-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
277 lines (247 loc) · 9.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
from typing import List
import torch
import torch.nn as nn
from src.arguments import parse_args
from src.dataset.dataset_factory import (
get_graph_ddb_dataloaders,
get_graph_medina_dataloaders,
get_zero_shot_graph_ddb_dataloaders,
)
from src.dataset.datasets.ddb_graph_dataset import GraphDDBDataset
from src.dataset.datasets.medina_graph_dataset import GraphMedinaDataset
from src.featurizer.featurizer import Featurizer
from src.featurizer.simple_featurizer import SimpleAtomFeaturizer
from src.loss.mf_loss import NoPriorMFMSELoss
from src.loss.pmf.pmf_entropy_loss import GaussianPMFVIEntropyLoss
from src.loss.pmf.pmf_kl_loss import GaussianPMFVIKLLoss
from src.model.graph.net.film import FiLM
from src.model.graph_pmf import GraphPriorProbabilisticMatrixFactorization
from src.model.mf import MatrixFactorization
from src.model.mlp import MLP
from src.model.pmf import (
GaussianProbabilisticMatrixFactorization,
GaussianProbabilisticMatrixFactorizationWithoutBias,
)
from src.model.sum_formula_mf import SumFormulaMatrixFactorization
from src.model.sum_formula_pmf import SumFormulaPriorProbabilisticMatrixFactorization
from src.trainer.ddb_graph_pmf import GraphPriorPMFDDBTrainer
from src.trainer.ddb_sum_formula_mf import SumFormulaMFDDBTrainer
from src.trainer.ddb_sum_formula_pmf import SumFormulaPriorPMFDDBTrainer
from src.trainer.trainer import Trainer
from src.utils.architecture import (
compute_graph_dimensions_for_pmf,
compute_out_channels_for_pmf,
)
from src.utils.experiment import create_experiment, get_device
def main(args: argparse.Namespace) -> None:
train(args)
def train(args: argparse.Namespace) -> None:
# set up experiment
create_experiment(args)
# build trainer
trainer = build_trainer(args)
# train
trainer.train()
def build_trainer(args: argparse.Namespace) -> Trainer:
# set up model
model = get_model(args)
# set up loss
loss = get_loss(args)
# set up dataloaders
dataloaders = get_dataloaders(args)
# set up trainer (depending on data + model)
trainer = get_trainer(args, dataloaders, loss, model)
return trainer
def get_model(args: argparse.Namespace) -> nn.Module:
# learned prior
assert args.graph_model is not None
solutes_out_channels, solvents_out_channels = compute_out_channels_for_pmf(args)
graph_dimensions = list(compute_graph_dimensions_for_pmf(args))
# get sub-parts of model
mf_model = get_mf_model(args)
solutes_graph_model = get_graph_model(
args,
args.graph_model,
*graph_dimensions,
solutes_out_channels,
)
solvents_graph_model = get_graph_model(
args,
args.graph_model,
*graph_dimensions,
solvents_out_channels,
)
featurizer = get_featurizer(args)
# combine
if args.graph_model == "Sum-Formula":
if args.model == "No-Prior-MF":
model = SumFormulaMatrixFactorization(
args,
featurizer,
solutes_graph_model,
solvents_graph_model,
mf_model,
solutes_out_channels + solvents_out_channels,
).to(get_device())
else:
model = SumFormulaPriorProbabilisticMatrixFactorization(
args,
featurizer,
solutes_graph_model,
solvents_graph_model,
mf_model,
solutes_out_channels + solvents_out_channels,
).to(get_device())
elif "-PMF" in args.model:
model = GraphPriorProbabilisticMatrixFactorization(
args,
featurizer,
solutes_graph_model,
solvents_graph_model,
mf_model,
solutes_out_channels + solvents_out_channels,
).to(get_device())
else:
raise RuntimeError(
f"Invalid combination of model and graph-model "
f"({args.model}, {args.graph_model})."
)
return model
def get_mf_model(args: argparse.Namespace) -> GaussianProbabilisticMatrixFactorization:
block_diagonal = args.model.startswith("Block-Diagonal")
if args.model.endswith("Gaussian-PMF-VI"):
model = GaussianProbabilisticMatrixFactorizationWithoutBias(
args, block_diagonal=block_diagonal
).to(get_device())
elif (args.model == "No-Prior-MF") and (args.graph_model is not None):
model = MatrixFactorization(args).to(get_device())
else:
raise RuntimeError(f"Unrecognized PMF model {args.model}.")
return model
def get_graph_model(
args: argparse.Namespace,
model_name: str,
in_channels: int = None,
edge_in_channels: int = None,
hidden_node_channels: int = None,
hidden_edge_channels: int = None,
out_channels: int = None,
) -> nn.Module:
if model_name.startswith("FiLM"):
model = FiLM(
args,
in_channels,
edge_in_channels,
hidden_node_channels,
hidden_edge_channels,
out_channels,
).to(get_device())
# this is no *graph* model but acts in combination with the PMF as if it is
elif model_name.startswith("Sum-Formula"):
in_channels = args.number_of_distinct_atoms
model = MLP(
args,
in_channels,
edge_in_channels,
hidden_node_channels,
hidden_edge_channels,
out_channels,
).to(get_device())
else:
raise RuntimeError(f"Unrecognized graph model {args.model}.")
return model
def get_featurizer(args: argparse.Namespace) -> Featurizer:
if args.graph_featurizer == "simple-atom":
featurizer = SimpleAtomFeaturizer(args, args.data_path)
elif args.graph_featurizer == "sum-formula":
# no featurizer needed for Sum-Formula data
featurizer = None
else:
raise RuntimeError(f"Unrecognized featurizer {args.graph_featurizer}")
return featurizer
def get_loss(args: argparse.Namespace) -> nn.Module:
maximize_entropy = args.maximize_entropy
if args.model.endswith("Gaussian-PMF-VI"):
if maximize_entropy:
loss = GaussianPMFVIEntropyLoss(args).to(get_device())
else:
loss = GaussianPMFVIKLLoss(args).to(get_device())
elif args.model == "No-Prior-MF":
loss = NoPriorMFMSELoss(args).to(get_device())
else:
raise RuntimeError(f"Could not find any loss for model {args.model}.")
return loss
def get_dataset(args: argparse.Namespace) -> torch.utils.data.dataset.Dataset:
if args.data == "DDB" and args.graph_model is not None:
dataset = GraphDDBDataset(args.data_path, args.seed)
elif args.data == "Medina" and args.graph_model is not None:
dataset = GraphMedinaDataset(args.data_path, args.seed)
else:
raise RuntimeError(f"Unrecognized data {args.data}.")
return dataset
def get_dataloaders(
args: argparse.Namespace,
) -> List[torch.utils.data.dataloader.DataLoader]:
if (
args.data == "DDB"
and args.graph_model is not None
and not args.random_zero_shot_prediction_from_rows_and_cols
):
dataloaders = get_graph_ddb_dataloaders(args)
elif (
args.data == "Medina"
and args.graph_model is not None
and not args.random_zero_shot_prediction_from_rows_and_cols
):
dataloaders = get_graph_medina_dataloaders(args)
elif (
args.data == "DDB"
and args.graph_model is not None
and args.random_zero_shot_prediction_from_rows_and_cols
):
dataloaders = get_zero_shot_graph_ddb_dataloaders(args)
else:
raise RuntimeError(f"Unrecognized data {args.data}.")
return dataloaders
def get_data_to_summarize(args: argparse.Namespace) -> List[str]:
if args.data == "DDB":
keys_to_summarize = [
"excluded_solutes_solvents_test",
"test_stats_test_last_model",
"test_stats_test_best_validation",
"test_stats_point_estimate_test_last_model",
"test_stats_point_estimate_test_last_model_prior",
"test_stats_point_estimate_test_best_validation",
"test_stats_point_estimate_test_best_validation_prior",
]
else:
raise RuntimeError(f"Unrecognized data for cross validation {args.data}.")
return keys_to_summarize
def get_trainer(
args: argparse.Namespace,
dataloaders: List[torch.utils.data.dataloader.DataLoader],
loss: nn.Module,
model: nn.Module,
) -> Trainer:
if (args.data == "DDB" or args.data == "Medina") and isinstance(
model, GraphPriorProbabilisticMatrixFactorization
):
trainer = GraphPriorPMFDDBTrainer(args, model, dataloaders, loss)
elif (args.data == "DDB" or args.data == "Medina") and isinstance(
model, SumFormulaPriorProbabilisticMatrixFactorization
):
trainer = SumFormulaPriorPMFDDBTrainer(args, model, dataloaders, loss)
elif (args.data == "DDB" or args.data == "Medina") and isinstance(
model, SumFormulaMatrixFactorization
):
trainer = SumFormulaMFDDBTrainer(args, model, dataloaders, loss)
else:
raise RuntimeError(
f"No matching trainer found for "
f"{args.data}, {model.__class__.__name__}, {loss.__class__.__name__}."
)
return trainer
if __name__ == "__main__":
args = parse_args()
main(args)