forked from aminullah6264/Pytorch-Action-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTesting Code.py
267 lines (223 loc) · 10.1 KB
/
Testing Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
"""
Created on Mon May 29 15:55:09 2017
@author: AMIN
"""
import tensorflow as tf
from tensorflow.contrib import rnn
from numpy import genfromtxt
import numpy as np
import os, fnmatch
import sklearn.model_selection as sk
import time
n_classes = 51
chunk_size =1000
n_chunks =6
rnn_size = 128
n_nodes_hl1 = 256
n_nodes_hl2 = 128
n_nodes_hl3 = 64
x = tf.placeholder('float', [None, n_chunks,chunk_size])
y = tf.placeholder('float')
def recurrent_neural_network(x):
#
# W = {
# 'hidden': tf.Variable(tf.random_normal([chunk_size, rnn_size])),
# 'output': tf.Variable(tf.random_normal([rnn_size, n_classes]))
# }
# biases = {
# 'hidden': tf.Variable(tf.random_normal([rnn_size], mean=1.0)),
# 'output': tf.Variable(tf.random_normal([n_classes]))
# }
#
#
# x = tf.transpose(x, [1,0,2])
# x = tf.reshape(x, [-1,chunk_size])
# x = tf.nn.relu(tf.matmul(x, W['hidden']) + biases['hidden'])
# x = tf.split (x,n_chunks, 0)
# # new shape: n_steps * (batch_size, n_hidden)
#
# # Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
# lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
# lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
# lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
# # Get LSTM cell output
# outputs, final_states = tf.contrib.rnn.static_rnn(lstm_cells, x, dtype=tf.float32)
# # Get last time step's output feature for a "many to one" style classifier,
# # as in the image describing RNNs at the top of this page
## lstm_last_output=tf.transpose(outputs, [1,0,2])
# # Linear activation
# return tf.matmul(outputs[-1], W['output']) + biases['output']
#####################################################################
# Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, n_chunks, 1)
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
lstm_cell_3 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
lstm_cell_4 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell_3, lstm_cell_4], state_is_tuple=True)
# Define lstm cells with tensorflow
# Forward direction cell
# lstm_fw_cell = rnn.BasicLSTMCell(rnn_size, forget_bias=1.0)
# # Backward direction cell
# lstm_bw_cell = rnn.BasicLSTMCell(rnn_size, forget_bias=1.0)
# Get lstm cell output
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception: # Old TensorFlow version only returns outputs not states
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
# Hidden layer weights => 2*n_hidden because of forward + backward cells
weights1 = tf.Variable(tf.random_normal([2*rnn_size, n_classes]),name="weights1")
biases1 = tf.Variable(tf.random_normal([n_classes]),name="biases1")
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights1) + biases1
######################################################################
# weights = {
# # Hidden layer weights => 2*n_hidden because of forward + backward cells
# 'out': tf.Variable(tf.random_normal([2*rnn_size, n_classes]))
# }
# biases = {
# 'out': tf.Variable(tf.random_normal([n_classes]))
# }
# # Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)
# x = tf.unstack(x, n_chunks, 1)
#
# # Define lstm cells with tensorflow
# # Forward direction cell
# lstm_fw_cell = rnn.BasicLSTMCell(rnn_size, forget_bias=1.0)
# # Backward direction cell
# lstm_bw_cell = rnn.BasicLSTMCell(rnn_size, forget_bias=1.0)
#
# # Get lstm cell output
# try:
# outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
# dtype=tf.float32)
# except Exception: # Old TensorFlow version only returns outputs not states
# outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
# dtype=tf.float32)
#
# # Linear activation, using rnn inner loop last output
# return tf.matmul(outputs[-1], weights['out']) + biases['out']
#
#
#
#########################################################################
#
# x = tf.transpose(x, [1,0,2])
# x = tf.reshape(x, [-1,chunk_size])
# x = tf.split (x,n_chunks, 0)
# lstm_cell = rnn.BasicLSTMCell(rnn_size)
# outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
#
#
#
# weights1=tf.Variable(-1.0, validate_shape=False,name="weights1") #,mean=0.2, stddev=0.2
# biases1=tf.Variable(-1.0, validate_shape=False,name="biases1")
# l1 = tf.add(tf.matmul(outputs[-1],weights1), biases1)
# l1=tf.sigmoid(l1)
#
#
# weights2=tf.Variable(-1.0, validate_shape=False,name="weights2")
# biases2=tf.Variable(-1.0, validate_shape=False, name="biases2")
# l2 = tf.add(tf.matmul(l1,weights2), biases2)
# l2=tf.sigmoid(l2)
#
# weights3=tf.Variable(-1.0, validate_shape=False,name="weights3")
# biases3=tf.Variable(-1.0, validate_shape=False, name="biases3")
# l3 = tf.add(tf.matmul(l2,weights3), biases3)
# l3=tf.sigmoid(l3)
#
#
# weightsOutput=tf.Variable(-1.0, validate_shape=False,name="weightsOutput")
# biasesOutput=tf.Variable(-1.0, validate_shape=False,name="biasesOutput")
# output = tf.matmul(l3,weightsOutput)+ biasesOutput
# # output=tf.sigmoid(output)
#
#
# return output
def train_recurrnet_neural_network(x):
prediction= recurrent_neural_network(x)
tf.device('/gpu:0')
ConfussionMatrix=[]
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, "/home/imlab/Desktop/RNN Codes/Action BiDirectional Model For HMD Dataset/model.chk")
#print(sess.run(tf.all_variables()))
for mm in range(1,2,1):
hist1=np.zeros(51)
TotalResult=np.zeros(51)
clNew='*class_'+str(mm)+'.csv'
ClassFiles=fnmatch.filter(os.listdir('/home/imlab/Desktop/RNN Codes/Action DataSets/HMD Dataset/Test/'), clNew)
print('class Number=',mm)
for t in range(0,len(ClassFiles),1):
time_start = time.clock()
X_test = genfromtxt('/home/imlab/Desktop/RNN Codes/Action DataSets/HMD Dataset/Test/'+str(ClassFiles[t]), delimiter=',')
lenghtX,dd=X_test.shape
time_start = time.clock()
labled=sess.run(tf.argmax(prediction,1), feed_dict={x: X_test.reshape((-1,n_chunks, chunk_size))})
hist1[:]=0
for k in range(len(labled)):
hist1[labled[k]] = hist1[labled[k]] +1
time_elapsed = (time.clock() - time_start)
print(time_elapsed)
# for k in range(len(hist1)):
# print(k,' Labled =',hist1[k])
# for k in range(len(hist1)):
# print(k,' Labled =',hist1[k]/lenghtX)
# if hist1[k]/lenghtX >= 0.5:
TotalResult[np.argmax(hist1)]=TotalResult[np.argmax(hist1)]+1
#
ConfussionMatrix.append(TotalResult)
# for k in range(len(TotalResult)):
# print(k," =" ,TotalResult[k])
return ConfussionMatrix
ConfussionMatrix=train_recurrnet_neural_network(x)
# OLD:
# sess.run(tf.initialize_all_variables())
# NEW:
# x = tf.Variable(-1.0, validate_shape=False, name="weights")
# y = tf.Variable(-1.0, validate_shape=False, name="biases")
# with tf.Session() as session:
# session.run(tf.global_variables_initializer())
# saver = tf.train.Saver()
# saver.restore(session, "/home/imlab/Desktop/NewFolder/Age With New Features With 256D/model.chk")
# print(session.run(tf.all_variables()))
# sess.run(tf.global_variables_initializer())
## saver=tf.train.Saver()
# saver = tf.train.import_meta_graph('/home/imlab/Desktop/NewFolder/Age With New Features With 256D/model.ckpt.meta')
#
## print('weights =', sess.run(weights))
## print('biases =', sess.run(biases))
# print("Loading Parameter from checkpoint_file ......" )
# saver.restore(sess,tf.train.latest_checkpoint('/home/imlab/Desktop/NewFolder/Age With New Features With 256D/'))
## saver.restore(sess, tf.train.latest_checkpoint('/home/imlab/Desktop/NewFolder/Age With New Features With 256D/')
# print('weights =', sess.run(weights))
# print('biases =', sess.run(biases))
## sess = tf.Session()
#new_saver = tf.train.import_meta_graph('my-model.meta')
#new_saver.restore(sess, tf.train.latest_checkpoint('./'))
# all_vars = tf.get_collection('vars')
# print(all_vars)
# for v in all_vars:
# v_ = sess.run(v)
# print(v_)
# print('weights =', sess.run(weights))
# print('biases =', sess.run(biases))
# Create some variables.
#import os, fnmatch
#fnmatch.filter(os.listdir('101 Test Files/'), '*class_11.csv')
#
# Add ops to save and restore all the variables.
# saver = tf.train.Saver()
#
## Later, launch the model, use the saver to restore variables from disk, and
## do some work with the model.
# with tf.Session() as sess:
# # Restore variables from disk.
# saver.restore(sess, "/home/imlab/Desktop/NewFolder/Age With New Features With 256D/model.ckpt")
# print("Model restored.")
# Do some work with the model