-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_snippets_clustering.R
284 lines (241 loc) · 10.3 KB
/
text_snippets_clustering.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
library(readxl)
NormalizationResults <- read_excel("~/Documentos/Markus/Text clustering/NormalizationResults_002_cut.xlsx", col_names = FALSE)
NormalizationResults_FullDocument <- read_excel("~/Documentos/Markus/Text clustering/NormalizationResults_003_cut.xlsx", col_names = FALSE)
# OkapiBM25
# strsplit(pangram, " ") --> To split a string into vector
# Create a vector with all the different snippets
snippet_dictionary <- c()
split_snippets_list <- c()
for (i in 1:nrow(NormalizationResults)) {
text_snippets_split <- unlist(strsplit(as.character(NormalizationResults[i,2]), " "))
split_snippets_list[[i]] <- text_snippets_split
for (j in 1:length(text_snippets_split)) {
if (!(text_snippets_split[j] %in% snippet_dictionary)) {
snippet_dictionary <- c(snippet_dictionary, text_snippets_split[j])
}
}
}
idf <- c()
for (i in 1:length(snippet_dictionary)) {
docs_with_term = 0
for (j in 1:length(split_snippets_list)) {
if (snippet_dictionary[i] %in% split_snippets_list[[j]]) {
docs_with_term <- docs_with_term + 1
}
}
idf <- c(idf, (log(nrow(NormalizationResults))/(docs_with_term)))
}
names(idf) = snippet_dictionary
# Create matrix of vectors
total_lengths <-c()
for (i in 1:length(split_snippets_list)) {
total_lengths <- c(total_lengths, length(split_snippets_list[[i]]))
}
avgdl <- mean(total_lengths) #avgdl = average documents' length
mapping_vector_matrix <- matrix(NA, nrow = length(snippet_dictionary), ncol = 0)
rownames(mapping_vector_matrix) = snippet_dictionary
mapping_vector_matrix_tf.idf <- matrix(NA, nrow = length(snippet_dictionary), ncol = 0)
rownames(mapping_vector_matrix_tf.idf) = snippet_dictionary
k1 = 1.5 # k1 in [1.2,2.0]
b = 0.75
for (i in 1:length(split_snippets_list)) {
appending_vector <- integer(length(snippet_dictionary))
for (j in 1:length(split_snippets_list[[i]])) {
match_position <- match(split_snippets_list[[i]][j], snippet_dictionary)
appending_vector[match_position] <- appending_vector[match_position] + 1
}
appending_vector_tf.idf <- integer(length(idf))
for (k in 1:length(idf)) {
#appending_vector_tf.idf[k] <- appending_vector[k]*idf[k] # Without Okapi
appending_vector_tf.idf[k] <- idf[k]*((appending_vector[k]*(k1+1))/(appending_vector[k]+(k1*(1-b+b*(length(split_snippets_list[[i]])/avgdl))))) # With Okapi
}
mapping_vector_matrix <- cbind(mapping_vector_matrix, appending_vector)
mapping_vector_matrix_tf.idf <- cbind(mapping_vector_matrix_tf.idf, appending_vector_tf.idf)
colnames(mapping_vector_matrix)[ncol(mapping_vector_matrix)] <- paste("Doc", ncol(mapping_vector_matrix), sep = " ")
colnames(mapping_vector_matrix_tf.idf)[ncol(mapping_vector_matrix_tf.idf)] <- paste("Doc", ncol(mapping_vector_matrix_tf.idf), sep = " ")
}
mapping_vector_matrix <- scale(mapping_vector_matrix)
mapping_vector_matrix_tf.idf <- scale(mapping_vector_matrix_tf.idf)
## Clustering process ##
#distances <- dist(t(mapping_vector_matrix), method = "euclidian")
#distances_tf.idf <- dist(t(mapping_vector_matrix_tf.idf), method = "euclidian")
library(proxy)
distances_tf.idf_cos.sim <- dist(t(mapping_vector_matrix_tf.idf), method = "cosine")
#dendrogram<- hclust(t(distances), method="average")
#dendrogram_tf.idf<- hclust(t(distances_tf.idf), method="average")
dendrogram_tf.idf_cos.sim<- hclust(t(distances_tf.idf_cos.sim), method="average")
#plot(dendrogram, hang=-0.3, cex=0.4)
#plot(dendrogram_tf.idf, hang=-0.3, cex=0.4)
plot(dendrogram_tf.idf_cos.sim, hang = -1, cex=0.4)
#cor.pe <- cor(as.matrix(t(mapping_vector_matrix)), method=c("pearson"))
#cor.pe.col <- cor(as.matrix(mapping_vector_matrix), method=c("pearson")) #cosine similarity
library(coop)
#cosine_cor <- cosine(as.matrix(mapping_vector_matrix))
cosine_cor_tf.idf <- cosine(as.matrix(mapping_vector_matrix_tf.idf))
# Cosine Similarity
#cos.sim <- function(ix)
#{
# A = mapping_vector_matrix[ix[1],]
# B = mapping_vector_matrix[ix[2],]
# return( sum(A*B)/sqrt(sum(A^2)*sum(B^2)) )
#}
#n <- nrow(mapping_vector_matrix)
#cmb <- expand.grid(i=1:n, j=1:n)
#cosine_cor <- matrix(apply(cmb,1,cos.sim),n,n)
#correlation heatmap
library(reshape2)
#melted_cor.pe.col <- melt(cor.pe.col)
#melted_cosine_cor <- melt(cosine_cor)
melted_cosine_cor_tf.idf <- melt(cosine_cor_tf.idf)
library(ggplot2)
#ggplot(data = melted_cor.pe.col, aes(x=Var1, y=Var2, fill=value)) +
# geom_tile()
#ggplot(data = melted_cosine_cor, aes(x=Var1, y=Var2, fill=value)) +
# geom_tile()
ggplot(data = melted_cosine_cor_tf.idf, aes(x=Var1, y=Var2, fill=value)) +
geom_tile()
#heatmap.2(cor.pe.col, Rowv=FALSE, Colv=FALSE, dendrogram='none', cellnote=cor.pe.col, notecol="black", trace='none', key=FALSE)
#dist.pe <- as.dist(1-cor.pe)
#dist.pe.col <- as.dist(1-cor.pe.col)
#dist.cos <- as.dist(1-cosine_cor)
#dist.cos_tf.idf <- as.dist(1-cosine_cor_tf.idf)
#library(proxy)
#dist.cos_tf.idf <- dist(cosine_cor_tf.idf, method = "cosine")
# Hierarchical clustering
#dendrogram.pearson <- hclust(dist.pe,method="average")
#dendrogram.pearson.col <- hclust(dist.pe.col,method="average")
#dendrogram.cos <- hclust(dist.cos, method = "average")
#dendrogram.cos_tf.idf <- hclust(dist.cos_tf.idf, method = "average")
#plot(dendrogram.pearson ,main="Documents grouped by Pearson",hang=-1, cex=0.3)
#plot(dendrogram.pearson.col,main="Documents grouped by Pearson",hang=-1, cex=0.3)
#plot(dendrogram.cos, main = "Documents grouped by cosine similarity", hang = -1, cex = 0.5)
#plot(dendrogram.cos_tf.idf, main = "Documents grouped by cosine similarity using tf-idf matrix", hang = -1, cex = 0.5)
#abline(h=0.5, col="red")
# Cutting trees at a fixed height
#cutree(dendrogram.cos, h = 0.5)
#cutree(dendrogram.cos_tf.idf, h = .95)
cutree(dendrogram_tf.idf_cos.sim, h=0.95)
#clusters <- cutree(dendrogram.cos, h = 0.5)
#clusters_tf.idf <- cutree(dendrogram.cos_tf.idf, h = 0.95)
clusters_tf.idf_cos.sim <- cutree(dendrogram_tf.idf_cos.sim, h=0.90)
# Substite numbered documents by document itself
clusters_variable <- clusters_tf.idf_cos.sim
clusters_doc <- character(max(clusters_variable))
for (i in 1:length(clusters_variable)) {
cluster_number <- clusters_variable[i]
if (clusters_doc[cluster_number] == "") {
clusters_doc[cluster_number] <- as.character(NormalizationResults_FullDocument[i,2])
}
else {
clusters_doc[cluster_number] <- paste(clusters_doc[cluster_number], as.character(NormalizationResults_FullDocument[i,2]), sep=", ")
}
}
clusters_doc
# Represent every cluster separated
library(dendextend)
library(colorspace)
#dend_color <- color_branches(dendrogram.cos, h = 0.5)
#plot(dend_color)
#labels_dend <- labels(dend_color)
#groups <- cutree(dend_color, h=0.5, order_clusters_as_data = FALSE)
#dends <- list()
#for(i in 1:max(clusters)) {
# labels_to_keep <- labels_dend[i != groups]
# dends[[i]] <- prune(dend_color, labels_to_keep)
#}
#par(mfrow = c(2,3))
#for(i in 1:max(clusters)) {
# plot(dends[[i]],
# main = paste0("Tree number ", i))
#}
#par(mfrow = c(1,1))
# tf.idf
dend_color_tf.idf <- color_branches(dendrogram.cos_tf.idf, h = 0.87)
par(mfrow = c(1,1))
plot(dend_color_tf.idf)
labels_dend_tf.idf <- labels(dend_color_tf.idf)
groups_tf.idf <- cutree(dend_color_tf.idf, h=0.87, order_clusters_as_data = FALSE)
dends_tf.idf <- list()
for(i in 1:max(clusters_tf.idf)) {
labels_to_keep_tf.idf <- labels_dend_tf.idf[i != groups_tf.idf]
dends_tf.idf[[i]] <- prune(dend_color_tf.idf, labels_to_keep_tf.idf)
}
par(mfrow = c(2,3))
for(i in 1:max(clusters_tf.idf)) {
plot(dends_tf.idf[[i]],
main = paste0("Tree number ", i))
}
par(mfrow = c(1,1))
# Hierarchical clustering (alternative method)
library(pvclust)
hc <- pvclust(cosine_cor, method.hclust="average",
method.dist="correlation")
plot(hc)
pvrect(hc, alpha=.85, pv = "bp")
hc_tf.idf <- pvclust(cosine_cor_tf.idf, method.hclust="average",
method.dist="correlation")
plot(hc_tf.idf)
pvrect(hc_tf.idf, alpha=.60, pv = "bp")
pvpick(hc_tf.idf, alpha = .60, pv = "bp")
#heatmap(as.matrix(mapping_vector_matrix),
#Rowv=as.dendrogram(dendrogram.pearson),
#Colv=as.dendrogram(dendrogram.pearson.col), cexRow = 0.3, cexCol = 0.3)
# Iterative clustering (using kmeans)
k<-c(50)
dat.kmeans <- kmeans(t(mapping_vector_matrix),k,iter.max=1000)
dat.kmeans
clusters_doc_kmeans <- character(max(dat.kmeans$cluster))
for (i in 1:length(dat.kmeans$cluster)) {
cluster_number <- dat.kmeans$cluster[i]
if (clusters_doc_kmeans[cluster_number] == "") {
clusters_doc_kmeans[cluster_number] <- as.character(NormalizationResults_FullDocument[i,2])
}
else {
clusters_doc_kmeans[cluster_number] <- paste(clusters_doc_kmeans[cluster_number], as.character(NormalizationResults_FullDocument[i,2]), sep=", ")
}
}
clusters_doc_kmeans
#par(mfrow=c(2,3))
#for(i in 1:k){
# matplot(t(mapping_vector_matrix_tf.idf[dat.kmeans$cluster == i,]), type = "l",
# main=paste("cluster:",i),ylab="expression log",xlab="Docs")
#}
#par(mfrow=c(1,1))
library(cluster)
#dat.gap.kmeans <- clusGap(mapping_vector_matrix, kmeans, K.max = 20)
#dat.gap.kmeans
library(fpc)
t_mapping_vector_matrix_tf.idf <- t(mapping_vector_matrix_tf.idf)
pamk(t_mapping_vector_matrix_tf.idf, krange = 2:60)
pam_data <- pamk(t_mapping_vector_matrix_tf.idf, krange = 2:60)
# K-Means Cluster Analysis
fit <- kmeans(t_mapping_vector_matrix_tf.idf, pam_data$nc) # 49 cluster solution
clusters_doc_kmeans <- character(max(fit$cluster))
for (i in 1:length(fit$cluster)) {
cluster_number <- fit$cluster[i]
if (clusters_doc_kmeans[cluster_number] == "") {
clusters_doc_kmeans[cluster_number] <- as.character(NormalizationResults_FullDocument[i,2])
}
else {
clusters_doc_kmeans[cluster_number] <- paste(clusters_doc_kmeans[cluster_number], as.character(NormalizationResults_FullDocument[i,2]), sep=", ")
}
}
clusters_doc_kmeans
# get cluster means
#aggregate(t_mapping_vector_matrix,by=list(fit$cluster),FUN=mean)
# append cluster assignment
#mapping_vector_matrix_cluster <- rbind(mapping_vector_matrix, cluster = t(fit$cluster))
#rownames(mapping_vector_matrix_cluster)[nrow(mapping_vector_matrix_cluster)] <- "Cluster"
# Number of Docs in every cluster
#H <- table(t(fit$cluster))
#barplot(H)
# Groups of docs
#data.kmedoid <- pam(mapping_vector_matrix, k=49)
#clusplot(data.kmedoid)
#DBScan
library(dbscan)
k=60
kNNdistplot(t(mapping_vector_matrix_tf.idf), k)
abline(h=45, col="red")
dat.dbscan <- dbscan(t(mapping_vector_matrix_tf.idf),eps=42, minPts = 5, borderPoints = FALSE)
dat.dbscan