-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathformal.html
35 lines (32 loc) · 1.78 KB
/
formal.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
<div class="modal-header">
<button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button>
<h4 class="modal-title"><i>Formal Definition</i></h4>
</div>
<div class="modal-body">
<div class="te">
<p>A Turing machine is formally defined (one-tape) as a 7-tuple <b><i>M = ( Q, Γ, b, ∑, δ, q0, F
)</i></b> where: </p>
<ul class="list-group">
<li class="list-group-item"><b>Q</b> is a finite, non-empty set of states</li>
<li class="list-group-item"><b>Γ</b> is a finite, non-empty set of the tape <i>alphabet/symbols</i>
</li>
<li class="list-group-item"><b>b ∈ Γ</b> is the blank symbol (the only symbol allowed to occur on
the tape infinitely often at any step during the computation)
</li>
<li class="list-group-item"><b>∑ ⊆ Γ ∖ {b}</b> is the set of input symbols</li>
<li class="list-group-item"><b>q0 ∈ Q</b> is the initial state</li>
<li class="list-group-item"><b>F ⊆ Q</b> is the set of final or accepting states.</li>
<li class="list-group-item"><b> δ: Q ∖ F × Γ →
Q × Γ × {L,R}</b> is a partial function called the transition function, where L is
left shift, R is right shift.
</li>
</ul>
<blockquote>
<p><i>Anything that operates according to these specifications is a Turing machine.</i></p>
<footer>Hopcroft and Ullman (1979, p. 148)</footer>
</blockquote>
</div>
</div>
<div class="modal-footer">
<button type="button" class="btn btn-success" data-dismiss="modal">Close</button>
</div>