forked from hdevalence/notes-processor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotes-processor.py
executable file
·124 lines (115 loc) · 3.88 KB
/
notes-processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# Python script to automatically convert poor-quality
# photos of paper with writing on them into duotone images.
import sys
import cv2
import numpy as np
import os.path
import multiprocessing
from itertools import starmap
NBHD_SIZE = 19
UNSHARP_T = 48
ADAPT_T = 24
INVERT = False
ASPECT = 8.5/11.0
def processImage(fname):
print "Processing %s" % fname
source = cv2.imread(fname,cv2.CV_LOAD_IMAGE_GRAYSCALE)
if INVERT:
source = 255 - source
return bitone(warpSheet(source))
def bitone(image):
'''
Convert a greyscale image to a bitone image,
in such a way that we preserve as much detail as possible,
and have the least amount of speckles.
'''
# First, sharpen the image: unsharp mask w/ threshold.
blur = cv2.blur(image,(NBHD_SIZE,NBHD_SIZE))
diff = cv2.absdiff(image,blur)
# Apparently OpenCV doesn't have a way to
# apply a mask to a weighted sum, so we do it ourselves.
_,mask = cv2.threshold(blur,UNSHARP_T,1,cv2.THRESH_BINARY)
blur = cv2.multiply(blur,mask)
sharpened = cv2.addWeighted(image,2,blur,-1,0)
cv2.imwrite('sharp.png',sharpened)
# Now threshold the sharpened image.
thresh = cv2.adaptiveThreshold(sharpened, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
NBHD_SIZE, ADAPT_T)
return thresh
def findPaper(image):
'''
Try to find a sheet of paper contained in the image.
Return the contour or raise ValueError if none found.
'''
squares = []
# Blur image to emphasize bigger features.
blur = cv2.blur(image,(2,2))
retval, edges = cv2.threshold(blur,0,255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(edges,
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
clen = cv2.arcLength(c,True)
c = cv2.approxPolyDP(c,0.02*clen,True)
area = abs(cv2.contourArea(c))
if len(c) == 4 and \
0.1*edges.size <= area <= 0.9*edges.size and \
cv2.isContourConvex(c):
squares.append(c)
return max(squares,key=lambda s: cv2.arcLength(s,True))
def warpSheet(image):
'''
Automatically crops an image to paper size if possible.
'''
try:
sheet = findPaper(image)
except ValueError:
return image
h, w = image.shape
src = sheet[::,0,::].astype('float32')
# Compute distances from topleft corner (0,0)
# to find topleft and bottomright
d = np.sum(np.abs(src)**2,axis=-1)**0.5
t_l = np.argmin(d)
b_r = np.argmax(d)
# Compute distances from topright corner (w,0)
# to find topright and bottomleft
y = np.array([[w,0],]*4)
d = np.sum(np.abs(src-y)**2,axis=-1)**0.5
t_r = np.argmin(d)
b_l = np.argmax(d)
#Now assemble these together
if h >= w:
destH, destW = h, int(h*ASPECT)
else:
destW, destH = h, int(h*ASPECT)
dest = np.zeros(src.shape,dtype='float32')
dest[t_l] = np.array([0,0])
dest[t_r] = np.array([destW,0])
dest[b_l] = np.array([0,destH])
dest[b_r] = np.array([destW,destH])
transform = cv2.getPerspectiveTransform(src,dest)
return cv2.warpPerspective(image,transform,(destW,destH))
def rename(originalName):
d,f = os.path.split(originalName)
f,ext = os.path.splitext(f)
return os.path.join(d,'p_%s.png' %f)
if __name__ == "__main__":
if len(sys.argv) == 1:
print "Usage: notes-processor.py [-i] files"
print "-i inverts images."
else:
if sys.argv[1] == "-i":
INVERT = True
files = sys.argv[2:]
else:
files = sys.argv[1:]
pool = multiprocessing.Pool()
processed = pool.map(processImage,files)
newnames = map(rename,files)
for n,i in zip(newnames,processed):
cv2.imwrite(n,i)