-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathemail_spam_detection_with_ml.py
202 lines (143 loc) · 19.5 KB
/
email_spam_detection_with_ml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
"""email-spam-detection-with-ML.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1xV5od0gO8IPOFzeOHaeoU9_YMcMfWggG
# **EMAIL SPAM DETECTION USING MACHINE LEARNING**
**Download Dataset here:** [spam.csv](https://drive.google.com/file/d/1ctbKxUgsCpRxPeVO9cAlp6ywy0AOEM9d/view?usp=share_link)
![no-spam-gmail.webp]()
# Importing required libraries
---
"""
import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import time
from google.colab import drive
drive.mount('/content/drive')
"""# Data Loading
---
"""
df = pd.read_csv('/content/drive/My Drive/Oasis Infobyte/Data Science - Internship/Email-Spam-Detection/spam.csv', encoding='latin-1')
df
df.drop(['Unnamed: 2','Unnamed: 3', 'Unnamed: 4'], axis = 1, inplace = True)
df.head()
df.tail()
"""# EDA
---
# 1. Handling Null Values
"""
df.isna().any()
df.isna().sum()
"""# 2. Handling Duplicate Values"""
df['v2'].nunique()
df.shape
df['v2'].drop_duplicates(inplace = True)
df.shape
df
"""# 3. Class Distributions"""
# Create a bar plot of the class distribution
class_counts = df['v1'].value_counts()
class_counts.plot(kind='bar')
plt.title('Class Distribution of Spam/Ham')
plt.xlabel('Spam/Ham')
plt.ylabel('Number of Mails')
plt.show()
"""# Word Count"""
from collections import Counter
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
# Concatenate all tweet texts into a single string
all_text = ' '.join(df['v2'].values)
# Remove URLs, mentions, and hashtags from the text
all_text = re.sub(r'http\S+', '', all_text)
all_text = re.sub(r'@\S+', '', all_text)
all_text = re.sub(r'#\S+', '', all_text)
# Split the text into individual words
words = all_text.split()
# Remove stop words
stop_words = set(stopwords.words('english'))
words = [word for word in words if not word in stop_words]
# Count the frequency of each word
word_counts = Counter(words)
top_words = word_counts.most_common(100)
top_words
# Create a bar chart of the most common words
top_words = word_counts.most_common(10) # Change the number to show more/less words
x_values = [word[0] for word in top_words]
y_values = [word[1] for word in top_words]
plt.bar(x_values, y_values)
plt.xlabel('Word')
plt.ylabel('Frequency')
plt.title('Most Commonly Used Words')
plt.show()
"""# Natural Language Processing
---
# 1. Data Cleaning
"""
# Clean the data
def clean_text(text):
# Remove HTML tags
text = re.sub('<.*?>', '', text)
# Remove non-alphabetic characters and convert to lowercase
text = re.sub('[^a-zA-Z]', ' ', text).lower()
# Tokenize the text
words = nltk.word_tokenize(text)
# Remove stopwords
words = [w for w in words if w not in stopwords.words('english')]
# Stem the words
stemmer = PorterStemmer()
words = [stemmer.stem(w) for w in words]
# Join the words back into a string
text = ' '.join(words)
return text
import nltk
nltk.download('punkt')
# Commented out IPython magic to ensure Python compatibility.
# %%time
#
# tqdm.pandas()
#
# df['cleaned_text'] = df['v2'].progress_apply(clean_text)
"""# 2. Feature Extraction"""
# Create the Bag of Words model
cv = CountVectorizer(max_features=5000)
X = cv.fit_transform(df['cleaned_text']).toarray()
y = df['v1']
# Split the data into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
"""# Classification Model
---
# 1. Logistic Regression Model
"""
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# train a Logistic Regression Model
clf = LogisticRegression()
clf.fit(X_train, y_train)
"""# 2. Predictions"""
# evaluate the classifier on the test set
y_pred = clf.predict(X_test)
y_pred
"""# 3. Accuracy"""
acc = accuracy_score(y_test, y_pred)
print("Accuracy:", acc)
"""# 4. Confusion Matrix"""
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
import seaborn as sns
sns.heatmap(cm, annot=True)
cm
"""# 5. Classification Report"""
from sklearn.metrics import classification_report
report = classification_report(y_test, y_pred)
print(report)