-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
70 lines (55 loc) · 2.18 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from flask import Flask, request
from flask_cors import CORS
import pickle
import pandas as pd
import ast
import datetime as dt
import numpy as np
import requests as r
import os
from scripts import api_helper_functions
# import argparse
# parser = argparse.ArgumentParser(description = 'Enter the amount of days to retrieve information from')
# parser.add_argument("mlsNumber", help='A natural number for the number of days to retrieve information from', metavar='days')
# args = parser.parse_args()
# listing_df, type_ = api_helper_functions.get_listing(args.mlsNumber)
# if type_ == 'lease':
# df_listing = api_helper_functions.feature_engineer_single_listing(listing_df, lease_columns, lease_feat_index)
# model = lease_model
# else:
# df_listing = api_helper_functions.feature_engineer_single_listing(listing_df, sale_columns, sale_feat_index)
# model = sale_model
# value = predict_listing(df_listing, model)
# print(str(value[0]))
def predict_listing(df, model):
print(model)
y_pred = model.predict(df)
return str(np.round(y_pred[0], 0))
sale_file = pickle.load(open(os.getcwd()+"\\models\\sale_model_parameters.sav", 'rb'))
lease_file = pickle.load(open(os.getcwd()+"\\models\\lease_model_parameters.sav", 'rb'))
sale_model = sale_file['model']
sale_columns = sale_file['columns']
sale_feat_index = sale_file['idx']
lease_model = lease_file['model']
lease_columns = lease_file['columns']
lease_feat_index = lease_file['idx']
print(sale_model)
print(lease_model)
app = Flask(__name__)
CORS(app)
@app.route("/predict", methods = ["GET", "POST"])
def predict():
data = request.args.get('mlsNumber')
listing_df, type_ = api_helper_functions.get_listing(data)
print(type_)
if type_.lower() == 'lease':
df_listing = api_helper_functions.feature_engineer_single_listing(listing_df, lease_columns, lease_feat_index)
model = lease_model
print(model)
else:
df_listing = api_helper_functions.feature_engineer_single_listing(listing_df, sale_columns, sale_feat_index)
model = sale_model
value = predict_listing(df_listing, model)
return {"prediction": value}
if __name__ == "__main__":
app.run(host='0.0.0.0', port = 8000)