forked from su2code/SU2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_template.cfg
2541 lines (2475 loc) · 93.9 KB
/
config_template.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: _________________________________________________________ %
% Author: ___________________________________________________________________ %
% Institution: ______________________________________________________________ %
% Date: __________ %
% File Version 8.1.0 "Harrier" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Solver type (EULER, NAVIER_STOKES, RANS,
% INC_EULER, INC_NAVIER_STOKES, INC_RANS,
% NEMO_EULER, NEMO_NAVIER_STOKES,
% FEM_EULER, FEM_NAVIER_STOKES, FEM_RANS, FEM_LES,
% HEAT_EQUATION_FVM, ELASTICITY)
SOLVER= EULER
%
% Specify turbulence model (NONE, SA, SST)
KIND_TURB_MODEL= NONE
%
% Specify versions/corrections of the SST model (V2003m, V1994m, VORTICITY, KATO_LAUNDER, UQ, SUSTAINING, COMPRESSIBILITY-WILCOX, COMPRESSIBILITY-SARKAR, DIMENSIONLESS_LIMIT)
SST_OPTIONS= NONE
%
% Specify versions/corrections of the SA model (NEGATIVE, EDWARDS, WITHFT2, QCR2000, COMPRESSIBILITY, ROTATION, BCM, EXPERIMENTAL)
SA_OPTIONS= NONE
%
% Transition model (NONE, LM)
KIND_TRANS_MODEL= NONE
%
% Value of RMS roughness for transition model
HROUGHNESS= 1.0e-6
%
% Specify versions/correlations of the LM model (LM2015, MALAN, SULUKSNA, KRAUSE, KRAUSE_HYPER, MEDIDA, MEDIDA_BAEDER, MENTER_LANGTRY)
LM_OPTIONS= NONE
%
% Specify subgrid scale model(NONE, IMPLICIT_LES, SMAGORINSKY, WALE, VREMAN)
KIND_SGS_MODEL= NONE
%
% Specify the verification solution(NO_VERIFICATION_SOLUTION, INVISCID_VORTEX,
% RINGLEB, NS_UNIT_QUAD, TAYLOR_GREEN_VORTEX,
% MMS_NS_UNIT_QUAD, MMS_NS_UNIT_QUAD_WALL_BC,
% MMS_NS_TWO_HALF_CIRCLES, MMS_NS_TWO_HALF_SPHERES,
% MMS_INC_EULER, MMS_INC_NS, INC_TAYLOR_GREEN_VORTEX,
% USER_DEFINED_SOLUTION)
KIND_VERIFICATION_SOLUTION= NO_VERIFICATION_SOLUTION
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT)
% Defaults to DISCRETE_ADJOINT for the SU2_*_AD codes, and to DIRECT otherwise.
MATH_PROBLEM= DIRECT
%
% Axisymmetric simulation, only compressible flows (NO, YES)
AXISYMMETRIC= NO
%
% Gravity force
GRAVITY_FORCE= NO
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Discard the data storaged in the solution and geometry files
% e.g. AOA, dCL/dAoA, dCD/dCL, iter, etc.
% Note that AoA in the solution and geometry files is critical
% to aero design using AoA as a variable. (NO, YES)
DISCARD_INFILES= NO
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
% Newtons = kg m/s^2, Pascals = N/m^2,
% Density = kg/m^3, Speed = m/s,
% Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2,
% psf = lbf/ft^2, Density = slug/ft^3,
% Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= SI
%
% List of config files for each zone in a multizone setup with SOLVER=MULTIPHYSICS
% Order here has to match the order in the meshfile if just one is used.
CONFIG_LIST= (configA.cfg, configB.cfg, ...)
%
% ------------------------------- SOLVER CONTROL ------------------------------%
%
% Number of iterations for single-zone problems
ITER= 1
%
% Maximum number of inner iterations
INNER_ITER= 9999
%
% Maximum number of outer iterations (only for multizone problems)
OUTER_ITER= 1
%
% Maximum number of time iterations
TIME_ITER= 1
%
% Convergence field
CONV_FIELD= DRAG
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-10
%
% Iteration number to begin unsteady restarts
RESTART_ITER= 0
%
%% Time convergence monitoring
WINDOW_CAUCHY_CRIT = YES
%
% List of time convergence fields
CONV_WINDOW_FIELD = (TAVG_DRAG, TAVG_LIFT)
%
% Time Convergence Monitoring starts at Iteration WINDOW_START_ITER + CONV_WINDOW_STARTITER
CONV_WINDOW_STARTITER = 0
%
% Epsilon to control the series convergence
CONV_WINDOW_CAUCHY_EPS = 1E-3
%
% Number of elements to apply the criteria
CONV_WINDOW_CAUCHY_ELEMS = 10
%
% ------------------------- TIME-DEPENDENT SIMULATION -------------------------------%
%
% Time domain simulation
TIME_DOMAIN= NO
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER,
% DUAL_TIME_STEPPING-2ND_ORDER, HARMONIC_BALANCE)
TIME_MARCHING= NO
%
% Time Step for dual time stepping simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0
% For the DG-FEM solver it is used as a synchronization time when UNST_CFL_NUMBER != 0.0
TIME_STEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
MAX_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
%% Windowed output time averaging
% Time iteration to start the windowed time average in a direct run
WINDOW_START_ITER = 500
%
% Window used for reverse sweep and direct run. Options (SQUARE, HANN, HANN_SQUARE, BUMP) Square is default.
WINDOW_FUNCTION = SQUARE
%
% Starting direct solver iteration for the unsteady adjoint
UNST_ADJOINT_ITER= 0
%
% ------------------------------- DES Parameters ------------------------------%
%
% Specify Hybrid RANS/LES model (SA_DES, SA_DDES, SA_ZDES, SA_EDDES)
HYBRID_RANSLES= SA_DDES
%
% DES Constant (0.65)
DES_CONST= 0.65
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees, only for compressible flows)
AOA= 1.25
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= REYNOLDS
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K, 518.67 R by default)
FREESTREAM_TEMPERATURE= 288.15
%
% Free-stream VIBRATIONAL temperature (288.15 K, 518.67 R by default)
FREESTREAM_TEMPERATURE_VE= 288.15
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 6.5E6
%
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.0
%
% Free-stream density (1.2886 Kg/m^3, 0.0025 slug/ft^3 by default)
FREESTREAM_DENSITY= 1.2886
%
% Free-stream velocity (1.0 m/s, 1.0 ft/s by default)
FREESTREAM_VELOCITY= ( 1.0, 0.00, 0.00 )
%
% Free-stream viscosity (1.853E-5 N s/m^2, 3.87E-7 lbf s/ft^2 by default)
FREESTREAM_VISCOSITY= 1.853E-5
%
% Free-stream turbulence intensity
FREESTREAM_TURBULENCEINTENSITY= 0.05
%
% Value for freestream intermittency
FREESTREAM_INTERMITTENCY= 1.0
%
% Fix turbulence quantities to far-field values inside an upstream half-space
TURB_FIXED_VALUES= NO
%
% Shift of the half-space on which fixed values are applied.
% It consists of those coordinates whose dot product with the
% normalized far-field velocity is less than this parameter.
TURB_FIXED_VALUES_DOMAIN= -1.0
%
% Free-stream ratio between turbulent and laminar viscosity
FREESTREAM_TURB2LAMVISCRATIO= 10.0
%
% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL
% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------%
%
% Density model within the incompressible flow solver.
% Options are CONSTANT (default), BOUSSINESQ, VARIABLE, or FLAMELET. If VARIABLE,
% an appropriate fluid model must be selected. For FLAMELET, the density is
% retrieved directly from the flamelet manifold.
INC_DENSITY_MODEL= CONSTANT
%
% Solve the energy equation in the incompressible flow solver
INC_ENERGY_EQUATION = NO
%
% Initial density for incompressible flows
% (1.2886 kg/m^3 by default (air), 998.2 Kg/m^3 (water))
INC_DENSITY_INIT= 1.2886
%
% Initial velocity for incompressible flows (1.0,0,0 m/s by default)
INC_VELOCITY_INIT= ( 1.0, 0.0, 0.0 )
%
% Initial temperature for incompressible flows that include the
% energy equation (288.15 K by default). Value is ignored if
% INC_ENERGY_EQUATION is false.
INC_TEMPERATURE_INIT= 288.15
%
% Non-dimensionalization scheme for incompressible flows. Options are
% INITIAL_VALUES (default), REFERENCE_VALUES, or DIMENSIONAL.
% INC_*_REF values are ignored unless REFERENCE_VALUES is chosen.
INC_NONDIM= INITIAL_VALUES
%
% Reference density for incompressible flows (1.0 kg/m^3 by default)
INC_DENSITY_REF= 1.0
%
% Reference velocity for incompressible flows (1.0 m/s by default)
INC_VELOCITY_REF= 1.0
%
% Reference temperature for incompressible flows that include the
% energy equation (1.0 K by default)
INC_TEMPERATURE_REF = 1.0
%
% List of inlet types for incompressible flows. List length must
% match number of inlet markers. Options: VELOCITY_INLET, PRESSURE_INLET.
INC_INLET_TYPE= VELOCITY_INLET
%
% Damping coefficient for iterative updates at pressure inlets. (0.1 by default)
INC_INLET_DAMPING= 0.1
%
% Impose inlet velocity magnitude in the direction of the normal of the inlet face
INC_INLET_USENORMAL= NO
%
% List of outlet types for incompressible flows. List length must
% match number of outlet markers. Options: PRESSURE_OUTLET, MASS_FLOW_OUTLET
INC_OUTLET_TYPE= PRESSURE_OUTLET
%
% Damping coefficient for iterative updates at mass flow outlets. (0.1 by default)
INC_OUTLET_DAMPING= 0.1
%
% Bulk Modulus for computing the Mach number
BULK_MODULUS= 1.42E5
% Epsilon^2 multipier in Beta calculation for incompressible preconditioner.
BETA_FACTOR= 4.1
%
% ----------------------------- SOLID ZONE HEAT VARIABLES-----------------------%
%
% Thermal conductivity used for heat equation
THERMAL_CONDUCTIVITY_CONSTANT= 0.0
%
% Solids temperature at freestream conditions
FREESTREAM_TEMPERATURE= 288.15
%
% Density used in solids
MATERIAL_DENSITY= 2710.0
%
% ----------------------------- CL DRIVER DEFINITION ---------------------------%
%
% Activate fixed lift mode (specify a CL instead of AoA, NO/YES)
FIXED_CL_MODE= NO
%
% Target coefficient of lift for fixed lift mode (0.80 by default)
TARGET_CL= 0.80
%
% Estimation of dCL/dAlpha (0.2 per degree by default)
DCL_DALPHA= 0.2
%
% Maximum number of iterations between AoA updates
UPDATE_AOA_ITER_LIMIT= 100
%
% Number of times Alpha is updated in a fix CL problem.
UPDATE_IH= 5
%
% Number of iterations to evaluate dCL_dAlpha by using finite differences (500 by default)
ITER_DCL_DALPHA= 500
%
% Evaluate the dOF_dCL or dOF_dCMy during run time
EVAL_DOF_DCX= NO
%
% Damping factor for thrust BC (actuator disk).
NETTHRUST_DBCTHRUST= 1.0
%
% parameter for the definition of a complex objective function
DCD_DCL_VALUE= 0.0
%
% parameter for the definition of a complex objective function
DCMX_DCL_VALUE= 0.0
%
% parameter for the definition of a complex objective function
DCMY_DCL_VALUE= 0.0
%
% parameter for the definition of a complex objective function
DCMZ_DCL_VALUE= 0.0
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for moment non-dimensional coefficients (m or in)
REF_LENGTH= 1.0
%
% Reference velocity (incompressible only)
REF_VELOCITY= 1.0
%
% Reference viscosity (incompressible only)
REF_VISCOSITY= 1.0
%
% Reference area for non-dimensional force coefficients (0 implies automatic
% calculation) (m^2 or in^2)
REF_AREA= 1.0
%
% Aircraft semi-span (0 implies automatic calculation) (m or in)
SEMI_SPAN= 0.0
% ---- NONEQUILIBRIUM GAS, IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS, CoolProp library -------%
%
% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS,
% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY, MUTATIONPP, SU2_NONEQ, FLUID_MIXTURE, COOLPROP, FLUID_FLAMELET, DATADRIVEN_FLUID)
FLUID_MODEL= STANDARD_AIR
% To find all available fluid name for CoolProp library, clikc the following link:
% http://www.coolprop.org/fluid_properties/PurePseudoPure.html#list-of-fluids
FLUID_NAME = nitrogen
% Ratio of specific heats (1.4 default and the value is hardcoded
% for the model STANDARD_AIR, compressible only)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded
% for the model STANDARD_AIR, compressible only)
GAS_CONSTANT= 287.058
%
% Critical Temperature (131.00 K by default)
CRITICAL_TEMPERATURE= 131.00
%
% Critical Pressure (3588550.0 N/m^2 by default)
CRITICAL_PRESSURE= 3588550.0
%
% Critical Density (263.0 kg/m^3 by default)
CRITICAL_DENSITY= 263.0
%
% Acentric factor (0.035 (air))
ACENTRIC_FACTOR= 0.035
%
% Thermodynamics(operating) Pressure (101325 Pa default value, only for incompressible flow and FLUID_MIXTURE)
THERMODYNAMIC_PRESSURE= 101325.0
%
% Specific heat at constant pressure, Cp (1004.703 J/kg*K (air)).
% Incompressible fluids with energy eqn. (CONSTANT_DENSITY, INC_IDEAL_GAS) and the heat equation.
SPECIFIC_HEAT_CP= 1004.703
%
% Thermal expansion coefficient (0.00347 K^-1 (air))
% Used with Boussinesq approx. (incompressible, BOUSSINESQ density model only)
THERMAL_EXPANSION_COEFF= 0.00347
%
% Molecular Weights of species for an incompressible ideal gas (28.96 g/mol (air) default),
% For multispecies, we have N Molecular weights: W_1, W_2,...., W_N
MOLECULAR_WEIGHT= 28.96, 16.043
%
% Temperature polynomial coefficients (up to quartic) for specific heat Cp.
% Format -> Cp(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
CP_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
%
% --- Nonequilibrium fluid options
%
% Gas model - mixture
GAS_MODEL= AIR-5
%
% Initial gas composition in mass fractions
GAS_COMPOSITION= (0.77, 0.23, 0.0, 0.0, 0.0)
%
% Freeze chemical reactions
FROZEN_MIXTURE= NO
%
% Datadriven fluid model
% For data-driven fluid models, an interpolation algorithm is used to retrieve the thermodynamic state for a given density and internal energy
% Interpolation method for thermodynamic state calculation for data-driven fluid model or flamelet fluid model.
% (MLP for multi-layer perceptron, LUT for 2D or 3D, unstructured look-up table)
INTERPOLATION_METHOD= MLP
% Name of the input file containing the information required for the interpolator to function.
% Provide list of .mlp files (See https://github.com/EvertBunschoten/MLPCpp for more information.)
% when using the MLP option for INTERPOLATION_METHOD
% or a single .drg file for the LUT INTERPOLATION_METHOD option.
FILENAMES_INTERPOLATOR= (MLP_1.mlp, MLP_2.mlp, MLP_3.mlp)
% Relaxation factor for the Newton solvers in the data-driven fluid model
DATADRIVEN_NEWTON_RELAXATION= 0.8
%
% Specify if there is ionization
IONIZATION= NO
%
% Specify if there is VT transfer residual limiting
VT_RESIDUAL_LIMITING= NO
%
% NEMO Inlet Options
INLET_TEMPERATURE_VE = 288.15
INLET_GAS_COMPOSITION = (0.77, 0.23, 0.0, 0.0, 0.0)
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY, POLYNOMIAL_VISCOSITY, FLAMELET).
VISCOSITY_MODEL= SUTHERLAND
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.716E-5
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4
%
% Temperature polynomial coefficients (up to quartic) for viscosity.
% Format -> Mu(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
MU_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Laminar Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL,
% POLYNOMIAL_CONDUCTIVITY, FLAMELET).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Molecular Thermal Conductivity that would be constant (0.0257 by default)
THERMAL_CONDUCTIVITY_CONSTANT= 0.0257
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Temperature polynomial coefficients (up to quartic) for conductivity.
% Format -> Kt(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
KT_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
%
% Definition of the turbulent thermal conductivity model for RANS
% (CONSTANT_PRANDTL_TURB by default, NONE).
TURBULENT_CONDUCTIVITY_MODEL= CONSTANT_PRANDTL_TURB
%
% Turbulent Prandtl number (0.9 (air) by default)
PRANDTL_TURB= 0.90
% ----------------------- DYNAMIC MESH DEFINITION -----------------------------%
%
% Type of dynamic mesh (NONE, RIGID_MOTION, ROTATING_FRAME,
% STEADY_TRANSLATION, GUST)
% ROTATING_FRAME: This option considers both parameters ROTATION_RATE and
% TRANSLATION_RATE, which allows to simulate a free-flying aircraft (in a flight
% mechanical sense) which moves and rotates in all six degrees of freedom about
% the center of gravity. In this context, the farfield MACH number is set to
% zero and MACH_MOTION is used instead to compute force coefficients.
% STEADY_TRANSLATION: This option considers only the parameter TRANSLATION_RATE.
%
GRID_MOVEMENT= NONE
%
% Motion mach number (non-dimensional). Used for initializing a viscous flow
% with the Reynolds number and for computing force coeffs. with dynamic meshes.
MACH_MOTION= 0.8
%
% Coordinates of the motion origin
MOTION_ORIGIN= 0.25 0.0 0.0
%
% Angular velocity vector (rad/s) about the motion origin
ROTATION_RATE = 0.0 0.0 0.0
%
% Pitching angular freq. (rad/s) about the motion origin
PITCHING_OMEGA= 0.0 0.0 0.0
%
% Pitching amplitude (degrees) about the motion origin
PITCHING_AMPL= 0.0 0.0 0.0
%
% Pitching phase offset (degrees) about the motion origin
PITCHING_PHASE= 0.0 0.0 0.0
%
% Translational velocity (m/s or ft/s) in the x, y, & z directions
TRANSLATION_RATE = 0.0 0.0 0.0
%
% Plunging angular freq. (rad/s) in x, y, & z directions
PLUNGING_OMEGA= 0.0 0.0 0.0
%
% Plunging amplitude (m or ft) in x, y, & z directions
PLUNGING_AMPL= 0.0 0.0 0.0
%
% Type of dynamic surface movement (NONE, DEFORMING, MOVING_WALL,
% AEROELASTIC, AEROELASTIC_RIGID_MOTION EXTERNAL, EXTERNAL_ROTATION)
SURFACE_MOVEMENT= NONE
%
% Moving wall boundary marker(s) (NONE = no marker, ignored for RIGID_MOTION)
MARKER_MOVING= ( NONE )
%
% Coordinates of the motion origin
SURFACE_MOTION_ORIGIN= 0.25
%
% Angular velocity vector (rad/s) about the motion origin
SURFACE_ROTATION_RATE = 0.0 0.0 0.0
%
% Pitching angular freq. (rad/s) about the motion origin
SURFACE_PITCHING_OMEGA= 0.0 0.0 0.0
%
% Pitching amplitude (degrees) about the motion origin
SURFACE_PITCHING_AMPL= 0.0 0.0 0.0
%
% Pitching phase offset (degrees) about the motion origin
SURFACE_PITCHING_PHASE= 0.0 0.0 0.0
%
% Translational velocity (m/s or ft/s) in the x, y, & z directions
SURFACE_TRANSLATION_RATE = 0.0 0.0 0.0
%
% Plunging angular freq. (rad/s) in x, y, & z directions
SURFACE_PLUNGING_OMEGA= 0.0 0.0 0.0
%
% Plunging amplitude (m or ft) in x, y, & z directions
SURFACE_PLUNGING_AMPL= 0.0 0.0 0.0
%
% Move Motion Origin for marker moving (1 or 0)
MOVE_MOTION_ORIGIN = 0
% ------------------------- BUFFET SENSOR DEFINITION --------------------------%
%
% Compute the Kenway-Martins separation sensor for buffet-onset detection
% If BUFFET objective/constraint is specified, the objective is given by
% the integrated sensor normalized by reference area
%
% See doi: 10.2514/1.J055172
%
% Evaluate buffet sensor on Navier-Stokes markers (NO, YES)
BUFFET_MONITORING= NO
%
% Sharpness coefficient for the buffet sensor Heaviside function
BUFFET_K= 10.0
%
% Offset parameter for the buffet sensor Heaviside function
BUFFET_LAMBDA= 0.0
% -------------- AEROELASTIC SIMULATION (Typical Section Model) ---------------%
%
% Activated by GRID_MOVEMENT_KIND option
%
% The flutter speed index (modifies the freestream condition in the solver)
FLUTTER_SPEED_INDEX = 0.6
%
% Natural frequency of the spring in the plunging direction (rad/s)
PLUNGE_NATURAL_FREQUENCY = 100
%
% Natural frequency of the spring in the pitching direction (rad/s)
PITCH_NATURAL_FREQUENCY = 100
%
% The airfoil mass ratio
AIRFOIL_MASS_RATIO = 60
%
% Distance in semichords by which the center of gravity lies behind
% the elastic axis
CG_LOCATION = 1.8
%
% The radius of gyration squared (expressed in semichords)
% of the typical section about the elastic axis
RADIUS_GYRATION_SQUARED = 3.48
%
% Solve the aeroelastic equations every given number of internal iterations
AEROELASTIC_ITER = 3
% --------------------------- GUST SIMULATION ---------------------------------%
%
% Apply a wind gust (NO, YES)
WIND_GUST = NO
%
% Type of gust (NONE, TOP_HAT, SINE, ONE_M_COSINE, VORTEX, EOG)
GUST_TYPE = NONE
%
% Direction of the gust (X_DIR, Y_DIR or Z_DIR)
GUST_DIR = Y_DIR
%
% Gust wavelenght (meters)
% Note for 1-cos gusts: this is the full gust length, not the gust gradient H (half gust length) as used for example in CS-25.
GUST_WAVELENGTH= 10.0
%
% Number of gust periods
GUST_PERIODS= 1.0
%
% Gust amplitude (m/s)
GUST_AMPL= 10.0
%
% Time at which to begin the gust (sec)
GUST_BEGIN_TIME= 0.0
%
% Location at which the gust begins (meters) */
GUST_BEGIN_LOC= 0.0
% ------------------------ SUPERSONIC SIMULATION ------------------------------%
% MARKER_NEARFIELD needs to be defined on a circumferential boundary within
% calculation domain so that it captures pressure disturbance from the model.
% The boundary should have a structured grid with the same number of nodes
% along each azimuthal angle.
% To run inverse design using target equivalent area, TargetEA.dat is required.
%
% Evaluate equivalent area on the Near-Field (NO, YES)
EQUIV_AREA= NO
%
% Integration limits of the equivalent area ( xmin, xmax, Dist_NearField )
EA_INT_LIMIT= ( 1.6, 2.9, 1.0 )
%
% Equivalent area scale factor ( EA should be ~ force based objective functions )
EA_SCALE_FACTOR= 1.0
%
% Fix an azimuthal line due to misalignments of the near-field
FIX_AZIMUTHAL_LINE= 90.0
%
% Drag weight in sonic boom Objective Function (from 0.0 to 1.0)
DRAG_IN_SONICBOOM= 0.0
% -------------------------- ENGINE SIMULATION --------------------------------%
%
% Evaluate a problem with engines
ENGINE= NO
%
% Highlite area to compute MFR (1 in2 by default)
HIGHLITE_AREA= 1.0
%
% Fan polytropic efficiency (1.0 by default)
FAN_POLY_EFF= 1.0
%
% Only half engine is in the computational grid (NO, YES)
ENGINE_HALF_MODEL= NO
%
% Evaluation Frequency for Engine and Actuator Disk Markers
BC_EVAL_FREQ = 40
%
% Damping factor for the engine inflow.
DAMP_ENGINE_INFLOW= 0.95
%
% Damping factor for the engine exhaust.
DAMP_ENGINE_EXHAUST= 0.95
%
% Engine nu factor (SA model).
ENGINE_NU_FACTOR= 3.0
%
% Actuator disk jump definition using ratio or difference (DIFFERENCE, RATIO)
ACTDISK_JUMP= DIFFERENCE
%
% secondary flow value for actuator disk
ACTDISK_SECONDARY_FLOW= 0.0
%
% Actuator disk double surface
ACTDISK_DOUBLE_SURFACE= NO
%
%
% Number of times BC Thrust is updated in a fix Net Thrust problem (5 by default)
UPDATE_BCTHRUST= 100
%
% Initial BC Thrust guess for POWER or D-T driver (4000.0 lbf by default)
INITIAL_BCTHRUST= 4000.0
%
% Initialization with a subsonic flow around the engine.
SUBSONIC_ENGINE= NO
%
% Axis of the cylinder that defines the subsonic region (A_X, A_Y, A_Z, B_X, B_Y, B_Z, Radius)
SUBSONIC_ENGINE_CYL= ( 0.0, 0.0, 0.0, 1.0, 0.0 , 0.0, 1.0 )
%
% Flow variables that define the subsonic region (Mach, Alpha, Beta, Pressure, Temperature)
SUBSONIC_ENGINE_VALUES= ( 0.4, 0.0, 0.0, 2116.216, 518.67 )
%
% Definition of the distortion rack (radial number of proves / circumferential density (degree)
DISTORTION_RACK= (0.0, 0.0)
% ------------------------- TURBOMACHINERY SIMULATION -------------------------%
%
% Specify kind of architecture for each zone (AXIAL, CENTRIPETAL, CENTRIFUGAL,
% CENTRIPETAL_AXIAL, AXIAL_CENTRIFUGAL)
TURBOMACHINERY_KIND= CENTRIPETAL CENTRIPETAL_AXIAL
%
% Specify the machine architecture for performance analysis (TURBINE, COMPRESSOR, PROPELLOR)
%
TURBO_PERF_KIND = TURBINE TURBINE
%
% Specify kind of interpolation for the mixing-plane (LINEAR_INTERPOLATION,
% NEAREST_SPAN, MATCHING)
MIXINGPLANE_INTERFACE_KIND= LINEAR_INTERPOLATION
%
% Specify option for turbulent mixing-plane (YES, NO) default NO
TURBULENT_MIXINGPLANE= YES
%
% Specify ramp option for Outlet pressure (YES, NO) default NO
RAMP_OUTLET_PRESSURE= NO
%
% Parameters of the outlet pressure ramp (starting outlet pressure,
% updating-iteration-frequency, total number of iteration for the ramp)
RAMP_OUTLET_PRESSURE_COEFF= (400000.0, 10.0, 500)
%
% Specify ramp option for rotating frame (YES, NO) default NO
RAMP_ROTATING_FRAME= YES
%
% Parameters of the rotating frame ramp (starting rotational speed,
% updating-iteration-frequency, total number of iteration for the ramp)
RAMP_ROTATING_FRAME_COEFF= (0.0, 39.0, 500)
%
% Specify Kind of average process for linearizing the Navier-Stokes
% equation at inflow and outflow BCs included at the mixing-plane interface
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
AVERAGE_PROCESS_KIND= MIXEDOUT
%
% Specify Kind of average process for computing turbomachinery performance parameters
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
PERFORMANCE_AVERAGE_PROCESS_KIND= MIXEDOUT
%
% Parameters of the Newton method for the MIXEDOUT average algorithm
% (under relaxation factor, tollerance, max number of iterations)
MIXEDOUT_COEFF= (1.0, 1.0E-05, 15)
%
% Limit of Mach number below which the mixedout algorithm is substituted
% with a AREA average algorithm to avoid numerical issues
AVERAGE_MACH_LIMIT= 0.05
%
% Integer number of periodic time instances for Harmonic Balance
TIME_INSTANCES= 1
%
% Time period for Harmonic Balance wihtout moving meshes
HB_PERIOD= -1
%
% Turn on/off harmonic balance preconditioning
HB_PRECONDITION= NO
%
% Omega_HB = 2*PI*frequency - frequencies for Harmonic Balance method
OMEGA_HB= (0,1.0,-1.0)
%
% Determines if the single-zone driver is used. (deprecated)
SINGLEZONE_DRIVER= NO
%
% Determines if the special output is written out
SPECIAL_OUTPUT= NO
% ------------------- RADIATIVE HEAT TRANSFER SIMULATION ----------------------%
%
% Type of radiation model (NONE, P1)
RADIATION_MODEL = NONE
%
% Kind of initialization of the P1 model (ZERO, TEMPERATURE_INIT)
P1_INITIALIZATION = TEMPERATURE_INIT
%
% Absorption coefficient
ABSORPTION_COEFF = 1.0
%
% Scattering coefficient
SCATTERING_COEFF = 0.0
%
% Apply a volumetric heat source as a source term (NO, YES) in the form of an ellipsoid (YES, NO)
HEAT_SOURCE = NO
%
% Value of the volumetric heat source
HEAT_SOURCE_VAL = 1.0E6
%
% Rotation of the volumetric heat source respect to Z axis (degrees)
HEAT_SOURCE_ROTATION_Z = 0.0
%
% Position of heat source center (Heat_Source_Center_X, Heat_Source_Center_Y, Heat_Source_Center_Z)
HEAT_SOURCE_CENTER = ( 0.0, 0.0, 0.0 )
%
% Vector of heat source radii (Heat_Source_Radius_A, Heat_Source_Radius_B, Heat_Source_Radius_C)
HEAT_SOURCE_AXES = ( 1.0, 1.0, 1.0 )
%
% Wall emissivity of the marker for radiation purposes
MARKER_EMISSIVITY = ( MARKER_NAME, 1.0 )
%
% Courant-Friedrichs-Lewy condition of the finest grid in radiation solvers
CFL_NUMBER_RAD = 1.0E3
%
% Time discretization for radiation problems (EULER_IMPLICIT)
TIME_DISCRE_RADIATION = EULER_IMPLICIT
% --------------------- SPECIES TRANSPORT SIMULATION --------------------------%
%
% Specify scalar transport model (NONE, SPECIES_TRANSPORT, FLAMELET)
KIND_SCALAR_MODEL= NONE
%
% mixing model for species transport (DAVIDSON, WILKE)
MIXING_VISCOSITY_MODEL= DAVIDSON
%
% Mass diffusivity model (CONSTANT_DIFFUSIVITY, CONSTANT_SCHMIDT, UNITY_LEWIS, CONSTANT_LEWIS, FLAMELET)
DIFFUSIVITY_MODEL= CONSTANT_DIFFUSIVITY
%
% Mass diffusivity if DIFFUSIVITY_MODEL= CONSTANT_DIFFUSIVITY is chosen. D_air ~= 0.001
DIFFUSIVITY_CONSTANT= 0.001
%
% Laminar Schmidt number for mass diffusion (for constant schmidt number model)
SCHMIDT_NUMBER_LAMINAR= 1.0
% Turbulent Schmidt number of mass diffusion
SCHMIDT_NUMBER_TURBULENT= 0.7
%
% list of constant Lewis numbers for all species for
CONSTANT_LEWIS_NUMBER= (1,1,1)
%
% Inlet Species boundary marker(s) with the following format:
% (inlet_marker, Species1, Species2, ..., SpeciesN-1, inlet_marker2, Species1, Species2, ...)
% For N species, N-1 transport equations are solved, the last one Y_N is solved algebraically as 1-(sum of the species 1 to (N-1))
MARKER_INLET_SPECIES= (inlet, 0.5, ..., inlet2, 0.6, ...)
%
% Convective numerical method for species transport (SCALAR_UPWIND, BOUNDED_SCALAR)
CONV_NUM_METHOD_SPECIES= SCALAR_UPWIND
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the species equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_SPECIES= NO
%
% Slope limiter for species equations (same as SLOPE_LIMITER_TURB)
SLOPE_LIMITER_SPECIES = NONE
%
% Time discretization for species equations (EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_SPECIES= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the species problem
CFL_REDUCTION_SPECIES= 1.0
%
% Initial values for scalar transport
SPECIES_INIT= 1.0
%
% Activate clipping for scalar transport equations
SPECIES_CLIPPING= NO
%
% Maximum values for scalar clipping
SPECIES_CLIPPING_MAX= 1.0
%
% Minimum values for scalar clipping
SPECIES_CLIPPING_MIN= 0.0
% --------------------- FLAMELET MODEL -----------------------------%
% The flamelet model uses the prompts INTERPOLATION_METHOD and FILENAMES_INTERPOLATOR
% for definition of the flamelet manifold. Either LUT or MLP can be used as options.
% If the terms "Beta_ProgVar", "Beta_Enth_Thermal", "Beta_Enth", and "Beta_Mixfrac" are
% found in the variables list of the manifold, preferential diffusion is assumed.
%
% Names of the user defined (auxiliary) transport equations.
USER_SCALAR_NAMES= (Y-CO)
%
% Names of the source terms for the user defined transport equations. The source term
% has the form
% S = S_production + S_consumption * Y, with Y the mass fraction of the user scalar
% S = S_production + S_consumption * X, with X the mole fraction of the user scalar
% The second term can have the name "zero" or "null" to indicate that only a total source
% will be used.
USER_SOURCE_NAMES= ( ProdRateTot_Y-CO, zero)
%
% Names of variables from the LUT that will be looked up for visualization
LOOKUP_NAMES= (MolarWeightMix, Conductivity, HeatRelease, Diffusivity)
%
% Names of the controlling variables used to evaluate the look-up table and for which
% transported scalar variables are generated. These names should coincide with those
% listed in the look-up table.
CONTROLLING_VARIABLE_NAMES= (ProgressVariable, EnthalpyTot)
% Names of the source term variables as they are present in the look-up table. For
% controlling variables without source terms, use "zero" or "null", similar to the
% option USER_SOURCE_NAMES.
CONTROLLING_VARIABLE_SOURCE_NAMES= (ProdRateTot_PV, NULL)
% Method used to ignite the solution:
% FLAME_FRONT : the flame is initialized using a plane, defined by a point and a normal. On one side, the solution is initialized
% using 'burnt' conditions and on the other side 'unburnt' conditions. The normal points in the direction of the 'burnt'
% condition.
% SPARK : the solution is ignited through application of a set of source terms within a specified region for a set number
% of solver iterations. This artificial spark can be applied after a certain number of iterations has passed, allowing for
% the flow to evolve before igniting the mixture.
% NONE : no artificial solution ignition.
% By default, this option is set to NONE
FLAME_INIT_METHOD= FLAME_FRONT
% Enable preferential diffusion for progress variable, total enthalpy, mixture fraction FGM problems.
% If 'YES', the preferential diffusion model from Efimov et al.(2021) is used for computing the viscous residual terms.
% If enabled, make sure the variables "Beta_ProgVar", "Beta_Enth_Thermal", "Beta_Enth", and "Beta_MixFrac", corresponding
% to the preferential diffusion terms of the progress variable, temperature, total enthalpy, and mixture fraction
% respectively are included in the manifold.
% By default, this option is disabled.
PREFERENTIAL_DIFFUSION= NO
% FLAME_FRONT initialization
% the flame is initialized using a plane, defined by a point and a normal. On one side, the solution is initialized
% using 'burnt' conditions and on the other side 'unburnt' conditions. The normal points in the direction of the 'burnt'
% condition.
% (x1,x2,x3) = point on the plane.
% (x4,x5,x6) = normal of the plane.
% (x7) = thickness of the reaction zone, this is the transition from unburnt to burnt conditions.
% (x8) = Thickness of the 'burnt' zone, after this length, the conditions will be 'unburnt' again.
FLAME_INIT= (0.004, 0.0, 0.0, 1.0, 0.0, 0.0, 0.2e-3, 1.0)
% SPARK initialization
% the solution is ignited through application of a set of source terms within a specified region for a set number
% of solver iterations. This artificial spark can be applied after a certain number of iterations has passed, allowing for
% the flow to evolve before igniting the mixture.
% (x1,x2,x3) = spark center location.
% (x4) = spark radius where within the artificial spark is applied.
% (x5,x6) = spark iteration start and number of iterations in which the artifical spark is applied. For single-zone problems
% the number of iterations are inner-loop iterations, for multi-zone problems, outer-loop iterations are considered.
SPARK_INIT= (0.004, 0.0, 0.0, 1e-4, 100, 10)
% Source terms (density times species time rate of change) applied to the species equations in the spark region for the duration of the spark.
% The number of terms should equate the total number of species in the flamelet problem.
SPARK_REACTION_RATES= (1000, 0, 0)
%
% --------------------- INVERSE DESIGN SIMULATION -----------------------------%
%
% Evaluate an inverse design problem using Cp (NO, YES)
INV_DESIGN_CP= NO
%
% Evaluate an inverse design problem using heat flux (NO, YES)
INV_DESIGN_HEATFLUX= NO
% ----------------------- BODY FORCE DEFINITION -------------------------------%
%
% Apply a body force as a source term (NO, YES)
BODY_FORCE= NO
%
% Vector of body force values (BodyForce_X, BodyForce_Y, BodyForce_Z)
BODY_FORCE_VECTOR= ( 0.0, 0.0, 0.0 )
% --------------------------- VORTICITY_CONFINEMENT ---------------------------%
%
% Enable vorticity confinement (YES/NO)
VORTICITY_CONFINEMENT = NO
% Set confinement parameter (0.00 by default)
CONFINEMENT_PARAM = 0.00
% --------------------- STREAMWISE PERIODICITY DEFINITION ---------------------%
%
% Generally for streamwise periodictiy one has to set MARKER_PERIODIC= (<inlet>, <outlet>, ...)
% appropriately as a boundary condition.
%
% Specify type of streamwise periodictiy (default=NONE, PRESSURE_DROP, MASSFLOW)
KIND_STREAMWISE_PERIODIC= NONE
%
% Delta P [Pa] value that drives the flow as a source term in the momentum equations.
% Defaults to 1.0.
STREAMWISE_PERIODIC_PRESSURE_DROP= 1.0
%
% Target massflow [kg/s]. Necessary pressure drop is determined iteratively.
% Initial value is given via STREAMWISE_PERIODIC_PRESSURE_DROP. Default value 1.0.
% Use INC_OUTLET_DAMPING as a relaxation factor. Default value 0.1 is a good start.
STREAMWISE_PERIODIC_MASSFLOW= 0.0
%
% Use streamwise periodic temperature (default=NO, YES)
% If NO, the heatflux is taken out at the outlet.
% This option is only necessary if INC_ENERGY_EQUATION=YES
STREAMWISE_PERIODIC_TEMPERATURE= NO
%
% Prescribe integrated heat [W] extracted at the periodic "outlet".
% Only active if STREAMWISE_PERIODIC_TEMPERATURE= NO.
% If set to zero, the heat is integrated automatically over all present MARKER_HEATFLUX.
% Upon convergence, the area averaged inlet temperature will be INC_TEMPERATURE_INIT.
% Defaults to 0.0.
STREAMWISE_PERIODIC_OUTLET_HEAT= 0.0