-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode_link_history.v
1249 lines (1042 loc) · 53.4 KB
/
node_link_history.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From iris.base_logic Require Import ghost_map.
From iris.proofmode Require Export tactics.
From smr.base_logic Require Import mono_list.
From iris.prelude Require Import options.
From stdpp Require Export list gmultiset gmap fin_map_dom.
From smr Require Import helpers.
Notation Id := positive (only parsing).
Inductive event :=
| link (i: Id) (offset: nat) (J: option Id)
| del (i: Id).
Global Instance event_eq_dec : EqDecision event.
Proof. solve_decision. Defined.
Definition event_id (e: event) : Id :=
match e with
| link i _ _ => i
| del i => i
end.
Implicit Types (H: list event) (i j: Id).
Definition LiveAt H i := del i ∉ H.
Local Hint Unfold LiveAt : core.
Local Instance LiveAt_Decision: RelDecision LiveAt.
Proof. solve_decision. Defined.
(* NOTE: can be defined from succ_hist_map *)
Local Definition interp H : gmap (Id * nat) Id :=
fold_left (λ m e,
match e with
| link i o (Some new) => <[(i, o) := new]> m
| link i o None => delete (i, o) m
| _ => m
end
) H ∅.
(* Not needed *)
(* Local Definition del_i_max_once H: Prop := *)
(* ∀ i (a b: nat), H !! a = Some (del i) → H !! b = Some (del i) → a = b. *)
Local Definition no_new_link_to_deleted H: Prop:=
∀ i j o (a b: nat), a < b → H !! a = Some (del j) → H !! b = Some (link i o (Some j)) → False.
Local Definition live_points_to_live H: Prop :=
∀ i o j, (interp H) !! (i, o) = Some j → LiveAt H i → LiveAt H j.
Local Definition well_formed H : Prop :=
no_new_link_to_deleted H ∧ live_points_to_live H.
Local Definition succ_hist_map H : gmap (Id * nat) (list (option Id)) :=
fold_left (λ m e,
match e with
| link i o new => <[ (i, o) := (default [] (m !! (i, o))) ++ [new] ]> m
| del i => m
end
) H ∅.
Definition field_hist H i o : list (option Id) :=
default [] (succ_hist_map H !! (i, o)).
Local Definition del_map_consistent H (del_map: gmap Id bool): Prop :=
∀ i,
(i ∈ dom del_map → i ∈ event_id <$> H) ∧
(del_map !! i = Some true → (¬ LiveAt H i)) ∧
(del_map !! i = Some false → LiveAt H i).
Local Definition pred_map_consistent H (π : gmap Id (gmultiset (Id * nat))) : Prop :=
(∀ j, j ∈ dom π → j ∈ event_id <$> H) ∧
(∀ i o j, (interp H) !! (i, o) = Some j → LiveAt H i → ∃ i_s, (π !! j = Some i_s ∧ (i, o) ∈ i_s)).
Local Definition to_pred_multiset_map (π: gmap Id (gmultiset (Id * nat))): gmap Id (gmultiset Id) :=
(λ set, list_to_set_disj (fst <$> elements set)) <$> π.
(** * properties of history *)
Section history.
Lemma unregistered_is_alive i H: i ∉ event_id <$> H → LiveAt H i.
Proof.
intros NotIn. unfold LiveAt. set_unfold. intros del_i. apply NotIn. exists (del i). done.
Qed.
Lemma del_map_unaffected_by_links H H' appended del_map:
H' = H ++ appended →
del_map_consistent H del_map →
(∀ di, del di ∉ appended) →
del_map_consistent H' del_map.
Proof.
intros eqnH' prev_consistent no_del i. specialize (prev_consistent i) as (pc1 & pc2 & pc3). subst H'.
unfold LiveAt in *. set_solver.
Qed.
Lemma unregistered_points_to_nowhere i o H:
i ∉ event_id <$> H → interp H !! (i, o) = None.
Proof.
intros. induction H as [| x H' IH] using rev_ind.
- done.
- assert (i ∉ event_id <$> H' ∧ i ≠ event_id x) as [i_notin_H' i_notin_x] by set_solver.
apply IH in i_notin_H'. unfold interp. rewrite fold_left_app. fold (interp H'). destruct x; simpl.
+ destruct J; simpl in *.
* rewrite lookup_insert_ne; [done | congruence].
* rewrite lookup_delete_ne; [done | congruence].
+ done.
Qed.
Lemma unregistered_has_no_succ_hist H i o:
i ∉ event_id <$> H → (i, o) ∉ dom (succ_hist_map H).
Proof.
induction H using rev_ind.
- set_solver.
- unfold succ_hist_map. rewrite fold_left_app. fold (succ_hist_map H). rewrite fmap_app. destruct x; set_solver.
Qed.
Lemma succ_hist_update H i o Oj hist:
(succ_hist_map H) !! (i, o) = Some hist →
succ_hist_map (H ++ [link i o Oj]) = <[ (i, o) := hist ++ [Oj] ]> (succ_hist_map H).
Proof.
unfold succ_hist_map. rewrite fold_left_app. fold (succ_hist_map H). simpl. intros ->. done.
Qed.
Lemma succ_hist_unaffected_by_del H j:
succ_hist_map (H ++ [del j]) = succ_hist_map H.
Proof.
unfold succ_hist_map. rewrite fold_left_app. done.
Qed.
Lemma succ_hist_create H i o Oj:
(succ_hist_map H) !! (i, o) = None →
succ_hist_map (H ++ [link i o Oj]) = <[ (i, o) := [Oj] ]> (succ_hist_map H).
Proof.
unfold succ_hist_map. rewrite fold_left_app. fold (succ_hist_map H). simpl. intros ->. done.
Qed.
Lemma interp_unaffected_by_del H j:
interp (H ++ [del j]) = interp H.
Proof. unfold interp. rewrite fold_left_app. done. Qed.
Lemma interp_lookup_app_link H i o oj:
interp (H ++ [link i o oj]) !! (i, o) = oj.
Proof.
unfold interp. rewrite fold_left_app. simpl. destruct oj.
- apply lookup_insert.
- apply lookup_delete.
Qed.
Lemma interp_lookup_app_link_ne H i o i' o' oj:
(i, o) ≠ (i', o') →
interp (H ++ [link i o oj]) !! (i', o') = interp H !! (i', o').
Proof.
intros. unfold interp. rewrite fold_left_app. simpl. destruct oj.
- by apply lookup_insert_ne.
- by apply lookup_delete_ne.
Qed.
Lemma last_succ_hist_is_interp H i o sh oj:
succ_hist_map H !! (i, o) = Some sh →
last sh = Some oj →
interp H !! (i, o) = oj.
Proof.
generalize dependent sh.
induction H as [| last_event H] using rev_ind; [done|].
intros sh H_io H_last.
unfold succ_hist_map in H_io. rewrite fold_left_app in H_io. fold (succ_hist_map H) in H_io.
unfold interp. rewrite fold_left_app. fold (interp H). simpl in *.
case (last_event) as [i' o' J | ?].
- destruct J as [new_j | ].
+ case (decide ((i', o') = (i, o))) as [[= -> ->] | NE].
* rewrite lookup_insert. rewrite lookup_insert in H_io.
injection H_io as <-. rewrite last_app in H_last. naive_solver.
* rewrite lookup_insert_ne; last done. rewrite lookup_insert_ne in H_io; last done. naive_solver.
+ case (decide ((i', o') = (i, o))) as [[= -> ->] | NE].
* rewrite lookup_delete. rewrite lookup_insert in H_io.
injection H_io as <-. rewrite last_app in H_last. naive_solver.
* rewrite lookup_delete_ne; last done. rewrite lookup_insert_ne in H_io; last done. naive_solver.
- by eapply IHH.
Qed.
Lemma field_hist_lookup_not_in_prefix H Hstart i o n to :
Hstart `prefix_of` H →
(* Read something not in Hstart *)
length (field_hist Hstart i o) ≤ n →
field_hist H i o !! n = Some to →
∃ b, H !! b = Some (link i o to) ∧ length Hstart ≤ b.
Proof.
intros [rest ->] Seen_n.
induction rest as [|last_event rest] using rev_ind.
{ rewrite app_nil_r. intros Hio_n. exfalso.
apply lookup_lt_Some in Hio_n. lia. }
rewrite app_assoc.
intros Hio_n.
rewrite /field_hist /succ_hist_map fold_left_app in Hio_n.
rewrite -/(succ_hist_map (Hstart ++ rest)) /= in Hio_n.
case last_event as [i' o' J | ?]; simpl in *; last first.
{ (* del *)
rewrite -/(field_hist _ _ _) in Hio_n.
specialize (IHrest Hio_n) as [a [??]]. exists a.
split; [|done]. by apply lookup_app_l_Some. }
rewrite -/(field_hist _ _ _) in Hio_n.
case (decide ((i', o') = (i, o))) as [[= -> ->] | NE]; simpl in *.
- rewrite lookup_insert /= in Hio_n.
apply lookup_snoc_Some in Hio_n as [[? Hio_n] | [? ->]].
+ specialize (IHrest Hio_n) as [a [??]]. exists a.
split; [|done]. by apply lookup_app_l_Some.
+ exists (length (Hstart ++ rest)). rewrite snoc_lookup. split; [done|].
rewrite app_length. lia.
- rewrite lookup_insert_ne in Hio_n; last done.
specialize (IHrest Hio_n) as [a [??]]. exists a.
split; [|done]. by apply lookup_app_l_Some.
Qed.
Lemma pred_in_pred_multiset H π i o j:
pred_map_consistent H π →
(interp H) !! (i, o) = Some j →
LiveAt H i →
∃ pmm, (to_pred_multiset_map π) !! j = Some pmm ∧ i ∈ pmm.
Proof.
intros [_ pmc] io_points_to i_alive.
specialize (pmc i o j).
assert (∃ i_s, π !! j = Some i_s ∧ (i, o) ∈ i_s) as [i_s [πj io_is]] by auto.
exists (list_to_set_disj (elements i_s).*1).
unfold to_pred_multiset_map. rewrite lookup_fmap. rewrite πj. simpl. split; try done.
rewrite elem_of_list_to_set_disj. set_unfold. exists (i, o). rewrite gmultiset_elem_of_elements. done.
Qed.
Lemma succ_hist_map_lookup_prefix H1 H2 h1 io:
H1 `prefix_of` H2 →
succ_hist_map H1 !! io = Some h1 →
∃ h2, succ_hist_map H2 !! io = Some h2 ∧ h1 `prefix_of` h2.
Proof.
intros [rest ->] Hh1.
induction rest using rev_ind.
- rewrite app_nil_r. eexists. done.
- rewrite app_assoc. remember (H1 ++ rest) as H1'. clear HeqH1'. unfold succ_hist_map. rewrite fold_left_app. fold (succ_hist_map H1').
destruct IHrest as (h2' & ? & ?).
destruct x; simpl.
+ case (decide ((i, offset) = io)) as [-> | NE].
* rewrite lookup_insert. eexists. split; try done. rewrite H. simpl. apply prefix_app_r. done.
* rewrite lookup_insert_ne; last done. eauto.
+ eauto.
Qed.
Lemma succ_hist_map_prefix_mono H1 H2 h1 h2 io:
H1 `prefix_of` H2 →
succ_hist_map H1 !!! io = h1 →
succ_hist_map H2 !!! io = h2 →
h1 `prefix_of` h2.
Proof.
intros [rest ->] Hh1. move: h2.
induction rest as [|e ?] using rev_ind.
- intros h2. rewrite app_nil_r. subst. exists []. rewrite app_nil_r. done.
- intros h2. rewrite app_assoc. remember (H1 ++ rest) as H1'.
rewrite /succ_hist_map fold_left_app. fold (succ_hist_map H1').
destruct e; simpl.
+ case (decide ((i, offset) = io)) as [-> | NE].
* rewrite lookup_total_insert. intros <-.
apply prefix_app_r. apply IHrest. done.
* intros <-. rewrite lookup_total_insert_ne; last done. apply IHrest. done.
+ intros. apply IHrest. done.
Qed.
Lemma field_hist_prefix_lookup_Some H Hlink i o n to :
Hlink `prefix_of` H →
field_hist Hlink i o !! n = Some to →
field_hist H i o !! n = Some to.
Proof.
intros PF. rewrite /field_hist.
destruct (succ_hist_map Hlink !! (i, o)) as [Hlink_io|] eqn:Eqn_Hlink_io; [simpl|done].
specialize (succ_hist_map_lookup_prefix _ _ _ _ PF Eqn_Hlink_io) as (H_io & -> & PF_io). simpl.
intros Hlink_io_n.
by apply (prefix_lookup_Some _ _ _ _ Hlink_io_n PF_io).
Qed.
End history.
Class node_link_historyG Σ := NodeLinkHistoryG {
#[local] node_link_history_historyG :: mono_listG event Σ;
#[local] node_link_history_successorG :: ghost_mapG Σ (positive * nat) (list (option positive));
#[local] node_link_history_predecessorG :: ghost_mapG Σ positive (gmultiset positive);
#[local] node_link_history_deletedG :: ghost_mapG Σ positive bool;
}.
Definition node_link_historyΣ : gFunctors :=
#[mono_listΣ event;
ghost_mapΣ (positive * nat) (list (option positive));
ghost_mapΣ positive (gmultiset positive);
ghost_mapΣ positive bool].
Global Instance subG_node_link_historyΣ {Σ} :
subG node_link_historyΣ Σ → node_link_historyG Σ.
Proof. solve_inG. Qed.
(** * Node link history ghost *)
Section ghost.
Context `{!node_link_historyG Σ}.
Notation iProp := (iProp Σ).
Variable (γ: gname).
Implicit Types (γh γt γb γd : gname).
(** ** assertions *)
Definition HistAuth H: iProp :=
∃ γh γt γb γd π del_map,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
⌜ del_map_consistent H del_map ⌝ ∗
⌜ pred_map_consistent H π ⌝ ∗
⌜ well_formed(H) ⌝ ∗
mono_list_auth_own γh 1 H ∗
ghost_map_auth γt 1 (succ_hist_map H) ∗
ghost_map_auth γb 1 (to_pred_multiset_map π) ∗
ghost_map_auth γd 1 del_map.
Definition HistSnap H : iProp :=
∃ γh γt γb γd,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
⌜ well_formed H ⌝ ∗
mono_list_lb_own γh H.
Definition HistPointsTo (i: Id) (o: nat) (Hio: list (option Id)): iProp :=
∃ γh γt γb γd Hlink,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
⌜ Hio = field_hist Hlink i o ⌝ ∗
mono_list_lb_own γh Hlink ∗
(i, o) ↪[γt] Hio.
Definition HistPointsToLast i o oj: iProp :=
∃ γh γt γb γd Hlink,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
⌜ last Hlink = Some (link i o oj) ⌝ ∗
mono_list_lb_own γh Hlink ∗
(i, o) ↪[γt] ((succ_hist_map Hlink) !!! (i, o)).
(*
Definition HistPointsToLast i o oj: iProp :=
∃ Hio,
⌜ last Hio = Some oj ⌝ ∗
HistPointsTo i o Hio.
*)
Definition HistPointedTo (i: Id) (o: nat) (n : nat) (to : option Id): iProp :=
∃ γh γt γb γd Hlink,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
⌜ field_hist Hlink i o !! n = Some to ⌝ ∗
mono_list_lb_own γh Hlink.
Definition HistPointedBy j (B: gmultiset Id): iProp :=
∃ γh γt γb γd,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
j ↪[γb] B ∗
j ↪[γd] false.
Definition HistDeleted j: iProp :=
∃ γh γt γb γd,
⌜ γ = encode (γh, γt, γb, γd) ⌝ ∗
j ↪[γb]□ ∅ ∗
j ↪[γd]□ true.
(** ** helper lemmas *)
Ltac exfr := repeat (repeat iExists _; iFrame "∗#%").
Global Instance HistAuth_timeless H : Timeless (HistAuth H).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Global Instance HistSnap_timeless H : Timeless (HistSnap H).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Global Instance HistSnap_persistent H : Persistent (HistSnap H).
Proof. repeat apply bi.exist_persistent. apply _. Qed.
Global Instance HistPointsTo_timeless i o oj : Timeless (HistPointsToLast i o oj).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Global Instance HistPointsTo'_timeless i o Hio : Timeless (HistPointsTo i o Hio).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Global Instance HistPointsToSnap_timeless i o n to : Timeless (HistPointedTo i o n to).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Global Instance HistPointsToSnap_persistent i o n to : Persistent (HistPointedTo i o n to).
Proof. repeat apply bi.exist_persistent. apply _. Qed.
Global Instance HistPointedBy_timeless j B : Timeless (HistPointedBy j B).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Global Instance HistDeleted_Persistent j : Persistent (HistDeleted j).
Proof. repeat apply bi.exist_persistent. apply _. Qed.
Global Instance HistDeleted_timeless j : Timeless (HistDeleted j).
Proof. repeat apply bi.exist_timeless. apply _. Qed.
Local Lemma PointsTo_reflects_interp H i o oj:
HistAuth H -∗
HistPointsToLast i o oj -∗
⌜ interp H !! (i, o) = oj ⌝.
Proof.
iIntros "HistAuth PointsTo".
iDestruct "HistAuth" as (??????) "(%Enc & _ & _ & _ &
_ & ●succ_hist & _ & _)".
iDestruct "PointsTo" as (?????) "(% & %Hlink_last & ◯Hlink & ◯succ_hist_io)". encode_agree Enc.
iDestruct (ghost_map_lookup with "●succ_hist ◯succ_hist_io") as "%shm_lookup".
iPureIntro.
eapply last_succ_hist_is_interp.
- exact shm_lookup.
- rewrite last_Some in Hlink_last. destruct Hlink_last as [Hlink' e]. subst Hlink.
unfold succ_hist_map. rewrite fold_left_app. fold (succ_hist_map Hlink'). simpl.
rewrite lookup_total_insert. rewrite last_app. done.
Qed.
Local Lemma remove_deleted_from_PointedBy i j H B π γh γt γb γd:
γ = encode (γh, γt, γb, γd) →
i ∈ B →
pred_map_consistent H π →
¬ LiveAt H i →
ghost_map_auth γb 1 (to_pred_multiset_map π) -∗
HistPointedBy j B ==∗
∃ πj o, ⌜ π !! j = Some πj ⌝ ∗
⌜ (i, o) ∈ πj ⌝ ∗
ghost_map_auth γb 1 (to_pred_multiset_map (<[ j:= (πj ∖ {[+ (i, o) +]}) ]> π)) ∗
HistPointedBy j (B ∖ {[+ i +]}).
Proof.
iIntros (Enc i_in_B pred_map_consistent i_not_alive) "●pred_multiset PointedBy".
(* access π !! j *)
iDestruct "PointedBy" as (?????) "[◯pred_j ◯del_map_j]". encode_agree Enc.
iDestruct (ghost_map_lookup with "●pred_multiset ◯pred_j") as "%pm_lookup".
unfold to_pred_multiset_map in pm_lookup. rewrite lookup_fmap in pm_lookup.
destruct (π !! j) as [πj |] eqn: Eqn_πj; last naive_solver. simpl in *.
injection pm_lookup. intros Eqn_B.
iMod (ghost_map_update (B ∖ {[+ i +]}) with "●pred_multiset ◯pred_j") as "[●pred_multiset' ◯pred_j']".
assert (∃ o, (i, o) ∈ πj) as [o io_in_πj]. {
clear -Eqn_B i_in_B. subst B. induction πj using gmultiset_ind.
- rewrite gmultiset_elements_empty in i_in_B. set_solver.
- rewrite gmultiset_elements_disj_union in i_in_B. rewrite fmap_app in i_in_B.
rewrite list_to_set_disj_app in i_in_B. rewrite gmultiset_elem_of_disj_union in i_in_B.
destruct i_in_B as [i_is_x | ?].
+ rewrite gmultiset_elements_singleton in i_is_x. assert (i = x.1) by multiset_solver.
exists x.2. subst i. replace ((x.1, x.2)) with x; last by destruct x. multiset_solver.
+ specialize (IHπj H) as [o ?]. exists o. multiset_solver.
}
remember (πj ∖ {[+ (i, o) +]}) as πj'.
assert (πj = {[+ (i, o) +]} ⊎ πj') as πj_πj'. { subst πj'. by eapply gmultiset_disj_union_difference'. }
remember (<[ j := πj' ]> π) as π'.
assert (<[j:=B ∖ {[+ i +]}]> (to_pred_multiset_map π) = to_pred_multiset_map π') as ->. {
subst π'. unfold to_pred_multiset_map. rewrite fmap_insert. f_equal. subst B πj.
rewrite gmultiset_elements_disj_union. rewrite fmap_app. rewrite list_to_set_disj_app.
rewrite gmultiset_elements_singleton. multiset_solver.
}
subst π' πj'.
exfr. done.
Qed.
(** ** rules *)
Lemma hist_optimistic_traversal i o j Hstart Hcurr :
LiveAt Hstart i →
HistAuth Hcurr -∗ HistSnap Hstart -∗ HistPointsToLast i o (Some j) -∗ ⌜ LiveAt Hstart j ⌝.
Proof.
iIntros (i_liveat_H) "HistAuth Snap PointsTo".
iDestruct "HistAuth" as (??????) "(%Enc & _ & _ & %well_formed_Hcurr &
●Hcurr & ●succ_hist & _ & _)".
iDestruct "Snap" as (?????) "[%well_formed_H ◯Hstart]". encode_agree Enc.
iDestruct "PointsTo" as (??????) "(%Hlink_last & ◯Hlink & ◯succ_hist_io)". encode_agree Enc.
iDestruct (mono_list_auth_lb_valid with "●Hcurr ◯Hlink") as %[_ Hlink_before_Hcurr].
iDestruct (mono_list_auth_lb_valid with "●Hcurr ◯Hstart") as %[_ Hstart_before_Hcurr].
iDestruct (mono_list_lb_valid with "◯Hstart ◯Hlink") as %[Hstart_before_Hlink | Hlink_before_Hstart].
- iPureIntro.
assert (LiveAt Hlink j); last by eauto using (elem_of_prefix _ _ _ _ Hstart_before_Hlink).
assert (∀ a, Hlink !! a = Some (del j) → False); last first.
{ unfold LiveAt in *. rewrite elem_of_list_lookup. naive_solver. }
intros a lookup_Ha. rewrite last_lookup in Hlink_last.
replace (Init.Nat.pred (length Hlink)) with ((length Hlink) - 1) in *; last lia.
assert (a < length Hlink - 1) as a_lt_length_Hlink_m1. {
assert (a ≠ length Hlink - 1) by congruence.
have ? := lookup_lt_Some _ _ _ lookup_Ha. lia.
}
destruct well_formed_Hcurr as (nnltd & _). unfold no_new_link_to_deleted in nnltd.
eapply nnltd.
+ exact a_lt_length_Hlink_m1.
+ eapply (prefix_lookup_Some Hlink); done.
+ eapply (prefix_lookup_Some Hlink); done.
- iDestruct (ghost_map_lookup with "●succ_hist ◯succ_hist_io") as "%Eqn_Hcurr_io".
iPureIntro.
assert (∃ Hlink_io, succ_hist_map Hlink !! (i, o) = Some Hlink_io ∧ last Hlink_io = Some (Some j))
as (Hlink_io & Eqn_Hlink_io & last_Hlink_io).
{
rewrite last_Some in Hlink_last. destruct Hlink_last as [Hlink' e]. subst Hlink.
unfold succ_hist_map. rewrite fold_left_app. fold (succ_hist_map Hlink'). simpl.
eexists. rewrite lookup_insert. split; try done. rewrite last_app. done.
}
rewrite -lookup_lookup_total in Eqn_Hcurr_io; last done.
rewrite Eqn_Hlink_io in Eqn_Hcurr_io.
assert (succ_hist_map Hstart !! (i, o) = Some Hlink_io). {
specialize (succ_hist_map_lookup_prefix _ _ _ _ Hlink_before_Hstart Eqn_Hlink_io)
as (Hstart_io & Eqn_Hstart_io & Hlink_io_po_Hstart_io).
specialize (succ_hist_map_lookup_prefix _ _ _ _ Hstart_before_Hcurr Eqn_Hstart_io)
as (Hcurr_io & Eqn_Hcurr_io' & Hstart_io_po_Hcurr_io).
assert (Hlink_io = Hcurr_io) as <- by congruence. clear Eqn_Hcurr_io'.
assert (Hlink_io = Hstart_io) as <- by by apply (anti_symm prefix).
done.
}
assert (interp Hstart !! (i, o) = Some j) as io_points_to_j; first by eapply last_succ_hist_is_interp.
destruct well_formed_H as (_ & lptl).
unfold live_points_to_live in lptl.
eapply lptl; done.
Qed.
Lemma HistPointsTo_snap i o Hio n to :
Hio !! n = Some to → HistPointsTo i o Hio -∗ HistPointedTo i o n to.
Proof.
iIntros (Hio_n) "PointsTo".
iDestruct "PointsTo" as (??????) "(%Hio_def & ◯Hlink & ◯succ_hist_io)".
iFrame "∗%". iPureIntro. congruence.
Qed.
Lemma hist_optimistic_traversal' i o n j Hstart Hcurr :
LiveAt Hstart i →
(* read was done with the observation of Hstart *)
length (field_hist Hstart i o) - 1 ≤ n →
HistAuth Hcurr -∗
HistSnap Hstart -∗
(* read n-th event from (i,o) *)
HistPointedTo i o n (Some j) -∗
⌜ LiveAt Hstart j ⌝.
Proof.
iIntros (Hstart_i Hstart_io_len_n) "HistAuth Snap PointsTo".
iDestruct "HistAuth" as (??????) "(%Enc & _ & _ & %well_formed_Hcurr &
●Hcurr & ●succ_hist & _ & _)".
iDestruct "Snap" as (?????) "[%well_formed_Hstart ◯Hstart]". encode_agree Enc.
iDestruct "PointsTo" as (???? Hlink ?) "(%Hlink_io_n & ◯Hlink)". encode_agree Enc.
iDestruct (mono_list_auth_lb_valid with "●Hcurr ◯Hlink") as %[_ Hlink_before_Hcurr].
iDestruct (mono_list_auth_lb_valid with "●Hcurr ◯Hstart") as %[_ H_before_Hcurr].
iDestruct (mono_list_lb_valid with "◯Hstart ◯Hlink") as %Hstart_Hlink.
remember (field_hist Hstart i o) as Hstart_io eqn:Hstart_io_def.
remember (field_hist Hlink i o) as Hlink_io eqn:Hlink_io_def.
(* Assume j is dead in Hstart *)
iPureIntro. intros Hstart_j.
(* by the two assumptions on n, Hstart_io can't be longer than Hlink_io *)
have {Hstart_Hlink}Hstart_Hio : Hstart_io `prefix_of` Hlink_io.
{ have Hstart_Hio : Hstart_io `prefix_of` Hlink_io ∨ Hlink_io `prefix_of` Hstart_io.
{ destruct Hstart_Hlink as [PF|PF]; [left|right]; by eapply succ_hist_map_prefix_mono. }
destruct Hstart_Hio as [?|PF]; first done.
case (decide (Hlink_io = Hstart_io)) as [->|NE]; first done.
assert (length Hlink_io ≠ length Hstart_io) by auto using prefix_length_eq.
apply prefix_length in PF. apply lookup_lt_Some in Hlink_io_n. lia. }
(* n can't be newer than the events in in Hstart_io, because of no_new_link_to_deleted *)
have n_Hstart_io : n < length Hstart_io.
{ destruct well_formed_Hcurr as [nnltd _]. unfold no_new_link_to_deleted in nnltd.
apply Nat.lt_nge => {}Hstart_io_len_n.
(* From [del j ∈ Hstart], get [∃ a, Hstart !! a = Some (del j)] *)
apply elem_of_list_lookup in Hstart_j. destruct Hstart_j as [a Hstart_j].
(* From [Hlink_io !! n = Some (Some j)], get [∃ b, Hlink !! b = Some (link i o (Some j))] *)
(* From [length Hstart_io ≤ n], get [length Hstart ≤ b]. Since [a < length Hstart], [a < b]. *)
opose proof (field_hist_lookup_not_in_prefix Hcurr Hstart i o n (Some j) H_before_Hcurr _ _) as Hb.
{ subst Hstart_io. done. }
{ subst. eapply (field_hist_prefix_lookup_Some _ Hlink _ _ _ _ Hlink_before_Hcurr). done. }
destruct Hb as (b & Hcurr_b & Hstart_b).
refine (nnltd _ _ _ a b _ _ Hcurr_b).
- apply lookup_lt_Some in Hstart_j. lia.
- by eapply prefix_lookup_Some. }
(* combined with the precondition, it follows that n is the last event in Hstart_io *)
have {n_Hstart_io Hstart_io_len_n} [Hstart_io_len_n Hstart_io_NE] :
n = length Hstart_io - 1 ∧ length Hstart_io > 0 by lia.
have {Hstart_io_NE}Hstart_io_n : Hstart_io !! n = Some (Some j).
{ rewrite (prefix_lookup_lt Hstart_io Hlink_io n ltac:(lia) Hstart_Hio). done. }
(* by live_points_to_live in Hstart, j must be live in Hstart *)
destruct well_formed_Hstart as [_ lptl]. unfold live_points_to_live in lptl.
eapply lptl; [|done..].
eapply (last_succ_hist_is_interp _ _ o Hstart_io).
- rewrite /field_hist in Hstart_io_def.
destruct (succ_hist_map Hstart !! (i, o)) eqn:?; by simplify_eq/=.
- rewrite last_lookup. rewrite -Nat.sub_1_r. congruence.
Qed.
Lemma hist_take_snapshot H:
HistAuth H -∗ HistSnap H.
Proof.
iIntros "HistAuth".
iDestruct "HistAuth" as (??????) "(%Enc & _ & _ & % & ●H & _)".
unfold HistSnap. repeat iExists _.
iDestruct (mono_list_lb_own_get with "●H") as "◯H".
by iFrame.
Qed.
Lemma hist_auth_snap_valid H1 H2:
HistAuth H1 -∗ HistSnap H2 -∗ ⌜ H2 `prefix_of` H1 ⌝.
Proof.
iIntros "Auth Snap".
iDestruct "Auth" as (??????) "(%Enc & _ & _ & _ & ●H & _)".
iDestruct "Snap" as (?????) "[_ ◯H]". encode_agree Enc.
iDestruct (mono_list_auth_lb_valid with "●H ◯H") as "[_ $]".
Qed.
Lemma hist_pointsto_is_registered H i o oj:
HistAuth H -∗ HistPointsToLast i o oj -∗ ⌜ i ∈ event_id <$> H ⌝.
Proof.
(* NOTE: this can also be proved using 'unregistered_has_no_succ_hist' *)
iIntros "Auth PointsTo".
iDestruct "Auth" as (??????) "(%Enc & _ & _ & _ & ●H & _)".
iDestruct "PointsTo" as (?????? last_hlink) "(◯Hlink & _)". encode_agree Enc.
iDestruct (mono_list_auth_lb_valid with "●H ◯Hlink") as "[#_ %Hlink_before_H]".
iPureIntro.
rewrite last_Some in last_hlink. destruct last_hlink as [l' Eqn_Hlink].
assert (i ∈ event_id <$> Hlink). {
subst Hlink. rewrite fmap_app /=. set_solver.
}
rewrite prefix_cut in Hlink_before_H. rewrite Hlink_before_H. set_solver.
Qed.
Lemma hist_pointedby_is_registered H j B:
HistAuth H -∗ HistPointedBy j B -∗ ⌜ j ∈ event_id <$> H ⌝.
Proof.
iIntros "HistAuth PointedBy".
iDestruct "HistAuth" as (??????) "(%Enc & %H_del_map_consistent & _ & _ & _ & _ & _ & ●del_map)".
iDestruct "PointedBy" as (?????) "[◯pred_j ◯del_map_j]". encode_agree Enc.
simpl. iDestruct (ghost_map_lookup with "●del_map ◯del_map_j") as "%".
destruct (H_del_map_consistent j) as (Hdom & _). iPureIntro. apply Hdom. eapply elem_of_dom_2. done.
Qed.
Lemma hist_pointedby_is_alive H j B:
HistAuth H -∗ HistPointedBy j B -∗ ⌜ LiveAt H j ⌝.
Proof.
iIntros "HistAuth PointedBy".
iDestruct "HistAuth" as (??????) "(%Enc & %del_map_consistent_b & _ & _ & _ & _ & _ & ●del_map)".
iDestruct "PointedBy" as (?????) "[◯pred_j ◯del_map_j]". encode_agree Enc.
iDestruct (ghost_map_lookup with "●del_map ◯del_map_j") as "%". unfold del_map_consistent in *. naive_solver.
Qed.
Lemma hist_deleted_is_not_alive H j:
HistAuth H -∗ HistDeleted j -∗ ⌜ ¬ LiveAt H j ⌝.
Proof.
iIntros "Auth #Deleted".
iDestruct "Auth" as (??????) "(%Enc & %del_map_consistent_b & _ & _ & _ & _ & _ & ●del_map)".
iDestruct "Deleted" as (?????) "[_ ◯del_map_j]". encode_agree Enc.
iDestruct (ghost_map_lookup with "●del_map ◯del_map_j") as "%". unfold del_map_consistent in *. naive_solver.
Qed.
Lemma hist_create_node (H: list event) (size: nat) i:
size > 0 →
i ∉ event_id <$> H →
HistAuth H ==∗
HistAuth (H ++ ((λ o, link i o None) <$> (seq 0 size)) ) ∗ HistPointedBy i ∅ ∗
([∗ list] o ∈ seq 0 size, HistPointsToLast i o None).
Proof.
rename i into new_i.
iIntros (size_not_0 new_i_is_new) "HistAuth".
iDestruct "HistAuth" as (??????) "(%Enc & %del_map_consistent_before & %pred_map_consistent_before & %well_formed_before &
●H & ●succ_hist & ●pred_multiset & ●del_map)".
(* updated history H' *)
remember (H ++ ((λ o : nat, link new_i o None) <$> seq 0 size)) as H'.
(* helpers *)
assert (∃ sm1, S sm1 = size) as [sm1 HeqSm1]; first by exists (size - 1); lia.
assert (new_i ∈ event_id <$> H') as H'_new_i. {
simpl in HeqH'. set_unfold. exists (link new_i 0 None). set_solver.
}
(* update del_map *)
iMod (ghost_map_insert new_i false with "●del_map") as "[●del_map' ◯del_new_i]". {
specialize (del_map_consistent_before new_i) as [del_map_domain _].
apply not_elem_of_dom. auto.
}
remember ((<[new_i:=false]> del_map)) as del_map'.
have del_map_consistent_after: (del_map_consistent H' del_map'). {
unfold del_map_consistent. intros i.
case (decide (i = new_i)) as [-> | NE_new_i]; subst del_map'.
- rewrite lookup_insert. repeat split; try done.
intros _. assert (LiveAt H new_i) as ?; first by apply unregistered_is_alive. unfold LiveAt in *. set_solver.
- specialize (del_map_consistent_before i). rewrite lookup_insert_ne; last done. unfold LiveAt in *. set_solver.
}
(* update pred_map *)
iMod (ghost_map_insert new_i ∅ with "●pred_multiset") as "[●pred_multiset' ◯pred_new_i]". {
unfold to_pred_multiset_map.
destruct pred_map_consistent_before as (pmc1 & pmc2). specialize (pmc1 new_i).
assert (new_i ∉ dom π) by auto. assert (π !! new_i = None) as π_new_i_none; first by apply not_elem_of_dom.
rewrite lookup_fmap. rewrite π_new_i_none. done.
}
remember (<[ new_i := ∅ ]> π) as π'.
assert (new_i ∉ dom π) as H_π_new_i. {
destruct pred_map_consistent_before as (pmc1 & _). auto.
}
have pred_map_consistent_after: (pred_map_consistent H' π'). {
unfold pred_map_consistent. destruct pred_map_consistent_before as (pmc1 & pmc2). split.
- subst π'. intros. case (decide (j = new_i)) as [-> | NE_new_i]; try done. set_solver.
- intros ??? Hinterp ?. case (decide (i = new_i)) as [-> | NE_new_i].
+ exfalso. assert (interp H' !! (new_i, o) = None); last congruence. clear H_π_new_i. rewrite HeqH'.
unfold interp. rewrite fold_left_app. fold (interp H).
assert (interp H !! (new_i, o) = None) as interp_H_new_i_None; first by apply unregistered_points_to_nowhere.
clear -interp_H_new_i_None. induction size as [| s']; first done. replace (S s') with (s' + 1); last lia.
rewrite seq_app fmap_app fold_left_app. simpl. apply lookup_delete_None. right. done.
+ assert (∃ i_s, π !! j = Some i_s ∧ (i, o) ∈ i_s) as [i_s [π_j io_is]]. {
apply pmc2.
- subst H'. clear -Hinterp NE_new_i. induction size as [| s'].
+ simpl in *. replace (H ++ []) with H in *; last by rewrite app_nil_r. done.
+ apply IHs'. replace (S s') with (s' + 1) in Hinterp; last lia.
rewrite seq_app fmap_app app_assoc in Hinterp.
remember (H ++ ((λ o : nat, link new_i o None) <$> seq 0 s')) as Hs'.
unfold interp in Hinterp. rewrite fold_left_app in Hinterp. simpl in *. fold (interp Hs') in Hinterp.
rewrite lookup_delete_ne in Hinterp; last congruence. done.
- unfold LiveAt in *. subst H'. set_solver.
}
exists i_s. subst π'. assert (j ≠ new_i). {
assert (j ∈ dom π); first by eapply elem_of_dom_2.
(* new_i ∉ dom π *) congruence.
}
rewrite lookup_insert_ne; done.
}
assert (to_pred_multiset_map π' = <[new_i:=∅]> (to_pred_multiset_map π)) as <-. {
subst π'. unfold to_pred_multiset_map. rewrite fmap_insert. set_solver.
}
(* construct HistPointedBy *)
iAssert (HistPointedBy new_i ∅) with "[◯pred_new_i ◯del_new_i]" as "$"; first by exfr.
(* update succ_hist_map and ●H *)
(* These have to be done together because the output HistPointsTos contain snapshots of ●H's intermediate steps *)
iAssert (|==> mono_list_auth_own γh 1 H' ∗
ghost_map_auth γt 1 (succ_hist_map H') ∗
([∗ list] o ∈ seq 0 size, HistPointsToLast new_i o None) ∗
⌜ ∀ s, size ≤ s → succ_hist_map H' !! (new_i, s) = None ⌝ (* to put more information in IH*)
)%I
with "[●succ_hist ●H]" as ">(●H' & succ_hist' & $ & _)". {
subst H'. clear -new_i_is_new Enc. iInduction size as [|s' IH].
- simpl. rewrite app_nil_r. iFrame. iPureIntro. split; try done. intros.
apply not_elem_of_dom. apply unregistered_has_no_succ_hist. done.
- iSpecialize ("IH" with "●succ_hist ●H"). iDestruct "IH" as ">(●H & ●shm & hpts & %ns_new)". replace (S s') with (s' + 1); last lia.
rewrite seq_app fmap_app app_assoc. simpl. rewrite succ_hist_create; last by auto.
iMod (ghost_map_insert (new_i, s') [None] with "●shm") as "[●shm' ◯succ_newi_s']"; first by auto.
iFrame. simpl. remember ((H ++ ((λ o : nat, link new_i o None) <$> seq 0 s'))) as H_prev.
iMod (mono_list_auth_own_update (H_prev ++ [link new_i s' None]) with "●H") as "[●H' ◯H']"; first by eexists.
iModIntro. iFrame. iSplitL.
+ exfr. rewrite succ_hist_create; last by auto.
rewrite last_app. simpl. iSplit; try done. rewrite lookup_total_insert. done.
+ iPureIntro. intros. rewrite lookup_insert_ne; last by injection 1; lia. apply ns_new. lia.
}
unfold HistAuth. exfr.
(* prove well-formedness *)
iPureIntro. unfold well_formed in *. subst H'. clear -well_formed_before.
remember ((λ o : nat, link new_i o None) <$> seq 0 size) as appended. destruct well_formed_before as (wfp2 & wfp3).
assert (∀ i, del i ∉ appended) by set_solver.
assert (∀ i j o, link i o (Some j) ∉ appended) by set_solver.
repeat split.
- unfold no_new_link_to_deleted in *. intros i j o a b Hab Ha Hb.
repeat rewrite lookup_app_Some in Ha Hb.
naive_solver (eauto using elem_of_list_lookup_2).
- unfold live_points_to_live, LiveAt in *. intros i o j H_ij H_i.
assert (interp H !! (i, o) = Some j). {
subst appended. clear -H_ij. induction size as [| s'].
- simpl in *. rewrite app_nil_r in H_ij. done.
- remember (H ++ ((λ o : nat, link new_i o None) <$> seq 0 s')) as Hb. apply IHs'.
replace (S s') with (s' + 1) in H_ij; last lia. unfold interp in H_ij.
rewrite seq_app fmap_app app_assoc fold_left_app -HeqHb in H_ij. fold (interp Hb) in H_ij. simpl in *.
by eapply lookup_delete_Some.
}
set_solver.
Qed.
Lemma hist_delete_node H i:
HistAuth H -∗ HistPointedBy i ∅ ==∗
HistAuth (H ++ [del i]) ∗ HistDeleted i.
Proof.
rename i into rj.
iIntros "HistAuth PointedBy".
iDestruct "HistAuth" as (??????) "(%Enc & %del_map_consistent_before & %pred_map_consistent_before & %well_formed_before &
●H & ●succ_hist & ●pred_multiset & ●del_map)".
remember (H ++ [del rj]) as H'.
(* update H' *)
iMod (mono_list_auth_own_update H' with "●H") as "[●H' _]"; first by eexists.
(* destruct HistPointdBy *)
iDestruct "PointedBy" as (????) "(% & ◯i_pointed_by_∅ & ◯i_not_deleted)". encode_agree Enc.
iMod (ghost_map_elem_persist with "◯i_pointed_by_∅") as "#◯i_pointed_by_∅".
(* rj was not deleted before. *)
iAssert (⌜ LiveAt H rj ⌝ )%I with "[◯i_not_deleted ●del_map]" as "%rj_LiveAt_H". {
unfold del_map_consistent in *. iDestruct (ghost_map_lookup with "●del_map ◯i_not_deleted") as "%". iPureIntro. naive_solver.
}
iAssert (⌜ ¬ ∃ i o, (interp H) !! (i, o) = Some rj ∧ LiveAt H i ⌝)%I as "%rj_has_no_predecessor". {
iDestruct (ghost_map_lookup with "●pred_multiset ◯i_pointed_by_∅") as"%".
iPureIntro. intros (i & o & H_irj & H_i).
specialize (pred_in_pred_multiset _ _ _ _ _ pred_map_consistent_before H_irj H_i) as (pmm & ? & ?).
assert (pmm = ∅) as -> by naive_solver. (* i ∈ ∅ → False *) set_solver.
}
(* update (del_map !! i) to true. *)
iMod (ghost_map_update true with "●del_map ◯i_not_deleted") as "[●del_map' ◯i_deleted]".
iMod (ghost_map_elem_persist with "◯i_deleted") as "#◯i_deleted".
remember ((<[rj:=true]> del_map)) as del_map'.
assert (del_map_consistent H' del_map'). {
subst H' del_map'. clear -del_map_consistent_before. unfold del_map_consistent in *.
intros. specialize (del_map_consistent_before i) as (dmc1& dmc2 & dmc3). repeat split.
- rewrite fmap_app. set_solver.
- unfold LiveAt in *. case (decide (i = rj)) as [-> | NE_i_rj].
+ set_solver.
+ rewrite lookup_insert_ne; last done. set_solver.
- unfold LiveAt. rewrite lookup_insert_Some. set_solver.
}
(* construct HistDeleted *)
iSplitR "◯i_pointed_by_∅ ◯i_deleted"; last by exfr.
(* pred_map is unaffected *)
assert (pred_map_consistent H' π). {
subst H'. clear -pred_map_consistent_before. unfold pred_map_consistent, LiveAt in *.
rewrite interp_unaffected_by_del. set_solver.
}
unfold HistAuth.
(* succ_map is unaffected *)
assert (succ_hist_map H' = succ_hist_map H) as ->; first by subst H'; apply succ_hist_unaffected_by_del.
exfr.
(* prove well-formedness *)
iPureIntro. subst H'. clear -well_formed_before rj_LiveAt_H rj_has_no_predecessor.
destruct well_formed_before as (wf1 & wf2). unfold LiveAt in *. repeat split.
- unfold no_new_link_to_deleted in *. intros i j o a b Hab Ha Hb.
case (decide (b < length H)) as [? | ?].
+ case (decide (a < length H)) as [? | ?].
* repeat rewrite lookup_app_l in Ha Hb; eauto.
* lia.
+ rewrite lookup_app_r in Hb; try lia. rewrite list_lookup_singleton_Some in Hb. naive_solver.
- unfold live_points_to_live in *. rewrite interp_unaffected_by_del. unfold LiveAt in *. set_solver.
Qed.
Lemma hist_points_to_link i o j H B:
HistAuth H -∗
HistPointsToLast i o None -∗
HistPointedBy j B ==∗
HistAuth (H ++ [link i o (Some j)]) ∗
HistPointsToLast i o (Some j) ∗
HistPointedBy j (B ⊎ {[+ i +]}).
Proof.
iIntros "HistAuth PointsTo PointedBy".
iDestruct (hist_pointedby_is_alive with "HistAuth PointedBy") as "%j_alive".
iDestruct "HistAuth" as (??????) "(%Enc & %del_map_consistent_before & %pred_map_consistent_before & %well_formed_before &
●H & ●succ_hist & ●pred_multiset & ●del_map)".
remember (H ++ [link i o (Some j)]) as H'.
(* update H' *)
iMod (mono_list_auth_own_update H' with "●H") as "[●H' #◯H']"; first by eexists.
(* update succ_hist_map and PointsTo*)
iAssert (|==> ghost_map_auth γt 1 (succ_hist_map H') ∗ HistPointsToLast i o (Some j))%I with "[●succ_hist PointsTo]" as ">[●succ_hist' $]". {
iDestruct "PointsTo" as (?????) "(% & %Hlink_last & ◯Hlink & ◯succ_hist_io)". encode_agree Enc.
remember (succ_hist_map Hlink !!! (i, o)) as shm_io_old.
iDestruct (ghost_map_lookup with "●succ_hist ◯succ_hist_io") as "%shm_lookup".
specialize (succ_hist_update _ _ _ (Some j) _ shm_lookup) as shm_update. rewrite -HeqH' in shm_update.
iMod (ghost_map_update (shm_io_old ++ [Some j]) with "●succ_hist ◯succ_hist_io") as "[●succ_hist' ◯succ_hist_io]". rewrite -shm_update.
assert (succ_hist_map H' !!! (i, o) = shm_io_old ++ [Some j]) as <-. { rewrite shm_update. eapply lookup_total_insert. }
unfold HistPointsToLast. iFrame. exfr. subst H'. rewrite last_app. done.
}
(* del_map stays same *)
assert (del_map_consistent H' del_map). { eapply del_map_unaffected_by_links; set_solver. }
iDestruct "PointedBy" as (?????) "[◯pred_j ◯del_map_j]". encode_agree Enc.
(* update pred_map and PointedBy *)
(* access π !! j *)
iDestruct (ghost_map_lookup with "●pred_multiset ◯pred_j") as "%pm_lookup".
unfold to_pred_multiset_map in pm_lookup. rewrite lookup_fmap in pm_lookup.
destruct (π !! j) as [πj |] eqn: Eqn_πj; last naive_solver. simpl in *. injection pm_lookup as H_B.
(* do ghost updates *)
remember (<[ j := πj ⊎ {[+ (i, o) +]} ]> π) as π'.
iAssert (|==> ghost_map_auth γb 1 (to_pred_multiset_map π') ∗ HistPointedBy j (B ⊎ {[+ i +]}))%I
with "[●pred_multiset ◯pred_j ◯del_map_j]" as ">[●pred_multiset PointedBy']". {
iMod (ghost_map_update (B ⊎ {[+ i +]}) with "●pred_multiset ◯pred_j") as "[●pred_multiset' ◯pred_j']".
assert (<[j:=B ⊎ {[+ i +]}]> (to_pred_multiset_map π) = to_pred_multiset_map π') as ->. {
subst π'. unfold to_pred_multiset_map in *. rewrite fmap_insert.
f_equal.
rewrite gmultiset_elements_disj_union. rewrite fmap_app.
rewrite list_to_set_disj_app. rewrite gmultiset_elements_singleton. multiset_solver.
}
by exfr.
}
assert (pred_map_consistent H' π'). {
unfold pred_map_consistent in *. destruct pred_map_consistent_before as [pmc1 pmc2]. subst π' H'. split.
- intros j' H_j'. rewrite dom_insert_lookup in H_j'; last done. set_solver.
- intros i' o' j' H_i'j' H_i'. unfold LiveAt in *.
case (decide ((i', o') = (i, o))) as [[= -> ->] | NE_io].
+ rewrite interp_lookup_app_link in H_i'j'. injection H_i'j' as ->.
rewrite lookup_insert. eexists. split; set_solver.
+ rewrite interp_lookup_app_link_ne in H_i'j'; last done.
case (decide (j = j')) as [<- | NE_j].
* rewrite lookup_insert. eexists. split; set_solver.
* rewrite lookup_insert_ne; last done. set_solver.
}
subst B. exfr. iPureIntro.
(* prove well-formedness*)
subst H'. clear -well_formed_before j_alive.
assert (∀ i1 i2, del i1 ∉ [link i2 o (Some j)]) by set_solver.
destruct well_formed_before as (wf1 & wf2). repeat split.
- unfold no_new_link_to_deleted in *. intros ? ? ? a b Hab Ha Hb.
repeat rewrite lookup_app_Some list_lookup_singleton in Ha Hb.
destruct Ha, Hb, (b - length H); naive_solver (eauto using elem_of_list_lookup_2).
- unfold live_points_to_live in *. intros i' o' j' H_i'j' Hi'.
unfold LiveAt in *. case (decide ((i, o) = (i', o'))) as [[= <- <-] | NE_io].
+ rewrite interp_lookup_app_link in H_i'j'. set_solver.
+ rewrite interp_lookup_app_link_ne in H_i'j'; last done. set_solver.
Qed.
Lemma hist_points_to_unlink i o j H B:
HistAuth H -∗
HistPointsToLast i o (Some j) -∗
HistPointedBy j B ==∗
HistAuth (H ++ [link i o None]) ∗
HistPointsToLast i o None ∗
HistPointedBy j (B ∖ {[+ i +]}).
Proof.
iIntros "HistAuth PointsTo PointedBy".
iDestruct (PointsTo_reflects_interp with "HistAuth PointsTo") as "%interp_io_j".
iDestruct "HistAuth" as (??????) "(%Enc & %del_map_consistent_before & %pred_map_consistent_before & %well_formed_before &
●H & ●succ_hist & ●pred_multiset & ●del_map)".
remember (H ++ [link i o None]) as H'.
(* update H' *)
iMod (mono_list_auth_own_update H' with "●H") as "[●H' #◯H']"; first by eexists.
(* update succ_hist_map and PointsTo*)
(* NOTE: repeated code (almost same as link rule) *)
iAssert (|==> ghost_map_auth γt 1 (succ_hist_map H') ∗ HistPointsToLast i o None)%I with "[●succ_hist PointsTo]" as ">[●succ_hist' $]". {
iDestruct "PointsTo" as (?????) "(% & %Hlink_last & ◯Hlink & ◯succ_hist_io)". encode_agree Enc.
remember (succ_hist_map Hlink !!! (i, o)) as shm_io_old.
iDestruct (ghost_map_lookup with "●succ_hist ◯succ_hist_io") as "%shm_lookup".
specialize (succ_hist_update _ _ _ None _ shm_lookup) as shm_update. rewrite -HeqH' in shm_update.
iMod (ghost_map_update (shm_io_old ++ [None]) with "●succ_hist ◯succ_hist_io") as "[●succ_hist' ◯succ_hist_io]". rewrite -shm_update.
assert (succ_hist_map H' !!! (i, o) = shm_io_old ++ [None]) as <-. { rewrite shm_update. eapply lookup_total_insert. }
unfold HistPointsToLast. iFrame. exfr. subst H'. rewrite last_app. done.
}
(* del_map stays same *)