-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
94 lines (77 loc) · 2.94 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import re
import string
import nltk
import json
import os
import pandas as pd
import ssl
import pathlib
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer, WordNetLemmatizer
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
# nltk.download('stopwords')
# nltk.download('punkt')
# nltk.download('wordnet')
# nltk.download('omw-1.4')
def clean_and_tokenize(text):
# Remove HTML tags, URLs, and special characters
text = re.sub(r'<.*?>', '', text)
text = re.sub(r'http\S+', '', text)
text = text.translate(str.maketrans('', '', string.punctuation))
text = text.lower()
tokens = word_tokenize(text)
return tokens
def remove_stopwords(tokens):
# Remove common stop words from the tokens
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word.lower() not in stop_words]
return filtered_tokens
def apply_stemming(tokens):
# Apply stemming using NLTK's Porter Stemmer
porter_stemmer = PorterStemmer()
stemmed_tokens = [porter_stemmer.stem(token) for token in tokens]
return stemmed_tokens
def apply_lemmatization(tokens):
# Apply lemmatization using NLTK's WordNet Lemmatizer
lemmatizer = WordNetLemmatizer()
lemmatized_tokens = [lemmatizer.lemmatize(token) for token in tokens]
return lemmatized_tokens
def load_dataset(jsons_path):
# Load dataset from JSON files
with open(jsons_path, 'r', encoding='utf-8') as file:
dataset = json.load(file)
return dataset
def preprocess_dataset(json_files_directory):
processed_data_list = []
# Iterate through each JSON file in the directory
for filename in os.listdir(json_files_directory):
# Load JSON data from the file
with open(os.path.join(json_files_directory, filename), 'r', encoding='utf-8') as file:
json_data = json.load(file)
bias = json_data.get('bias', None)
# Apply text processing to the 'content_original' field
content_original = json_data.get('content_original', '')
tokens = clean_and_tokenize(content_original)
# if (len(tokens) > 512):
# continue
filtered_tokens = remove_stopwords(tokens)
stemmed_tokens = apply_stemming(filtered_tokens)
lemmatized_tokens = apply_lemmatization(filtered_tokens)
# Append the processed tokens to the DataFrame
processed_tokens_dict = {
'original_tokens': tokens,
'filtered_tokens': filtered_tokens,
'stemmed_tokens': stemmed_tokens,
'lemmatized_tokens': lemmatized_tokens,
'bias': bias
}
# Append the dictionary to the list
processed_data_list.append(processed_tokens_dict)
processed_data = pd.DataFrame(processed_data_list)
return processed_data