-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtraining.py
255 lines (204 loc) · 10.1 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import time
import numpy as np
from env import Env
from utils import one_hot
from models import PolicyNet, Critic
import torch
import torch.nn as nn
from torch.optim import Adam
from datetime import datetime
from tensorboardX import SummaryWriter
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
#------------------------SET PARAMETERS----------------------------
SEED = 17
BATCH_SIZE = 128
N_NODES = 11
N_DEPOT = 1
NUM_LAYERS = 1
CAPACITY = [20,15,10]
MAX_DEMAND = 10
N_VEHICLES = len(CAPACITY)
DIM_STATIC = 2
DIM_DYNAMIC = 1 + N_VEHICLES
DIM_LOAD = N_VEHICLES
DIM_EMBED = 128
MAX_EP_lEN = 16
GAMMA = 0.99
ENTROPY_REG = 0.01
MAX_GRAD_NORM = 2
DROPOUT = 0.1
EMBED_TYPE = 'conv1d'
LOG_INTERVAL = 200
#------------------------SET LOGS WRITER--------------------------
time_id = datetime.now().strftime("%d_%m_%Y")
filename = "experiment1"
log_dir = os.path.join('tensorboardLogs', filename)
writer = SummaryWriter( log_dir = log_dir)
#----------------INITIALIZE ENVIROMENT AND POLICIES----------------
env = Env(seed = SEED, batch_size = BATCH_SIZE, capacity = CAPACITY,
n_nodes = N_NODES, n_depot = N_DEPOT, max_demand = MAX_DEMAND, n_agents = N_VEHICLES)
env_test = Env(seed = SEED+2, batch_size = BATCH_SIZE, capacity = CAPACITY,
n_nodes = N_NODES, n_depot = N_DEPOT, max_demand = MAX_DEMAND, n_agents = N_VEHICLES)
policy = [PolicyNet(batch_size = BATCH_SIZE, n_nodes = N_NODES, n_agents=N_VEHICLES, num_layers = NUM_LAYERS,
dim_s = DIM_STATIC, dim_d = DIM_DYNAMIC,
dim_embed = DIM_EMBED, n_glimpses = 0, embeding_type=EMBED_TYPE,
dropout = DROPOUT).to(device) for i in range(N_VEHICLES)]
value_func = Critic( batch_size = BATCH_SIZE, n_nodes = N_NODES, dim_s = DIM_STATIC,
dim_embed = DIM_EMBED, embeding_type = EMBED_TYPE).to(device)
actor_optimizers = [Adam(i.parameters(), lr=0.0005) for i in policy]
critic_optimizers = Adam(value_func.parameters(), lr=0.0005)
#------------------LOAD TRAINING CHECKPOINT---------------------------
model_dir = 'weights/model_exp_1.pt'
save_dir = 'weights/model_tmp.pt'
policy_name = "policy_agent_X"
value_name = "value_func"
actr_op_name = 'actor_opt_agent_X'
crtc_op_name = 'critic_opt'
if os.path.isfile(model_dir):
print("Loaded params!")
checkpoint = torch.load(model_dir,map_location=device)
trainend_steps = checkpoint['steps']
value_func.load_state_dict(checkpoint[value_name])
critic_optimizers.load_state_dict(checkpoint[crtc_op_name])
for agent_id in range(N_VEHICLES):
p_name = policy_name.replace("X",str(agent_id))
a_opt = actr_op_name.replace("X", str(agent_id))
policy[agent_id].load_state_dict(checkpoint[p_name])
actor_optimizers[agent_id].load_state_dict(checkpoint[a_opt])
else:
trainend_steps = 0
max_steps = 260000
total_steps = max_steps - trainend_steps
#INFO STATE:
#----- o: (position, nodes_locations, demand, load, mask) --- observation
#env.position: [batch_size, n_agents_2] --- vehicle position
#env.input_pnt: [batch_size, n_nodes, 2] --- coordinates nodes
#env.demand: [batch_size, n_nodes] --- demand of each node
#env.load: [batch_size, n_agents] --- load of each agent
#env.mask: [batch_size, n_nodes] --- load of each agent
#GET FIRST STATE
o, d, r = env.reset(), False, 0
print("Training.....")
start_time = time.time()
for epoch in range(total_steps):
actions_ep = []
log_probs_ep = []
rewards_ep = []
values_ep = []
last_hh = [None]*N_VEHICLES
for t in range(int(MAX_EP_lEN) ):
actions = []
actions_one_hot = []
log_probs = []
values = []
rewards = []
for agent_id in range(N_VEHICLES) :
model = policy[agent_id].train()
logits, prob , log_p, last_hh[agent_id] = model(o, last_hh[agent_id], agent_id)
#--------- STOCHASTIC POLICY ----------
prob_dist = torch.distributions.categorical.Categorical( probs = prob)
act = prob_dist.sample() # [ batch size ]
o2, d, r = env.step(act.detach().unsqueeze(1), agent_id)
o = o2
rewards.append( r )
actions.append(act.detach())
actions_one_hot.append(one_hot(act.detach(),N_NODES))
log_probs.append(log_p)
r_step = torch.stack(rewards, dim = 1) #[batch_size, n_agents]
a = torch.stack(actions, dim = 1) #[batch_size, n_agents]
a_oh = torch.stack(actions_one_hot , dim =1) #[batch_size, n_agents, n_nodes]
lp = torch.stack(log_probs, dim = 1) #[batch_size, n_agents, n_nodes]
actions_ep.append(a_oh)
log_probs_ep.append(lp)
rewards_ep.append(r_step)
values = value_func(o)
actions = torch.stack(actions_ep, dim=2).to(device, dtype=torch.float) #[batch_size, n_agents, ep_len, n_nodes]
log_probs = torch.stack(log_probs_ep,dim=2 ) #[batch_size, n_agents, ep_len, n_nodes]
rewards = torch.stack(rewards_ep, dim = 2 ) #[batch_size, n_agents, ep_len]
if epoch % LOG_INTERVAL == 0 :
end_time = time.time() - start_time
total_rewards_agent = torch.sum(rewards,dim=2)
total_rewards_ep = torch.sum(total_rewards_agent, dim=1)
print("--------------- Step: {}, Time: {} -----------------".format( epoch + trainend_steps, time.strftime("%H:%M:%S", time.gmtime(end_time) ) ) )
print( "Mean_train_reward: "+str(torch.mean(total_rewards_ep).detach().cpu().numpy()) )
writer.add_scalar("Mean_train_reward", torch.mean(total_rewards_ep).detach().cpu().numpy(), epoch + trainend_steps)
for agent_id in range(N_VEHICLES):
adv = torch.sum(rewards,(2,1)) - values.detach()
action_log_probs = torch.sum( actions[:,agent_id,:,:]*log_probs[:,agent_id,:,:], dim=2)
sum_log_probs = torch.sum(action_log_probs, dim=1)
#-----------------ACTOR UPDATE---------------------
actor_loss = torch.mean( sum_log_probs*adv ).view(-1,)
actor_optimizers[agent_id].zero_grad()
actor_loss.backward(retain_graph=True)
if MAX_GRAD_NORM is not None:
nn.utils.clip_grad_norm_(policy[agent_id].parameters(), MAX_GRAD_NORM)
actor_optimizers[agent_id].step()
#--------------------------------------------------
#-----------------CRITCI UPDATE---------------------
critic_loss = nn.MSELoss()(values, torch.sum(rewards,(2,1)))
critic_optimizers.zero_grad()
critic_loss.backward(retain_graph=True)
if MAX_GRAD_NORM is not None:
nn.utils.clip_grad_norm_(value_func.parameters(), MAX_GRAD_NORM)
critic_optimizers.step()
#--------------------------------------------------
if epoch % LOG_INTERVAL == 0:
writer.add_scalar("Actor_loss:{}".format(agent_id) , actor_loss.detach().cpu().numpy(), epoch +trainend_steps)
writer.add_scalar("Critic_loss:{}".format(agent_id) , critic_loss.detach().cpu().numpy(), epoch + trainend_steps )
o, d, r, ep_ret, ep_len = env.reset(), False, 0, 0 , 0
#-----------------SAVE CHECKPOINT----------------
if epoch % LOG_INTERVAL == 0:
save_dict = {}
save_dict['steps'] = epoch + trainend_steps
save_dict[value_name] = value_func.state_dict()
save_dict[crtc_op_name] = critic_optimizers.state_dict()
for agent_id in range(N_VEHICLES):
p_name = policy_name.replace("X",str(agent_id))
a_opt = actr_op_name.replace('X',str(agent_id))
save_dict[p_name] = policy[agent_id].state_dict()
save_dict[a_opt] = actor_optimizers[agent_id].state_dict()
if os.path.isfile(save_dir):
torch.save(save_dict, save_dir)
else:
os.mkdir('weights')
torch.save(save_dict, save_dir)
#-----------------TEST TRAINED POLICY----------------
if epoch % (LOG_INTERVAL*2) == 0:
o_t, d_t, r_t = env_test.reset(), False, 0
actions_ep = []
log_probs_ep = []
rewards_ep = []
values_ep = []
last_hh_t = [None]*N_VEHICLES
for t in range(int(MAX_EP_lEN) ):
actions = []
actions_one_hot = []
log_probs = []
values = []
for agent_id in range(N_VEHICLES) :
model = policy[agent_id].eval()
logits, prob , log_p, last_hh_t[agent_id] = model(o_t, last_hh_t[agent_id], agent_id)
#--------- GREEDY POLICY ------------
act = torch.argmax(prob, dim =1) # [ batch size ]
actions.append(act.detach())
ot_2, d_t, r_t = env_test.step(act.detach().unsqueeze(1), agent_id)
o_t = ot_2
values.append( r_t )
r_step = torch.stack(values, dim = 1) #[batch_size, n_agents]
a = torch.stack(actions, dim = 1) #[batch_size, n_agents]
actions_ep.append(a)
rewards_ep.append(r_step)
rewards = torch.stack(rewards_ep, dim = 2 ).sum(dim=2).sum(dim=1) #[batch_size, n_agents, ep_len]
actions = torch.stack(actions_ep, dim = 2 ) #[batch_size, n_agents, ep_len
mean_test_reward = torch.mean(rewards).cpu().numpy()
print(" ------- TESTING: -------")
print("Mean_test_reward: "+str(mean_test_reward) )
print("Unsatisfied demand: ",torch.sum(env_test.demand).item())
print('*depot is node:',str(N_NODES-1))
agent_name = "Actions vehicle: N"
for agent_num in range(N_VEHICLES):
name_a = agent_name.replace('N',str(agent_num))
print(name_a,actions[0,agent_num,:].cpu().numpy())
print("--------------------------------------------------------")
writer.add_scalar("Mean_test_reward" , mean_test_reward, epoch + trainend_steps)