-pt}e.modifiersData[a]=M}},requiresIfExists:["offset"]};function Ct(t,e,i){void 0===i&&(i=!1);var n,s,o=S(e),r=S(e)&&function(t){var e=t.getBoundingClientRect(),i=M(e.width)/t.offsetWidth||1,n=M(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=q(e),l=H(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==x(e)||dt(a))&&(c=(n=e)!==k(n)&&S(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:ct(n)),S(e)?((h=H(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=ht(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function Ot(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var xt={placement:"bottom",modifiers:[],strategy:"absolute"};function kt(){for(var t=arguments.length,e=new Array(t),i=0;iIt.has(t)&&It.get(t).get(e)||null,remove(t,e){if(!It.has(t))return;const i=It.get(t);i.delete(e),0===i.size&&It.delete(t)}},Pt="transitionend",Mt=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),jt=t=>{t.dispatchEvent(new Event(Pt))},Ft=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),Ht=t=>Ft(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(Mt(t)):null,Bt=t=>{if(!Ft(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},Wt=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),zt=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?zt(t.parentNode):null},Rt=()=>{},qt=t=>{t.offsetHeight},Vt=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,Yt=[],Kt=()=>"rtl"===document.documentElement.dir,Qt=t=>{var e;e=()=>{const e=Vt();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(Yt.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of Yt)t()})),Yt.push(e)):e()},Xt=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,Ut=(t,e,i=!0)=>{if(!i)return void Xt(t);const n=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let s=!1;const o=({target:i})=>{i===e&&(s=!0,e.removeEventListener(Pt,o),Xt(t))};e.addEventListener(Pt,o),setTimeout((()=>{s||jt(e)}),n)},Gt=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},Jt=/[^.]*(?=\..*)\.|.*/,Zt=/\..*/,te=/::\d+$/,ee={};let ie=1;const ne={mouseenter:"mouseover",mouseleave:"mouseout"},se=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function oe(t,e){return e&&`${e}::${ie++}`||t.uidEvent||ie++}function re(t){const e=oe(t);return t.uidEvent=e,ee[e]=ee[e]||{},ee[e]}function ae(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function le(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=ue(t);return se.has(o)||(o=t),[n,s,o]}function ce(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=le(e,i,n);if(e in ne){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=re(t),c=l[a]||(l[a]={}),h=ae(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=oe(r,e.replace(Jt,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return pe(s,{delegateTarget:r}),n.oneOff&&fe.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return pe(n,{delegateTarget:t}),i.oneOff&&fe.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function he(t,e,i,n,s){const o=ae(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function de(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&he(t,e,i,r.callable,r.delegationSelector)}function ue(t){return t=t.replace(Zt,""),ne[t]||t}const fe={on(t,e,i,n){ce(t,e,i,n,!1)},one(t,e,i,n){ce(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=le(e,i,n),a=r!==e,l=re(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))de(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(te,"");a&&!e.includes(s)||he(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;he(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=Vt();let s=null,o=!0,r=!0,a=!1;e!==ue(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=pe(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function pe(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function me(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function ge(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const _e={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${ge(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${ge(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=me(t.dataset[n])}return e},getDataAttribute:(t,e)=>me(t.getAttribute(`data-bs-${ge(e)}`))};class be{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=Ft(e)?_e.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...Ft(e)?_e.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],o=Ft(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(o))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${o}" but expected type "${s}".`)}var i}}class ve extends be{constructor(t,e){super(),(t=Ht(t))&&(this._element=t,this._config=this._getConfig(e),Nt.set(this._element,this.constructor.DATA_KEY,this))}dispose(){Nt.remove(this._element,this.constructor.DATA_KEY),fe.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){Ut(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return Nt.get(Ht(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.3"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const ye=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return e?e.split(",").map((t=>Mt(t))).join(","):null},we={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!Wt(t)&&Bt(t)))},getSelectorFromElement(t){const e=ye(t);return e&&we.findOne(e)?e:null},getElementFromSelector(t){const e=ye(t);return e?we.findOne(e):null},getMultipleElementsFromSelector(t){const e=ye(t);return e?we.find(e):[]}},Ee=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;fe.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),Wt(this))return;const s=we.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},Ae=".bs.alert",Te=`close${Ae}`,Ce=`closed${Ae}`;class Oe extends ve{static get NAME(){return"alert"}close(){if(fe.trigger(this._element,Te).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),fe.trigger(this._element,Ce),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Oe.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}Ee(Oe,"close"),Qt(Oe);const xe='[data-bs-toggle="button"]';class ke extends ve{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=ke.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}fe.on(document,"click.bs.button.data-api",xe,(t=>{t.preventDefault();const e=t.target.closest(xe);ke.getOrCreateInstance(e).toggle()})),Qt(ke);const Le=".bs.swipe",Se=`touchstart${Le}`,De=`touchmove${Le}`,$e=`touchend${Le}`,Ie=`pointerdown${Le}`,Ne=`pointerup${Le}`,Pe={endCallback:null,leftCallback:null,rightCallback:null},Me={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class je extends be{constructor(t,e){super(),this._element=t,t&&je.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return Pe}static get DefaultType(){return Me}static get NAME(){return"swipe"}dispose(){fe.off(this._element,Le)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),Xt(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&Xt(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(fe.on(this._element,Ie,(t=>this._start(t))),fe.on(this._element,Ne,(t=>this._end(t))),this._element.classList.add("pointer-event")):(fe.on(this._element,Se,(t=>this._start(t))),fe.on(this._element,De,(t=>this._move(t))),fe.on(this._element,$e,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const Fe=".bs.carousel",He=".data-api",Be="ArrowLeft",We="ArrowRight",ze="next",Re="prev",qe="left",Ve="right",Ye=`slide${Fe}`,Ke=`slid${Fe}`,Qe=`keydown${Fe}`,Xe=`mouseenter${Fe}`,Ue=`mouseleave${Fe}`,Ge=`dragstart${Fe}`,Je=`load${Fe}${He}`,Ze=`click${Fe}${He}`,ti="carousel",ei="active",ii=".active",ni=".carousel-item",si=ii+ni,oi={[Be]:Ve,[We]:qe},ri={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},ai={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class li extends ve{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=we.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===ti&&this.cycle()}static get Default(){return ri}static get DefaultType(){return ai}static get NAME(){return"carousel"}next(){this._slide(ze)}nextWhenVisible(){!document.hidden&&Bt(this._element)&&this.next()}prev(){this._slide(Re)}pause(){this._isSliding&&jt(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?fe.one(this._element,Ke,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void fe.one(this._element,Ke,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?ze:Re;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&fe.on(this._element,Qe,(t=>this._keydown(t))),"hover"===this._config.pause&&(fe.on(this._element,Xe,(()=>this.pause())),fe.on(this._element,Ue,(()=>this._maybeEnableCycle()))),this._config.touch&&je.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of we.find(".carousel-item img",this._element))fe.on(t,Ge,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(qe)),rightCallback:()=>this._slide(this._directionToOrder(Ve)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new je(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=oi[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=we.findOne(ii,this._indicatorsElement);e.classList.remove(ei),e.removeAttribute("aria-current");const i=we.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(ei),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===ze,s=e||Gt(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>fe.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(Ye).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),qt(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(ei),i.classList.remove(ei,c,l),this._isSliding=!1,r(Ke)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return we.findOne(si,this._element)}_getItems(){return we.find(ni,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return Kt()?t===qe?Re:ze:t===qe?ze:Re}_orderToDirection(t){return Kt()?t===Re?qe:Ve:t===Re?Ve:qe}static jQueryInterface(t){return this.each((function(){const e=li.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}fe.on(document,Ze,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=we.getElementFromSelector(this);if(!e||!e.classList.contains(ti))return;t.preventDefault();const i=li.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===_e.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),fe.on(window,Je,(()=>{const t=we.find('[data-bs-ride="carousel"]');for(const e of t)li.getOrCreateInstance(e)})),Qt(li);const ci=".bs.collapse",hi=`show${ci}`,di=`shown${ci}`,ui=`hide${ci}`,fi=`hidden${ci}`,pi=`click${ci}.data-api`,mi="show",gi="collapse",_i="collapsing",bi=`:scope .${gi} .${gi}`,vi='[data-bs-toggle="collapse"]',yi={parent:null,toggle:!0},wi={parent:"(null|element)",toggle:"boolean"};class Ei extends ve{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=we.find(vi);for(const t of i){const e=we.getSelectorFromElement(t),i=we.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return yi}static get DefaultType(){return wi}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Ei.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(fe.trigger(this._element,hi).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(gi),this._element.classList.add(_i),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi,mi),this._element.style[e]="",fe.trigger(this._element,di)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(fe.trigger(this._element,ui).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,qt(this._element),this._element.classList.add(_i),this._element.classList.remove(gi,mi);for(const t of this._triggerArray){const e=we.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi),fe.trigger(this._element,fi)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(mi)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=Ht(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(vi);for(const e of t){const t=we.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=we.find(bi,this._config.parent);return we.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Ei.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}fe.on(document,pi,vi,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of we.getMultipleElementsFromSelector(this))Ei.getOrCreateInstance(t,{toggle:!1}).toggle()})),Qt(Ei);const Ai="dropdown",Ti=".bs.dropdown",Ci=".data-api",Oi="ArrowUp",xi="ArrowDown",ki=`hide${Ti}`,Li=`hidden${Ti}`,Si=`show${Ti}`,Di=`shown${Ti}`,$i=`click${Ti}${Ci}`,Ii=`keydown${Ti}${Ci}`,Ni=`keyup${Ti}${Ci}`,Pi="show",Mi='[data-bs-toggle="dropdown"]:not(.disabled):not(:disabled)',ji=`${Mi}.${Pi}`,Fi=".dropdown-menu",Hi=Kt()?"top-end":"top-start",Bi=Kt()?"top-start":"top-end",Wi=Kt()?"bottom-end":"bottom-start",zi=Kt()?"bottom-start":"bottom-end",Ri=Kt()?"left-start":"right-start",qi=Kt()?"right-start":"left-start",Vi={autoClose:!0,boundary:"clippingParents",display:"dynamic",offset:[0,2],popperConfig:null,reference:"toggle"},Yi={autoClose:"(boolean|string)",boundary:"(string|element)",display:"string",offset:"(array|string|function)",popperConfig:"(null|object|function)",reference:"(string|element|object)"};class Ki extends ve{constructor(t,e){super(t,e),this._popper=null,this._parent=this._element.parentNode,this._menu=we.next(this._element,Fi)[0]||we.prev(this._element,Fi)[0]||we.findOne(Fi,this._parent),this._inNavbar=this._detectNavbar()}static get Default(){return Vi}static get DefaultType(){return Yi}static get NAME(){return Ai}toggle(){return this._isShown()?this.hide():this.show()}show(){if(Wt(this._element)||this._isShown())return;const t={relatedTarget:this._element};if(!fe.trigger(this._element,Si,t).defaultPrevented){if(this._createPopper(),"ontouchstart"in document.documentElement&&!this._parent.closest(".navbar-nav"))for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add(Pi),this._element.classList.add(Pi),fe.trigger(this._element,Di,t)}}hide(){if(Wt(this._element)||!this._isShown())return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){if(!fe.trigger(this._element,ki,t).defaultPrevented){if("ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._popper&&this._popper.destroy(),this._menu.classList.remove(Pi),this._element.classList.remove(Pi),this._element.setAttribute("aria-expanded","false"),_e.removeDataAttribute(this._menu,"popper"),fe.trigger(this._element,Li,t)}}_getConfig(t){if("object"==typeof(t=super._getConfig(t)).reference&&!Ft(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${Ai.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(){if(void 0===e)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let t=this._element;"parent"===this._config.reference?t=this._parent:Ft(this._config.reference)?t=Ht(this._config.reference):"object"==typeof this._config.reference&&(t=this._config.reference);const i=this._getPopperConfig();this._popper=Dt(t,this._menu,i)}_isShown(){return this._menu.classList.contains(Pi)}_getPlacement(){const t=this._parent;if(t.classList.contains("dropend"))return Ri;if(t.classList.contains("dropstart"))return qi;if(t.classList.contains("dropup-center"))return"top";if(t.classList.contains("dropdown-center"))return"bottom";const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?Bi:Hi:e?zi:Wi}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(_e.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...Xt(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=we.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>Bt(t)));i.length&&Gt(i,e,t===xi,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=Ki.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=we.find(ji);for(const i of e){const e=Ki.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Oi,xi].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Mi)?this:we.prev(this,Mi)[0]||we.next(this,Mi)[0]||we.findOne(Mi,t.delegateTarget.parentNode),o=Ki.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}fe.on(document,Ii,Mi,Ki.dataApiKeydownHandler),fe.on(document,Ii,Fi,Ki.dataApiKeydownHandler),fe.on(document,$i,Ki.clearMenus),fe.on(document,Ni,Ki.clearMenus),fe.on(document,$i,Mi,(function(t){t.preventDefault(),Ki.getOrCreateInstance(this).toggle()})),Qt(Ki);const Qi="backdrop",Xi="show",Ui=`mousedown.bs.${Qi}`,Gi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Ji={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Zi extends be{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Gi}static get DefaultType(){return Ji}static get NAME(){return Qi}show(t){if(!this._config.isVisible)return void Xt(t);this._append();const e=this._getElement();this._config.isAnimated&&qt(e),e.classList.add(Xi),this._emulateAnimation((()=>{Xt(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Xi),this._emulateAnimation((()=>{this.dispose(),Xt(t)}))):Xt(t)}dispose(){this._isAppended&&(fe.off(this._element,Ui),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=Ht(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),fe.on(t,Ui,(()=>{Xt(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){Ut(t,this._getElement(),this._config.isAnimated)}}const tn=".bs.focustrap",en=`focusin${tn}`,nn=`keydown.tab${tn}`,sn="backward",on={autofocus:!0,trapElement:null},rn={autofocus:"boolean",trapElement:"element"};class an extends be{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return on}static get DefaultType(){return rn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),fe.off(document,tn),fe.on(document,en,(t=>this._handleFocusin(t))),fe.on(document,nn,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,fe.off(document,tn))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=we.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===sn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?sn:"forward")}}const ln=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",cn=".sticky-top",hn="padding-right",dn="margin-right";class un{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,hn,(e=>e+t)),this._setElementAttributes(ln,hn,(e=>e+t)),this._setElementAttributes(cn,dn,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,hn),this._resetElementAttributes(ln,hn),this._resetElementAttributes(cn,dn)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&_e.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=_e.getDataAttribute(t,e);null!==i?(_e.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(Ft(t))e(t);else for(const i of we.find(t,this._element))e(i)}}const fn=".bs.modal",pn=`hide${fn}`,mn=`hidePrevented${fn}`,gn=`hidden${fn}`,_n=`show${fn}`,bn=`shown${fn}`,vn=`resize${fn}`,yn=`click.dismiss${fn}`,wn=`mousedown.dismiss${fn}`,En=`keydown.dismiss${fn}`,An=`click${fn}.data-api`,Tn="modal-open",Cn="show",On="modal-static",xn={backdrop:!0,focus:!0,keyboard:!0},kn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class Ln extends ve{constructor(t,e){super(t,e),this._dialog=we.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new un,this._addEventListeners()}static get Default(){return xn}static get DefaultType(){return kn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||fe.trigger(this._element,_n,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(Tn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(fe.trigger(this._element,pn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(Cn),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){fe.off(window,fn),fe.off(this._dialog,fn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Zi({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new an({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=we.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),qt(this._element),this._element.classList.add(Cn),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,fe.trigger(this._element,bn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){fe.on(this._element,En,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),fe.on(window,vn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),fe.on(this._element,wn,(t=>{fe.one(this._element,yn,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(Tn),this._resetAdjustments(),this._scrollBar.reset(),fe.trigger(this._element,gn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(fe.trigger(this._element,mn).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(On)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(On),this._queueCallback((()=>{this._element.classList.remove(On),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=Kt()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=Kt()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=Ln.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}fe.on(document,An,'[data-bs-toggle="modal"]',(function(t){const e=we.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),fe.one(e,_n,(t=>{t.defaultPrevented||fe.one(e,gn,(()=>{Bt(this)&&this.focus()}))}));const i=we.findOne(".modal.show");i&&Ln.getInstance(i).hide(),Ln.getOrCreateInstance(e).toggle(this)})),Ee(Ln),Qt(Ln);const Sn=".bs.offcanvas",Dn=".data-api",$n=`load${Sn}${Dn}`,In="show",Nn="showing",Pn="hiding",Mn=".offcanvas.show",jn=`show${Sn}`,Fn=`shown${Sn}`,Hn=`hide${Sn}`,Bn=`hidePrevented${Sn}`,Wn=`hidden${Sn}`,zn=`resize${Sn}`,Rn=`click${Sn}${Dn}`,qn=`keydown.dismiss${Sn}`,Vn={backdrop:!0,keyboard:!0,scroll:!1},Yn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class Kn extends ve{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return Vn}static get DefaultType(){return Yn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||fe.trigger(this._element,jn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new un).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Nn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(In),this._element.classList.remove(Nn),fe.trigger(this._element,Fn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(fe.trigger(this._element,Hn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add(Pn),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(In,Pn),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new un).reset(),fe.trigger(this._element,Wn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Zi({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():fe.trigger(this._element,Bn)}:null})}_initializeFocusTrap(){return new an({trapElement:this._element})}_addEventListeners(){fe.on(this._element,qn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():fe.trigger(this._element,Bn))}))}static jQueryInterface(t){return this.each((function(){const e=Kn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}fe.on(document,Rn,'[data-bs-toggle="offcanvas"]',(function(t){const e=we.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this))return;fe.one(e,Wn,(()=>{Bt(this)&&this.focus()}));const i=we.findOne(Mn);i&&i!==e&&Kn.getInstance(i).hide(),Kn.getOrCreateInstance(e).toggle(this)})),fe.on(window,$n,(()=>{for(const t of we.find(Mn))Kn.getOrCreateInstance(t).show()})),fe.on(window,zn,(()=>{for(const t of we.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&Kn.getOrCreateInstance(t).hide()})),Ee(Kn),Qt(Kn);const Qn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],dd:[],div:[],dl:[],dt:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Xn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Un=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Gn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Xn.has(i)||Boolean(Un.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Jn={allowList:Qn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Zn={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},ts={entry:"(string|element|function|null)",selector:"(string|element)"};class es extends be{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Jn}static get DefaultType(){return Zn}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},ts)}_setContent(t,e,i){const n=we.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?Ft(e)?this._putElementInTemplate(Ht(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Gn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return Xt(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const is=new Set(["sanitize","allowList","sanitizeFn"]),ns="fade",ss="show",os=".tooltip-inner",rs=".modal",as="hide.bs.modal",ls="hover",cs="focus",hs={AUTO:"auto",TOP:"top",RIGHT:Kt()?"left":"right",BOTTOM:"bottom",LEFT:Kt()?"right":"left"},ds={allowList:Qn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},us={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class fs extends ve{constructor(t,i){if(void 0===e)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,i),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return ds}static get DefaultType(){return us}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),fe.off(this._element.closest(rs),as,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=fe.trigger(this._element,this.constructor.eventName("show")),e=(zt(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),fe.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._queueCallback((()=>{fe.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!fe.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._activeTrigger.click=!1,this._activeTrigger[cs]=!1,this._activeTrigger[ls]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),fe.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ns,ss),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ns),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new es({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{[os]:this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ns)}_isShown(){return this.tip&&this.tip.classList.contains(ss)}_createPopper(t){const e=Xt(this._config.placement,[this,t,this._element]),i=hs[e.toUpperCase()];return Dt(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return Xt(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...Xt(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)fe.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ls?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ls?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");fe.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?cs:ls]=!0,e._enter()})),fe.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?cs:ls]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},fe.on(this._element.closest(rs),as,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=_e.getDataAttributes(this._element);for(const t of Object.keys(e))is.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:Ht(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=fs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(fs);const ps=".popover-header",ms=".popover-body",gs={...fs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},_s={...fs.DefaultType,content:"(null|string|element|function)"};class bs extends fs{static get Default(){return gs}static get DefaultType(){return _s}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{[ps]:this._getTitle(),[ms]:this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=bs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(bs);const vs=".bs.scrollspy",ys=`activate${vs}`,ws=`click${vs}`,Es=`load${vs}.data-api`,As="active",Ts="[href]",Cs=".nav-link",Os=`${Cs}, .nav-item > ${Cs}, .list-group-item`,xs={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},ks={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Ls extends ve{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return xs}static get DefaultType(){return ks}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=Ht(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(fe.off(this._config.target,ws),fe.on(this._config.target,ws,Ts,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=we.find(Ts,this._config.target);for(const e of t){if(!e.hash||Wt(e))continue;const t=we.findOne(decodeURI(e.hash),this._element);Bt(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(As),this._activateParents(t),fe.trigger(this._element,ys,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))we.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(As);else for(const e of we.parents(t,".nav, .list-group"))for(const t of we.prev(e,Os))t.classList.add(As)}_clearActiveClass(t){t.classList.remove(As);const e=we.find(`${Ts}.${As}`,t);for(const t of e)t.classList.remove(As)}static jQueryInterface(t){return this.each((function(){const e=Ls.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(window,Es,(()=>{for(const t of we.find('[data-bs-spy="scroll"]'))Ls.getOrCreateInstance(t)})),Qt(Ls);const Ss=".bs.tab",Ds=`hide${Ss}`,$s=`hidden${Ss}`,Is=`show${Ss}`,Ns=`shown${Ss}`,Ps=`click${Ss}`,Ms=`keydown${Ss}`,js=`load${Ss}`,Fs="ArrowLeft",Hs="ArrowRight",Bs="ArrowUp",Ws="ArrowDown",zs="Home",Rs="End",qs="active",Vs="fade",Ys="show",Ks=".dropdown-toggle",Qs=`:not(${Ks})`,Xs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Us=`.nav-link${Qs}, .list-group-item${Qs}, [role="tab"]${Qs}, ${Xs}`,Gs=`.${qs}[data-bs-toggle="tab"], .${qs}[data-bs-toggle="pill"], .${qs}[data-bs-toggle="list"]`;class Js extends ve{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),fe.on(this._element,Ms,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?fe.trigger(e,Ds,{relatedTarget:t}):null;fe.trigger(t,Is,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(qs),this._activate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),fe.trigger(t,Ns,{relatedTarget:e})):t.classList.add(Ys)}),t,t.classList.contains(Vs)))}_deactivate(t,e){t&&(t.classList.remove(qs),t.blur(),this._deactivate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),fe.trigger(t,$s,{relatedTarget:e})):t.classList.remove(Ys)}),t,t.classList.contains(Vs)))}_keydown(t){if(![Fs,Hs,Bs,Ws,zs,Rs].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!Wt(t)));let i;if([zs,Rs].includes(t.key))i=e[t.key===zs?0:e.length-1];else{const n=[Hs,Ws].includes(t.key);i=Gt(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Js.getOrCreateInstance(i).show())}_getChildren(){return we.find(Us,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=we.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=we.findOne(t,i);s&&s.classList.toggle(n,e)};n(Ks,qs),n(".dropdown-menu",Ys),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(qs)}_getInnerElement(t){return t.matches(Us)?t:we.findOne(Us,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Js.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(document,Ps,Xs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this)||Js.getOrCreateInstance(this).show()})),fe.on(window,js,(()=>{for(const t of we.find(Gs))Js.getOrCreateInstance(t)})),Qt(Js);const Zs=".bs.toast",to=`mouseover${Zs}`,eo=`mouseout${Zs}`,io=`focusin${Zs}`,no=`focusout${Zs}`,so=`hide${Zs}`,oo=`hidden${Zs}`,ro=`show${Zs}`,ao=`shown${Zs}`,lo="hide",co="show",ho="showing",uo={animation:"boolean",autohide:"boolean",delay:"number"},fo={animation:!0,autohide:!0,delay:5e3};class po extends ve{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return fo}static get DefaultType(){return uo}static get NAME(){return"toast"}show(){fe.trigger(this._element,ro).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(lo),qt(this._element),this._element.classList.add(co,ho),this._queueCallback((()=>{this._element.classList.remove(ho),fe.trigger(this._element,ao),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(fe.trigger(this._element,so).defaultPrevented||(this._element.classList.add(ho),this._queueCallback((()=>{this._element.classList.add(lo),this._element.classList.remove(ho,co),fe.trigger(this._element,oo)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(co),super.dispose()}isShown(){return this._element.classList.contains(co)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){fe.on(this._element,to,(t=>this._onInteraction(t,!0))),fe.on(this._element,eo,(t=>this._onInteraction(t,!1))),fe.on(this._element,io,(t=>this._onInteraction(t,!0))),fe.on(this._element,no,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=po.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}function mo(t){"loading"!=document.readyState?t():document.addEventListener("DOMContentLoaded",t)}Ee(po),Qt(po),mo((function(){[].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]')).map((function(t){return new fs(t,{delay:{show:500,hide:100}})}))})),mo((function(){document.getElementById("pst-back-to-top").addEventListener("click",(function(){document.body.scrollTop=0,document.documentElement.scrollTop=0}))})),mo((function(){var t=document.getElementById("pst-back-to-top"),e=document.getElementsByClassName("bd-header")[0].getBoundingClientRect();window.addEventListener("scroll",(function(){this.oldScroll>this.scrollY&&this.scrollY>e.bottom?t.style.display="block":t.style.display="none",this.oldScroll=this.scrollY}))})),window.bootstrap=i})(); +//# sourceMappingURL=bootstrap.js.map \ No newline at end of file diff --git a/docs/_static/scripts/bootstrap.js.LICENSE.txt b/docs/_static/scripts/bootstrap.js.LICENSE.txt new file mode 100644 index 0000000..28755c2 --- /dev/null +++ b/docs/_static/scripts/bootstrap.js.LICENSE.txt @@ -0,0 +1,5 @@ +/*! + * Bootstrap v5.3.3 (https://getbootstrap.com/) + * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */ diff --git a/docs/_static/scripts/bootstrap.js.map b/docs/_static/scripts/bootstrap.js.map new file mode 100644 index 0000000..e9e8158 --- /dev/null +++ b/docs/_static/scripts/bootstrap.js.map @@ -0,0 +1 @@ +{"version":3,"file":"scripts/bootstrap.js","mappings":";mBACA,IAAIA,EAAsB,CCA1BA,EAAwB,CAACC,EAASC,KACjC,IAAI,IAAIC,KAAOD,EACXF,EAAoBI,EAAEF,EAAYC,KAASH,EAAoBI,EAAEH,EAASE,IAC5EE,OAAOC,eAAeL,EAASE,EAAK,CAAEI,YAAY,EAAMC,IAAKN,EAAWC,IAE1E,ECNDH,EAAwB,CAACS,EAAKC,IAAUL,OAAOM,UAAUC,eAAeC,KAAKJ,EAAKC,GCClFV,EAAyBC,IACH,oBAAXa,QAA0BA,OAAOC,aAC1CV,OAAOC,eAAeL,EAASa,OAAOC,YAAa,CAAEC,MAAO,WAE7DX,OAAOC,eAAeL,EAAS,aAAc,CAAEe,OAAO,GAAO,01BCLvD,IAAI,EAAM,MACNC,EAAS,SACTC,EAAQ,QACRC,EAAO,OACPC,EAAO,OACPC,EAAiB,CAAC,EAAKJ,EAAQC,EAAOC,GACtCG,EAAQ,QACRC,EAAM,MACNC,EAAkB,kBAClBC,EAAW,WACXC,EAAS,SACTC,EAAY,YACZC,EAAmCP,EAAeQ,QAAO,SAAUC,EAAKC,GACjF,OAAOD,EAAIE,OAAO,CAACD,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAChE,GAAG,IACQ,EAA0B,GAAGS,OAAOX,EAAgB,CAACD,IAAOS,QAAO,SAAUC,EAAKC,GAC3F,OAAOD,EAAIE,OAAO,CAACD,EAAWA,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAC3E,GAAG,IAEQU,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAc,cACdC,EAAQ,QACRC,EAAa,aACbC,EAAiB,CAACT,EAAYC,EAAMC,EAAWC,EAAYC,EAAMC,EAAWC,EAAaC,EAAOC,GC9B5F,SAASE,EAAYC,GAClC,OAAOA,GAAWA,EAAQC,UAAY,IAAIC,cAAgB,IAC5D,CCFe,SAASC,EAAUC,GAChC,GAAY,MAARA,EACF,OAAOC,OAGT,GAAwB,oBAApBD,EAAKE,WAAkC,CACzC,IAAIC,EAAgBH,EAAKG,cACzB,OAAOA,GAAgBA,EAAcC,aAAwBH,MAC/D,CAEA,OAAOD,CACT,CCTA,SAASK,EAAUL,GAEjB,OAAOA,aADUD,EAAUC,GAAMM,SACIN,aAAgBM,OACvD,CAEA,SAASC,EAAcP,GAErB,OAAOA,aADUD,EAAUC,GAAMQ,aACIR,aAAgBQ,WACvD,CAEA,SAASC,EAAaT,GAEpB,MAA0B,oBAAfU,aAKJV,aADUD,EAAUC,GAAMU,YACIV,aAAgBU,WACvD,CCwDA,SACEC,KAAM,cACNC,SAAS,EACTC,MAAO,QACPC,GA5EF,SAAqBC,GACnB,IAAIC,EAAQD,EAAKC,MACjB3D,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIS,EAAQJ,EAAMK,OAAOV,IAAS,CAAC,EAC/BW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EACxCf,EAAUoB,EAAME,SAASP,GAExBJ,EAAcX,IAAaD,EAAYC,KAO5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUR,GACxC,IAAI3C,EAAQsD,EAAWX,IAET,IAAV3C,EACF4B,EAAQ4B,gBAAgBb,GAExBf,EAAQ6B,aAAad,GAAgB,IAAV3C,EAAiB,GAAKA,EAErD,IACF,GACF,EAoDE0D,OAlDF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MACdY,EAAgB,CAClBlD,OAAQ,CACNmD,SAAUb,EAAMc,QAAQC,SACxB5D,KAAM,IACN6D,IAAK,IACLC,OAAQ,KAEVC,MAAO,CACLL,SAAU,YAEZlD,UAAW,CAAC,GASd,OAPAtB,OAAOkE,OAAOP,EAAME,SAASxC,OAAO0C,MAAOQ,EAAclD,QACzDsC,EAAMK,OAASO,EAEXZ,EAAME,SAASgB,OACjB7E,OAAOkE,OAAOP,EAAME,SAASgB,MAAMd,MAAOQ,EAAcM,OAGnD,WACL7E,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIf,EAAUoB,EAAME,SAASP,GACzBW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EAGxCS,EAFkB/D,OAAO4D,KAAKD,EAAMK,OAAOzD,eAAe+C,GAAQK,EAAMK,OAAOV,GAAQiB,EAAcjB,IAE7E9B,QAAO,SAAUuC,EAAOe,GAElD,OADAf,EAAMe,GAAY,GACXf,CACT,GAAG,CAAC,GAECb,EAAcX,IAAaD,EAAYC,KAI5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUiB,GACxCxC,EAAQ4B,gBAAgBY,EAC1B,IACF,GACF,CACF,EASEC,SAAU,CAAC,kBCjFE,SAASC,EAAiBvD,GACvC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCHO,IAAI,EAAMC,KAAKC,IACX,EAAMD,KAAKE,IACXC,EAAQH,KAAKG,MCFT,SAASC,IACtB,IAAIC,EAASC,UAAUC,cAEvB,OAAc,MAAVF,GAAkBA,EAAOG,QAAUC,MAAMC,QAAQL,EAAOG,QACnDH,EAAOG,OAAOG,KAAI,SAAUC,GACjC,OAAOA,EAAKC,MAAQ,IAAMD,EAAKE,OACjC,IAAGC,KAAK,KAGHT,UAAUU,SACnB,CCTe,SAASC,IACtB,OAAQ,iCAAiCC,KAAKd,IAChD,CCCe,SAASe,EAAsB/D,EAASgE,EAAcC,QAC9C,IAAjBD,IACFA,GAAe,QAGO,IAApBC,IACFA,GAAkB,GAGpB,IAAIC,EAAalE,EAAQ+D,wBACrBI,EAAS,EACTC,EAAS,EAETJ,GAAgBrD,EAAcX,KAChCmE,EAASnE,EAAQqE,YAAc,GAAItB,EAAMmB,EAAWI,OAAStE,EAAQqE,aAAmB,EACxFD,EAASpE,EAAQuE,aAAe,GAAIxB,EAAMmB,EAAWM,QAAUxE,EAAQuE,cAAoB,GAG7F,IACIE,GADOhE,EAAUT,GAAWG,EAAUH,GAAWK,QAC3BoE,eAEtBC,GAAoBb,KAAsBI,EAC1CU,GAAKT,EAAW3F,MAAQmG,GAAoBD,EAAiBA,EAAeG,WAAa,IAAMT,EAC/FU,GAAKX,EAAW9B,KAAOsC,GAAoBD,EAAiBA,EAAeK,UAAY,IAAMV,EAC7FE,EAAQJ,EAAWI,MAAQH,EAC3BK,EAASN,EAAWM,OAASJ,EACjC,MAAO,CACLE,MAAOA,EACPE,OAAQA,EACRpC,IAAKyC,EACLvG,MAAOqG,EAAIL,EACXjG,OAAQwG,EAAIL,EACZjG,KAAMoG,EACNA,EAAGA,EACHE,EAAGA,EAEP,CCrCe,SAASE,EAAc/E,GACpC,IAAIkE,EAAaH,EAAsB/D,GAGnCsE,EAAQtE,EAAQqE,YAChBG,EAASxE,EAAQuE,aAUrB,OARI3B,KAAKoC,IAAId,EAAWI,MAAQA,IAAU,IACxCA,EAAQJ,EAAWI,OAGjB1B,KAAKoC,IAAId,EAAWM,OAASA,IAAW,IAC1CA,EAASN,EAAWM,QAGf,CACLG,EAAG3E,EAAQ4E,WACXC,EAAG7E,EAAQ8E,UACXR,MAAOA,EACPE,OAAQA,EAEZ,CCvBe,SAASS,EAASC,EAAQC,GACvC,IAAIC,EAAWD,EAAME,aAAeF,EAAME,cAE1C,GAAIH,EAAOD,SAASE,GAClB,OAAO,EAEJ,GAAIC,GAAYvE,EAAauE,GAAW,CACzC,IAAIE,EAAOH,EAEX,EAAG,CACD,GAAIG,GAAQJ,EAAOK,WAAWD,GAC5B,OAAO,EAITA,EAAOA,EAAKE,YAAcF,EAAKG,IACjC,OAASH,EACX,CAGF,OAAO,CACT,CCrBe,SAAS,EAAiBtF,GACvC,OAAOG,EAAUH,GAAS0F,iBAAiB1F,EAC7C,CCFe,SAAS2F,EAAe3F,GACrC,MAAO,CAAC,QAAS,KAAM,MAAM4F,QAAQ7F,EAAYC,KAAa,CAChE,CCFe,SAAS6F,EAAmB7F,GAEzC,QAASS,EAAUT,GAAWA,EAAQO,cACtCP,EAAQ8F,WAAazF,OAAOyF,UAAUC,eACxC,CCFe,SAASC,EAAchG,GACpC,MAA6B,SAAzBD,EAAYC,GACPA,EAMPA,EAAQiG,cACRjG,EAAQwF,aACR3E,EAAab,GAAWA,EAAQyF,KAAO,OAEvCI,EAAmB7F,EAGvB,CCVA,SAASkG,EAAoBlG,GAC3B,OAAKW,EAAcX,IACoB,UAAvC,EAAiBA,GAASiC,SAInBjC,EAAQmG,aAHN,IAIX,CAwCe,SAASC,EAAgBpG,GAItC,IAHA,IAAIK,EAASF,EAAUH,GACnBmG,EAAeD,EAAoBlG,GAEhCmG,GAAgBR,EAAeQ,IAA6D,WAA5C,EAAiBA,GAAclE,UACpFkE,EAAeD,EAAoBC,GAGrC,OAAIA,IAA+C,SAA9BpG,EAAYoG,IAA0D,SAA9BpG,EAAYoG,IAAwE,WAA5C,EAAiBA,GAAclE,UAC3H5B,EAGF8F,GAhDT,SAA4BnG,GAC1B,IAAIqG,EAAY,WAAWvC,KAAKd,KAGhC,GAFW,WAAWc,KAAKd,MAEfrC,EAAcX,IAII,UAFX,EAAiBA,GAEnBiC,SACb,OAAO,KAIX,IAAIqE,EAAcN,EAAchG,GAMhC,IAJIa,EAAayF,KACfA,EAAcA,EAAYb,MAGrB9E,EAAc2F,IAAgB,CAAC,OAAQ,QAAQV,QAAQ7F,EAAYuG,IAAgB,GAAG,CAC3F,IAAIC,EAAM,EAAiBD,GAI3B,GAAsB,SAAlBC,EAAIC,WAA4C,SAApBD,EAAIE,aAA0C,UAAhBF,EAAIG,UAAiF,IAA1D,CAAC,YAAa,eAAed,QAAQW,EAAII,aAAsBN,GAAgC,WAAnBE,EAAII,YAA2BN,GAAaE,EAAIK,QAAyB,SAAfL,EAAIK,OACjO,OAAON,EAEPA,EAAcA,EAAYd,UAE9B,CAEA,OAAO,IACT,CAgByBqB,CAAmB7G,IAAYK,CACxD,CCpEe,SAASyG,EAAyB3H,GAC/C,MAAO,CAAC,MAAO,UAAUyG,QAAQzG,IAAc,EAAI,IAAM,GAC3D,CCDO,SAAS4H,EAAOjE,EAAK1E,EAAOyE,GACjC,OAAO,EAAQC,EAAK,EAAQ1E,EAAOyE,GACrC,CCFe,SAASmE,EAAmBC,GACzC,OAAOxJ,OAAOkE,OAAO,CAAC,ECDf,CACLS,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GDHuC0I,EACjD,CEHe,SAASC,EAAgB9I,EAAOiD,GAC7C,OAAOA,EAAKpC,QAAO,SAAUkI,EAAS5J,GAEpC,OADA4J,EAAQ5J,GAAOa,EACR+I,CACT,GAAG,CAAC,EACN,CC4EA,SACEpG,KAAM,QACNC,SAAS,EACTC,MAAO,OACPC,GApEF,SAAeC,GACb,IAAIiG,EAEAhG,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZmB,EAAUf,EAAKe,QACfmF,EAAejG,EAAME,SAASgB,MAC9BgF,EAAgBlG,EAAMmG,cAAcD,cACpCE,EAAgB9E,EAAiBtB,EAAMjC,WACvCsI,EAAOX,EAAyBU,GAEhCE,EADa,CAACnJ,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAClC,SAAW,QAElC,GAAKH,GAAiBC,EAAtB,CAIA,IAAIL,EAxBgB,SAAyBU,EAASvG,GAItD,OAAO4F,EAAsC,iBAH7CW,EAA6B,mBAAZA,EAAyBA,EAAQlK,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CAC/EzI,UAAWiC,EAAMjC,aACbwI,GACkDA,EAAUT,EAAgBS,EAASlJ,GAC7F,CAmBsBoJ,CAAgB3F,EAAQyF,QAASvG,GACjD0G,EAAY/C,EAAcsC,GAC1BU,EAAmB,MAATN,EAAe,EAAMlJ,EAC/ByJ,EAAmB,MAATP,EAAepJ,EAASC,EAClC2J,EAAU7G,EAAMwG,MAAM7I,UAAU2I,GAAOtG,EAAMwG,MAAM7I,UAAU0I,GAAQH,EAAcG,GAAQrG,EAAMwG,MAAM9I,OAAO4I,GAC9GQ,EAAYZ,EAAcG,GAAQrG,EAAMwG,MAAM7I,UAAU0I,GACxDU,EAAoB/B,EAAgBiB,GACpCe,EAAaD,EAA6B,MAATV,EAAeU,EAAkBE,cAAgB,EAAIF,EAAkBG,aAAe,EAAI,EAC3HC,EAAoBN,EAAU,EAAIC,EAAY,EAG9CpF,EAAMmE,EAAcc,GACpBlF,EAAMuF,EAAaN,EAAUJ,GAAOT,EAAce,GAClDQ,EAASJ,EAAa,EAAIN,EAAUJ,GAAO,EAAIa,EAC/CE,EAAS1B,EAAOjE,EAAK0F,EAAQ3F,GAE7B6F,EAAWjB,EACfrG,EAAMmG,cAAcxG,KAASqG,EAAwB,CAAC,GAAyBsB,GAAYD,EAAQrB,EAAsBuB,aAAeF,EAASD,EAAQpB,EAnBzJ,CAoBF,EAkCEtF,OAhCF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MAEdwH,EADU7G,EAAMG,QACWlC,QAC3BqH,OAAoC,IAArBuB,EAA8B,sBAAwBA,EAErD,MAAhBvB,IAKwB,iBAAjBA,IACTA,EAAejG,EAAME,SAASxC,OAAO+J,cAAcxB,MAOhDpC,EAAS7D,EAAME,SAASxC,OAAQuI,KAIrCjG,EAAME,SAASgB,MAAQ+E,EACzB,EASE5E,SAAU,CAAC,iBACXqG,iBAAkB,CAAC,oBCxFN,SAASC,EAAa5J,GACnC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCOA,IAAIqG,GAAa,CACf5G,IAAK,OACL9D,MAAO,OACPD,OAAQ,OACRE,KAAM,QAeD,SAAS0K,GAAYlH,GAC1B,IAAImH,EAEApK,EAASiD,EAAMjD,OACfqK,EAAapH,EAAMoH,WACnBhK,EAAY4C,EAAM5C,UAClBiK,EAAYrH,EAAMqH,UAClBC,EAAUtH,EAAMsH,QAChBpH,EAAWF,EAAME,SACjBqH,EAAkBvH,EAAMuH,gBACxBC,EAAWxH,EAAMwH,SACjBC,EAAezH,EAAMyH,aACrBC,EAAU1H,EAAM0H,QAChBC,EAAaL,EAAQ1E,EACrBA,OAAmB,IAAf+E,EAAwB,EAAIA,EAChCC,EAAaN,EAAQxE,EACrBA,OAAmB,IAAf8E,EAAwB,EAAIA,EAEhCC,EAAgC,mBAAjBJ,EAA8BA,EAAa,CAC5D7E,EAAGA,EACHE,IACG,CACHF,EAAGA,EACHE,GAGFF,EAAIiF,EAAMjF,EACVE,EAAI+E,EAAM/E,EACV,IAAIgF,EAAOR,EAAQrL,eAAe,KAC9B8L,EAAOT,EAAQrL,eAAe,KAC9B+L,EAAQxL,EACRyL,EAAQ,EACRC,EAAM5J,OAEV,GAAIkJ,EAAU,CACZ,IAAIpD,EAAeC,EAAgBtH,GAC/BoL,EAAa,eACbC,EAAY,cAEZhE,IAAiBhG,EAAUrB,IAGmB,WAA5C,EAFJqH,EAAeN,EAAmB/G,IAECmD,UAAsC,aAAbA,IAC1DiI,EAAa,eACbC,EAAY,gBAOZhL,IAAc,IAAQA,IAAcZ,GAAQY,IAAcb,IAAU8K,IAAczK,KACpFqL,EAAQ3L,EAGRwG,IAFc4E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeD,OACzF2B,EAAa+D,IACEf,EAAW3E,OAC1BK,GAAKyE,EAAkB,GAAK,GAG1BnK,IAAcZ,IAASY,IAAc,GAAOA,IAAcd,GAAW+K,IAAczK,KACrFoL,EAAQzL,EAGRqG,IAFc8E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeH,MACzF6B,EAAagE,IACEhB,EAAW7E,MAC1BK,GAAK2E,EAAkB,GAAK,EAEhC,CAEA,IAgBMc,EAhBFC,EAAe5M,OAAOkE,OAAO,CAC/BM,SAAUA,GACTsH,GAAYP,IAEXsB,GAAyB,IAAjBd,EAlFd,SAA2BrI,EAAM8I,GAC/B,IAAItF,EAAIxD,EAAKwD,EACTE,EAAI1D,EAAK0D,EACT0F,EAAMN,EAAIO,kBAAoB,EAClC,MAAO,CACL7F,EAAG5B,EAAM4B,EAAI4F,GAAOA,GAAO,EAC3B1F,EAAG9B,EAAM8B,EAAI0F,GAAOA,GAAO,EAE/B,CA0EsCE,CAAkB,CACpD9F,EAAGA,EACHE,GACC1E,EAAUrB,IAAW,CACtB6F,EAAGA,EACHE,GAMF,OAHAF,EAAI2F,EAAM3F,EACVE,EAAIyF,EAAMzF,EAENyE,EAGK7L,OAAOkE,OAAO,CAAC,EAAG0I,IAAeD,EAAiB,CAAC,GAAkBJ,GAASF,EAAO,IAAM,GAAIM,EAAeL,GAASF,EAAO,IAAM,GAAIO,EAAe5D,WAAayD,EAAIO,kBAAoB,IAAM,EAAI,aAAe7F,EAAI,OAASE,EAAI,MAAQ,eAAiBF,EAAI,OAASE,EAAI,SAAUuF,IAG5R3M,OAAOkE,OAAO,CAAC,EAAG0I,IAAenB,EAAkB,CAAC,GAAmBc,GAASF,EAAOjF,EAAI,KAAO,GAAIqE,EAAgBa,GAASF,EAAOlF,EAAI,KAAO,GAAIuE,EAAgB1C,UAAY,GAAI0C,GAC9L,CA4CA,UACEnI,KAAM,gBACNC,SAAS,EACTC,MAAO,cACPC,GA9CF,SAAuBwJ,GACrB,IAAItJ,EAAQsJ,EAAMtJ,MACdc,EAAUwI,EAAMxI,QAChByI,EAAwBzI,EAAQoH,gBAChCA,OAA4C,IAA1BqB,GAA0CA,EAC5DC,EAAoB1I,EAAQqH,SAC5BA,OAAiC,IAAtBqB,GAAsCA,EACjDC,EAAwB3I,EAAQsH,aAChCA,OAAyC,IAA1BqB,GAA0CA,EACzDR,EAAe,CACjBlL,UAAWuD,EAAiBtB,EAAMjC,WAClCiK,UAAWL,EAAa3H,EAAMjC,WAC9BL,OAAQsC,EAAME,SAASxC,OACvBqK,WAAY/H,EAAMwG,MAAM9I,OACxBwK,gBAAiBA,EACjBG,QAAoC,UAA3BrI,EAAMc,QAAQC,UAGgB,MAArCf,EAAMmG,cAAcD,gBACtBlG,EAAMK,OAAO3C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAO3C,OAAQmK,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACvGhB,QAASjI,EAAMmG,cAAcD,cAC7BrF,SAAUb,EAAMc,QAAQC,SACxBoH,SAAUA,EACVC,aAAcA,OAIe,MAA7BpI,EAAMmG,cAAcjF,QACtBlB,EAAMK,OAAOa,MAAQ7E,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAOa,MAAO2G,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACrGhB,QAASjI,EAAMmG,cAAcjF,MAC7BL,SAAU,WACVsH,UAAU,EACVC,aAAcA,OAIlBpI,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,wBAAyBsC,EAAMjC,WAEnC,EAQE2L,KAAM,CAAC,GCrKT,IAAIC,GAAU,CACZA,SAAS,GAsCX,UACEhK,KAAM,iBACNC,SAAS,EACTC,MAAO,QACPC,GAAI,WAAe,EACnBY,OAxCF,SAAgBX,GACd,IAAIC,EAAQD,EAAKC,MACb4J,EAAW7J,EAAK6J,SAChB9I,EAAUf,EAAKe,QACf+I,EAAkB/I,EAAQgJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAkBjJ,EAAQkJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7C9K,EAASF,EAAUiB,EAAME,SAASxC,QAClCuM,EAAgB,GAAGjM,OAAOgC,EAAMiK,cAActM,UAAWqC,EAAMiK,cAAcvM,QAYjF,OAVIoM,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaC,iBAAiB,SAAUP,EAASQ,OAAQT,GAC3D,IAGEK,GACF/K,EAAOkL,iBAAiB,SAAUP,EAASQ,OAAQT,IAG9C,WACDG,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaG,oBAAoB,SAAUT,EAASQ,OAAQT,GAC9D,IAGEK,GACF/K,EAAOoL,oBAAoB,SAAUT,EAASQ,OAAQT,GAE1D,CACF,EASED,KAAM,CAAC,GC/CT,IAAIY,GAAO,CACTnN,KAAM,QACND,MAAO,OACPD,OAAQ,MACR+D,IAAK,UAEQ,SAASuJ,GAAqBxM,GAC3C,OAAOA,EAAUyM,QAAQ,0BAA0B,SAAUC,GAC3D,OAAOH,GAAKG,EACd,GACF,CCVA,IAAI,GAAO,CACTnN,MAAO,MACPC,IAAK,SAEQ,SAASmN,GAA8B3M,GACpD,OAAOA,EAAUyM,QAAQ,cAAc,SAAUC,GAC/C,OAAO,GAAKA,EACd,GACF,CCPe,SAASE,GAAgB3L,GACtC,IAAI6J,EAAM9J,EAAUC,GAGpB,MAAO,CACL4L,WAHe/B,EAAIgC,YAInBC,UAHcjC,EAAIkC,YAKtB,CCNe,SAASC,GAAoBpM,GAQ1C,OAAO+D,EAAsB8B,EAAmB7F,IAAUzB,KAAOwN,GAAgB/L,GAASgM,UAC5F,CCXe,SAASK,GAAerM,GAErC,IAAIsM,EAAoB,EAAiBtM,GACrCuM,EAAWD,EAAkBC,SAC7BC,EAAYF,EAAkBE,UAC9BC,EAAYH,EAAkBG,UAElC,MAAO,6BAA6B3I,KAAKyI,EAAWE,EAAYD,EAClE,CCLe,SAASE,GAAgBtM,GACtC,MAAI,CAAC,OAAQ,OAAQ,aAAawF,QAAQ7F,EAAYK,KAAU,EAEvDA,EAAKG,cAAcoM,KAGxBhM,EAAcP,IAASiM,GAAejM,GACjCA,EAGFsM,GAAgB1G,EAAc5F,GACvC,CCJe,SAASwM,GAAkB5M,EAAS6M,GACjD,IAAIC,OAES,IAATD,IACFA,EAAO,IAGT,IAAIvB,EAAeoB,GAAgB1M,GAC/B+M,EAASzB,KAAqE,OAAlDwB,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,MACpH1C,EAAM9J,EAAUmL,GAChB0B,EAASD,EAAS,CAAC9C,GAAK7K,OAAO6K,EAAIxF,gBAAkB,GAAI4H,GAAef,GAAgBA,EAAe,IAAMA,EAC7G2B,EAAcJ,EAAKzN,OAAO4N,GAC9B,OAAOD,EAASE,EAChBA,EAAY7N,OAAOwN,GAAkB5G,EAAcgH,IACrD,CCzBe,SAASE,GAAiBC,GACvC,OAAO1P,OAAOkE,OAAO,CAAC,EAAGwL,EAAM,CAC7B5O,KAAM4O,EAAKxI,EACXvC,IAAK+K,EAAKtI,EACVvG,MAAO6O,EAAKxI,EAAIwI,EAAK7I,MACrBjG,OAAQ8O,EAAKtI,EAAIsI,EAAK3I,QAE1B,CCqBA,SAAS4I,GAA2BpN,EAASqN,EAAgBlL,GAC3D,OAAOkL,IAAmBxO,EAAWqO,GCzBxB,SAAyBlN,EAASmC,GAC/C,IAAI8H,EAAM9J,EAAUH,GAChBsN,EAAOzH,EAAmB7F,GAC1ByE,EAAiBwF,EAAIxF,eACrBH,EAAQgJ,EAAKhF,YACb9D,EAAS8I,EAAKjF,aACd1D,EAAI,EACJE,EAAI,EAER,GAAIJ,EAAgB,CAClBH,EAAQG,EAAeH,MACvBE,EAASC,EAAeD,OACxB,IAAI+I,EAAiB1J,KAEjB0J,IAAmBA,GAA+B,UAAbpL,KACvCwC,EAAIF,EAAeG,WACnBC,EAAIJ,EAAeK,UAEvB,CAEA,MAAO,CACLR,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EAAIyH,GAAoBpM,GAC3B6E,EAAGA,EAEP,CDDwD2I,CAAgBxN,EAASmC,IAAa1B,EAAU4M,GAdxG,SAAoCrN,EAASmC,GAC3C,IAAIgL,EAAOpJ,EAAsB/D,GAAS,EAAoB,UAAbmC,GASjD,OARAgL,EAAK/K,IAAM+K,EAAK/K,IAAMpC,EAAQyN,UAC9BN,EAAK5O,KAAO4O,EAAK5O,KAAOyB,EAAQ0N,WAChCP,EAAK9O,OAAS8O,EAAK/K,IAAMpC,EAAQqI,aACjC8E,EAAK7O,MAAQ6O,EAAK5O,KAAOyB,EAAQsI,YACjC6E,EAAK7I,MAAQtE,EAAQsI,YACrB6E,EAAK3I,OAASxE,EAAQqI,aACtB8E,EAAKxI,EAAIwI,EAAK5O,KACd4O,EAAKtI,EAAIsI,EAAK/K,IACP+K,CACT,CAG0HQ,CAA2BN,EAAgBlL,GAAY+K,GEtBlK,SAAyBlN,GACtC,IAAI8M,EAEAQ,EAAOzH,EAAmB7F,GAC1B4N,EAAY7B,GAAgB/L,GAC5B2M,EAA0D,OAAlDG,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,KAChGrI,EAAQ,EAAIgJ,EAAKO,YAAaP,EAAKhF,YAAaqE,EAAOA,EAAKkB,YAAc,EAAGlB,EAAOA,EAAKrE,YAAc,GACvG9D,EAAS,EAAI8I,EAAKQ,aAAcR,EAAKjF,aAAcsE,EAAOA,EAAKmB,aAAe,EAAGnB,EAAOA,EAAKtE,aAAe,GAC5G1D,GAAKiJ,EAAU5B,WAAaI,GAAoBpM,GAChD6E,GAAK+I,EAAU1B,UAMnB,MAJiD,QAA7C,EAAiBS,GAAQW,GAAMS,YACjCpJ,GAAK,EAAI2I,EAAKhF,YAAaqE,EAAOA,EAAKrE,YAAc,GAAKhE,GAGrD,CACLA,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EACHE,EAAGA,EAEP,CFCkMmJ,CAAgBnI,EAAmB7F,IACrO,CG1Be,SAASiO,GAAe9M,GACrC,IAOIkI,EAPAtK,EAAYoC,EAAKpC,UACjBiB,EAAUmB,EAAKnB,QACfb,EAAYgC,EAAKhC,UACjBqI,EAAgBrI,EAAYuD,EAAiBvD,GAAa,KAC1DiK,EAAYjK,EAAY4J,EAAa5J,GAAa,KAClD+O,EAAUnP,EAAU4F,EAAI5F,EAAUuF,MAAQ,EAAItE,EAAQsE,MAAQ,EAC9D6J,EAAUpP,EAAU8F,EAAI9F,EAAUyF,OAAS,EAAIxE,EAAQwE,OAAS,EAGpE,OAAQgD,GACN,KAAK,EACH6B,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI7E,EAAQwE,QAE3B,MAEF,KAAKnG,EACHgL,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI9F,EAAUyF,QAE7B,MAEF,KAAKlG,EACH+K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI5F,EAAUuF,MAC3BO,EAAGsJ,GAEL,MAEF,KAAK5P,EACH8K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI3E,EAAQsE,MACzBO,EAAGsJ,GAEL,MAEF,QACE9E,EAAU,CACR1E,EAAG5F,EAAU4F,EACbE,EAAG9F,EAAU8F,GAInB,IAAIuJ,EAAW5G,EAAgBV,EAAyBU,GAAiB,KAEzE,GAAgB,MAAZ4G,EAAkB,CACpB,IAAI1G,EAAmB,MAAb0G,EAAmB,SAAW,QAExC,OAAQhF,GACN,KAAK1K,EACH2K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAC7E,MAEF,KAAK/I,EACH0K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAKnF,CAEA,OAAO2B,CACT,CC3De,SAASgF,GAAejN,EAAOc,QAC5B,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACXqM,EAAqBD,EAASnP,UAC9BA,OAAmC,IAAvBoP,EAAgCnN,EAAMjC,UAAYoP,EAC9DC,EAAoBF,EAASnM,SAC7BA,OAAiC,IAAtBqM,EAA+BpN,EAAMe,SAAWqM,EAC3DC,EAAoBH,EAASI,SAC7BA,OAAiC,IAAtBD,EAA+B7P,EAAkB6P,EAC5DE,EAAwBL,EAASM,aACjCA,OAAyC,IAA1BD,EAAmC9P,EAAW8P,EAC7DE,EAAwBP,EAASQ,eACjCA,OAA2C,IAA1BD,EAAmC/P,EAAS+P,EAC7DE,EAAuBT,EAASU,YAChCA,OAAuC,IAAzBD,GAA0CA,EACxDE,EAAmBX,EAAS3G,QAC5BA,OAA+B,IAArBsH,EAA8B,EAAIA,EAC5ChI,EAAgBD,EAAsC,iBAAZW,EAAuBA,EAAUT,EAAgBS,EAASlJ,IACpGyQ,EAAaJ,IAAmBhQ,EAASC,EAAYD,EACrDqK,EAAa/H,EAAMwG,MAAM9I,OACzBkB,EAAUoB,EAAME,SAAS0N,EAAcE,EAAaJ,GACpDK,EJkBS,SAAyBnP,EAAS0O,EAAUE,EAAczM,GACvE,IAAIiN,EAAmC,oBAAbV,EAlB5B,SAA4B1O,GAC1B,IAAIpB,EAAkBgO,GAAkB5G,EAAchG,IAElDqP,EADoB,CAAC,WAAY,SAASzJ,QAAQ,EAAiB5F,GAASiC,WAAa,GACnDtB,EAAcX,GAAWoG,EAAgBpG,GAAWA,EAE9F,OAAKS,EAAU4O,GAKRzQ,EAAgBgI,QAAO,SAAUyG,GACtC,OAAO5M,EAAU4M,IAAmBpI,EAASoI,EAAgBgC,IAAmD,SAAhCtP,EAAYsN,EAC9F,IANS,EAOX,CAK6DiC,CAAmBtP,GAAW,GAAGZ,OAAOsP,GAC/F9P,EAAkB,GAAGQ,OAAOgQ,EAAqB,CAACR,IAClDW,EAAsB3Q,EAAgB,GACtC4Q,EAAe5Q,EAAgBK,QAAO,SAAUwQ,EAASpC,GAC3D,IAAIF,EAAOC,GAA2BpN,EAASqN,EAAgBlL,GAK/D,OAJAsN,EAAQrN,IAAM,EAAI+K,EAAK/K,IAAKqN,EAAQrN,KACpCqN,EAAQnR,MAAQ,EAAI6O,EAAK7O,MAAOmR,EAAQnR,OACxCmR,EAAQpR,OAAS,EAAI8O,EAAK9O,OAAQoR,EAAQpR,QAC1CoR,EAAQlR,KAAO,EAAI4O,EAAK5O,KAAMkR,EAAQlR,MAC/BkR,CACT,GAAGrC,GAA2BpN,EAASuP,EAAqBpN,IAK5D,OAJAqN,EAAalL,MAAQkL,EAAalR,MAAQkR,EAAajR,KACvDiR,EAAahL,OAASgL,EAAanR,OAASmR,EAAapN,IACzDoN,EAAa7K,EAAI6K,EAAajR,KAC9BiR,EAAa3K,EAAI2K,EAAapN,IACvBoN,CACT,CInC2BE,CAAgBjP,EAAUT,GAAWA,EAAUA,EAAQ2P,gBAAkB9J,EAAmBzE,EAAME,SAASxC,QAAS4P,EAAUE,EAAczM,GACjKyN,EAAsB7L,EAAsB3C,EAAME,SAASvC,WAC3DuI,EAAgB2G,GAAe,CACjClP,UAAW6Q,EACX5P,QAASmJ,EACThH,SAAU,WACVhD,UAAWA,IAET0Q,EAAmB3C,GAAiBzP,OAAOkE,OAAO,CAAC,EAAGwH,EAAY7B,IAClEwI,EAAoBhB,IAAmBhQ,EAAS+Q,EAAmBD,EAGnEG,EAAkB,CACpB3N,IAAK+M,EAAmB/M,IAAM0N,EAAkB1N,IAAM6E,EAAc7E,IACpE/D,OAAQyR,EAAkBzR,OAAS8Q,EAAmB9Q,OAAS4I,EAAc5I,OAC7EE,KAAM4Q,EAAmB5Q,KAAOuR,EAAkBvR,KAAO0I,EAAc1I,KACvED,MAAOwR,EAAkBxR,MAAQ6Q,EAAmB7Q,MAAQ2I,EAAc3I,OAExE0R,EAAa5O,EAAMmG,cAAckB,OAErC,GAAIqG,IAAmBhQ,GAAUkR,EAAY,CAC3C,IAAIvH,EAASuH,EAAW7Q,GACxB1B,OAAO4D,KAAK0O,GAAiBxO,SAAQ,SAAUhE,GAC7C,IAAI0S,EAAW,CAAC3R,EAAOD,GAAQuH,QAAQrI,IAAQ,EAAI,GAAK,EACpDkK,EAAO,CAAC,EAAKpJ,GAAQuH,QAAQrI,IAAQ,EAAI,IAAM,IACnDwS,EAAgBxS,IAAQkL,EAAOhB,GAAQwI,CACzC,GACF,CAEA,OAAOF,CACT,CCyEA,UACEhP,KAAM,OACNC,SAAS,EACTC,MAAO,OACPC,GA5HF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KAEhB,IAAIK,EAAMmG,cAAcxG,GAAMmP,MAA9B,CAoCA,IAhCA,IAAIC,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAqCA,EACpDG,EAA8BtO,EAAQuO,mBACtC9I,EAAUzF,EAAQyF,QAClB+G,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtB0B,EAAwBxO,EAAQyO,eAChCA,OAA2C,IAA1BD,GAA0CA,EAC3DE,EAAwB1O,EAAQ0O,sBAChCC,EAAqBzP,EAAMc,QAAQ/C,UACnCqI,EAAgB9E,EAAiBmO,GAEjCJ,EAAqBD,IADHhJ,IAAkBqJ,GACqCF,EAjC/E,SAAuCxR,GACrC,GAAIuD,EAAiBvD,KAAeX,EAClC,MAAO,GAGT,IAAIsS,EAAoBnF,GAAqBxM,GAC7C,MAAO,CAAC2M,GAA8B3M,GAAY2R,EAAmBhF,GAA8BgF,GACrG,CA0B6IC,CAA8BF,GAA3E,CAAClF,GAAqBkF,KAChHG,EAAa,CAACH,GAAoBzR,OAAOqR,GAAoBxR,QAAO,SAAUC,EAAKC,GACrF,OAAOD,EAAIE,OAAOsD,EAAiBvD,KAAeX,ECvCvC,SAA8B4C,EAAOc,QAClC,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACX/C,EAAYmP,EAASnP,UACrBuP,EAAWJ,EAASI,SACpBE,EAAeN,EAASM,aACxBjH,EAAU2G,EAAS3G,QACnBgJ,EAAiBrC,EAASqC,eAC1BM,EAAwB3C,EAASsC,sBACjCA,OAAkD,IAA1BK,EAAmC,EAAgBA,EAC3E7H,EAAYL,EAAa5J,GACzB6R,EAAa5H,EAAYuH,EAAiB3R,EAAsBA,EAAoB4H,QAAO,SAAUzH,GACvG,OAAO4J,EAAa5J,KAAeiK,CACrC,IAAK3K,EACDyS,EAAoBF,EAAWpK,QAAO,SAAUzH,GAClD,OAAOyR,EAAsBhL,QAAQzG,IAAc,CACrD,IAEiC,IAA7B+R,EAAkBC,SACpBD,EAAoBF,GAItB,IAAII,EAAYF,EAAkBjS,QAAO,SAAUC,EAAKC,GAOtD,OANAD,EAAIC,GAAakP,GAAejN,EAAO,CACrCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,IACRjF,EAAiBvD,IACbD,CACT,GAAG,CAAC,GACJ,OAAOzB,OAAO4D,KAAK+P,GAAWC,MAAK,SAAUC,EAAGC,GAC9C,OAAOH,EAAUE,GAAKF,EAAUG,EAClC,GACF,CDC6DC,CAAqBpQ,EAAO,CACnFjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTgJ,eAAgBA,EAChBC,sBAAuBA,IACpBzR,EACP,GAAG,IACCsS,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzB4S,EAAY,IAAIC,IAChBC,GAAqB,EACrBC,EAAwBb,EAAW,GAE9Bc,EAAI,EAAGA,EAAId,EAAWG,OAAQW,IAAK,CAC1C,IAAI3S,EAAY6R,EAAWc,GAEvBC,EAAiBrP,EAAiBvD,GAElC6S,EAAmBjJ,EAAa5J,KAAeT,EAC/CuT,EAAa,CAAC,EAAK5T,GAAQuH,QAAQmM,IAAmB,EACtDrK,EAAMuK,EAAa,QAAU,SAC7B1F,EAAW8B,GAAejN,EAAO,CACnCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdI,YAAaA,EACbrH,QAASA,IAEPuK,EAAoBD,EAAaD,EAAmB1T,EAAQC,EAAOyT,EAAmB3T,EAAS,EAE/FoT,EAAc/J,GAAOyB,EAAWzB,KAClCwK,EAAoBvG,GAAqBuG,IAG3C,IAAIC,EAAmBxG,GAAqBuG,GACxCE,EAAS,GAUb,GARIhC,GACFgC,EAAOC,KAAK9F,EAASwF,IAAmB,GAGtCxB,GACF6B,EAAOC,KAAK9F,EAAS2F,IAAsB,EAAG3F,EAAS4F,IAAqB,GAG1EC,EAAOE,OAAM,SAAUC,GACzB,OAAOA,CACT,IAAI,CACFV,EAAwB1S,EACxByS,GAAqB,EACrB,KACF,CAEAF,EAAUc,IAAIrT,EAAWiT,EAC3B,CAEA,GAAIR,EAqBF,IAnBA,IAEIa,EAAQ,SAAeC,GACzB,IAAIC,EAAmB3B,EAAW4B,MAAK,SAAUzT,GAC/C,IAAIiT,EAASV,EAAU9T,IAAIuB,GAE3B,GAAIiT,EACF,OAAOA,EAAOS,MAAM,EAAGH,GAAIJ,OAAM,SAAUC,GACzC,OAAOA,CACT,GAEJ,IAEA,GAAII,EAEF,OADAd,EAAwBc,EACjB,OAEX,EAESD,EAnBY/B,EAAiB,EAAI,EAmBZ+B,EAAK,GAGpB,UAFFD,EAAMC,GADmBA,KAOpCtR,EAAMjC,YAAc0S,IACtBzQ,EAAMmG,cAAcxG,GAAMmP,OAAQ,EAClC9O,EAAMjC,UAAY0S,EAClBzQ,EAAM0R,OAAQ,EA5GhB,CA8GF,EAQEhK,iBAAkB,CAAC,UACnBgC,KAAM,CACJoF,OAAO,IE7IX,SAAS6C,GAAexG,EAAUY,EAAM6F,GAQtC,YAPyB,IAArBA,IACFA,EAAmB,CACjBrO,EAAG,EACHE,EAAG,IAIA,CACLzC,IAAKmK,EAASnK,IAAM+K,EAAK3I,OAASwO,EAAiBnO,EACnDvG,MAAOiO,EAASjO,MAAQ6O,EAAK7I,MAAQ0O,EAAiBrO,EACtDtG,OAAQkO,EAASlO,OAAS8O,EAAK3I,OAASwO,EAAiBnO,EACzDtG,KAAMgO,EAAShO,KAAO4O,EAAK7I,MAAQ0O,EAAiBrO,EAExD,CAEA,SAASsO,GAAsB1G,GAC7B,MAAO,CAAC,EAAKjO,EAAOD,EAAQE,GAAM2U,MAAK,SAAUC,GAC/C,OAAO5G,EAAS4G,IAAS,CAC3B,GACF,CA+BA,UACEpS,KAAM,OACNC,SAAS,EACTC,MAAO,OACP6H,iBAAkB,CAAC,mBACnB5H,GAlCF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZ0Q,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBkU,EAAmB5R,EAAMmG,cAAc6L,gBACvCC,EAAoBhF,GAAejN,EAAO,CAC5C0N,eAAgB,cAEdwE,EAAoBjF,GAAejN,EAAO,CAC5C4N,aAAa,IAEXuE,EAA2BR,GAAeM,EAAmB5B,GAC7D+B,EAAsBT,GAAeO,EAAmBnK,EAAY6J,GACpES,EAAoBR,GAAsBM,GAC1CG,EAAmBT,GAAsBO,GAC7CpS,EAAMmG,cAAcxG,GAAQ,CAC1BwS,yBAA0BA,EAC1BC,oBAAqBA,EACrBC,kBAAmBA,EACnBC,iBAAkBA,GAEpBtS,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,+BAAgC2U,EAChC,sBAAuBC,GAE3B,GCJA,IACE3S,KAAM,SACNC,SAAS,EACTC,MAAO,OACPwB,SAAU,CAAC,iBACXvB,GA5BF,SAAgBa,GACd,IAAIX,EAAQW,EAAMX,MACdc,EAAUH,EAAMG,QAChBnB,EAAOgB,EAAMhB,KACb4S,EAAkBzR,EAAQuG,OAC1BA,OAA6B,IAApBkL,EAA6B,CAAC,EAAG,GAAKA,EAC/C7I,EAAO,EAAW7L,QAAO,SAAUC,EAAKC,GAE1C,OADAD,EAAIC,GA5BD,SAAiCA,EAAWyI,EAAOa,GACxD,IAAIjB,EAAgB9E,EAAiBvD,GACjCyU,EAAiB,CAACrV,EAAM,GAAKqH,QAAQ4B,IAAkB,GAAK,EAAI,EAEhErG,EAAyB,mBAAXsH,EAAwBA,EAAOhL,OAAOkE,OAAO,CAAC,EAAGiG,EAAO,CACxEzI,UAAWA,KACPsJ,EACFoL,EAAW1S,EAAK,GAChB2S,EAAW3S,EAAK,GAIpB,OAFA0S,EAAWA,GAAY,EACvBC,GAAYA,GAAY,GAAKF,EACtB,CAACrV,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAAI,CACjD7C,EAAGmP,EACHjP,EAAGgP,GACD,CACFlP,EAAGkP,EACHhP,EAAGiP,EAEP,CASqBC,CAAwB5U,EAAWiC,EAAMwG,MAAOa,GAC1DvJ,CACT,GAAG,CAAC,GACA8U,EAAwBlJ,EAAK1J,EAAMjC,WACnCwF,EAAIqP,EAAsBrP,EAC1BE,EAAImP,EAAsBnP,EAEW,MAArCzD,EAAMmG,cAAcD,gBACtBlG,EAAMmG,cAAcD,cAAc3C,GAAKA,EACvCvD,EAAMmG,cAAcD,cAAczC,GAAKA,GAGzCzD,EAAMmG,cAAcxG,GAAQ+J,CAC9B,GC1BA,IACE/J,KAAM,gBACNC,SAAS,EACTC,MAAO,OACPC,GApBF,SAAuBC,GACrB,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KAKhBK,EAAMmG,cAAcxG,GAAQkN,GAAe,CACzClP,UAAWqC,EAAMwG,MAAM7I,UACvBiB,QAASoB,EAAMwG,MAAM9I,OACrBqD,SAAU,WACVhD,UAAWiC,EAAMjC,WAErB,EAQE2L,KAAM,CAAC,GCgHT,IACE/J,KAAM,kBACNC,SAAS,EACTC,MAAO,OACPC,GA/HF,SAAyBC,GACvB,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KACZoP,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAsCA,EACrD3B,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtBrH,EAAUzF,EAAQyF,QAClBsM,EAAkB/R,EAAQgS,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAwBjS,EAAQkS,aAChCA,OAAyC,IAA1BD,EAAmC,EAAIA,EACtD5H,EAAW8B,GAAejN,EAAO,CACnCsN,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTqH,YAAaA,IAEXxH,EAAgB9E,EAAiBtB,EAAMjC,WACvCiK,EAAYL,EAAa3H,EAAMjC,WAC/BkV,GAAmBjL,EACnBgF,EAAWtH,EAAyBU,GACpC8I,ECrCY,MDqCSlC,ECrCH,IAAM,IDsCxB9G,EAAgBlG,EAAMmG,cAAcD,cACpCmK,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBwV,EAA4C,mBAAjBF,EAA8BA,EAAa3W,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CACvGzI,UAAWiC,EAAMjC,aACbiV,EACFG,EAA2D,iBAAtBD,EAAiC,CACxElG,SAAUkG,EACVhE,QAASgE,GACP7W,OAAOkE,OAAO,CAChByM,SAAU,EACVkC,QAAS,GACRgE,GACCE,EAAsBpT,EAAMmG,cAAckB,OAASrH,EAAMmG,cAAckB,OAAOrH,EAAMjC,WAAa,KACjG2L,EAAO,CACTnG,EAAG,EACHE,EAAG,GAGL,GAAKyC,EAAL,CAIA,GAAI8I,EAAe,CACjB,IAAIqE,EAEAC,EAAwB,MAAbtG,EAAmB,EAAM7P,EACpCoW,EAAuB,MAAbvG,EAAmB/P,EAASC,EACtCoJ,EAAmB,MAAb0G,EAAmB,SAAW,QACpC3F,EAASnB,EAAc8G,GACvBtL,EAAM2F,EAAS8D,EAASmI,GACxB7R,EAAM4F,EAAS8D,EAASoI,GACxBC,EAAWV,GAAU/K,EAAWzB,GAAO,EAAI,EAC3CmN,EAASzL,IAAc1K,EAAQ+S,EAAc/J,GAAOyB,EAAWzB,GAC/DoN,EAAS1L,IAAc1K,GAASyK,EAAWzB,IAAQ+J,EAAc/J,GAGjEL,EAAejG,EAAME,SAASgB,MAC9BwF,EAAYoM,GAAU7M,EAAetC,EAAcsC,GAAgB,CACrE/C,MAAO,EACPE,OAAQ,GAENuQ,GAAqB3T,EAAMmG,cAAc,oBAAsBnG,EAAMmG,cAAc,oBAAoBI,QxBhFtG,CACLvF,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GwB6EFyW,GAAkBD,GAAmBL,GACrCO,GAAkBF,GAAmBJ,GAMrCO,GAAWnO,EAAO,EAAG0K,EAAc/J,GAAMI,EAAUJ,IACnDyN,GAAYd,EAAkB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWF,GAAkBT,EAA4BnG,SAAWyG,EAASK,GAAWF,GAAkBT,EAA4BnG,SACxMgH,GAAYf,GAAmB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWD,GAAkBV,EAA4BnG,SAAW0G,EAASI,GAAWD,GAAkBV,EAA4BnG,SACzMjG,GAAoB/G,EAAME,SAASgB,OAAS8D,EAAgBhF,EAAME,SAASgB,OAC3E+S,GAAelN,GAAiC,MAAbiG,EAAmBjG,GAAkBsF,WAAa,EAAItF,GAAkBuF,YAAc,EAAI,EAC7H4H,GAAwH,OAAjGb,EAA+C,MAAvBD,OAA8B,EAASA,EAAoBpG,IAAqBqG,EAAwB,EAEvJc,GAAY9M,EAAS2M,GAAYE,GACjCE,GAAkBzO,EAAOmN,EAAS,EAAQpR,EAF9B2F,EAAS0M,GAAYG,GAAsBD,IAEKvS,EAAK2F,EAAQyL,EAAS,EAAQrR,EAAK0S,IAAa1S,GAChHyE,EAAc8G,GAAYoH,GAC1B1K,EAAKsD,GAAYoH,GAAkB/M,CACrC,CAEA,GAAI8H,EAAc,CAChB,IAAIkF,GAEAC,GAAyB,MAAbtH,EAAmB,EAAM7P,EAErCoX,GAAwB,MAAbvH,EAAmB/P,EAASC,EAEvCsX,GAAUtO,EAAcgJ,GAExBuF,GAAmB,MAAZvF,EAAkB,SAAW,QAEpCwF,GAAOF,GAAUrJ,EAASmJ,IAE1BK,GAAOH,GAAUrJ,EAASoJ,IAE1BK,IAAuD,IAAxC,CAAC,EAAKzX,GAAMqH,QAAQ4B,GAEnCyO,GAAyH,OAAjGR,GAAgD,MAAvBjB,OAA8B,EAASA,EAAoBlE,IAAoBmF,GAAyB,EAEzJS,GAAaF,GAAeF,GAAOF,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAEzI6F,GAAaH,GAAeJ,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAAUyF,GAE5IK,GAAmBlC,GAAU8B,G1BzH9B,SAAwBlT,EAAK1E,EAAOyE,GACzC,IAAIwT,EAAItP,EAAOjE,EAAK1E,EAAOyE,GAC3B,OAAOwT,EAAIxT,EAAMA,EAAMwT,CACzB,C0BsHoDC,CAAeJ,GAAYN,GAASO,IAAcpP,EAAOmN,EAASgC,GAAaJ,GAAMF,GAAS1B,EAASiC,GAAaJ,IAEpKzO,EAAcgJ,GAAW8F,GACzBtL,EAAKwF,GAAW8F,GAAmBR,EACrC,CAEAxU,EAAMmG,cAAcxG,GAAQ+J,CAvE5B,CAwEF,EAQEhC,iBAAkB,CAAC,WE1HN,SAASyN,GAAiBC,EAAyBrQ,EAAcsD,QAC9D,IAAZA,IACFA,GAAU,GAGZ,ICnBoCrJ,ECJOJ,EFuBvCyW,EAA0B9V,EAAcwF,GACxCuQ,EAAuB/V,EAAcwF,IAf3C,SAAyBnG,GACvB,IAAImN,EAAOnN,EAAQ+D,wBACfI,EAASpB,EAAMoK,EAAK7I,OAAStE,EAAQqE,aAAe,EACpDD,EAASrB,EAAMoK,EAAK3I,QAAUxE,EAAQuE,cAAgB,EAC1D,OAAkB,IAAXJ,GAA2B,IAAXC,CACzB,CAU4DuS,CAAgBxQ,GACtEJ,EAAkBF,EAAmBM,GACrCgH,EAAOpJ,EAAsByS,EAAyBE,EAAsBjN,GAC5EyB,EAAS,CACXc,WAAY,EACZE,UAAW,GAET7C,EAAU,CACZ1E,EAAG,EACHE,EAAG,GAkBL,OAfI4R,IAA4BA,IAA4BhN,MACxB,SAA9B1J,EAAYoG,IAChBkG,GAAetG,MACbmF,GCnCgC9K,EDmCT+F,KClCdhG,EAAUC,IAAUO,EAAcP,GCJxC,CACL4L,YAFyChM,EDQbI,GCNR4L,WACpBE,UAAWlM,EAAQkM,WDGZH,GAAgB3L,IDoCnBO,EAAcwF,KAChBkD,EAAUtF,EAAsBoC,GAAc,IACtCxB,GAAKwB,EAAauH,WAC1BrE,EAAQxE,GAAKsB,EAAasH,WACjB1H,IACTsD,EAAQ1E,EAAIyH,GAAoBrG,KAI7B,CACLpB,EAAGwI,EAAK5O,KAAO2M,EAAOc,WAAa3C,EAAQ1E,EAC3CE,EAAGsI,EAAK/K,IAAM8I,EAAOgB,UAAY7C,EAAQxE,EACzCP,MAAO6I,EAAK7I,MACZE,OAAQ2I,EAAK3I,OAEjB,CGvDA,SAASoS,GAAMC,GACb,IAAItT,EAAM,IAAIoO,IACVmF,EAAU,IAAIC,IACdC,EAAS,GAKb,SAAS3F,EAAK4F,GACZH,EAAQI,IAAID,EAASlW,MACN,GAAG3B,OAAO6X,EAASxU,UAAY,GAAIwU,EAASnO,kBAAoB,IACtEvH,SAAQ,SAAU4V,GACzB,IAAKL,EAAQM,IAAID,GAAM,CACrB,IAAIE,EAAc9T,EAAI3F,IAAIuZ,GAEtBE,GACFhG,EAAKgG,EAET,CACF,IACAL,EAAO3E,KAAK4E,EACd,CAQA,OAzBAJ,EAAUtV,SAAQ,SAAU0V,GAC1B1T,EAAIiP,IAAIyE,EAASlW,KAAMkW,EACzB,IAiBAJ,EAAUtV,SAAQ,SAAU0V,GACrBH,EAAQM,IAAIH,EAASlW,OAExBsQ,EAAK4F,EAET,IACOD,CACT,CCvBA,IAAIM,GAAkB,CACpBnY,UAAW,SACX0X,UAAW,GACX1U,SAAU,YAGZ,SAASoV,KACP,IAAK,IAAI1B,EAAO2B,UAAUrG,OAAQsG,EAAO,IAAIpU,MAAMwS,GAAO6B,EAAO,EAAGA,EAAO7B,EAAM6B,IAC/ED,EAAKC,GAAQF,UAAUE,GAGzB,OAAQD,EAAKvE,MAAK,SAAUlT,GAC1B,QAASA,GAAoD,mBAAlCA,EAAQ+D,sBACrC,GACF,CAEO,SAAS4T,GAAgBC,QACL,IAArBA,IACFA,EAAmB,CAAC,GAGtB,IAAIC,EAAoBD,EACpBE,EAAwBD,EAAkBE,iBAC1CA,OAA6C,IAA1BD,EAAmC,GAAKA,EAC3DE,EAAyBH,EAAkBI,eAC3CA,OAA4C,IAA3BD,EAAoCV,GAAkBU,EAC3E,OAAO,SAAsBjZ,EAAWD,EAAQoD,QAC9B,IAAZA,IACFA,EAAU+V,GAGZ,ICxC6B/W,EAC3BgX,EDuCE9W,EAAQ,CACVjC,UAAW,SACXgZ,iBAAkB,GAClBjW,QAASzE,OAAOkE,OAAO,CAAC,EAAG2V,GAAiBW,GAC5C1Q,cAAe,CAAC,EAChBjG,SAAU,CACRvC,UAAWA,EACXD,OAAQA,GAEV4C,WAAY,CAAC,EACbD,OAAQ,CAAC,GAEP2W,EAAmB,GACnBC,GAAc,EACdrN,EAAW,CACb5J,MAAOA,EACPkX,WAAY,SAAoBC,GAC9B,IAAIrW,EAAsC,mBAArBqW,EAAkCA,EAAiBnX,EAAMc,SAAWqW,EACzFC,IACApX,EAAMc,QAAUzE,OAAOkE,OAAO,CAAC,EAAGsW,EAAgB7W,EAAMc,QAASA,GACjEd,EAAMiK,cAAgB,CACpBtM,UAAW0B,EAAU1B,GAAa6N,GAAkB7N,GAAaA,EAAU4Q,eAAiB/C,GAAkB7N,EAAU4Q,gBAAkB,GAC1I7Q,OAAQ8N,GAAkB9N,IAI5B,IElE4B+X,EAC9B4B,EFiEMN,EDhCG,SAAwBtB,GAErC,IAAIsB,EAAmBvB,GAAMC,GAE7B,OAAO/W,EAAeb,QAAO,SAAUC,EAAK+B,GAC1C,OAAO/B,EAAIE,OAAO+Y,EAAiBvR,QAAO,SAAUqQ,GAClD,OAAOA,EAAShW,QAAUA,CAC5B,IACF,GAAG,GACL,CCuB+ByX,EElEK7B,EFkEsB,GAAGzX,OAAO2Y,EAAkB3W,EAAMc,QAAQ2U,WEjE9F4B,EAAS5B,EAAU5X,QAAO,SAAUwZ,EAAQE,GAC9C,IAAIC,EAAWH,EAAOE,EAAQ5X,MAK9B,OAJA0X,EAAOE,EAAQ5X,MAAQ6X,EAAWnb,OAAOkE,OAAO,CAAC,EAAGiX,EAAUD,EAAS,CACrEzW,QAASzE,OAAOkE,OAAO,CAAC,EAAGiX,EAAS1W,QAASyW,EAAQzW,SACrD4I,KAAMrN,OAAOkE,OAAO,CAAC,EAAGiX,EAAS9N,KAAM6N,EAAQ7N,QAC5C6N,EACEF,CACT,GAAG,CAAC,GAEGhb,OAAO4D,KAAKoX,GAAQlV,KAAI,SAAUhG,GACvC,OAAOkb,EAAOlb,EAChB,MF4DM,OAJA6D,EAAM+W,iBAAmBA,EAAiBvR,QAAO,SAAUiS,GACzD,OAAOA,EAAE7X,OACX,IA+FFI,EAAM+W,iBAAiB5W,SAAQ,SAAUJ,GACvC,IAAIJ,EAAOI,EAAKJ,KACZ+X,EAAe3X,EAAKe,QACpBA,OAA2B,IAAjB4W,EAA0B,CAAC,EAAIA,EACzChX,EAASX,EAAKW,OAElB,GAAsB,mBAAXA,EAAuB,CAChC,IAAIiX,EAAYjX,EAAO,CACrBV,MAAOA,EACPL,KAAMA,EACNiK,SAAUA,EACV9I,QAASA,IAKXkW,EAAiB/F,KAAK0G,GAFT,WAAmB,EAGlC,CACF,IA/GS/N,EAASQ,QAClB,EAMAwN,YAAa,WACX,IAAIX,EAAJ,CAIA,IAAIY,EAAkB7X,EAAME,SACxBvC,EAAYka,EAAgBla,UAC5BD,EAASma,EAAgBna,OAG7B,GAAKyY,GAAiBxY,EAAWD,GAAjC,CAKAsC,EAAMwG,MAAQ,CACZ7I,UAAWwX,GAAiBxX,EAAWqH,EAAgBtH,GAAoC,UAA3BsC,EAAMc,QAAQC,UAC9ErD,OAAQiG,EAAcjG,IAOxBsC,EAAM0R,OAAQ,EACd1R,EAAMjC,UAAYiC,EAAMc,QAAQ/C,UAKhCiC,EAAM+W,iBAAiB5W,SAAQ,SAAU0V,GACvC,OAAO7V,EAAMmG,cAAc0P,EAASlW,MAAQtD,OAAOkE,OAAO,CAAC,EAAGsV,EAASnM,KACzE,IAEA,IAAK,IAAIoO,EAAQ,EAAGA,EAAQ9X,EAAM+W,iBAAiBhH,OAAQ+H,IACzD,IAAoB,IAAhB9X,EAAM0R,MAAV,CAMA,IAAIqG,EAAwB/X,EAAM+W,iBAAiBe,GAC/ChY,EAAKiY,EAAsBjY,GAC3BkY,EAAyBD,EAAsBjX,QAC/CoM,OAAsC,IAA3B8K,EAAoC,CAAC,EAAIA,EACpDrY,EAAOoY,EAAsBpY,KAEf,mBAAPG,IACTE,EAAQF,EAAG,CACTE,MAAOA,EACPc,QAASoM,EACTvN,KAAMA,EACNiK,SAAUA,KACN5J,EAdR,MAHEA,EAAM0R,OAAQ,EACdoG,GAAS,CAzBb,CATA,CAqDF,EAGA1N,QC1I2BtK,ED0IV,WACf,OAAO,IAAImY,SAAQ,SAAUC,GAC3BtO,EAASgO,cACTM,EAAQlY,EACV,GACF,EC7IG,WAUL,OATK8W,IACHA,EAAU,IAAImB,SAAQ,SAAUC,GAC9BD,QAAQC,UAAUC,MAAK,WACrBrB,OAAUsB,EACVF,EAAQpY,IACV,GACF,KAGKgX,CACT,GDmIIuB,QAAS,WACPjB,IACAH,GAAc,CAChB,GAGF,IAAKd,GAAiBxY,EAAWD,GAC/B,OAAOkM,EAmCT,SAASwN,IACPJ,EAAiB7W,SAAQ,SAAUL,GACjC,OAAOA,GACT,IACAkX,EAAmB,EACrB,CAEA,OAvCApN,EAASsN,WAAWpW,GAASqX,MAAK,SAAUnY,IACrCiX,GAAenW,EAAQwX,eAC1BxX,EAAQwX,cAActY,EAE1B,IAmCO4J,CACT,CACF,CACO,IAAI2O,GAA4BhC,KGzLnC,GAA4BA,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,EAAa,GAAQ,GAAM,GAAiB,EAAO,MCJrH,GAA4BjC,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,KCatE,MAAMC,GAAa,IAAIlI,IACjBmI,GAAO,CACX,GAAAtH,CAAIxS,EAASzC,EAAKyN,GACX6O,GAAWzC,IAAIpX,IAClB6Z,GAAWrH,IAAIxS,EAAS,IAAI2R,KAE9B,MAAMoI,EAAcF,GAAWjc,IAAIoC,GAI9B+Z,EAAY3C,IAAI7Z,IAA6B,IAArBwc,EAAYC,KAKzCD,EAAYvH,IAAIjV,EAAKyN,GAHnBiP,QAAQC,MAAM,+EAA+E7W,MAAM8W,KAAKJ,EAAY1Y,QAAQ,MAIhI,EACAzD,IAAG,CAACoC,EAASzC,IACPsc,GAAWzC,IAAIpX,IACV6Z,GAAWjc,IAAIoC,GAASpC,IAAIL,IAE9B,KAET,MAAA6c,CAAOpa,EAASzC,GACd,IAAKsc,GAAWzC,IAAIpX,GAClB,OAEF,MAAM+Z,EAAcF,GAAWjc,IAAIoC,GACnC+Z,EAAYM,OAAO9c,GAGM,IAArBwc,EAAYC,MACdH,GAAWQ,OAAOra,EAEtB,GAYIsa,GAAiB,gBAOjBC,GAAgBC,IAChBA,GAAYna,OAAOoa,KAAOpa,OAAOoa,IAAIC,SAEvCF,EAAWA,EAAS5O,QAAQ,iBAAiB,CAAC+O,EAAOC,IAAO,IAAIH,IAAIC,OAAOE,QAEtEJ,GA4CHK,GAAuB7a,IAC3BA,EAAQ8a,cAAc,IAAIC,MAAMT,IAAgB,EAE5C,GAAYU,MACXA,GAA4B,iBAAXA,UAGO,IAAlBA,EAAOC,SAChBD,EAASA,EAAO,SAEgB,IAApBA,EAAOE,UAEjBC,GAAaH,GAEb,GAAUA,GACLA,EAAOC,OAASD,EAAO,GAAKA,EAEf,iBAAXA,GAAuBA,EAAO7J,OAAS,EACzCrL,SAAS+C,cAAc0R,GAAcS,IAEvC,KAEHI,GAAYpb,IAChB,IAAK,GAAUA,IAAgD,IAApCA,EAAQqb,iBAAiBlK,OAClD,OAAO,EAET,MAAMmK,EAAgF,YAA7D5V,iBAAiB1F,GAASub,iBAAiB,cAE9DC,EAAgBxb,EAAQyb,QAAQ,uBACtC,IAAKD,EACH,OAAOF,EAET,GAAIE,IAAkBxb,EAAS,CAC7B,MAAM0b,EAAU1b,EAAQyb,QAAQ,WAChC,GAAIC,GAAWA,EAAQlW,aAAegW,EACpC,OAAO,EAET,GAAgB,OAAZE,EACF,OAAO,CAEX,CACA,OAAOJ,CAAgB,EAEnBK,GAAa3b,IACZA,GAAWA,EAAQkb,WAAaU,KAAKC,gBAGtC7b,EAAQ8b,UAAU7W,SAAS,mBAGC,IAArBjF,EAAQ+b,SACV/b,EAAQ+b,SAEV/b,EAAQgc,aAAa,aAAoD,UAArChc,EAAQic,aAAa,aAE5DC,GAAiBlc,IACrB,IAAK8F,SAASC,gBAAgBoW,aAC5B,OAAO,KAIT,GAAmC,mBAAxBnc,EAAQqF,YAA4B,CAC7C,MAAM+W,EAAOpc,EAAQqF,cACrB,OAAO+W,aAAgBtb,WAAasb,EAAO,IAC7C,CACA,OAAIpc,aAAmBc,WACdd,EAIJA,EAAQwF,WAGN0W,GAAelc,EAAQwF,YAFrB,IAEgC,EAErC6W,GAAO,OAUPC,GAAStc,IACbA,EAAQuE,YAAY,EAEhBgY,GAAY,IACZlc,OAAOmc,SAAW1W,SAAS6G,KAAKqP,aAAa,qBACxC3b,OAAOmc,OAET,KAEHC,GAA4B,GAgB5BC,GAAQ,IAAuC,QAAjC5W,SAASC,gBAAgB4W,IACvCC,GAAqBC,IAhBAC,QAiBN,KACjB,MAAMC,EAAIR,KAEV,GAAIQ,EAAG,CACL,MAAMhc,EAAO8b,EAAOG,KACdC,EAAqBF,EAAE7b,GAAGH,GAChCgc,EAAE7b,GAAGH,GAAQ8b,EAAOK,gBACpBH,EAAE7b,GAAGH,GAAMoc,YAAcN,EACzBE,EAAE7b,GAAGH,GAAMqc,WAAa,KACtBL,EAAE7b,GAAGH,GAAQkc,EACNJ,EAAOK,gBAElB,GA5B0B,YAAxBpX,SAASuX,YAENZ,GAA0BtL,QAC7BrL,SAASyF,iBAAiB,oBAAoB,KAC5C,IAAK,MAAMuR,KAAYL,GACrBK,GACF,IAGJL,GAA0BpK,KAAKyK,IAE/BA,GAkBA,EAEEQ,GAAU,CAACC,EAAkB9F,EAAO,GAAI+F,EAAeD,IACxB,mBAArBA,EAAkCA,KAAoB9F,GAAQ+F,EAExEC,GAAyB,CAACX,EAAUY,EAAmBC,GAAoB,KAC/E,IAAKA,EAEH,YADAL,GAAQR,GAGV,MACMc,EA/JiC5d,KACvC,IAAKA,EACH,OAAO,EAIT,IAAI,mBACF6d,EAAkB,gBAClBC,GACEzd,OAAOqF,iBAAiB1F,GAC5B,MAAM+d,EAA0BC,OAAOC,WAAWJ,GAC5CK,EAAuBF,OAAOC,WAAWH,GAG/C,OAAKC,GAA4BG,GAKjCL,EAAqBA,EAAmBlb,MAAM,KAAK,GACnDmb,EAAkBA,EAAgBnb,MAAM,KAAK,GAtDf,KAuDtBqb,OAAOC,WAAWJ,GAAsBG,OAAOC,WAAWH,KANzD,CAMoG,EA0IpFK,CAAiCT,GADlC,EAExB,IAAIU,GAAS,EACb,MAAMC,EAAU,EACdrR,aAEIA,IAAW0Q,IAGfU,GAAS,EACTV,EAAkBjS,oBAAoB6O,GAAgB+D,GACtDf,GAAQR,GAAS,EAEnBY,EAAkBnS,iBAAiB+O,GAAgB+D,GACnDC,YAAW,KACJF,GACHvD,GAAqB6C,EACvB,GACCE,EAAiB,EAYhBW,GAAuB,CAAC1R,EAAM2R,EAAeC,EAAeC,KAChE,MAAMC,EAAa9R,EAAKsE,OACxB,IAAI+H,EAAQrM,EAAKjH,QAAQ4Y,GAIzB,OAAe,IAAXtF,GACMuF,GAAiBC,EAAiB7R,EAAK8R,EAAa,GAAK9R,EAAK,IAExEqM,GAASuF,EAAgB,GAAK,EAC1BC,IACFxF,GAASA,EAAQyF,GAAcA,GAE1B9R,EAAKjK,KAAKC,IAAI,EAAGD,KAAKE,IAAIoW,EAAOyF,EAAa,KAAI,EAerDC,GAAiB,qBACjBC,GAAiB,OACjBC,GAAgB,SAChBC,GAAgB,CAAC,EACvB,IAAIC,GAAW,EACf,MAAMC,GAAe,CACnBC,WAAY,YACZC,WAAY,YAERC,GAAe,IAAIrI,IAAI,CAAC,QAAS,WAAY,UAAW,YAAa,cAAe,aAAc,iBAAkB,YAAa,WAAY,YAAa,cAAe,YAAa,UAAW,WAAY,QAAS,oBAAqB,aAAc,YAAa,WAAY,cAAe,cAAe,cAAe,YAAa,eAAgB,gBAAiB,eAAgB,gBAAiB,aAAc,QAAS,OAAQ,SAAU,QAAS,SAAU,SAAU,UAAW,WAAY,OAAQ,SAAU,eAAgB,SAAU,OAAQ,mBAAoB,mBAAoB,QAAS,QAAS,WAM/lB,SAASsI,GAAarf,EAASsf,GAC7B,OAAOA,GAAO,GAAGA,MAAQN,QAAgBhf,EAAQgf,UAAYA,IAC/D,CACA,SAASO,GAAiBvf,GACxB,MAAMsf,EAAMD,GAAarf,GAGzB,OAFAA,EAAQgf,SAAWM,EACnBP,GAAcO,GAAOP,GAAcO,IAAQ,CAAC,EACrCP,GAAcO,EACvB,CAiCA,SAASE,GAAYC,EAAQC,EAAUC,EAAqB,MAC1D,OAAOliB,OAAOmiB,OAAOH,GAAQ7M,MAAKiN,GAASA,EAAMH,WAAaA,GAAYG,EAAMF,qBAAuBA,GACzG,CACA,SAASG,GAAoBC,EAAmB1B,EAAS2B,GACvD,MAAMC,EAAiC,iBAAZ5B,EAErBqB,EAAWO,EAAcD,EAAqB3B,GAAW2B,EAC/D,IAAIE,EAAYC,GAAaJ,GAI7B,OAHKX,GAAahI,IAAI8I,KACpBA,EAAYH,GAEP,CAACE,EAAaP,EAAUQ,EACjC,CACA,SAASE,GAAWpgB,EAAS+f,EAAmB1B,EAAS2B,EAAoBK,GAC3E,GAAiC,iBAAtBN,IAAmC/f,EAC5C,OAEF,IAAKigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GAIzF,GAAID,KAAqBd,GAAc,CACrC,MAAMqB,EAAepf,GACZ,SAAU2e,GACf,IAAKA,EAAMU,eAAiBV,EAAMU,gBAAkBV,EAAMW,iBAAmBX,EAAMW,eAAevb,SAAS4a,EAAMU,eAC/G,OAAOrf,EAAGjD,KAAKwiB,KAAMZ,EAEzB,EAEFH,EAAWY,EAAaZ,EAC1B,CACA,MAAMD,EAASF,GAAiBvf,GAC1B0gB,EAAWjB,EAAOS,KAAeT,EAAOS,GAAa,CAAC,GACtDS,EAAmBnB,GAAYkB,EAAUhB,EAAUO,EAAc5B,EAAU,MACjF,GAAIsC,EAEF,YADAA,EAAiBN,OAASM,EAAiBN,QAAUA,GAGvD,MAAMf,EAAMD,GAAaK,EAAUK,EAAkBnU,QAAQgT,GAAgB,KACvE1d,EAAK+e,EA5Db,SAAoCjgB,EAASwa,EAAUtZ,GACrD,OAAO,SAASmd,EAAQwB,GACtB,MAAMe,EAAc5gB,EAAQ6gB,iBAAiBrG,GAC7C,IAAK,IAAI,OACPxN,GACE6S,EAAO7S,GAAUA,IAAWyT,KAAMzT,EAASA,EAAOxH,WACpD,IAAK,MAAMsb,KAAcF,EACvB,GAAIE,IAAe9T,EASnB,OANA+T,GAAWlB,EAAO,CAChBW,eAAgBxT,IAEdqR,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAM1G,EAAUtZ,GAE3CA,EAAGigB,MAAMnU,EAAQ,CAAC6S,GAG/B,CACF,CAwC2BuB,CAA2BphB,EAASqe,EAASqB,GAvExE,SAA0B1f,EAASkB,GACjC,OAAO,SAASmd,EAAQwB,GAOtB,OANAkB,GAAWlB,EAAO,CAChBW,eAAgBxgB,IAEdqe,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAMhgB,GAEjCA,EAAGigB,MAAMnhB,EAAS,CAAC6f,GAC5B,CACF,CA6DoFwB,CAAiBrhB,EAAS0f,GAC5Gxe,EAAGye,mBAAqBM,EAAc5B,EAAU,KAChDnd,EAAGwe,SAAWA,EACdxe,EAAGmf,OAASA,EACZnf,EAAG8d,SAAWM,EACdoB,EAASpB,GAAOpe,EAChBlB,EAAQuL,iBAAiB2U,EAAWhf,EAAI+e,EAC1C,CACA,SAASqB,GAActhB,EAASyf,EAAQS,EAAW7B,EAASsB,GAC1D,MAAMze,EAAKse,GAAYC,EAAOS,GAAY7B,EAASsB,GAC9Cze,IAGLlB,EAAQyL,oBAAoByU,EAAWhf,EAAIqgB,QAAQ5B,WAC5CF,EAAOS,GAAWhf,EAAG8d,UAC9B,CACA,SAASwC,GAAyBxhB,EAASyf,EAAQS,EAAWuB,GAC5D,MAAMC,EAAoBjC,EAAOS,IAAc,CAAC,EAChD,IAAK,MAAOyB,EAAY9B,KAAUpiB,OAAOmkB,QAAQF,GAC3CC,EAAWE,SAASJ,IACtBH,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAGtE,CACA,SAASQ,GAAaN,GAGpB,OADAA,EAAQA,EAAMjU,QAAQiT,GAAgB,IAC/BI,GAAaY,IAAUA,CAChC,CACA,MAAMmB,GAAe,CACnB,EAAAc,CAAG9hB,EAAS6f,EAAOxB,EAAS2B,GAC1BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAA+B,CAAI/hB,EAAS6f,EAAOxB,EAAS2B,GAC3BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAAiB,CAAIjhB,EAAS+f,EAAmB1B,EAAS2B,GACvC,GAAiC,iBAAtBD,IAAmC/f,EAC5C,OAEF,MAAOigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GACrFgC,EAAc9B,IAAcH,EAC5BN,EAASF,GAAiBvf,GAC1B0hB,EAAoBjC,EAAOS,IAAc,CAAC,EAC1C+B,EAAclC,EAAkBmC,WAAW,KACjD,QAAwB,IAAbxC,EAAX,CAQA,GAAIuC,EACF,IAAK,MAAME,KAAgB1kB,OAAO4D,KAAKoe,GACrC+B,GAAyBxhB,EAASyf,EAAQ0C,EAAcpC,EAAkBlN,MAAM,IAGpF,IAAK,MAAOuP,EAAavC,KAAUpiB,OAAOmkB,QAAQF,GAAoB,CACpE,MAAMC,EAAaS,EAAYxW,QAAQkT,GAAe,IACjDkD,IAAejC,EAAkB8B,SAASF,IAC7CL,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAEpE,CAXA,KAPA,CAEE,IAAKliB,OAAO4D,KAAKqgB,GAAmBvQ,OAClC,OAEFmQ,GAActhB,EAASyf,EAAQS,EAAWR,EAAUO,EAAc5B,EAAU,KAE9E,CAYF,EACA,OAAAgE,CAAQriB,EAAS6f,EAAOpI,GACtB,GAAqB,iBAAVoI,IAAuB7f,EAChC,OAAO,KAET,MAAM+c,EAAIR,KAGV,IAAI+F,EAAc,KACdC,GAAU,EACVC,GAAiB,EACjBC,GAAmB,EAJH5C,IADFM,GAAaN,IAMZ9C,IACjBuF,EAAcvF,EAAEhC,MAAM8E,EAAOpI,GAC7BsF,EAAE/c,GAASqiB,QAAQC,GACnBC,GAAWD,EAAYI,uBACvBF,GAAkBF,EAAYK,gCAC9BF,EAAmBH,EAAYM,sBAEjC,MAAMC,EAAM9B,GAAW,IAAIhG,MAAM8E,EAAO,CACtC0C,UACAO,YAAY,IACVrL,GAUJ,OATIgL,GACFI,EAAIE,iBAEFP,GACFxiB,EAAQ8a,cAAc+H,GAEpBA,EAAIJ,kBAAoBH,GAC1BA,EAAYS,iBAEPF,CACT,GAEF,SAAS9B,GAAWljB,EAAKmlB,EAAO,CAAC,GAC/B,IAAK,MAAOzlB,EAAKa,KAAUX,OAAOmkB,QAAQoB,GACxC,IACEnlB,EAAIN,GAAOa,CACb,CAAE,MAAO6kB,GACPxlB,OAAOC,eAAeG,EAAKN,EAAK,CAC9B2lB,cAAc,EACdtlB,IAAG,IACMQ,GAGb,CAEF,OAAOP,CACT,CASA,SAASslB,GAAc/kB,GACrB,GAAc,SAAVA,EACF,OAAO,EAET,GAAc,UAAVA,EACF,OAAO,EAET,GAAIA,IAAU4f,OAAO5f,GAAOkC,WAC1B,OAAO0d,OAAO5f,GAEhB,GAAc,KAAVA,GAA0B,SAAVA,EAClB,OAAO,KAET,GAAqB,iBAAVA,EACT,OAAOA,EAET,IACE,OAAOglB,KAAKC,MAAMC,mBAAmBllB,GACvC,CAAE,MAAO6kB,GACP,OAAO7kB,CACT,CACF,CACA,SAASmlB,GAAiBhmB,GACxB,OAAOA,EAAIqO,QAAQ,UAAU4X,GAAO,IAAIA,EAAItjB,iBAC9C,CACA,MAAMujB,GAAc,CAClB,gBAAAC,CAAiB1jB,EAASzC,EAAKa,GAC7B4B,EAAQ6B,aAAa,WAAW0hB,GAAiBhmB,KAAQa,EAC3D,EACA,mBAAAulB,CAAoB3jB,EAASzC,GAC3ByC,EAAQ4B,gBAAgB,WAAW2hB,GAAiBhmB,KACtD,EACA,iBAAAqmB,CAAkB5jB,GAChB,IAAKA,EACH,MAAO,CAAC,EAEV,MAAM0B,EAAa,CAAC,EACdmiB,EAASpmB,OAAO4D,KAAKrB,EAAQ8jB,SAASld,QAAOrJ,GAAOA,EAAI2kB,WAAW,QAAU3kB,EAAI2kB,WAAW,cAClG,IAAK,MAAM3kB,KAAOsmB,EAAQ,CACxB,IAAIE,EAAUxmB,EAAIqO,QAAQ,MAAO,IACjCmY,EAAUA,EAAQC,OAAO,GAAG9jB,cAAgB6jB,EAAQlR,MAAM,EAAGkR,EAAQ5S,QACrEzP,EAAWqiB,GAAWZ,GAAcnjB,EAAQ8jB,QAAQvmB,GACtD,CACA,OAAOmE,CACT,EACAuiB,iBAAgB,CAACjkB,EAASzC,IACjB4lB,GAAcnjB,EAAQic,aAAa,WAAWsH,GAAiBhmB,QAgB1E,MAAM2mB,GAEJ,kBAAWC,GACT,MAAO,CAAC,CACV,CACA,sBAAWC,GACT,MAAO,CAAC,CACV,CACA,eAAWpH,GACT,MAAM,IAAIqH,MAAM,sEAClB,CACA,UAAAC,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAChB,OAAOA,CACT,CACA,eAAAC,CAAgBD,EAAQvkB,GACtB,MAAM2kB,EAAa,GAAU3kB,GAAWyjB,GAAYQ,iBAAiBjkB,EAAS,UAAY,CAAC,EAE3F,MAAO,IACFygB,KAAKmE,YAAYT,WACM,iBAAfQ,EAA0BA,EAAa,CAAC,KAC/C,GAAU3kB,GAAWyjB,GAAYG,kBAAkB5jB,GAAW,CAAC,KAC7C,iBAAXukB,EAAsBA,EAAS,CAAC,EAE/C,CACA,gBAAAG,CAAiBH,EAAQM,EAAcpE,KAAKmE,YAAYR,aACtD,IAAK,MAAO7hB,EAAUuiB,KAAkBrnB,OAAOmkB,QAAQiD,GAAc,CACnE,MAAMzmB,EAAQmmB,EAAOhiB,GACfwiB,EAAY,GAAU3mB,GAAS,UAhiBrC4c,OADSA,EAiiB+C5c,GA/hBnD,GAAG4c,IAELvd,OAAOM,UAAUuC,SAASrC,KAAK+c,GAAQL,MAAM,eAAe,GAAGza,cA8hBlE,IAAK,IAAI8kB,OAAOF,GAAehhB,KAAKihB,GAClC,MAAM,IAAIE,UAAU,GAAGxE,KAAKmE,YAAY5H,KAAKkI,0BAA0B3iB,qBAA4BwiB,yBAAiCD,MAExI,CAriBW9J,KAsiBb,EAqBF,MAAMmK,WAAsBjB,GAC1B,WAAAU,CAAY5kB,EAASukB,GACnBa,SACAplB,EAAUmb,GAAWnb,MAIrBygB,KAAK4E,SAAWrlB,EAChBygB,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/BzK,GAAKtH,IAAIiO,KAAK4E,SAAU5E,KAAKmE,YAAYW,SAAU9E,MACrD,CAGA,OAAA+E,GACE1L,GAAKM,OAAOqG,KAAK4E,SAAU5E,KAAKmE,YAAYW,UAC5CvE,GAAaC,IAAIR,KAAK4E,SAAU5E,KAAKmE,YAAYa,WACjD,IAAK,MAAMC,KAAgBjoB,OAAOkoB,oBAAoBlF,MACpDA,KAAKiF,GAAgB,IAEzB,CACA,cAAAE,CAAe9I,EAAU9c,EAAS6lB,GAAa,GAC7CpI,GAAuBX,EAAU9c,EAAS6lB,EAC5C,CACA,UAAAvB,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,EAAQ9D,KAAK4E,UAC3Cd,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CAGA,kBAAOuB,CAAY9lB,GACjB,OAAO8Z,GAAKlc,IAAIud,GAAWnb,GAAUygB,KAAK8E,SAC5C,CACA,0BAAOQ,CAAoB/lB,EAASukB,EAAS,CAAC,GAC5C,OAAO9D,KAAKqF,YAAY9lB,IAAY,IAAIygB,KAAKzgB,EAA2B,iBAAXukB,EAAsBA,EAAS,KAC9F,CACA,kBAAWyB,GACT,MA5CY,OA6Cd,CACA,mBAAWT,GACT,MAAO,MAAM9E,KAAKzD,MACpB,CACA,oBAAWyI,GACT,MAAO,IAAIhF,KAAK8E,UAClB,CACA,gBAAOU,CAAUllB,GACf,MAAO,GAAGA,IAAO0f,KAAKgF,WACxB,EAUF,MAAMS,GAAclmB,IAClB,IAAIwa,EAAWxa,EAAQic,aAAa,kBACpC,IAAKzB,GAAyB,MAAbA,EAAkB,CACjC,IAAI2L,EAAgBnmB,EAAQic,aAAa,QAMzC,IAAKkK,IAAkBA,EAActE,SAAS,OAASsE,EAAcjE,WAAW,KAC9E,OAAO,KAILiE,EAActE,SAAS,OAASsE,EAAcjE,WAAW,OAC3DiE,EAAgB,IAAIA,EAAcxjB,MAAM,KAAK,MAE/C6X,EAAW2L,GAAmC,MAAlBA,EAAwBA,EAAcC,OAAS,IAC7E,CACA,OAAO5L,EAAWA,EAAS7X,MAAM,KAAKY,KAAI8iB,GAAO9L,GAAc8L,KAAM1iB,KAAK,KAAO,IAAI,EAEjF2iB,GAAiB,CACrB1T,KAAI,CAAC4H,EAAUxa,EAAU8F,SAASC,kBACzB,GAAG3G,UAAUsB,QAAQ3C,UAAU8iB,iBAAiB5iB,KAAK+B,EAASwa,IAEvE+L,QAAO,CAAC/L,EAAUxa,EAAU8F,SAASC,kBAC5BrF,QAAQ3C,UAAU8K,cAAc5K,KAAK+B,EAASwa,GAEvDgM,SAAQ,CAACxmB,EAASwa,IACT,GAAGpb,UAAUY,EAAQwmB,UAAU5f,QAAOzB,GAASA,EAAMshB,QAAQjM,KAEtE,OAAAkM,CAAQ1mB,EAASwa,GACf,MAAMkM,EAAU,GAChB,IAAIC,EAAW3mB,EAAQwF,WAAWiW,QAAQjB,GAC1C,KAAOmM,GACLD,EAAQrU,KAAKsU,GACbA,EAAWA,EAASnhB,WAAWiW,QAAQjB,GAEzC,OAAOkM,CACT,EACA,IAAAE,CAAK5mB,EAASwa,GACZ,IAAIqM,EAAW7mB,EAAQ8mB,uBACvB,KAAOD,GAAU,CACf,GAAIA,EAASJ,QAAQjM,GACnB,MAAO,CAACqM,GAEVA,EAAWA,EAASC,sBACtB,CACA,MAAO,EACT,EAEA,IAAAxhB,CAAKtF,EAASwa,GACZ,IAAIlV,EAAOtF,EAAQ+mB,mBACnB,KAAOzhB,GAAM,CACX,GAAIA,EAAKmhB,QAAQjM,GACf,MAAO,CAAClV,GAEVA,EAAOA,EAAKyhB,kBACd,CACA,MAAO,EACT,EACA,iBAAAC,CAAkBhnB,GAChB,MAAMinB,EAAa,CAAC,IAAK,SAAU,QAAS,WAAY,SAAU,UAAW,aAAc,4BAA4B1jB,KAAIiX,GAAY,GAAGA,2BAAiC7W,KAAK,KAChL,OAAO8c,KAAK7N,KAAKqU,EAAYjnB,GAAS4G,QAAOsgB,IAAOvL,GAAWuL,IAAO9L,GAAU8L,IAClF,EACA,sBAAAC,CAAuBnnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAIwa,GACK8L,GAAeC,QAAQ/L,GAAYA,EAErC,IACT,EACA,sBAAA4M,CAAuBpnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAeC,QAAQ/L,GAAY,IACvD,EACA,+BAAA6M,CAAgCrnB,GAC9B,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAe1T,KAAK4H,GAAY,EACpD,GAUI8M,GAAuB,CAACC,EAAWC,EAAS,UAChD,MAAMC,EAAa,gBAAgBF,EAAU9B,YACvC1kB,EAAOwmB,EAAUvK,KACvBgE,GAAac,GAAGhc,SAAU2hB,EAAY,qBAAqB1mB,OAAU,SAAU8e,GAI7E,GAHI,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEF,MAAMzT,EAASsZ,GAAec,uBAAuB3G,OAASA,KAAKhF,QAAQ,IAAI1a,KAC9DwmB,EAAUxB,oBAAoB/Y,GAGtCwa,IACX,GAAE,EAiBEG,GAAc,YACdC,GAAc,QAAQD,KACtBE,GAAe,SAASF,KAQ9B,MAAMG,WAAc3C,GAElB,eAAWnI,GACT,MAfW,OAgBb,CAGA,KAAA+K,GAEE,GADmB/G,GAAaqB,QAAQ5B,KAAK4E,SAAUuC,IACxCnF,iBACb,OAEFhC,KAAK4E,SAASvJ,UAAU1B,OAlBF,QAmBtB,MAAMyL,EAAapF,KAAK4E,SAASvJ,UAAU7W,SApBrB,QAqBtBwb,KAAKmF,gBAAe,IAAMnF,KAAKuH,mBAAmBvH,KAAK4E,SAAUQ,EACnE,CAGA,eAAAmC,GACEvH,KAAK4E,SAASjL,SACd4G,GAAaqB,QAAQ5B,KAAK4E,SAAUwC,IACpCpH,KAAK+E,SACP,CAGA,sBAAOtI,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOgd,GAAM/B,oBAAoBtF,MACvC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOF6G,GAAqBQ,GAAO,SAM5BlL,GAAmBkL,IAcnB,MAKMI,GAAyB,4BAO/B,MAAMC,WAAehD,GAEnB,eAAWnI,GACT,MAfW,QAgBb,CAGA,MAAAoL,GAEE3H,KAAK4E,SAASxjB,aAAa,eAAgB4e,KAAK4E,SAASvJ,UAAUsM,OAjB3C,UAkB1B,CAGA,sBAAOlL,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOqd,GAAOpC,oBAAoBtF,MACzB,WAAX8D,GACFzZ,EAAKyZ,IAET,GACF,EAOFvD,GAAac,GAAGhc,SAjCe,2BAiCmBoiB,IAAwBrI,IACxEA,EAAMkD,iBACN,MAAMsF,EAASxI,EAAM7S,OAAOyO,QAAQyM,IACvBC,GAAOpC,oBAAoBsC,GACnCD,QAAQ,IAOfxL,GAAmBuL,IAcnB,MACMG,GAAc,YACdC,GAAmB,aAAaD,KAChCE,GAAkB,YAAYF,KAC9BG,GAAiB,WAAWH,KAC5BI,GAAoB,cAAcJ,KAClCK,GAAkB,YAAYL,KAK9BM,GAAY,CAChBC,YAAa,KACbC,aAAc,KACdC,cAAe,MAEXC,GAAgB,CACpBH,YAAa,kBACbC,aAAc,kBACdC,cAAe,mBAOjB,MAAME,WAAc/E,GAClB,WAAAU,CAAY5kB,EAASukB,GACnBa,QACA3E,KAAK4E,SAAWrlB,EACXA,GAAYipB,GAAMC,gBAGvBzI,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAK0I,QAAU,EACf1I,KAAK2I,sBAAwB7H,QAAQlhB,OAAOgpB,cAC5C5I,KAAK6I,cACP,CAGA,kBAAWnF,GACT,OAAOyE,EACT,CACA,sBAAWxE,GACT,OAAO4E,EACT,CACA,eAAWhM,GACT,MA/CW,OAgDb,CAGA,OAAAwI,GACExE,GAAaC,IAAIR,KAAK4E,SAAUiD,GAClC,CAGA,MAAAiB,CAAO1J,GACAY,KAAK2I,sBAIN3I,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,SAJrBhJ,KAAK0I,QAAUtJ,EAAM6J,QAAQ,GAAGD,OAMpC,CACA,IAAAE,CAAK9J,GACCY,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,QAAUhJ,KAAK0I,SAEtC1I,KAAKmJ,eACLtM,GAAQmD,KAAK6E,QAAQuD,YACvB,CACA,KAAAgB,CAAMhK,GACJY,KAAK0I,QAAUtJ,EAAM6J,SAAW7J,EAAM6J,QAAQvY,OAAS,EAAI,EAAI0O,EAAM6J,QAAQ,GAAGD,QAAUhJ,KAAK0I,OACjG,CACA,YAAAS,GACE,MAAME,EAAYlnB,KAAKoC,IAAIyb,KAAK0I,SAChC,GAAIW,GAnEgB,GAoElB,OAEF,MAAM/b,EAAY+b,EAAYrJ,KAAK0I,QACnC1I,KAAK0I,QAAU,EACVpb,GAGLuP,GAAQvP,EAAY,EAAI0S,KAAK6E,QAAQyD,cAAgBtI,KAAK6E,QAAQwD,aACpE,CACA,WAAAQ,GACM7I,KAAK2I,uBACPpI,GAAac,GAAGrB,KAAK4E,SAAUqD,IAAmB7I,GAASY,KAAK8I,OAAO1J,KACvEmB,GAAac,GAAGrB,KAAK4E,SAAUsD,IAAiB9I,GAASY,KAAKkJ,KAAK9J,KACnEY,KAAK4E,SAASvJ,UAAU5E,IAlFG,mBAoF3B8J,GAAac,GAAGrB,KAAK4E,SAAUkD,IAAkB1I,GAASY,KAAK8I,OAAO1J,KACtEmB,GAAac,GAAGrB,KAAK4E,SAAUmD,IAAiB3I,GAASY,KAAKoJ,MAAMhK,KACpEmB,GAAac,GAAGrB,KAAK4E,SAAUoD,IAAgB5I,GAASY,KAAKkJ,KAAK9J,KAEtE,CACA,uBAAA2J,CAAwB3J,GACtB,OAAOY,KAAK2I,wBA3FS,QA2FiBvJ,EAAMkK,aA5FrB,UA4FyDlK,EAAMkK,YACxF,CAGA,kBAAOb,GACL,MAAO,iBAAkBpjB,SAASC,iBAAmB7C,UAAU8mB,eAAiB,CAClF,EAeF,MAEMC,GAAc,eACdC,GAAiB,YACjBC,GAAmB,YACnBC,GAAoB,aAGpBC,GAAa,OACbC,GAAa,OACbC,GAAiB,OACjBC,GAAkB,QAClBC,GAAc,QAAQR,KACtBS,GAAa,OAAOT,KACpBU,GAAkB,UAAUV,KAC5BW,GAAqB,aAAaX,KAClCY,GAAqB,aAAaZ,KAClCa,GAAmB,YAAYb,KAC/Bc,GAAwB,OAAOd,KAAcC,KAC7Cc,GAAyB,QAAQf,KAAcC,KAC/Ce,GAAsB,WACtBC,GAAsB,SAMtBC,GAAkB,UAClBC,GAAgB,iBAChBC,GAAuBF,GAAkBC,GAKzCE,GAAmB,CACvB,CAACnB,IAAmBK,GACpB,CAACJ,IAAoBG,IAEjBgB,GAAY,CAChBC,SAAU,IACVC,UAAU,EACVC,MAAO,QACPC,MAAM,EACNC,OAAO,EACPC,MAAM,GAEFC,GAAgB,CACpBN,SAAU,mBAEVC,SAAU,UACVC,MAAO,mBACPC,KAAM,mBACNC,MAAO,UACPC,KAAM,WAOR,MAAME,WAAiB5G,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKuL,UAAY,KACjBvL,KAAKwL,eAAiB,KACtBxL,KAAKyL,YAAa,EAClBzL,KAAK0L,aAAe,KACpB1L,KAAK2L,aAAe,KACpB3L,KAAK4L,mBAAqB/F,GAAeC,QArCjB,uBAqC8C9F,KAAK4E,UAC3E5E,KAAK6L,qBACD7L,KAAK6E,QAAQqG,OAASV,IACxBxK,KAAK8L,OAET,CAGA,kBAAWpI,GACT,OAAOoH,EACT,CACA,sBAAWnH,GACT,OAAO0H,EACT,CACA,eAAW9O,GACT,MAnFW,UAoFb,CAGA,IAAA1X,GACEmb,KAAK+L,OAAOnC,GACd,CACA,eAAAoC,IAIO3mB,SAAS4mB,QAAUtR,GAAUqF,KAAK4E,WACrC5E,KAAKnb,MAET,CACA,IAAAshB,GACEnG,KAAK+L,OAAOlC,GACd,CACA,KAAAoB,GACMjL,KAAKyL,YACPrR,GAAqB4F,KAAK4E,UAE5B5E,KAAKkM,gBACP,CACA,KAAAJ,GACE9L,KAAKkM,iBACLlM,KAAKmM,kBACLnM,KAAKuL,UAAYa,aAAY,IAAMpM,KAAKgM,mBAAmBhM,KAAK6E,QAAQkG,SAC1E,CACA,iBAAAsB,GACOrM,KAAK6E,QAAQqG,OAGdlL,KAAKyL,WACPlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAK8L,UAGzD9L,KAAK8L,QACP,CACA,EAAAQ,CAAG7T,GACD,MAAM8T,EAAQvM,KAAKwM,YACnB,GAAI/T,EAAQ8T,EAAM7b,OAAS,GAAK+H,EAAQ,EACtC,OAEF,GAAIuH,KAAKyL,WAEP,YADAlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAKsM,GAAG7T,KAG5D,MAAMgU,EAAczM,KAAK0M,cAAc1M,KAAK2M,cAC5C,GAAIF,IAAgBhU,EAClB,OAEF,MAAMtC,EAAQsC,EAAQgU,EAAc7C,GAAaC,GACjD7J,KAAK+L,OAAO5V,EAAOoW,EAAM9T,GAC3B,CACA,OAAAsM,GACM/E,KAAK2L,cACP3L,KAAK2L,aAAa5G,UAEpBJ,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAEhB,OADAA,EAAO8I,gBAAkB9I,EAAOiH,SACzBjH,CACT,CACA,kBAAA+H,GACM7L,KAAK6E,QAAQmG,UACfzK,GAAac,GAAGrB,KAAK4E,SAAUsF,IAAiB9K,GAASY,KAAK6M,SAASzN,KAE9C,UAAvBY,KAAK6E,QAAQoG,QACf1K,GAAac,GAAGrB,KAAK4E,SAAUuF,IAAoB,IAAMnK,KAAKiL,UAC9D1K,GAAac,GAAGrB,KAAK4E,SAAUwF,IAAoB,IAAMpK,KAAKqM,uBAE5DrM,KAAK6E,QAAQsG,OAAS3C,GAAMC,eAC9BzI,KAAK8M,yBAET,CACA,uBAAAA,GACE,IAAK,MAAMC,KAAOlH,GAAe1T,KArIX,qBAqImC6N,KAAK4E,UAC5DrE,GAAac,GAAG0L,EAAK1C,IAAkBjL,GAASA,EAAMkD,mBAExD,MAmBM0K,EAAc,CAClB3E,aAAc,IAAMrI,KAAK+L,OAAO/L,KAAKiN,kBAAkBnD,KACvDxB,cAAe,IAAMtI,KAAK+L,OAAO/L,KAAKiN,kBAAkBlD,KACxD3B,YAtBkB,KACS,UAAvBpI,KAAK6E,QAAQoG,QAYjBjL,KAAKiL,QACDjL,KAAK0L,cACPwB,aAAalN,KAAK0L,cAEpB1L,KAAK0L,aAAe7N,YAAW,IAAMmC,KAAKqM,qBAjLjB,IAiL+DrM,KAAK6E,QAAQkG,UAAS,GAOhH/K,KAAK2L,aAAe,IAAInD,GAAMxI,KAAK4E,SAAUoI,EAC/C,CACA,QAAAH,CAASzN,GACP,GAAI,kBAAkB/b,KAAK+b,EAAM7S,OAAO0a,SACtC,OAEF,MAAM3Z,EAAYud,GAAiBzL,EAAMtiB,KACrCwQ,IACF8R,EAAMkD,iBACNtC,KAAK+L,OAAO/L,KAAKiN,kBAAkB3f,IAEvC,CACA,aAAAof,CAAcntB,GACZ,OAAOygB,KAAKwM,YAAYrnB,QAAQ5F,EAClC,CACA,0BAAA4tB,CAA2B1U,GACzB,IAAKuH,KAAK4L,mBACR,OAEF,MAAMwB,EAAkBvH,GAAeC,QAAQ4E,GAAiB1K,KAAK4L,oBACrEwB,EAAgB/R,UAAU1B,OAAO8Q,IACjC2C,EAAgBjsB,gBAAgB,gBAChC,MAAMksB,EAAqBxH,GAAeC,QAAQ,sBAAsBrN,MAAWuH,KAAK4L,oBACpFyB,IACFA,EAAmBhS,UAAU5E,IAAIgU,IACjC4C,EAAmBjsB,aAAa,eAAgB,QAEpD,CACA,eAAA+qB,GACE,MAAM5sB,EAAUygB,KAAKwL,gBAAkBxL,KAAK2M,aAC5C,IAAKptB,EACH,OAEF,MAAM+tB,EAAkB/P,OAAOgQ,SAAShuB,EAAQic,aAAa,oBAAqB,IAClFwE,KAAK6E,QAAQkG,SAAWuC,GAAmBtN,KAAK6E,QAAQ+H,eAC1D,CACA,MAAAb,CAAO5V,EAAO5W,EAAU,MACtB,GAAIygB,KAAKyL,WACP,OAEF,MAAM1N,EAAgBiC,KAAK2M,aACrBa,EAASrX,IAAUyT,GACnB6D,EAAcluB,GAAWue,GAAqBkC,KAAKwM,YAAazO,EAAeyP,EAAQxN,KAAK6E,QAAQuG,MAC1G,GAAIqC,IAAgB1P,EAClB,OAEF,MAAM2P,EAAmB1N,KAAK0M,cAAce,GACtCE,EAAenI,GACZjF,GAAaqB,QAAQ5B,KAAK4E,SAAUY,EAAW,CACpD1F,cAAe2N,EACfngB,UAAW0S,KAAK4N,kBAAkBzX,GAClCuD,KAAMsG,KAAK0M,cAAc3O,GACzBuO,GAAIoB,IAIR,GADmBC,EAAa3D,IACjBhI,iBACb,OAEF,IAAKjE,IAAkB0P,EAGrB,OAEF,MAAMI,EAAY/M,QAAQd,KAAKuL,WAC/BvL,KAAKiL,QACLjL,KAAKyL,YAAa,EAClBzL,KAAKmN,2BAA2BO,GAChC1N,KAAKwL,eAAiBiC,EACtB,MAAMK,EAAuBN,EA3OR,sBADF,oBA6ObO,EAAiBP,EA3OH,qBACA,qBA2OpBC,EAAYpS,UAAU5E,IAAIsX,GAC1BlS,GAAO4R,GACP1P,EAAc1C,UAAU5E,IAAIqX,GAC5BL,EAAYpS,UAAU5E,IAAIqX,GAQ1B9N,KAAKmF,gBAPoB,KACvBsI,EAAYpS,UAAU1B,OAAOmU,EAAsBC,GACnDN,EAAYpS,UAAU5E,IAAIgU,IAC1B1M,EAAc1C,UAAU1B,OAAO8Q,GAAqBsD,EAAgBD,GACpE9N,KAAKyL,YAAa,EAClBkC,EAAa1D,GAAW,GAEYlM,EAAeiC,KAAKgO,eACtDH,GACF7N,KAAK8L,OAET,CACA,WAAAkC,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAhQV,QAiQvB,CACA,UAAAmoB,GACE,OAAO9G,GAAeC,QAAQ8E,GAAsB5K,KAAK4E,SAC3D,CACA,SAAA4H,GACE,OAAO3G,GAAe1T,KAAKwY,GAAe3K,KAAK4E,SACjD,CACA,cAAAsH,GACMlM,KAAKuL,YACP0C,cAAcjO,KAAKuL,WACnBvL,KAAKuL,UAAY,KAErB,CACA,iBAAA0B,CAAkB3f,GAChB,OAAI2O,KACK3O,IAAcwc,GAAiBD,GAAaD,GAE9Ctc,IAAcwc,GAAiBF,GAAaC,EACrD,CACA,iBAAA+D,CAAkBzX,GAChB,OAAI8F,KACK9F,IAAU0T,GAAaC,GAAiBC,GAE1C5T,IAAU0T,GAAaE,GAAkBD,EAClD,CAGA,sBAAOrN,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOihB,GAAShG,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,GAIX,GAAsB,iBAAXA,EAAqB,CAC9B,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,OAREzZ,EAAKiiB,GAAGxI,EASZ,GACF,EAOFvD,GAAac,GAAGhc,SAAUklB,GAvSE,uCAuS2C,SAAUnL,GAC/E,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACrD,IAAKzT,IAAWA,EAAO8O,UAAU7W,SAASgmB,IACxC,OAEFpL,EAAMkD,iBACN,MAAM4L,EAAW5C,GAAShG,oBAAoB/Y,GACxC4hB,EAAanO,KAAKxE,aAAa,oBACrC,OAAI2S,GACFD,EAAS5B,GAAG6B,QACZD,EAAS7B,qBAGyC,SAAhDrJ,GAAYQ,iBAAiBxD,KAAM,UACrCkO,EAASrpB,YACTqpB,EAAS7B,sBAGX6B,EAAS/H,YACT+H,EAAS7B,oBACX,IACA9L,GAAac,GAAGzhB,OAAQ0qB,IAAuB,KAC7C,MAAM8D,EAAYvI,GAAe1T,KA5TR,6BA6TzB,IAAK,MAAM+b,KAAYE,EACrB9C,GAAShG,oBAAoB4I,EAC/B,IAOF/R,GAAmBmP,IAcnB,MAEM+C,GAAc,eAEdC,GAAe,OAAOD,KACtBE,GAAgB,QAAQF,KACxBG,GAAe,OAAOH,KACtBI,GAAiB,SAASJ,KAC1BK,GAAyB,QAAQL,cACjCM,GAAoB,OACpBC,GAAsB,WACtBC,GAAwB,aAExBC,GAA6B,WAAWF,OAAwBA,KAKhEG,GAAyB,8BACzBC,GAAY,CAChBvqB,OAAQ,KACRkjB,QAAQ,GAEJsH,GAAgB,CACpBxqB,OAAQ,iBACRkjB,OAAQ,WAOV,MAAMuH,WAAiBxK,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmP,kBAAmB,EACxBnP,KAAKoP,cAAgB,GACrB,MAAMC,EAAaxJ,GAAe1T,KAAK4c,IACvC,IAAK,MAAMO,KAAQD,EAAY,CAC7B,MAAMtV,EAAW8L,GAAea,uBAAuB4I,GACjDC,EAAgB1J,GAAe1T,KAAK4H,GAAU5T,QAAOqpB,GAAgBA,IAAiBxP,KAAK4E,WAChF,OAAb7K,GAAqBwV,EAAc7e,QACrCsP,KAAKoP,cAAcxd,KAAK0d,EAE5B,CACAtP,KAAKyP,sBACAzP,KAAK6E,QAAQpgB,QAChBub,KAAK0P,0BAA0B1P,KAAKoP,cAAepP,KAAK2P,YAEtD3P,KAAK6E,QAAQ8C,QACf3H,KAAK2H,QAET,CAGA,kBAAWjE,GACT,OAAOsL,EACT,CACA,sBAAWrL,GACT,OAAOsL,EACT,CACA,eAAW1S,GACT,MA9DW,UA+Db,CAGA,MAAAoL,GACM3H,KAAK2P,WACP3P,KAAK4P,OAEL5P,KAAK6P,MAET,CACA,IAAAA,GACE,GAAI7P,KAAKmP,kBAAoBnP,KAAK2P,WAChC,OAEF,IAAIG,EAAiB,GAQrB,GALI9P,KAAK6E,QAAQpgB,SACfqrB,EAAiB9P,KAAK+P,uBAhEH,wCAgE4C5pB,QAAO5G,GAAWA,IAAYygB,KAAK4E,WAAU9hB,KAAIvD,GAAW2vB,GAAS5J,oBAAoB/lB,EAAS,CAC/JooB,QAAQ,OAGRmI,EAAepf,QAAUof,EAAe,GAAGX,iBAC7C,OAGF,GADmB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU0J,IACxCtM,iBACb,OAEF,IAAK,MAAMgO,KAAkBF,EAC3BE,EAAeJ,OAEjB,MAAMK,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAASvJ,UAAU1B,OAAOiV,IAC/B5O,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,EACjCjQ,KAAK0P,0BAA0B1P,KAAKoP,eAAe,GACnDpP,KAAKmP,kBAAmB,EACxB,MAQMgB,EAAa,SADUF,EAAU,GAAGxL,cAAgBwL,EAAU7d,MAAM,KAE1E4N,KAAKmF,gBATY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,GAAqBD,IACjD3O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjC1P,GAAaqB,QAAQ5B,KAAK4E,SAAU2J,GAAc,GAItBvO,KAAK4E,UAAU,GAC7C5E,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASuL,MACpD,CACA,IAAAP,GACE,GAAI5P,KAAKmP,mBAAqBnP,KAAK2P,WACjC,OAGF,GADmBpP,GAAaqB,QAAQ5B,KAAK4E,SAAU4J,IACxCxM,iBACb,OAEF,MAAMiO,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASthB,wBAAwB2sB,OAC1EpU,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAASvJ,UAAU1B,OAAOiV,GAAqBD,IACpD,IAAK,MAAM/M,KAAW5B,KAAKoP,cAAe,CACxC,MAAM7vB,EAAUsmB,GAAec,uBAAuB/E,GAClDriB,IAAYygB,KAAK2P,SAASpwB,IAC5BygB,KAAK0P,0BAA0B,CAAC9N,IAAU,EAE9C,CACA5B,KAAKmP,kBAAmB,EAOxBnP,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjCjQ,KAAKmF,gBAPY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,IAC5BrO,GAAaqB,QAAQ5B,KAAK4E,SAAU6J,GAAe,GAGvBzO,KAAK4E,UAAU,EAC/C,CACA,QAAA+K,CAASpwB,EAAUygB,KAAK4E,UACtB,OAAOrlB,EAAQ8b,UAAU7W,SAASmqB,GACpC,CAGA,iBAAA3K,CAAkBF,GAGhB,OAFAA,EAAO6D,OAAS7G,QAAQgD,EAAO6D,QAC/B7D,EAAOrf,OAASiW,GAAWoJ,EAAOrf,QAC3Bqf,CACT,CACA,aAAAoM,GACE,OAAOlQ,KAAK4E,SAASvJ,UAAU7W,SA3IL,uBAChB,QACC,QA0Ib,CACA,mBAAAirB,GACE,IAAKzP,KAAK6E,QAAQpgB,OAChB,OAEF,MAAMshB,EAAW/F,KAAK+P,uBAAuBhB,IAC7C,IAAK,MAAMxvB,KAAWwmB,EAAU,CAC9B,MAAMqK,EAAWvK,GAAec,uBAAuBpnB,GACnD6wB,GACFpQ,KAAK0P,0BAA0B,CAACnwB,GAAUygB,KAAK2P,SAASS,GAE5D,CACF,CACA,sBAAAL,CAAuBhW,GACrB,MAAMgM,EAAWF,GAAe1T,KAAK2c,GAA4B9O,KAAK6E,QAAQpgB,QAE9E,OAAOohB,GAAe1T,KAAK4H,EAAUiG,KAAK6E,QAAQpgB,QAAQ0B,QAAO5G,IAAYwmB,EAAS3E,SAAS7hB,IACjG,CACA,yBAAAmwB,CAA0BW,EAAcC,GACtC,GAAKD,EAAa3f,OAGlB,IAAK,MAAMnR,KAAW8wB,EACpB9wB,EAAQ8b,UAAUsM,OArKK,aAqKyB2I,GAChD/wB,EAAQ6B,aAAa,gBAAiBkvB,EAE1C,CAGA,sBAAO7T,CAAgBqH,GACrB,MAAMe,EAAU,CAAC,EAIjB,MAHsB,iBAAXf,GAAuB,YAAYzgB,KAAKygB,KACjDe,EAAQ8C,QAAS,GAEZ3H,KAAKwH,MAAK,WACf,MAAMnd,EAAO6kB,GAAS5J,oBAAoBtF,KAAM6E,GAChD,GAAsB,iBAAXf,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,CACF,GACF,EAOFvD,GAAac,GAAGhc,SAAUqpB,GAAwBK,IAAwB,SAAU3P,IAErD,MAAzBA,EAAM7S,OAAO0a,SAAmB7H,EAAMW,gBAAmD,MAAjCX,EAAMW,eAAekH,UAC/E7H,EAAMkD,iBAER,IAAK,MAAM/iB,KAAWsmB,GAAee,gCAAgC5G,MACnEkP,GAAS5J,oBAAoB/lB,EAAS,CACpCooB,QAAQ,IACPA,QAEP,IAMAxL,GAAmB+S,IAcnB,MAAMqB,GAAS,WAETC,GAAc,eACdC,GAAiB,YAGjBC,GAAiB,UACjBC,GAAmB,YAGnBC,GAAe,OAAOJ,KACtBK,GAAiB,SAASL,KAC1BM,GAAe,OAAON,KACtBO,GAAgB,QAAQP,KACxBQ,GAAyB,QAAQR,KAAcC,KAC/CQ,GAAyB,UAAUT,KAAcC,KACjDS,GAAuB,QAAQV,KAAcC,KAC7CU,GAAoB,OAMpBC,GAAyB,4DACzBC,GAA6B,GAAGD,MAA0BD,KAC1DG,GAAgB,iBAIhBC,GAAgBtV,KAAU,UAAY,YACtCuV,GAAmBvV,KAAU,YAAc,UAC3CwV,GAAmBxV,KAAU,aAAe,eAC5CyV,GAAsBzV,KAAU,eAAiB,aACjD0V,GAAkB1V,KAAU,aAAe,cAC3C2V,GAAiB3V,KAAU,cAAgB,aAG3C4V,GAAY,CAChBC,WAAW,EACX7jB,SAAU,kBACV8jB,QAAS,UACT/pB,OAAQ,CAAC,EAAG,GACZgqB,aAAc,KACd1zB,UAAW,UAEP2zB,GAAgB,CACpBH,UAAW,mBACX7jB,SAAU,mBACV8jB,QAAS,SACT/pB,OAAQ,0BACRgqB,aAAc,yBACd1zB,UAAW,2BAOb,MAAM4zB,WAAiBxN,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmS,QAAU,KACfnS,KAAKoS,QAAUpS,KAAK4E,SAAS7f,WAE7Bib,KAAKqS,MAAQxM,GAAehhB,KAAKmb,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeM,KAAKnG,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeC,QAAQwL,GAAetR,KAAKoS,SACxKpS,KAAKsS,UAAYtS,KAAKuS,eACxB,CAGA,kBAAW7O,GACT,OAAOmO,EACT,CACA,sBAAWlO,GACT,OAAOsO,EACT,CACA,eAAW1V,GACT,OAAOgU,EACT,CAGA,MAAA5I,GACE,OAAO3H,KAAK2P,WAAa3P,KAAK4P,OAAS5P,KAAK6P,MAC9C,CACA,IAAAA,GACE,GAAI3U,GAAW8E,KAAK4E,WAAa5E,KAAK2P,WACpC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAGtB,IADkBrE,GAAaqB,QAAQ5B,KAAK4E,SAAUkM,GAAchR,GACtDkC,iBAAd,CASA,GANAhC,KAAKwS,gBAMD,iBAAkBntB,SAASC,kBAAoB0a,KAAKoS,QAAQpX,QAzExC,eA0EtB,IAAK,MAAMzb,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAG1CoE,KAAK4E,SAAS6N,QACdzS,KAAK4E,SAASxjB,aAAa,iBAAiB,GAC5C4e,KAAKqS,MAAMhX,UAAU5E,IAAI0a,IACzBnR,KAAK4E,SAASvJ,UAAU5E,IAAI0a,IAC5B5Q,GAAaqB,QAAQ5B,KAAK4E,SAAUmM,GAAejR,EAhBnD,CAiBF,CACA,IAAA8P,GACE,GAAI1U,GAAW8E,KAAK4E,YAAc5E,KAAK2P,WACrC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAEtB5E,KAAK0S,cAAc5S,EACrB,CACA,OAAAiF,GACM/E,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEf2L,MAAMI,SACR,CACA,MAAAha,GACEiV,KAAKsS,UAAYtS,KAAKuS,gBAClBvS,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,aAAA2nB,CAAc5S,GAEZ,IADkBS,GAAaqB,QAAQ5B,KAAK4E,SAAUgM,GAAc9Q,GACtDkC,iBAAd,CAMA,GAAI,iBAAkB3c,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAGvCoE,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEfgH,KAAKqS,MAAMhX,UAAU1B,OAAOwX,IAC5BnR,KAAK4E,SAASvJ,UAAU1B,OAAOwX,IAC/BnR,KAAK4E,SAASxjB,aAAa,gBAAiB,SAC5C4hB,GAAYE,oBAAoBlD,KAAKqS,MAAO,UAC5C9R,GAAaqB,QAAQ5B,KAAK4E,SAAUiM,GAAgB/Q,EAhBpD,CAiBF,CACA,UAAA+D,CAAWC,GAET,GAAgC,iBADhCA,EAASa,MAAMd,WAAWC,IACRxlB,YAA2B,GAAUwlB,EAAOxlB,YAAgE,mBAA3CwlB,EAAOxlB,UAAUgF,sBAElG,MAAM,IAAIkhB,UAAU,GAAG+L,GAAO9L,+GAEhC,OAAOX,CACT,CACA,aAAA0O,GACE,QAAsB,IAAX,EACT,MAAM,IAAIhO,UAAU,gEAEtB,IAAImO,EAAmB3S,KAAK4E,SACG,WAA3B5E,KAAK6E,QAAQvmB,UACfq0B,EAAmB3S,KAAKoS,QACf,GAAUpS,KAAK6E,QAAQvmB,WAChCq0B,EAAmBjY,GAAWsF,KAAK6E,QAAQvmB,WACA,iBAA3B0hB,KAAK6E,QAAQvmB,YAC7Bq0B,EAAmB3S,KAAK6E,QAAQvmB,WAElC,MAAM0zB,EAAehS,KAAK4S,mBAC1B5S,KAAKmS,QAAU,GAAoBQ,EAAkB3S,KAAKqS,MAAOL,EACnE,CACA,QAAArC,GACE,OAAO3P,KAAKqS,MAAMhX,UAAU7W,SAAS2sB,GACvC,CACA,aAAA0B,GACE,MAAMC,EAAiB9S,KAAKoS,QAC5B,GAAIU,EAAezX,UAAU7W,SArKN,WAsKrB,OAAOmtB,GAET,GAAImB,EAAezX,UAAU7W,SAvKJ,aAwKvB,OAAOotB,GAET,GAAIkB,EAAezX,UAAU7W,SAzKA,iBA0K3B,MA5JsB,MA8JxB,GAAIsuB,EAAezX,UAAU7W,SA3KE,mBA4K7B,MA9JyB,SAkK3B,MAAMuuB,EAAkF,QAA1E9tB,iBAAiB+a,KAAKqS,OAAOvX,iBAAiB,iBAAiB6K,OAC7E,OAAImN,EAAezX,UAAU7W,SArLP,UAsLbuuB,EAAQvB,GAAmBD,GAE7BwB,EAAQrB,GAAsBD,EACvC,CACA,aAAAc,GACE,OAAkD,OAA3CvS,KAAK4E,SAAS5J,QAnLD,UAoLtB,CACA,UAAAgY,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,gBAAA4qB,GACE,MAAMM,EAAwB,CAC5Bx0B,UAAWshB,KAAK6S,gBAChBzc,UAAW,CAAC,CACV9V,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,iBAanB,OAPIhT,KAAKsS,WAAsC,WAAzBtS,KAAK6E,QAAQkN,WACjC/O,GAAYC,iBAAiBjD,KAAKqS,MAAO,SAAU,UACnDa,EAAsB9c,UAAY,CAAC,CACjC9V,KAAM,cACNC,SAAS,KAGN,IACF2yB,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,eAAAC,EAAgB,IACdr2B,EAAG,OACHyP,IAEA,MAAMggB,EAAQ1G,GAAe1T,KAhOF,8DAgO+B6N,KAAKqS,OAAOlsB,QAAO5G,GAAWob,GAAUpb,KAC7FgtB,EAAM7b,QAMXoN,GAAqByO,EAAOhgB,EAAQzP,IAAQ6zB,IAAmBpE,EAAMnL,SAAS7U,IAASkmB,OACzF,CAGA,sBAAOhW,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6nB,GAAS5M,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,CACA,iBAAOsP,CAAWhU,GAChB,GA5QuB,IA4QnBA,EAAMwI,QAAgD,UAAfxI,EAAMqB,MA/QnC,QA+QuDrB,EAAMtiB,IACzE,OAEF,MAAMu2B,EAAcxN,GAAe1T,KAAKkf,IACxC,IAAK,MAAM1J,KAAU0L,EAAa,CAChC,MAAMC,EAAUpB,GAAS7M,YAAYsC,GACrC,IAAK2L,IAAyC,IAA9BA,EAAQzO,QAAQiN,UAC9B,SAEF,MAAMyB,EAAenU,EAAMmU,eACrBC,EAAeD,EAAanS,SAASkS,EAAQjB,OACnD,GAAIkB,EAAanS,SAASkS,EAAQ1O,WAA2C,WAA9B0O,EAAQzO,QAAQiN,YAA2B0B,GAA8C,YAA9BF,EAAQzO,QAAQiN,WAA2B0B,EACnJ,SAIF,GAAIF,EAAQjB,MAAM7tB,SAAS4a,EAAM7S,UAA2B,UAAf6S,EAAMqB,MA/RvC,QA+R2DrB,EAAMtiB,KAAqB,qCAAqCuG,KAAK+b,EAAM7S,OAAO0a,UACvJ,SAEF,MAAMnH,EAAgB,CACpBA,cAAewT,EAAQ1O,UAEN,UAAfxF,EAAMqB,OACRX,EAAckH,WAAa5H,GAE7BkU,EAAQZ,cAAc5S,EACxB,CACF,CACA,4BAAO2T,CAAsBrU,GAI3B,MAAMsU,EAAU,kBAAkBrwB,KAAK+b,EAAM7S,OAAO0a,SAC9C0M,EAjTW,WAiTKvU,EAAMtiB,IACtB82B,EAAkB,CAAClD,GAAgBC,IAAkBvP,SAAShC,EAAMtiB,KAC1E,IAAK82B,IAAoBD,EACvB,OAEF,GAAID,IAAYC,EACd,OAEFvU,EAAMkD,iBAGN,MAAMuR,EAAkB7T,KAAKgG,QAAQoL,IAA0BpR,KAAO6F,GAAeM,KAAKnG,KAAMoR,IAAwB,IAAMvL,GAAehhB,KAAKmb,KAAMoR,IAAwB,IAAMvL,GAAeC,QAAQsL,GAAwBhS,EAAMW,eAAehb,YACpPwF,EAAW2nB,GAAS5M,oBAAoBuO,GAC9C,GAAID,EAIF,OAHAxU,EAAM0U,kBACNvpB,EAASslB,YACTtlB,EAAS4oB,gBAAgB/T,GAGvB7U,EAASolB,aAEXvQ,EAAM0U,kBACNvpB,EAASqlB,OACTiE,EAAgBpB,QAEpB,EAOFlS,GAAac,GAAGhc,SAAU4rB,GAAwBG,GAAwBc,GAASuB,uBACnFlT,GAAac,GAAGhc,SAAU4rB,GAAwBK,GAAeY,GAASuB,uBAC1ElT,GAAac,GAAGhc,SAAU2rB,GAAwBkB,GAASkB,YAC3D7S,GAAac,GAAGhc,SAAU6rB,GAAsBgB,GAASkB,YACzD7S,GAAac,GAAGhc,SAAU2rB,GAAwBI,IAAwB,SAAUhS,GAClFA,EAAMkD,iBACN4P,GAAS5M,oBAAoBtF,MAAM2H,QACrC,IAMAxL,GAAmB+V,IAcnB,MAAM6B,GAAS,WAETC,GAAoB,OACpBC,GAAkB,gBAAgBF,KAClCG,GAAY,CAChBC,UAAW,iBACXC,cAAe,KACfhP,YAAY,EACZzK,WAAW,EAEX0Z,YAAa,QAETC,GAAgB,CACpBH,UAAW,SACXC,cAAe,kBACfhP,WAAY,UACZzK,UAAW,UACX0Z,YAAa,oBAOf,MAAME,WAAiB9Q,GACrB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwU,aAAc,EACnBxU,KAAK4E,SAAW,IAClB,CAGA,kBAAWlB,GACT,OAAOwQ,EACT,CACA,sBAAWvQ,GACT,OAAO2Q,EACT,CACA,eAAW/X,GACT,OAAOwX,EACT,CAGA,IAAAlE,CAAKxT,GACH,IAAK2D,KAAK6E,QAAQlK,UAEhB,YADAkC,GAAQR,GAGV2D,KAAKyU,UACL,MAAMl1B,EAAUygB,KAAK0U,cACjB1U,KAAK6E,QAAQO,YACfvJ,GAAOtc,GAETA,EAAQ8b,UAAU5E,IAAIud,IACtBhU,KAAK2U,mBAAkB,KACrB9X,GAAQR,EAAS,GAErB,CACA,IAAAuT,CAAKvT,GACE2D,KAAK6E,QAAQlK,WAIlBqF,KAAK0U,cAAcrZ,UAAU1B,OAAOqa,IACpChU,KAAK2U,mBAAkB,KACrB3U,KAAK+E,UACLlI,GAAQR,EAAS,KANjBQ,GAAQR,EAQZ,CACA,OAAA0I,GACO/E,KAAKwU,cAGVjU,GAAaC,IAAIR,KAAK4E,SAAUqP,IAChCjU,KAAK4E,SAASjL,SACdqG,KAAKwU,aAAc,EACrB,CAGA,WAAAE,GACE,IAAK1U,KAAK4E,SAAU,CAClB,MAAMgQ,EAAWvvB,SAASwvB,cAAc,OACxCD,EAAST,UAAYnU,KAAK6E,QAAQsP,UAC9BnU,KAAK6E,QAAQO,YACfwP,EAASvZ,UAAU5E,IApFD,QAsFpBuJ,KAAK4E,SAAWgQ,CAClB,CACA,OAAO5U,KAAK4E,QACd,CACA,iBAAAZ,CAAkBF,GAGhB,OADAA,EAAOuQ,YAAc3Z,GAAWoJ,EAAOuQ,aAChCvQ,CACT,CACA,OAAA2Q,GACE,GAAIzU,KAAKwU,YACP,OAEF,MAAMj1B,EAAUygB,KAAK0U,cACrB1U,KAAK6E,QAAQwP,YAAYS,OAAOv1B,GAChCghB,GAAac,GAAG9hB,EAAS00B,IAAiB,KACxCpX,GAAQmD,KAAK6E,QAAQuP,cAAc,IAErCpU,KAAKwU,aAAc,CACrB,CACA,iBAAAG,CAAkBtY,GAChBW,GAAuBX,EAAU2D,KAAK0U,cAAe1U,KAAK6E,QAAQO,WACpE,EAeF,MAEM2P,GAAc,gBACdC,GAAkB,UAAUD,KAC5BE,GAAoB,cAAcF,KAGlCG,GAAmB,WACnBC,GAAY,CAChBC,WAAW,EACXC,YAAa,MAETC,GAAgB,CACpBF,UAAW,UACXC,YAAa,WAOf,MAAME,WAAkB9R,GACtB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwV,WAAY,EACjBxV,KAAKyV,qBAAuB,IAC9B,CAGA,kBAAW/R,GACT,OAAOyR,EACT,CACA,sBAAWxR,GACT,OAAO2R,EACT,CACA,eAAW/Y,GACT,MArCW,WAsCb,CAGA,QAAAmZ,GACM1V,KAAKwV,YAGLxV,KAAK6E,QAAQuQ,WACfpV,KAAK6E,QAAQwQ,YAAY5C,QAE3BlS,GAAaC,IAAInb,SAAU0vB,IAC3BxU,GAAac,GAAGhc,SAAU2vB,IAAiB5V,GAASY,KAAK2V,eAAevW,KACxEmB,GAAac,GAAGhc,SAAU4vB,IAAmB7V,GAASY,KAAK4V,eAAexW,KAC1EY,KAAKwV,WAAY,EACnB,CACA,UAAAK,GACO7V,KAAKwV,YAGVxV,KAAKwV,WAAY,EACjBjV,GAAaC,IAAInb,SAAU0vB,IAC7B,CAGA,cAAAY,CAAevW,GACb,MAAM,YACJiW,GACErV,KAAK6E,QACT,GAAIzF,EAAM7S,SAAWlH,UAAY+Z,EAAM7S,SAAW8oB,GAAeA,EAAY7wB,SAAS4a,EAAM7S,QAC1F,OAEF,MAAM1L,EAAWglB,GAAeU,kBAAkB8O,GAC1B,IAApBx0B,EAAS6P,OACX2kB,EAAY5C,QACHzS,KAAKyV,uBAAyBP,GACvCr0B,EAASA,EAAS6P,OAAS,GAAG+hB,QAE9B5xB,EAAS,GAAG4xB,OAEhB,CACA,cAAAmD,CAAexW,GAzED,QA0ERA,EAAMtiB,MAGVkjB,KAAKyV,qBAAuBrW,EAAM0W,SAAWZ,GA5EzB,UA6EtB,EAeF,MAAMa,GAAyB,oDACzBC,GAA0B,cAC1BC,GAAmB,gBACnBC,GAAkB,eAMxB,MAAMC,GACJ,WAAAhS,GACEnE,KAAK4E,SAAWvf,SAAS6G,IAC3B,CAGA,QAAAkqB,GAEE,MAAMC,EAAgBhxB,SAASC,gBAAgBuC,YAC/C,OAAO1F,KAAKoC,IAAI3E,OAAO02B,WAAaD,EACtC,CACA,IAAAzG,GACE,MAAM/rB,EAAQmc,KAAKoW,WACnBpW,KAAKuW,mBAELvW,KAAKwW,sBAAsBxW,KAAK4E,SAAUqR,IAAkBQ,GAAmBA,EAAkB5yB,IAEjGmc,KAAKwW,sBAAsBT,GAAwBE,IAAkBQ,GAAmBA,EAAkB5yB,IAC1Gmc,KAAKwW,sBAAsBR,GAAyBE,IAAiBO,GAAmBA,EAAkB5yB,GAC5G,CACA,KAAAwO,GACE2N,KAAK0W,wBAAwB1W,KAAK4E,SAAU,YAC5C5E,KAAK0W,wBAAwB1W,KAAK4E,SAAUqR,IAC5CjW,KAAK0W,wBAAwBX,GAAwBE,IACrDjW,KAAK0W,wBAAwBV,GAAyBE,GACxD,CACA,aAAAS,GACE,OAAO3W,KAAKoW,WAAa,CAC3B,CAGA,gBAAAG,GACEvW,KAAK4W,sBAAsB5W,KAAK4E,SAAU,YAC1C5E,KAAK4E,SAAS7jB,MAAM+K,SAAW,QACjC,CACA,qBAAA0qB,CAAsBzc,EAAU8c,EAAexa,GAC7C,MAAMya,EAAiB9W,KAAKoW,WAS5BpW,KAAK+W,2BAA2Bhd,GARHxa,IAC3B,GAAIA,IAAYygB,KAAK4E,UAAYhlB,OAAO02B,WAAa/2B,EAAQsI,YAAcivB,EACzE,OAEF9W,KAAK4W,sBAAsBr3B,EAASs3B,GACpC,MAAMJ,EAAkB72B,OAAOqF,iBAAiB1F,GAASub,iBAAiB+b,GAC1Et3B,EAAQwB,MAAMi2B,YAAYH,EAAe,GAAGxa,EAASkB,OAAOC,WAAWiZ,QAAsB,GAGjG,CACA,qBAAAG,CAAsBr3B,EAASs3B,GAC7B,MAAMI,EAAc13B,EAAQwB,MAAM+Z,iBAAiB+b,GAC/CI,GACFjU,GAAYC,iBAAiB1jB,EAASs3B,EAAeI,EAEzD,CACA,uBAAAP,CAAwB3c,EAAU8c,GAWhC7W,KAAK+W,2BAA2Bhd,GAVHxa,IAC3B,MAAM5B,EAAQqlB,GAAYQ,iBAAiBjkB,EAASs3B,GAEtC,OAAVl5B,GAIJqlB,GAAYE,oBAAoB3jB,EAASs3B,GACzCt3B,EAAQwB,MAAMi2B,YAAYH,EAAel5B,IAJvC4B,EAAQwB,MAAMm2B,eAAeL,EAIgB,GAGnD,CACA,0BAAAE,CAA2Bhd,EAAUod,GACnC,GAAI,GAAUpd,GACZod,EAASpd,QAGX,IAAK,MAAM6L,KAAOC,GAAe1T,KAAK4H,EAAUiG,KAAK4E,UACnDuS,EAASvR,EAEb,EAeF,MAEMwR,GAAc,YAGdC,GAAe,OAAOD,KACtBE,GAAyB,gBAAgBF,KACzCG,GAAiB,SAASH,KAC1BI,GAAe,OAAOJ,KACtBK,GAAgB,QAAQL,KACxBM,GAAiB,SAASN,KAC1BO,GAAsB,gBAAgBP,KACtCQ,GAA0B,oBAAoBR,KAC9CS,GAA0B,kBAAkBT,KAC5CU,GAAyB,QAAQV,cACjCW,GAAkB,aAElBC,GAAoB,OACpBC,GAAoB,eAKpBC,GAAY,CAChBtD,UAAU,EACVnC,OAAO,EACPzH,UAAU,GAENmN,GAAgB,CACpBvD,SAAU,mBACVnC,MAAO,UACPzH,SAAU,WAOZ,MAAMoN,WAAc1T,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKqY,QAAUxS,GAAeC,QArBV,gBAqBmC9F,KAAK4E,UAC5D5E,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAa,IAAIvC,GACtBnW,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAOwU,EACT,CACA,sBAAWvU,GACT,OAAOwU,EACT,CACA,eAAW5b,GACT,MA1DW,OA2Db,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAAY3P,KAAKmP,kBAGR5O,GAAaqB,QAAQ5B,KAAK4E,SAAU4S,GAAc,CAClE1X,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAW9I,OAChBvqB,SAAS6G,KAAKmP,UAAU5E,IAAIshB,IAC5B/X,KAAK2Y,gBACL3Y,KAAKsY,UAAUzI,MAAK,IAAM7P,KAAK4Y,aAAa9Y,KAC9C,CACA,IAAA8P,GACO5P,KAAK2P,WAAY3P,KAAKmP,mBAGT5O,GAAaqB,QAAQ5B,KAAK4E,SAAUyS,IACxCrV,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASvJ,UAAU1B,OAAOqe,IAC/BhY,KAAKmF,gBAAe,IAAMnF,KAAK6Y,cAAc7Y,KAAK4E,SAAU5E,KAAKgO,gBACnE,CACA,OAAAjJ,GACExE,GAAaC,IAAI5gB,OAAQw3B,IACzB7W,GAAaC,IAAIR,KAAKqY,QAASjB,IAC/BpX,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CACA,YAAA+T,GACE9Y,KAAK2Y,eACP,CAGA,mBAAAJ,GACE,OAAO,IAAIhE,GAAS,CAClB5Z,UAAWmG,QAAQd,KAAK6E,QAAQ+P,UAEhCxP,WAAYpF,KAAKgO,eAErB,CACA,oBAAAyK,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,YAAAgU,CAAa9Y,GAENza,SAAS6G,KAAK1H,SAASwb,KAAK4E,WAC/Bvf,SAAS6G,KAAK4oB,OAAO9U,KAAK4E,UAE5B5E,KAAK4E,SAAS7jB,MAAMgxB,QAAU,QAC9B/R,KAAK4E,SAASzjB,gBAAgB,eAC9B6e,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASnZ,UAAY,EAC1B,MAAMstB,EAAYlT,GAAeC,QA7GT,cA6GsC9F,KAAKqY,SAC/DU,IACFA,EAAUttB,UAAY,GAExBoQ,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIuhB,IAU5BhY,KAAKmF,gBATsB,KACrBnF,KAAK6E,QAAQ4N,OACfzS,KAAKwY,WAAW9C,WAElB1V,KAAKmP,kBAAmB,EACxB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU6S,GAAe,CACjD3X,iBACA,GAEoCE,KAAKqY,QAASrY,KAAKgO,cAC7D,CACA,kBAAAnC,GACEtL,GAAac,GAAGrB,KAAK4E,SAAUiT,IAAyBzY,IAhJvC,WAiJXA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGP5P,KAAKgZ,6BAA4B,IAEnCzY,GAAac,GAAGzhB,OAAQ83B,IAAgB,KAClC1X,KAAK2P,WAAa3P,KAAKmP,kBACzBnP,KAAK2Y,eACP,IAEFpY,GAAac,GAAGrB,KAAK4E,SAAUgT,IAAyBxY,IAEtDmB,GAAae,IAAItB,KAAK4E,SAAU+S,IAAqBsB,IAC/CjZ,KAAK4E,WAAaxF,EAAM7S,QAAUyT,KAAK4E,WAAaqU,EAAO1sB,SAGjC,WAA1ByT,KAAK6E,QAAQ+P,SAIb5U,KAAK6E,QAAQ+P,UACf5U,KAAK4P,OAJL5P,KAAKgZ,6BAKP,GACA,GAEN,CACA,UAAAH,GACE7Y,KAAK4E,SAAS7jB,MAAMgxB,QAAU,OAC9B/R,KAAK4E,SAASxjB,aAAa,eAAe,GAC1C4e,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QAC9B6e,KAAKmP,kBAAmB,EACxBnP,KAAKsY,UAAU1I,MAAK,KAClBvqB,SAAS6G,KAAKmP,UAAU1B,OAAOoe,IAC/B/X,KAAKkZ,oBACLlZ,KAAK0Y,WAAWrmB,QAChBkO,GAAaqB,QAAQ5B,KAAK4E,SAAU2S,GAAe,GAEvD,CACA,WAAAvJ,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAjLT,OAkLxB,CACA,0BAAAw0B,GAEE,GADkBzY,GAAaqB,QAAQ5B,KAAK4E,SAAU0S,IACxCtV,iBACZ,OAEF,MAAMmX,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EwxB,EAAmBpZ,KAAK4E,SAAS7jB,MAAMiL,UAEpB,WAArBotB,GAAiCpZ,KAAK4E,SAASvJ,UAAU7W,SAASyzB,MAGjEkB,IACHnZ,KAAK4E,SAAS7jB,MAAMiL,UAAY,UAElCgU,KAAK4E,SAASvJ,UAAU5E,IAAIwhB,IAC5BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAASvJ,UAAU1B,OAAOse,IAC/BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAAS7jB,MAAMiL,UAAYotB,CAAgB,GAC/CpZ,KAAKqY,QAAQ,GACfrY,KAAKqY,SACRrY,KAAK4E,SAAS6N,QAChB,CAMA,aAAAkG,GACE,MAAMQ,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EkvB,EAAiB9W,KAAK0Y,WAAWtC,WACjCiD,EAAoBvC,EAAiB,EAC3C,GAAIuC,IAAsBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,cAAgB,eAC3C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACA,IAAKuC,GAAqBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,eAAiB,cAC5C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACF,CACA,iBAAAoC,GACElZ,KAAK4E,SAAS7jB,MAAMu4B,YAAc,GAClCtZ,KAAK4E,SAAS7jB,MAAMw4B,aAAe,EACrC,CAGA,sBAAO9c,CAAgBqH,EAAQhE,GAC7B,OAAOE,KAAKwH,MAAK,WACf,MAAMnd,EAAO+tB,GAAM9S,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQhE,EAJb,CAKF,GACF,EAOFS,GAAac,GAAGhc,SAAUyyB,GA9OK,4BA8O2C,SAAU1Y,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACjD,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAER/B,GAAae,IAAI/U,EAAQirB,IAAcgC,IACjCA,EAAUxX,kBAIdzB,GAAae,IAAI/U,EAAQgrB,IAAgB,KACnC5c,GAAUqF,OACZA,KAAKyS,OACP,GACA,IAIJ,MAAMgH,EAAc5T,GAAeC,QAnQb,eAoQlB2T,GACFrB,GAAM/S,YAAYoU,GAAa7J,OAEpBwI,GAAM9S,oBAAoB/Y,GAClCob,OAAO3H,KACd,IACA6G,GAAqBuR,IAMrBjc,GAAmBic,IAcnB,MAEMsB,GAAc,gBACdC,GAAiB,YACjBC,GAAwB,OAAOF,KAAcC,KAE7CE,GAAoB,OACpBC,GAAuB,UACvBC,GAAoB,SAEpBC,GAAgB,kBAChBC,GAAe,OAAOP,KACtBQ,GAAgB,QAAQR,KACxBS,GAAe,OAAOT,KACtBU,GAAuB,gBAAgBV,KACvCW,GAAiB,SAASX,KAC1BY,GAAe,SAASZ,KACxBa,GAAyB,QAAQb,KAAcC,KAC/Ca,GAAwB,kBAAkBd,KAE1Ce,GAAY,CAChB7F,UAAU,EACV5J,UAAU,EACVvgB,QAAQ,GAEJiwB,GAAgB,CACpB9F,SAAU,mBACV5J,SAAU,UACVvgB,OAAQ,WAOV,MAAMkwB,WAAkBjW,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAO+W,EACT,CACA,sBAAW9W,GACT,OAAO+W,EACT,CACA,eAAWne,GACT,MApDW,WAqDb,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAGSpP,GAAaqB,QAAQ5B,KAAK4E,SAAUqV,GAAc,CAClEna,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAUzI,OACV7P,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkBvG,OAExB5P,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASvJ,UAAU5E,IAAIqjB,IAW5B9Z,KAAKmF,gBAVoB,KAClBnF,KAAK6E,QAAQpa,SAAUuV,KAAK6E,QAAQ+P,UACvC5U,KAAKwY,WAAW9C,WAElB1V,KAAK4E,SAASvJ,UAAU5E,IAAIojB,IAC5B7Z,KAAK4E,SAASvJ,UAAU1B,OAAOmgB,IAC/BvZ,GAAaqB,QAAQ5B,KAAK4E,SAAUsV,GAAe,CACjDpa,iBACA,GAEkCE,KAAK4E,UAAU,GACvD,CACA,IAAAgL,GACO5P,KAAK2P,WAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAUuV,IACxCnY,mBAGdhC,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASgW,OACd5a,KAAK2P,UAAW,EAChB3P,KAAK4E,SAASvJ,UAAU5E,IAAIsjB,IAC5B/Z,KAAKsY,UAAU1I,OAUf5P,KAAKmF,gBAToB,KACvBnF,KAAK4E,SAASvJ,UAAU1B,OAAOkgB,GAAmBE,IAClD/Z,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QACzB6e,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkB9jB,QAExBkO,GAAaqB,QAAQ5B,KAAK4E,SAAUyV,GAAe,GAEfra,KAAK4E,UAAU,IACvD,CACA,OAAAG,GACE/E,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CAGA,mBAAAwT,GACE,MASM5d,EAAYmG,QAAQd,KAAK6E,QAAQ+P,UACvC,OAAO,IAAIL,GAAS,CAClBJ,UA3HsB,qBA4HtBxZ,YACAyK,YAAY,EACZiP,YAAarU,KAAK4E,SAAS7f,WAC3BqvB,cAAezZ,EAfK,KACU,WAA1BqF,KAAK6E,QAAQ+P,SAIjB5U,KAAK4P,OAHHrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,GAG3B,EAUgC,MAE/C,CACA,oBAAA3B,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,kBAAAiH,GACEtL,GAAac,GAAGrB,KAAK4E,SAAU4V,IAAuBpb,IA5IvC,WA6ITA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGPrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,IAAqB,GAE7D,CAGA,sBAAO3d,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOswB,GAAUrV,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOFO,GAAac,GAAGhc,SAAUk1B,GA7JK,gCA6J2C,SAAUnb,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MAIrD,GAHI,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEFO,GAAae,IAAI/U,EAAQ8tB,IAAgB,KAEnC1f,GAAUqF,OACZA,KAAKyS,OACP,IAIF,MAAMgH,EAAc5T,GAAeC,QAAQkU,IACvCP,GAAeA,IAAgBltB,GACjCouB,GAAUtV,YAAYoU,GAAa7J,OAExB+K,GAAUrV,oBAAoB/Y,GACtCob,OAAO3H,KACd,IACAO,GAAac,GAAGzhB,OAAQg6B,IAAuB,KAC7C,IAAK,MAAM7f,KAAY8L,GAAe1T,KAAK6nB,IACzCW,GAAUrV,oBAAoBvL,GAAU8V,MAC1C,IAEFtP,GAAac,GAAGzhB,OAAQ06B,IAAc,KACpC,IAAK,MAAM/6B,KAAWsmB,GAAe1T,KAAK,gDACG,UAAvClN,iBAAiB1F,GAASiC,UAC5Bm5B,GAAUrV,oBAAoB/lB,GAASqwB,MAE3C,IAEF/I,GAAqB8T,IAMrBxe,GAAmBwe,IAUnB,MACME,GAAmB,CAEvB,IAAK,CAAC,QAAS,MAAO,KAAM,OAAQ,OAHP,kBAI7BhqB,EAAG,CAAC,SAAU,OAAQ,QAAS,OAC/BiqB,KAAM,GACNhqB,EAAG,GACHiqB,GAAI,GACJC,IAAK,GACLC,KAAM,GACNC,GAAI,GACJC,IAAK,GACLC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJxqB,EAAG,GACH0b,IAAK,CAAC,MAAO,SAAU,MAAO,QAAS,QAAS,UAChD+O,GAAI,GACJC,GAAI,GACJC,EAAG,GACHC,IAAK,GACLC,EAAG,GACHC,MAAO,GACPC,KAAM,GACNC,IAAK,GACLC,IAAK,GACLC,OAAQ,GACRC,EAAG,GACHC,GAAI,IAIAC,GAAgB,IAAIpmB,IAAI,CAAC,aAAc,OAAQ,OAAQ,WAAY,WAAY,SAAU,MAAO,eAShGqmB,GAAmB,0DACnBC,GAAmB,CAAC76B,EAAW86B,KACnC,MAAMC,EAAgB/6B,EAAUvC,SAASC,cACzC,OAAIo9B,EAAqBzb,SAAS0b,IAC5BJ,GAAc/lB,IAAImmB,IACbhc,QAAQ6b,GAAiBt5B,KAAKtB,EAAUg7B,YAM5CF,EAAqB12B,QAAO62B,GAAkBA,aAA0BzY,SAAQ9R,MAAKwqB,GAASA,EAAM55B,KAAKy5B,IAAe,EA0C3HI,GAAY,CAChBC,UAAWtC,GACXuC,QAAS,CAAC,EAEVC,WAAY,GACZxwB,MAAM,EACNywB,UAAU,EACVC,WAAY,KACZC,SAAU,eAENC,GAAgB,CACpBN,UAAW,SACXC,QAAS,SACTC,WAAY,oBACZxwB,KAAM,UACNywB,SAAU,UACVC,WAAY,kBACZC,SAAU,UAENE,GAAqB,CACzBC,MAAO,iCACP5jB,SAAU,oBAOZ,MAAM6jB,WAAwBna,GAC5B,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,EACjC,CAGA,kBAAWJ,GACT,OAAOwZ,EACT,CACA,sBAAWvZ,GACT,OAAO8Z,EACT,CACA,eAAWlhB,GACT,MA3CW,iBA4Cb,CAGA,UAAAshB,GACE,OAAO7gC,OAAOmiB,OAAOa,KAAK6E,QAAQuY,SAASt6B,KAAIghB,GAAU9D,KAAK8d,yBAAyBha,KAAS3d,OAAO2a,QACzG,CACA,UAAAid,GACE,OAAO/d,KAAK6d,aAAantB,OAAS,CACpC,CACA,aAAAstB,CAAcZ,GAMZ,OALApd,KAAKie,cAAcb,GACnBpd,KAAK6E,QAAQuY,QAAU,IAClBpd,KAAK6E,QAAQuY,WACbA,GAEEpd,IACT,CACA,MAAAke,GACE,MAAMC,EAAkB94B,SAASwvB,cAAc,OAC/CsJ,EAAgBC,UAAYpe,KAAKqe,eAAere,KAAK6E,QAAQ2Y,UAC7D,IAAK,MAAOzjB,EAAUukB,KAASthC,OAAOmkB,QAAQnB,KAAK6E,QAAQuY,SACzDpd,KAAKue,YAAYJ,EAAiBG,EAAMvkB,GAE1C,MAAMyjB,EAAWW,EAAgBpY,SAAS,GACpCsX,EAAard,KAAK8d,yBAAyB9d,KAAK6E,QAAQwY,YAI9D,OAHIA,GACFG,EAASniB,UAAU5E,OAAO4mB,EAAWn7B,MAAM,MAEtCs7B,CACT,CAGA,gBAAAvZ,CAAiBH,GACfa,MAAMV,iBAAiBH,GACvB9D,KAAKie,cAAcna,EAAOsZ,QAC5B,CACA,aAAAa,CAAcO,GACZ,IAAK,MAAOzkB,EAAUqjB,KAAYpgC,OAAOmkB,QAAQqd,GAC/C7Z,MAAMV,iBAAiB,CACrBlK,WACA4jB,MAAOP,GACNM,GAEP,CACA,WAAAa,CAAYf,EAAUJ,EAASrjB,GAC7B,MAAM0kB,EAAkB5Y,GAAeC,QAAQ/L,EAAUyjB,GACpDiB,KAGLrB,EAAUpd,KAAK8d,yBAAyBV,IAKpC,GAAUA,GACZpd,KAAK0e,sBAAsBhkB,GAAW0iB,GAAUqB,GAG9Cze,KAAK6E,QAAQhY,KACf4xB,EAAgBL,UAAYpe,KAAKqe,eAAejB,GAGlDqB,EAAgBE,YAAcvB,EAX5BqB,EAAgB9kB,SAYpB,CACA,cAAA0kB,CAAeG,GACb,OAAOxe,KAAK6E,QAAQyY,SApJxB,SAAsBsB,EAAYzB,EAAW0B,GAC3C,IAAKD,EAAWluB,OACd,OAAOkuB,EAET,GAAIC,GAAgD,mBAArBA,EAC7B,OAAOA,EAAiBD,GAE1B,MACME,GADY,IAAIl/B,OAAOm/B,WACKC,gBAAgBJ,EAAY,aACxD/9B,EAAW,GAAGlC,UAAUmgC,EAAgB5yB,KAAKkU,iBAAiB,MACpE,IAAK,MAAM7gB,KAAWsB,EAAU,CAC9B,MAAMo+B,EAAc1/B,EAAQC,SAASC,cACrC,IAAKzC,OAAO4D,KAAKu8B,GAAW/b,SAAS6d,GAAc,CACjD1/B,EAAQoa,SACR,QACF,CACA,MAAMulB,EAAgB,GAAGvgC,UAAUY,EAAQ0B,YACrCk+B,EAAoB,GAAGxgC,OAAOw+B,EAAU,MAAQ,GAAIA,EAAU8B,IAAgB,IACpF,IAAK,MAAMl9B,KAAam9B,EACjBtC,GAAiB76B,EAAWo9B,IAC/B5/B,EAAQ4B,gBAAgBY,EAAUvC,SAGxC,CACA,OAAOs/B,EAAgB5yB,KAAKkyB,SAC9B,CA2HmCgB,CAAaZ,EAAKxe,KAAK6E,QAAQsY,UAAWnd,KAAK6E,QAAQ0Y,YAAciB,CACtG,CACA,wBAAAV,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,MACvB,CACA,qBAAA0e,CAAsBn/B,EAASk/B,GAC7B,GAAIze,KAAK6E,QAAQhY,KAGf,OAFA4xB,EAAgBL,UAAY,QAC5BK,EAAgB3J,OAAOv1B,GAGzBk/B,EAAgBE,YAAcp/B,EAAQo/B,WACxC,EAeF,MACMU,GAAwB,IAAI/oB,IAAI,CAAC,WAAY,YAAa,eAC1DgpB,GAAoB,OAEpBC,GAAoB,OACpBC,GAAyB,iBACzBC,GAAiB,SACjBC,GAAmB,gBACnBC,GAAgB,QAChBC,GAAgB,QAahBC,GAAgB,CACpBC,KAAM,OACNC,IAAK,MACLC,MAAO/jB,KAAU,OAAS,QAC1BgkB,OAAQ,SACRC,KAAMjkB,KAAU,QAAU,QAEtBkkB,GAAY,CAChBhD,UAAWtC,GACXuF,WAAW,EACXnyB,SAAU,kBACVoyB,WAAW,EACXC,YAAa,GACbC,MAAO,EACPvwB,mBAAoB,CAAC,MAAO,QAAS,SAAU,QAC/CnD,MAAM,EACN7E,OAAQ,CAAC,EAAG,GACZtJ,UAAW,MACXszB,aAAc,KACdsL,UAAU,EACVC,WAAY,KACZxjB,UAAU,EACVyjB,SAAU,+GACVgD,MAAO,GACP5e,QAAS,eAEL6e,GAAgB,CACpBtD,UAAW,SACXiD,UAAW,UACXnyB,SAAU,mBACVoyB,UAAW,2BACXC,YAAa,oBACbC,MAAO,kBACPvwB,mBAAoB,QACpBnD,KAAM,UACN7E,OAAQ,0BACRtJ,UAAW,oBACXszB,aAAc,yBACdsL,SAAU,UACVC,WAAY,kBACZxjB,SAAU,mBACVyjB,SAAU,SACVgD,MAAO,4BACP5e,QAAS,UAOX,MAAM8e,WAAgBhc,GACpB,WAAAP,CAAY5kB,EAASukB,GACnB,QAAsB,IAAX,EACT,MAAM,IAAIU,UAAU,+DAEtBG,MAAMplB,EAASukB,GAGf9D,KAAK2gB,YAAa,EAClB3gB,KAAK4gB,SAAW,EAChB5gB,KAAK6gB,WAAa,KAClB7gB,KAAK8gB,eAAiB,CAAC,EACvB9gB,KAAKmS,QAAU,KACfnS,KAAK+gB,iBAAmB,KACxB/gB,KAAKghB,YAAc,KAGnBhhB,KAAKihB,IAAM,KACXjhB,KAAKkhB,gBACAlhB,KAAK6E,QAAQ9K,UAChBiG,KAAKmhB,WAET,CAGA,kBAAWzd,GACT,OAAOyc,EACT,CACA,sBAAWxc,GACT,OAAO8c,EACT,CACA,eAAWlkB,GACT,MAxGW,SAyGb,CAGA,MAAA6kB,GACEphB,KAAK2gB,YAAa,CACpB,CACA,OAAAU,GACErhB,KAAK2gB,YAAa,CACpB,CACA,aAAAW,GACEthB,KAAK2gB,YAAc3gB,KAAK2gB,UAC1B,CACA,MAAAhZ,GACO3H,KAAK2gB,aAGV3gB,KAAK8gB,eAAeS,OAASvhB,KAAK8gB,eAAeS,MAC7CvhB,KAAK2P,WACP3P,KAAKwhB,SAGPxhB,KAAKyhB,SACP,CACA,OAAA1c,GACEmI,aAAalN,KAAK4gB,UAClBrgB,GAAaC,IAAIR,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,mBAC3E1hB,KAAK4E,SAASpJ,aAAa,2BAC7BwE,KAAK4E,SAASxjB,aAAa,QAAS4e,KAAK4E,SAASpJ,aAAa,2BAEjEwE,KAAK2hB,iBACLhd,MAAMI,SACR,CACA,IAAA8K,GACE,GAAoC,SAAhC7P,KAAK4E,SAAS7jB,MAAMgxB,QACtB,MAAM,IAAInO,MAAM,uCAElB,IAAM5D,KAAK4hB,mBAAoB5hB,KAAK2gB,WAClC,OAEF,MAAMnH,EAAYjZ,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAlItD,SAoIXqc,GADapmB,GAAeuE,KAAK4E,WACL5E,KAAK4E,SAAS9kB,cAAcwF,iBAAiBd,SAASwb,KAAK4E,UAC7F,GAAI4U,EAAUxX,mBAAqB6f,EACjC,OAIF7hB,KAAK2hB,iBACL,MAAMV,EAAMjhB,KAAK8hB,iBACjB9hB,KAAK4E,SAASxjB,aAAa,mBAAoB6/B,EAAIzlB,aAAa,OAChE,MAAM,UACJ6kB,GACErgB,KAAK6E,QAYT,GAXK7E,KAAK4E,SAAS9kB,cAAcwF,gBAAgBd,SAASwb,KAAKihB,OAC7DZ,EAAUvL,OAAOmM,GACjB1gB,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhJpC,cAkJnBxF,KAAKmS,QAAUnS,KAAKwS,cAAcyO,GAClCA,EAAI5lB,UAAU5E,IAAI8oB,IAMd,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAU1CoE,KAAKmF,gBAPY,KACf5E,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhKrC,WAiKQ,IAApBxF,KAAK6gB,YACP7gB,KAAKwhB,SAEPxhB,KAAK6gB,YAAa,CAAK,GAEK7gB,KAAKihB,IAAKjhB,KAAKgO,cAC/C,CACA,IAAA4B,GACE,GAAK5P,KAAK2P,aAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UA/KtD,SAgLHxD,iBAAd,CAQA,GALYhC,KAAK8hB,iBACbzmB,UAAU1B,OAAO4lB,IAIjB,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAG3CoE,KAAK8gB,eAA4B,OAAI,EACrC9gB,KAAK8gB,eAAelB,KAAiB,EACrC5f,KAAK8gB,eAAenB,KAAiB,EACrC3f,KAAK6gB,WAAa,KAYlB7gB,KAAKmF,gBAVY,KACXnF,KAAK+hB,yBAGJ/hB,KAAK6gB,YACR7gB,KAAK2hB,iBAEP3hB,KAAK4E,SAASzjB,gBAAgB,oBAC9Bof,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAzMpC,WAyM8D,GAEnDxF,KAAKihB,IAAKjhB,KAAKgO,cA1B7C,CA2BF,CACA,MAAAjjB,GACMiV,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,cAAA62B,GACE,OAAO9gB,QAAQd,KAAKgiB,YACtB,CACA,cAAAF,GAIE,OAHK9hB,KAAKihB,MACRjhB,KAAKihB,IAAMjhB,KAAKiiB,kBAAkBjiB,KAAKghB,aAAehhB,KAAKkiB,2BAEtDliB,KAAKihB,GACd,CACA,iBAAAgB,CAAkB7E,GAChB,MAAM6D,EAAMjhB,KAAKmiB,oBAAoB/E,GAASc,SAG9C,IAAK+C,EACH,OAAO,KAETA,EAAI5lB,UAAU1B,OAAO2lB,GAAmBC,IAExC0B,EAAI5lB,UAAU5E,IAAI,MAAMuJ,KAAKmE,YAAY5H,aACzC,MAAM6lB,EAvuGKC,KACb,GACEA,GAAUlgC,KAAKmgC,MA/BH,IA+BSngC,KAAKogC,gBACnBl9B,SAASm9B,eAAeH,IACjC,OAAOA,CAAM,EAmuGGI,CAAOziB,KAAKmE,YAAY5H,MAAM1c,WAK5C,OAJAohC,EAAI7/B,aAAa,KAAMghC,GACnBpiB,KAAKgO,eACPiT,EAAI5lB,UAAU5E,IAAI6oB,IAEb2B,CACT,CACA,UAAAyB,CAAWtF,GACTpd,KAAKghB,YAAc5D,EACfpd,KAAK2P,aACP3P,KAAK2hB,iBACL3hB,KAAK6P,OAET,CACA,mBAAAsS,CAAoB/E,GAYlB,OAXIpd,KAAK+gB,iBACP/gB,KAAK+gB,iBAAiB/C,cAAcZ,GAEpCpd,KAAK+gB,iBAAmB,IAAInD,GAAgB,IACvC5d,KAAK6E,QAGRuY,UACAC,WAAYrd,KAAK8d,yBAAyB9d,KAAK6E,QAAQyb,eAGpDtgB,KAAK+gB,gBACd,CACA,sBAAAmB,GACE,MAAO,CACL,CAAC1C,IAAyBxf,KAAKgiB,YAEnC,CACA,SAAAA,GACE,OAAOhiB,KAAK8d,yBAAyB9d,KAAK6E,QAAQ2b,QAAUxgB,KAAK4E,SAASpJ,aAAa,yBACzF,CAGA,4BAAAmnB,CAA6BvjB,GAC3B,OAAOY,KAAKmE,YAAYmB,oBAAoBlG,EAAMW,eAAgBC,KAAK4iB,qBACzE,CACA,WAAA5U,GACE,OAAOhO,KAAK6E,QAAQub,WAAapgB,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS86B,GAC3E,CACA,QAAA3P,GACE,OAAO3P,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS+6B,GACjD,CACA,aAAA/M,CAAcyO,GACZ,MAAMviC,EAAYme,GAAQmD,KAAK6E,QAAQnmB,UAAW,CAACshB,KAAMihB,EAAKjhB,KAAK4E,WAC7Die,EAAahD,GAAcnhC,EAAU+lB,eAC3C,OAAO,GAAoBzE,KAAK4E,SAAUqc,EAAKjhB,KAAK4S,iBAAiBiQ,GACvE,CACA,UAAA7P,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,wBAAA81B,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,KAAK4E,UAC5B,CACA,gBAAAgO,CAAiBiQ,GACf,MAAM3P,EAAwB,CAC5Bx0B,UAAWmkC,EACXzsB,UAAW,CAAC,CACV9V,KAAM,OACNmB,QAAS,CACPuO,mBAAoBgQ,KAAK6E,QAAQ7U,qBAElC,CACD1P,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,eAEd,CACD1yB,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,QACNmB,QAAS,CACPlC,QAAS,IAAIygB,KAAKmE,YAAY5H,eAE/B,CACDjc,KAAM,kBACNC,SAAS,EACTC,MAAO,aACPC,GAAI4J,IAGF2V,KAAK8hB,iBAAiB1gC,aAAa,wBAAyBiJ,EAAK1J,MAAMjC,UAAU,KAIvF,MAAO,IACFw0B,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,aAAAgO,GACE,MAAM4B,EAAW9iB,KAAK6E,QAAQjD,QAAQ1f,MAAM,KAC5C,IAAK,MAAM0f,KAAWkhB,EACpB,GAAgB,UAAZlhB,EACFrB,GAAac,GAAGrB,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAjVlC,SAiV4DxF,KAAK6E,QAAQ9K,UAAUqF,IAC/EY,KAAK2iB,6BAA6BvjB,GAC1CuI,QAAQ,SAEb,GA3VU,WA2VN/F,EAA4B,CACrC,MAAMmhB,EAAUnhB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV5C,cAmV0ExF,KAAKmE,YAAYqB,UArV5F,WAsVVwd,EAAWphB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV7C,cAmV2ExF,KAAKmE,YAAYqB,UArV5F,YAsVjBjF,GAAac,GAAGrB,KAAK4E,SAAUme,EAAS/iB,KAAK6E,QAAQ9K,UAAUqF,IAC7D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,YAAf1hB,EAAMqB,KAAqBmf,GAAgBD,KAAiB,EACnFrM,EAAQmO,QAAQ,IAElBlhB,GAAac,GAAGrB,KAAK4E,SAAUoe,EAAUhjB,KAAK6E,QAAQ9K,UAAUqF,IAC9D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,aAAf1hB,EAAMqB,KAAsBmf,GAAgBD,IAAiBrM,EAAQ1O,SAASpgB,SAAS4a,EAAMU,eACpHwT,EAAQkO,QAAQ,GAEpB,CAEFxhB,KAAK0hB,kBAAoB,KACnB1hB,KAAK4E,UACP5E,KAAK4P,MACP,EAEFrP,GAAac,GAAGrB,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,kBAChF,CACA,SAAAP,GACE,MAAMX,EAAQxgB,KAAK4E,SAASpJ,aAAa,SACpCglB,IAGAxgB,KAAK4E,SAASpJ,aAAa,eAAkBwE,KAAK4E,SAAS+Z,YAAYhZ,QAC1E3F,KAAK4E,SAASxjB,aAAa,aAAco/B,GAE3CxgB,KAAK4E,SAASxjB,aAAa,yBAA0Bo/B,GACrDxgB,KAAK4E,SAASzjB,gBAAgB,SAChC,CACA,MAAAsgC,GACMzhB,KAAK2P,YAAc3P,KAAK6gB,WAC1B7gB,KAAK6gB,YAAa,GAGpB7gB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACXjjB,KAAK6gB,YACP7gB,KAAK6P,MACP,GACC7P,KAAK6E,QAAQ0b,MAAM1Q,MACxB,CACA,MAAA2R,GACMxhB,KAAK+hB,yBAGT/hB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACVjjB,KAAK6gB,YACR7gB,KAAK4P,MACP,GACC5P,KAAK6E,QAAQ0b,MAAM3Q,MACxB,CACA,WAAAqT,CAAYrlB,EAASslB,GACnBhW,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW/iB,WAAWD,EAASslB,EACtC,CACA,oBAAAnB,GACE,OAAO/kC,OAAOmiB,OAAOa,KAAK8gB,gBAAgB1f,UAAS,EACrD,CACA,UAAAyC,CAAWC,GACT,MAAMqf,EAAiBngB,GAAYG,kBAAkBnD,KAAK4E,UAC1D,IAAK,MAAMwe,KAAiBpmC,OAAO4D,KAAKuiC,GAClC9D,GAAsB1oB,IAAIysB,WACrBD,EAAeC,GAU1B,OAPAtf,EAAS,IACJqf,KACmB,iBAAXrf,GAAuBA,EAASA,EAAS,CAAC,GAEvDA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAchB,OAbAA,EAAOuc,WAAiC,IAArBvc,EAAOuc,UAAsBh7B,SAAS6G,KAAOwO,GAAWoJ,EAAOuc,WACtD,iBAAjBvc,EAAOyc,QAChBzc,EAAOyc,MAAQ,CACb1Q,KAAM/L,EAAOyc,MACb3Q,KAAM9L,EAAOyc,QAGW,iBAAjBzc,EAAO0c,QAChB1c,EAAO0c,MAAQ1c,EAAO0c,MAAM3gC,YAEA,iBAAnBikB,EAAOsZ,UAChBtZ,EAAOsZ,QAAUtZ,EAAOsZ,QAAQv9B,YAE3BikB,CACT,CACA,kBAAA8e,GACE,MAAM9e,EAAS,CAAC,EAChB,IAAK,MAAOhnB,EAAKa,KAAUX,OAAOmkB,QAAQnB,KAAK6E,SACzC7E,KAAKmE,YAAYT,QAAQ5mB,KAASa,IACpCmmB,EAAOhnB,GAAOa,GASlB,OANAmmB,EAAO/J,UAAW,EAClB+J,EAAOlC,QAAU,SAKVkC,CACT,CACA,cAAA6d,GACM3hB,KAAKmS,UACPnS,KAAKmS,QAAQnZ,UACbgH,KAAKmS,QAAU,MAEbnS,KAAKihB,MACPjhB,KAAKihB,IAAItnB,SACTqG,KAAKihB,IAAM,KAEf,CAGA,sBAAOxkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOq2B,GAAQpb,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBukB,IAcnB,MACM2C,GAAiB,kBACjBC,GAAmB,gBACnBC,GAAY,IACb7C,GAAQhd,QACX0Z,QAAS,GACTp1B,OAAQ,CAAC,EAAG,GACZtJ,UAAW,QACX8+B,SAAU,8IACV5b,QAAS,SAEL4hB,GAAgB,IACjB9C,GAAQ/c,YACXyZ,QAAS,kCAOX,MAAMqG,WAAgB/C,GAEpB,kBAAWhd,GACT,OAAO6f,EACT,CACA,sBAAW5f,GACT,OAAO6f,EACT,CACA,eAAWjnB,GACT,MA7BW,SA8Bb,CAGA,cAAAqlB,GACE,OAAO5hB,KAAKgiB,aAAehiB,KAAK0jB,aAClC,CAGA,sBAAAxB,GACE,MAAO,CACL,CAACmB,IAAiBrjB,KAAKgiB,YACvB,CAACsB,IAAmBtjB,KAAK0jB,cAE7B,CACA,WAAAA,GACE,OAAO1jB,KAAK8d,yBAAyB9d,KAAK6E,QAAQuY,QACpD,CAGA,sBAAO3gB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOo5B,GAAQne,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBsnB,IAcnB,MAEME,GAAc,gBAEdC,GAAiB,WAAWD,KAC5BE,GAAc,QAAQF,KACtBG,GAAwB,OAAOH,cAE/BI,GAAsB,SAEtBC,GAAwB,SAExBC,GAAqB,YAGrBC,GAAsB,GAAGD,mBAA+CA,uBAGxEE,GAAY,CAChBn8B,OAAQ,KAERo8B,WAAY,eACZC,cAAc,EACd93B,OAAQ,KACR+3B,UAAW,CAAC,GAAK,GAAK,IAElBC,GAAgB,CACpBv8B,OAAQ,gBAERo8B,WAAY,SACZC,aAAc,UACd93B,OAAQ,UACR+3B,UAAW,SAOb,MAAME,WAAkB9f,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GAGf9D,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B8O,KAAK2kB,aAA6D,YAA9C1/B,iBAAiB+a,KAAK4E,UAAU5Y,UAA0B,KAAOgU,KAAK4E,SAC1F5E,KAAK4kB,cAAgB,KACrB5kB,KAAK6kB,UAAY,KACjB7kB,KAAK8kB,oBAAsB,CACzBC,gBAAiB,EACjBC,gBAAiB,GAEnBhlB,KAAKilB,SACP,CAGA,kBAAWvhB,GACT,OAAOygB,EACT,CACA,sBAAWxgB,GACT,OAAO4gB,EACT,CACA,eAAWhoB,GACT,MAhEW,WAiEb,CAGA,OAAA0oB,GACEjlB,KAAKklB,mCACLllB,KAAKmlB,2BACDnlB,KAAK6kB,UACP7kB,KAAK6kB,UAAUO,aAEfplB,KAAK6kB,UAAY7kB,KAAKqlB,kBAExB,IAAK,MAAMC,KAAWtlB,KAAK0kB,oBAAoBvlB,SAC7Ca,KAAK6kB,UAAUU,QAAQD,EAE3B,CACA,OAAAvgB,GACE/E,KAAK6kB,UAAUO,aACfzgB,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAShB,OAPAA,EAAOvX,OAASmO,GAAWoJ,EAAOvX,SAAWlH,SAAS6G,KAGtD4X,EAAOsgB,WAAatgB,EAAO9b,OAAS,GAAG8b,EAAO9b,oBAAsB8b,EAAOsgB,WAC3C,iBAArBtgB,EAAOwgB,YAChBxgB,EAAOwgB,UAAYxgB,EAAOwgB,UAAUpiC,MAAM,KAAKY,KAAInF,GAAS4f,OAAOC,WAAW7f,MAEzEmmB,CACT,CACA,wBAAAqhB,GACOnlB,KAAK6E,QAAQwf,eAKlB9jB,GAAaC,IAAIR,KAAK6E,QAAQtY,OAAQs3B,IACtCtjB,GAAac,GAAGrB,KAAK6E,QAAQtY,OAAQs3B,GAAaG,IAAuB5kB,IACvE,MAAMomB,EAAoBxlB,KAAK0kB,oBAAoBvnC,IAAIiiB,EAAM7S,OAAOtB,MACpE,GAAIu6B,EAAmB,CACrBpmB,EAAMkD,iBACN,MAAM3G,EAAOqE,KAAK2kB,cAAgB/kC,OAC5BmE,EAASyhC,EAAkBnhC,UAAY2b,KAAK4E,SAASvgB,UAC3D,GAAIsX,EAAK8pB,SAKP,YAJA9pB,EAAK8pB,SAAS,CACZ9jC,IAAKoC,EACL2hC,SAAU,WAMd/pB,EAAKlQ,UAAY1H,CACnB,KAEJ,CACA,eAAAshC,GACE,MAAM5jC,EAAU,CACdka,KAAMqE,KAAK2kB,aACXL,UAAWtkB,KAAK6E,QAAQyf,UACxBF,WAAYpkB,KAAK6E,QAAQuf,YAE3B,OAAO,IAAIuB,sBAAqBxkB,GAAWnB,KAAK4lB,kBAAkBzkB,IAAU1f,EAC9E,CAGA,iBAAAmkC,CAAkBzkB,GAChB,MAAM0kB,EAAgBlI,GAAS3d,KAAKykB,aAAatnC,IAAI,IAAIwgC,EAAMpxB,OAAO4N,MAChEub,EAAWiI,IACf3d,KAAK8kB,oBAAoBC,gBAAkBpH,EAAMpxB,OAAOlI,UACxD2b,KAAK8lB,SAASD,EAAclI,GAAO,EAE/BqH,GAAmBhlB,KAAK2kB,cAAgBt/B,SAASC,iBAAiBmG,UAClEs6B,EAAkBf,GAAmBhlB,KAAK8kB,oBAAoBE,gBACpEhlB,KAAK8kB,oBAAoBE,gBAAkBA,EAC3C,IAAK,MAAMrH,KAASxc,EAAS,CAC3B,IAAKwc,EAAMqI,eAAgB,CACzBhmB,KAAK4kB,cAAgB,KACrB5kB,KAAKimB,kBAAkBJ,EAAclI,IACrC,QACF,CACA,MAAMuI,EAA2BvI,EAAMpxB,OAAOlI,WAAa2b,KAAK8kB,oBAAoBC,gBAEpF,GAAIgB,GAAmBG,GAGrB,GAFAxQ,EAASiI,IAEJqH,EACH,YAMCe,GAAoBG,GACvBxQ,EAASiI,EAEb,CACF,CACA,gCAAAuH,GACEllB,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B,MAAMi1B,EAActgB,GAAe1T,KAAK6xB,GAAuBhkB,KAAK6E,QAAQtY,QAC5E,IAAK,MAAM65B,KAAUD,EAAa,CAEhC,IAAKC,EAAOn7B,MAAQiQ,GAAWkrB,GAC7B,SAEF,MAAMZ,EAAoB3f,GAAeC,QAAQugB,UAAUD,EAAOn7B,MAAO+U,KAAK4E,UAG1EjK,GAAU6qB,KACZxlB,KAAKykB,aAAa1yB,IAAIs0B,UAAUD,EAAOn7B,MAAOm7B,GAC9CpmB,KAAK0kB,oBAAoB3yB,IAAIq0B,EAAOn7B,KAAMu6B,GAE9C,CACF,CACA,QAAAM,CAASv5B,GACHyT,KAAK4kB,gBAAkBr4B,IAG3ByT,KAAKimB,kBAAkBjmB,KAAK6E,QAAQtY,QACpCyT,KAAK4kB,cAAgBr4B,EACrBA,EAAO8O,UAAU5E,IAAIstB,IACrB/jB,KAAKsmB,iBAAiB/5B,GACtBgU,GAAaqB,QAAQ5B,KAAK4E,SAAUgf,GAAgB,CAClD9jB,cAAevT,IAEnB,CACA,gBAAA+5B,CAAiB/5B,GAEf,GAAIA,EAAO8O,UAAU7W,SA9LQ,iBA+L3BqhB,GAAeC,QArLc,mBAqLsBvZ,EAAOyO,QAtLtC,cAsLkEK,UAAU5E,IAAIstB,SAGtG,IAAK,MAAMwC,KAAa1gB,GAAeI,QAAQ1Z,EA9LnB,qBAiM1B,IAAK,MAAMxJ,KAAQ8iB,GAAeM,KAAKogB,EAAWrC,IAChDnhC,EAAKsY,UAAU5E,IAAIstB,GAGzB,CACA,iBAAAkC,CAAkBxhC,GAChBA,EAAO4W,UAAU1B,OAAOoqB,IACxB,MAAMyC,EAAc3gB,GAAe1T,KAAK,GAAG6xB,MAAyBD,KAAuBt/B,GAC3F,IAAK,MAAM9E,KAAQ6mC,EACjB7mC,EAAK0b,UAAU1B,OAAOoqB,GAE1B,CAGA,sBAAOtnB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOm6B,GAAUlf,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGzhB,OAAQkkC,IAAuB,KAC7C,IAAK,MAAM2C,KAAO5gB,GAAe1T,KApOT,0BAqOtBqyB,GAAUlf,oBAAoBmhB,EAChC,IAOFtqB,GAAmBqoB,IAcnB,MAEMkC,GAAc,UACdC,GAAe,OAAOD,KACtBE,GAAiB,SAASF,KAC1BG,GAAe,OAAOH,KACtBI,GAAgB,QAAQJ,KACxBK,GAAuB,QAAQL,KAC/BM,GAAgB,UAAUN,KAC1BO,GAAsB,OAAOP,KAC7BQ,GAAiB,YACjBC,GAAkB,aAClBC,GAAe,UACfC,GAAiB,YACjBC,GAAW,OACXC,GAAU,MACVC,GAAoB,SACpBC,GAAoB,OACpBC,GAAoB,OAEpBC,GAA2B,mBAE3BC,GAA+B,QAAQD,MAIvCE,GAAuB,2EACvBC,GAAsB,YAFOF,uBAAiDA,mBAA6CA,OAE/EC,KAC5CE,GAA8B,IAAIP,8BAA6CA,+BAA8CA,4BAMnI,MAAMQ,WAAYtjB,GAChB,WAAAP,CAAY5kB,GACVolB,MAAMplB,GACNygB,KAAKoS,QAAUpS,KAAK4E,SAAS5J,QAdN,uCAelBgF,KAAKoS,UAOVpS,KAAKioB,sBAAsBjoB,KAAKoS,QAASpS,KAAKkoB,gBAC9C3nB,GAAac,GAAGrB,KAAK4E,SAAUoiB,IAAe5nB,GAASY,KAAK6M,SAASzN,KACvE,CAGA,eAAW7C,GACT,MAnDW,KAoDb,CAGA,IAAAsT,GAEE,MAAMsY,EAAYnoB,KAAK4E,SACvB,GAAI5E,KAAKooB,cAAcD,GACrB,OAIF,MAAME,EAASroB,KAAKsoB,iBACdC,EAAYF,EAAS9nB,GAAaqB,QAAQymB,EAAQ1B,GAAc,CACpE7mB,cAAeqoB,IACZ,KACa5nB,GAAaqB,QAAQumB,EAAWtB,GAAc,CAC9D/mB,cAAeuoB,IAEHrmB,kBAAoBumB,GAAaA,EAAUvmB,mBAGzDhC,KAAKwoB,YAAYH,EAAQF,GACzBnoB,KAAKyoB,UAAUN,EAAWE,GAC5B,CAGA,SAAAI,CAAUlpC,EAASmpC,GACZnpC,IAGLA,EAAQ8b,UAAU5E,IAAI+wB,IACtBxnB,KAAKyoB,UAAU5iB,GAAec,uBAAuBpnB,IAcrDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ4B,gBAAgB,YACxB5B,EAAQ6B,aAAa,iBAAiB,GACtC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASunC,GAAe,CAC3ChnB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU5E,IAAIixB,GAQtB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,WAAAe,CAAYjpC,EAASmpC,GACdnpC,IAGLA,EAAQ8b,UAAU1B,OAAO6tB,IACzBjoC,EAAQq7B,OACR5a,KAAKwoB,YAAY3iB,GAAec,uBAAuBpnB,IAcvDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ6B,aAAa,iBAAiB,GACtC7B,EAAQ6B,aAAa,WAAY,MACjC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASqnC,GAAgB,CAC5C9mB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU1B,OAAO+tB,GAQzB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,QAAA5a,CAASzN,GACP,IAAK,CAAC8nB,GAAgBC,GAAiBC,GAAcC,GAAgBC,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrG,OAEFsiB,EAAM0U,kBACN1U,EAAMkD,iBACN,MAAMyD,EAAW/F,KAAKkoB,eAAe/hC,QAAO5G,IAAY2b,GAAW3b,KACnE,IAAIqpC,EACJ,GAAI,CAACtB,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrC8rC,EAAoB7iB,EAAS3G,EAAMtiB,MAAQwqC,GAAW,EAAIvhB,EAASrV,OAAS,OACvE,CACL,MAAM8c,EAAS,CAAC2Z,GAAiBE,IAAgBjmB,SAAShC,EAAMtiB,KAChE8rC,EAAoB9qB,GAAqBiI,EAAU3G,EAAM7S,OAAQihB,GAAQ,EAC3E,CACIob,IACFA,EAAkBnW,MAAM,CACtBoW,eAAe,IAEjBb,GAAI1iB,oBAAoBsjB,GAAmB/Y,OAE/C,CACA,YAAAqY,GAEE,OAAOriB,GAAe1T,KAAK21B,GAAqB9nB,KAAKoS,QACvD,CACA,cAAAkW,GACE,OAAOtoB,KAAKkoB,eAAe/1B,MAAKzN,GAASsb,KAAKooB,cAAc1jC,MAAW,IACzE,CACA,qBAAAujC,CAAsBxjC,EAAQshB,GAC5B/F,KAAK8oB,yBAAyBrkC,EAAQ,OAAQ,WAC9C,IAAK,MAAMC,KAASqhB,EAClB/F,KAAK+oB,6BAA6BrkC,EAEtC,CACA,4BAAAqkC,CAA6BrkC,GAC3BA,EAAQsb,KAAKgpB,iBAAiBtkC,GAC9B,MAAMukC,EAAWjpB,KAAKooB,cAAc1jC,GAC9BwkC,EAAYlpB,KAAKmpB,iBAAiBzkC,GACxCA,EAAMtD,aAAa,gBAAiB6nC,GAChCC,IAAcxkC,GAChBsb,KAAK8oB,yBAAyBI,EAAW,OAAQ,gBAE9CD,GACHvkC,EAAMtD,aAAa,WAAY,MAEjC4e,KAAK8oB,yBAAyBpkC,EAAO,OAAQ,OAG7Csb,KAAKopB,mCAAmC1kC,EAC1C,CACA,kCAAA0kC,CAAmC1kC,GACjC,MAAM6H,EAASsZ,GAAec,uBAAuBjiB,GAChD6H,IAGLyT,KAAK8oB,yBAAyBv8B,EAAQ,OAAQ,YAC1C7H,EAAMyV,IACR6F,KAAK8oB,yBAAyBv8B,EAAQ,kBAAmB,GAAG7H,EAAMyV,MAEtE,CACA,eAAAwuB,CAAgBppC,EAAS8pC,GACvB,MAAMH,EAAYlpB,KAAKmpB,iBAAiB5pC,GACxC,IAAK2pC,EAAU7tB,UAAU7W,SApKN,YAqKjB,OAEF,MAAMmjB,EAAS,CAAC5N,EAAUoa,KACxB,MAAM50B,EAAUsmB,GAAeC,QAAQ/L,EAAUmvB,GAC7C3pC,GACFA,EAAQ8b,UAAUsM,OAAOwM,EAAWkV,EACtC,EAEF1hB,EAAOggB,GAA0BH,IACjC7f,EA5K2B,iBA4KI+f,IAC/BwB,EAAU9nC,aAAa,gBAAiBioC,EAC1C,CACA,wBAAAP,CAAyBvpC,EAASwC,EAAWpE,GACtC4B,EAAQgc,aAAaxZ,IACxBxC,EAAQ6B,aAAaW,EAAWpE,EAEpC,CACA,aAAAyqC,CAAc9Y,GACZ,OAAOA,EAAKjU,UAAU7W,SAASgjC,GACjC,CAGA,gBAAAwB,CAAiB1Z,GACf,OAAOA,EAAKtJ,QAAQ8hB,IAAuBxY,EAAOzJ,GAAeC,QAAQgiB,GAAqBxY,EAChG,CAGA,gBAAA6Z,CAAiB7Z,GACf,OAAOA,EAAKtU,QA5LO,gCA4LoBsU,CACzC,CAGA,sBAAO7S,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO29B,GAAI1iB,oBAAoBtF,MACrC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGhc,SAAU0hC,GAAsBc,IAAsB,SAAUzoB,GAC1E,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,OAGfgoB,GAAI1iB,oBAAoBtF,MAAM6P,MAChC,IAKAtP,GAAac,GAAGzhB,OAAQqnC,IAAqB,KAC3C,IAAK,MAAM1nC,KAAWsmB,GAAe1T,KAAK41B,IACxCC,GAAI1iB,oBAAoB/lB,EAC1B,IAMF4c,GAAmB6rB,IAcnB,MAEMhjB,GAAY,YACZskB,GAAkB,YAAYtkB,KAC9BukB,GAAiB,WAAWvkB,KAC5BwkB,GAAgB,UAAUxkB,KAC1BykB,GAAiB,WAAWzkB,KAC5B0kB,GAAa,OAAO1kB,KACpB2kB,GAAe,SAAS3kB,KACxB4kB,GAAa,OAAO5kB,KACpB6kB,GAAc,QAAQ7kB,KAEtB8kB,GAAkB,OAClBC,GAAkB,OAClBC,GAAqB,UACrBrmB,GAAc,CAClByc,UAAW,UACX6J,SAAU,UACV1J,MAAO,UAEH7c,GAAU,CACd0c,WAAW,EACX6J,UAAU,EACV1J,MAAO,KAOT,MAAM2J,WAAcxlB,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK4gB,SAAW,KAChB5gB,KAAKmqB,sBAAuB,EAC5BnqB,KAAKoqB,yBAA0B,EAC/BpqB,KAAKkhB,eACP,CAGA,kBAAWxd,GACT,OAAOA,EACT,CACA,sBAAWC,GACT,OAAOA,EACT,CACA,eAAWpH,GACT,MA/CS,OAgDX,CAGA,IAAAsT,GACoBtP,GAAaqB,QAAQ5B,KAAK4E,SAAUglB,IACxC5nB,mBAGdhC,KAAKqqB,gBACDrqB,KAAK6E,QAAQub,WACfpgB,KAAK4E,SAASvJ,UAAU5E,IA/CN,QAsDpBuJ,KAAK4E,SAASvJ,UAAU1B,OAAOmwB,IAC/BjuB,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIszB,GAAiBC,IAC7ChqB,KAAKmF,gBARY,KACfnF,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,IAC/BzpB,GAAaqB,QAAQ5B,KAAK4E,SAAUilB,IACpC7pB,KAAKsqB,oBAAoB,GAKGtqB,KAAK4E,SAAU5E,KAAK6E,QAAQub,WAC5D,CACA,IAAAxQ,GACO5P,KAAKuqB,YAGQhqB,GAAaqB,QAAQ5B,KAAK4E,SAAU8kB,IACxC1nB,mBAQdhC,KAAK4E,SAASvJ,UAAU5E,IAAIuzB,IAC5BhqB,KAAKmF,gBANY,KACfnF,KAAK4E,SAASvJ,UAAU5E,IAAIqzB,IAC5B9pB,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,GAAoBD,IACnDxpB,GAAaqB,QAAQ5B,KAAK4E,SAAU+kB,GAAa,GAGrB3pB,KAAK4E,SAAU5E,KAAK6E,QAAQub,YAC5D,CACA,OAAArb,GACE/E,KAAKqqB,gBACDrqB,KAAKuqB,WACPvqB,KAAK4E,SAASvJ,UAAU1B,OAAOowB,IAEjCplB,MAAMI,SACR,CACA,OAAAwlB,GACE,OAAOvqB,KAAK4E,SAASvJ,UAAU7W,SAASulC,GAC1C,CAIA,kBAAAO,GACOtqB,KAAK6E,QAAQolB,WAGdjqB,KAAKmqB,sBAAwBnqB,KAAKoqB,0BAGtCpqB,KAAK4gB,SAAW/iB,YAAW,KACzBmC,KAAK4P,MAAM,GACV5P,KAAK6E,QAAQ0b,QAClB,CACA,cAAAiK,CAAeprB,EAAOqrB,GACpB,OAAQrrB,EAAMqB,MACZ,IAAK,YACL,IAAK,WAEDT,KAAKmqB,qBAAuBM,EAC5B,MAEJ,IAAK,UACL,IAAK,WAEDzqB,KAAKoqB,wBAA0BK,EAIrC,GAAIA,EAEF,YADAzqB,KAAKqqB,gBAGP,MAAM5c,EAAcrO,EAAMU,cACtBE,KAAK4E,WAAa6I,GAAezN,KAAK4E,SAASpgB,SAASipB,IAG5DzN,KAAKsqB,oBACP,CACA,aAAApJ,GACE3gB,GAAac,GAAGrB,KAAK4E,SAAU0kB,IAAiBlqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACpFmB,GAAac,GAAGrB,KAAK4E,SAAU2kB,IAAgBnqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACnFmB,GAAac,GAAGrB,KAAK4E,SAAU4kB,IAAepqB,GAASY,KAAKwqB,eAAeprB,GAAO,KAClFmB,GAAac,GAAGrB,KAAK4E,SAAU6kB,IAAgBrqB,GAASY,KAAKwqB,eAAeprB,GAAO,IACrF,CACA,aAAAirB,GACEnd,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW,IAClB,CAGA,sBAAOnkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6/B,GAAM5kB,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KACf,CACF,GACF,ECr0IK,SAAS0qB,GAAcruB,GACD,WAAvBhX,SAASuX,WAAyBP,IACjChX,SAASyF,iBAAiB,mBAAoBuR,EACrD,CDy0IAwK,GAAqBqjB,IAMrB/tB,GAAmB+tB,IEpyInBQ,IAzCA,WAC2B,GAAGt4B,MAAM5U,KAChC6H,SAAS+a,iBAAiB,+BAETtd,KAAI,SAAU6nC,GAC/B,OAAO,IAAI,GAAkBA,EAAkB,CAC7CpK,MAAO,CAAE1Q,KAAM,IAAKD,KAAM,MAE9B,GACF,IAiCA8a,IA5BA,WACYrlC,SAASm9B,eAAe,mBAC9B13B,iBAAiB,SAAS,WAC5BzF,SAAS6G,KAAKT,UAAY,EAC1BpG,SAASC,gBAAgBmG,UAAY,CACvC,GACF,IAuBAi/B,IArBA,WACE,IAAIE,EAAMvlC,SAASm9B,eAAe,mBAC9BqI,EAASxlC,SACVylC,uBAAuB,aAAa,GACpCxnC,wBACH1D,OAAOkL,iBAAiB,UAAU,WAC5BkV,KAAK+qB,UAAY/qB,KAAKgrB,SAAWhrB,KAAKgrB,QAAUH,EAAOjtC,OACzDgtC,EAAI7pC,MAAMgxB,QAAU,QAEpB6Y,EAAI7pC,MAAMgxB,QAAU,OAEtB/R,KAAK+qB,UAAY/qB,KAAKgrB,OACxB,GACF,IAUAprC,OAAOqrC,UAAY","sources":["webpack://pydata_sphinx_theme/webpack/bootstrap","webpack://pydata_sphinx_theme/webpack/runtime/define property getters","webpack://pydata_sphinx_theme/webpack/runtime/hasOwnProperty shorthand","webpack://pydata_sphinx_theme/webpack/runtime/make namespace object","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/enums.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/instanceOf.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/applyStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getBasePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/math.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/userAgent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isLayoutViewport.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getBoundingClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getLayoutRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/contains.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getComputedStyle.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isTableElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getParentNode.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getOffsetParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getMainAxisFromPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/within.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergePaddingObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getFreshSideObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/expandToHashMap.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/arrow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getVariation.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/computeStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/eventListeners.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositeVariationPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScrollBarX.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/listScrollParents.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/rectToClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getClippingRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getViewportRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/detectOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/flip.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeAutoPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/hide.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/offset.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/popperOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/preventOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getAltAxis.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getCompositeRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getHTMLElementScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/orderModifiers.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/createPopper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/debounce.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergeByName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper-lite.js","webpack://pydata_sphinx_theme/./node_modules/bootstrap/dist/js/bootstrap.esm.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/mixin.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/bootstrap.js"],"sourcesContent":["// The require scope\nvar __webpack_require__ = {};\n\n","// define getter functions for harmony exports\n__webpack_require__.d = (exports, definition) => {\n\tfor(var key in definition) {\n\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n\t\t}\n\t}\n};","__webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop))","// define __esModule on exports\n__webpack_require__.r = (exports) => {\n\tif(typeof Symbol !== 'undefined' && Symbol.toStringTag) {\n\t\tObject.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });\n\t}\n\tObject.defineProperty(exports, '__esModule', { value: true });\n};","export var top = 'top';\nexport var bottom = 'bottom';\nexport var right = 'right';\nexport var left = 'left';\nexport var auto = 'auto';\nexport var basePlacements = [top, bottom, right, left];\nexport var start = 'start';\nexport var end = 'end';\nexport var clippingParents = 'clippingParents';\nexport var viewport = 'viewport';\nexport var popper = 'popper';\nexport var reference = 'reference';\nexport var variationPlacements = /*#__PURE__*/basePlacements.reduce(function (acc, placement) {\n return acc.concat([placement + \"-\" + start, placement + \"-\" + end]);\n}, []);\nexport var placements = /*#__PURE__*/[].concat(basePlacements, [auto]).reduce(function (acc, placement) {\n return acc.concat([placement, placement + \"-\" + start, placement + \"-\" + end]);\n}, []); // modifiers that need to read the DOM\n\nexport var beforeRead = 'beforeRead';\nexport var read = 'read';\nexport var afterRead = 'afterRead'; // pure-logic modifiers\n\nexport var beforeMain = 'beforeMain';\nexport var main = 'main';\nexport var afterMain = 'afterMain'; // modifier with the purpose to write to the DOM (or write into a framework state)\n\nexport var beforeWrite = 'beforeWrite';\nexport var write = 'write';\nexport var afterWrite = 'afterWrite';\nexport var modifierPhases = [beforeRead, read, afterRead, beforeMain, main, afterMain, beforeWrite, write, afterWrite];","export default function getNodeName(element) {\n return element ? (element.nodeName || '').toLowerCase() : null;\n}","export default function getWindow(node) {\n if (node == null) {\n return window;\n }\n\n if (node.toString() !== '[object Window]') {\n var ownerDocument = node.ownerDocument;\n return ownerDocument ? ownerDocument.defaultView || window : window;\n }\n\n return node;\n}","import getWindow from \"./getWindow.js\";\n\nfunction isElement(node) {\n var OwnElement = getWindow(node).Element;\n return node instanceof OwnElement || node instanceof Element;\n}\n\nfunction isHTMLElement(node) {\n var OwnElement = getWindow(node).HTMLElement;\n return node instanceof OwnElement || node instanceof HTMLElement;\n}\n\nfunction isShadowRoot(node) {\n // IE 11 has no ShadowRoot\n if (typeof ShadowRoot === 'undefined') {\n return false;\n }\n\n var OwnElement = getWindow(node).ShadowRoot;\n return node instanceof OwnElement || node instanceof ShadowRoot;\n}\n\nexport { isElement, isHTMLElement, isShadowRoot };","import getNodeName from \"../dom-utils/getNodeName.js\";\nimport { isHTMLElement } from \"../dom-utils/instanceOf.js\"; // This modifier takes the styles prepared by the `computeStyles` modifier\n// and applies them to the HTMLElements such as popper and arrow\n\nfunction applyStyles(_ref) {\n var state = _ref.state;\n Object.keys(state.elements).forEach(function (name) {\n var style = state.styles[name] || {};\n var attributes = state.attributes[name] || {};\n var element = state.elements[name]; // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n } // Flow doesn't support to extend this property, but it's the most\n // effective way to apply styles to an HTMLElement\n // $FlowFixMe[cannot-write]\n\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (name) {\n var value = attributes[name];\n\n if (value === false) {\n element.removeAttribute(name);\n } else {\n element.setAttribute(name, value === true ? '' : value);\n }\n });\n });\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state;\n var initialStyles = {\n popper: {\n position: state.options.strategy,\n left: '0',\n top: '0',\n margin: '0'\n },\n arrow: {\n position: 'absolute'\n },\n reference: {}\n };\n Object.assign(state.elements.popper.style, initialStyles.popper);\n state.styles = initialStyles;\n\n if (state.elements.arrow) {\n Object.assign(state.elements.arrow.style, initialStyles.arrow);\n }\n\n return function () {\n Object.keys(state.elements).forEach(function (name) {\n var element = state.elements[name];\n var attributes = state.attributes[name] || {};\n var styleProperties = Object.keys(state.styles.hasOwnProperty(name) ? state.styles[name] : initialStyles[name]); // Set all values to an empty string to unset them\n\n var style = styleProperties.reduce(function (style, property) {\n style[property] = '';\n return style;\n }, {}); // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n }\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (attribute) {\n element.removeAttribute(attribute);\n });\n });\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'applyStyles',\n enabled: true,\n phase: 'write',\n fn: applyStyles,\n effect: effect,\n requires: ['computeStyles']\n};","import { auto } from \"../enums.js\";\nexport default function getBasePlacement(placement) {\n return placement.split('-')[0];\n}","export var max = Math.max;\nexport var min = Math.min;\nexport var round = Math.round;","export default function getUAString() {\n var uaData = navigator.userAgentData;\n\n if (uaData != null && uaData.brands && Array.isArray(uaData.brands)) {\n return uaData.brands.map(function (item) {\n return item.brand + \"/\" + item.version;\n }).join(' ');\n }\n\n return navigator.userAgent;\n}","import getUAString from \"../utils/userAgent.js\";\nexport default function isLayoutViewport() {\n return !/^((?!chrome|android).)*safari/i.test(getUAString());\n}","import { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport { round } from \"../utils/math.js\";\nimport getWindow from \"./getWindow.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getBoundingClientRect(element, includeScale, isFixedStrategy) {\n if (includeScale === void 0) {\n includeScale = false;\n }\n\n if (isFixedStrategy === void 0) {\n isFixedStrategy = false;\n }\n\n var clientRect = element.getBoundingClientRect();\n var scaleX = 1;\n var scaleY = 1;\n\n if (includeScale && isHTMLElement(element)) {\n scaleX = element.offsetWidth > 0 ? round(clientRect.width) / element.offsetWidth || 1 : 1;\n scaleY = element.offsetHeight > 0 ? round(clientRect.height) / element.offsetHeight || 1 : 1;\n }\n\n var _ref = isElement(element) ? getWindow(element) : window,\n visualViewport = _ref.visualViewport;\n\n var addVisualOffsets = !isLayoutViewport() && isFixedStrategy;\n var x = (clientRect.left + (addVisualOffsets && visualViewport ? visualViewport.offsetLeft : 0)) / scaleX;\n var y = (clientRect.top + (addVisualOffsets && visualViewport ? visualViewport.offsetTop : 0)) / scaleY;\n var width = clientRect.width / scaleX;\n var height = clientRect.height / scaleY;\n return {\n width: width,\n height: height,\n top: y,\n right: x + width,\n bottom: y + height,\n left: x,\n x: x,\n y: y\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\"; // Returns the layout rect of an element relative to its offsetParent. Layout\n// means it doesn't take into account transforms.\n\nexport default function getLayoutRect(element) {\n var clientRect = getBoundingClientRect(element); // Use the clientRect sizes if it's not been transformed.\n // Fixes https://github.com/popperjs/popper-core/issues/1223\n\n var width = element.offsetWidth;\n var height = element.offsetHeight;\n\n if (Math.abs(clientRect.width - width) <= 1) {\n width = clientRect.width;\n }\n\n if (Math.abs(clientRect.height - height) <= 1) {\n height = clientRect.height;\n }\n\n return {\n x: element.offsetLeft,\n y: element.offsetTop,\n width: width,\n height: height\n };\n}","import { isShadowRoot } from \"./instanceOf.js\";\nexport default function contains(parent, child) {\n var rootNode = child.getRootNode && child.getRootNode(); // First, attempt with faster native method\n\n if (parent.contains(child)) {\n return true;\n } // then fallback to custom implementation with Shadow DOM support\n else if (rootNode && isShadowRoot(rootNode)) {\n var next = child;\n\n do {\n if (next && parent.isSameNode(next)) {\n return true;\n } // $FlowFixMe[prop-missing]: need a better way to handle this...\n\n\n next = next.parentNode || next.host;\n } while (next);\n } // Give up, the result is false\n\n\n return false;\n}","import getWindow from \"./getWindow.js\";\nexport default function getComputedStyle(element) {\n return getWindow(element).getComputedStyle(element);\n}","import getNodeName from \"./getNodeName.js\";\nexport default function isTableElement(element) {\n return ['table', 'td', 'th'].indexOf(getNodeName(element)) >= 0;\n}","import { isElement } from \"./instanceOf.js\";\nexport default function getDocumentElement(element) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return ((isElement(element) ? element.ownerDocument : // $FlowFixMe[prop-missing]\n element.document) || window.document).documentElement;\n}","import getNodeName from \"./getNodeName.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport { isShadowRoot } from \"./instanceOf.js\";\nexport default function getParentNode(element) {\n if (getNodeName(element) === 'html') {\n return element;\n }\n\n return (// this is a quicker (but less type safe) way to save quite some bytes from the bundle\n // $FlowFixMe[incompatible-return]\n // $FlowFixMe[prop-missing]\n element.assignedSlot || // step into the shadow DOM of the parent of a slotted node\n element.parentNode || ( // DOM Element detected\n isShadowRoot(element) ? element.host : null) || // ShadowRoot detected\n // $FlowFixMe[incompatible-call]: HTMLElement is a Node\n getDocumentElement(element) // fallback\n\n );\n}","import getWindow from \"./getWindow.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isHTMLElement, isShadowRoot } from \"./instanceOf.js\";\nimport isTableElement from \"./isTableElement.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getUAString from \"../utils/userAgent.js\";\n\nfunction getTrueOffsetParent(element) {\n if (!isHTMLElement(element) || // https://github.com/popperjs/popper-core/issues/837\n getComputedStyle(element).position === 'fixed') {\n return null;\n }\n\n return element.offsetParent;\n} // `.offsetParent` reports `null` for fixed elements, while absolute elements\n// return the containing block\n\n\nfunction getContainingBlock(element) {\n var isFirefox = /firefox/i.test(getUAString());\n var isIE = /Trident/i.test(getUAString());\n\n if (isIE && isHTMLElement(element)) {\n // In IE 9, 10 and 11 fixed elements containing block is always established by the viewport\n var elementCss = getComputedStyle(element);\n\n if (elementCss.position === 'fixed') {\n return null;\n }\n }\n\n var currentNode = getParentNode(element);\n\n if (isShadowRoot(currentNode)) {\n currentNode = currentNode.host;\n }\n\n while (isHTMLElement(currentNode) && ['html', 'body'].indexOf(getNodeName(currentNode)) < 0) {\n var css = getComputedStyle(currentNode); // This is non-exhaustive but covers the most common CSS properties that\n // create a containing block.\n // https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#identifying_the_containing_block\n\n if (css.transform !== 'none' || css.perspective !== 'none' || css.contain === 'paint' || ['transform', 'perspective'].indexOf(css.willChange) !== -1 || isFirefox && css.willChange === 'filter' || isFirefox && css.filter && css.filter !== 'none') {\n return currentNode;\n } else {\n currentNode = currentNode.parentNode;\n }\n }\n\n return null;\n} // Gets the closest ancestor positioned element. Handles some edge cases,\n// such as table ancestors and cross browser bugs.\n\n\nexport default function getOffsetParent(element) {\n var window = getWindow(element);\n var offsetParent = getTrueOffsetParent(element);\n\n while (offsetParent && isTableElement(offsetParent) && getComputedStyle(offsetParent).position === 'static') {\n offsetParent = getTrueOffsetParent(offsetParent);\n }\n\n if (offsetParent && (getNodeName(offsetParent) === 'html' || getNodeName(offsetParent) === 'body' && getComputedStyle(offsetParent).position === 'static')) {\n return window;\n }\n\n return offsetParent || getContainingBlock(element) || window;\n}","export default function getMainAxisFromPlacement(placement) {\n return ['top', 'bottom'].indexOf(placement) >= 0 ? 'x' : 'y';\n}","import { max as mathMax, min as mathMin } from \"./math.js\";\nexport function within(min, value, max) {\n return mathMax(min, mathMin(value, max));\n}\nexport function withinMaxClamp(min, value, max) {\n var v = within(min, value, max);\n return v > max ? max : v;\n}","import getFreshSideObject from \"./getFreshSideObject.js\";\nexport default function mergePaddingObject(paddingObject) {\n return Object.assign({}, getFreshSideObject(), paddingObject);\n}","export default function getFreshSideObject() {\n return {\n top: 0,\n right: 0,\n bottom: 0,\n left: 0\n };\n}","export default function expandToHashMap(value, keys) {\n return keys.reduce(function (hashMap, key) {\n hashMap[key] = value;\n return hashMap;\n }, {});\n}","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport contains from \"../dom-utils/contains.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport { within } from \"../utils/within.js\";\nimport mergePaddingObject from \"../utils/mergePaddingObject.js\";\nimport expandToHashMap from \"../utils/expandToHashMap.js\";\nimport { left, right, basePlacements, top, bottom } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar toPaddingObject = function toPaddingObject(padding, state) {\n padding = typeof padding === 'function' ? padding(Object.assign({}, state.rects, {\n placement: state.placement\n })) : padding;\n return mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n};\n\nfunction arrow(_ref) {\n var _state$modifiersData$;\n\n var state = _ref.state,\n name = _ref.name,\n options = _ref.options;\n var arrowElement = state.elements.arrow;\n var popperOffsets = state.modifiersData.popperOffsets;\n var basePlacement = getBasePlacement(state.placement);\n var axis = getMainAxisFromPlacement(basePlacement);\n var isVertical = [left, right].indexOf(basePlacement) >= 0;\n var len = isVertical ? 'height' : 'width';\n\n if (!arrowElement || !popperOffsets) {\n return;\n }\n\n var paddingObject = toPaddingObject(options.padding, state);\n var arrowRect = getLayoutRect(arrowElement);\n var minProp = axis === 'y' ? top : left;\n var maxProp = axis === 'y' ? bottom : right;\n var endDiff = state.rects.reference[len] + state.rects.reference[axis] - popperOffsets[axis] - state.rects.popper[len];\n var startDiff = popperOffsets[axis] - state.rects.reference[axis];\n var arrowOffsetParent = getOffsetParent(arrowElement);\n var clientSize = arrowOffsetParent ? axis === 'y' ? arrowOffsetParent.clientHeight || 0 : arrowOffsetParent.clientWidth || 0 : 0;\n var centerToReference = endDiff / 2 - startDiff / 2; // Make sure the arrow doesn't overflow the popper if the center point is\n // outside of the popper bounds\n\n var min = paddingObject[minProp];\n var max = clientSize - arrowRect[len] - paddingObject[maxProp];\n var center = clientSize / 2 - arrowRect[len] / 2 + centerToReference;\n var offset = within(min, center, max); // Prevents breaking syntax highlighting...\n\n var axisProp = axis;\n state.modifiersData[name] = (_state$modifiersData$ = {}, _state$modifiersData$[axisProp] = offset, _state$modifiersData$.centerOffset = offset - center, _state$modifiersData$);\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state,\n options = _ref2.options;\n var _options$element = options.element,\n arrowElement = _options$element === void 0 ? '[data-popper-arrow]' : _options$element;\n\n if (arrowElement == null) {\n return;\n } // CSS selector\n\n\n if (typeof arrowElement === 'string') {\n arrowElement = state.elements.popper.querySelector(arrowElement);\n\n if (!arrowElement) {\n return;\n }\n }\n\n if (!contains(state.elements.popper, arrowElement)) {\n return;\n }\n\n state.elements.arrow = arrowElement;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'arrow',\n enabled: true,\n phase: 'main',\n fn: arrow,\n effect: effect,\n requires: ['popperOffsets'],\n requiresIfExists: ['preventOverflow']\n};","export default function getVariation(placement) {\n return placement.split('-')[1];\n}","import { top, left, right, bottom, end } from \"../enums.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getWindow from \"../dom-utils/getWindow.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getComputedStyle from \"../dom-utils/getComputedStyle.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport { round } from \"../utils/math.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar unsetSides = {\n top: 'auto',\n right: 'auto',\n bottom: 'auto',\n left: 'auto'\n}; // Round the offsets to the nearest suitable subpixel based on the DPR.\n// Zooming can change the DPR, but it seems to report a value that will\n// cleanly divide the values into the appropriate subpixels.\n\nfunction roundOffsetsByDPR(_ref, win) {\n var x = _ref.x,\n y = _ref.y;\n var dpr = win.devicePixelRatio || 1;\n return {\n x: round(x * dpr) / dpr || 0,\n y: round(y * dpr) / dpr || 0\n };\n}\n\nexport function mapToStyles(_ref2) {\n var _Object$assign2;\n\n var popper = _ref2.popper,\n popperRect = _ref2.popperRect,\n placement = _ref2.placement,\n variation = _ref2.variation,\n offsets = _ref2.offsets,\n position = _ref2.position,\n gpuAcceleration = _ref2.gpuAcceleration,\n adaptive = _ref2.adaptive,\n roundOffsets = _ref2.roundOffsets,\n isFixed = _ref2.isFixed;\n var _offsets$x = offsets.x,\n x = _offsets$x === void 0 ? 0 : _offsets$x,\n _offsets$y = offsets.y,\n y = _offsets$y === void 0 ? 0 : _offsets$y;\n\n var _ref3 = typeof roundOffsets === 'function' ? roundOffsets({\n x: x,\n y: y\n }) : {\n x: x,\n y: y\n };\n\n x = _ref3.x;\n y = _ref3.y;\n var hasX = offsets.hasOwnProperty('x');\n var hasY = offsets.hasOwnProperty('y');\n var sideX = left;\n var sideY = top;\n var win = window;\n\n if (adaptive) {\n var offsetParent = getOffsetParent(popper);\n var heightProp = 'clientHeight';\n var widthProp = 'clientWidth';\n\n if (offsetParent === getWindow(popper)) {\n offsetParent = getDocumentElement(popper);\n\n if (getComputedStyle(offsetParent).position !== 'static' && position === 'absolute') {\n heightProp = 'scrollHeight';\n widthProp = 'scrollWidth';\n }\n } // $FlowFixMe[incompatible-cast]: force type refinement, we compare offsetParent with window above, but Flow doesn't detect it\n\n\n offsetParent = offsetParent;\n\n if (placement === top || (placement === left || placement === right) && variation === end) {\n sideY = bottom;\n var offsetY = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.height : // $FlowFixMe[prop-missing]\n offsetParent[heightProp];\n y -= offsetY - popperRect.height;\n y *= gpuAcceleration ? 1 : -1;\n }\n\n if (placement === left || (placement === top || placement === bottom) && variation === end) {\n sideX = right;\n var offsetX = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.width : // $FlowFixMe[prop-missing]\n offsetParent[widthProp];\n x -= offsetX - popperRect.width;\n x *= gpuAcceleration ? 1 : -1;\n }\n }\n\n var commonStyles = Object.assign({\n position: position\n }, adaptive && unsetSides);\n\n var _ref4 = roundOffsets === true ? roundOffsetsByDPR({\n x: x,\n y: y\n }, getWindow(popper)) : {\n x: x,\n y: y\n };\n\n x = _ref4.x;\n y = _ref4.y;\n\n if (gpuAcceleration) {\n var _Object$assign;\n\n return Object.assign({}, commonStyles, (_Object$assign = {}, _Object$assign[sideY] = hasY ? '0' : '', _Object$assign[sideX] = hasX ? '0' : '', _Object$assign.transform = (win.devicePixelRatio || 1) <= 1 ? \"translate(\" + x + \"px, \" + y + \"px)\" : \"translate3d(\" + x + \"px, \" + y + \"px, 0)\", _Object$assign));\n }\n\n return Object.assign({}, commonStyles, (_Object$assign2 = {}, _Object$assign2[sideY] = hasY ? y + \"px\" : '', _Object$assign2[sideX] = hasX ? x + \"px\" : '', _Object$assign2.transform = '', _Object$assign2));\n}\n\nfunction computeStyles(_ref5) {\n var state = _ref5.state,\n options = _ref5.options;\n var _options$gpuAccelerat = options.gpuAcceleration,\n gpuAcceleration = _options$gpuAccelerat === void 0 ? true : _options$gpuAccelerat,\n _options$adaptive = options.adaptive,\n adaptive = _options$adaptive === void 0 ? true : _options$adaptive,\n _options$roundOffsets = options.roundOffsets,\n roundOffsets = _options$roundOffsets === void 0 ? true : _options$roundOffsets;\n var commonStyles = {\n placement: getBasePlacement(state.placement),\n variation: getVariation(state.placement),\n popper: state.elements.popper,\n popperRect: state.rects.popper,\n gpuAcceleration: gpuAcceleration,\n isFixed: state.options.strategy === 'fixed'\n };\n\n if (state.modifiersData.popperOffsets != null) {\n state.styles.popper = Object.assign({}, state.styles.popper, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.popperOffsets,\n position: state.options.strategy,\n adaptive: adaptive,\n roundOffsets: roundOffsets\n })));\n }\n\n if (state.modifiersData.arrow != null) {\n state.styles.arrow = Object.assign({}, state.styles.arrow, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.arrow,\n position: 'absolute',\n adaptive: false,\n roundOffsets: roundOffsets\n })));\n }\n\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-placement': state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'computeStyles',\n enabled: true,\n phase: 'beforeWrite',\n fn: computeStyles,\n data: {}\n};","import getWindow from \"../dom-utils/getWindow.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar passive = {\n passive: true\n};\n\nfunction effect(_ref) {\n var state = _ref.state,\n instance = _ref.instance,\n options = _ref.options;\n var _options$scroll = options.scroll,\n scroll = _options$scroll === void 0 ? true : _options$scroll,\n _options$resize = options.resize,\n resize = _options$resize === void 0 ? true : _options$resize;\n var window = getWindow(state.elements.popper);\n var scrollParents = [].concat(state.scrollParents.reference, state.scrollParents.popper);\n\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.addEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.addEventListener('resize', instance.update, passive);\n }\n\n return function () {\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.removeEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.removeEventListener('resize', instance.update, passive);\n }\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'eventListeners',\n enabled: true,\n phase: 'write',\n fn: function fn() {},\n effect: effect,\n data: {}\n};","var hash = {\n left: 'right',\n right: 'left',\n bottom: 'top',\n top: 'bottom'\n};\nexport default function getOppositePlacement(placement) {\n return placement.replace(/left|right|bottom|top/g, function (matched) {\n return hash[matched];\n });\n}","var hash = {\n start: 'end',\n end: 'start'\n};\nexport default function getOppositeVariationPlacement(placement) {\n return placement.replace(/start|end/g, function (matched) {\n return hash[matched];\n });\n}","import getWindow from \"./getWindow.js\";\nexport default function getWindowScroll(node) {\n var win = getWindow(node);\n var scrollLeft = win.pageXOffset;\n var scrollTop = win.pageYOffset;\n return {\n scrollLeft: scrollLeft,\n scrollTop: scrollTop\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nexport default function getWindowScrollBarX(element) {\n // If has a CSS width greater than the viewport, then this will be\n // incorrect for RTL.\n // Popper 1 is broken in this case and never had a bug report so let's assume\n // it's not an issue. I don't think anyone ever specifies width on \n // anyway.\n // Browsers where the left scrollbar doesn't cause an issue report `0` for\n // this (e.g. Edge 2019, IE11, Safari)\n return getBoundingClientRect(getDocumentElement(element)).left + getWindowScroll(element).scrollLeft;\n}","import getComputedStyle from \"./getComputedStyle.js\";\nexport default function isScrollParent(element) {\n // Firefox wants us to check `-x` and `-y` variations as well\n var _getComputedStyle = getComputedStyle(element),\n overflow = _getComputedStyle.overflow,\n overflowX = _getComputedStyle.overflowX,\n overflowY = _getComputedStyle.overflowY;\n\n return /auto|scroll|overlay|hidden/.test(overflow + overflowY + overflowX);\n}","import getParentNode from \"./getParentNode.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nexport default function getScrollParent(node) {\n if (['html', 'body', '#document'].indexOf(getNodeName(node)) >= 0) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return node.ownerDocument.body;\n }\n\n if (isHTMLElement(node) && isScrollParent(node)) {\n return node;\n }\n\n return getScrollParent(getParentNode(node));\n}","import getScrollParent from \"./getScrollParent.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getWindow from \"./getWindow.js\";\nimport isScrollParent from \"./isScrollParent.js\";\n/*\ngiven a DOM element, return the list of all scroll parents, up the list of ancesors\nuntil we get to the top window object. This list is what we attach scroll listeners\nto, because if any of these parent elements scroll, we'll need to re-calculate the\nreference element's position.\n*/\n\nexport default function listScrollParents(element, list) {\n var _element$ownerDocumen;\n\n if (list === void 0) {\n list = [];\n }\n\n var scrollParent = getScrollParent(element);\n var isBody = scrollParent === ((_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body);\n var win = getWindow(scrollParent);\n var target = isBody ? [win].concat(win.visualViewport || [], isScrollParent(scrollParent) ? scrollParent : []) : scrollParent;\n var updatedList = list.concat(target);\n return isBody ? updatedList : // $FlowFixMe[incompatible-call]: isBody tells us target will be an HTMLElement here\n updatedList.concat(listScrollParents(getParentNode(target)));\n}","export default function rectToClientRect(rect) {\n return Object.assign({}, rect, {\n left: rect.x,\n top: rect.y,\n right: rect.x + rect.width,\n bottom: rect.y + rect.height\n });\n}","import { viewport } from \"../enums.js\";\nimport getViewportRect from \"./getViewportRect.js\";\nimport getDocumentRect from \"./getDocumentRect.js\";\nimport listScrollParents from \"./listScrollParents.js\";\nimport getOffsetParent from \"./getOffsetParent.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport contains from \"./contains.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport rectToClientRect from \"../utils/rectToClientRect.js\";\nimport { max, min } from \"../utils/math.js\";\n\nfunction getInnerBoundingClientRect(element, strategy) {\n var rect = getBoundingClientRect(element, false, strategy === 'fixed');\n rect.top = rect.top + element.clientTop;\n rect.left = rect.left + element.clientLeft;\n rect.bottom = rect.top + element.clientHeight;\n rect.right = rect.left + element.clientWidth;\n rect.width = element.clientWidth;\n rect.height = element.clientHeight;\n rect.x = rect.left;\n rect.y = rect.top;\n return rect;\n}\n\nfunction getClientRectFromMixedType(element, clippingParent, strategy) {\n return clippingParent === viewport ? rectToClientRect(getViewportRect(element, strategy)) : isElement(clippingParent) ? getInnerBoundingClientRect(clippingParent, strategy) : rectToClientRect(getDocumentRect(getDocumentElement(element)));\n} // A \"clipping parent\" is an overflowable container with the characteristic of\n// clipping (or hiding) overflowing elements with a position different from\n// `initial`\n\n\nfunction getClippingParents(element) {\n var clippingParents = listScrollParents(getParentNode(element));\n var canEscapeClipping = ['absolute', 'fixed'].indexOf(getComputedStyle(element).position) >= 0;\n var clipperElement = canEscapeClipping && isHTMLElement(element) ? getOffsetParent(element) : element;\n\n if (!isElement(clipperElement)) {\n return [];\n } // $FlowFixMe[incompatible-return]: https://github.com/facebook/flow/issues/1414\n\n\n return clippingParents.filter(function (clippingParent) {\n return isElement(clippingParent) && contains(clippingParent, clipperElement) && getNodeName(clippingParent) !== 'body';\n });\n} // Gets the maximum area that the element is visible in due to any number of\n// clipping parents\n\n\nexport default function getClippingRect(element, boundary, rootBoundary, strategy) {\n var mainClippingParents = boundary === 'clippingParents' ? getClippingParents(element) : [].concat(boundary);\n var clippingParents = [].concat(mainClippingParents, [rootBoundary]);\n var firstClippingParent = clippingParents[0];\n var clippingRect = clippingParents.reduce(function (accRect, clippingParent) {\n var rect = getClientRectFromMixedType(element, clippingParent, strategy);\n accRect.top = max(rect.top, accRect.top);\n accRect.right = min(rect.right, accRect.right);\n accRect.bottom = min(rect.bottom, accRect.bottom);\n accRect.left = max(rect.left, accRect.left);\n return accRect;\n }, getClientRectFromMixedType(element, firstClippingParent, strategy));\n clippingRect.width = clippingRect.right - clippingRect.left;\n clippingRect.height = clippingRect.bottom - clippingRect.top;\n clippingRect.x = clippingRect.left;\n clippingRect.y = clippingRect.top;\n return clippingRect;\n}","import getWindow from \"./getWindow.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getViewportRect(element, strategy) {\n var win = getWindow(element);\n var html = getDocumentElement(element);\n var visualViewport = win.visualViewport;\n var width = html.clientWidth;\n var height = html.clientHeight;\n var x = 0;\n var y = 0;\n\n if (visualViewport) {\n width = visualViewport.width;\n height = visualViewport.height;\n var layoutViewport = isLayoutViewport();\n\n if (layoutViewport || !layoutViewport && strategy === 'fixed') {\n x = visualViewport.offsetLeft;\n y = visualViewport.offsetTop;\n }\n }\n\n return {\n width: width,\n height: height,\n x: x + getWindowScrollBarX(element),\n y: y\n };\n}","import getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nimport { max } from \"../utils/math.js\"; // Gets the entire size of the scrollable document area, even extending outside\n// of the `` and `` rect bounds if horizontally scrollable\n\nexport default function getDocumentRect(element) {\n var _element$ownerDocumen;\n\n var html = getDocumentElement(element);\n var winScroll = getWindowScroll(element);\n var body = (_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body;\n var width = max(html.scrollWidth, html.clientWidth, body ? body.scrollWidth : 0, body ? body.clientWidth : 0);\n var height = max(html.scrollHeight, html.clientHeight, body ? body.scrollHeight : 0, body ? body.clientHeight : 0);\n var x = -winScroll.scrollLeft + getWindowScrollBarX(element);\n var y = -winScroll.scrollTop;\n\n if (getComputedStyle(body || html).direction === 'rtl') {\n x += max(html.clientWidth, body ? body.clientWidth : 0) - width;\n }\n\n return {\n width: width,\n height: height,\n x: x,\n y: y\n };\n}","import getBasePlacement from \"./getBasePlacement.js\";\nimport getVariation from \"./getVariation.js\";\nimport getMainAxisFromPlacement from \"./getMainAxisFromPlacement.js\";\nimport { top, right, bottom, left, start, end } from \"../enums.js\";\nexport default function computeOffsets(_ref) {\n var reference = _ref.reference,\n element = _ref.element,\n placement = _ref.placement;\n var basePlacement = placement ? getBasePlacement(placement) : null;\n var variation = placement ? getVariation(placement) : null;\n var commonX = reference.x + reference.width / 2 - element.width / 2;\n var commonY = reference.y + reference.height / 2 - element.height / 2;\n var offsets;\n\n switch (basePlacement) {\n case top:\n offsets = {\n x: commonX,\n y: reference.y - element.height\n };\n break;\n\n case bottom:\n offsets = {\n x: commonX,\n y: reference.y + reference.height\n };\n break;\n\n case right:\n offsets = {\n x: reference.x + reference.width,\n y: commonY\n };\n break;\n\n case left:\n offsets = {\n x: reference.x - element.width,\n y: commonY\n };\n break;\n\n default:\n offsets = {\n x: reference.x,\n y: reference.y\n };\n }\n\n var mainAxis = basePlacement ? getMainAxisFromPlacement(basePlacement) : null;\n\n if (mainAxis != null) {\n var len = mainAxis === 'y' ? 'height' : 'width';\n\n switch (variation) {\n case start:\n offsets[mainAxis] = offsets[mainAxis] - (reference[len] / 2 - element[len] / 2);\n break;\n\n case end:\n offsets[mainAxis] = offsets[mainAxis] + (reference[len] / 2 - element[len] / 2);\n break;\n\n default:\n }\n }\n\n return offsets;\n}","import getClippingRect from \"../dom-utils/getClippingRect.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getBoundingClientRect from \"../dom-utils/getBoundingClientRect.js\";\nimport computeOffsets from \"./computeOffsets.js\";\nimport rectToClientRect from \"./rectToClientRect.js\";\nimport { clippingParents, reference, popper, bottom, top, right, basePlacements, viewport } from \"../enums.js\";\nimport { isElement } from \"../dom-utils/instanceOf.js\";\nimport mergePaddingObject from \"./mergePaddingObject.js\";\nimport expandToHashMap from \"./expandToHashMap.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport default function detectOverflow(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n _options$placement = _options.placement,\n placement = _options$placement === void 0 ? state.placement : _options$placement,\n _options$strategy = _options.strategy,\n strategy = _options$strategy === void 0 ? state.strategy : _options$strategy,\n _options$boundary = _options.boundary,\n boundary = _options$boundary === void 0 ? clippingParents : _options$boundary,\n _options$rootBoundary = _options.rootBoundary,\n rootBoundary = _options$rootBoundary === void 0 ? viewport : _options$rootBoundary,\n _options$elementConte = _options.elementContext,\n elementContext = _options$elementConte === void 0 ? popper : _options$elementConte,\n _options$altBoundary = _options.altBoundary,\n altBoundary = _options$altBoundary === void 0 ? false : _options$altBoundary,\n _options$padding = _options.padding,\n padding = _options$padding === void 0 ? 0 : _options$padding;\n var paddingObject = mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n var altContext = elementContext === popper ? reference : popper;\n var popperRect = state.rects.popper;\n var element = state.elements[altBoundary ? altContext : elementContext];\n var clippingClientRect = getClippingRect(isElement(element) ? element : element.contextElement || getDocumentElement(state.elements.popper), boundary, rootBoundary, strategy);\n var referenceClientRect = getBoundingClientRect(state.elements.reference);\n var popperOffsets = computeOffsets({\n reference: referenceClientRect,\n element: popperRect,\n strategy: 'absolute',\n placement: placement\n });\n var popperClientRect = rectToClientRect(Object.assign({}, popperRect, popperOffsets));\n var elementClientRect = elementContext === popper ? popperClientRect : referenceClientRect; // positive = overflowing the clipping rect\n // 0 or negative = within the clipping rect\n\n var overflowOffsets = {\n top: clippingClientRect.top - elementClientRect.top + paddingObject.top,\n bottom: elementClientRect.bottom - clippingClientRect.bottom + paddingObject.bottom,\n left: clippingClientRect.left - elementClientRect.left + paddingObject.left,\n right: elementClientRect.right - clippingClientRect.right + paddingObject.right\n };\n var offsetData = state.modifiersData.offset; // Offsets can be applied only to the popper element\n\n if (elementContext === popper && offsetData) {\n var offset = offsetData[placement];\n Object.keys(overflowOffsets).forEach(function (key) {\n var multiply = [right, bottom].indexOf(key) >= 0 ? 1 : -1;\n var axis = [top, bottom].indexOf(key) >= 0 ? 'y' : 'x';\n overflowOffsets[key] += offset[axis] * multiply;\n });\n }\n\n return overflowOffsets;\n}","import getOppositePlacement from \"../utils/getOppositePlacement.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getOppositeVariationPlacement from \"../utils/getOppositeVariationPlacement.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport computeAutoPlacement from \"../utils/computeAutoPlacement.js\";\nimport { bottom, top, start, right, left, auto } from \"../enums.js\";\nimport getVariation from \"../utils/getVariation.js\"; // eslint-disable-next-line import/no-unused-modules\n\nfunction getExpandedFallbackPlacements(placement) {\n if (getBasePlacement(placement) === auto) {\n return [];\n }\n\n var oppositePlacement = getOppositePlacement(placement);\n return [getOppositeVariationPlacement(placement), oppositePlacement, getOppositeVariationPlacement(oppositePlacement)];\n}\n\nfunction flip(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n\n if (state.modifiersData[name]._skip) {\n return;\n }\n\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? true : _options$altAxis,\n specifiedFallbackPlacements = options.fallbackPlacements,\n padding = options.padding,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n _options$flipVariatio = options.flipVariations,\n flipVariations = _options$flipVariatio === void 0 ? true : _options$flipVariatio,\n allowedAutoPlacements = options.allowedAutoPlacements;\n var preferredPlacement = state.options.placement;\n var basePlacement = getBasePlacement(preferredPlacement);\n var isBasePlacement = basePlacement === preferredPlacement;\n var fallbackPlacements = specifiedFallbackPlacements || (isBasePlacement || !flipVariations ? [getOppositePlacement(preferredPlacement)] : getExpandedFallbackPlacements(preferredPlacement));\n var placements = [preferredPlacement].concat(fallbackPlacements).reduce(function (acc, placement) {\n return acc.concat(getBasePlacement(placement) === auto ? computeAutoPlacement(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n flipVariations: flipVariations,\n allowedAutoPlacements: allowedAutoPlacements\n }) : placement);\n }, []);\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var checksMap = new Map();\n var makeFallbackChecks = true;\n var firstFittingPlacement = placements[0];\n\n for (var i = 0; i < placements.length; i++) {\n var placement = placements[i];\n\n var _basePlacement = getBasePlacement(placement);\n\n var isStartVariation = getVariation(placement) === start;\n var isVertical = [top, bottom].indexOf(_basePlacement) >= 0;\n var len = isVertical ? 'width' : 'height';\n var overflow = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n altBoundary: altBoundary,\n padding: padding\n });\n var mainVariationSide = isVertical ? isStartVariation ? right : left : isStartVariation ? bottom : top;\n\n if (referenceRect[len] > popperRect[len]) {\n mainVariationSide = getOppositePlacement(mainVariationSide);\n }\n\n var altVariationSide = getOppositePlacement(mainVariationSide);\n var checks = [];\n\n if (checkMainAxis) {\n checks.push(overflow[_basePlacement] <= 0);\n }\n\n if (checkAltAxis) {\n checks.push(overflow[mainVariationSide] <= 0, overflow[altVariationSide] <= 0);\n }\n\n if (checks.every(function (check) {\n return check;\n })) {\n firstFittingPlacement = placement;\n makeFallbackChecks = false;\n break;\n }\n\n checksMap.set(placement, checks);\n }\n\n if (makeFallbackChecks) {\n // `2` may be desired in some cases – research later\n var numberOfChecks = flipVariations ? 3 : 1;\n\n var _loop = function _loop(_i) {\n var fittingPlacement = placements.find(function (placement) {\n var checks = checksMap.get(placement);\n\n if (checks) {\n return checks.slice(0, _i).every(function (check) {\n return check;\n });\n }\n });\n\n if (fittingPlacement) {\n firstFittingPlacement = fittingPlacement;\n return \"break\";\n }\n };\n\n for (var _i = numberOfChecks; _i > 0; _i--) {\n var _ret = _loop(_i);\n\n if (_ret === \"break\") break;\n }\n }\n\n if (state.placement !== firstFittingPlacement) {\n state.modifiersData[name]._skip = true;\n state.placement = firstFittingPlacement;\n state.reset = true;\n }\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'flip',\n enabled: true,\n phase: 'main',\n fn: flip,\n requiresIfExists: ['offset'],\n data: {\n _skip: false\n }\n};","import getVariation from \"./getVariation.js\";\nimport { variationPlacements, basePlacements, placements as allPlacements } from \"../enums.js\";\nimport detectOverflow from \"./detectOverflow.js\";\nimport getBasePlacement from \"./getBasePlacement.js\";\nexport default function computeAutoPlacement(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n placement = _options.placement,\n boundary = _options.boundary,\n rootBoundary = _options.rootBoundary,\n padding = _options.padding,\n flipVariations = _options.flipVariations,\n _options$allowedAutoP = _options.allowedAutoPlacements,\n allowedAutoPlacements = _options$allowedAutoP === void 0 ? allPlacements : _options$allowedAutoP;\n var variation = getVariation(placement);\n var placements = variation ? flipVariations ? variationPlacements : variationPlacements.filter(function (placement) {\n return getVariation(placement) === variation;\n }) : basePlacements;\n var allowedPlacements = placements.filter(function (placement) {\n return allowedAutoPlacements.indexOf(placement) >= 0;\n });\n\n if (allowedPlacements.length === 0) {\n allowedPlacements = placements;\n } // $FlowFixMe[incompatible-type]: Flow seems to have problems with two array unions...\n\n\n var overflows = allowedPlacements.reduce(function (acc, placement) {\n acc[placement] = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding\n })[getBasePlacement(placement)];\n return acc;\n }, {});\n return Object.keys(overflows).sort(function (a, b) {\n return overflows[a] - overflows[b];\n });\n}","import { top, bottom, left, right } from \"../enums.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\n\nfunction getSideOffsets(overflow, rect, preventedOffsets) {\n if (preventedOffsets === void 0) {\n preventedOffsets = {\n x: 0,\n y: 0\n };\n }\n\n return {\n top: overflow.top - rect.height - preventedOffsets.y,\n right: overflow.right - rect.width + preventedOffsets.x,\n bottom: overflow.bottom - rect.height + preventedOffsets.y,\n left: overflow.left - rect.width - preventedOffsets.x\n };\n}\n\nfunction isAnySideFullyClipped(overflow) {\n return [top, right, bottom, left].some(function (side) {\n return overflow[side] >= 0;\n });\n}\n\nfunction hide(_ref) {\n var state = _ref.state,\n name = _ref.name;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var preventedOffsets = state.modifiersData.preventOverflow;\n var referenceOverflow = detectOverflow(state, {\n elementContext: 'reference'\n });\n var popperAltOverflow = detectOverflow(state, {\n altBoundary: true\n });\n var referenceClippingOffsets = getSideOffsets(referenceOverflow, referenceRect);\n var popperEscapeOffsets = getSideOffsets(popperAltOverflow, popperRect, preventedOffsets);\n var isReferenceHidden = isAnySideFullyClipped(referenceClippingOffsets);\n var hasPopperEscaped = isAnySideFullyClipped(popperEscapeOffsets);\n state.modifiersData[name] = {\n referenceClippingOffsets: referenceClippingOffsets,\n popperEscapeOffsets: popperEscapeOffsets,\n isReferenceHidden: isReferenceHidden,\n hasPopperEscaped: hasPopperEscaped\n };\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-reference-hidden': isReferenceHidden,\n 'data-popper-escaped': hasPopperEscaped\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'hide',\n enabled: true,\n phase: 'main',\n requiresIfExists: ['preventOverflow'],\n fn: hide\n};","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport { top, left, right, placements } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport function distanceAndSkiddingToXY(placement, rects, offset) {\n var basePlacement = getBasePlacement(placement);\n var invertDistance = [left, top].indexOf(basePlacement) >= 0 ? -1 : 1;\n\n var _ref = typeof offset === 'function' ? offset(Object.assign({}, rects, {\n placement: placement\n })) : offset,\n skidding = _ref[0],\n distance = _ref[1];\n\n skidding = skidding || 0;\n distance = (distance || 0) * invertDistance;\n return [left, right].indexOf(basePlacement) >= 0 ? {\n x: distance,\n y: skidding\n } : {\n x: skidding,\n y: distance\n };\n}\n\nfunction offset(_ref2) {\n var state = _ref2.state,\n options = _ref2.options,\n name = _ref2.name;\n var _options$offset = options.offset,\n offset = _options$offset === void 0 ? [0, 0] : _options$offset;\n var data = placements.reduce(function (acc, placement) {\n acc[placement] = distanceAndSkiddingToXY(placement, state.rects, offset);\n return acc;\n }, {});\n var _data$state$placement = data[state.placement],\n x = _data$state$placement.x,\n y = _data$state$placement.y;\n\n if (state.modifiersData.popperOffsets != null) {\n state.modifiersData.popperOffsets.x += x;\n state.modifiersData.popperOffsets.y += y;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'offset',\n enabled: true,\n phase: 'main',\n requires: ['popperOffsets'],\n fn: offset\n};","import computeOffsets from \"../utils/computeOffsets.js\";\n\nfunction popperOffsets(_ref) {\n var state = _ref.state,\n name = _ref.name;\n // Offsets are the actual position the popper needs to have to be\n // properly positioned near its reference element\n // This is the most basic placement, and will be adjusted by\n // the modifiers in the next step\n state.modifiersData[name] = computeOffsets({\n reference: state.rects.reference,\n element: state.rects.popper,\n strategy: 'absolute',\n placement: state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'popperOffsets',\n enabled: true,\n phase: 'read',\n fn: popperOffsets,\n data: {}\n};","import { top, left, right, bottom, start } from \"../enums.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport getAltAxis from \"../utils/getAltAxis.js\";\nimport { within, withinMaxClamp } from \"../utils/within.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport getFreshSideObject from \"../utils/getFreshSideObject.js\";\nimport { min as mathMin, max as mathMax } from \"../utils/math.js\";\n\nfunction preventOverflow(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? false : _options$altAxis,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n padding = options.padding,\n _options$tether = options.tether,\n tether = _options$tether === void 0 ? true : _options$tether,\n _options$tetherOffset = options.tetherOffset,\n tetherOffset = _options$tetherOffset === void 0 ? 0 : _options$tetherOffset;\n var overflow = detectOverflow(state, {\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n altBoundary: altBoundary\n });\n var basePlacement = getBasePlacement(state.placement);\n var variation = getVariation(state.placement);\n var isBasePlacement = !variation;\n var mainAxis = getMainAxisFromPlacement(basePlacement);\n var altAxis = getAltAxis(mainAxis);\n var popperOffsets = state.modifiersData.popperOffsets;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var tetherOffsetValue = typeof tetherOffset === 'function' ? tetherOffset(Object.assign({}, state.rects, {\n placement: state.placement\n })) : tetherOffset;\n var normalizedTetherOffsetValue = typeof tetherOffsetValue === 'number' ? {\n mainAxis: tetherOffsetValue,\n altAxis: tetherOffsetValue\n } : Object.assign({\n mainAxis: 0,\n altAxis: 0\n }, tetherOffsetValue);\n var offsetModifierState = state.modifiersData.offset ? state.modifiersData.offset[state.placement] : null;\n var data = {\n x: 0,\n y: 0\n };\n\n if (!popperOffsets) {\n return;\n }\n\n if (checkMainAxis) {\n var _offsetModifierState$;\n\n var mainSide = mainAxis === 'y' ? top : left;\n var altSide = mainAxis === 'y' ? bottom : right;\n var len = mainAxis === 'y' ? 'height' : 'width';\n var offset = popperOffsets[mainAxis];\n var min = offset + overflow[mainSide];\n var max = offset - overflow[altSide];\n var additive = tether ? -popperRect[len] / 2 : 0;\n var minLen = variation === start ? referenceRect[len] : popperRect[len];\n var maxLen = variation === start ? -popperRect[len] : -referenceRect[len]; // We need to include the arrow in the calculation so the arrow doesn't go\n // outside the reference bounds\n\n var arrowElement = state.elements.arrow;\n var arrowRect = tether && arrowElement ? getLayoutRect(arrowElement) : {\n width: 0,\n height: 0\n };\n var arrowPaddingObject = state.modifiersData['arrow#persistent'] ? state.modifiersData['arrow#persistent'].padding : getFreshSideObject();\n var arrowPaddingMin = arrowPaddingObject[mainSide];\n var arrowPaddingMax = arrowPaddingObject[altSide]; // If the reference length is smaller than the arrow length, we don't want\n // to include its full size in the calculation. If the reference is small\n // and near the edge of a boundary, the popper can overflow even if the\n // reference is not overflowing as well (e.g. virtual elements with no\n // width or height)\n\n var arrowLen = within(0, referenceRect[len], arrowRect[len]);\n var minOffset = isBasePlacement ? referenceRect[len] / 2 - additive - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis : minLen - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis;\n var maxOffset = isBasePlacement ? -referenceRect[len] / 2 + additive + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis : maxLen + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis;\n var arrowOffsetParent = state.elements.arrow && getOffsetParent(state.elements.arrow);\n var clientOffset = arrowOffsetParent ? mainAxis === 'y' ? arrowOffsetParent.clientTop || 0 : arrowOffsetParent.clientLeft || 0 : 0;\n var offsetModifierValue = (_offsetModifierState$ = offsetModifierState == null ? void 0 : offsetModifierState[mainAxis]) != null ? _offsetModifierState$ : 0;\n var tetherMin = offset + minOffset - offsetModifierValue - clientOffset;\n var tetherMax = offset + maxOffset - offsetModifierValue;\n var preventedOffset = within(tether ? mathMin(min, tetherMin) : min, offset, tether ? mathMax(max, tetherMax) : max);\n popperOffsets[mainAxis] = preventedOffset;\n data[mainAxis] = preventedOffset - offset;\n }\n\n if (checkAltAxis) {\n var _offsetModifierState$2;\n\n var _mainSide = mainAxis === 'x' ? top : left;\n\n var _altSide = mainAxis === 'x' ? bottom : right;\n\n var _offset = popperOffsets[altAxis];\n\n var _len = altAxis === 'y' ? 'height' : 'width';\n\n var _min = _offset + overflow[_mainSide];\n\n var _max = _offset - overflow[_altSide];\n\n var isOriginSide = [top, left].indexOf(basePlacement) !== -1;\n\n var _offsetModifierValue = (_offsetModifierState$2 = offsetModifierState == null ? void 0 : offsetModifierState[altAxis]) != null ? _offsetModifierState$2 : 0;\n\n var _tetherMin = isOriginSide ? _min : _offset - referenceRect[_len] - popperRect[_len] - _offsetModifierValue + normalizedTetherOffsetValue.altAxis;\n\n var _tetherMax = isOriginSide ? _offset + referenceRect[_len] + popperRect[_len] - _offsetModifierValue - normalizedTetherOffsetValue.altAxis : _max;\n\n var _preventedOffset = tether && isOriginSide ? withinMaxClamp(_tetherMin, _offset, _tetherMax) : within(tether ? _tetherMin : _min, _offset, tether ? _tetherMax : _max);\n\n popperOffsets[altAxis] = _preventedOffset;\n data[altAxis] = _preventedOffset - _offset;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'preventOverflow',\n enabled: true,\n phase: 'main',\n fn: preventOverflow,\n requiresIfExists: ['offset']\n};","export default function getAltAxis(axis) {\n return axis === 'x' ? 'y' : 'x';\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getNodeScroll from \"./getNodeScroll.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport { round } from \"../utils/math.js\";\n\nfunction isElementScaled(element) {\n var rect = element.getBoundingClientRect();\n var scaleX = round(rect.width) / element.offsetWidth || 1;\n var scaleY = round(rect.height) / element.offsetHeight || 1;\n return scaleX !== 1 || scaleY !== 1;\n} // Returns the composite rect of an element relative to its offsetParent.\n// Composite means it takes into account transforms as well as layout.\n\n\nexport default function getCompositeRect(elementOrVirtualElement, offsetParent, isFixed) {\n if (isFixed === void 0) {\n isFixed = false;\n }\n\n var isOffsetParentAnElement = isHTMLElement(offsetParent);\n var offsetParentIsScaled = isHTMLElement(offsetParent) && isElementScaled(offsetParent);\n var documentElement = getDocumentElement(offsetParent);\n var rect = getBoundingClientRect(elementOrVirtualElement, offsetParentIsScaled, isFixed);\n var scroll = {\n scrollLeft: 0,\n scrollTop: 0\n };\n var offsets = {\n x: 0,\n y: 0\n };\n\n if (isOffsetParentAnElement || !isOffsetParentAnElement && !isFixed) {\n if (getNodeName(offsetParent) !== 'body' || // https://github.com/popperjs/popper-core/issues/1078\n isScrollParent(documentElement)) {\n scroll = getNodeScroll(offsetParent);\n }\n\n if (isHTMLElement(offsetParent)) {\n offsets = getBoundingClientRect(offsetParent, true);\n offsets.x += offsetParent.clientLeft;\n offsets.y += offsetParent.clientTop;\n } else if (documentElement) {\n offsets.x = getWindowScrollBarX(documentElement);\n }\n }\n\n return {\n x: rect.left + scroll.scrollLeft - offsets.x,\n y: rect.top + scroll.scrollTop - offsets.y,\n width: rect.width,\n height: rect.height\n };\n}","import getWindowScroll from \"./getWindowScroll.js\";\nimport getWindow from \"./getWindow.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getHTMLElementScroll from \"./getHTMLElementScroll.js\";\nexport default function getNodeScroll(node) {\n if (node === getWindow(node) || !isHTMLElement(node)) {\n return getWindowScroll(node);\n } else {\n return getHTMLElementScroll(node);\n }\n}","export default function getHTMLElementScroll(element) {\n return {\n scrollLeft: element.scrollLeft,\n scrollTop: element.scrollTop\n };\n}","import { modifierPhases } from \"../enums.js\"; // source: https://stackoverflow.com/questions/49875255\n\nfunction order(modifiers) {\n var map = new Map();\n var visited = new Set();\n var result = [];\n modifiers.forEach(function (modifier) {\n map.set(modifier.name, modifier);\n }); // On visiting object, check for its dependencies and visit them recursively\n\n function sort(modifier) {\n visited.add(modifier.name);\n var requires = [].concat(modifier.requires || [], modifier.requiresIfExists || []);\n requires.forEach(function (dep) {\n if (!visited.has(dep)) {\n var depModifier = map.get(dep);\n\n if (depModifier) {\n sort(depModifier);\n }\n }\n });\n result.push(modifier);\n }\n\n modifiers.forEach(function (modifier) {\n if (!visited.has(modifier.name)) {\n // check for visited object\n sort(modifier);\n }\n });\n return result;\n}\n\nexport default function orderModifiers(modifiers) {\n // order based on dependencies\n var orderedModifiers = order(modifiers); // order based on phase\n\n return modifierPhases.reduce(function (acc, phase) {\n return acc.concat(orderedModifiers.filter(function (modifier) {\n return modifier.phase === phase;\n }));\n }, []);\n}","import getCompositeRect from \"./dom-utils/getCompositeRect.js\";\nimport getLayoutRect from \"./dom-utils/getLayoutRect.js\";\nimport listScrollParents from \"./dom-utils/listScrollParents.js\";\nimport getOffsetParent from \"./dom-utils/getOffsetParent.js\";\nimport orderModifiers from \"./utils/orderModifiers.js\";\nimport debounce from \"./utils/debounce.js\";\nimport mergeByName from \"./utils/mergeByName.js\";\nimport detectOverflow from \"./utils/detectOverflow.js\";\nimport { isElement } from \"./dom-utils/instanceOf.js\";\nvar DEFAULT_OPTIONS = {\n placement: 'bottom',\n modifiers: [],\n strategy: 'absolute'\n};\n\nfunction areValidElements() {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n return !args.some(function (element) {\n return !(element && typeof element.getBoundingClientRect === 'function');\n });\n}\n\nexport function popperGenerator(generatorOptions) {\n if (generatorOptions === void 0) {\n generatorOptions = {};\n }\n\n var _generatorOptions = generatorOptions,\n _generatorOptions$def = _generatorOptions.defaultModifiers,\n defaultModifiers = _generatorOptions$def === void 0 ? [] : _generatorOptions$def,\n _generatorOptions$def2 = _generatorOptions.defaultOptions,\n defaultOptions = _generatorOptions$def2 === void 0 ? DEFAULT_OPTIONS : _generatorOptions$def2;\n return function createPopper(reference, popper, options) {\n if (options === void 0) {\n options = defaultOptions;\n }\n\n var state = {\n placement: 'bottom',\n orderedModifiers: [],\n options: Object.assign({}, DEFAULT_OPTIONS, defaultOptions),\n modifiersData: {},\n elements: {\n reference: reference,\n popper: popper\n },\n attributes: {},\n styles: {}\n };\n var effectCleanupFns = [];\n var isDestroyed = false;\n var instance = {\n state: state,\n setOptions: function setOptions(setOptionsAction) {\n var options = typeof setOptionsAction === 'function' ? setOptionsAction(state.options) : setOptionsAction;\n cleanupModifierEffects();\n state.options = Object.assign({}, defaultOptions, state.options, options);\n state.scrollParents = {\n reference: isElement(reference) ? listScrollParents(reference) : reference.contextElement ? listScrollParents(reference.contextElement) : [],\n popper: listScrollParents(popper)\n }; // Orders the modifiers based on their dependencies and `phase`\n // properties\n\n var orderedModifiers = orderModifiers(mergeByName([].concat(defaultModifiers, state.options.modifiers))); // Strip out disabled modifiers\n\n state.orderedModifiers = orderedModifiers.filter(function (m) {\n return m.enabled;\n });\n runModifierEffects();\n return instance.update();\n },\n // Sync update – it will always be executed, even if not necessary. This\n // is useful for low frequency updates where sync behavior simplifies the\n // logic.\n // For high frequency updates (e.g. `resize` and `scroll` events), always\n // prefer the async Popper#update method\n forceUpdate: function forceUpdate() {\n if (isDestroyed) {\n return;\n }\n\n var _state$elements = state.elements,\n reference = _state$elements.reference,\n popper = _state$elements.popper; // Don't proceed if `reference` or `popper` are not valid elements\n // anymore\n\n if (!areValidElements(reference, popper)) {\n return;\n } // Store the reference and popper rects to be read by modifiers\n\n\n state.rects = {\n reference: getCompositeRect(reference, getOffsetParent(popper), state.options.strategy === 'fixed'),\n popper: getLayoutRect(popper)\n }; // Modifiers have the ability to reset the current update cycle. The\n // most common use case for this is the `flip` modifier changing the\n // placement, which then needs to re-run all the modifiers, because the\n // logic was previously ran for the previous placement and is therefore\n // stale/incorrect\n\n state.reset = false;\n state.placement = state.options.placement; // On each update cycle, the `modifiersData` property for each modifier\n // is filled with the initial data specified by the modifier. This means\n // it doesn't persist and is fresh on each update.\n // To ensure persistent data, use `${name}#persistent`\n\n state.orderedModifiers.forEach(function (modifier) {\n return state.modifiersData[modifier.name] = Object.assign({}, modifier.data);\n });\n\n for (var index = 0; index < state.orderedModifiers.length; index++) {\n if (state.reset === true) {\n state.reset = false;\n index = -1;\n continue;\n }\n\n var _state$orderedModifie = state.orderedModifiers[index],\n fn = _state$orderedModifie.fn,\n _state$orderedModifie2 = _state$orderedModifie.options,\n _options = _state$orderedModifie2 === void 0 ? {} : _state$orderedModifie2,\n name = _state$orderedModifie.name;\n\n if (typeof fn === 'function') {\n state = fn({\n state: state,\n options: _options,\n name: name,\n instance: instance\n }) || state;\n }\n }\n },\n // Async and optimistically optimized update – it will not be executed if\n // not necessary (debounced to run at most once-per-tick)\n update: debounce(function () {\n return new Promise(function (resolve) {\n instance.forceUpdate();\n resolve(state);\n });\n }),\n destroy: function destroy() {\n cleanupModifierEffects();\n isDestroyed = true;\n }\n };\n\n if (!areValidElements(reference, popper)) {\n return instance;\n }\n\n instance.setOptions(options).then(function (state) {\n if (!isDestroyed && options.onFirstUpdate) {\n options.onFirstUpdate(state);\n }\n }); // Modifiers have the ability to execute arbitrary code before the first\n // update cycle runs. They will be executed in the same order as the update\n // cycle. This is useful when a modifier adds some persistent data that\n // other modifiers need to use, but the modifier is run after the dependent\n // one.\n\n function runModifierEffects() {\n state.orderedModifiers.forEach(function (_ref) {\n var name = _ref.name,\n _ref$options = _ref.options,\n options = _ref$options === void 0 ? {} : _ref$options,\n effect = _ref.effect;\n\n if (typeof effect === 'function') {\n var cleanupFn = effect({\n state: state,\n name: name,\n instance: instance,\n options: options\n });\n\n var noopFn = function noopFn() {};\n\n effectCleanupFns.push(cleanupFn || noopFn);\n }\n });\n }\n\n function cleanupModifierEffects() {\n effectCleanupFns.forEach(function (fn) {\n return fn();\n });\n effectCleanupFns = [];\n }\n\n return instance;\n };\n}\nexport var createPopper = /*#__PURE__*/popperGenerator(); // eslint-disable-next-line import/no-unused-modules\n\nexport { detectOverflow };","export default function debounce(fn) {\n var pending;\n return function () {\n if (!pending) {\n pending = new Promise(function (resolve) {\n Promise.resolve().then(function () {\n pending = undefined;\n resolve(fn());\n });\n });\n }\n\n return pending;\n };\n}","export default function mergeByName(modifiers) {\n var merged = modifiers.reduce(function (merged, current) {\n var existing = merged[current.name];\n merged[current.name] = existing ? Object.assign({}, existing, current, {\n options: Object.assign({}, existing.options, current.options),\n data: Object.assign({}, existing.data, current.data)\n }) : current;\n return merged;\n }, {}); // IE11 does not support Object.values\n\n return Object.keys(merged).map(function (key) {\n return merged[key];\n });\n}","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nimport offset from \"./modifiers/offset.js\";\nimport flip from \"./modifiers/flip.js\";\nimport preventOverflow from \"./modifiers/preventOverflow.js\";\nimport arrow from \"./modifiers/arrow.js\";\nimport hide from \"./modifiers/hide.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles, offset, flip, preventOverflow, arrow, hide];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow }; // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper as createPopperLite } from \"./popper-lite.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport * from \"./modifiers/index.js\";","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow };","/*!\n * Bootstrap v5.3.3 (https://getbootstrap.com/)\n * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n */\nimport * as Popper from '@popperjs/core';\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/data.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n/**\n * Constants\n */\n\nconst elementMap = new Map();\nconst Data = {\n set(element, key, instance) {\n if (!elementMap.has(element)) {\n elementMap.set(element, new Map());\n }\n const instanceMap = elementMap.get(element);\n\n // make it clear we only want one instance per element\n // can be removed later when multiple key/instances are fine to be used\n if (!instanceMap.has(key) && instanceMap.size !== 0) {\n // eslint-disable-next-line no-console\n console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(instanceMap.keys())[0]}.`);\n return;\n }\n instanceMap.set(key, instance);\n },\n get(element, key) {\n if (elementMap.has(element)) {\n return elementMap.get(element).get(key) || null;\n }\n return null;\n },\n remove(element, key) {\n if (!elementMap.has(element)) {\n return;\n }\n const instanceMap = elementMap.get(element);\n instanceMap.delete(key);\n\n // free up element references if there are no instances left for an element\n if (instanceMap.size === 0) {\n elementMap.delete(element);\n }\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/index.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst MAX_UID = 1000000;\nconst MILLISECONDS_MULTIPLIER = 1000;\nconst TRANSITION_END = 'transitionend';\n\n/**\n * Properly escape IDs selectors to handle weird IDs\n * @param {string} selector\n * @returns {string}\n */\nconst parseSelector = selector => {\n if (selector && window.CSS && window.CSS.escape) {\n // document.querySelector needs escaping to handle IDs (html5+) containing for instance /\n selector = selector.replace(/#([^\\s\"#']+)/g, (match, id) => `#${CSS.escape(id)}`);\n }\n return selector;\n};\n\n// Shout-out Angus Croll (https://goo.gl/pxwQGp)\nconst toType = object => {\n if (object === null || object === undefined) {\n return `${object}`;\n }\n return Object.prototype.toString.call(object).match(/\\s([a-z]+)/i)[1].toLowerCase();\n};\n\n/**\n * Public Util API\n */\n\nconst getUID = prefix => {\n do {\n prefix += Math.floor(Math.random() * MAX_UID);\n } while (document.getElementById(prefix));\n return prefix;\n};\nconst getTransitionDurationFromElement = element => {\n if (!element) {\n return 0;\n }\n\n // Get transition-duration of the element\n let {\n transitionDuration,\n transitionDelay\n } = window.getComputedStyle(element);\n const floatTransitionDuration = Number.parseFloat(transitionDuration);\n const floatTransitionDelay = Number.parseFloat(transitionDelay);\n\n // Return 0 if element or transition duration is not found\n if (!floatTransitionDuration && !floatTransitionDelay) {\n return 0;\n }\n\n // If multiple durations are defined, take the first\n transitionDuration = transitionDuration.split(',')[0];\n transitionDelay = transitionDelay.split(',')[0];\n return (Number.parseFloat(transitionDuration) + Number.parseFloat(transitionDelay)) * MILLISECONDS_MULTIPLIER;\n};\nconst triggerTransitionEnd = element => {\n element.dispatchEvent(new Event(TRANSITION_END));\n};\nconst isElement = object => {\n if (!object || typeof object !== 'object') {\n return false;\n }\n if (typeof object.jquery !== 'undefined') {\n object = object[0];\n }\n return typeof object.nodeType !== 'undefined';\n};\nconst getElement = object => {\n // it's a jQuery object or a node element\n if (isElement(object)) {\n return object.jquery ? object[0] : object;\n }\n if (typeof object === 'string' && object.length > 0) {\n return document.querySelector(parseSelector(object));\n }\n return null;\n};\nconst isVisible = element => {\n if (!isElement(element) || element.getClientRects().length === 0) {\n return false;\n }\n const elementIsVisible = getComputedStyle(element).getPropertyValue('visibility') === 'visible';\n // Handle `details` element as its content may falsie appear visible when it is closed\n const closedDetails = element.closest('details:not([open])');\n if (!closedDetails) {\n return elementIsVisible;\n }\n if (closedDetails !== element) {\n const summary = element.closest('summary');\n if (summary && summary.parentNode !== closedDetails) {\n return false;\n }\n if (summary === null) {\n return false;\n }\n }\n return elementIsVisible;\n};\nconst isDisabled = element => {\n if (!element || element.nodeType !== Node.ELEMENT_NODE) {\n return true;\n }\n if (element.classList.contains('disabled')) {\n return true;\n }\n if (typeof element.disabled !== 'undefined') {\n return element.disabled;\n }\n return element.hasAttribute('disabled') && element.getAttribute('disabled') !== 'false';\n};\nconst findShadowRoot = element => {\n if (!document.documentElement.attachShadow) {\n return null;\n }\n\n // Can find the shadow root otherwise it'll return the document\n if (typeof element.getRootNode === 'function') {\n const root = element.getRootNode();\n return root instanceof ShadowRoot ? root : null;\n }\n if (element instanceof ShadowRoot) {\n return element;\n }\n\n // when we don't find a shadow root\n if (!element.parentNode) {\n return null;\n }\n return findShadowRoot(element.parentNode);\n};\nconst noop = () => {};\n\n/**\n * Trick to restart an element's animation\n *\n * @param {HTMLElement} element\n * @return void\n *\n * @see https://www.charistheo.io/blog/2021/02/restart-a-css-animation-with-javascript/#restarting-a-css-animation\n */\nconst reflow = element => {\n element.offsetHeight; // eslint-disable-line no-unused-expressions\n};\nconst getjQuery = () => {\n if (window.jQuery && !document.body.hasAttribute('data-bs-no-jquery')) {\n return window.jQuery;\n }\n return null;\n};\nconst DOMContentLoadedCallbacks = [];\nconst onDOMContentLoaded = callback => {\n if (document.readyState === 'loading') {\n // add listener on the first call when the document is in loading state\n if (!DOMContentLoadedCallbacks.length) {\n document.addEventListener('DOMContentLoaded', () => {\n for (const callback of DOMContentLoadedCallbacks) {\n callback();\n }\n });\n }\n DOMContentLoadedCallbacks.push(callback);\n } else {\n callback();\n }\n};\nconst isRTL = () => document.documentElement.dir === 'rtl';\nconst defineJQueryPlugin = plugin => {\n onDOMContentLoaded(() => {\n const $ = getjQuery();\n /* istanbul ignore if */\n if ($) {\n const name = plugin.NAME;\n const JQUERY_NO_CONFLICT = $.fn[name];\n $.fn[name] = plugin.jQueryInterface;\n $.fn[name].Constructor = plugin;\n $.fn[name].noConflict = () => {\n $.fn[name] = JQUERY_NO_CONFLICT;\n return plugin.jQueryInterface;\n };\n }\n });\n};\nconst execute = (possibleCallback, args = [], defaultValue = possibleCallback) => {\n return typeof possibleCallback === 'function' ? possibleCallback(...args) : defaultValue;\n};\nconst executeAfterTransition = (callback, transitionElement, waitForTransition = true) => {\n if (!waitForTransition) {\n execute(callback);\n return;\n }\n const durationPadding = 5;\n const emulatedDuration = getTransitionDurationFromElement(transitionElement) + durationPadding;\n let called = false;\n const handler = ({\n target\n }) => {\n if (target !== transitionElement) {\n return;\n }\n called = true;\n transitionElement.removeEventListener(TRANSITION_END, handler);\n execute(callback);\n };\n transitionElement.addEventListener(TRANSITION_END, handler);\n setTimeout(() => {\n if (!called) {\n triggerTransitionEnd(transitionElement);\n }\n }, emulatedDuration);\n};\n\n/**\n * Return the previous/next element of a list.\n *\n * @param {array} list The list of elements\n * @param activeElement The active element\n * @param shouldGetNext Choose to get next or previous element\n * @param isCycleAllowed\n * @return {Element|elem} The proper element\n */\nconst getNextActiveElement = (list, activeElement, shouldGetNext, isCycleAllowed) => {\n const listLength = list.length;\n let index = list.indexOf(activeElement);\n\n // if the element does not exist in the list return an element\n // depending on the direction and if cycle is allowed\n if (index === -1) {\n return !shouldGetNext && isCycleAllowed ? list[listLength - 1] : list[0];\n }\n index += shouldGetNext ? 1 : -1;\n if (isCycleAllowed) {\n index = (index + listLength) % listLength;\n }\n return list[Math.max(0, Math.min(index, listLength - 1))];\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/event-handler.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst namespaceRegex = /[^.]*(?=\\..*)\\.|.*/;\nconst stripNameRegex = /\\..*/;\nconst stripUidRegex = /::\\d+$/;\nconst eventRegistry = {}; // Events storage\nlet uidEvent = 1;\nconst customEvents = {\n mouseenter: 'mouseover',\n mouseleave: 'mouseout'\n};\nconst nativeEvents = new Set(['click', 'dblclick', 'mouseup', 'mousedown', 'contextmenu', 'mousewheel', 'DOMMouseScroll', 'mouseover', 'mouseout', 'mousemove', 'selectstart', 'selectend', 'keydown', 'keypress', 'keyup', 'orientationchange', 'touchstart', 'touchmove', 'touchend', 'touchcancel', 'pointerdown', 'pointermove', 'pointerup', 'pointerleave', 'pointercancel', 'gesturestart', 'gesturechange', 'gestureend', 'focus', 'blur', 'change', 'reset', 'select', 'submit', 'focusin', 'focusout', 'load', 'unload', 'beforeunload', 'resize', 'move', 'DOMContentLoaded', 'readystatechange', 'error', 'abort', 'scroll']);\n\n/**\n * Private methods\n */\n\nfunction makeEventUid(element, uid) {\n return uid && `${uid}::${uidEvent++}` || element.uidEvent || uidEvent++;\n}\nfunction getElementEvents(element) {\n const uid = makeEventUid(element);\n element.uidEvent = uid;\n eventRegistry[uid] = eventRegistry[uid] || {};\n return eventRegistry[uid];\n}\nfunction bootstrapHandler(element, fn) {\n return function handler(event) {\n hydrateObj(event, {\n delegateTarget: element\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, fn);\n }\n return fn.apply(element, [event]);\n };\n}\nfunction bootstrapDelegationHandler(element, selector, fn) {\n return function handler(event) {\n const domElements = element.querySelectorAll(selector);\n for (let {\n target\n } = event; target && target !== this; target = target.parentNode) {\n for (const domElement of domElements) {\n if (domElement !== target) {\n continue;\n }\n hydrateObj(event, {\n delegateTarget: target\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, selector, fn);\n }\n return fn.apply(target, [event]);\n }\n }\n };\n}\nfunction findHandler(events, callable, delegationSelector = null) {\n return Object.values(events).find(event => event.callable === callable && event.delegationSelector === delegationSelector);\n}\nfunction normalizeParameters(originalTypeEvent, handler, delegationFunction) {\n const isDelegated = typeof handler === 'string';\n // TODO: tooltip passes `false` instead of selector, so we need to check\n const callable = isDelegated ? delegationFunction : handler || delegationFunction;\n let typeEvent = getTypeEvent(originalTypeEvent);\n if (!nativeEvents.has(typeEvent)) {\n typeEvent = originalTypeEvent;\n }\n return [isDelegated, callable, typeEvent];\n}\nfunction addHandler(element, originalTypeEvent, handler, delegationFunction, oneOff) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n let [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n\n // in case of mouseenter or mouseleave wrap the handler within a function that checks for its DOM position\n // this prevents the handler from being dispatched the same way as mouseover or mouseout does\n if (originalTypeEvent in customEvents) {\n const wrapFunction = fn => {\n return function (event) {\n if (!event.relatedTarget || event.relatedTarget !== event.delegateTarget && !event.delegateTarget.contains(event.relatedTarget)) {\n return fn.call(this, event);\n }\n };\n };\n callable = wrapFunction(callable);\n }\n const events = getElementEvents(element);\n const handlers = events[typeEvent] || (events[typeEvent] = {});\n const previousFunction = findHandler(handlers, callable, isDelegated ? handler : null);\n if (previousFunction) {\n previousFunction.oneOff = previousFunction.oneOff && oneOff;\n return;\n }\n const uid = makeEventUid(callable, originalTypeEvent.replace(namespaceRegex, ''));\n const fn = isDelegated ? bootstrapDelegationHandler(element, handler, callable) : bootstrapHandler(element, callable);\n fn.delegationSelector = isDelegated ? handler : null;\n fn.callable = callable;\n fn.oneOff = oneOff;\n fn.uidEvent = uid;\n handlers[uid] = fn;\n element.addEventListener(typeEvent, fn, isDelegated);\n}\nfunction removeHandler(element, events, typeEvent, handler, delegationSelector) {\n const fn = findHandler(events[typeEvent], handler, delegationSelector);\n if (!fn) {\n return;\n }\n element.removeEventListener(typeEvent, fn, Boolean(delegationSelector));\n delete events[typeEvent][fn.uidEvent];\n}\nfunction removeNamespacedHandlers(element, events, typeEvent, namespace) {\n const storeElementEvent = events[typeEvent] || {};\n for (const [handlerKey, event] of Object.entries(storeElementEvent)) {\n if (handlerKey.includes(namespace)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n}\nfunction getTypeEvent(event) {\n // allow to get the native events from namespaced events ('click.bs.button' --> 'click')\n event = event.replace(stripNameRegex, '');\n return customEvents[event] || event;\n}\nconst EventHandler = {\n on(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, false);\n },\n one(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, true);\n },\n off(element, originalTypeEvent, handler, delegationFunction) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n const [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n const inNamespace = typeEvent !== originalTypeEvent;\n const events = getElementEvents(element);\n const storeElementEvent = events[typeEvent] || {};\n const isNamespace = originalTypeEvent.startsWith('.');\n if (typeof callable !== 'undefined') {\n // Simplest case: handler is passed, remove that listener ONLY.\n if (!Object.keys(storeElementEvent).length) {\n return;\n }\n removeHandler(element, events, typeEvent, callable, isDelegated ? handler : null);\n return;\n }\n if (isNamespace) {\n for (const elementEvent of Object.keys(events)) {\n removeNamespacedHandlers(element, events, elementEvent, originalTypeEvent.slice(1));\n }\n }\n for (const [keyHandlers, event] of Object.entries(storeElementEvent)) {\n const handlerKey = keyHandlers.replace(stripUidRegex, '');\n if (!inNamespace || originalTypeEvent.includes(handlerKey)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n },\n trigger(element, event, args) {\n if (typeof event !== 'string' || !element) {\n return null;\n }\n const $ = getjQuery();\n const typeEvent = getTypeEvent(event);\n const inNamespace = event !== typeEvent;\n let jQueryEvent = null;\n let bubbles = true;\n let nativeDispatch = true;\n let defaultPrevented = false;\n if (inNamespace && $) {\n jQueryEvent = $.Event(event, args);\n $(element).trigger(jQueryEvent);\n bubbles = !jQueryEvent.isPropagationStopped();\n nativeDispatch = !jQueryEvent.isImmediatePropagationStopped();\n defaultPrevented = jQueryEvent.isDefaultPrevented();\n }\n const evt = hydrateObj(new Event(event, {\n bubbles,\n cancelable: true\n }), args);\n if (defaultPrevented) {\n evt.preventDefault();\n }\n if (nativeDispatch) {\n element.dispatchEvent(evt);\n }\n if (evt.defaultPrevented && jQueryEvent) {\n jQueryEvent.preventDefault();\n }\n return evt;\n }\n};\nfunction hydrateObj(obj, meta = {}) {\n for (const [key, value] of Object.entries(meta)) {\n try {\n obj[key] = value;\n } catch (_unused) {\n Object.defineProperty(obj, key, {\n configurable: true,\n get() {\n return value;\n }\n });\n }\n }\n return obj;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/manipulator.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nfunction normalizeData(value) {\n if (value === 'true') {\n return true;\n }\n if (value === 'false') {\n return false;\n }\n if (value === Number(value).toString()) {\n return Number(value);\n }\n if (value === '' || value === 'null') {\n return null;\n }\n if (typeof value !== 'string') {\n return value;\n }\n try {\n return JSON.parse(decodeURIComponent(value));\n } catch (_unused) {\n return value;\n }\n}\nfunction normalizeDataKey(key) {\n return key.replace(/[A-Z]/g, chr => `-${chr.toLowerCase()}`);\n}\nconst Manipulator = {\n setDataAttribute(element, key, value) {\n element.setAttribute(`data-bs-${normalizeDataKey(key)}`, value);\n },\n removeDataAttribute(element, key) {\n element.removeAttribute(`data-bs-${normalizeDataKey(key)}`);\n },\n getDataAttributes(element) {\n if (!element) {\n return {};\n }\n const attributes = {};\n const bsKeys = Object.keys(element.dataset).filter(key => key.startsWith('bs') && !key.startsWith('bsConfig'));\n for (const key of bsKeys) {\n let pureKey = key.replace(/^bs/, '');\n pureKey = pureKey.charAt(0).toLowerCase() + pureKey.slice(1, pureKey.length);\n attributes[pureKey] = normalizeData(element.dataset[key]);\n }\n return attributes;\n },\n getDataAttribute(element, key) {\n return normalizeData(element.getAttribute(`data-bs-${normalizeDataKey(key)}`));\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/config.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Class definition\n */\n\nclass Config {\n // Getters\n static get Default() {\n return {};\n }\n static get DefaultType() {\n return {};\n }\n static get NAME() {\n throw new Error('You have to implement the static method \"NAME\", for each component!');\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n return config;\n }\n _mergeConfigObj(config, element) {\n const jsonConfig = isElement(element) ? Manipulator.getDataAttribute(element, 'config') : {}; // try to parse\n\n return {\n ...this.constructor.Default,\n ...(typeof jsonConfig === 'object' ? jsonConfig : {}),\n ...(isElement(element) ? Manipulator.getDataAttributes(element) : {}),\n ...(typeof config === 'object' ? config : {})\n };\n }\n _typeCheckConfig(config, configTypes = this.constructor.DefaultType) {\n for (const [property, expectedTypes] of Object.entries(configTypes)) {\n const value = config[property];\n const valueType = isElement(value) ? 'element' : toType(value);\n if (!new RegExp(expectedTypes).test(valueType)) {\n throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option \"${property}\" provided type \"${valueType}\" but expected type \"${expectedTypes}\".`);\n }\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap base-component.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst VERSION = '5.3.3';\n\n/**\n * Class definition\n */\n\nclass BaseComponent extends Config {\n constructor(element, config) {\n super();\n element = getElement(element);\n if (!element) {\n return;\n }\n this._element = element;\n this._config = this._getConfig(config);\n Data.set(this._element, this.constructor.DATA_KEY, this);\n }\n\n // Public\n dispose() {\n Data.remove(this._element, this.constructor.DATA_KEY);\n EventHandler.off(this._element, this.constructor.EVENT_KEY);\n for (const propertyName of Object.getOwnPropertyNames(this)) {\n this[propertyName] = null;\n }\n }\n _queueCallback(callback, element, isAnimated = true) {\n executeAfterTransition(callback, element, isAnimated);\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config, this._element);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n\n // Static\n static getInstance(element) {\n return Data.get(getElement(element), this.DATA_KEY);\n }\n static getOrCreateInstance(element, config = {}) {\n return this.getInstance(element) || new this(element, typeof config === 'object' ? config : null);\n }\n static get VERSION() {\n return VERSION;\n }\n static get DATA_KEY() {\n return `bs.${this.NAME}`;\n }\n static get EVENT_KEY() {\n return `.${this.DATA_KEY}`;\n }\n static eventName(name) {\n return `${name}${this.EVENT_KEY}`;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/selector-engine.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst getSelector = element => {\n let selector = element.getAttribute('data-bs-target');\n if (!selector || selector === '#') {\n let hrefAttribute = element.getAttribute('href');\n\n // The only valid content that could double as a selector are IDs or classes,\n // so everything starting with `#` or `.`. If a \"real\" URL is used as the selector,\n // `document.querySelector` will rightfully complain it is invalid.\n // See https://github.com/twbs/bootstrap/issues/32273\n if (!hrefAttribute || !hrefAttribute.includes('#') && !hrefAttribute.startsWith('.')) {\n return null;\n }\n\n // Just in case some CMS puts out a full URL with the anchor appended\n if (hrefAttribute.includes('#') && !hrefAttribute.startsWith('#')) {\n hrefAttribute = `#${hrefAttribute.split('#')[1]}`;\n }\n selector = hrefAttribute && hrefAttribute !== '#' ? hrefAttribute.trim() : null;\n }\n return selector ? selector.split(',').map(sel => parseSelector(sel)).join(',') : null;\n};\nconst SelectorEngine = {\n find(selector, element = document.documentElement) {\n return [].concat(...Element.prototype.querySelectorAll.call(element, selector));\n },\n findOne(selector, element = document.documentElement) {\n return Element.prototype.querySelector.call(element, selector);\n },\n children(element, selector) {\n return [].concat(...element.children).filter(child => child.matches(selector));\n },\n parents(element, selector) {\n const parents = [];\n let ancestor = element.parentNode.closest(selector);\n while (ancestor) {\n parents.push(ancestor);\n ancestor = ancestor.parentNode.closest(selector);\n }\n return parents;\n },\n prev(element, selector) {\n let previous = element.previousElementSibling;\n while (previous) {\n if (previous.matches(selector)) {\n return [previous];\n }\n previous = previous.previousElementSibling;\n }\n return [];\n },\n // TODO: this is now unused; remove later along with prev()\n next(element, selector) {\n let next = element.nextElementSibling;\n while (next) {\n if (next.matches(selector)) {\n return [next];\n }\n next = next.nextElementSibling;\n }\n return [];\n },\n focusableChildren(element) {\n const focusables = ['a', 'button', 'input', 'textarea', 'select', 'details', '[tabindex]', '[contenteditable=\"true\"]'].map(selector => `${selector}:not([tabindex^=\"-\"])`).join(',');\n return this.find(focusables, element).filter(el => !isDisabled(el) && isVisible(el));\n },\n getSelectorFromElement(element) {\n const selector = getSelector(element);\n if (selector) {\n return SelectorEngine.findOne(selector) ? selector : null;\n }\n return null;\n },\n getElementFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.findOne(selector) : null;\n },\n getMultipleElementsFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.find(selector) : [];\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/component-functions.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst enableDismissTrigger = (component, method = 'hide') => {\n const clickEvent = `click.dismiss${component.EVENT_KEY}`;\n const name = component.NAME;\n EventHandler.on(document, clickEvent, `[data-bs-dismiss=\"${name}\"]`, function (event) {\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n const target = SelectorEngine.getElementFromSelector(this) || this.closest(`.${name}`);\n const instance = component.getOrCreateInstance(target);\n\n // Method argument is left, for Alert and only, as it doesn't implement the 'hide' method\n instance[method]();\n });\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap alert.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$f = 'alert';\nconst DATA_KEY$a = 'bs.alert';\nconst EVENT_KEY$b = `.${DATA_KEY$a}`;\nconst EVENT_CLOSE = `close${EVENT_KEY$b}`;\nconst EVENT_CLOSED = `closed${EVENT_KEY$b}`;\nconst CLASS_NAME_FADE$5 = 'fade';\nconst CLASS_NAME_SHOW$8 = 'show';\n\n/**\n * Class definition\n */\n\nclass Alert extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$f;\n }\n\n // Public\n close() {\n const closeEvent = EventHandler.trigger(this._element, EVENT_CLOSE);\n if (closeEvent.defaultPrevented) {\n return;\n }\n this._element.classList.remove(CLASS_NAME_SHOW$8);\n const isAnimated = this._element.classList.contains(CLASS_NAME_FADE$5);\n this._queueCallback(() => this._destroyElement(), this._element, isAnimated);\n }\n\n // Private\n _destroyElement() {\n this._element.remove();\n EventHandler.trigger(this._element, EVENT_CLOSED);\n this.dispose();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Alert.getOrCreateInstance(this);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nenableDismissTrigger(Alert, 'close');\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Alert);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap button.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$e = 'button';\nconst DATA_KEY$9 = 'bs.button';\nconst EVENT_KEY$a = `.${DATA_KEY$9}`;\nconst DATA_API_KEY$6 = '.data-api';\nconst CLASS_NAME_ACTIVE$3 = 'active';\nconst SELECTOR_DATA_TOGGLE$5 = '[data-bs-toggle=\"button\"]';\nconst EVENT_CLICK_DATA_API$6 = `click${EVENT_KEY$a}${DATA_API_KEY$6}`;\n\n/**\n * Class definition\n */\n\nclass Button extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$e;\n }\n\n // Public\n toggle() {\n // Toggle class and sync the `aria-pressed` attribute with the return value of the `.toggle()` method\n this._element.setAttribute('aria-pressed', this._element.classList.toggle(CLASS_NAME_ACTIVE$3));\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Button.getOrCreateInstance(this);\n if (config === 'toggle') {\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$6, SELECTOR_DATA_TOGGLE$5, event => {\n event.preventDefault();\n const button = event.target.closest(SELECTOR_DATA_TOGGLE$5);\n const data = Button.getOrCreateInstance(button);\n data.toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Button);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/swipe.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$d = 'swipe';\nconst EVENT_KEY$9 = '.bs.swipe';\nconst EVENT_TOUCHSTART = `touchstart${EVENT_KEY$9}`;\nconst EVENT_TOUCHMOVE = `touchmove${EVENT_KEY$9}`;\nconst EVENT_TOUCHEND = `touchend${EVENT_KEY$9}`;\nconst EVENT_POINTERDOWN = `pointerdown${EVENT_KEY$9}`;\nconst EVENT_POINTERUP = `pointerup${EVENT_KEY$9}`;\nconst POINTER_TYPE_TOUCH = 'touch';\nconst POINTER_TYPE_PEN = 'pen';\nconst CLASS_NAME_POINTER_EVENT = 'pointer-event';\nconst SWIPE_THRESHOLD = 40;\nconst Default$c = {\n endCallback: null,\n leftCallback: null,\n rightCallback: null\n};\nconst DefaultType$c = {\n endCallback: '(function|null)',\n leftCallback: '(function|null)',\n rightCallback: '(function|null)'\n};\n\n/**\n * Class definition\n */\n\nclass Swipe extends Config {\n constructor(element, config) {\n super();\n this._element = element;\n if (!element || !Swipe.isSupported()) {\n return;\n }\n this._config = this._getConfig(config);\n this._deltaX = 0;\n this._supportPointerEvents = Boolean(window.PointerEvent);\n this._initEvents();\n }\n\n // Getters\n static get Default() {\n return Default$c;\n }\n static get DefaultType() {\n return DefaultType$c;\n }\n static get NAME() {\n return NAME$d;\n }\n\n // Public\n dispose() {\n EventHandler.off(this._element, EVENT_KEY$9);\n }\n\n // Private\n _start(event) {\n if (!this._supportPointerEvents) {\n this._deltaX = event.touches[0].clientX;\n return;\n }\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX;\n }\n }\n _end(event) {\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX - this._deltaX;\n }\n this._handleSwipe();\n execute(this._config.endCallback);\n }\n _move(event) {\n this._deltaX = event.touches && event.touches.length > 1 ? 0 : event.touches[0].clientX - this._deltaX;\n }\n _handleSwipe() {\n const absDeltaX = Math.abs(this._deltaX);\n if (absDeltaX <= SWIPE_THRESHOLD) {\n return;\n }\n const direction = absDeltaX / this._deltaX;\n this._deltaX = 0;\n if (!direction) {\n return;\n }\n execute(direction > 0 ? this._config.rightCallback : this._config.leftCallback);\n }\n _initEvents() {\n if (this._supportPointerEvents) {\n EventHandler.on(this._element, EVENT_POINTERDOWN, event => this._start(event));\n EventHandler.on(this._element, EVENT_POINTERUP, event => this._end(event));\n this._element.classList.add(CLASS_NAME_POINTER_EVENT);\n } else {\n EventHandler.on(this._element, EVENT_TOUCHSTART, event => this._start(event));\n EventHandler.on(this._element, EVENT_TOUCHMOVE, event => this._move(event));\n EventHandler.on(this._element, EVENT_TOUCHEND, event => this._end(event));\n }\n }\n _eventIsPointerPenTouch(event) {\n return this._supportPointerEvents && (event.pointerType === POINTER_TYPE_PEN || event.pointerType === POINTER_TYPE_TOUCH);\n }\n\n // Static\n static isSupported() {\n return 'ontouchstart' in document.documentElement || navigator.maxTouchPoints > 0;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap carousel.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$c = 'carousel';\nconst DATA_KEY$8 = 'bs.carousel';\nconst EVENT_KEY$8 = `.${DATA_KEY$8}`;\nconst DATA_API_KEY$5 = '.data-api';\nconst ARROW_LEFT_KEY$1 = 'ArrowLeft';\nconst ARROW_RIGHT_KEY$1 = 'ArrowRight';\nconst TOUCHEVENT_COMPAT_WAIT = 500; // Time for mouse compat events to fire after touch\n\nconst ORDER_NEXT = 'next';\nconst ORDER_PREV = 'prev';\nconst DIRECTION_LEFT = 'left';\nconst DIRECTION_RIGHT = 'right';\nconst EVENT_SLIDE = `slide${EVENT_KEY$8}`;\nconst EVENT_SLID = `slid${EVENT_KEY$8}`;\nconst EVENT_KEYDOWN$1 = `keydown${EVENT_KEY$8}`;\nconst EVENT_MOUSEENTER$1 = `mouseenter${EVENT_KEY$8}`;\nconst EVENT_MOUSELEAVE$1 = `mouseleave${EVENT_KEY$8}`;\nconst EVENT_DRAG_START = `dragstart${EVENT_KEY$8}`;\nconst EVENT_LOAD_DATA_API$3 = `load${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst EVENT_CLICK_DATA_API$5 = `click${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst CLASS_NAME_CAROUSEL = 'carousel';\nconst CLASS_NAME_ACTIVE$2 = 'active';\nconst CLASS_NAME_SLIDE = 'slide';\nconst CLASS_NAME_END = 'carousel-item-end';\nconst CLASS_NAME_START = 'carousel-item-start';\nconst CLASS_NAME_NEXT = 'carousel-item-next';\nconst CLASS_NAME_PREV = 'carousel-item-prev';\nconst SELECTOR_ACTIVE = '.active';\nconst SELECTOR_ITEM = '.carousel-item';\nconst SELECTOR_ACTIVE_ITEM = SELECTOR_ACTIVE + SELECTOR_ITEM;\nconst SELECTOR_ITEM_IMG = '.carousel-item img';\nconst SELECTOR_INDICATORS = '.carousel-indicators';\nconst SELECTOR_DATA_SLIDE = '[data-bs-slide], [data-bs-slide-to]';\nconst SELECTOR_DATA_RIDE = '[data-bs-ride=\"carousel\"]';\nconst KEY_TO_DIRECTION = {\n [ARROW_LEFT_KEY$1]: DIRECTION_RIGHT,\n [ARROW_RIGHT_KEY$1]: DIRECTION_LEFT\n};\nconst Default$b = {\n interval: 5000,\n keyboard: true,\n pause: 'hover',\n ride: false,\n touch: true,\n wrap: true\n};\nconst DefaultType$b = {\n interval: '(number|boolean)',\n // TODO:v6 remove boolean support\n keyboard: 'boolean',\n pause: '(string|boolean)',\n ride: '(boolean|string)',\n touch: 'boolean',\n wrap: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Carousel extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._interval = null;\n this._activeElement = null;\n this._isSliding = false;\n this.touchTimeout = null;\n this._swipeHelper = null;\n this._indicatorsElement = SelectorEngine.findOne(SELECTOR_INDICATORS, this._element);\n this._addEventListeners();\n if (this._config.ride === CLASS_NAME_CAROUSEL) {\n this.cycle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$b;\n }\n static get DefaultType() {\n return DefaultType$b;\n }\n static get NAME() {\n return NAME$c;\n }\n\n // Public\n next() {\n this._slide(ORDER_NEXT);\n }\n nextWhenVisible() {\n // FIXME TODO use `document.visibilityState`\n // Don't call next when the page isn't visible\n // or the carousel or its parent isn't visible\n if (!document.hidden && isVisible(this._element)) {\n this.next();\n }\n }\n prev() {\n this._slide(ORDER_PREV);\n }\n pause() {\n if (this._isSliding) {\n triggerTransitionEnd(this._element);\n }\n this._clearInterval();\n }\n cycle() {\n this._clearInterval();\n this._updateInterval();\n this._interval = setInterval(() => this.nextWhenVisible(), this._config.interval);\n }\n _maybeEnableCycle() {\n if (!this._config.ride) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.cycle());\n return;\n }\n this.cycle();\n }\n to(index) {\n const items = this._getItems();\n if (index > items.length - 1 || index < 0) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.to(index));\n return;\n }\n const activeIndex = this._getItemIndex(this._getActive());\n if (activeIndex === index) {\n return;\n }\n const order = index > activeIndex ? ORDER_NEXT : ORDER_PREV;\n this._slide(order, items[index]);\n }\n dispose() {\n if (this._swipeHelper) {\n this._swipeHelper.dispose();\n }\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n config.defaultInterval = config.interval;\n return config;\n }\n _addEventListeners() {\n if (this._config.keyboard) {\n EventHandler.on(this._element, EVENT_KEYDOWN$1, event => this._keydown(event));\n }\n if (this._config.pause === 'hover') {\n EventHandler.on(this._element, EVENT_MOUSEENTER$1, () => this.pause());\n EventHandler.on(this._element, EVENT_MOUSELEAVE$1, () => this._maybeEnableCycle());\n }\n if (this._config.touch && Swipe.isSupported()) {\n this._addTouchEventListeners();\n }\n }\n _addTouchEventListeners() {\n for (const img of SelectorEngine.find(SELECTOR_ITEM_IMG, this._element)) {\n EventHandler.on(img, EVENT_DRAG_START, event => event.preventDefault());\n }\n const endCallBack = () => {\n if (this._config.pause !== 'hover') {\n return;\n }\n\n // If it's a touch-enabled device, mouseenter/leave are fired as\n // part of the mouse compatibility events on first tap - the carousel\n // would stop cycling until user tapped out of it;\n // here, we listen for touchend, explicitly pause the carousel\n // (as if it's the second time we tap on it, mouseenter compat event\n // is NOT fired) and after a timeout (to allow for mouse compatibility\n // events to fire) we explicitly restart cycling\n\n this.pause();\n if (this.touchTimeout) {\n clearTimeout(this.touchTimeout);\n }\n this.touchTimeout = setTimeout(() => this._maybeEnableCycle(), TOUCHEVENT_COMPAT_WAIT + this._config.interval);\n };\n const swipeConfig = {\n leftCallback: () => this._slide(this._directionToOrder(DIRECTION_LEFT)),\n rightCallback: () => this._slide(this._directionToOrder(DIRECTION_RIGHT)),\n endCallback: endCallBack\n };\n this._swipeHelper = new Swipe(this._element, swipeConfig);\n }\n _keydown(event) {\n if (/input|textarea/i.test(event.target.tagName)) {\n return;\n }\n const direction = KEY_TO_DIRECTION[event.key];\n if (direction) {\n event.preventDefault();\n this._slide(this._directionToOrder(direction));\n }\n }\n _getItemIndex(element) {\n return this._getItems().indexOf(element);\n }\n _setActiveIndicatorElement(index) {\n if (!this._indicatorsElement) {\n return;\n }\n const activeIndicator = SelectorEngine.findOne(SELECTOR_ACTIVE, this._indicatorsElement);\n activeIndicator.classList.remove(CLASS_NAME_ACTIVE$2);\n activeIndicator.removeAttribute('aria-current');\n const newActiveIndicator = SelectorEngine.findOne(`[data-bs-slide-to=\"${index}\"]`, this._indicatorsElement);\n if (newActiveIndicator) {\n newActiveIndicator.classList.add(CLASS_NAME_ACTIVE$2);\n newActiveIndicator.setAttribute('aria-current', 'true');\n }\n }\n _updateInterval() {\n const element = this._activeElement || this._getActive();\n if (!element) {\n return;\n }\n const elementInterval = Number.parseInt(element.getAttribute('data-bs-interval'), 10);\n this._config.interval = elementInterval || this._config.defaultInterval;\n }\n _slide(order, element = null) {\n if (this._isSliding) {\n return;\n }\n const activeElement = this._getActive();\n const isNext = order === ORDER_NEXT;\n const nextElement = element || getNextActiveElement(this._getItems(), activeElement, isNext, this._config.wrap);\n if (nextElement === activeElement) {\n return;\n }\n const nextElementIndex = this._getItemIndex(nextElement);\n const triggerEvent = eventName => {\n return EventHandler.trigger(this._element, eventName, {\n relatedTarget: nextElement,\n direction: this._orderToDirection(order),\n from: this._getItemIndex(activeElement),\n to: nextElementIndex\n });\n };\n const slideEvent = triggerEvent(EVENT_SLIDE);\n if (slideEvent.defaultPrevented) {\n return;\n }\n if (!activeElement || !nextElement) {\n // Some weirdness is happening, so we bail\n // TODO: change tests that use empty divs to avoid this check\n return;\n }\n const isCycling = Boolean(this._interval);\n this.pause();\n this._isSliding = true;\n this._setActiveIndicatorElement(nextElementIndex);\n this._activeElement = nextElement;\n const directionalClassName = isNext ? CLASS_NAME_START : CLASS_NAME_END;\n const orderClassName = isNext ? CLASS_NAME_NEXT : CLASS_NAME_PREV;\n nextElement.classList.add(orderClassName);\n reflow(nextElement);\n activeElement.classList.add(directionalClassName);\n nextElement.classList.add(directionalClassName);\n const completeCallBack = () => {\n nextElement.classList.remove(directionalClassName, orderClassName);\n nextElement.classList.add(CLASS_NAME_ACTIVE$2);\n activeElement.classList.remove(CLASS_NAME_ACTIVE$2, orderClassName, directionalClassName);\n this._isSliding = false;\n triggerEvent(EVENT_SLID);\n };\n this._queueCallback(completeCallBack, activeElement, this._isAnimated());\n if (isCycling) {\n this.cycle();\n }\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_SLIDE);\n }\n _getActive() {\n return SelectorEngine.findOne(SELECTOR_ACTIVE_ITEM, this._element);\n }\n _getItems() {\n return SelectorEngine.find(SELECTOR_ITEM, this._element);\n }\n _clearInterval() {\n if (this._interval) {\n clearInterval(this._interval);\n this._interval = null;\n }\n }\n _directionToOrder(direction) {\n if (isRTL()) {\n return direction === DIRECTION_LEFT ? ORDER_PREV : ORDER_NEXT;\n }\n return direction === DIRECTION_LEFT ? ORDER_NEXT : ORDER_PREV;\n }\n _orderToDirection(order) {\n if (isRTL()) {\n return order === ORDER_PREV ? DIRECTION_LEFT : DIRECTION_RIGHT;\n }\n return order === ORDER_PREV ? DIRECTION_RIGHT : DIRECTION_LEFT;\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Carousel.getOrCreateInstance(this, config);\n if (typeof config === 'number') {\n data.to(config);\n return;\n }\n if (typeof config === 'string') {\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$5, SELECTOR_DATA_SLIDE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (!target || !target.classList.contains(CLASS_NAME_CAROUSEL)) {\n return;\n }\n event.preventDefault();\n const carousel = Carousel.getOrCreateInstance(target);\n const slideIndex = this.getAttribute('data-bs-slide-to');\n if (slideIndex) {\n carousel.to(slideIndex);\n carousel._maybeEnableCycle();\n return;\n }\n if (Manipulator.getDataAttribute(this, 'slide') === 'next') {\n carousel.next();\n carousel._maybeEnableCycle();\n return;\n }\n carousel.prev();\n carousel._maybeEnableCycle();\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$3, () => {\n const carousels = SelectorEngine.find(SELECTOR_DATA_RIDE);\n for (const carousel of carousels) {\n Carousel.getOrCreateInstance(carousel);\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Carousel);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap collapse.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$b = 'collapse';\nconst DATA_KEY$7 = 'bs.collapse';\nconst EVENT_KEY$7 = `.${DATA_KEY$7}`;\nconst DATA_API_KEY$4 = '.data-api';\nconst EVENT_SHOW$6 = `show${EVENT_KEY$7}`;\nconst EVENT_SHOWN$6 = `shown${EVENT_KEY$7}`;\nconst EVENT_HIDE$6 = `hide${EVENT_KEY$7}`;\nconst EVENT_HIDDEN$6 = `hidden${EVENT_KEY$7}`;\nconst EVENT_CLICK_DATA_API$4 = `click${EVENT_KEY$7}${DATA_API_KEY$4}`;\nconst CLASS_NAME_SHOW$7 = 'show';\nconst CLASS_NAME_COLLAPSE = 'collapse';\nconst CLASS_NAME_COLLAPSING = 'collapsing';\nconst CLASS_NAME_COLLAPSED = 'collapsed';\nconst CLASS_NAME_DEEPER_CHILDREN = `:scope .${CLASS_NAME_COLLAPSE} .${CLASS_NAME_COLLAPSE}`;\nconst CLASS_NAME_HORIZONTAL = 'collapse-horizontal';\nconst WIDTH = 'width';\nconst HEIGHT = 'height';\nconst SELECTOR_ACTIVES = '.collapse.show, .collapse.collapsing';\nconst SELECTOR_DATA_TOGGLE$4 = '[data-bs-toggle=\"collapse\"]';\nconst Default$a = {\n parent: null,\n toggle: true\n};\nconst DefaultType$a = {\n parent: '(null|element)',\n toggle: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Collapse extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isTransitioning = false;\n this._triggerArray = [];\n const toggleList = SelectorEngine.find(SELECTOR_DATA_TOGGLE$4);\n for (const elem of toggleList) {\n const selector = SelectorEngine.getSelectorFromElement(elem);\n const filterElement = SelectorEngine.find(selector).filter(foundElement => foundElement === this._element);\n if (selector !== null && filterElement.length) {\n this._triggerArray.push(elem);\n }\n }\n this._initializeChildren();\n if (!this._config.parent) {\n this._addAriaAndCollapsedClass(this._triggerArray, this._isShown());\n }\n if (this._config.toggle) {\n this.toggle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$a;\n }\n static get DefaultType() {\n return DefaultType$a;\n }\n static get NAME() {\n return NAME$b;\n }\n\n // Public\n toggle() {\n if (this._isShown()) {\n this.hide();\n } else {\n this.show();\n }\n }\n show() {\n if (this._isTransitioning || this._isShown()) {\n return;\n }\n let activeChildren = [];\n\n // find active children\n if (this._config.parent) {\n activeChildren = this._getFirstLevelChildren(SELECTOR_ACTIVES).filter(element => element !== this._element).map(element => Collapse.getOrCreateInstance(element, {\n toggle: false\n }));\n }\n if (activeChildren.length && activeChildren[0]._isTransitioning) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_SHOW$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n for (const activeInstance of activeChildren) {\n activeInstance.hide();\n }\n const dimension = this._getDimension();\n this._element.classList.remove(CLASS_NAME_COLLAPSE);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.style[dimension] = 0;\n this._addAriaAndCollapsedClass(this._triggerArray, true);\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n this._element.style[dimension] = '';\n EventHandler.trigger(this._element, EVENT_SHOWN$6);\n };\n const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1);\n const scrollSize = `scroll${capitalizedDimension}`;\n this._queueCallback(complete, this._element, true);\n this._element.style[dimension] = `${this._element[scrollSize]}px`;\n }\n hide() {\n if (this._isTransitioning || !this._isShown()) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_HIDE$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n const dimension = this._getDimension();\n this._element.style[dimension] = `${this._element.getBoundingClientRect()[dimension]}px`;\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.classList.remove(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n for (const trigger of this._triggerArray) {\n const element = SelectorEngine.getElementFromSelector(trigger);\n if (element && !this._isShown(element)) {\n this._addAriaAndCollapsedClass([trigger], false);\n }\n }\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE);\n EventHandler.trigger(this._element, EVENT_HIDDEN$6);\n };\n this._element.style[dimension] = '';\n this._queueCallback(complete, this._element, true);\n }\n _isShown(element = this._element) {\n return element.classList.contains(CLASS_NAME_SHOW$7);\n }\n\n // Private\n _configAfterMerge(config) {\n config.toggle = Boolean(config.toggle); // Coerce string values\n config.parent = getElement(config.parent);\n return config;\n }\n _getDimension() {\n return this._element.classList.contains(CLASS_NAME_HORIZONTAL) ? WIDTH : HEIGHT;\n }\n _initializeChildren() {\n if (!this._config.parent) {\n return;\n }\n const children = this._getFirstLevelChildren(SELECTOR_DATA_TOGGLE$4);\n for (const element of children) {\n const selected = SelectorEngine.getElementFromSelector(element);\n if (selected) {\n this._addAriaAndCollapsedClass([element], this._isShown(selected));\n }\n }\n }\n _getFirstLevelChildren(selector) {\n const children = SelectorEngine.find(CLASS_NAME_DEEPER_CHILDREN, this._config.parent);\n // remove children if greater depth\n return SelectorEngine.find(selector, this._config.parent).filter(element => !children.includes(element));\n }\n _addAriaAndCollapsedClass(triggerArray, isOpen) {\n if (!triggerArray.length) {\n return;\n }\n for (const element of triggerArray) {\n element.classList.toggle(CLASS_NAME_COLLAPSED, !isOpen);\n element.setAttribute('aria-expanded', isOpen);\n }\n }\n\n // Static\n static jQueryInterface(config) {\n const _config = {};\n if (typeof config === 'string' && /show|hide/.test(config)) {\n _config.toggle = false;\n }\n return this.each(function () {\n const data = Collapse.getOrCreateInstance(this, _config);\n if (typeof config === 'string') {\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$4, SELECTOR_DATA_TOGGLE$4, function (event) {\n // preventDefault only for elements (which change the URL) not inside the collapsible element\n if (event.target.tagName === 'A' || event.delegateTarget && event.delegateTarget.tagName === 'A') {\n event.preventDefault();\n }\n for (const element of SelectorEngine.getMultipleElementsFromSelector(this)) {\n Collapse.getOrCreateInstance(element, {\n toggle: false\n }).toggle();\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Collapse);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dropdown.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$a = 'dropdown';\nconst DATA_KEY$6 = 'bs.dropdown';\nconst EVENT_KEY$6 = `.${DATA_KEY$6}`;\nconst DATA_API_KEY$3 = '.data-api';\nconst ESCAPE_KEY$2 = 'Escape';\nconst TAB_KEY$1 = 'Tab';\nconst ARROW_UP_KEY$1 = 'ArrowUp';\nconst ARROW_DOWN_KEY$1 = 'ArrowDown';\nconst RIGHT_MOUSE_BUTTON = 2; // MouseEvent.button value for the secondary button, usually the right button\n\nconst EVENT_HIDE$5 = `hide${EVENT_KEY$6}`;\nconst EVENT_HIDDEN$5 = `hidden${EVENT_KEY$6}`;\nconst EVENT_SHOW$5 = `show${EVENT_KEY$6}`;\nconst EVENT_SHOWN$5 = `shown${EVENT_KEY$6}`;\nconst EVENT_CLICK_DATA_API$3 = `click${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYDOWN_DATA_API = `keydown${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYUP_DATA_API = `keyup${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst CLASS_NAME_SHOW$6 = 'show';\nconst CLASS_NAME_DROPUP = 'dropup';\nconst CLASS_NAME_DROPEND = 'dropend';\nconst CLASS_NAME_DROPSTART = 'dropstart';\nconst CLASS_NAME_DROPUP_CENTER = 'dropup-center';\nconst CLASS_NAME_DROPDOWN_CENTER = 'dropdown-center';\nconst SELECTOR_DATA_TOGGLE$3 = '[data-bs-toggle=\"dropdown\"]:not(.disabled):not(:disabled)';\nconst SELECTOR_DATA_TOGGLE_SHOWN = `${SELECTOR_DATA_TOGGLE$3}.${CLASS_NAME_SHOW$6}`;\nconst SELECTOR_MENU = '.dropdown-menu';\nconst SELECTOR_NAVBAR = '.navbar';\nconst SELECTOR_NAVBAR_NAV = '.navbar-nav';\nconst SELECTOR_VISIBLE_ITEMS = '.dropdown-menu .dropdown-item:not(.disabled):not(:disabled)';\nconst PLACEMENT_TOP = isRTL() ? 'top-end' : 'top-start';\nconst PLACEMENT_TOPEND = isRTL() ? 'top-start' : 'top-end';\nconst PLACEMENT_BOTTOM = isRTL() ? 'bottom-end' : 'bottom-start';\nconst PLACEMENT_BOTTOMEND = isRTL() ? 'bottom-start' : 'bottom-end';\nconst PLACEMENT_RIGHT = isRTL() ? 'left-start' : 'right-start';\nconst PLACEMENT_LEFT = isRTL() ? 'right-start' : 'left-start';\nconst PLACEMENT_TOPCENTER = 'top';\nconst PLACEMENT_BOTTOMCENTER = 'bottom';\nconst Default$9 = {\n autoClose: true,\n boundary: 'clippingParents',\n display: 'dynamic',\n offset: [0, 2],\n popperConfig: null,\n reference: 'toggle'\n};\nconst DefaultType$9 = {\n autoClose: '(boolean|string)',\n boundary: '(string|element)',\n display: 'string',\n offset: '(array|string|function)',\n popperConfig: '(null|object|function)',\n reference: '(string|element|object)'\n};\n\n/**\n * Class definition\n */\n\nclass Dropdown extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._popper = null;\n this._parent = this._element.parentNode; // dropdown wrapper\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n this._menu = SelectorEngine.next(this._element, SELECTOR_MENU)[0] || SelectorEngine.prev(this._element, SELECTOR_MENU)[0] || SelectorEngine.findOne(SELECTOR_MENU, this._parent);\n this._inNavbar = this._detectNavbar();\n }\n\n // Getters\n static get Default() {\n return Default$9;\n }\n static get DefaultType() {\n return DefaultType$9;\n }\n static get NAME() {\n return NAME$a;\n }\n\n // Public\n toggle() {\n return this._isShown() ? this.hide() : this.show();\n }\n show() {\n if (isDisabled(this._element) || this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$5, relatedTarget);\n if (showEvent.defaultPrevented) {\n return;\n }\n this._createPopper();\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement && !this._parent.closest(SELECTOR_NAVBAR_NAV)) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n this._element.focus();\n this._element.setAttribute('aria-expanded', true);\n this._menu.classList.add(CLASS_NAME_SHOW$6);\n this._element.classList.add(CLASS_NAME_SHOW$6);\n EventHandler.trigger(this._element, EVENT_SHOWN$5, relatedTarget);\n }\n hide() {\n if (isDisabled(this._element) || !this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n this._completeHide(relatedTarget);\n }\n dispose() {\n if (this._popper) {\n this._popper.destroy();\n }\n super.dispose();\n }\n update() {\n this._inNavbar = this._detectNavbar();\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Private\n _completeHide(relatedTarget) {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$5, relatedTarget);\n if (hideEvent.defaultPrevented) {\n return;\n }\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n if (this._popper) {\n this._popper.destroy();\n }\n this._menu.classList.remove(CLASS_NAME_SHOW$6);\n this._element.classList.remove(CLASS_NAME_SHOW$6);\n this._element.setAttribute('aria-expanded', 'false');\n Manipulator.removeDataAttribute(this._menu, 'popper');\n EventHandler.trigger(this._element, EVENT_HIDDEN$5, relatedTarget);\n }\n _getConfig(config) {\n config = super._getConfig(config);\n if (typeof config.reference === 'object' && !isElement(config.reference) && typeof config.reference.getBoundingClientRect !== 'function') {\n // Popper virtual elements require a getBoundingClientRect method\n throw new TypeError(`${NAME$a.toUpperCase()}: Option \"reference\" provided type \"object\" without a required \"getBoundingClientRect\" method.`);\n }\n return config;\n }\n _createPopper() {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s dropdowns require Popper (https://popper.js.org)');\n }\n let referenceElement = this._element;\n if (this._config.reference === 'parent') {\n referenceElement = this._parent;\n } else if (isElement(this._config.reference)) {\n referenceElement = getElement(this._config.reference);\n } else if (typeof this._config.reference === 'object') {\n referenceElement = this._config.reference;\n }\n const popperConfig = this._getPopperConfig();\n this._popper = Popper.createPopper(referenceElement, this._menu, popperConfig);\n }\n _isShown() {\n return this._menu.classList.contains(CLASS_NAME_SHOW$6);\n }\n _getPlacement() {\n const parentDropdown = this._parent;\n if (parentDropdown.classList.contains(CLASS_NAME_DROPEND)) {\n return PLACEMENT_RIGHT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPSTART)) {\n return PLACEMENT_LEFT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP_CENTER)) {\n return PLACEMENT_TOPCENTER;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPDOWN_CENTER)) {\n return PLACEMENT_BOTTOMCENTER;\n }\n\n // We need to trim the value because custom properties can also include spaces\n const isEnd = getComputedStyle(this._menu).getPropertyValue('--bs-position').trim() === 'end';\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP)) {\n return isEnd ? PLACEMENT_TOPEND : PLACEMENT_TOP;\n }\n return isEnd ? PLACEMENT_BOTTOMEND : PLACEMENT_BOTTOM;\n }\n _detectNavbar() {\n return this._element.closest(SELECTOR_NAVBAR) !== null;\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _getPopperConfig() {\n const defaultBsPopperConfig = {\n placement: this._getPlacement(),\n modifiers: [{\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }]\n };\n\n // Disable Popper if we have a static display or Dropdown is in Navbar\n if (this._inNavbar || this._config.display === 'static') {\n Manipulator.setDataAttribute(this._menu, 'popper', 'static'); // TODO: v6 remove\n defaultBsPopperConfig.modifiers = [{\n name: 'applyStyles',\n enabled: false\n }];\n }\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _selectMenuItem({\n key,\n target\n }) {\n const items = SelectorEngine.find(SELECTOR_VISIBLE_ITEMS, this._menu).filter(element => isVisible(element));\n if (!items.length) {\n return;\n }\n\n // if target isn't included in items (e.g. when expanding the dropdown)\n // allow cycling to get the last item in case key equals ARROW_UP_KEY\n getNextActiveElement(items, target, key === ARROW_DOWN_KEY$1, !items.includes(target)).focus();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Dropdown.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n static clearMenus(event) {\n if (event.button === RIGHT_MOUSE_BUTTON || event.type === 'keyup' && event.key !== TAB_KEY$1) {\n return;\n }\n const openToggles = SelectorEngine.find(SELECTOR_DATA_TOGGLE_SHOWN);\n for (const toggle of openToggles) {\n const context = Dropdown.getInstance(toggle);\n if (!context || context._config.autoClose === false) {\n continue;\n }\n const composedPath = event.composedPath();\n const isMenuTarget = composedPath.includes(context._menu);\n if (composedPath.includes(context._element) || context._config.autoClose === 'inside' && !isMenuTarget || context._config.autoClose === 'outside' && isMenuTarget) {\n continue;\n }\n\n // Tab navigation through the dropdown menu or events from contained inputs shouldn't close the menu\n if (context._menu.contains(event.target) && (event.type === 'keyup' && event.key === TAB_KEY$1 || /input|select|option|textarea|form/i.test(event.target.tagName))) {\n continue;\n }\n const relatedTarget = {\n relatedTarget: context._element\n };\n if (event.type === 'click') {\n relatedTarget.clickEvent = event;\n }\n context._completeHide(relatedTarget);\n }\n }\n static dataApiKeydownHandler(event) {\n // If not an UP | DOWN | ESCAPE key => not a dropdown command\n // If input/textarea && if key is other than ESCAPE => not a dropdown command\n\n const isInput = /input|textarea/i.test(event.target.tagName);\n const isEscapeEvent = event.key === ESCAPE_KEY$2;\n const isUpOrDownEvent = [ARROW_UP_KEY$1, ARROW_DOWN_KEY$1].includes(event.key);\n if (!isUpOrDownEvent && !isEscapeEvent) {\n return;\n }\n if (isInput && !isEscapeEvent) {\n return;\n }\n event.preventDefault();\n\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n const getToggleButton = this.matches(SELECTOR_DATA_TOGGLE$3) ? this : SelectorEngine.prev(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.next(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.findOne(SELECTOR_DATA_TOGGLE$3, event.delegateTarget.parentNode);\n const instance = Dropdown.getOrCreateInstance(getToggleButton);\n if (isUpOrDownEvent) {\n event.stopPropagation();\n instance.show();\n instance._selectMenuItem(event);\n return;\n }\n if (instance._isShown()) {\n // else is escape and we check if it is shown\n event.stopPropagation();\n instance.hide();\n getToggleButton.focus();\n }\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_DATA_TOGGLE$3, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_MENU, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_KEYUP_DATA_API, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, SELECTOR_DATA_TOGGLE$3, function (event) {\n event.preventDefault();\n Dropdown.getOrCreateInstance(this).toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Dropdown);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/backdrop.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$9 = 'backdrop';\nconst CLASS_NAME_FADE$4 = 'fade';\nconst CLASS_NAME_SHOW$5 = 'show';\nconst EVENT_MOUSEDOWN = `mousedown.bs.${NAME$9}`;\nconst Default$8 = {\n className: 'modal-backdrop',\n clickCallback: null,\n isAnimated: false,\n isVisible: true,\n // if false, we use the backdrop helper without adding any element to the dom\n rootElement: 'body' // give the choice to place backdrop under different elements\n};\nconst DefaultType$8 = {\n className: 'string',\n clickCallback: '(function|null)',\n isAnimated: 'boolean',\n isVisible: 'boolean',\n rootElement: '(element|string)'\n};\n\n/**\n * Class definition\n */\n\nclass Backdrop extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isAppended = false;\n this._element = null;\n }\n\n // Getters\n static get Default() {\n return Default$8;\n }\n static get DefaultType() {\n return DefaultType$8;\n }\n static get NAME() {\n return NAME$9;\n }\n\n // Public\n show(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._append();\n const element = this._getElement();\n if (this._config.isAnimated) {\n reflow(element);\n }\n element.classList.add(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n execute(callback);\n });\n }\n hide(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._getElement().classList.remove(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n this.dispose();\n execute(callback);\n });\n }\n dispose() {\n if (!this._isAppended) {\n return;\n }\n EventHandler.off(this._element, EVENT_MOUSEDOWN);\n this._element.remove();\n this._isAppended = false;\n }\n\n // Private\n _getElement() {\n if (!this._element) {\n const backdrop = document.createElement('div');\n backdrop.className = this._config.className;\n if (this._config.isAnimated) {\n backdrop.classList.add(CLASS_NAME_FADE$4);\n }\n this._element = backdrop;\n }\n return this._element;\n }\n _configAfterMerge(config) {\n // use getElement() with the default \"body\" to get a fresh Element on each instantiation\n config.rootElement = getElement(config.rootElement);\n return config;\n }\n _append() {\n if (this._isAppended) {\n return;\n }\n const element = this._getElement();\n this._config.rootElement.append(element);\n EventHandler.on(element, EVENT_MOUSEDOWN, () => {\n execute(this._config.clickCallback);\n });\n this._isAppended = true;\n }\n _emulateAnimation(callback) {\n executeAfterTransition(callback, this._getElement(), this._config.isAnimated);\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/focustrap.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$8 = 'focustrap';\nconst DATA_KEY$5 = 'bs.focustrap';\nconst EVENT_KEY$5 = `.${DATA_KEY$5}`;\nconst EVENT_FOCUSIN$2 = `focusin${EVENT_KEY$5}`;\nconst EVENT_KEYDOWN_TAB = `keydown.tab${EVENT_KEY$5}`;\nconst TAB_KEY = 'Tab';\nconst TAB_NAV_FORWARD = 'forward';\nconst TAB_NAV_BACKWARD = 'backward';\nconst Default$7 = {\n autofocus: true,\n trapElement: null // The element to trap focus inside of\n};\nconst DefaultType$7 = {\n autofocus: 'boolean',\n trapElement: 'element'\n};\n\n/**\n * Class definition\n */\n\nclass FocusTrap extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isActive = false;\n this._lastTabNavDirection = null;\n }\n\n // Getters\n static get Default() {\n return Default$7;\n }\n static get DefaultType() {\n return DefaultType$7;\n }\n static get NAME() {\n return NAME$8;\n }\n\n // Public\n activate() {\n if (this._isActive) {\n return;\n }\n if (this._config.autofocus) {\n this._config.trapElement.focus();\n }\n EventHandler.off(document, EVENT_KEY$5); // guard against infinite focus loop\n EventHandler.on(document, EVENT_FOCUSIN$2, event => this._handleFocusin(event));\n EventHandler.on(document, EVENT_KEYDOWN_TAB, event => this._handleKeydown(event));\n this._isActive = true;\n }\n deactivate() {\n if (!this._isActive) {\n return;\n }\n this._isActive = false;\n EventHandler.off(document, EVENT_KEY$5);\n }\n\n // Private\n _handleFocusin(event) {\n const {\n trapElement\n } = this._config;\n if (event.target === document || event.target === trapElement || trapElement.contains(event.target)) {\n return;\n }\n const elements = SelectorEngine.focusableChildren(trapElement);\n if (elements.length === 0) {\n trapElement.focus();\n } else if (this._lastTabNavDirection === TAB_NAV_BACKWARD) {\n elements[elements.length - 1].focus();\n } else {\n elements[0].focus();\n }\n }\n _handleKeydown(event) {\n if (event.key !== TAB_KEY) {\n return;\n }\n this._lastTabNavDirection = event.shiftKey ? TAB_NAV_BACKWARD : TAB_NAV_FORWARD;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/scrollBar.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst SELECTOR_FIXED_CONTENT = '.fixed-top, .fixed-bottom, .is-fixed, .sticky-top';\nconst SELECTOR_STICKY_CONTENT = '.sticky-top';\nconst PROPERTY_PADDING = 'padding-right';\nconst PROPERTY_MARGIN = 'margin-right';\n\n/**\n * Class definition\n */\n\nclass ScrollBarHelper {\n constructor() {\n this._element = document.body;\n }\n\n // Public\n getWidth() {\n // https://developer.mozilla.org/en-US/docs/Web/API/Window/innerWidth#usage_notes\n const documentWidth = document.documentElement.clientWidth;\n return Math.abs(window.innerWidth - documentWidth);\n }\n hide() {\n const width = this.getWidth();\n this._disableOverFlow();\n // give padding to element to balance the hidden scrollbar width\n this._setElementAttributes(this._element, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n // trick: We adjust positive paddingRight and negative marginRight to sticky-top elements to keep showing fullwidth\n this._setElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n this._setElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN, calculatedValue => calculatedValue - width);\n }\n reset() {\n this._resetElementAttributes(this._element, 'overflow');\n this._resetElementAttributes(this._element, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN);\n }\n isOverflowing() {\n return this.getWidth() > 0;\n }\n\n // Private\n _disableOverFlow() {\n this._saveInitialAttribute(this._element, 'overflow');\n this._element.style.overflow = 'hidden';\n }\n _setElementAttributes(selector, styleProperty, callback) {\n const scrollbarWidth = this.getWidth();\n const manipulationCallBack = element => {\n if (element !== this._element && window.innerWidth > element.clientWidth + scrollbarWidth) {\n return;\n }\n this._saveInitialAttribute(element, styleProperty);\n const calculatedValue = window.getComputedStyle(element).getPropertyValue(styleProperty);\n element.style.setProperty(styleProperty, `${callback(Number.parseFloat(calculatedValue))}px`);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _saveInitialAttribute(element, styleProperty) {\n const actualValue = element.style.getPropertyValue(styleProperty);\n if (actualValue) {\n Manipulator.setDataAttribute(element, styleProperty, actualValue);\n }\n }\n _resetElementAttributes(selector, styleProperty) {\n const manipulationCallBack = element => {\n const value = Manipulator.getDataAttribute(element, styleProperty);\n // We only want to remove the property if the value is `null`; the value can also be zero\n if (value === null) {\n element.style.removeProperty(styleProperty);\n return;\n }\n Manipulator.removeDataAttribute(element, styleProperty);\n element.style.setProperty(styleProperty, value);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _applyManipulationCallback(selector, callBack) {\n if (isElement(selector)) {\n callBack(selector);\n return;\n }\n for (const sel of SelectorEngine.find(selector, this._element)) {\n callBack(sel);\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap modal.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$7 = 'modal';\nconst DATA_KEY$4 = 'bs.modal';\nconst EVENT_KEY$4 = `.${DATA_KEY$4}`;\nconst DATA_API_KEY$2 = '.data-api';\nconst ESCAPE_KEY$1 = 'Escape';\nconst EVENT_HIDE$4 = `hide${EVENT_KEY$4}`;\nconst EVENT_HIDE_PREVENTED$1 = `hidePrevented${EVENT_KEY$4}`;\nconst EVENT_HIDDEN$4 = `hidden${EVENT_KEY$4}`;\nconst EVENT_SHOW$4 = `show${EVENT_KEY$4}`;\nconst EVENT_SHOWN$4 = `shown${EVENT_KEY$4}`;\nconst EVENT_RESIZE$1 = `resize${EVENT_KEY$4}`;\nconst EVENT_CLICK_DISMISS = `click.dismiss${EVENT_KEY$4}`;\nconst EVENT_MOUSEDOWN_DISMISS = `mousedown.dismiss${EVENT_KEY$4}`;\nconst EVENT_KEYDOWN_DISMISS$1 = `keydown.dismiss${EVENT_KEY$4}`;\nconst EVENT_CLICK_DATA_API$2 = `click${EVENT_KEY$4}${DATA_API_KEY$2}`;\nconst CLASS_NAME_OPEN = 'modal-open';\nconst CLASS_NAME_FADE$3 = 'fade';\nconst CLASS_NAME_SHOW$4 = 'show';\nconst CLASS_NAME_STATIC = 'modal-static';\nconst OPEN_SELECTOR$1 = '.modal.show';\nconst SELECTOR_DIALOG = '.modal-dialog';\nconst SELECTOR_MODAL_BODY = '.modal-body';\nconst SELECTOR_DATA_TOGGLE$2 = '[data-bs-toggle=\"modal\"]';\nconst Default$6 = {\n backdrop: true,\n focus: true,\n keyboard: true\n};\nconst DefaultType$6 = {\n backdrop: '(boolean|string)',\n focus: 'boolean',\n keyboard: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Modal extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._dialog = SelectorEngine.findOne(SELECTOR_DIALOG, this._element);\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._isShown = false;\n this._isTransitioning = false;\n this._scrollBar = new ScrollBarHelper();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$6;\n }\n static get DefaultType() {\n return DefaultType$6;\n }\n static get NAME() {\n return NAME$7;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown || this._isTransitioning) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$4, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._isTransitioning = true;\n this._scrollBar.hide();\n document.body.classList.add(CLASS_NAME_OPEN);\n this._adjustDialog();\n this._backdrop.show(() => this._showElement(relatedTarget));\n }\n hide() {\n if (!this._isShown || this._isTransitioning) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$4);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._isShown = false;\n this._isTransitioning = true;\n this._focustrap.deactivate();\n this._element.classList.remove(CLASS_NAME_SHOW$4);\n this._queueCallback(() => this._hideModal(), this._element, this._isAnimated());\n }\n dispose() {\n EventHandler.off(window, EVENT_KEY$4);\n EventHandler.off(this._dialog, EVENT_KEY$4);\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n handleUpdate() {\n this._adjustDialog();\n }\n\n // Private\n _initializeBackDrop() {\n return new Backdrop({\n isVisible: Boolean(this._config.backdrop),\n // 'static' option will be translated to true, and booleans will keep their value,\n isAnimated: this._isAnimated()\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _showElement(relatedTarget) {\n // try to append dynamic modal\n if (!document.body.contains(this._element)) {\n document.body.append(this._element);\n }\n this._element.style.display = 'block';\n this._element.removeAttribute('aria-hidden');\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.scrollTop = 0;\n const modalBody = SelectorEngine.findOne(SELECTOR_MODAL_BODY, this._dialog);\n if (modalBody) {\n modalBody.scrollTop = 0;\n }\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_SHOW$4);\n const transitionComplete = () => {\n if (this._config.focus) {\n this._focustrap.activate();\n }\n this._isTransitioning = false;\n EventHandler.trigger(this._element, EVENT_SHOWN$4, {\n relatedTarget\n });\n };\n this._queueCallback(transitionComplete, this._dialog, this._isAnimated());\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS$1, event => {\n if (event.key !== ESCAPE_KEY$1) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n this._triggerBackdropTransition();\n });\n EventHandler.on(window, EVENT_RESIZE$1, () => {\n if (this._isShown && !this._isTransitioning) {\n this._adjustDialog();\n }\n });\n EventHandler.on(this._element, EVENT_MOUSEDOWN_DISMISS, event => {\n // a bad trick to segregate clicks that may start inside dialog but end outside, and avoid listen to scrollbar clicks\n EventHandler.one(this._element, EVENT_CLICK_DISMISS, event2 => {\n if (this._element !== event.target || this._element !== event2.target) {\n return;\n }\n if (this._config.backdrop === 'static') {\n this._triggerBackdropTransition();\n return;\n }\n if (this._config.backdrop) {\n this.hide();\n }\n });\n });\n }\n _hideModal() {\n this._element.style.display = 'none';\n this._element.setAttribute('aria-hidden', true);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n this._isTransitioning = false;\n this._backdrop.hide(() => {\n document.body.classList.remove(CLASS_NAME_OPEN);\n this._resetAdjustments();\n this._scrollBar.reset();\n EventHandler.trigger(this._element, EVENT_HIDDEN$4);\n });\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_FADE$3);\n }\n _triggerBackdropTransition() {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED$1);\n if (hideEvent.defaultPrevented) {\n return;\n }\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const initialOverflowY = this._element.style.overflowY;\n // return if the following background transition hasn't yet completed\n if (initialOverflowY === 'hidden' || this._element.classList.contains(CLASS_NAME_STATIC)) {\n return;\n }\n if (!isModalOverflowing) {\n this._element.style.overflowY = 'hidden';\n }\n this._element.classList.add(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.classList.remove(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.style.overflowY = initialOverflowY;\n }, this._dialog);\n }, this._dialog);\n this._element.focus();\n }\n\n /**\n * The following methods are used to handle overflowing modals\n */\n\n _adjustDialog() {\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const scrollbarWidth = this._scrollBar.getWidth();\n const isBodyOverflowing = scrollbarWidth > 0;\n if (isBodyOverflowing && !isModalOverflowing) {\n const property = isRTL() ? 'paddingLeft' : 'paddingRight';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n if (!isBodyOverflowing && isModalOverflowing) {\n const property = isRTL() ? 'paddingRight' : 'paddingLeft';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n }\n _resetAdjustments() {\n this._element.style.paddingLeft = '';\n this._element.style.paddingRight = '';\n }\n\n // Static\n static jQueryInterface(config, relatedTarget) {\n return this.each(function () {\n const data = Modal.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](relatedTarget);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$2, SELECTOR_DATA_TOGGLE$2, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n EventHandler.one(target, EVENT_SHOW$4, showEvent => {\n if (showEvent.defaultPrevented) {\n // only register focus restorer if modal will actually get shown\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$4, () => {\n if (isVisible(this)) {\n this.focus();\n }\n });\n });\n\n // avoid conflict when clicking modal toggler while another one is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR$1);\n if (alreadyOpen) {\n Modal.getInstance(alreadyOpen).hide();\n }\n const data = Modal.getOrCreateInstance(target);\n data.toggle(this);\n});\nenableDismissTrigger(Modal);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Modal);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap offcanvas.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$6 = 'offcanvas';\nconst DATA_KEY$3 = 'bs.offcanvas';\nconst EVENT_KEY$3 = `.${DATA_KEY$3}`;\nconst DATA_API_KEY$1 = '.data-api';\nconst EVENT_LOAD_DATA_API$2 = `load${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst ESCAPE_KEY = 'Escape';\nconst CLASS_NAME_SHOW$3 = 'show';\nconst CLASS_NAME_SHOWING$1 = 'showing';\nconst CLASS_NAME_HIDING = 'hiding';\nconst CLASS_NAME_BACKDROP = 'offcanvas-backdrop';\nconst OPEN_SELECTOR = '.offcanvas.show';\nconst EVENT_SHOW$3 = `show${EVENT_KEY$3}`;\nconst EVENT_SHOWN$3 = `shown${EVENT_KEY$3}`;\nconst EVENT_HIDE$3 = `hide${EVENT_KEY$3}`;\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY$3}`;\nconst EVENT_HIDDEN$3 = `hidden${EVENT_KEY$3}`;\nconst EVENT_RESIZE = `resize${EVENT_KEY$3}`;\nconst EVENT_CLICK_DATA_API$1 = `click${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY$3}`;\nconst SELECTOR_DATA_TOGGLE$1 = '[data-bs-toggle=\"offcanvas\"]';\nconst Default$5 = {\n backdrop: true,\n keyboard: true,\n scroll: false\n};\nconst DefaultType$5 = {\n backdrop: '(boolean|string)',\n keyboard: 'boolean',\n scroll: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Offcanvas extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isShown = false;\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$5;\n }\n static get DefaultType() {\n return DefaultType$5;\n }\n static get NAME() {\n return NAME$6;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$3, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._backdrop.show();\n if (!this._config.scroll) {\n new ScrollBarHelper().hide();\n }\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.classList.add(CLASS_NAME_SHOWING$1);\n const completeCallBack = () => {\n if (!this._config.scroll || this._config.backdrop) {\n this._focustrap.activate();\n }\n this._element.classList.add(CLASS_NAME_SHOW$3);\n this._element.classList.remove(CLASS_NAME_SHOWING$1);\n EventHandler.trigger(this._element, EVENT_SHOWN$3, {\n relatedTarget\n });\n };\n this._queueCallback(completeCallBack, this._element, true);\n }\n hide() {\n if (!this._isShown) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$3);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._focustrap.deactivate();\n this._element.blur();\n this._isShown = false;\n this._element.classList.add(CLASS_NAME_HIDING);\n this._backdrop.hide();\n const completeCallback = () => {\n this._element.classList.remove(CLASS_NAME_SHOW$3, CLASS_NAME_HIDING);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n if (!this._config.scroll) {\n new ScrollBarHelper().reset();\n }\n EventHandler.trigger(this._element, EVENT_HIDDEN$3);\n };\n this._queueCallback(completeCallback, this._element, true);\n }\n dispose() {\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n\n // Private\n _initializeBackDrop() {\n const clickCallback = () => {\n if (this._config.backdrop === 'static') {\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n return;\n }\n this.hide();\n };\n\n // 'static' option will be translated to true, and booleans will keep their value\n const isVisible = Boolean(this._config.backdrop);\n return new Backdrop({\n className: CLASS_NAME_BACKDROP,\n isVisible,\n isAnimated: true,\n rootElement: this._element.parentNode,\n clickCallback: isVisible ? clickCallback : null\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n });\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Offcanvas.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$1, SELECTOR_DATA_TOGGLE$1, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$3, () => {\n // focus on trigger when it is closed\n if (isVisible(this)) {\n this.focus();\n }\n });\n\n // avoid conflict when clicking a toggler of an offcanvas, while another is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR);\n if (alreadyOpen && alreadyOpen !== target) {\n Offcanvas.getInstance(alreadyOpen).hide();\n }\n const data = Offcanvas.getOrCreateInstance(target);\n data.toggle(this);\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$2, () => {\n for (const selector of SelectorEngine.find(OPEN_SELECTOR)) {\n Offcanvas.getOrCreateInstance(selector).show();\n }\n});\nEventHandler.on(window, EVENT_RESIZE, () => {\n for (const element of SelectorEngine.find('[aria-modal][class*=show][class*=offcanvas-]')) {\n if (getComputedStyle(element).position !== 'fixed') {\n Offcanvas.getOrCreateInstance(element).hide();\n }\n }\n});\nenableDismissTrigger(Offcanvas);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Offcanvas);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/sanitizer.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n// js-docs-start allow-list\nconst ARIA_ATTRIBUTE_PATTERN = /^aria-[\\w-]*$/i;\nconst DefaultAllowlist = {\n // Global attributes allowed on any supplied element below.\n '*': ['class', 'dir', 'id', 'lang', 'role', ARIA_ATTRIBUTE_PATTERN],\n a: ['target', 'href', 'title', 'rel'],\n area: [],\n b: [],\n br: [],\n col: [],\n code: [],\n dd: [],\n div: [],\n dl: [],\n dt: [],\n em: [],\n hr: [],\n h1: [],\n h2: [],\n h3: [],\n h4: [],\n h5: [],\n h6: [],\n i: [],\n img: ['src', 'srcset', 'alt', 'title', 'width', 'height'],\n li: [],\n ol: [],\n p: [],\n pre: [],\n s: [],\n small: [],\n span: [],\n sub: [],\n sup: [],\n strong: [],\n u: [],\n ul: []\n};\n// js-docs-end allow-list\n\nconst uriAttributes = new Set(['background', 'cite', 'href', 'itemtype', 'longdesc', 'poster', 'src', 'xlink:href']);\n\n/**\n * A pattern that recognizes URLs that are safe wrt. XSS in URL navigation\n * contexts.\n *\n * Shout-out to Angular https://github.com/angular/angular/blob/15.2.8/packages/core/src/sanitization/url_sanitizer.ts#L38\n */\n// eslint-disable-next-line unicorn/better-regex\nconst SAFE_URL_PATTERN = /^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i;\nconst allowedAttribute = (attribute, allowedAttributeList) => {\n const attributeName = attribute.nodeName.toLowerCase();\n if (allowedAttributeList.includes(attributeName)) {\n if (uriAttributes.has(attributeName)) {\n return Boolean(SAFE_URL_PATTERN.test(attribute.nodeValue));\n }\n return true;\n }\n\n // Check if a regular expression validates the attribute.\n return allowedAttributeList.filter(attributeRegex => attributeRegex instanceof RegExp).some(regex => regex.test(attributeName));\n};\nfunction sanitizeHtml(unsafeHtml, allowList, sanitizeFunction) {\n if (!unsafeHtml.length) {\n return unsafeHtml;\n }\n if (sanitizeFunction && typeof sanitizeFunction === 'function') {\n return sanitizeFunction(unsafeHtml);\n }\n const domParser = new window.DOMParser();\n const createdDocument = domParser.parseFromString(unsafeHtml, 'text/html');\n const elements = [].concat(...createdDocument.body.querySelectorAll('*'));\n for (const element of elements) {\n const elementName = element.nodeName.toLowerCase();\n if (!Object.keys(allowList).includes(elementName)) {\n element.remove();\n continue;\n }\n const attributeList = [].concat(...element.attributes);\n const allowedAttributes = [].concat(allowList['*'] || [], allowList[elementName] || []);\n for (const attribute of attributeList) {\n if (!allowedAttribute(attribute, allowedAttributes)) {\n element.removeAttribute(attribute.nodeName);\n }\n }\n }\n return createdDocument.body.innerHTML;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/template-factory.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$5 = 'TemplateFactory';\nconst Default$4 = {\n allowList: DefaultAllowlist,\n content: {},\n // { selector : text , selector2 : text2 , }\n extraClass: '',\n html: false,\n sanitize: true,\n sanitizeFn: null,\n template: '
'\n};\nconst DefaultType$4 = {\n allowList: 'object',\n content: 'object',\n extraClass: '(string|function)',\n html: 'boolean',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n template: 'string'\n};\nconst DefaultContentType = {\n entry: '(string|element|function|null)',\n selector: '(string|element)'\n};\n\n/**\n * Class definition\n */\n\nclass TemplateFactory extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n }\n\n // Getters\n static get Default() {\n return Default$4;\n }\n static get DefaultType() {\n return DefaultType$4;\n }\n static get NAME() {\n return NAME$5;\n }\n\n // Public\n getContent() {\n return Object.values(this._config.content).map(config => this._resolvePossibleFunction(config)).filter(Boolean);\n }\n hasContent() {\n return this.getContent().length > 0;\n }\n changeContent(content) {\n this._checkContent(content);\n this._config.content = {\n ...this._config.content,\n ...content\n };\n return this;\n }\n toHtml() {\n const templateWrapper = document.createElement('div');\n templateWrapper.innerHTML = this._maybeSanitize(this._config.template);\n for (const [selector, text] of Object.entries(this._config.content)) {\n this._setContent(templateWrapper, text, selector);\n }\n const template = templateWrapper.children[0];\n const extraClass = this._resolvePossibleFunction(this._config.extraClass);\n if (extraClass) {\n template.classList.add(...extraClass.split(' '));\n }\n return template;\n }\n\n // Private\n _typeCheckConfig(config) {\n super._typeCheckConfig(config);\n this._checkContent(config.content);\n }\n _checkContent(arg) {\n for (const [selector, content] of Object.entries(arg)) {\n super._typeCheckConfig({\n selector,\n entry: content\n }, DefaultContentType);\n }\n }\n _setContent(template, content, selector) {\n const templateElement = SelectorEngine.findOne(selector, template);\n if (!templateElement) {\n return;\n }\n content = this._resolvePossibleFunction(content);\n if (!content) {\n templateElement.remove();\n return;\n }\n if (isElement(content)) {\n this._putElementInTemplate(getElement(content), templateElement);\n return;\n }\n if (this._config.html) {\n templateElement.innerHTML = this._maybeSanitize(content);\n return;\n }\n templateElement.textContent = content;\n }\n _maybeSanitize(arg) {\n return this._config.sanitize ? sanitizeHtml(arg, this._config.allowList, this._config.sanitizeFn) : arg;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this]);\n }\n _putElementInTemplate(element, templateElement) {\n if (this._config.html) {\n templateElement.innerHTML = '';\n templateElement.append(element);\n return;\n }\n templateElement.textContent = element.textContent;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap tooltip.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$4 = 'tooltip';\nconst DISALLOWED_ATTRIBUTES = new Set(['sanitize', 'allowList', 'sanitizeFn']);\nconst CLASS_NAME_FADE$2 = 'fade';\nconst CLASS_NAME_MODAL = 'modal';\nconst CLASS_NAME_SHOW$2 = 'show';\nconst SELECTOR_TOOLTIP_INNER = '.tooltip-inner';\nconst SELECTOR_MODAL = `.${CLASS_NAME_MODAL}`;\nconst EVENT_MODAL_HIDE = 'hide.bs.modal';\nconst TRIGGER_HOVER = 'hover';\nconst TRIGGER_FOCUS = 'focus';\nconst TRIGGER_CLICK = 'click';\nconst TRIGGER_MANUAL = 'manual';\nconst EVENT_HIDE$2 = 'hide';\nconst EVENT_HIDDEN$2 = 'hidden';\nconst EVENT_SHOW$2 = 'show';\nconst EVENT_SHOWN$2 = 'shown';\nconst EVENT_INSERTED = 'inserted';\nconst EVENT_CLICK$1 = 'click';\nconst EVENT_FOCUSIN$1 = 'focusin';\nconst EVENT_FOCUSOUT$1 = 'focusout';\nconst EVENT_MOUSEENTER = 'mouseenter';\nconst EVENT_MOUSELEAVE = 'mouseleave';\nconst AttachmentMap = {\n AUTO: 'auto',\n TOP: 'top',\n RIGHT: isRTL() ? 'left' : 'right',\n BOTTOM: 'bottom',\n LEFT: isRTL() ? 'right' : 'left'\n};\nconst Default$3 = {\n allowList: DefaultAllowlist,\n animation: true,\n boundary: 'clippingParents',\n container: false,\n customClass: '',\n delay: 0,\n fallbackPlacements: ['top', 'right', 'bottom', 'left'],\n html: false,\n offset: [0, 6],\n placement: 'top',\n popperConfig: null,\n sanitize: true,\n sanitizeFn: null,\n selector: false,\n template: '
' + '
' + '
' + '
',\n title: '',\n trigger: 'hover focus'\n};\nconst DefaultType$3 = {\n allowList: 'object',\n animation: 'boolean',\n boundary: '(string|element)',\n container: '(string|element|boolean)',\n customClass: '(string|function)',\n delay: '(number|object)',\n fallbackPlacements: 'array',\n html: 'boolean',\n offset: '(array|string|function)',\n placement: '(string|function)',\n popperConfig: '(null|object|function)',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n selector: '(string|boolean)',\n template: 'string',\n title: '(string|element|function)',\n trigger: 'string'\n};\n\n/**\n * Class definition\n */\n\nclass Tooltip extends BaseComponent {\n constructor(element, config) {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s tooltips require Popper (https://popper.js.org)');\n }\n super(element, config);\n\n // Private\n this._isEnabled = true;\n this._timeout = 0;\n this._isHovered = null;\n this._activeTrigger = {};\n this._popper = null;\n this._templateFactory = null;\n this._newContent = null;\n\n // Protected\n this.tip = null;\n this._setListeners();\n if (!this._config.selector) {\n this._fixTitle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$3;\n }\n static get DefaultType() {\n return DefaultType$3;\n }\n static get NAME() {\n return NAME$4;\n }\n\n // Public\n enable() {\n this._isEnabled = true;\n }\n disable() {\n this._isEnabled = false;\n }\n toggleEnabled() {\n this._isEnabled = !this._isEnabled;\n }\n toggle() {\n if (!this._isEnabled) {\n return;\n }\n this._activeTrigger.click = !this._activeTrigger.click;\n if (this._isShown()) {\n this._leave();\n return;\n }\n this._enter();\n }\n dispose() {\n clearTimeout(this._timeout);\n EventHandler.off(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n if (this._element.getAttribute('data-bs-original-title')) {\n this._element.setAttribute('title', this._element.getAttribute('data-bs-original-title'));\n }\n this._disposePopper();\n super.dispose();\n }\n show() {\n if (this._element.style.display === 'none') {\n throw new Error('Please use show on visible elements');\n }\n if (!(this._isWithContent() && this._isEnabled)) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOW$2));\n const shadowRoot = findShadowRoot(this._element);\n const isInTheDom = (shadowRoot || this._element.ownerDocument.documentElement).contains(this._element);\n if (showEvent.defaultPrevented || !isInTheDom) {\n return;\n }\n\n // TODO: v6 remove this or make it optional\n this._disposePopper();\n const tip = this._getTipElement();\n this._element.setAttribute('aria-describedby', tip.getAttribute('id'));\n const {\n container\n } = this._config;\n if (!this._element.ownerDocument.documentElement.contains(this.tip)) {\n container.append(tip);\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_INSERTED));\n }\n this._popper = this._createPopper(tip);\n tip.classList.add(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n const complete = () => {\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOWN$2));\n if (this._isHovered === false) {\n this._leave();\n }\n this._isHovered = false;\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n hide() {\n if (!this._isShown()) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDE$2));\n if (hideEvent.defaultPrevented) {\n return;\n }\n const tip = this._getTipElement();\n tip.classList.remove(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n this._activeTrigger[TRIGGER_CLICK] = false;\n this._activeTrigger[TRIGGER_FOCUS] = false;\n this._activeTrigger[TRIGGER_HOVER] = false;\n this._isHovered = null; // it is a trick to support manual triggering\n\n const complete = () => {\n if (this._isWithActiveTrigger()) {\n return;\n }\n if (!this._isHovered) {\n this._disposePopper();\n }\n this._element.removeAttribute('aria-describedby');\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDDEN$2));\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n update() {\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Protected\n _isWithContent() {\n return Boolean(this._getTitle());\n }\n _getTipElement() {\n if (!this.tip) {\n this.tip = this._createTipElement(this._newContent || this._getContentForTemplate());\n }\n return this.tip;\n }\n _createTipElement(content) {\n const tip = this._getTemplateFactory(content).toHtml();\n\n // TODO: remove this check in v6\n if (!tip) {\n return null;\n }\n tip.classList.remove(CLASS_NAME_FADE$2, CLASS_NAME_SHOW$2);\n // TODO: v6 the following can be achieved with CSS only\n tip.classList.add(`bs-${this.constructor.NAME}-auto`);\n const tipId = getUID(this.constructor.NAME).toString();\n tip.setAttribute('id', tipId);\n if (this._isAnimated()) {\n tip.classList.add(CLASS_NAME_FADE$2);\n }\n return tip;\n }\n setContent(content) {\n this._newContent = content;\n if (this._isShown()) {\n this._disposePopper();\n this.show();\n }\n }\n _getTemplateFactory(content) {\n if (this._templateFactory) {\n this._templateFactory.changeContent(content);\n } else {\n this._templateFactory = new TemplateFactory({\n ...this._config,\n // the `content` var has to be after `this._config`\n // to override config.content in case of popover\n content,\n extraClass: this._resolvePossibleFunction(this._config.customClass)\n });\n }\n return this._templateFactory;\n }\n _getContentForTemplate() {\n return {\n [SELECTOR_TOOLTIP_INNER]: this._getTitle()\n };\n }\n _getTitle() {\n return this._resolvePossibleFunction(this._config.title) || this._element.getAttribute('data-bs-original-title');\n }\n\n // Private\n _initializeOnDelegatedTarget(event) {\n return this.constructor.getOrCreateInstance(event.delegateTarget, this._getDelegateConfig());\n }\n _isAnimated() {\n return this._config.animation || this.tip && this.tip.classList.contains(CLASS_NAME_FADE$2);\n }\n _isShown() {\n return this.tip && this.tip.classList.contains(CLASS_NAME_SHOW$2);\n }\n _createPopper(tip) {\n const placement = execute(this._config.placement, [this, tip, this._element]);\n const attachment = AttachmentMap[placement.toUpperCase()];\n return Popper.createPopper(this._element, tip, this._getPopperConfig(attachment));\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this._element]);\n }\n _getPopperConfig(attachment) {\n const defaultBsPopperConfig = {\n placement: attachment,\n modifiers: [{\n name: 'flip',\n options: {\n fallbackPlacements: this._config.fallbackPlacements\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }, {\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'arrow',\n options: {\n element: `.${this.constructor.NAME}-arrow`\n }\n }, {\n name: 'preSetPlacement',\n enabled: true,\n phase: 'beforeMain',\n fn: data => {\n // Pre-set Popper's placement attribute in order to read the arrow sizes properly.\n // Otherwise, Popper mixes up the width and height dimensions since the initial arrow style is for top placement\n this._getTipElement().setAttribute('data-popper-placement', data.state.placement);\n }\n }]\n };\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _setListeners() {\n const triggers = this._config.trigger.split(' ');\n for (const trigger of triggers) {\n if (trigger === 'click') {\n EventHandler.on(this._element, this.constructor.eventName(EVENT_CLICK$1), this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context.toggle();\n });\n } else if (trigger !== TRIGGER_MANUAL) {\n const eventIn = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSEENTER) : this.constructor.eventName(EVENT_FOCUSIN$1);\n const eventOut = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSELEAVE) : this.constructor.eventName(EVENT_FOCUSOUT$1);\n EventHandler.on(this._element, eventIn, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusin' ? TRIGGER_FOCUS : TRIGGER_HOVER] = true;\n context._enter();\n });\n EventHandler.on(this._element, eventOut, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusout' ? TRIGGER_FOCUS : TRIGGER_HOVER] = context._element.contains(event.relatedTarget);\n context._leave();\n });\n }\n }\n this._hideModalHandler = () => {\n if (this._element) {\n this.hide();\n }\n };\n EventHandler.on(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n }\n _fixTitle() {\n const title = this._element.getAttribute('title');\n if (!title) {\n return;\n }\n if (!this._element.getAttribute('aria-label') && !this._element.textContent.trim()) {\n this._element.setAttribute('aria-label', title);\n }\n this._element.setAttribute('data-bs-original-title', title); // DO NOT USE IT. Is only for backwards compatibility\n this._element.removeAttribute('title');\n }\n _enter() {\n if (this._isShown() || this._isHovered) {\n this._isHovered = true;\n return;\n }\n this._isHovered = true;\n this._setTimeout(() => {\n if (this._isHovered) {\n this.show();\n }\n }, this._config.delay.show);\n }\n _leave() {\n if (this._isWithActiveTrigger()) {\n return;\n }\n this._isHovered = false;\n this._setTimeout(() => {\n if (!this._isHovered) {\n this.hide();\n }\n }, this._config.delay.hide);\n }\n _setTimeout(handler, timeout) {\n clearTimeout(this._timeout);\n this._timeout = setTimeout(handler, timeout);\n }\n _isWithActiveTrigger() {\n return Object.values(this._activeTrigger).includes(true);\n }\n _getConfig(config) {\n const dataAttributes = Manipulator.getDataAttributes(this._element);\n for (const dataAttribute of Object.keys(dataAttributes)) {\n if (DISALLOWED_ATTRIBUTES.has(dataAttribute)) {\n delete dataAttributes[dataAttribute];\n }\n }\n config = {\n ...dataAttributes,\n ...(typeof config === 'object' && config ? config : {})\n };\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n config.container = config.container === false ? document.body : getElement(config.container);\n if (typeof config.delay === 'number') {\n config.delay = {\n show: config.delay,\n hide: config.delay\n };\n }\n if (typeof config.title === 'number') {\n config.title = config.title.toString();\n }\n if (typeof config.content === 'number') {\n config.content = config.content.toString();\n }\n return config;\n }\n _getDelegateConfig() {\n const config = {};\n for (const [key, value] of Object.entries(this._config)) {\n if (this.constructor.Default[key] !== value) {\n config[key] = value;\n }\n }\n config.selector = false;\n config.trigger = 'manual';\n\n // In the future can be replaced with:\n // const keysWithDifferentValues = Object.entries(this._config).filter(entry => this.constructor.Default[entry[0]] !== this._config[entry[0]])\n // `Object.fromEntries(keysWithDifferentValues)`\n return config;\n }\n _disposePopper() {\n if (this._popper) {\n this._popper.destroy();\n this._popper = null;\n }\n if (this.tip) {\n this.tip.remove();\n this.tip = null;\n }\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Tooltip.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Tooltip);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap popover.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$3 = 'popover';\nconst SELECTOR_TITLE = '.popover-header';\nconst SELECTOR_CONTENT = '.popover-body';\nconst Default$2 = {\n ...Tooltip.Default,\n content: '',\n offset: [0, 8],\n placement: 'right',\n template: '
' + '
' + '

' + '
' + '
',\n trigger: 'click'\n};\nconst DefaultType$2 = {\n ...Tooltip.DefaultType,\n content: '(null|string|element|function)'\n};\n\n/**\n * Class definition\n */\n\nclass Popover extends Tooltip {\n // Getters\n static get Default() {\n return Default$2;\n }\n static get DefaultType() {\n return DefaultType$2;\n }\n static get NAME() {\n return NAME$3;\n }\n\n // Overrides\n _isWithContent() {\n return this._getTitle() || this._getContent();\n }\n\n // Private\n _getContentForTemplate() {\n return {\n [SELECTOR_TITLE]: this._getTitle(),\n [SELECTOR_CONTENT]: this._getContent()\n };\n }\n _getContent() {\n return this._resolvePossibleFunction(this._config.content);\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Popover.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Popover);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap scrollspy.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$2 = 'scrollspy';\nconst DATA_KEY$2 = 'bs.scrollspy';\nconst EVENT_KEY$2 = `.${DATA_KEY$2}`;\nconst DATA_API_KEY = '.data-api';\nconst EVENT_ACTIVATE = `activate${EVENT_KEY$2}`;\nconst EVENT_CLICK = `click${EVENT_KEY$2}`;\nconst EVENT_LOAD_DATA_API$1 = `load${EVENT_KEY$2}${DATA_API_KEY}`;\nconst CLASS_NAME_DROPDOWN_ITEM = 'dropdown-item';\nconst CLASS_NAME_ACTIVE$1 = 'active';\nconst SELECTOR_DATA_SPY = '[data-bs-spy=\"scroll\"]';\nconst SELECTOR_TARGET_LINKS = '[href]';\nconst SELECTOR_NAV_LIST_GROUP = '.nav, .list-group';\nconst SELECTOR_NAV_LINKS = '.nav-link';\nconst SELECTOR_NAV_ITEMS = '.nav-item';\nconst SELECTOR_LIST_ITEMS = '.list-group-item';\nconst SELECTOR_LINK_ITEMS = `${SELECTOR_NAV_LINKS}, ${SELECTOR_NAV_ITEMS} > ${SELECTOR_NAV_LINKS}, ${SELECTOR_LIST_ITEMS}`;\nconst SELECTOR_DROPDOWN = '.dropdown';\nconst SELECTOR_DROPDOWN_TOGGLE$1 = '.dropdown-toggle';\nconst Default$1 = {\n offset: null,\n // TODO: v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: '0px 0px -25%',\n smoothScroll: false,\n target: null,\n threshold: [0.1, 0.5, 1]\n};\nconst DefaultType$1 = {\n offset: '(number|null)',\n // TODO v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: 'string',\n smoothScroll: 'boolean',\n target: 'element',\n threshold: 'array'\n};\n\n/**\n * Class definition\n */\n\nclass ScrollSpy extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n\n // this._element is the observablesContainer and config.target the menu links wrapper\n this._targetLinks = new Map();\n this._observableSections = new Map();\n this._rootElement = getComputedStyle(this._element).overflowY === 'visible' ? null : this._element;\n this._activeTarget = null;\n this._observer = null;\n this._previousScrollData = {\n visibleEntryTop: 0,\n parentScrollTop: 0\n };\n this.refresh(); // initialize\n }\n\n // Getters\n static get Default() {\n return Default$1;\n }\n static get DefaultType() {\n return DefaultType$1;\n }\n static get NAME() {\n return NAME$2;\n }\n\n // Public\n refresh() {\n this._initializeTargetsAndObservables();\n this._maybeEnableSmoothScroll();\n if (this._observer) {\n this._observer.disconnect();\n } else {\n this._observer = this._getNewObserver();\n }\n for (const section of this._observableSections.values()) {\n this._observer.observe(section);\n }\n }\n dispose() {\n this._observer.disconnect();\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n // TODO: on v6 target should be given explicitly & remove the {target: 'ss-target'} case\n config.target = getElement(config.target) || document.body;\n\n // TODO: v6 Only for backwards compatibility reasons. Use rootMargin only\n config.rootMargin = config.offset ? `${config.offset}px 0px -30%` : config.rootMargin;\n if (typeof config.threshold === 'string') {\n config.threshold = config.threshold.split(',').map(value => Number.parseFloat(value));\n }\n return config;\n }\n _maybeEnableSmoothScroll() {\n if (!this._config.smoothScroll) {\n return;\n }\n\n // unregister any previous listeners\n EventHandler.off(this._config.target, EVENT_CLICK);\n EventHandler.on(this._config.target, EVENT_CLICK, SELECTOR_TARGET_LINKS, event => {\n const observableSection = this._observableSections.get(event.target.hash);\n if (observableSection) {\n event.preventDefault();\n const root = this._rootElement || window;\n const height = observableSection.offsetTop - this._element.offsetTop;\n if (root.scrollTo) {\n root.scrollTo({\n top: height,\n behavior: 'smooth'\n });\n return;\n }\n\n // Chrome 60 doesn't support `scrollTo`\n root.scrollTop = height;\n }\n });\n }\n _getNewObserver() {\n const options = {\n root: this._rootElement,\n threshold: this._config.threshold,\n rootMargin: this._config.rootMargin\n };\n return new IntersectionObserver(entries => this._observerCallback(entries), options);\n }\n\n // The logic of selection\n _observerCallback(entries) {\n const targetElement = entry => this._targetLinks.get(`#${entry.target.id}`);\n const activate = entry => {\n this._previousScrollData.visibleEntryTop = entry.target.offsetTop;\n this._process(targetElement(entry));\n };\n const parentScrollTop = (this._rootElement || document.documentElement).scrollTop;\n const userScrollsDown = parentScrollTop >= this._previousScrollData.parentScrollTop;\n this._previousScrollData.parentScrollTop = parentScrollTop;\n for (const entry of entries) {\n if (!entry.isIntersecting) {\n this._activeTarget = null;\n this._clearActiveClass(targetElement(entry));\n continue;\n }\n const entryIsLowerThanPrevious = entry.target.offsetTop >= this._previousScrollData.visibleEntryTop;\n // if we are scrolling down, pick the bigger offsetTop\n if (userScrollsDown && entryIsLowerThanPrevious) {\n activate(entry);\n // if parent isn't scrolled, let's keep the first visible item, breaking the iteration\n if (!parentScrollTop) {\n return;\n }\n continue;\n }\n\n // if we are scrolling up, pick the smallest offsetTop\n if (!userScrollsDown && !entryIsLowerThanPrevious) {\n activate(entry);\n }\n }\n }\n _initializeTargetsAndObservables() {\n this._targetLinks = new Map();\n this._observableSections = new Map();\n const targetLinks = SelectorEngine.find(SELECTOR_TARGET_LINKS, this._config.target);\n for (const anchor of targetLinks) {\n // ensure that the anchor has an id and is not disabled\n if (!anchor.hash || isDisabled(anchor)) {\n continue;\n }\n const observableSection = SelectorEngine.findOne(decodeURI(anchor.hash), this._element);\n\n // ensure that the observableSection exists & is visible\n if (isVisible(observableSection)) {\n this._targetLinks.set(decodeURI(anchor.hash), anchor);\n this._observableSections.set(anchor.hash, observableSection);\n }\n }\n }\n _process(target) {\n if (this._activeTarget === target) {\n return;\n }\n this._clearActiveClass(this._config.target);\n this._activeTarget = target;\n target.classList.add(CLASS_NAME_ACTIVE$1);\n this._activateParents(target);\n EventHandler.trigger(this._element, EVENT_ACTIVATE, {\n relatedTarget: target\n });\n }\n _activateParents(target) {\n // Activate dropdown parents\n if (target.classList.contains(CLASS_NAME_DROPDOWN_ITEM)) {\n SelectorEngine.findOne(SELECTOR_DROPDOWN_TOGGLE$1, target.closest(SELECTOR_DROPDOWN)).classList.add(CLASS_NAME_ACTIVE$1);\n return;\n }\n for (const listGroup of SelectorEngine.parents(target, SELECTOR_NAV_LIST_GROUP)) {\n // Set triggered links parents as active\n // With both
    and