-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathICC_A_k.m
46 lines (44 loc) · 1.67 KB
/
ICC_A_k.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function [ICC, LB, UB] = ICC_A_k(DATA, ALPHA)
% Calculate the average rater agreement intraclass correlation coefficient
% [ICC, LB, UB] = ICC_A_k(DATA)
%
% DATA is a numerical matrix of ratings (missing values = NaN).
% Each row is a single item and each column is a single rater.
%
% ALPHA is the Type I error rate for the confidence interval (optional).
%
% ICC is the reliability of the mean of the ratings from the included
% raters. Reliability is gauged as agreement on an absolute scale.
%
% LB and UB are the confidence interval's lower and upper bounds.
%
% (c) Jeffrey M Girard, 2015
%
% Reference: McGraw, K. O., & Wong, S. P. (1996).
% Forming inferences about some intraclass correlation coefficients.
% Psychological Methods, 1(1), 30–46.
%% Remove any missing values
[rowindex, ~] = find(~isfinite(DATA));
DATA(rowindex, :) = [];
%% Calculate mean squares from two-way ANOVA
[~, tbl, ~] = anova2(DATA, 1, 'off');
MSC = max([0 tbl{2, 4}]);
MSR = max([0 tbl{3, 4}]);
MSE = max([0 tbl{4, 4}]);
%% Calculate average rater agreement ICC
[n, k] = size(DATA);
ICC = (MSR - MSE) / (MSR + (MSC - MSE) / n);
%% Calculate the confidence interval if requested
if nargout > 1
if nargin < 2
ALPHA = 0.05;
end
c = ICC / (n * (1 - ICC));
d = 1 + (ICC * (n - 1)) / (n * (1 - ICC));
v = ((c * MSC + d * MSE) ^ 2) / (((c * MSC) ^ 2) / (k - 1) + ((d * MSE) ^ 2) / ((n - 1) * (k - 1)));
FL = finv((1 - ALPHA / 2), (n - 1), v);
FU = finv((1 - ALPHA / 2), v, (n - 1));
LB = (n * (MSR - FL * MSE)) / (FL * (MSC - MSE) + n * MSR);
UB = (n * (FU * MSR - MSE)) / (MSC - MSE + n * FU * MSR);
end
end