forked from bycloudai/animegan2-pytorch-Windows
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
90 lines (71 loc) · 2.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import torch
import cv2
import numpy as np
import os
from model import Generator
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def load_image(image_path, x32=False):
img = cv2.imread(image_path).astype(np.float32)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
if x32: # resize image to multiple of 32s
def to_32s(x):
return 256 if x < 256 else x - x%32
img = cv2.resize(img, (to_32s(w), to_32s(h)))
img = torch.from_numpy(img)
img = img/127.5 - 1.0
return img
def test(args):
device = args.device
net = Generator()
net.load_state_dict(torch.load(args.checkpoint, map_location="cpu"))
net.to(device).eval()
print(f"model loaded: {args.checkpoint}")
os.makedirs(args.output_dir, exist_ok=True)
for image_name in sorted(os.listdir(args.input_dir)):
if os.path.splitext(image_name)[-1].lower() not in [".jpg", ".png", ".bmp", ".tiff"]:
continue
image = load_image(os.path.join(args.input_dir, image_name), args.x32)
with torch.no_grad():
input = image.permute(2, 0, 1).unsqueeze(0).to(device)
out = net(input, args.upsample_align).squeeze(0).permute(1, 2, 0).cpu().numpy()
out = (out + 1)*127.5
out = np.clip(out, 0, 255).astype(np.uint8)
cv2.imwrite(os.path.join(args.output_dir, image_name), cv2.cvtColor(out, cv2.COLOR_BGR2RGB))
print(f"image saved: {image_name}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint',
type=str,
default='./pytorch_generator_Paprika.pt',
)
parser.add_argument(
'--input_dir',
type=str,
default='./samples/inputs',
)
parser.add_argument(
'--output_dir',
type=str,
default='./samples/results',
)
parser.add_argument(
'--device',
type=str,
default='cuda:0',
)
parser.add_argument(
'--upsample_align',
type=bool,
default=False,
)
parser.add_argument(
'--x32',
action="store_true",
)
args = parser.parse_args()
test(args)