-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGPT.py
257 lines (205 loc) · 8.63 KB
/
GPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# GPT.py
import tiktoken
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
"""Custom Dataset for GPT Model training.
This dataset tokenizes the input text and creates input-target pairs
using a sliding window approach with the specified stride and max length.
Args:
txt (str): The input text to be tokenized.
tokenizer: The tokenizer used to encode the text.
max_length (int): The maximum length of the input sequences.
stride (int): The stride size for creating overlapping sequences.
"""
def __init__(self, txt, tokenizer, max_length, stride):
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
if len(token_ids) <= max_length:
# Check data is short.
input_chunk = token_ids[:-1]
target_chunk = token_ids[1:]
self.input_ids.append(torch.tensor(input_chunk))
self.target_ids.append(torch.tensor(target_chunk))
else:
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
input_chunk = token_ids[i:i + max_length]
target_chunk = token_ids[i + 1: i + max_length + 1]
self.input_ids.append(torch.tensor(input_chunk))
self.target_ids.append(torch.tensor(target_chunk))
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.target_ids[idx]
def create_dataloader_v1(prompts, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True):
tokenizer = tiktoken.get_encoding("gpt2")
combined_text = " ".join(prompts) # Combine list of texts into a single string
dataset = GPTDatasetV1(combined_text, tokenizer, max_length, stride)
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
class MultiHeadAttention(nn.Module):
"""Multi-Head Attention mechanism for the Transformer model.
Args:
d_in (int): The dimensionality of the input.
d_out (int): The dimensionality of the output.
context_length (int): The length of the context for the attention mechanism.
dropout (float): The dropout rate.
num_heads (int): The number of attention heads.
qkv_bias (bool, optional): Whether to include bias in the QKV projections. Defaults to False.
"""
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out)
self.dropout = nn.Dropout(dropout)
self.register_buffer("mask", torch.triu(torch.ones(context_length, context_length), diagonal=1))
def forward(self, x):
"""Forward pass for the Multi-Head Attention mechanism.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying multi-head attention.
"""
b, num_tokens, d_in = x.shape
keys = self.W_key(x)
queries = self.W_query(x)
values = self.W_value(x)
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
keys = keys.transpose(1, 2)
queries = queries.transpose(1, 2)
values = values.transpose(1, 2)
attn_scores = queries @ keys.transpose(2, 3)
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
attn_scores.masked_fill_(mask_bool, -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)
context_vec = (attn_weights @ values).transpose(1, 2)
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec)
return context_vec
class LayerNorm(nn.Module):
"""Layer Normalization for the Transformer model.
Args:
emb_dim (int): The dimensionality of the embeddings.
"""
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))
def forward(self, x):
"""Forward pass for Layer Normalization.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift
class GELU(nn.Module):
"""Gaussian Error Linear Unit activation function."""
def forward(self, x):
"""Forward pass for GELU activation.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The tensor after applying GELU activation.
"""
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
(x + 0.044715 * torch.pow(x, 3))
))
class FeedForward(nn.Module):
"""Feed Forward Neural Network for the Transformer model.
Args:
cfg (dict): Configuration dictionary containing model parameters.
"""
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)
def forward(self, x):
"""Forward pass for the Feed Forward network.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying the Feed Forward network.
"""
return self.layers(x)
class TransformerBlock(nn.Module):
"""Single Transformer Block consisting of Multi-Head Attention and Feed Forward network.
Args:
cfg (dict): Configuration dictionary containing model parameters.
"""
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
context_length=cfg["context_length"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"])
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
def forward(self, x):
"""Forward pass for the Transformer Block.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying the Transformer Block.
"""
shortcut = x
x = self.norm1(x)
x = self.att(x)
x = self.drop_shortcut(x)
x = x + shortcut
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_shortcut(x)
x = x + shortcut
return x
class GPTModel(nn.Module):
"""GPT Model consisting of multiple Transformer Blocks.
Args:
cfg (dict): Configuration dictionary containing model parameters.
"""
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])
self.trf_blocks = nn.Sequential(
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
def forward(self, in_idx):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
x = tok_embeds + pos_embeds
x = self.drop_emb(x)
x = self.trf_blocks(x)
x = self.final_norm(x)
logits = self.out_head(x)
return logits