-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinearfunction.py
78 lines (60 loc) · 2.36 KB
/
linearfunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Solution is available in the other "sandbox_solution.py" tab
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from linearfunction_imp import get_weights, get_biases, linear
def mnist_features_labels(n_labels):
"""
Gets the first <n> labels from the MNIST dataset
:param n_labels: Number of labels to use
:return: Tuple of feature list and label list
"""
mnist_features = []
mnist_labels = []
mnist = input_data.read_data_sets('/datasets/ud730/mnist', one_hot=True)
# In order to make quizzes run faster, we're only looking at 10000 images
for mnist_feature, mnist_label in zip(*mnist.train.next_batch(10000)):
# Add features and labels if it's for the first <n>th labels
if mnist_label[:n_labels].any():
mnist_features.append(mnist_feature)
mnist_labels.append(mnist_label[:n_labels])
return mnist_features, mnist_labels
# Number of features (28*28 image is 784 features)
n_features = 784
# Number of labels
n_labels = 3
# Features and Labels
features = tf.placeholder(tf.float32)
labels = tf.placeholder(tf.float32)
# Weights and Biases
w = get_weights(n_features, n_labels)
b = get_biases(n_labels)
# Linear Function xW + b
logits = linear(features, w, b)
# Training data
train_features, train_labels = mnist_features_labels(n_labels)
init = tf.global_variables_initializer()
with tf.Session() as session:
# TODO: Initialize session variables
session.run(init)
# Softmax
prediction = tf.nn.softmax(logits)
# Cross entropy
# This quantifies how far off the predictions were.
# You'll learn more about this in future lessons.
cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1)
# Training loss
# You'll learn more about this in future lessons.
loss = tf.reduce_mean(cross_entropy)
# Rate at which the weights are changed
# You'll learn more about this in future lessons.
learning_rate = 0.08
# Gradient Descent
# This is the method used to train the model
# You'll learn more about this in future lessons.
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# Run optimizer and get loss
_, l = session.run(
[optimizer, loss],
feed_dict={features: train_features, labels: train_labels})
# Print loss
print('Loss: {}'.format(l))