-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdqn_train_model.py
1010 lines (782 loc) · 38.5 KB
/
dqn_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#- args player_list, list of players
#- args seed, random seed used
#- args time_limit, time limit for each step, None for inf time
#- args warning_limit, timeout warnings
#- args displayer, TextGameDisplayer, GUIDisplayer or None
#- args players_namelist, name to display
#- return replay, a dict
from model import *
from utils import *
from displayer import *
from func_timeout import func_timeout, FunctionTimedOut
import time
from players.reward import Reward
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.optimizers import rmsprop, Adam
from keras.regularizers import l2
from collections import deque
import tensorflow as tf
import numpy as np
import random
import json
from keras.models import model_from_json
#from experience_replay import ER
class AdvancePlayer(Player):
def __init__(self, _id):
super().__init__(_id)
def StartRound(self,game_state):
return None
def SelectMove(self, moves, game_state):
return random.choice(moves)
class AdvanceGameRunner:
def __init__(self,
player_list,
seed=1,
time_limit=1,
startRound_time_limit = 1,
warning_limit=3,
displayer = None,
players_namelist = ["Alice","Bob"]):
self.seed = seed
random.seed(self.seed)
self.seed_list = [random.randint(0,1e10) for _ in range(1000000)] #1000 random.randint(0,1e10)
self.seed_idx = 0
# Make sure we are forming a valid game, and that player
# id's range from 0 to N-1, where N is the number of players.
assert(len(player_list) <= 4)
assert(len(player_list) > 1)
i = 0
for plyr in player_list:
assert(plyr.id == i)
i += 1
self.game_state = GameState(len(player_list))
self.players = player_list
self.players_namelist = players_namelist
self.time_limit = time_limit
self.startRound_time_limit = startRound_time_limit
self.warning_limit = warning_limit
self.warnings = [0]*len(player_list)
self.warning_positions = []
self.displayer = displayer
if self.displayer is not None:
self.displayer.InitDisplayer(self)
def _EndGame(self,player_order,isTimeOut = True, id = None):
player_traces = {"seed":self.seed,
"player_num":len(player_order),
"players_namelist":self.players_namelist,
"warning_positions":self.warning_positions,
"warning_limit":self.warning_limit}
if isTimeOut:
player_traces.update({id:[0, plr_state.player_trace] for id,plr_state in enumerate(self.game_state.players)})
player_traces[id][0] = -1
self.game_state.players[id].score = -1
else:
for i in player_order:
plr_state = self.game_state.players[i]
plr_state.EndOfGameScore()
player_traces[i] = (plr_state.score, plr_state.player_trace)
if self.displayer is not None:
self.displayer.EndGame(self.game_state)
return player_traces
def get_int(self, move): # Give the intㅇ representation(maping) of the move from the dictionary to give it as input for the deep neural network
move = str(TileToShortString(move[2].tile_type)) + '/' \
+ str(move[2].pattern_line_dest) + '/'+ str(move[2].num_to_pattern_line) + '/' + str(move[2].num_to_floor_line)
# 5557
try:
return self.general_moves[move]
except:
self.general_moves[move]=len(self.general_moves)
return self.general_moves[move]
'''
def get_fullfeatures(self, move, state_feature):
#state_feature_copy = state_feature
move_idx=self.get_int(move)
#state_feature.append(move_idx)
state_feature.extend(move_idx)
#np_s_features = np.array(state_feature)
#np_s_features = np_s_features.reshape((1, 48))
return state_feature, move_idx
'''
def get_FactoryCentre(self, game_state):
factory_list = []
for i in range(5):
factory = game_state.factories[i].tiles
for j in range(len(factory)):
factory_list.append(factory[j])
for j in range(len(game_state.centre_pool.tiles)):
factory_list.append(game_state.centre_pool.tiles[j])
return factory_list
def get_statefeatures(self, game_state, state_feature, round_count):
state_feature_copy = copy.deepcopy(state_feature)
#factory_list = self.get_FactoryCentre(game_state)
#state_feature_copy.extend(factory_list)
state_feature_copy.append(round_count)
return state_feature_copy
def get_actionfeatures(self, move):
move_idx = self.get_int(move)
return move_idx
def get_immediateReward(self, game_state, act_id, move, player_order):
my,_ = Reward(game_state, act_id, player_order).estimate(move)
enemy,_ = Reward(game_state, act_id*-1 + 1, player_order).estimate(move)
immediate_reward = my - enemy
return [my, enemy]
def step(self, i, game_state, move, player_order, round_num):
done = False
game_state_copy = copy.deepcopy(game_state)
#print('ROUND: ', round_num, 'i', i , 'player_order?', player_order_copy)
#11
#immediate_reward = 0
c_score,_ = Reward(game_state_copy, i, player_order).estimate(move)
#c_score = c_score
game_state_copy.ExecuteMove(i, move)
game_state_copy2 = copy.deepcopy(game_state)
game_state_copy2.ExecuteEndOfRound()
point = game_state_copy2.players[i].player_trace.round_scores[-1] - game_state_copy2.players[i*-1 + 1].player_trace.round_scores[-1]
if i == 0:
self.prev_0_point = point
point = point - self.prev_0_point
else:
self.prev_1_point = point
point = point - self.prev_1_point
immediate_reward = (c_score + point)/5
#game_state_copy2 = copy.deepcopy(game_state_copy)
#enemy_state = game_state_copy2.players[i*-1 + 1]
#enemy_next_moves = enemy_state.GetAvailableMoves(game_state_copy2)
#game_state_copy.ExecuteMove(i*-1 + 1, move)
reward = 0
enemy_reward = 0
whole_reward = 0
enemy_whole_reward = 0
bonus = 0
bonus2 = 0
if not game_state_copy.TilesRemaining():
round_reward = game_state_copy2.players[i].player_trace.round_scores[-1] - game_state_copy2.players[i*-1 + 1].player_trace.round_scores[-1]
enemy_round_reward = game_state_copy2.players[i*-1 + 1].player_trace.round_scores[-1] - game_state_copy2.players[i].player_trace.round_scores[-1]
#if round_num >=4:
bonus = game_state_copy2.players[i].EndOfGameScore() - game_state_copy2.players[i*-1 + 1].EndOfGameScore()
bonus2 = game_state_copy2.players[i*-1 + 1].EndOfGameScore() - game_state_copy2.players[i].EndOfGameScore()
reward = (round_reward + bonus*0.5**(4-round_num))
enemy_reward = (enemy_round_reward + bonus2*0.5**(4-round_num))
if round_num >=4:
game_reward = game_state_copy2.players[i].score - game_state_copy2.players[i*-1 + 1].score
game_reward_enemy = game_state_copy2.players[i*-1 + 1].score - game_state_copy2.players[i].score
whole_reward = game_reward*5
enemy_whole_reward = game_reward_enemy*5
#reward = reward*2
#enemy_reward = enemy_reward*2
#reward = game_state_copy2.players[i].score
done = True
plr_state = game_state_copy.players[i]
enemy_state = game_state_copy.players[i*-1 + 1]
next_moves = plr_state.GetAvailableMoves(game_state_copy)
next_available_actions_list = []
for available_idx, move in enumerate(next_moves):
total_idx = self.get_int(move)
next_available_actions_list.append(total_idx)
state_feature = StateToArray(i, plr_state)
state_feature_enemy = StateToArray(i*-1 + 1, enemy_state)
state_feature.extend(state_feature_enemy)
next_state = []
next_game_state = game_state_copy
s_features = self.get_statefeatures(next_game_state, state_feature, round_num)
next_state =s_features
return next_state, immediate_reward, reward, enemy_reward, whole_reward, enemy_whole_reward, done, next_available_actions_list
def train_replay(self, flag, replay) :
#if len(replay)>0:
new_list = list(map(lambda x: x[0], replay))
X = new_list #np.array(new_list)
y = []
r = 0
#cnt = 0
#print('after rev', reversed(replay)[0][0])
#print('====================>>>', flag)
for s, done, ir, r, wr, _s, _avail, idx in replay:
#print('replay enter')
#cnt+=1
#if r>0:
# print(' R: ', r)
if flag == 'long':
r = wr
if not done : #r == 0.0: #update the reward if it's a non terminal step. the reward is 0 for all non terminal steps
next_preds = self.frozen_model.predict(np.array([_s]))[0]
maxval = 0
for total_idx in _avail:
val = next_preds[total_idx]
if val > maxval:
maxval = val
r = maxval*0.95 + r # gamma*Q(s', a)
#print('IR: ', ir, 'R: ', r)
b = self.training_model.predict(np.array([s])) #setting the gradient of all the non action values to 0, kinda hacky but works
#print('r: ', r, 'IR: ', ir )
r = r+ ir
b[0][idx] = r
y.append(b)
y = np.array(y)
if len(X) > 0:
for idx in range(len(X)):
#print('l:', y[idx].shape)
#y_test = np.array(y[idx])
X_train = np.array([X[idx]])
y_train = y[idx]
#print('YSHAPE: ', y_train[0].shape)
#print('m:', y_test.shape)
#y_test= y_test.reshape(150,1)
#print('n:', y_test.shape)
self.training_model.train_on_batch(X_train, y_train)
def _run(self):
self.game_state = GameState(len(self.players))
#model = self.model
player_order = []
for i in range(self.game_state.first_player, len(self.players)):
player_order.append(i)
for i in range(0, self.game_state.first_player):
player_order.append(i)
game_continuing = True
round_count = 0
move_count = 0
cnt_0=0
cnt_1=0
cnt_long_0=0
cnt_long_1=0
#pr 1
for plr in self.game_state.players:
plr.player_trace.StartRound()
#pr 2
for i in player_order:
gs_copy = copy.deepcopy(self.game_state)
#self.game_state = gs_copy
try:
func_timeout(self.startRound_time_limit,self.players[i].StartRound,args=(gs_copy,))
except FunctionTimedOut:
'''
self.warnings[i] += 1
if self.displayer is not None:
self.displayer.TimeOutWarning(self,i)
self.warning_positions.append((i,round_count,-1))
if self.warnings[i] == self.warning_limit:
player_traces = self._EndGame(player_order,isTimeOut=True,id=i)
return player_traces
'''
except AttributeError:
pass
#pr3
random.seed(self.seed_list[self.seed_idx])
self.seed_idx += 1
if self.displayer is not None:
self.displayer.StartRound(self.game_state)
#pr4 : start play loop
while game_continuing:
round_num = (4 - len(self.game_state.bag) // 20) ##from 0
for i in player_order:
plr_state = self.game_state.players[i]
enemy_state = self.game_state.players[i*-1 + 1]
moves = plr_state.GetAvailableMoves(self.game_state)
if self.most_len < len(moves):
self.most_len = len(moves)
gs_copy = copy.deepcopy(self.game_state)
moves_copy = copy.deepcopy(moves)
selected = func_timeout(self.time_limit,self.players[i].SelectMove,args=(moves_copy, gs_copy))
if i == 0 or i ==1:
state_feature = StateToArray(i, plr_state)
state_feature_enemy = StateToArray(i*-1 + 1, enemy_state)
state_feature.extend(state_feature_enemy)
state = []
state_feature_copy = copy.deepcopy(state_feature)
preds= 0
move_idx = None
if random.random() <= self.epsilon:
self.eps +=1
#selected = func_timeout(self.time_limit,self.players[i].SelectMove,args=(moves_copy, gs_copy))
#selected = func_timeout(self.time_limit,self.players[i].SelectMove,args=(moves_copy, gs_copy))
move_idx = self.get_int(selected)
s_features = self.get_statefeatures(gs_copy, state_feature_copy, round_num)
state = s_features
else:
s_features = self.get_statefeatures(gs_copy, state_feature_copy, round_num)
state = s_features
available_actions_list = []
for available_idx, move in enumerate(moves_copy):
total_idx = self.get_int(move)
available_actions_list.append([total_idx, available_idx])
inp = np.array([state])
preds = self.training_model.predict(inp)[0]
maxval = 0
maxtotalidx = 0
maxavailidx = 0
for total_idx, available_idx in available_actions_list:
val = preds[total_idx]
if val > maxval:
maxval = val
maxtotalidx = total_idx
maxavailidx = available_idx
move_idx = maxtotalidx
#print('ELSE total_idx: ', move_idx, '/', len(self.general_moves), 'Avail_idx: ', available_idx, '/', len(moves_copy))
selected = moves_copy[maxavailidx]
self.epsilon = max(self.epsilon*0.995, 0.1)
moves_len = len(moves_copy)
next_state, immediate_reward, reward, enemy_reward, whole_reward, enemy_whole_reward, done, next_available_actions_list = self.step(i, gs_copy, selected, player_order, round_num)
replay_0 = []
replay_1 = []
replay_long_0 = []
replay_long_1 = []
if i == 0:
cnt_0 +=1
cnt_long_0 +=1
self.experience_replay.store_0(state, done, immediate_reward, reward, whole_reward, next_state, next_available_actions_list, move_idx)
else:
cnt_1 +=1
cnt_long_1 +=1
self.experience_replay.store_1(state, done, immediate_reward, reward, whole_reward, next_state, next_available_actions_list, move_idx)
if done:
if i == 0:
cnt_1 +=1
cnt_long_1 +=1
del self.experience_replay.replay_1[-1]
del self.experience_replay.replay_long_1[-1]
self.experience_replay.store_1(self.prev_state, self.prev_done, self.prev_immediate_reward, enemy_reward, enemy_whole_reward, self.prev_next_state, self.prev_next_available_actions_list, self.prev_move_idx)
else:
cnt_0 +=1
cnt_long_0 +=1
del self.experience_replay.replay_0[-1]
del self.experience_replay.replay_long_0[-1]
self.experience_replay.store_0(self.prev_state, self.prev_done, self.prev_immediate_reward, enemy_reward, enemy_whole_reward, self.prev_next_state, self.prev_next_available_actions_list, self.prev_move_idx)
replay_0 = self.experience_replay.get_minibatch(0, cnt_0) #of size 5np.argmax(a)b[]
replay_1 = self.experience_replay.get_minibatch(1, cnt_1) #of size 5np.argmax(a)b[]
if round_num == 4:
replay_long_0 = self.experience_replay.get_longbatch(0, cnt_long_0) #of size 5np.argmax(a)b[]
replay_long_1 = self.experience_replay.get_longbatch(1, cnt_long_1) #of size 5np.argmax(a)b[]
else:
self.prev_state = state
self.prev_done = done
self.prev_immediate_reward = immediate_reward
#self.prev_reward = reward
#self.prev_whole_reward = whole_reward
self.prev_next_state = next_state
self.prev_next_available_actions_list = next_available_actions_list
self.prev_move_idx = move_idx
if len(replay_0)>0:
self.train_replay('', replay_0)
if len(replay_1)>0:
self.train_replay('', replay_1)
if len(replay_long_0)>0:
self.train_replay('long', replay_long_0)
if len(replay_long_1)>0:
self.train_replay('long', replay_long_1)
'''
if len(replay)>0:
new_list = list(map(lambda x: x[0], replay))
#print('xTEST')
#print(len(new_list))
X = new_list #np.array(new_list)
y = []
r = 0
cnt = 0
for s, ir, r, _s, _avail, idx in replay:
#print('replay enter')
cnt+=1
#print('before R: ', r)
if r == 0 : #r == 0.0: #update the reward if it's a non terminal step. the reward is 0 for all non terminal steps
next_preds = self.frozen_model.predict(np.array([_s]))[0]
maxval = 0
for total_idx in _avail:
val = next_preds[total_idx]
if val > maxval:
maxval = val
#print('TEST TEST : ')
#print(maxval)
r = maxval*0.95 + r # gamma*Q(s', a)
b = self.training_model.predict(np.array([s])) #setting the gradient of all the non action values to 0, kinda hacky but works
r = r+ ir
b[0][idx] = r
y.append(b)
y = np.array(y)
if len(X) > 0:
for idx in range(len(X)):
#print('l:', y[idx].shape)
#y_test = np.array(y[idx])
X_train = np.array([X[idx]])
y_train = y[idx]
#print('YSHAPE: ', y_train[0].shape)
#print('m:', y_test.shape)
#y_test= y_test.reshape(150,1)
#print('n:', y_test.shape)
self.training_model.train_on_batch(X_train, y_train)
'''
assert(ValidMove(selected, moves))
random.seed(self.seed_list[self.seed_idx])
self.seed_idx += 1
self.game_state.ExecuteMove(i, selected)
if not self.game_state.TilesRemaining():
break
# Have we reached the end of round?
if self.game_state.TilesRemaining():
move_count+=1
continue
# It is the end of round
self.game_state.ExecuteEndOfRound()
if self.displayer is not None:
self.displayer.EndRound(self.game_state)
# Is it the end of the game?
for i in player_order:
plr_state = self.game_state.players[i]
completed_rows = plr_state.GetCompletedRows()
if completed_rows > 0:
game_continuing = False
break
if game_continuing:
round_count+=1 ## round_count+=1
move_count=0
self.game_state.SetupNewRound()
player_order = []
cnt_0 = 0
cnt_1 = 0
for i in range(self.game_state.first_player,len(self.players)):
player_order.append(i)
for i in range(0, self.game_state.first_player):
player_order.append(i)
for i in player_order:
gs_copy = copy.deepcopy(self.game_state)
try:
func_timeout(self.startRound_time_limit,self.players[i].StartRound,args=(gs_copy,))
except FunctionTimedOut:
'''
self.warnings[i] += 1
if self.displayer is not None:
self.displayer.TimeOutWarning(self,i)
self.warning_positions.append((i,round_count,-1))
if self.warnings[i] == self.warning_limit:
player_traces = self._EndGame(player_order,isTimeOut=True,id=i)
return player_traces
'''
except AttributeError:
pass
random.seed(self.seed_list[self.seed_idx])
self.seed_idx += 1
if self.displayer is not None:
self.displayer.StartRound(self.game_state)
def Run(self):
print('OK GAME START!')
self.displayer = None
max_len = 100
self.experience_replay = ER(max_len)
self.most_len = 0
self.learning_rate = 0.005
self.general_moves = {}
self.prev_0_point = 0
self.prev_1_point = 0
# C is the number of timesteps we update the frozen model
C = 50
'''
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("model.h5")
loaded_model.compile(loss='mse', optimizer = 'rmsprop', metrics=['accuracy'])
loaded_model._make_predict_function()
self.training_model = loaded_model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("model.h5")
loaded_model.compile(loss='mse', optimizer = 'rmsprop')
loaded_model._make_predict_function()
self.frozen_model = loaded_model
'''
#self.base_state = np.zeros(7) #47 7 132 85 (1,85)
training_model = Sequential()
training_model.add(Dense(1500, input_shape=(95, ), activation='relu')) #132 85 85 47 4747 94 30 1 125 78-30
training_model.add(Activation('relu'))
training_model.add(Dense(1000))
training_model.add(Activation('relu'))
training_model.add(Dense(875))
training_model.add(Activation('linear'))
training_model.compile(loss='mse', optimizer = 'rmsprop', metrics=['accuracy'])
self.training_model = training_model
# Q^ or the frozen model
frozen_model = Sequential()
frozen_model.add(Dense(1500, input_shape=(95, ), activation='relu')) #132 85 85 125
frozen_model.add(Activation('relu'))
frozen_model.add(Dense(1000))
frozen_model.add(Activation('relu'))
frozen_model.add(Dense(875))
frozen_model.add(Activation('linear'))
frozen_model.compile(loss='mse', optimizer = 'rmsprop')
self.frozen_model = frozen_model
#ills = 0 #number of illegal moves
discount = 0.97 #gamme for gamma*Q(s', a') in the loss f'n
scores= deque(maxlen=100) #just a metric for checking scores
self.epsilon = 1.0 #% of random moves
self.eps = 0 #number of random moves played
moves = 0 #number of non-random moves played
max_episodes = 1000 #max games
max_steps = 10 #max length of a game
for episode in range(max_episodes):
print('Episode: ', episode)
training_count = 0
#frozen model update
if episode % C == 0:
self.training_model.save_weights('weights.h5', overwrite=True)
self.frozen_model.load_weights('weights.h5')
self.frozen_model.compile(loss='mse', optimizer ='rmsprop')
#play a game
for timestep in range(max_steps):
print('train : ', timestep, '-th')
self._run()
training_count += 1
#self.epsilon-= decremental_epsilon
if episode%10 == 0:
with open('generalized_moves.json', 'w') as fp: # Save the mapping Move/Index to be used on developement
json.dump(self.general_moves, fp)
model_json = self.training_model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
graph = tf.get_default_graph()
with graph.as_default():
self.training_model.save_weights("model.h5")
print('episode ', episode, ' DONE!')
with open('generalized_moves.json', 'w') as fp: # Save the mapping Move/Index to be used on developement
json.dump(self.general_moves, fp)
model_json = self.training_model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
graph = tf.get_default_graph()
with graph.as_default():
self.training_model.save_weights("model.h5")
class ReplayRunner:
def __init__(self,replay, displayer = None):
self.replay = replay
self.seed = self.replay["seed"]
random.seed(self.seed)
self.seed_list = [random.randint(0,1e10) for _ in range(1000)]
self.seed_idx = 0
self.player_num = self.replay["player_num"]
self.players_namelist = replay["players_namelist"]
self.warning_limit = replay["warning_limit"]
self.warnings = [0]*self.player_num
self.warning_positions = replay["warning_positions"]
self.game_state = GameState(self.player_num)
self.displayer = displayer
if self.displayer is not None:
self.displayer.InitDisplayer(self)
def Run(self):
player_order = []
for i in range(self.game_state.first_player, self.player_num):
player_order.append(i)
for i in range(0, self.game_state.first_player):
player_order.append(i)
game_continuing = True
for plr in self.game_state.players:
plr.player_trace.StartRound()
round_count = 0
move_count = 0
for i in player_order:
if (i,round_count,-1) in self.warning_positions:
self.warnings[i]+=1
if self.displayer is not None:
self.displayer.TimeOutWarning(self,i)
if self.warnings[i] == self.warning_limit:
self.game_state.players[i].score = -1
if self.displayer is not None:
self.displayer.EndGame(self.game_state)
return self.displayer
random.seed(self.seed_list[self.seed_idx])
self.seed_idx += 1
if self.displayer is not None:
self.displayer.StartRound(self.game_state)
while game_continuing:
for i in player_order:
if (i,round_count,move_count) in self.warning_positions:
self.warnings[i]+=1
if self.displayer is not None:
self.displayer.TimeOutWarning(self,i)
if self.warnings[i] == self.warning_limit:
self.game_state.players[i].score = -1
if self.displayer is not None:
self.displayer.EndGame(self.game_state)
return self.displayer
plr_state = self.game_state.players[i]
moves = plr_state.GetAvailableMoves(self.game_state)
selected = self.replay[i][1].moves[round_count][move_count]
assert(ValidMove(selected, moves))
random.seed(self.seed_list[self.seed_idx])
self.seed_idx += 1
self.game_state.ExecuteMove(i, selected)
if self.displayer is not None:
self.displayer.ExcuteMove(i,selected, self.game_state)
if not self.game_state.TilesRemaining():
break
# Have we reached the end of round?
if self.game_state.TilesRemaining():
move_count+=1
continue
# It is the end of round
self.game_state.ExecuteEndOfRound()
if self.displayer is not None:
self.displayer.EndRound(self.game_state)
# Is it the end of the game?
for i in player_order:
plr_state = self.game_state.players[i]
completed_rows = plr_state.GetCompletedRows()
if completed_rows > 0:
game_continuing = False
break
# Set up the next round
if game_continuing:
round_count+=1
move_count=0
self.game_state.SetupNewRound()
player_order = []
for i in range(self.game_state.first_player,self.player_num):
player_order.append(i)
for i in range(0, self.game_state.first_player):
player_order.append(i)
for i in player_order:
if (i,round_count,-1) in self.warning_positions:
self.warnings[i]+=1
if self.displayer is not None:
self.displayer.TimeOutWarning(self,i)
if self.warnings[i] == self.warning_limit:
self.game_state.players[i].score = -1
if self.displayer is not None:
self.displayer.EndGame(self.game_state)
return self.displayer
random.seed(self.seed_list[self.seed_idx])
self.seed_idx += 1
if self.displayer is not None:
self.displayer.StartRound(self.game_state)
# Score player bonuses
for i in player_order:
self.game_state.players[i].EndOfGameScore()
if self.displayer is not None:
self.displayer.EndGame(self.game_state)
# Return scores
return self.displayer
class ER:
def __init__(self, max_len=100):
self.replay_0 = []
self.replay_1 = []
self.replay_long_0 = []
self.replay_long_1 = []
#self.max_len = 100
#self.curr_game = []
def store_0(self, state, done, immediate_reward, reward, whole_reward, next_state, avail, idx):
#self.curr_game.append((state, immediate_reward, reward, next_state, avail, idx))
self.replay_0.append((state, done, immediate_reward, reward, whole_reward, next_state, avail, idx))
self.replay_long_0.append((state, done, immediate_reward, reward, whole_reward, next_state, avail, idx))
def store_1(self, state, done, immediate_reward, reward, whole_reward, next_state, avail, idx):
#self.curr_game.append((state, immediate_reward, reward, next_state, avail, idx))
self.replay_1.append((state, done, immediate_reward, reward, whole_reward, next_state, avail, idx))
self.replay_long_1.append((state, done, immediate_reward, reward, whole_reward, next_state, avail, idx))
'''
discount = 0.97
if reward != 0:
r_0 = 0
i = 0
for s, ir, r, _s, avail, idx in reversed(self.curr_game):
# r_0 = r + discount*r_0
self.replay.append((s, ir, r, _s, avail, idx))
while len(self.replay) > self.max_len:
self.replay.pop()
self.curr_game = []
'''
def get_minibatch(self, flag, size=30):
replay = self.replay_0
self.replay_0 = []
if flag == 1:
replay = self.replay_1
self.replay_1 = []
#print('param: ', size, 'replay size: ', len(replay))
'''
if len(replay) > size:
print('param: ', size, 'replay size: ', len(replay))
copied = copy.deepcopy(replay)
random.shuffle(copied)
return copied[:size]
else:
'''
return replay
def get_longbatch(self, flag, size=500):
replay = self.replay_long_0
self.replay_long_0 = []
if flag == 1:
replay = self.replay_long_1
self.replay_long_1 = []
#print('LONG: param: ', size, 'replay size: ', len(replay))
#if len(replay) > size:
# print('param: ', size, 'replay size: ', len(replay))
# copied = copy.deepcopy(replay)
# random.shuffle(copied)
# return copied[:size]
#else:
return replay
def B2N(binary, i, j):
arr = [[],[],[],[],[]]
#arr [0] = ['B', 'Y', 'R', 'K', 'W']
#arr [1] = ['W' ,'B','Y','R','K']
#arr [2] = ['K', 'W', 'B', 'Y', 'R']
#arr [3] = ['R', 'K', 'W', 'B', 'Y']
#arr [4] = ['Y', 'R', 'K', 'W', 'B']
arr [0] = [2, 5, 1, 4, 3]
arr [1] = [3 ,2, 5, 1, 4]
arr [2] = [4, 3, 2, 5, 1]
arr [3] = [1, 4, 3, 2, 5]
arr [4] = [5, 1, 4, 3, 2]
if binary == 0:
return 0
else:
return arr[i][j]
def StateToArray(player_id, ps):
pattern_line_arr = []
grid_arr = []
for i in range(ps.GRID_SIZE):
if ps.lines_tile[i] != -1:
tt = ps.lines_tile[i]
ts = TileToNum(tt)
num = ps.lines_number[i]
for j in range(num):
pattern_line_arr.append(ts)
for j in range(num, i+1):
pattern_line_arr.append(0)
else:
assert ps.lines_number[i] == 0
for j in range(i+1):
pattern_line_arr.append(0)
for i in ps.floor:
if i == 1:
pattern_line_arr.append(-1)
else:
pattern_line_arr.append(0)
grid_arr.append(B2N(ps.grid_state[0][0], 0, 0))
grid_arr.append(B2N(ps.grid_state[0][1], 0, 1))
grid_arr.append(B2N(ps.grid_state[0][2], 0, 2))
grid_arr.append(B2N(ps.grid_state[0][3], 0, 3))
grid_arr.append(B2N(ps.grid_state[0][4], 0, 4))
#elif i == 1:
grid_arr.append(B2N(ps.grid_state[1][0], 1, 0))
grid_arr.append(B2N(ps.grid_state[1][1], 1, 1))
grid_arr.append(B2N(ps.grid_state[1][2], 1, 2))
grid_arr.append(B2N(ps.grid_state[1][3], 1, 3))
grid_arr.append(B2N(ps.grid_state[1][4], 1, 4))
#elif i == 2:
grid_arr.append(B2N(ps.grid_state[2][0], 2, 0))
grid_arr.append(B2N(ps.grid_state[2][1], 2, 1))
grid_arr.append(B2N(ps.grid_state[2][2], 2, 2))
grid_arr.append(B2N(ps.grid_state[2][3], 2, 3))
grid_arr.append(B2N(ps.grid_state[2][4], 2, 4))
#elif i == 3:
grid_arr.append(B2N(ps.grid_state[3][0], 3, 0))
grid_arr.append(B2N(ps.grid_state[3][1], 3, 1))
grid_arr.append(B2N(ps.grid_state[3][2], 3, 2))
grid_arr.append(B2N(ps.grid_state[3][3], 3, 3))
grid_arr.append(B2N(ps.grid_state[3][4], 3, 4))