-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathsimplex-noise.ts
500 lines (473 loc) · 17.6 KB
/
simplex-noise.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
* A fast javascript implementation of simplex noise by Jonas Wagner
Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
Which is based on example code by Stefan Gustavson ([email protected]).
With Optimisations by Peter Eastman ([email protected]).
Better rank ordering method by Stefan Gustavson in 2012.
Copyright (c) 2024 Jonas Wagner
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// these __PURE__ comments help uglifyjs with dead code removal
//
const SQRT3 = /*#__PURE__*/ Math.sqrt(3.0);
const SQRT5 = /*#__PURE__*/ Math.sqrt(5.0);
const F2 = 0.5 * (SQRT3 - 1.0);
const G2 = (3.0 - SQRT3) / 6.0;
const F3 = 1.0 / 3.0;
const G3 = 1.0 / 6.0;
const F4 = (SQRT5 - 1.0) / 4.0;
const G4 = (5.0 - SQRT5) / 20.0;
// I'm really not sure why this | 0 (basically a coercion to int)
// is making this faster but I get ~5 million ops/sec more on the
// benchmarks across the board or a ~10% speedup.
const fastFloor = (x: number) => Math.floor(x) | 0;
const grad2 = /*#__PURE__*/ new Float64Array([1, 1,
-1, 1,
1, -1,
-1, -1,
1, 0,
-1, 0,
1, 0,
-1, 0,
0, 1,
0, -1,
0, 1,
0, -1]);
// double seems to be faster than single or int's
// probably because most operations are in double precision
const grad3 = /*#__PURE__*/ new Float64Array([1, 1, 0,
-1, 1, 0,
1, -1, 0,
-1, -1, 0,
1, 0, 1,
-1, 0, 1,
1, 0, -1,
-1, 0, -1,
0, 1, 1,
0, -1, 1,
0, 1, -1,
0, -1, -1]);
// double is a bit quicker here as well
const grad4 = /*#__PURE__*/ new Float64Array([0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1,
0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1,
1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1,
-1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1,
1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1,
-1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1,
1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0,
-1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0]);
/**
* A random() function, must return a number in the interval [0,1), just like Math.random().
*/
export type RandomFn = () => number;
/**
* Samples the noise field in two dimensions
*
* Coordinates should be finite, bigger than -2^31 and smaller than 2^31.
* @param x
* @param y
* @returns a number in the interval [-1, 1]
*/
export type NoiseFunction2D = (x: number, y: number) => number;
/**
* Creates a 2D noise function
* @param random the random function that will be used to build the permutation table
* @returns {NoiseFunction2D}
*/
export function createNoise2D(random: RandomFn = Math.random): NoiseFunction2D {
const perm = buildPermutationTable(random);
// precalculating this yields a little ~3% performance improvement.
const permGrad2x = new Float64Array(perm).map(v => grad2[(v % 12) * 2]);
const permGrad2y = new Float64Array(perm).map(v => grad2[(v % 12) * 2 + 1]);
return function noise2D(x: number, y: number): number {
// if(!isFinite(x) || !isFinite(y)) return 0;
let n0 = 0; // Noise contributions from the three corners
let n1 = 0;
let n2 = 0;
// Skew the input space to determine which simplex cell we're in
const s = (x + y) * F2; // Hairy factor for 2D
const i = fastFloor(x + s);
const j = fastFloor(y + s);
const t = (i + j) * G2;
const X0 = i - t; // Unskew the cell origin back to (x,y) space
const Y0 = j - t;
const x0 = x - X0; // The x,y distances from the cell origin
const y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
let i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
i1 = 1;
j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {
i1 = 0;
j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
const y1 = y0 - j1 + G2;
const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
const y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
const ii = i & 255;
const jj = j & 255;
// Calculate the contribution from the three corners
let t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 >= 0) {
const gi0 = ii + perm[jj];
const g0x = permGrad2x[gi0];
const g0y = permGrad2y[gi0];
t0 *= t0;
// n0 = t0 * t0 * (grad2[gi0] * x0 + grad2[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient
n0 = t0 * t0 * (g0x * x0 + g0y * y0);
}
let t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 >= 0) {
const gi1 = ii + i1 + perm[jj + j1];
const g1x = permGrad2x[gi1];
const g1y = permGrad2y[gi1];
t1 *= t1;
// n1 = t1 * t1 * (grad2[gi1] * x1 + grad2[gi1 + 1] * y1);
n1 = t1 * t1 * (g1x * x1 + g1y * y1);
}
let t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 >= 0) {
const gi2 = ii + 1 + perm[jj + 1];
const g2x = permGrad2x[gi2];
const g2y = permGrad2y[gi2];
t2 *= t2;
// n2 = t2 * t2 * (grad2[gi2] * x2 + grad2[gi2 + 1] * y2);
n2 = t2 * t2 * (g2x * x2 + g2y * y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
};
}
/**
* Samples the noise field in three dimensions
*
* Coordinates should be finite, bigger than -2^31 and smaller than 2^31.
* @param x
* @param y
* @param z
* @returns a number in the interval [-1, 1]
*/
export type NoiseFunction3D = (x: number, y: number, z: number) => number;
/**
* Creates a 3D noise function
* @param random the random function that will be used to build the permutation table
* @returns {NoiseFunction3D}
*/
export function createNoise3D(random: RandomFn = Math.random): NoiseFunction3D {
const perm = buildPermutationTable(random);
// precalculating these seems to yield a speedup of over 15%
const permGrad3x = new Float64Array(perm).map(v => grad3[(v % 12) * 3]);
const permGrad3y = new Float64Array(perm).map(v => grad3[(v % 12) * 3 + 1]);
const permGrad3z = new Float64Array(perm).map(v => grad3[(v % 12) * 3 + 2]);
return function noise3D(x: number, y: number, z: number): number {
let n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
const s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
const i = fastFloor(x + s);
const j = fastFloor(y + s);
const k = fastFloor(z + s);
const t = (i + j + k) * G3;
const X0 = i - t; // Unskew the cell origin back to (x,y,z) space
const Y0 = j - t;
const Z0 = k - t;
const x0 = x - X0; // The x,y,z distances from the cell origin
const y0 = y - Y0;
const z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
let i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
let i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // X Y Z order
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} // X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
}
else { // x0<y0
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} // Z Y X order
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} // Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
const y1 = y0 - j1 + G3;
const z1 = z0 - k1 + G3;
const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
const y2 = y0 - j2 + 2.0 * G3;
const z2 = z0 - k2 + 2.0 * G3;
const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
const y3 = y0 - 1.0 + 3.0 * G3;
const z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
const ii = i & 255;
const jj = j & 255;
const kk = k & 255;
// Calculate the contribution from the four corners
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) n0 = 0.0;
else {
const gi0 = ii + perm[jj + perm[kk]];
t0 *= t0;
n0 = t0 * t0 * (permGrad3x[gi0] * x0 + permGrad3y[gi0] * y0 + permGrad3z[gi0] * z0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) n1 = 0.0;
else {
const gi1 = ii + i1 + perm[jj + j1 + perm[kk + k1]];
t1 *= t1;
n1 = t1 * t1 * (permGrad3x[gi1] * x1 + permGrad3y[gi1] * y1 + permGrad3z[gi1] * z1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) n2 = 0.0;
else {
const gi2 = ii + i2 + perm[jj + j2 + perm[kk + k2]];
t2 *= t2;
n2 = t2 * t2 * (permGrad3x[gi2] * x2 + permGrad3y[gi2] * y2 + permGrad3z[gi2] * z2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) n3 = 0.0;
else {
const gi3 = ii + 1 + perm[jj + 1 + perm[kk + 1]];
t3 *= t3;
n3 = t3 * t3 * (permGrad3x[gi3] * x3 + permGrad3y[gi3] * y3 + permGrad3z[gi3] * z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3);
};
}
/**
* Samples the noise field in four dimensions
*
* Coordinates should be finite, bigger than -2^31 and smaller than 2^31.
* @param x
* @param y
* @param z
* @param w
* @returns a number in the interval [-1, 1]
*/
export type NoiseFunction4D = (x: number, y: number, z: number, w: number) => number;
/**
* Creates a 4D noise function
* @param random the random function that will be used to build the permutation table
* @returns {NoiseFunction4D}
*/
export function createNoise4D(random: RandomFn = Math.random): NoiseFunction4D {
const perm = buildPermutationTable(random);
// precalculating these leads to a ~10% speedup
const permGrad4x = new Float64Array(perm).map(v => grad4[(v % 32) * 4]);
const permGrad4y = new Float64Array(perm).map(v => grad4[(v % 32) * 4 + 1]);
const permGrad4z = new Float64Array(perm).map(v => grad4[(v % 32) * 4 + 2]);
const permGrad4w = new Float64Array(perm).map(v => grad4[(v % 32) * 4 + 3]);
return function noise4D(x: number, y: number, z: number, w: number): number {
let n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
const s = (x + y + z + w) * F4; // Factor for 4D skewing
const i = fastFloor(x + s);
const j = fastFloor(y + s);
const k = fastFloor(z + s);
const l = fastFloor(w + s);
const t = (i + j + k + l) * G4; // Factor for 4D unskewing
const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
const Y0 = j - t;
const Z0 = k - t;
const W0 = l - t;
const x0 = x - X0; // The x,y,z,w distances from the cell origin
const y0 = y - Y0;
const z0 = z - Z0;
const w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
let rankx = 0;
let ranky = 0;
let rankz = 0;
let rankw = 0;
if (x0 > y0) rankx++;
else ranky++;
if (x0 > z0) rankx++;
else rankz++;
if (x0 > w0) rankx++;
else rankw++;
if (y0 > z0) ranky++;
else rankz++;
if (y0 > w0) ranky++;
else rankw++;
if (z0 > w0) rankz++;
else rankw++;
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
// Rank 2 denotes the second largest coordinate.
// Rank 1 denotes the second smallest coordinate.
// The integer offsets for the second simplex corner
const i1 = rankx >= 3 ? 1 : 0;
const j1 = ranky >= 3 ? 1 : 0;
const k1 = rankz >= 3 ? 1 : 0;
const l1 = rankw >= 3 ? 1 : 0;
// The integer offsets for the third simplex corner
const i2 = rankx >= 2 ? 1 : 0;
const j2 = ranky >= 2 ? 1 : 0;
const k2 = rankz >= 2 ? 1 : 0;
const l2 = rankw >= 2 ? 1 : 0;
// The integer offsets for the fourth simplex corner
const i3 = rankx >= 1 ? 1 : 0;
const j3 = ranky >= 1 ? 1 : 0;
const k3 = rankz >= 1 ? 1 : 0;
const l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
const y1 = y0 - j1 + G4;
const z1 = z0 - k1 + G4;
const w1 = w0 - l1 + G4;
const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
const y2 = y0 - j2 + 2.0 * G4;
const z2 = z0 - k2 + 2.0 * G4;
const w2 = w0 - l2 + 2.0 * G4;
const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
const y3 = y0 - j3 + 3.0 * G4;
const z3 = z0 - k3 + 3.0 * G4;
const w3 = w0 - l3 + 3.0 * G4;
const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
const y4 = y0 - 1.0 + 4.0 * G4;
const z4 = z0 - 1.0 + 4.0 * G4;
const w4 = w0 - 1.0 + 4.0 * G4;
// Work out the hashed gradient indices of the five simplex corners
const ii = i & 255;
const jj = j & 255;
const kk = k & 255;
const ll = l & 255;
// Calculate the contribution from the five corners
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0) n0 = 0.0;
else {
const gi0 = ii + perm[jj + perm[kk + perm[ll]]];
t0 *= t0;
n0 = t0 * t0 * (permGrad4x[gi0] * x0 + permGrad4y[gi0] * y0 + permGrad4z[gi0] * z0 + permGrad4w[gi0] * w0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0) n1 = 0.0;
else {
const gi1 = ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]];
t1 *= t1;
n1 = t1 * t1 * (permGrad4x[gi1] * x1 + permGrad4y[gi1] * y1 + permGrad4z[gi1] * z1 + permGrad4w[gi1] * w1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0) n2 = 0.0;
else {
const gi2 = ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]];
t2 *= t2;
n2 = t2 * t2 * (permGrad4x[gi2] * x2 + permGrad4y[gi2] * y2 + permGrad4z[gi2] * z2 + permGrad4w[gi2] * w2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0) n3 = 0.0;
else {
const gi3 = ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]];
t3 *= t3;
n3 = t3 * t3 * (permGrad4x[gi3] * x3 + permGrad4y[gi3] * y3 + permGrad4z[gi3] * z3 + permGrad4w[gi3] * w3);
}
let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0) n4 = 0.0;
else {
const gi4 = ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]];
t4 *= t4;
n4 = t4 * t4 * (permGrad4x[gi4] * x4 + permGrad4y[gi4] * y4 + permGrad4z[gi4] * z4 + permGrad4w[gi4] * w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
};
}
/**
* Builds a random permutation table.
* This is exported only for (internal) testing purposes.
* Do not rely on this export.
* @private
*/
export function buildPermutationTable(random: RandomFn): Uint8Array {
const tableSize = 512;
const p = new Uint8Array(tableSize);
for (let i = 0; i < tableSize / 2; i++) {
p[i] = i;
}
for (let i = 0; i < tableSize / 2 - 1; i++) {
const r = i + ~~(random() * (256 - i));
const aux = p[i];
p[i] = p[r];
p[r] = aux;
}
for (let i = 256; i < tableSize; i++) {
p[i] = p[i - 256];
}
return p;
}