forked from amsikking/microscope_objectives
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoint_spread_function.html
146 lines (108 loc) · 5.14 KB
/
point_spread_function.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
<!-- comment -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Microscope objectives: Point spread function</title>
<link rel="stylesheet" href="stylesheets/style.css">
<link rel="stylesheet" href="stylesheets/prism.css">
<script src="javascript/python-highlighting/prism.js"></script>
<script async src="javascript/Minimal-MathJax/MathJax.js?config=TeX-AMS_CHTML"></script>
<script src="javascript/update_figures.js"></script>
<script src="javascript/reference_list/reference_list.js"></script>
</head>
<body>
<section>
<a href="https://amsikking.github.io/">Home page</a>
<h1>amsikking: Microscope objectives</h1>
<a href="./index.html">Index</a>
<h2>Point spread function</h2>
<p>
From <a class="citation" href="https://www.cambridge.org/us/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-optics-60th-anniversary-edition-7th-edition?format=HB&isbn=9781108477437"
title="Principles of Optics: 60th Anniversary Edition 7th Edition; M. Born and E. Wolf;
p484-491, ISBN-13: 978-1108477437, ISBN-13: 978-1108477437 (eBook),
(2019)">Born 2019</a>, the diffraction limited intensity distribution
near focus is given radially (i.e. in the image plane) by:
\[ I(v,0) = I_0 \left( \frac{2J_1(v)}{v} \right)^2 \tag{1}\]
and along the optic axis by:
\[ I(0,u) = I_0 \left( \frac{\sin(u/4)}{u/4} \right)^2 \tag{2}\]
where,
\[ v = \frac{2 \pi h}{\lambda f}r \tag{3}\]
and,
\[ u = \frac{2 \pi h^2}{\lambda f^2}z \tag{4}\]
where \(J_1\) is the <em>Bessel</em> function (for n=1) and it has
been <em>assumed</em> that \(f \ll h \ll \lambda\) and
\(\lambda f \ll h^2 \) (which may <em>not</em> be strictly true for
many objectives). In the case of infinity correction we can make
the substitution \( \frac{h}{f} = \frac{NA}{n}\) into (3) and (4)
(where we have implicitly used
\( \frac{n_i}{f_i} = - \frac{n_o}{f_o}\)) , and convert to the
vacuum wavelength \( \lambda_0 = n \lambda \) to give:
\[ v = \frac{2 \pi NA}{\lambda_0}r \tag{5}\]
and,
\[ u = \frac{2 \pi NA^2}{n\lambda_0}z \tag{6}\]
For the radial intensity (1) the first zero
\(r_0\) occurs at \(v = \pm 1.22 \pi \) and for the axial intensity
(2) the first zero \(z_0\) occurs at \(u/4 = \pm \pi \). So
substituting into (5) and (6) we see that:
\[ \pm 1.22 = \frac{2 NA}{\lambda_0}r_0 \tag{7}\]
and,
\[ \pm 1 = \frac{1}{4} \frac{2 NA^2}{n\lambda_0}z_0 \tag{8}\]
which we can rearrange to the familiar forms:
\[ r_0 = \pm 0.61 \frac{\lambda_0}{NA} \tag{9}\]
and,
\[ z_0 = \pm 2 \frac{n \lambda_0}{NA^2} \tag{10}\]
</p>
<figure>
<img src="figures/point_spread_function.png" alt="point_spread_function.png">
<figcaption>
(<a href="figures/objective_sketches.odp">.odp sketch</a>)
</figcaption>
</figure>
<p>
The first radial minimum \(r_0\) is often referred to as the
<em>Airy radius</em>, and is also the <em>Rayleigh limit of
resolution</em> (\(r_{min}\)) in a diffraction limited image:
\[ r_{min} = r_0 \tag{11}\]
For the axially intensity, it is traditional to take the
focal tolerance \(\Delta z\) to be the point at which the
intensity has decreased by 20% (like the diffraction limit
for the Strehl ratio), which occurs at \(u \approx 3.2 \):
\[ \pm 3.2 \approx \frac{2 \pi NA^2}{n\lambda_0} \Delta z \tag{12}\]
If we allow \( 3.2 / \pi \sim 1\) then:
\[ \Delta z \approx \pm \frac{1}{2} \frac{n \lambda_0}{NA^2} \tag{13}\]
So finally we see the definition for the traditional
<em>depth of field</em> (\(DOF\)), the range over which the
image appears 'in focus':
\[ DOF = \frac{n \lambda_0}{NA^2} \tag{14}\]
If we apply the <em>Rayleigh limit of resolution</em> in the
axial direction, then \(z_{min} = z_0\), and we see that the
smallest axial feature size we can resolve is twice the
depth of field:
\[ z_{min} = 2 DOF \tag{15}\]
<strong>Note:</strong> Equations (11) and (15) are the generally
accepted as the limits on resolution for an objective lens
(<a class="citation" href="https://doi.org/10.1007/978-0-387-45524-2"
title="Handbook of Biological Confocal Microscopy, third edition;
J. Pawley; p1-4 , Springer US, ISBN 978-0-387-25921-5,
eBook ISBN 978-0-387-45524-2, (2006)">Pawley 2006</a>).
</p>
<p>
In addition to radial intensity (1), it can also be useful
to know the integrated power through a circular aperture
(<a class="citation" href="https://www.cambridge.org/us/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-optics-60th-anniversary-edition-7th-edition?format=HB&isbn=9781108477437"
title="Principles of Optics: 60th Anniversary Edition 7th Edition; M. Born and E. Wolf;
p484-491, ISBN-13: 978-1108477437, ISBN-13: 978-1108477437 (eBook),
(2019)">Born 2019</a>):
\[ P(v,0) = P_0 (1- J_0(v)^2 - J_1(v)^2) \tag{16}\]
(which is about 84% for an aperture of radius \(r_0\))
</p>
<figure>
<img src="figures/psf.png" alt="psf.png">
<figcaption>
(<a href="figures/psf.py">code here</a>)
</figcaption>
</figure>
</section>
</body>
</html>