forked from cvlab-yonsei/BANA
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstage1.py
148 lines (120 loc) · 4.44 KB
/
stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import data.transforms_bbox as Tr
from data.voc import VOC_box
from configs.defaults import _C
from models.ClsNet import Labeler
import wandb
from utils.wandb import init_wandb, wandb_log
def my_collate(batch):
'''
This is to assign a batch-wise index for each box.
'''
sample = {}
img = []
bboxes = []
bg_mask = []
batchID_of_box = []
for batch_id, item in enumerate(batch):
img.append(item[0])
bboxes.append(item[1])
bg_mask.append(item[2])
for _ in range(len(item[1])):
batchID_of_box += [batch_id]
sample["img"] = torch.stack(img, dim=0)
sample["bboxes"] = torch.cat(bboxes, dim=0)
sample["bg_mask"] = torch.stack(bg_mask, dim=0)[:,None]
sample["batchID_of_box"] = torch.tensor(batchID_of_box, dtype=torch.long)
return sample
def main(cfg):
"""
Main function
Create dataloaders, train the model, and save the trained model.
Inputs:
- cfg: config file
Outputs:
- Trained model saved locally and on wandb
"""
if cfg.SEED:
np.random.seed(cfg.SEED)
torch.manual_seed(cfg.SEED)
random.seed(cfg.SEED)
os.environ["PYTHONHASHSEED"] = str(cfg.SEED)
tr_transforms = Tr.Compose([
Tr.RandomScale(0.5, 1.5),
Tr.ResizeRandomCrop(cfg.DATA.CROP_SIZE),
Tr.RandomHFlip(0.5),
Tr.ColorJitter(0.5,0.5,0.5,0),
Tr.Normalize_Caffe(),
])
trainset = VOC_box(cfg, tr_transforms)
train_loader = DataLoader(trainset, batch_size=cfg.DATA.BATCH_SIZE, collate_fn=my_collate, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
model = Labeler(cfg.DATA.NUM_CLASSES, cfg.MODEL.ROI_SIZE, cfg.MODEL.GRID_SIZE).cuda()
model.backbone.load_state_dict(torch.load(f"./weights/{cfg.MODEL.WEIGHTS}"), strict=False)
params = model.get_params()
lr = cfg.SOLVER.LR
wd = cfg.SOLVER.WEIGHT_DECAY
optimizer = optim.SGD(
[{"params":params[0], "lr":lr, "weight_decay":wd},
{"params":params[1], "lr":2*lr, "weight_decay":0 },
{"params":params[2], "lr":10*lr, "weight_decay":wd},
{"params":params[3], "lr":20*lr, "weight_decay":0 }],
momentum=cfg.SOLVER.MOMENTUM
)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.SOLVER.MILESTONES, gamma=0.1)
criterion = nn.CrossEntropyLoss()
# Initializing W&B
init_wandb(model, cfg)
model.train()
iterator = iter(train_loader)
storages = {"CE": 0,}
interval_verbose = cfg.SOLVER.MAX_ITER // 40
for it in range(1, cfg.SOLVER.MAX_ITER+1):
try:
sample = next(iterator)
except:
iterator = iter(train_loader)
sample = next(iterator)
img = sample["img"]
bboxes = sample["bboxes"]
bg_mask = sample["bg_mask"]
batchID_of_box = sample["batchID_of_box"]
ind_valid_bg_mask = bg_mask.mean(dim=(1,2,3)) > 0.125 # This is because VGG16 has output stride of 8.
logits = model(img.cuda(), bboxes, batchID_of_box, bg_mask.cuda(), ind_valid_bg_mask, GAP=cfg.MODEL.GAP)
logits = logits[...,0,0]
fg_t = bboxes[:,-1][:,None].expand(bboxes.shape[0], np.prod(cfg.MODEL.ROI_SIZE))
fg_t = fg_t.flatten().long()
target = torch.zeros(logits.shape[0], dtype=torch.long)
target[:fg_t.shape[0]] = fg_t
loss = criterion(logits, target.cuda())
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
storages["CE"] += loss.item()
if it % interval_verbose == 0:
for k in storages.keys(): storages[k] /= interval_verbose
for k in storages.keys(): storages[k] = 0
# Logging on W&B
wandb_log(loss.item(), optimizer.param_groups[0]["lr"], it)
torch.save(model.state_dict(), f"./weights/{cfg.NAME}.pt")
wandb.save(f"./weights/{cfg.NAME}.pt")
wandb.finish()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config-file")
parser.add_argument("--gpu-id", type=str, default="0", help="select a GPU index")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
cfg = _C.clone()
cfg.merge_from_file(args.config_file)
cfg.freeze()
main(cfg)