-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
190 lines (165 loc) · 8.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os.path
import sys
import math
import argparse
import time
import random
import numpy as np
from collections import OrderedDict
import logging
import torch
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
import lpips_models
def main():
# options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to option JSON file.')
opt = option.parse(parser.parse_args().opt, is_train=True)
opt = option.dict_to_nonedict(opt) # Convert to NoneDict, which return None for missing key.
# train from scratch OR resume training
if opt['path']['resume_state']: # resuming training
resume_state = torch.load(opt['path']['resume_state'])
else: # training from scratch
resume_state = None
util.mkdir_and_rename(opt['path']['experiments_root']) # rename old folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger(None, opt['path']['log'], 'train', level=logging.INFO, screen=True)
util.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO)
logger = logging.getLogger('base')
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
option.check_resume(opt) # check resume options
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter(logdir='/home/user1/Documents/Kalpesh/NTIRE2_Code/tb_logger/' + opt['name'])
# random seed
seed = opt['train']['manual_seed']
#seed = None
if seed is None:
seed = random.randint(1, 10000)
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benckmark = True
# torch.backends.cudnn.deterministic = True
# create train and val dataloader
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
train_loader = create_dataloader(train_set, dataset_opt)
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt)
logger.info('Number of val images in [{:s}]: {:d}'.format(dataset_opt['name'],
len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
# create model
model = create_model(opt)
lpips_mode = lpips_models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True,version='0.1')
# resume training
if resume_state:
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = 0
start_epoch = 0
# training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs):
for _, train_data in enumerate(train_loader):
current_step += 1
if current_step > total_iters:
break
# update learning rate
model.update_learning_rate()
# training
model.feed_data(train_data)
model.optimize_parameters(current_step)
# log
if current_step % opt['logger']['print_freq'] == 0:
logs = model.get_current_log()
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(
epoch, current_step, model.get_current_learning_rate())
for k, v in logs.items():
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar(k, v, current_step)
logger.info(message)
# validation
if current_step % opt['train']['val_freq'] == 0:
avg_psnr = 0.0
lp = 0.0
idx = 0
for val_data in val_loader:
idx += 1
img_name = os.path.splitext(os.path.basename(val_data['LR_path'][0]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
visuals['SR'] = visuals['SR'][0:visuals['HR'].size(0),0:visuals['HR'].size(1),0:visuals['HR'].size(2)]
score = lpips_mode.forward(visuals['HR']*2-1,visuals['SR']*2-1)
lp = lp + score.item()
sr_img = util.tensor2img(visuals['SR']) # uint8
gt_img = util.tensor2img(visuals['HR']) # uint8
h,w,c = gt_img.shape
sr_img = sr_img[0:h,0:w,0:c]
#dr_img = util.tensor2img(visuals['DR']) # uint8
# Save SR images for reference
save_img_path = os.path.join(img_dir, 'SR{:s}_{:d}.png'.format(\
img_name, current_step))
util.save_img(sr_img, save_img_path)
"""
save_img_path = os.path.join(img_dir, 'DR{:s}_{:d}.png'.format(\
img_name, current_step))
util.save_img(dr_img, save_img_path)
"""
# calculate PSNR
crop_size = opt['scale']
gt_img = gt_img / 255.
sr_img = sr_img / 255.
cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :]
cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :]
avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
avg_psnr = avg_psnr / idx
avg_lpips = lp/idx
# log
logger.info('# Validation # PSNR: {:.4e}, LPIPS: {:.4e}'.format(avg_psnr,avg_lpips))
logger_val = logging.getLogger('val') # validation logger
logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}, LPIPS: {:.4e}'.format(
epoch, current_step, avg_psnr,avg_lpips))
#logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
#logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format(
#epoch, current_step, avg_psnr))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr', avg_psnr, current_step)
# save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()