forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
242 lines (205 loc) · 8.51 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import json
import math
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# Import BERT model libraries.
from official.bert import bert_models
from official.bert import common_flags
from official.bert import input_pipeline
from official.bert import model_saving_utils
from official.bert import model_training_utils
from official.bert import modeling
from official.bert import optimization
from official.bert import tpu_lib
flags.DEFINE_enum(
'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
'trains the model and evaluates in the meantime. '
'`export_only`: will take the latest checkpoint inside '
'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
'model_export_path', None,
'Path to the directory, where trainined model will be '
'exported.')
# Model training specific flags.
flags.DEFINE_string(
'input_meta_data_path', None,
'Path to file that contains meta data about input '
'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
def get_loss_fn(num_classes, loss_scale=1.0):
"""Gets the classification loss function."""
def classification_loss_fn(labels, logits):
"""Classification loss."""
labels = tf.squeeze(labels)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(
tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(
tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
loss *= loss_scale
return loss
return classification_loss_fn
def run_customized_training(strategy,
bert_config,
input_meta_data,
model_dir,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
warmup_steps,
initial_lr,
init_checkpoint,
use_remote_tpu=False,
custom_callbacks=None):
"""Run BERT classifier training using low-level API."""
max_seq_length = input_meta_data['max_seq_length']
num_classes = input_meta_data['num_labels']
train_input_fn = functools.partial(
input_pipeline.create_classifier_dataset,
FLAGS.train_data_path,
seq_length=max_seq_length,
batch_size=FLAGS.train_batch_size)
eval_input_fn = functools.partial(
input_pipeline.create_classifier_dataset,
FLAGS.eval_data_path,
seq_length=max_seq_length,
batch_size=FLAGS.eval_batch_size,
is_training=False,
drop_remainder=False)
def _get_classifier_model():
classifier_model, core_model = (
bert_models.classifier_model(bert_config, tf.float32, num_classes,
max_seq_length))
classifier_model.optimizer = optimization.create_optimizer(
initial_lr, steps_per_epoch * epochs, warmup_steps)
return classifier_model, core_model
loss_fn = get_loss_fn(num_classes, loss_scale=1.0)
# Defines evaluation metrics function, which will create metrics in the
# correct device and strategy scope.
def metric_fn():
return tf.keras.metrics.SparseCategoricalAccuracy(
'test_accuracy', dtype=tf.float32)
return model_training_utils.run_customized_training_loop(
strategy=strategy,
model_fn=_get_classifier_model,
loss_fn=loss_fn,
model_dir=model_dir,
steps_per_epoch=steps_per_epoch,
steps_per_loop=steps_per_loop,
epochs=epochs,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
eval_steps=eval_steps,
init_checkpoint=init_checkpoint,
metric_fn=metric_fn,
use_remote_tpu=use_remote_tpu,
custom_callbacks=custom_callbacks)
def export_classifier(model_export_path, input_meta_data):
"""Exports a trained model as a `SavedModel` for inference.
Args:
model_export_path: a string specifying the path to the SavedModel directory.
input_meta_data: dictionary containing meta data about input and model.
Raises:
Export path is not specified, got an empty string or None.
"""
if not model_export_path:
raise ValueError('Export path is not specified: %s' % model_export_path)
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
def _model_fn():
return bert_models.classifier_model(bert_config, tf.float32,
input_meta_data['num_labels'],
input_meta_data['max_seq_length'])[0]
model_saving_utils.export_bert_model(
model_export_path, model_fn=_model_fn, checkpoint_dir=FLAGS.model_dir)
def run_bert(strategy, input_meta_data):
"""Run BERT training."""
if FLAGS.mode == 'export_only':
export_classifier(FLAGS.model_export_path, input_meta_data)
return
if FLAGS.mode != 'train_and_eval':
raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
epochs = FLAGS.num_train_epochs
train_data_size = input_meta_data['train_data_size']
steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
eval_steps = int(
math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
if not strategy:
raise ValueError('Distribution strategy has not been specified.')
# Runs customized training loop.
logging.info('Training using customized training loop TF 2.0 with distrubuted'
'strategy.')
use_remote_tpu = (FLAGS.strategy_type == 'tpu' and FLAGS.tpu)
trained_model = run_customized_training(
strategy,
bert_config,
input_meta_data,
FLAGS.model_dir,
epochs,
steps_per_epoch,
FLAGS.steps_per_loop,
eval_steps,
warmup_steps,
FLAGS.learning_rate,
FLAGS.init_checkpoint,
use_remote_tpu=use_remote_tpu)
if FLAGS.model_export_path:
with tf.device(model_training_utils.get_primary_cpu_task(use_remote_tpu)):
model_saving_utils.export_bert_model(
FLAGS.model_export_path, model=trained_model)
return trained_model
def main(_):
# Users should always run this script under TF 2.x
assert tf.version.VERSION.startswith('2.')
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
input_meta_data = json.loads(reader.read().decode('utf-8'))
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
strategy = None
if FLAGS.strategy_type == 'mirror':
strategy = tf.distribute.MirroredStrategy()
elif FLAGS.strategy_type == 'tpu':
# Initialize TPU System.
cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
else:
raise ValueError('The distribution strategy type is not supported: %s' %
FLAGS.strategy_type)
run_bert(strategy, input_meta_data)
if __name__ == '__main__':
flags.mark_flag_as_required('bert_config_file')
flags.mark_flag_as_required('input_meta_data_path')
flags.mark_flag_as_required('model_dir')
app.run(main)