-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathAttention_module_w_str.py
494 lines (393 loc) · 20.8 KB
/
Attention_module_w_str.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import torch
import torch.nn as nn
import torch.nn.functional as F
from Transformer import *
from resnet import ResidualNetwork
from se3_transformer.model.transformer import SE3Transformer
from InitStrGenerator import InitStr_Network
import dgl
# Attention module based on AlphaFold2's idea written by Minkyung Baek
# - Iterative MSA feature extraction
# - 1) MSA2Pair: extract pairwise feature from MSA --> added to previous residue-pair features
# architecture design inspired by CopulaNet paper
# - 2) MSA2MSA: process MSA features using Transformer (or Performer) encoder. (Attention over L first followed by attention over N)
# - 3) Pair2MSA: Update MSA features using pair feature
# - 4) Pair2Pair: process pair features using Transformer (or Performer) encoder.
def make_graph(xyz, pair, idx, top_k=64, kmin=9):
'''
Input:
- xyz: current backbone cooordinates (B, L, 3, 3)
- pair: pair features from Trunk (B, L, L, E)
- idx: residue index from ground truth pdb
Output:
- G: defined graph
'''
B, L = xyz.shape[:2]
device = xyz.device
# distance map from current CA coordinates
D = torch.cdist(xyz[:, :, 1, :], xyz[:, :, 1, :]) + torch.eye(L, device=device).unsqueeze(0) * 999.9 # (B, L, L)
# seq sep
sep = idx[:, None, :] - idx[:, :, None]
sep = sep.abs() + torch.eye(L, device=device).unsqueeze(0) * 999.9
# get top_k neighbors
D_neigh, E_idx = torch.topk(D, min(top_k, L), largest=False) # shape of E_idx: (B, L, top_k)
topk_matrix = torch.zeros((B, L, L), device=device)
topk_matrix.scatter_(2, E_idx, 1.0)
# put an edge if any of the 3 conditions are met:
# 1) |i-j| <= kmin (connect sequentially adjacent residues)
# 2) top_k neighbors
cond = torch.logical_or(topk_matrix > 0.0, sep < kmin)
b, i, j = torch.where(cond)
src = b * L + i
tgt = b * L + j
G = dgl.graph((src, tgt), num_nodes=B * L).to(device)
G.edata['d'] = (xyz[b, j, 1, :] - xyz[b, i, 1, :]).detach() # no gradient through basis function
G.edata['w'] = pair[b, i, j]
return G
def get_bonded_neigh(idx):
'''
Input:
- idx: residue indices of given sequence (B,L)
Output:
- neighbor: bonded neighbor information with sign (B, L, L, 1)
'''
neighbor = idx[:, None, :] - idx[:, :, None]
neighbor = neighbor.float()
sign = torch.sign(neighbor) # (B, L, L)
neighbor = torch.abs(neighbor)
neighbor[neighbor > 1] = 0.0
neighbor = sign * neighbor
return neighbor.unsqueeze(-1)
def rbf(D):
# Distance radial basis function
D_min, D_max, D_count = 0., 20., 36
D_mu = torch.linspace(D_min, D_max, D_count).to(D.device)
D_mu = D_mu[None, :]
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma) ** 2)
return RBF
class CoevolExtractor(nn.Module):
def __init__(self, n_feat_proj, n_feat_out, p_drop=0.1):
super(CoevolExtractor, self).__init__()
self.norm_2d = LayerNorm(n_feat_proj * n_feat_proj)
# project down to output dimension (pair feature dimension)
self.proj_2 = nn.Linear(n_feat_proj ** 2, n_feat_out)
def forward(self, x_down, x_down_w):
B, N, L = x_down.shape[:3]
pair = torch.einsum('abij,ablm->ailjm', x_down, x_down_w) # outer-product & average pool
pair = pair.reshape(B, L, L, -1)
pair = self.norm_2d(pair)
pair = self.proj_2(pair) # (B, L, L, n_feat_out) # project down to pair dimension
return pair
class MSA2Pair(nn.Module):
def __init__(self, n_feat=64, n_feat_out=128, n_feat_proj=32,
n_resblock=1, p_drop=0.1, n_att_head=8):
super(MSA2Pair, self).__init__()
# project down embedding dimension (n_feat --> n_feat_proj)
self.norm_1 = LayerNorm(n_feat)
self.proj_1 = nn.Linear(n_feat, n_feat_proj)
self.encoder = SequenceWeight(n_feat_proj, 1, dropout=p_drop)
self.coevol = CoevolExtractor(n_feat_proj, n_feat_out)
# ResNet to update pair features
self.norm_down = LayerNorm(n_feat_proj)
self.norm_orig = LayerNorm(n_feat_out)
self.norm_new = LayerNorm(n_feat_out)
self.update = ResidualNetwork(n_resblock, n_feat_out * 2 + n_feat_proj * 4 + n_att_head, n_feat_out, n_feat_out, p_drop=p_drop)
def forward(self, msa, pair_orig, att):
# Input: MSA embeddings (B, N, L, K), original pair embeddings (B, L, L, C)
# Output: updated pair info (B, L, L, C)
B, N, L, _ = msa.shape
# project down to reduce memory
msa = self.norm_1(msa)
x_down = self.proj_1(msa) # (B, N, L, n_feat_proj)
# get sequence weight
x_down = self.norm_down(x_down)
w_seq = self.encoder(x_down).reshape(B, L, 1, N).permute(0, 3, 1, 2)
feat_1d = w_seq * x_down
pair = self.coevol(x_down, feat_1d)
# average pooling over N of given MSA info
feat_1d = feat_1d.sum(1)
# query sequence info
query = x_down[:, 0] # (B,L,K)
feat_1d = torch.cat((feat_1d, query), dim=-1) # additional 1D features
# tile 1D features
left = feat_1d.unsqueeze(2).repeat(1, 1, L, 1)
right = feat_1d.unsqueeze(1).repeat(1, L, 1, 1)
# update original pair features through convolutions after concat
pair_orig = self.norm_orig(pair_orig)
pair = self.norm_new(pair)
pair = torch.cat((pair_orig, pair, left, right, att), -1)
pair = pair.permute(0, 3, 1, 2).contiguous() # prep for convolution layer
pair = self.update(pair)
pair = pair.permute(0, 2, 3, 1).contiguous() # (B, L, L, C)
return pair
class MSA2MSA(nn.Module):
def __init__(self, n_layer=1, n_att_head=8, n_feat=256, r_ff=4, p_drop=0.1,
performer_N_opts=None, performer_L_opts=None):
super(MSA2MSA, self).__init__()
# attention along L
enc_layer_1 = EncoderLayer(d_model=n_feat, d_ff=n_feat * r_ff,
heads=n_att_head, p_drop=p_drop,
use_tied=True)
# performer_opts=performer_L_opts)
self.encoder_1 = Encoder(enc_layer_1, n_layer)
# attention along N
enc_layer_2 = EncoderLayer(d_model=n_feat, d_ff=n_feat * r_ff,
heads=n_att_head, p_drop=p_drop,
performer_opts=performer_N_opts)
self.encoder_2 = Encoder(enc_layer_2, n_layer)
def forward(self, x):
# Input: MSA embeddings (B, N, L, K)
# Output: updated MSA embeddings (B, N, L, K)
B, N, L, _ = x.shape
# attention along L
x, att = self.encoder_1(x, return_att=True)
# attention along N
x = x.permute(0, 2, 1, 3).contiguous()
x = self.encoder_2(x)
x = x.permute(0, 2, 1, 3).contiguous()
return x, att
class Pair2MSA(nn.Module):
def __init__(self, n_layer=1, n_att_head=4, n_feat_in=128, n_feat_out=256, r_ff=4, p_drop=0.1):
super(Pair2MSA, self).__init__()
enc_layer = DirectEncoderLayer(heads=n_att_head, \
d_in=n_feat_in, d_out=n_feat_out, \
d_ff=n_feat_out * r_ff, \
p_drop=p_drop)
self.encoder = CrossEncoder(enc_layer, n_layer)
def forward(self, pair, msa):
out = self.encoder(pair, msa) # (B, N, L, K)
return out
class Pair2Pair(nn.Module):
def __init__(self, n_layer=1, n_att_head=8, n_feat=128, r_ff=4, p_drop=0.1,
performer_L_opts=None):
super(Pair2Pair, self).__init__()
enc_layer = AxialEncoderLayer(d_model=n_feat, d_ff=n_feat * r_ff,
heads=n_att_head, p_drop=p_drop,
performer_opts=performer_L_opts)
self.encoder = Encoder(enc_layer, n_layer)
def forward(self, x):
return self.encoder(x)
class Str2Str(nn.Module):
def __init__(self, d_msa=64, d_pair=128,
SE3_param={'l0_in_features': 32, 'l0_out_features': 16, 'num_edge_features': 32}, p_drop=0.1):
super(Str2Str, self).__init__()
# initial node & pair feature process
self.norm_msa = LayerNorm(d_msa)
self.norm_pair = LayerNorm(d_pair)
self.encoder_seq = SequenceWeight(d_msa, 1, dropout=p_drop)
self.embed_x = nn.Linear(d_msa + 20, SE3_param['l0_in_features'])
self.embed_e = nn.Linear(d_pair, SE3_param['num_edge_features'])
self.norm_node = LayerNorm(SE3_param['l0_in_features'])
self.norm_edge = LayerNorm(SE3_param['num_edge_features'])
self.se3 = SE3Transformer(**SE3_param)
@torch.cuda.amp.autocast(enabled=False)
def forward(self, msa, pair, xyz, seq1hot, idx, top_k=64):
# process msa & pair features
B, N, L = msa.shape[:3]
msa = self.norm_msa(msa)
pair = self.norm_pair(pair)
w_seq = self.encoder_seq(msa).reshape(B, L, 1, N).permute(0, 3, 1, 2)
msa = w_seq * msa
msa = msa.sum(dim=1)
msa = torch.cat((msa, seq1hot), dim=-1)
msa = self.norm_node(self.embed_x(msa))
pair = self.norm_edge(self.embed_e(pair))
# define graph
G = make_graph(xyz, pair, idx, top_k=top_k)
l1_feats = xyz - xyz[:, :, 1, :].unsqueeze(2) # l1 features = displacement vector to CA
l1_feats = l1_feats.reshape(B * L, -1, 3)
# apply SE(3) Transformer & update coordinates
shift = self.se3(G, msa.reshape(B * L, -1, 1), l1_feats, edge_feats={'0': G.edata['w'][..., None]})
state = shift['0'].reshape(B, L, -1) # (B, L, C)
offset = shift['1'].reshape(B, L, -1, 3) # (B, L, 4, 3)
CA_new = xyz[:, :, 1] + offset[:, :, 1]
N_new = CA_new + offset[:, :, 0]
C_new = CA_new + offset[:, :, 2]
O_new = CA_new + offset[:, :, 3]
xyz_new = torch.stack([N_new, CA_new, C_new, O_new], dim=2)
return xyz_new, state
class Str2MSA(nn.Module):
def __init__(self, d_msa=64, d_state=32, inner_dim=32, r_ff=4,
distbin=[8.0, 12.0, 16.0, 20.0], p_drop=0.1):
super(Str2MSA, self).__init__()
self.distbin = distbin
n_att_head = len(distbin)
self.norm_state = LayerNorm(d_state)
self.norm1 = LayerNorm(d_msa)
self.attn = MaskedDirectMultiheadAttention(d_state, d_msa, n_att_head, d_k=inner_dim, dropout=p_drop)
self.dropout1 = nn.Dropout(p_drop, inplace=True)
self.norm2 = LayerNorm(d_msa)
self.ff = FeedForwardLayer(d_msa, d_msa * r_ff, p_drop=p_drop)
self.dropout2 = nn.Dropout(p_drop, inplace=True)
def forward(self, msa, xyz, state):
dist = torch.cdist(xyz[:, :, 1], xyz[:, :, 1]) # (B, L, L)
mask_s = list()
for distbin in self.distbin:
mask_s.append(1.0 - torch.sigmoid(dist - distbin))
mask_s = torch.stack(mask_s, dim=1) # (B, h, L, L)
state = self.norm_state(state)
msa2 = self.norm1(msa)
msa2 = self.attn(state, state, msa2, mask_s)
msa = msa + self.dropout1(msa2)
msa2 = self.norm2(msa)
msa2 = self.ff(msa2)
msa = msa + self.dropout2(msa2)
return msa
class IterBlock(nn.Module):
def __init__(self, n_layer=1, d_msa=64, d_pair=128, n_head_msa=4, n_head_pair=8, r_ff=4,
n_resblock=1, p_drop=0.1, performer_L_opts=None, performer_N_opts=None):
super(IterBlock, self).__init__()
self.msa2msa = MSA2MSA(n_layer=n_layer, n_att_head=n_head_msa, n_feat=d_msa,
r_ff=r_ff, p_drop=p_drop,
performer_N_opts=performer_N_opts,
performer_L_opts=performer_L_opts)
self.msa2pair = MSA2Pair(n_feat=d_msa, n_feat_out=d_pair, n_feat_proj=32,
n_resblock=n_resblock, p_drop=p_drop, n_att_head=n_head_msa)
self.pair2pair = Pair2Pair(n_layer=n_layer, n_att_head=n_head_pair,
n_feat=d_pair, r_ff=r_ff, p_drop=p_drop,
performer_L_opts=performer_L_opts)
self.pair2msa = Pair2MSA(n_layer=n_layer, n_att_head=4,
n_feat_in=d_pair, n_feat_out=d_msa, r_ff=r_ff, p_drop=p_drop)
def forward(self, msa, pair):
# input:
# msa: initial MSA embeddings (N, L, d_msa)
# pair: initial residue pair embeddings (L, L, d_pair)
# 1. process MSA features
msa, att = self.msa2msa(msa)
# 2. update pair features using given MSA
pair = self.msa2pair(msa, pair, att)
# 3. process pair features
pair = self.pair2pair(pair)
# 4. update MSA features using updated pair features
msa = self.pair2msa(pair, msa)
return msa, pair
class IterBlock_w_Str(nn.Module):
def __init__(self, n_layer=1, d_msa=64, d_pair=128, n_head_msa=4, n_head_pair=8, r_ff=4,
n_resblock=1, p_drop=0.1, performer_L_opts=None, performer_N_opts=None,
SE3_param={'l0_in_features': 32, 'l0_out_features': 16, 'num_edge_features': 32}):
super(IterBlock_w_Str, self).__init__()
self.msa2msa = MSA2MSA(n_layer=n_layer, n_att_head=n_head_msa, n_feat=d_msa,
r_ff=r_ff, p_drop=p_drop,
performer_N_opts=performer_N_opts,
performer_L_opts=performer_L_opts)
self.msa2pair = MSA2Pair(n_feat=d_msa, n_feat_out=d_pair, n_feat_proj=32,
n_resblock=n_resblock, p_drop=p_drop, n_att_head=n_head_msa)
self.pair2pair = Pair2Pair(n_layer=n_layer, n_att_head=n_head_pair,
n_feat=d_pair, r_ff=r_ff, p_drop=p_drop,
performer_L_opts=performer_L_opts)
self.pair2msa = Pair2MSA(n_layer=n_layer, n_att_head=4,
n_feat_in=d_pair, n_feat_out=d_msa, r_ff=r_ff, p_drop=p_drop)
self.str2str = Str2Str(d_msa=d_msa, d_pair=d_pair, SE3_param=SE3_param, p_drop=p_drop)
self.str2msa = Str2MSA(d_msa=d_msa, d_state=SE3_param['l0_out_features'],
r_ff=r_ff, p_drop=p_drop)
def forward(self, msa, pair, xyz, seq1hot, idx, top_k=64):
# input:
# msa: initial MSA embeddings (N, L, d_msa)
# pair: initial residue pair embeddings (L, L, d_pair)
# 1. process MSA features
msa, att = self.msa2msa(msa)
# 2. update pair features using given MSA
pair = self.msa2pair(msa, pair, att)
# 3. process pair features
pair = self.pair2pair(pair)
# 4. update MSA features using updated pair features
msa = self.pair2msa(pair, msa)
xyz, state = self.str2str(msa.float(), pair.float(), xyz.float(), seq1hot, idx, top_k=top_k)
msa = self.str2msa(msa, xyz, state)
return msa, pair, xyz
class FinalBlock(nn.Module):
def __init__(self, n_layer=1, d_msa=64, d_pair=128, n_head_msa=4, n_head_pair=8, r_ff=4,
n_resblock=1, p_drop=0.1, performer_L_opts=None, performer_N_opts=None,
SE3_param={'l0_in_features': 32, 'l0_out_features': 16, 'num_edge_features': 32}):
super(FinalBlock, self).__init__()
self.msa2msa = MSA2MSA(n_layer=n_layer, n_att_head=n_head_msa, n_feat=d_msa,
r_ff=r_ff, p_drop=p_drop,
performer_N_opts=performer_N_opts,
performer_L_opts=performer_L_opts)
self.msa2pair = MSA2Pair(n_feat=d_msa, n_feat_out=d_pair, n_feat_proj=32,
n_resblock=n_resblock, p_drop=p_drop, n_att_head=n_head_msa)
self.pair2pair = Pair2Pair(n_layer=n_layer, n_att_head=n_head_pair,
n_feat=d_pair, r_ff=r_ff, p_drop=p_drop,
performer_L_opts=performer_L_opts)
self.pair2msa = Pair2MSA(n_layer=n_layer, n_att_head=4,
n_feat_in=d_pair, n_feat_out=d_msa, r_ff=r_ff, p_drop=p_drop)
self.str2str = Str2Str(d_msa=d_msa, d_pair=d_pair, SE3_param=SE3_param, p_drop=p_drop)
self.norm_state = LayerNorm(SE3_param['l0_out_features'])
self.pred_lddt = nn.Linear(SE3_param['l0_out_features'], 1)
def forward(self, msa, pair, xyz, seq1hot, idx):
# input:
# msa: initial MSA embeddings (N, L, d_msa)
# pair: initial residue pair embeddings (L, L, d_pair)
# 1. process MSA features
msa, att = self.msa2msa(msa)
# 2. update pair features using given MSA
pair = self.msa2pair(msa, pair, att)
# 3. process pair features
pair = self.pair2pair(pair)
msa = self.pair2msa(pair, msa)
xyz, state = self.str2str(msa.float(), pair.float(), xyz.float(), seq1hot, idx, top_k=32)
lddt = self.pred_lddt(self.norm_state(state))
return msa, pair, xyz, lddt.squeeze(-1)
class IterativeFeatureExtractor(nn.Module):
def __init__(self, n_module=4, n_module_str=4, n_layer=4, d_msa=256, d_pair=128, d_hidden=64,
n_head_msa=8, n_head_pair=8, r_ff=4,
n_resblock=1, p_drop=0.1,
performer_L_opts=None, performer_N_opts=None,
SE3_param={'l0_in_features': 32, 'l0_out_features': 16, 'num_edge_features': 32}):
super(IterativeFeatureExtractor, self).__init__()
self.n_module = n_module
self.n_module_str = n_module_str
#
self.initial = Pair2Pair(n_layer=n_layer, n_att_head=n_head_pair,
n_feat=d_pair, r_ff=r_ff, p_drop=p_drop,
performer_L_opts=performer_L_opts)
if self.n_module > 0:
self.iter_block_1 = _get_clones(IterBlock(n_layer=n_layer,
d_msa=d_msa, d_pair=d_pair,
n_head_msa=n_head_msa,
n_head_pair=n_head_pair,
r_ff=r_ff,
n_resblock=n_resblock,
p_drop=p_drop,
performer_N_opts=performer_N_opts,
performer_L_opts=performer_L_opts
), n_module)
self.init_str = InitStr_Network(node_dim_in=d_msa, node_dim_hidden=d_hidden,
edge_dim_in=d_pair, edge_dim_hidden=d_hidden,
nheads=4, nblocks=3, dropout=p_drop)
if self.n_module_str > 0:
self.iter_block_2 = _get_clones(IterBlock_w_Str(n_layer=n_layer,
d_msa=d_msa, d_pair=d_pair,
n_head_msa=n_head_msa,
n_head_pair=n_head_pair,
r_ff=r_ff,
n_resblock=n_resblock,
p_drop=p_drop,
performer_N_opts=performer_N_opts,
performer_L_opts=performer_L_opts,
SE3_param=SE3_param
), n_module_str)
self.final = FinalBlock(n_layer=n_layer, d_msa=d_msa, d_pair=d_pair,
n_head_msa=n_head_msa, n_head_pair=n_head_pair, r_ff=r_ff,
n_resblock=n_resblock, p_drop=p_drop,
performer_L_opts=performer_L_opts, performer_N_opts=performer_N_opts,
SE3_param=SE3_param)
def forward(self, msa, pair, seq1hot, idx):
# input:
# msa: initial MSA embeddings (N, L, d_msa)
# pair: initial residue pair embeddings (L, L, d_pair)
pair_s = list()
pair = self.initial(pair)
if self.n_module > 0:
for i_m in range(self.n_module):
# extract features from MSA & update original pair features
msa, pair = self.iter_block_1[i_m](msa, pair)
xyz = self.init_str(seq1hot, idx, msa, pair)
top_ks = [128, 128, 64, 64]
if self.n_module_str > 0:
for i_m in range(self.n_module_str):
msa, pair, xyz = self.iter_block_2[i_m](msa, pair, xyz, seq1hot, idx, top_k=top_ks[i_m])
msa, pair, xyz, lddt = self.final(msa, pair, xyz, seq1hot, idx)
return msa[:, 0], pair, xyz, lddt