-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathserialization.py
227 lines (169 loc) · 7.18 KB
/
serialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
##########################################################################
# Copyright 2018 Kata.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##########################################################################
from typing import Any
from camel import PYTHON_TYPES, Camel, CamelRegistry
from nltk.classify import BinaryMaxentFeatureEncoding, MaxentClassifier, NaiveBayesClassifier
from nltk.probability import ConditionalFreqDist, ConditionalProbDist, ELEProbDist, FreqDist, \
LidstoneProbDist
import numpy as np
from models.supervised import HMMSummarizer, MaxentSummarizer, NaiveBayesSummarizer, \
_GaussianEmission
registry = CamelRegistry()
@registry.dumper(HMMSummarizer, 'hmm', version=1)
def _dump_hmm(model: HMMSummarizer) -> dict:
return {
'init_pdist': model.init_pdist,
'trans_pdist': model.trans_pdist,
'emit_pdist': model.emit_pdist,
'states': model.states,
'gamma': model.gamma,
'tf_table': model.tf_table,
}
@registry.loader('hmm', version=1)
def _load_hmm(data: dict, version: int) -> HMMSummarizer:
return HMMSummarizer(
data['init_pdist'], data['trans_pdist'], data['emit_pdist'], data['states'],
gamma=data['gamma'], tf_table=data['tf_table'])
@registry.dumper(MaxentSummarizer, 'maxent', version=1)
def _dump_maxent(model: MaxentSummarizer) -> dict:
return {
'classifier': model.classifier,
'stopwords': model.stopwords,
'word_pairs': model.word_pairs,
'trim_length': model.trim_length,
}
@registry.loader('maxent', version=1)
def _load_maxent(data: dict, version: int) -> MaxentSummarizer:
return MaxentSummarizer(
data['classifier'], stopwords=data['stopwords'], word_pairs=data['word_pairs'],
trim_length=data['trim_length'])
@registry.dumper(NaiveBayesSummarizer, 'bayes', version=1)
def _dump_bayes(model: NaiveBayesSummarizer) -> dict:
return {
'classifier': model.classifier,
'signature_words': model.signature_words,
}
@registry.loader('bayes', version=1)
def _load_bayes(data: dict, version: int) -> NaiveBayesSummarizer:
return NaiveBayesSummarizer(data['classifier'], signature_words=data['signature_words'])
@registry.dumper(LidstoneProbDist, 'lidstone_pdist', version=1)
def _dump_lidstone_pdist(pdist: LidstoneProbDist) -> dict:
return {
'freqdist': pdist.freqdist(),
'gamma': pdist._gamma,
'bins': pdist._bins,
}
@registry.loader('lidstone_pdist', version=1)
def _load_lidstone_pdist(data: dict, version: int) -> LidstoneProbDist:
return LidstoneProbDist(data['freqdist'], data['gamma'], bins=data['bins'])
@registry.dumper(FreqDist, 'fdist', version=1)
def _dump_fdist(fdist: FreqDist) -> dict:
return dict(fdist.items())
@registry.loader('fdist', version=1)
def _load_fdist(data: dict, version: int) -> FreqDist:
fdist = FreqDist()
for k, v in data.items():
fdist[k] += v
return fdist
@registry.dumper(ConditionalProbDist, 'cpdist', version=1)
def _dump_cpdist(cpdist: ConditionalProbDist) -> dict:
cfdist = ConditionalFreqDist()
for cond in cpdist.conditions():
for k, v in cpdist[cond].freqdist().items():
cfdist[cond][k] += v
return {
'cfdist': cfdist,
'factory_args': cpdist._factory_args,
'factory_kw_args': cpdist._factory_kw_args,
}
@registry.loader('cpdist', version=1)
def _load_cpdist(data: dict, version: int) -> ConditionalProbDist:
return ConditionalProbDist(
data['cfdist'], LidstoneProbDist, *data['factory_args'], **data['factory_kw_args'])
@registry.dumper(ConditionalFreqDist, 'cfdist', version=1)
def _dump_cfdist(cfdist: ConditionalFreqDist) -> dict:
data: dict = {}
for cond in cfdist.conditions():
for k, v in cfdist[cond].items():
if cond not in data:
data[cond] = {}
if k not in data[cond]:
data[cond][k] = 0
data[cond][k] += v
return data
@registry.loader('cfdist', version=1)
def _load_cfdist(data: dict, version: int) -> ConditionalFreqDist:
cfdist = ConditionalFreqDist()
for cond in data:
for k, v in data[cond].items():
cfdist[cond][k] += v
return cfdist
@registry.dumper(_GaussianEmission, 'gaussian_emission', version=1)
def _dump_gaussian_emission(em: _GaussianEmission) -> dict:
return {
'mean_dict': {k: v.tolist() for k, v in em.mean_dict.items()},
'cov': em.cov.tolist(),
}
@registry.loader('gaussian_emission', version=1)
def _load_gaussian_emission(data: dict, version: int) -> _GaussianEmission:
mean_dict = {k: np.array(v) for k, v in data['mean_dict'].items()}
return _GaussianEmission(mean_dict, np.array(data['cov']))
@registry.dumper(MaxentClassifier, 'maxent_clf', version=1)
def _dump_maxent_clf(clf: MaxentClassifier) -> dict:
return {
'encoding': clf._encoding,
'weights': clf._weights.tolist(),
'logarithmic': clf._logarithmic,
}
@registry.loader('maxent_clf', version=1)
def _load_maxent_clf(data: dict, version: int) -> MaxentClassifier:
return MaxentClassifier(
data['encoding'], np.array(data['weights']), logarithmic=data['logarithmic'])
@registry.dumper(BinaryMaxentFeatureEncoding, 'binary_enc', version=1)
def _dump_binary_enc(enc: BinaryMaxentFeatureEncoding) -> dict:
return {
'labels': enc._labels,
'mapping': enc._mapping,
'unseen_features': enc._unseen is not None,
'alwayson_features': enc._alwayson is not None,
}
@registry.loader('binary_enc', version=1)
def _load_binary_enc(data: dict, version: int) -> BinaryMaxentFeatureEncoding:
return BinaryMaxentFeatureEncoding(
data['labels'], data['mapping'], unseen_features=data['unseen_features'],
alwayson_features=data['alwayson_features'])
@registry.dumper(NaiveBayesClassifier, 'bayes_clf', version=1)
def _dump_bayes_clf(clf: NaiveBayesClassifier) -> dict:
return {
'label_pdist': clf._label_probdist,
'feature_pdist': clf._feature_probdist,
}
@registry.loader('bayes_clf', version=1)
def _load_bayes_clf(data: dict, version: int) -> NaiveBayesClassifier:
return NaiveBayesClassifier(data['label_pdist'], data['feature_pdist'])
@registry.dumper(ELEProbDist, 'ele_pdist', version=1)
def _dump_ele_pdist(pdist: ELEProbDist) -> dict:
return {
'freqdist': pdist.freqdist(),
'bins': pdist._bins,
}
@registry.loader('ele_pdist', version=1)
def _load_ele_pdist(data: dict, version: int) -> ELEProbDist:
return ELEProbDist(data['freqdist'], bins=data['bins'])
def dump(obj: Any) -> str:
return Camel([registry, PYTHON_TYPES]).dump(obj)
def load(data: str) -> Any:
return Camel([registry, PYTHON_TYPES]).load(data)